AD=AO64 294 CARNEGIE~MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 12/1 2
A GENERAL METHOD FOR SOLVING DIVIDE=AND=-CONQUER RECURRENCES. (U)
DEC 78 J L BENTLEY: D HAKEN: J B SAXE NOOO14=T76=C=0370

UNCLASSIFIED CMU=CS=T8-154

. NL
END

DATE
FILMED

~-79

BoC

-

ADA0G4294

DOC FILE copy.

Jon Louis Bentley !
Dorothea Haken
James B. Saxe

13 December 1978

A General Method for Solving
Divide-and-Conquer Recurrences

DEPARTMENT
of

Carneqgie-Mellon University

19 U]

- r_“‘

kl &p

¢ 4

CMU-CS-78-154

A General Method for Solving
q Divide-and-Conquer Recurrences

Jon Louis Bentley1
Dorothea Haken
James B. Saxe
Department of Computer Science
Carnegie-Mellon University
E Pittsburgh, Pennsylvania 16213

13 December 1978

Abstract
AN

The complexity of divide-and-conquer algorithms is often described by

recurrence relations of the form
T(n) = kT(n/c) + f(n).

The only method currently available for solving such recurrences consists of solution
tables for fixed functions f and varying k and c. In this note we describe a unifying
method for solving these recurrences that is both general in applicabllity and easy

to apply without the use of large tables.

1. Also with the Department of Mathematics.

This research was supported in part by the Office of Naval Research under
Contract NOOO14-76-C-0370.

1. lntroduction

2. The Template

3. Examples

4. A More General Template
5. Extensions

Table of Contents

TR KR O |

.4,_; .--‘..——d
Yo | /ur SPECML

QNN =

it i i i i P i+ S

1. Introduction

The running times of recursive algorithms can often be analyzed by the use of
recurrence relations. Divide-and-conquer algorithms are an Important subclass of
recursive algorithms (see Aho, Hopcroft and Ullman [1974, Section 2.6] for a
discussion of this class). The recurrence relations describing the complexities of

these algorithms often have the form?

T(1) given,

T(n) = kT(n/c) + f(n).
Much work has been done on systematic ways of solving recurrences of this form;
see, for example, Aho, Hopcroft and Uliman [19874, pp. 64-65], Borodin and Munro
[1975, p. 80], Keller [1978], and Stanat and McAllister [1977, pp. 249, 255]. The
only methods described by the above authors, however, consist of solution tables
for fixed functions f and varying k and c. Although this method is quite satisfactory
when applied to recurrences with common f, there are many times when a function f

arises that has not been previously tabulated.

In this note we describe a new method for solving recurrences of the above form.
Our method is based on rewriting the recurrence into a standard template, which can
then be solved easily. This template is discussed in° Section 2 for the particular
case that ¢ = 2. In Section 3 we illustrate the use of the template by solving a
number of particular recurrences. The extension of the template to the case that
c # 2 is the subject of Section 4. Further work that has already been done on
solving a hroader cliass of recurrences is then described In Section 5. The primary
.contribution of this paper Is not in solving any particular new recurrences but rather
in providing a general and succinct method by which a large class of recurrences
may be solved. It has already been the experience of the authors that this method

is an excellent didactic tool in the classroom context.

TNote that T(n) is defined only when n is a power of c; the implications of this restriction are discussed by Aho,
Hopcroft and Uliman [1974, p. 65].

2. The Temp.ate
In this section we will investigate recurrences of the form

T(1) given, 1)
T(n) = kT(n/2) + f(n).

As mentioned before, this recurrence is defined only for n a power of two. To solve

the recurrence we will rewrite it into the template

T(1) given, (2)
T(n) = 2PT(n/2) + nPgy(n),

where p = Ig k and g(n) = £(n)/nP.7 This new recurrence is easily solved; it has the

unique solution

T(n) = nP[T(1) + g(2) + g(4) + ... + g(n)],

which we abbreviate as

T(n) = nP[T(1) + F(n)], (3)
where { is defined as
gm = 2 g2
1<ikig n

Mathematical induction on the powers of two can be used to show that Equation 3 is

indeed the unique solution to the recurrence of Equation 2.

The above facts provide us with a method for solving any recurrence in the form
of Equation 1. We cast it in the template of Equation 2 by doing a division and

taking a logarithm, and then the solution to the recurrence is given by Equation 3.

The only complicated part of this process is determining the sum implicit In the |

function @ in Equation 3, and this can usually be done with the aid of the following

‘TMoughou! the paper we use Ig as an abbreviation for logz and lo’ n as an abbreviation for (ig n)’.

sk it

e ————— T T

r——

3

table in which we describe { in relation to g.

Table 1.
a(n) g(n)
o(n9) g<o o(1)
lgin 0 (gh* Y n)/(+1) + (gl n)r2 + 6Gigi=1 n)
2(n9) g>0 6(a(n))

For the third entry we use 2 in the following restricted sense: we write

g(n) = 2(nY) if there exists an no such that g(cn) 2 c9g(n) for all c>1 and all Mng.

3. Examples

In this section we will study a few common recurrences that have appeared in
the literature and show that they can be solved by our method. Throughout this
section we will mention where the recurrences arise in applications without giving
complete bibliographic references to those applications; this is because our main
point in mentioning the recurrences Is not the applications themselves but the fact
that these are common recurrences. (Further descriptions of and references to the
applications may be found in the Appendix, however.) In all of these examples we
will assume that T is defined only at powers of two and that some Initial value T(1)

is given.

Example 1. T(n) = T(n/2) + 1

This recurrence can be used to describe the worst-case cost of performing a
binary search in an ordered table. The recurrence can be cast in the template of
Equation 2 with p = 0 and g(n) = 1. By the second entry in Table 1 (setting } = 0)

we have

T(n) = 207(n/2) + n9(ig® n)
nO[T(1) + 1g n + 6(1)]

=ign+08(1).

Example 2. T(n) = 2T(n/2) + nig n

This recurrence arises in a multitude of applications, including algorithms for
finding the maximal elements in a four-dimensional vector set, for evaluating
normalized derivatives, for finding all nearest-neighbor pairs in three-dimensional
point sets, and in Batcher's odd-even merge sort. To cast this recurrence in the
template of Equation 2 we let p = 1 and g(n) = Ig n. We then use the second entry
in Table 1 (with j = 1) which yields

T(n) 21T(n/2) + n1lg n
n1[T(1) + (192 n)/2 + 6(ig n)]

(n1g2 n)/2 + 6(n g n).

Example 3. T(n) = 7T(n/2) + 8(n?)

This recurrence describes the running time of Strassen’'s matrix multiplication
algorithm. We cast this recurrence into the template of Equation 2 by letting
p=lg 7 and g(n) = n2-19 7 since 2 -ig 7 < 0 we use the first entry in Table 1 to
conclude that

T(n) = 29 77(n/2) + n'9 Tg(n2 - 19 7)
nl9 7[T(1) + 0(1)]
=9(nl9 7).

Example 4. T(n) = T(n/2) +nign

This recurrence arises in algebraic complexity whenever Newton iteration is used
to accomplish "extrapolative recursion”; it is also used In the analysis of the
Ford-Johnson sorting algorithm. To cast this recurrence in the template of Equation

2weletp=0and g(n)=nign. Sincenign=N(n') we can use the third entry In
Table 1 to deduce that

T(n) = 2°T(n/2) + n%n Ig n)

= nO[T(‘I) +8(n ig n)]
=80(n Ig n).

4. A More General Template

The template developed in Section 2 can easily be generalized to solve

recurrences of the form

T(1) given,
T(n) = kT(n/c) + t(n).

(Note that this generalizes Equation 1 of Section 2 from division by two to division

by any constant.) To solve the recurrence we cast It into the template

T(n) = cPT(n/c) + nPg(n),
where p = log k and g(n) = f(n)/nP. The solution to this modified recurrence is
T =nP[T(1) + >, glch].
1<iclogg n

As in Section 2, the proof that this is the unique solution to the recurrence can be
performed by mathematical induction on the powers of ¢. For monotone functions g it
can be proved that the above sum differs from f(n) by at most a factor of ig ¢, so

Table 1 can be used to solve the recurrence to within a constant factor.

This template can be used, for example, to analyze the running time of Pan’'s

matrix multiplication algorithm, which satisfies the recurrence
T(n) = 143640 T(n/70) + 8(n2).

This recurrence is rewritten into the template as
T(n) = 70PT(n/70) + nPg(n),

where p is defined as log7o 143640, or approximately 2.79, and g(n) = §(n2-P).
The first entry of Table 1 telis us that g(n) = 0(1), so the solution of the recurrence

L

is

T(n) = aP[T(1) + 8(I(n))]
nP[T(1) + 0(1)]

9(nP),

or approximately 0(n2'79). This method can also be employed to analyze other
algorithms based on Pan's approach, in which 143640 and 70 are replaced by other

constants.

5. Extensions

The work that we have described so far in this paper is a specialization of a more
general theory for solving classes of recurrences. In this section we will sketch
parts of the more general theory, which the authors will describe in detail in a future
paper. it is the authors' contention, however, that the special theory is all that is

necessary to solve many of the recurrences that arise in practice.

The special template that we have described in this note has been extended In
several ways. In the future paper, Table 1 will be expanded to include many
functions besides the three described in Section 2. We will also describe a method
for "interpolating” to find values of the ~ operator for functions not in the table: if
go(n) is between g4(n) and gg(n), then g2(n)/gx(n) is between ga3(n)/gg(n) and
gq(n)/gq(n). (We use "between" in a formal sense and assume "smoothness"
properties of the function to show this resuit.) We will also show in the future paper
how the linearity of the ~ operator (which follows from the linearity of 2) can be

used to find the second and higher order terms of the solution to the recurrence.

In the future paper the authors will show how to define templates to solve

classes of recurrences of the form

T(ny,) given,
T(n) = a(n)T(b(n)) + f(n).

This will allow us to solve such recurrences as

i " " ' € o " ; i,
i e e i e

e Al 'l A s

T(2) given,
T(n) = T(n1/2) 4 1,

which arises in the expected-time analysis of interpolation search, a 6(ig ig n)

searching algorithm.

References
Aho, A.V., J.E. Hopcroft and J.D. Uliman [1974]. The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

Borodin, A. and |. Munro [1975]. The Computational Complexity of Algebraic and

Numeric Problems, American Elsevier, New York, N. Y.

Keller, K.[1978]. "Computation cost functions for divide-and-conquer

algorithms", to appear in Journal of Undergraduate Mathematics.

Stanat, D.F.and D.F. McAllister [1977]. Discrete Mathematics in Computer
Science, Prentice-Hall, Englewood Cliffs, N. J.

___ e ———

Appendix

When we presented examples in the text we only mentioned the applications that
motivated the recurrences and did not discuss them in any detail. In this appendix
we will further describe the applications mentioned above and give bibliographic

references.

The recurrence of Examole 1 describes the worst-case complexity of binary

search; see Knuth [1973, Section 6.2.1] for a description of that algorithm.

We mentioned that the recurrence of Example 2 arises in a number of
applications. Kung, Luccio and Preparata [1975] describe the problem of computing
all the maximal elements in a set of vectors. (A maximal vector is one which is not
less than any other vector in all components.) They give algorithms for finding the
maxima of k-dimensional vector sets; their algorithm for the case k=4 has running
time modelled by this recurrence. Kung [1 973] describes an algorithm for computing
the n normalized derivatives P(i)(t)/i! for i = 1,...,n, where P is an n-th degree
polynomial; the running time of his algorithm is also described by this recurrence.
Given a set of n points in 3-space, the “All Nearest'Neighbors“ problem calls for
finding the nearest neighbor for each point in the set among the rest of the points;
Bentley and Shamos' [1976] algorithm for this problem has running time described
by the recurrence. >This recurrence also describes the number of comparators
needed to implement Batcher’s nonadaptive odd-even merge sort (which is
‘described by Liu [1977, pp. 200-203]).

The recurrence of Example 3 describes the complexity of Strassen’s [1969]
sub-cubic matrix multiplication algorithm; this algorithm is also discussed by Aho,

Hopcroft and Ullman {1974, pp. 230-232].

The recurrence of Example 4 arises in a number of algorithms based on
"extrapolative recursion". This term is described in more detail by Borodin and

Munro [1975, p. 80]; many examples of such algorithms can be found later in their

book. The same recurrence also arises in the analysis of the Ford-Johnson sorting
algorithm (see Ford and Johnson [1959] or Knuth [1973]) which was the
best-known sorting algorithm (in terms of using minimal comparisons) for almost
twenty years--an algorithm faster for some values of n was recently obtained by

Manacher [1977].

Pan's [1978] matrix multiplication algorithm was mentioned in Section 4; the
authors suspect that many other descriptions (and modifications) of that algorithm

will be available in the near future.]

At the end of Section 5 we mentioned the analysis of interpolation search in a
sorted table. An elegant analysis of this algorithm can be found in Perl and Reingold

[1977].

ek

References for Appendix

Aho, A. V., J. E. Hopcroft and J.D. Ullman [1974]. The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

Bentley, J. L. and M. I. Shamos [1976]. "Divide and conquer in multidimensional
space", Proceedings of the Eighth Symposium on the Theory of Computing, ACM,
May 1976, pp. 220-230.

Borodin, A. and |. Munro [1975]. The Computational Complexity of Algebraic and

Numeric Problems, American Elsevier, New York, N.Y.

L Ford, L. and S. Johnson [1959]. "A tournament problem", American Mathematical

Monthly 66, pp. 391-395.

Knuth, D. E. [1973]. The Art of Computer Programming, volume 3: Sorting and

Searching, Addison-Wesley, Reading, Mass.

Kung, H.T.[1973]. A New Upper Bound on the Complexity of Derivative

Evaluation, Carnegie-Melion University Computer Science Report, September 1973.

10

Kung, H. T., F. Luccio and F. P. Preparata [1975]. "On finding the maxima of a set
of veclors", JACM 22, 4, October 1975, pp. 469-476.

Liu, C. L. [1977]. Elements of Discrete Mathematics, McGraw-Hill, New York, N. Y.

Manacher, G.K.[1977]. "The Ford-Johnson sorting algorithm is not optimal",
Proceedings of the Fifteenth Annual Allerton Conference on Communications, Control

and Computing, Sepember 1977, pp. 390-397.

Pan, V. Ya. [1978]. "An introduction to the trilinear technique of aggregating,
uniting and canceling and applications of the technique for constructing fast
algorithms for matrix operations", Proceedings of the Nineteenth Annual Symposium

on the Foundations of Computer Science, IEEE, 1978.

Perl, Y. and E. M. Reingold [1977]. "Understanding the complexity of interpolation
search", Information Processing Letters 6, December 1977, pp. 219-222.

Strassen, V.[1969]. "Gaussian elimination Is not optimal", Numerische

Mathematik 13, pp. 354-356.

A= e s—

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE T g e

e e
NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

CMU-CS-78-154

$. TYPE OF REPOART & PERIOD COVERED

R A— - . -

NERAL METHOD FOR SOLVING Dlwna-and-

’[b_gcn

Interim

cymcvn nacummczﬁ = o PERFG
e, SR o> —t
. 7. AUTHOR(a) OR GRANT NUMBER(S)
Jon Loui ll!ent:ley> / —
Doroth Hak f t
ey (S ragn |
e s ________:__
L 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGIA (LEM 7 PROJECT, TASK
e WORK UNIT NUMBERS

Carnegie-Mellon University Vi
Computer Science Dept.
Pittsburgh, PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS L]

‘ Office of Naval Resesrch “ Dec 1978

Arlington, VA 22217
L[R MONIT6IING AGENCY NAME & ADDRESS(If different from Controlling Office) 18. S}KCURITV CL ASS. (of thie report)

Same as above UNCLASSIFIED
e ot'_c&. ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

i - This document hus been epproved |
7 . tor pullc reiecss and scle: iw 1
* distribution is unlinites.

g — e

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if dilferent from Report)

J3tp |

18. SUPPLEMENTARY NOTES ’ ;
|

Y

19. KEY WORDS (Continue on reverese side if y and | ity by block)

20. ABSTRACT (Continue on reverse side If necessary and identily by bleck number)

DD ,% 9%, 1473 eoirion oF 1 Nov 6813 OBSOLETE
D vum'n S/N 0102-014- 6601 | i, 212000

———— e
[SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

02 09 3

L CURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

