AD=A068 223 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 S5/3
AN APPROACH TO SOFTWARE LIFE CYCLE COST MODELING.(U)
DEC 78 W H WALKER

UNCLASSIFIED AFIT/GCS/EE/T78=21

‘}A.m.
END
FiinED
4-—79
pOC

.

it des s G e

ipbinn o L5y T, A A S AN s T SN
a8 Y g R vt v

s S e e e : =

1' AFIT/GCS/EE/78-21

o ‘/"/
5 i
An Approach to
SOFTWARE LIFE CYCLE COST MODELING
THESIS

AFIT/GCS/EE/78-21 William H. Walker IV kR
Capt USAF D D C

{1 i

| 1979 4]

' Approved for Public Release; distribution unlimited.

g A S L S, T S N L A

¥ AFIT/GCS/EE/78-21
. L

%pFTWARE LIFE CYCLE COST

An Approach to

MODELING~ —
7

\ THESIS

fv\;tw_ﬁ-s('_ \Nes e,

T

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Training Command
in Partial Fulfillment of the
E Requirements for the Degree of I

Master of Science

by

.
O

— 7 William H. Walkemxvj"-s-.-s.-
Capt USAF

Graduate Computer Systems

Decemer 1978

(Azhx' 7 A (~

Approved for Public Release; distribution unlimited.

O18 225

T :

T T " e roreammaet> W awaiie

’ AFIT/GCS/EE/78-21
Preface

Although I claim the credit or discredit that results

from the research value of this thesis, there are many

others who deserve credit for prodding and priming the
effort. In pérticular, the members of my thesis committee,
Dr T. Regulinski, Dr T. Hartrum, and Dr C. MeNichols,
provided the incentive and inspiration to hurdle some of
the major stumbling blocks during the development of this

modeling process. My deepest appreciation goes to my wife

and daughter who gave me support, time, and help to get

through this program.

\ ACCLSSICH AT

Preface . . . « . .
List of Figures . .
List of Tables . . .
Abstract

I Introduction . .
Motivation . .
Objectives .
Limitations . .

Model Life Cycle

| II Software Life Cycle
Life Cycle Description . . .

Contents

III Life Cycle Cost Model
. Traditional Cost Models . . .
Life Cycle Cost Function . .

Maintenance Tail

Parameter Evaluation

Factor Identification

Sensitivity Analysis

IV Sample Application .

Sample Data . .

Computational Algorithm . . .

Conclusions . .

V Management Applications

Pre-contract Applications . .

Development Applications . .

Maintenance Applications . .

VI Recommendations
DEER s 5 5 o« @

' Follow-on Modeling
Other Applications

vi

vii

o NN WW R -

12
i2
13
17
19
23
27

34
34
34
38
Lo
Lo
L1
L2

43
43
Ly
45

;

T TS R e I
e 36 W

,’ PADDROEPATIY o« « & a6 s s Ao v 6w w sy @ won S
Appendix A: Sample Daka . » « » o« s s & 2 4 5 s 5 » 09
Appendix B: Life Cycle Cost Plotting Program 51
Appendix C: Life Cycle Cost Modeling Program 56

Figure

& W oN

@ N O \n

B-2
B-3
Cc-1

‘List of Figures

Stages of Software Development Phase .
Operations and Support Activities . . .
True Life Cycle of Software

Putnam's Rayleigh Model for Development
Cost L] L] . . L] . . . L] L] . L] .

Life Cycle NModel Graph .+ . o « » & » o
Factors That May Affect Life Cycle Cost

Sample Sensitivity Analysis « « « « « &
Computational Algorithm « . .
Data Plot from LCCPLOT .+ « « ¢ o o o« o

Data and Computed Plots from LCCPLOT .
Sample Data Deck for LCCPLOT+ .
Sample Data Deck for LCCMODL . + « +

14
16
26
29
38

52
52
53
3t

& o i i e T T —— e i o i TR T — e A i 30 s G Sl € A e S A s e LR

List of Tables

Table Page

I Manual Parameter Sensitivity Analysis . . . 28

1I Pitted Parameters . o o o » o o o o o « o @ 35

I1I Senaitivity Analysis % & o & & v & & w4 w6 36

Iv Sengitivity Analysis 2 . « o« s o 5 5 % 5 & » 37

v Proportion of Development Effort by Stage . L1

A-1 Sperry-Univac Manning Data L Lo

A-1I1 Sperry-Univac Factor Data . . . « . « « « & 50
’
!
|
|

»
vi

AFIT/GCS/EE/78-21

Abstract

~
N

N

T This report describes the development of a software
life cycle costing medel. The model reduces 1life cycle
cost to a function of three parameters which are in turn
functions of a number of factors that describe the software
system. A step-by-step algorithm is presented for building
the model from raw data. The model is exercised as an
example with a small amount of data. Sensitivity analysis
is used to help select the most salient factors. Brief
descriptions of management applications and recommendations
are presented. Appendices describe sample data and two

computer programs used to develop the model.

AN

e

AN e ot

-y R eI A e

-

PR — e o , G o e e L I TR I T S LS T e

An Approach to
SOFTWARE LIFE CYCLE COST
MODELING

I Introduction

Motivation

Life cycle costing is a fechnique of managing systems.
Decisions are made based on the long range, not jusf
immediate, impact on cost. Operation and maintenance cost
must be considered as well as cost of development and
procurement. Alternatives are evaluated in terms of the
resultant 1ife cycle cost as well as technical and
operational factors. The cost could be measured in
dollars, time, opportunity lost, or any number of othner
units. Department of Defense Directive (DODD) 5000.28
defines 1ife cycle cost as:

+.. the total cost to the government of
acquisition and ownership of that system
over its full life. It includes the cost v
of development, acquisition, operation, and, A
where applicable, disposal." (Ref 1:8)

There are two very important reasons for using the

concept of life cycle costing. The first, and most impor-

tant reason, is that life cycle costing can save money.
The Department of Defense spent over three billion dollars
on software in 1976 (Ref 2:41) up from one billion dollars
in 1974 (ref 3:63). This figure continues to grow each

year. Any technique which, for a reasonable cost, will

help to control or reduce that cost should be applied when

T AT S g S

T e e

A -

A g

!
},

possible. ‘

As early as 1968, the Air Force Logistics Command used
the technique of life cycle costing in procurement (Ref 1:
38-40). The contract for T-38 aircraft main landing gear
tires was awarded based on the lowest bid for cost per
landing. Before this life cycle cost procurement was used,
the T-38s were averaging 41 landings per tire. After the
award of the 1life cycle cost contract, the average number
of landings per tire grew to 104, a 150% increase. The
same technique has since been applied to electron tubes,
oscilloscopes, hydraulic filters, and more with resultant
cost reductions of several millions of dollars. However,
the literature search for this research did not reveal a
single application of 1life cycle cost procurement or an
application of life cycle costing to procurement -decisions
in the case of software.

If dollar savings are not sufficient to justify the
use of life cycle costing techniques, there is further
pressure to develop and apply the techniques to all
acquisitions. Air Force Regulation 800-11, Life Cycle
Costing (LCC), directs the following:

“The Air Force will to the maximum practical

extent, determine and consider l1life cycle

cost in the various decisions associated with

the development, acquisition, and modification

of defense systems and subsystems and in the

procurement of components and parts."s (Ref 1:16)
Knowing that 1ife cycle costing techniques can result in

significant savings and that they are required by regulation

is not sufficient unless a model or methodology exists for

the application of those techniques to software acquisition.

Objectives

The objectives of this thesis effort can be divided
into three highly interdependent parts. The first
objective was to develop a model that would provide for
derivation of the 1life cycle cost of a software system.

To be really useful for plarnning and budgeting, the model
should provide time phased allocations of resources over
the life cycle of the system. The model was also to
provide a vehicle for evaluating the effects of modern
programming practices, such as structured programming and
design, on the 1life cycle cost of software. This would be
done by means of a sensitivity analysis of the resultant
model.

The second and less formidable objective was to
develop a computational algorithm for applying the model.
The algorithm should provide a step-by-step procedure that
will inexorably lead to the computation of the life cycle
cost of the given software system.

The last objective was to uncover enough data to test
the model and demonstrate the use of the computational
algorithm. This objective was not adequately satisfied

due to severe limitations on the availability of data.

Limitations

Data availability is the most severe limitation to the

successful modeling of software 1life cycle costs. Four

factors contribute to the scarcity of data. The first and

most disastrous is that the data is often simply not
collected. Even the government, which is notorious for
requiring massive amounts of data, does not collect
software cost data. This may be a result of the cost or
impracticality of separating costs into categories. After
all, it does cost money and time to account for expendi-
tures of resources, especially people's time. How would
an engineer's time spent working on data communications be
allocated between the software handler and the hardware
bus connections?

The second factor leading to the scarcity of data is
a result of competition among contractors. Proprietary
interests can keep software development organizations from
releasing data that they believe could give their
competitors more data than they have. If the data were
released, there is always the fear that it might be used
against the releasing organization since the costs reveal
profit margins.

When data are collected and reported, the reliability
of the data must still be in question. The collection
method, whether self-reported or measured over the shoulder,
must be considered. Biasing must almost naturaily be
assumed. Raw, objective data must be sought out to avoid
the effects of unknown massaging by possibly biased
reporters.

The researcher must still be wary even of raw,

m

N e

objective data. Consistency should be the watchword.
Unless all of the data sets include the same data measured
in the same units, it could be impossible to draw conclu-
sions about the relations between the two life cycles.

For instance, comparing the sizes of two software efforts
would be very difficult if one was reported in lines of
higher order source language while the other was reported
in words of object code.

Because of the potentially extreme complexity of the
software 1ife cycle as discussed in the next chapter, it is
necessary to limit the model to a tractable subset of
reality. Specifically, the model addresses only technical
manning of the software project in man-months per month.
This limitation implies that administrative support,
facilities, and computer costs are omitted. The model
also ignores operating costs under the assumption that the
factors under investigation affect maintenance and not
operating costs. Costs to enhance or add capabilities to
operational software are also omitted. These types of
activities should be separately costed on their own
technical merit and effect on 1life cycle cost of the system.
Other limitations on the model are made apparent at the

appropriate point in the remainder of the text.

Sm ey rre P b 3

II Software Life Cycle

)

Life Cycle Description

The software life cycle is an extremely complex
process. The process can be divided into two phases:
development and operations and support; This is a
historical breakdown based on traditionally separate
organizations being responsible for the two phases of the

life cycle.

Development. Air Force Regulation 800-14, Management
of Computer Resources in Systems (Ref 4), provides an
excellent description of the five stages of the development

phase as depicted in Figure 1. The concept and analysis

PDR
Concept and
Analysis
CDR
Design
Configuration Control
Code and
Checkout
FAT
Test and
Integration
FQT
Installation

Figure 1. Stages of Software Development Phase

stage encompasses most of the activity from the birth of

the idea that led to proposing the software system to the

6

- il‘i'

preliminary design re&iew (PDR) of how the system would be
constructed. The design phase refines the preliminary
design into the precise module requirements presented in
the critical design review (CDR). These requirements are
put into the computer code and debugged during the code

and checkout stage. The test and integration stage begins
when the programmers turn their debugged modules over to
the testing group and strict configuration control efforts
begin. Test and integration includes inter-module
interface testing and culminates in final acceptance tests
(FAT) that insure that the software meets the original
specifications before entering the installation stage. The
final qualification tests (FQT) insure that the software is
operating as advertised at the operational sites before
entering the operations and support phase of its life
cycle. ‘

Operations and Support. The operations and support

phase includes four types of activities, shown in Figure 2.

——> Operation >Decommission
Maintenance Enhancement

Figure 2. Operations and Support Activiéies

The most obvious activity is the normal production
operation in which the software performs the tasks it was
designed to accomplish. The software is obviously not

always in an operational state and sometimes requires

e

maintenance. The error may only cause the system to be in

a degraded mode of operation or could bring the system
down to a useless state. A third activity of the operation
and support phase includes actions taken to enhance the
software system either by improving on existing
capabilities or adding additional desired capabilities.
The final activity of the operation and support phase and
of the entire life cycle of the software system is
decommissioning. Although this would seem to be a trivial
activity, it includes a lot of planning for replacement
and backup capability and often a lot of centractual
clean-up to bring the 1life cycle full circle.

Iterative Complexity. Although Figures 1 and 2 depict

distinct activities, this is hardly the case in the real
world of software systems. Design errors can be discovered
well after the critical design review, even as late as the
installation stage. Even the boundary between development
and operations is not very distinct. Analysis and design
play a large role in enhancement activities in particular.
Figure 3 shows a much more realistic view of the iterative

relationship of the activities in the software life cycle.

Model Life Cycle

Simplifications. Two major simplifications were made

to reduce the complexity of the software life cycle process
for the purpose of developing this model. The first was
to reduce the concept of the life cycle to a smooth

continuous function of effort rather than the described

8 . | . I

aaem3Jog Jo oT0L) 8JTT anal ‘€ oan81Jg

D

\--||c|..-|dvu--ﬂ,..|..lunz.. |||||| BT < TR
: / : \) \ y
i . _ : : : _
\ 1 f :
' . ' 1 !
| | 1 | ’
1 UaWa OUBYUY 90UBUSLUT BN) : ; : :
: " ' | I
{ 1
| I ! '
I ' ! | ;
| | ! '
\
! . [| ;
| I] | |
A4 W\ . A4 A4
= 93BIZIUT| 8nqaqg sT1SK
UOTSSTWWOOd e
ISST 298(Jl QOHPmmwmw ﬁbﬁvwﬂampmmH puUB 1Sa] puB 8po)n us1sag pue 3daouo)
VAN~ :W/\\\J -’/I \y AN " ‘/ ry]
.,/ e e OV e i |\|\//.V\ -
\ - \‘I‘ll‘ N, -
(%% T T il U
v, e = G S

- ~ -— -

W > -

distinct activities. After all, what is the value of

knowing the cost of the design stage relative to the
complexity of breaking down and assigning costs to each
stage? The continuous approach allows the model to
allocate resources over time rather than to an activity.
This would lend itself to the problems of planning and
budgeting. A second simplification was to ignore the cost
of operations, facilities, administrative support, and
hardware since’these are somewhat irrelevant to the
objectives of this research. The last major simplification
was not to consider enhancement activity as a part of the
model life cycle. Enhancement of software in truth is the
development of a new software system of which a portion
already has been completed. As was mentioned earlier,
these activities should be costed based on the dévelopment
of a "new" software system.

Cost Units. Further simplification resulted from the
choice of man-months as the unit of cost. Although not a
precise unit, the man-month could be statistically
standardized. Unlike dollars, inflation has no direct
impact on the man-months required to complete a task.
However, learning curve effects could have a deflating
effect on man-months. Except for the least complex,
repetitive operations, the time required to do a task will
generally decrease with experience due to learning.
Another reason for choosing man-months as a unit of cost

is that data for man-months expended on a project would be

10

=T

Snst s SN St RO i T
oSk s 0 2500

rather easy to collect and is easily converted to dollar

units with known salary scales.

11

S T i A S R SIS,

III Life Cycle Cost Model

Traditional Cost Models

Traditionally, cost models have been restricted to
either the development phase or the operation and support
phase of a system's life cycle. Even the few models that
are called life cycle cost models reduce one phase or the
other to a single input of development cost or support cost
as an amount or percentage of the other (Refs 5; 6; 7; 8;
9). In the literature search for this research effort,
there were no examples of life cycle costing of software
systems and, especially, no documented operations and
support models. Several modeling techniques are available
to perform life cycle costing (Ref 10:15-17).

Unit Cost. The unit cost method is particularly
popular in hardware cost models. This method simply adds
up the costs of the pieces of the system to derive a system
cost. While the cost of a standard gear or audio amplifier
may be easily determined, the cost of a search routine or a
software fast Fourier transform is not so well known. Unit
costing has been applied to software where the size,
measured in number of instructions, is multiplied by an
average cost per instruction (Ref 10:21). This method is
often called decomposition which is the process of breaking
the system into ever smaller components until the costs
of each of the components can be more accurately estimated.

Analogy. This method relies on the experience of the

estimator. If the person or group making the estimate has

12

/

had a significant amount of experience with the type of
system being developed, then the estimate should be better
than if they had less experience. The use of Delphi
techniques falls into this category of estimation methods.
Parametric. The parametric method of cost estimation
is highly dependent on the availability of reliable data.
Parametric modelers attempt to select those parameters of
the system which determine the cost and derive a cost
estimating relationship. The cost estimating relationship
is an equation that sets cost equal to some function of the
chosen parameters. The single most effective tool for this
method is regression analysis. Typically, in software cost

estimation, this function may take the form of

c=ail (Ref 11; 12; 13) (1)
where ¢ = cost
a = coefficient parameter of the model
I = size of the software system in number of instruc-
tions
b = exponent parameter of the model

Parametric models allow the user to enter data on some
metric or metrics of the system and mathematically compute
an estimate of the cost. The model presented in this

thesis is a parametric model.

Life Cycle Cost Function

The parametric model proposed in this thesis is
similar in form to the Rayleigh manpower equation. The

Rayleigh function as a probability density function has

13 |

the form

2
£(t) = Lte~ At/2 (2)

A form of this function was applied to modeling software
development costs by Putnam (Ref 14). The model that he
presented took the form

2
¥ = 2Kate 2% _ (3)

' = rate of expenditure in man-years per year
total effort in man-years (difficulty)
shape parameter (related to type of system)
number of years into the development

This function graphically portrays the manpower applied to

a software development effort as shown in Figure 4.

y' = 2Kate 2%

/year)

4yl
(man-years

t (years) N

Figure 4. Putnam's Rayleigh Model for Development Costs

Putnam's data was collected while he was assigned to the
United States Army Computer Systems Command and primarily
concerned with business oriented software systems.
Putnam's data was budgetted man-years per year rather than

actual man-years per year.

14

The model proposed in this thesis is very similar to
Putnam's except that a third parameter has been added to
attempt to model the maintenance tail of the 1life cycle of

the software system. The proposed function has the form

-kt
m(t) = k,te + kg ()
where m(t) = manning of effort at time t in man-months
per month

k
t = time into the life cycle in months

1 kz, k3, = parameters of the function

Several versions of this model were investigated, primarily
differring in the form of the last term. Most proved to be
somewhat unmanageable mathematically. Equation 4 is easily
integrated, differentiated, and otherwise manipulated to
allow adequate fitting to data points. This model produces
a graph very similar to Putnam's except that it is
displaced upward by the constant parameter, k3 (see Figure
5).

The graph of this function with the proper parameters
has the same shape as the budgetted expenditures of effort
for software development and maintenance under current
policies (see Figure 5). The manning starts out low when
the system is undergoing conceptual definition and
requirements analysis. The manning grows rapidly as design
and coding progress and starts to fall off as the
integrated system enters testing. After installation is
complete, the manning level for maintenance is pretty

close to constant. Each software system is generally

e e e T T I O T T e AT .

o
c
o
-0
o
- 9
L :
(] r”,l
D «
>
a
3 :
- 1
__J x"' —
LL] +
r e 8
o n
(@ ™ L2
= o e
= S e
(U Xﬂ o
(u] c L
byt u o
- FDZ
) —~0
< =
D
Q
-
~ e
[oN
©
¥
o | &)
82§ 2
NIVINIVW n ’g
=
o ©
TTYLSHI a 3
JLVYOAINI UNY ISHL g S’
9184Ad ANV 4d0d &
Gy
ROISAC 3 S
SISATYRY ORY TJISIOR0T” o
. ! v 3 L "o
00°01 008 030°'3 00+ 0072 00°Q .
(HINDN/SHINDW-NHH) W a
)
| &
=
D
o
xy

16

maintained by a distinct group of programmers that are
allocated at a nearly constant level over the life cycle

of the system.

The Maintenance Tail

To some people it would seem logical fhat maintenance
manpower requirements would decrease over time due to
growth in reliability. In other words, as programming and
design errors, "bugs", are found and corrected, the time
to the next error that makes the system non-operational
should increase through the maintenance phase of the life
cycle. Any programmer with any experience maintaining
software systems can dispute this reliability growth
assumption. When errors occur and maintenance action is
taken, at least three things can happen. First, the
actual error can be truly corrected. The error can be
corrected, but the fix includes a new error. Or, a change
may be inserted that does not really correct the error
that caused the program to be non-operational. So, at
best, reliability growth is a probabilistic event depending
a lot on the competence of the maintenance programmers.

Likewlse, growth in maintainability might be a poor
assumption. If maintainability is defined as the time to
return a software system to operational status once an
error occurs and growth in maintainability is a decrease
in the time to correct an error, then growih in

maintainability might again seem to be a logical

17

conclusion. However, several factors might lead another
examiner to reach the opposite conclusion, decaying
maintainability or increasing time to correct an error.
Personnel turnover, common in the software industry not
just in the Department of Defense, can inhibit any increase
in familiarity with the system. Patchwork fixes can not
only introduce new errors, but also complicate the finding
of other errors and interface problems. Documentation may
decay or simply not exist on new releases. Less than
absolute configuration control, especially where multiple
versions are in use at separate sites, can easily complicate
error identification and correction.

Psychological factors can also control manning levels
in maintenance organizations. It may be very difficult to
convince an organization responsible for the maiﬁtenance
of large software systems that it does not need as many
people as it originally did to do its job. If the system
were split among programmers along functional boundaries,
there is indeed an actual dollar cost involved in training
the remaining programmers to take over those functions
previously maintained by the excess programmer.

One further argument for accepting the compromise
constant manning for the maintenance tail resulted from a
discussion with the people setting up the software
maintenance facility for the F-15 aircraft avionics systems
(Ref 15). 1In determining the number of programmers needed

to maintain the F-15's avionics software, they used a

18

T el i AR

P s o s v cadiee el

linear model of the form

i -— K
| ul > (5)

‘ i 1
- where m = manning requirements

1 s = size of the software in source statements

3 r = percent of software recoded per year (.05)

' p = programmer productivity (200 instructions per

month)

The implication of these assumed values for r and p is

! that maintenance manning is constant for a given system

size and that

S

m = 8000 (6)

or that one programmer is required for every 48,000 lines |
of source code. This suggests that there might be an

upper limit on the size of software that a single

maintenance programmer can keep up with adequately. The

value of this 1limit might be determined by factors such as

programmer experience or the modern programming practices

used to produce the software, structured design or

modularization.

The only way to verify the concept of the constant
maintenance tail is to collect long term data on actual
systems and compare the data to the model. Assuming that
the data exists, the next pertinent question would be how

to build the model from the data.

Parameter Evaluation

In order to evaluate the parameters of the model, k1,

19

PR N 'm’ L 0 2l i L i f"'ﬁ'.ﬁ“q ¥

k2. and k3. the model function is fit to the data

available. Several methods were available to do the
fitting. All of the methods started with an initial
evaluation of the maintenance tail parameter, because its
value is in fact the asymptote of the curve of the
function as is obvious from Equation 7 below. 1In

k,t°

Lim m(t) = Lim k,te 2 + k = Xy ¥ iAigay

£>00 t>00 1

consonance with the arguments presented in the previous

section, k3 is calculated from the data by averaging all

the values for manning after the software was delivered,

t

d'
n
E m(ti)
i=d+1
' S e o

where n = number of data points available
d = number of months in development prior to delivery
m(ti) = actual manning during month ty

The location parameter, k2' and the shape parameter,
kl' can now be determined by an experimental, trial and

error technique. The technique required a lot of computing
and plotting of functions on top of actual data while

adjusting the two parameters, k1 and kz, until a

reasonable visual fit was found. 1In order to expedite the

20

m——— e - -
T ST T T T A

!/

process, a computer program, LCCPLOT, was written andlis
included as Appendix B. A more reasonable approach would
be to directly compute estimates of k1 and k2 from the
available data.

The method of linear least squares offers one means
of computing the parameters. To apply this technique, the
function must Be linearized. This can be done by moving

k3 to the left side of the equation and taking the natural

logarithm of both sides resulting in the following:

In (n(t) - k3) = 1n (k) + 1n (%) - k,t° (9)
which is of the linear form
¥y = by + byg (t) + byg,(t) (10)

One major drawback of this method is that should k., ever

2
be equal to m(t), then the natural logarithm is undefined.
Applying this method resulted in differences between total
cost in man-months from actual data and the model function
of as much as ten percent for the data available. So,
another more appropriate method was sought.

By using the derivative to solve for the maximum of

-

the model function, the parameter, k2. can be determined.
The derivative evaluated at the time of maximum manning,

tmax' must be equal to 0 as shown here:

21

o
|
1
o
1
o

Skt k%
d m(t) 4 2 max _ 2 2 ‘max _
= 2 = kle 2k1k2tmaxe = 0 {(11)
. max
‘i
N 1
or k., = (12)
2 2t2
max

Since tmax can be fixed through inspection of the data, k2

e

is determined. In the application presented later, tmax

is the time at which the maximum manning level first occurs

in the data. It is also apparent that k2 is a location

parameter determining the location of the peak of the
model function.

Assuming that kz and k3 have been determined, k1 can

be determined by thinking in terms of the purpose of the
model, that is, to accurately model the life cycle cost of
; the system. But, the 1life cycle cost of the system is
simply the integral of m(t) over the 1life cycle of the

system or

= LCC

where M(t) = accumulated cost at time t in man-months
tlc = number of months in the 1life cycle

LCC = total 1life cycle cost in man-months

When working with the data available, tie is replaced by Ty

where ta is the number of months for which data are

22

—— - " T T T S T wt

available. M(ta) is easily computed from the actual data

by the following:

M(t,) = S m(t;) (14)

i=1

And now, manipulating Equation 13 yields

2k, (M(t) - k,t) ;
1 --¢e

2 a

which determines k1 in terms of known data.

Using Equations 8, 12, and 15, the parameters of the
model function can be reduced to numbers and the function
plotted against the actual data. This capability is also |
provided via the computer program, LCCPLOT (see Appendix ?
B). This method makes computing the parameters of the life
cycle cost function straightforward when data is available,
but how are the parameters determined for unknown software f

systems?

Factor Identification

One of the objectives of this thesis was to relate
modern programming practices and management decisions to
their effects on the life cycle cost of software systems.
An appealing assumption is made concerning these factors
and the parameters of the 1life cycle cost model proposed

here. That assumption is that the parameters of the model

23 :‘

can be expressed as functions of a set of known factors of

the software system as shown here:

k1 = f(known factors, fi) (16)
k, = g(known factors, fi) (17)
k3 = h(known factors, fi) (18)

One further simplifying assumption is that the functions,
f, g, and h, are linear combinations of the known factors.

That is, the functions are of the form
k1 = E aifi (19)
i=l
k2 = .§ bifi (20)

ky = E esfy (21)

Very few references consider factors such as size of the
software to be linearly related to cost, however, linearity
is assumed here for simplicity.

The factors chosen for analysis must meet certain
criteria. The first and most practical criteria is
availability. The factor must be known and reported along
with the manning data on the system. The factors must be
quantifiable. Logical ones and zeros can be used to

indicate the use or non-use of given practices. Percentages,

24

T R TS AT T

counts, and measures are more obviously quantifiable forms
of reporting factor values. As mentioned in the intro-
duction, consistency of definitions and measurement units
should also be a strict criteria. One other criteria is
variability. Unless the factor varies from one system to
the next, there is no point in asking questions about that
factor. If all the data comes from systems written in the
COBOL language, then making the language a factor is a
useless effort. '

Some of the factors that can affect the cost of
software that were reported and found in the literature
search have been compiled and regrouped in Figure 6. Given
sufficient data on 1life cycle cost and factors for each of
the systems, the resultant systems of linear equations can
be solved to reveal the coefficients of the model, aj DR,

i
and cy The linear equations can be expressed in matrix

form as
r r T A |
knT foq foy Tay - oo By a, i
" = B L R | a
£ Py
Eal s P13 ',y 33 Th3 5 (22) i
k1m Lflm f2m f3m il =T fnm L?nu

where k1j = parameter k1 evaluated for system j

m = number of data sets available
f.. = value of factor i for system j

1)
.)) & I‘I

25

i n = number of factors used in the model
a. = coefficients of the linear function relating
the parameter, kl’ to the factors used

Similar matrix equations can be written for the other

parameters, k2 and k3, where bi and cy would replace the a;

: as the coefficients of the linear function.

. Requirements Management
changes (ECP, SCN) configuration management
reliability librarian
maintainability chief programmer teams
customer experience type of contract
documentation testing (automated, IV&V)

: standardization

Hardware Software

memory constraint application

3 time (CPU) constraint language ‘
first-time development support software/tools
concurrent development structured design/coding 1
availability modularization §
turnaround/throughput walkthroughs

Sizing People

total source total number
total object mixture (technical/admin) i
delivered source/object experience level 1
newly developed source education level %
data elements and types turnover rate L
number of reports (
number/size of files

Figure 6. Factors That May Affect Life Cycle Cost

(Refs 12:15-16; 22(Vol III):5-7; 23:3-1-69; 14:42;
16:7; 17:27-32)

26

The next step is, of course, the solution of this set

of matrix equations for the coefficients so that the model
can be used to predict the life cycle cost of a system from
only the factors used in the model. In other words, the

goal is to compute the function parameters, ki’ k2' and k3,

for a non-existent system using estimates or known values
for the factors used in the matrix equations. If the number
of factors, n, to be used in the model is greater than the
number of data sets available, m, then the equations can
not be solved for the coefficients. If n is equal to m,
then there is a solution to the matrix equations which can
be found using Cramer's Rule assuming that the factor
matrix is non-zero. When more data sets are available than
factors that are included in the model (m greater than n),
then the method of least squares can be used to find the
best (by least squares standards) fit.

To make these types of calculations, the digital
computer is an excellent tool. Appendix C describes a
program, LCCMODL, that was written to implement the model
presented in this thesis. It accepts the data sets
(manning and factors), computes fitted parameters, solves
the matrix equations and makes predictions of function
parameters using the derived coefficients and given factor

values.

Sensitivity Analysis

The purposec of performing sensitivity analyses is to

27

gain insight as to which variables in a problem will, when

varied, have the greatest effect on the final result.

With respect to the model presented in this thesis,

sensitivity analysis is used to identify the effects of

the function parameters and thc system factors on the life

cycle cost of the software system.

Parameters. Two methods can be applied to measure

the sensitivity of 1life cycle cost to changes in the values

of the function parameters.

The first, a manual method,

is to simply vary the value of one parameter while holding

the others constant and observe the resultant change in

cost. Table I shows a sample manual sensitivity analysis

assuming a life cycle of 200 months.

Figure 7 then shows

the manning curves which display the time phased effects

of variations in the parameters on cost.

Manual Parameter Sensitivity Analysis

Parameter Values

Life Cycle Cost

k1 k2 k3 M(t=200)
2.0 . 0002 2.0 5398.33
1.9 .0002 2.0 5148.41
2.1 . 0002 2.0 5648.24
2.0 . 0001 2.0 5308.42
2.0 .0003 2.0 5399.97
2.0 .0002 1.9 53768.33
2.0 .0002 2l 5418.33

8,02
<+

4.00
o

s M (MAN-MONTHS/MONTH)

8 SOF THARE LCC MODEL
Z | fa
£

5°

E

z

£8

2]

£

=5

g

%.00 26.00 60.00 75.00 100.00 125.00 150.00 176.00 200.00

T (HONIHS)
s SOFTWARE LCC MODEL

?,/»"

.00 25.00

.09 0,00 10,00 .0

4,00

1 (MAN=MOINTHS/MONTH)

T —p— T v v
100.00 125.00 150.00 1715.00 200.00

50.00 75.00
T (HONTHS)

SOFTHARE LCC MODEL

.00 20.00

&0

M v —
$0.00 % 126.00 160.00 196.00 200.00

.00 100.00
T (HONIHS)

Variation of
k

i

Variation of

ko

Variation of

3

Figure 7.

Sample Sensitivity Analysis

The method of partial derivatives provides more
information about the sensitivity of the life cycle cost
over the life cycle of the system. For example, the

sensitivity of M(t) with respect to the parameter, ky,

is simply the partial derivative of M(t) with respect to

L) B > 0 (23)

which is greater than zero for all positive values of k2

and t. This implies that any increase in the parameter
value will produce an increase in the life cycle cost of
the system. Similarly, the partial derivative of M(t)

with respect to k3 is

BHE) . £330 (28)
dk

3 :
which also is greater than zero since t is always greater
than zero. The partial derivative of M(t) with respect to

k2 is not nearly so trivial to evaluate:

k -k, t k -k, t
——(—l%ﬁ‘; e (-e P e (e By (25)
2

Although the second expression is obviously positive when

kl' k2’ and t are positive, the first term is negative.

30

T SR T T T i

However, for significantly large t, the second term will be
dominated by the first and make the value of the partial
less than zero. And, any increase in k2 will cause a
decrease in the total life cycle cost. It is interesting
to note that this parameter can result in more expenditure
of resources during development (low t) and less
expenditure during the maintenance tail (high t).

Factors. From this information about the parameters
of the function, it is possible to draw direct conclusions
about the sensitivity of life cycle cost to the values of
the factors chosen for the model. It follows from the

linear relation of the factors to the parameters that

0 ky Lol
afi = al (&b/
kK,
afi 2 bi (27)
B]L?
of; Rl (28)

The sign of the coefficients will indicate the direction of
the effect on life cycle cost, positive implying an
increase and negative implying a decrease in cost when the
factor value is increased. To determine the relative
magnitude of the effects of each factor, the partial

derivatives must be normalized by dividing by the value of

the parameter or

T — A T T T R T R T T A S

dk a;

ST (29)
1

k

Going back to the sensitivity of 1life cycle cost with
respect to the parameter, k, the normalized sensitivity of

life cycle cost with respect to the factor, f;, due to its

affect on the parameter k is given by

2 M(t) ag(t) : alig
of. p) o T,
M(t% = M(t) = (30)

In particular, the normalized sensitivity of 1life cycle

cost to the factor, fl’ due to its affect on parameter k1

is

2
e
) e . a
2k2 1
. s = (31)
klfl M(tlc) ;
Note here that sk £ does not indicate the total
11

sensitivity of cost to factor, fl' It does not include the

hba b e andeonian . A _ _

affects of factor, fl’ on cost due to its affects on the
] other parameters, k2 and k3. From these computations, it

can be determined which of the factors in a model have the
; greatest effect on the total 1life cycle cost.

Selection. It is important to have a tool to

32

determine which factors should be included in the model.
Sensitivity analysis provides this tool. The procedure is
to build the model with the available data and a first set
of desired factors. A sensitivity analysis of the
resulting model parameters and coefficients can reveal
which factor is least influential in determining life
cycle cost. This factor can be replaced by another
candidate factor in a second solution of the model. This
procedure can then be continued until the sensitivity
analysis shows the best distribution of contribution to
the life cycle cost. Those factors that most dominate the
life cycle cost should be reduced in effect while those
that contributed the least should increase in importance.
Ideally, the magnitudes of contribution of each of the
chosen factors would be equal. In order to properly
demonstrate this process, an example is presented in the

next chapter with a formal computational algorithm.

33

e cdnandh . aonangs. aenass o A atan asg

IV Sample Application

Sample Data

The data used for this sample application of the
modeling algorithm is taken from a technical report from
Sperry-Univac Defense Systems (Ref 23). The raw manning
data and factors for each of four software systems is

displayed in Appendix A. The remainder of this chapter

is a step-by-step example of the computational algorithm

that will implement the proposed model.

Computational Algorithm

Step 1. The first step of the algorithm is to fit a

set of parameters, kl’ k2’ and k3, to each data set.

Equations 8, 12, and 15 are implemented in the computer
program, LCCMODL, described in Appendix C. Because the
data available for this example is for development only,
special arrangements havé to be made for the fitting of k3.
When the input to the program that indicates the number of
development data points is the same as the total number of

data points, the program expects to read in the assumed

value of k3 from the data deck. For the current example

these values were computed by dividing tﬁe software size in
total source instructions by 48,000 as suggested by the
F-15 maintenance example. The results were left as
fractions rather than rounded up to the next whole man-

month. The resultant parameters are shown in Table II.

34

Table II

Fitted Parameters

Program k1 k2 k3
1 64969 .000520 1.875
2 2.24267 .000297 10.417
3 2.20299 .002551 . 554
L 79777 .003472 274

Step 2. The second step of the algorithm is to select
the factors to be used in the first attempt at the model.
In order to verify the usefulness of the model only the
first three data sets will be used to build the model.

This means that only three factors can be included in the
model (n<m, see Chapter III). The following three factors
were chosen at random for the first round:

1. percent HOL (higher order language)

2. programmer qualification (combines

education and experience)
3. development on target hardware
Step 3. The next step is to take the fitted parameters

and known factors ai.d solve the matrix Equations 21 for the

model coefficients, as, bi and cy (i=1,2,3). This

calculation is also available in the computer program,
LCCMODL, as a call on a subroutine that solves the system
of linear equations. The results of this first attempt at

the model are shown here:

ky = 2.649 (% HOL) + .013 (PROG QUAL)
- .853 (DEV ON TGT) (32)

2 SO IR

e
o — e

——

—ae T S R T VS

k, = .000233 (% HOL) + .000043 (PROG QUAL) |
- .001052 (DEV ON TGT) (33) l
k3 = 13.6714 (% HOL) - .1066 (PROG QUAL) :

+ .8356 (DEV ON TGT) (34)

A quick check on the model is to now use the coefficients
to predict the values of the parameters to fit the fourth

set of data. The results of the prediction are k1 =
3.6975, k, = .003276, and k3 = 4,8910, not very close to

the values presented in Table II.

Step 4. The fourth step of the algorithm is to
evaluate the relative contribution of each factor to the
life cycle cost by means of sensitivity analysis. The
computer program LCCMODL does these computations using
Equation 30 (see Appendix C). The appendix includes the
results for this set of factors as a sample. Table III
shows the results of these calculations for the first set

of data. Factor 2, programmer qualification, turns out to

Table III

Sensitivity Analysis 1 &

Parameter Factors
k 2 3
k1 2.548 .012 - .820
kz -279 i 0051 1.263
k3 2,736 ' - .021 167
*

assumes life cycle of 200 months

36 ' .[

have the least significant effect on 1life cycle cost. The

procedure is then to select another factor to take its
place and reaccomplish the sensitivity analysis. The
factor chosen to replace programmer qualification is
whether or not modular design was employed to develop the
software system. The results of the sensitivity analysis
of this combination for the first set of data are shown in

Table IV. This process can be repeated over and over until

Table IV

Sensitivity Analysis 2

R R L R S

Parameter Factors
k 1 2 3
k1 2.50966 - 328914 .788334
k2 43868 - 791454 - 3.29572
k3 2.80248 - .689697 - 1.37444

the modeler is satisfied that he has an adequate model of
the data at hand, perhaps testing the model by allowing it
to predict the parameters of another data set not used to
build the model. The results here for the fourth data set

are ky = 3.42960, k, = .00237932, and k3 = ?.13554. Again,

the predicted values are not very close to the fitted
parameters in Table II. 1In fact, the deviation is greater.

Step 5. The final step in the computational algorithm
is really the final objective of the process. Assuming

that the model has been built and verified by checking

S 4

————

against known data, it can be used to predict the necessary
manning requirements for unknown systems. It must be
assumed that the factors used in building the model can
be reasonably estimated when the system does not yet exist.
Estimating the factors, such as size, can be nearly as
difficult a task as estimating the cost was before the
model was applied.

Summary. As a summary, Figure 8 lists the five steps

of the computational algorithm.

Step Action

1 fit parameters to data

2 select factors to include

3 solve for model coefficients
L perform sensitivity analysis
5 predict parameters of unknown

system

Figure 8. Computational Algorithm

Conclusions

The calculations shown in this chapter are only
intended to act as a sample format of how the computational
algorithm is to be applied. There are many variations in
combinations of factors that could be tested. It is clear
from the inability of the two iterations shown here to
accurately predict the parameters of the fourth data set
that the model needs more refinement. Whether this is the

result of an inadequate model, inadequate data, or poor

38

) ol
M

e O S S A LA

choice of factors is still a matter of conjecture. The
two iterations presented here represent the best results

of about a dozen trials judged by predictive capability.

39

V Management Applications

The model presented in this thesis could provide a
direct means to evaluate the impact of current and future
programming or managemenf practices on the life cycle cost
of systems. The computational algorithm for building the
model and the computer programs presented provide the
manager some significant tools. Of course, any use of this
model should be preceded by adequate data collection, model

validation, and, if necessary, significant modification.

Pre-Contract Applications

Preliminary life cycle costing of software system
proposals before entering development, while not very
accurate, can be used in evaluating proposals. The request
for proposal should specifically call for the values of the
factors to be used in the model. The factors must be very
specifically defined and quantified in the same way on each
proposal.

In a more general sense, the model has by indicating
whether the affect of a given factor increases or decreases
life cycle cost shown how the factors should be managed.
Factors that increase the life cycle cost should be avoided
or at least controlled. Factors that help to reduce life
cycle cost should be encouraged or required contractually
or by regulation. This information could be available from
the consiruction of the model before a contract was

awarded.

Lo

e T R T e e

e L e s e a1 S A L
- P o o i nAinap 7

Development Applications

After the contract is awarded, a software development
manager can continue to use the derived model as a planning
and checking tool. Many studies have been performed to
investigate the percentage of development effort involved
in the five stages of the software development phase (see

Table V). Using these percentages, or others generated

Table V

Proportion of Development Effort by Stage

Stage Reference - number and page
18:B-3|12:28 |14: 171 |14:171] 14:171] Ave
Concept & Analysis| .05 «05 .20 20 <20 .140
Design s 3 .16 .20 .20 224
Code & Debug .35 .23 16 .25 24 246
Test & Integration| .25 .19 2l .20 .20 CR2R
Installation .10 o2 ool .15 .16 .168

for his particular case, the manager could check his
expenditures of manpower. The time to the end of each stage

can be calculated as that time, t, at which

M(t) = p ' M(ty) (35)

where (= §ercentage of development effort for stage
t
d

= total development cost

a =ad

= number of months in development

In addition, a plot of the model manning curve and the
actual expenditure of manpower can be compared with limits

set to trigger an in-depth investigation of gross deviations

L1

bosiaat ’ b TR T, [N e Y ST
o SRS PR ST AT 8T

from the planned course.

Maintenance Applications

The comparison of actual and predicted manpower needs
during the maintenance phase of the life cycle would be one
important application of this model. Because the lack of
data led to the flat maintenance tail assumption, there is
little that can be done to increase the value of the model
other than to collect data to verify or modify the tail of
the model. In all stages of the life cycle of a system,
data should be compared to the predicted manning levels.
When deviations occur, any factors that might explain the
deviation should be reported and perhaps applied in a
re-building of the model. A centralized point for software

data collection would be invaluable.

L2

VI Recommendations

Data

Collection. By far the most important recommendation
to be made is that data on the software life cycle costs be
collected and made available to investigations such as this.
This is hardly a new recommendation, but it bears repeating
for emphasis (Refs 19:92; 20:3-2). Without data to test,
estimate parameters, verify, and validate the model and
assumptions, the parametric approach really provides no
extra insight to help control software costs. Maintenance
data was found to be especially lacking during this effort.

It is important here to note the difference between
budgetted and actual costs even in man-months. Because
three people are assigned to maintain a software system
does not mean that it actually took three man-months of
effort to maintain the system during a given month.
Considering the growing trend to in-house maintenance of
software systems in regional centers, it may well come to
pass that maintenance programmers could be shared between
systems, i.e., that maintenance effort may be budgetted in
fractions rather than whole numbers of man-months. The
sharing could be done on the basis of areas of expertise
such as search techniques, statistical applications, or
specialized interfaces. For instance, an expert in data
filtering could be shared by several systems. The only
obvious solution to the lack of data problem is to require

that data be collected and made available by regulation

!

i
k
I
|

for in-house projects and as a deliverable item for
contracted work.

Standardization. If cost reporting is to be required,

the reporters must be fully aware of exactly what they are
to report. In other words, standards must be established.
Definitions of terms must be specific. Structured
programming must mean the same thing to all reporters of
data. Units of measurement must be consistent from project
to project. Efforts have been made as early as 1966 (Ref
21) to specify cost reporting elements and were repeated
in 1976 (Ref 13). More recently, 1976 to 1977, a major
study was commissioned by the Rome Air Developmert Center
to generate recommendations for a data collection system
to establish a repository for data to be used in studying
productivity, reliability, and cost of software (Ref 22).

This represents at least one step in the right direction.

Follow-on Modeling

Every researcher, at least subconsciously, wants his
work to be used and continued. In the case of this
modeling approach, there are indeed a lot of things left
to be done. Before accepting or rejecting the model, it
needs to be given adequate testing as data becomes avail-
able. Should *the data indicate that the model provides
inadequate results for accurate prediction, several
modifications can be made. One modification would be to
change the form of the model function with either more or

fewer parameters. Another more challenging route might be

Ly

to explore the effects of non-linear factors. These
modifications and more yet to be conceived of could lead
to a useful life cycle costing tool for the production and

maintenance of software systems.

Other Applications

Although there are those in the software business that
still insist that programming is an art and bears no
resemblance to any field of hardware engineering, there
are others that believe software engineering people have
wasted considerable valuvable time in re-inventing the soft-
ware wheels. Most everyone will concede that there are
differences between computer programs and radars, but do
these differences conceptually amount to more than the
differences between radars and automobiles? While working
with this modeling approach, I was struck by the similarity
of the manning curve for software systems and that I
conceived would be applicable to hardware systems. With a
different set of factors, could the same approach be used
to model hardware systems or, for that matter, any research

and development effort?

b5

Bibliography

1. Riley, M. J. "Implementing Life Cycle Cost: A
Financial Manager's Role." Research Study. Maxwell AFB,
Alabama: Air Command and Staff College (AU), May 1977.
(ADB018360L)

2. "Software Improvement Plan Pushed," Aviation Week &
Space Technology, 104: 41-43 (5April 1976).

3. "USAF Pressing Reduced Software Costs," Aviation Week
& Space Technology, 101: 63-4 (29 July 1974).

L, AFR 800-14. “Management of Computer Resources in
Systems." Washington, D.C.: United States Air Force,
12 September 1975.

5. Baron, D. A. and R. E. Mortenson. "A Logistics Life
Cycle Support Cost Model." MWMaster's Thesis. Wright-
Patterson AFB, Ohio: Air Force Institute of Technology (AU),
August 1969. (AD863842)

6. Brannon, R. G. "Army Life Cycle Cost Model - Volume I:
User's Guide." Final Report, DCA-R-15. Washington, D.C.:
Directorate of Cost Analysis, January 1976. (ADA021900)

7. Collins, D. E. "Analysis of Available Life Cycle Cost
Models and Actions Required to Increase Future Model
Applications." Technical Report, ASD-TR-75-25. Wright-
Patterson AFB, Ohio: Joint AFSC/AFLC Commanders' Working
Group on Life Cycle Cost, June 1975. (ADAO14772)

8. Hamilton, J. L. "Life Cycle Cost Modeling." Technical
Report, TR-68-8. Washington, D.C.: United States Army
Materiel Command, December 1968. (AD684335)

9. Stone, H., S. "“Life Cycle Cost Analysis of Instruction-
set Architecture Standardization for Military Computer-based
Systems." Final Report (draft). United States Research
Office, January 1978.

10. Clapp, J. A. "A Review of Software Cost Estimation
Methods." Technical Report, ESD-TR-76-271. Bedford,
Massachusetts: The Mitre Corporation, August, 1976.
(ADAO29748)

i1. Herd, J. H., J. N. Postak, W. E. Russell, and K. R.
Stewart. *“Software Cost Estimation Study- Volume I: Study
Results.” Technical Report, RADC-TR-77-220. Rockville,
Maryland: Doty Associates, Inc., June 1977. (ADAO42264)

12. Doty, D. L., P. J. Nelson, and K. R. Stewart.
"Software Cost Estimation Study - Volume II: Guidelines

46

s
|
4
|
1

e T Y T e S T

for Improved Software Cost Estimating." Technical Report,
RADC-TR-77-220. Rockville, Maryland: Doty Associates,
Inc., August 1977. (ADAO44609)

13. Graver, C. A., E. E. Balkovich, W. M. Carriere, and
R. Thibodeau. "“Cost Reporting Elements and Activity Cost
Tradeoffs for Defense Systems Software - Volume I: Study
Results." Final Report, CR-1-721. Santa Barbara,
California: General Research Corperation, November 1976.

1. Putnam, L. H. and R. W. Wolverton. Tubtorial -
Quantitative Management: Software Cost Estimating. New
York: Institute of Electrical and Electronics Engineers,
Eneq s 1977

15. Sherrill, C. Warner-Robins ALC/NMMECV (F-15 ASIF).
Telephone Interview, July 1978.

16. Farr, L. and B. Nanus. "Factors that Affect the Cost
of Computer Programming." Technical Memorandum, ESD-TNM-
1447/000/02. Santa Monica, California: System Development
Corporation, June 1964. (ADA4L7329)

17. PFarr, L. and H. J. Zagorski. "Factors that Affeet the
Cost of Computer Programming - Volume II: A Quantitative
Analysis." Technical Documentary Report, ESD-TDR-64-4L48.
Santa Monica, California: System Development Corporation,
September 1964. (AD607546)

18. Black, R. K. F., R« Katz, M. D. Gray, and R. P. Curnow.
"BCS Software Production Data." Technical Report, RADC-TR-
77-116. Seattle, Washington: Boeing Computer Services,
Inc., March 1977. (ADA039852)

19. "Findings and Recommendations of the Joint Logistics
Commanders' Software Reliability Working Group (SRWG Report)
- Volume I: Executive Summary." Technical Report, HQ-AFSC-
TR-75-05. November 1975. (ADA018881)

20. Craig, C. R., et al. "Software Reliability Study."
Technical Report, RADC-TR-74-250. Redondo Beach,
California: TRW Systems Group, October 1974. (AD787784)

21. Weinwurm, G. F. "Data Elements for i Cost Reporting
System for Computer Program Development." Technical Report,
ESD-TR-66-411. Santa Monica, California: System
Development Corporation, August 1966. (AD637804)

22. Willmorth, N. E., M. C. Finfer, and M. P. Templeton.
"Software Data Collection Study." Technical Report, RADC-
TR-76-329. Santa llonica, California: System Development
Corporation, December 1976,

“Volume I: Summary and Conclusions" (ADA036115)

7

-

P RN L2014 P Tl 75 4 A BT et . GBI

"Volume II: An Analysis of Software Data Collection
Problems and Current Capabilitiez" (ADA036116)

"Volume III: Data Requirements for Productivity and
Reliability Studies" (ADA036064)

"Volume IV: Data Management System Interface"
(ADA036065)

“Volume V: Survey of Project Managers" (ADA036066)

"Volume VI: Proceedings of the Data Collection
Problem Conference" (ADA037701)

"Volume VII: Compendium of Procedures and Parameters"
(ADA036247)

23. Branning, W. E., D. M. Willson, J. P. Schaenzer, and
W. A. Erickson. "Modern Programming Practices Study
Report." Technical Report, RADC-TR-77-106. Saint Paul,
Minnesota: Sperry-Univac Defense Systems, April 1977.
(ADAO40049)

24, "CDC 6600 CALCONMP Plotter Manual." Publication CCOS5.
Wright-Patterson AFB, Ohio: Aeronautical Systems Division
Computer Center (AFSC), February 1973.

48

A Sample Data

The data used in the sample calculations of Chapter
IV was provided by Sperry-Univac Defense Systems in a Rome
Air Development Center sponsored technical report (Ref 23:
1-31). The data tabulated in Table A-I is the manning

data for the four software systems reported in the report.

Table A-I

Sperry-Univac Manning Data

Month Program Month Program Month Program
1t 2 31 4 t4 20 308 15 21 3

1 5 1106 5 231 117 | 66 3 = | 61 7 - ~
2 51138 8t 21 32 471672 3| =462 721 - -
3 51131 8} 313311716721 31 -t63}] 71| - -~
L 5115 | 10 Ui b 5 - | 64 7 - -
5 5915 112 | B 38 (A7 172 =4 =1651 7 =}| =
6 5445 Pih b oL 36 A7 {72 - =4 66 | 7t = -
4 5125116 ¢ 4] 32 |17 173t ~ -l 67 7| - ~
8 5125119 &} 38 |17 | 73 — =1 68 3 = -
9 512520 4] 39 (17 {73 | - -169| 3| - =
10 i3k i23 | 4140 113 1731 = =} 70{ 2 - ~
B | 5|34 |22 4141 8|74 - -1 71| 2| - -
12 534122} 5142 | 8|74} - =t 2l 3 a}l =
13 104022 | 5|43 | 8| 74| - =l =
14 |10 |40 |23 | 5| 44| 8| 74| - <l 71 7271 =] =
15 (10|40 |22 | 545 | 8|74 | - g f 7 o= &
16 (10|45 |22 5| 46| 8172} | -] 76] 8] -] -
17 {15\ 45122 | 5147 | 8| 73| - - 771 81| - -
18 15 |45 | 19 5| 48 8173 - -] 78 2 - - {
19 |15 (49 |17 | 5|1 49| 8| 73| - =] ¥9F ¥] = -

20 |15lL49 (14| 5] 50| 8|73} - - 8} 3] - -

21 15149 113 | 5/ 51} 8173 = -| 81 - - -
22 15| 52 | 12 5] 52 8|55]| - -

23 115152111 ¢ S 53§ |55 = -

24 11553 (10| 5| 54| 8|55 - -

25 1151561 8) Si55 1 8|35 = -

26 16156 71| 5156| 8135]| =~ -

27 |16 |56 | 6 11 57| 8|35 - -

28 |16160| 4| 1} 58| 8|35 - -

29 |16 60| 4| -1 59| 8| - = -

30 {16]|60] 3 -fj60] 7] - - o

ko ~

The units are man-months per month.

Table A-II shows the

factor data available on the four systems also found in

the technical report.

Table A-II

Sperry-Univac Factor Data

Factor Program
1 2 3 L

Size in delivered source 90000 500000 26600 13150
Real-time application 1 1 il 1
Top-down structured design 0 0 1 ik
Structured coding 0] 0 0 1
Memory constraint .50 .50 52 .50
Percent HOL used 38 99 53 100
Programmer qualification

education and training | 39.0 371 62.8 82 .4
Developed on target machine| 1 il 0 0
Pages of documentation 8059 27014 3507 2259
Command and control

application 1 il 1 1
Modular design 0 0 1 1
Program librarian il 0] 1 1
Structured narative 1 0 0 1
Flow Charts il il 1 1

50

g g e
il d

B Life Cycle Cost Plotting Program

In the early stages of this research effort it was
obvious that it would be necessary to graphically display
the data used. This program was the result of that need.
It will read in the raw data in man-months per month,

, properly scale the axes, and plot the data versus time
into the life cycle using squares at each data point.
Figure B-1 shows a plot of the first set of data listed in
Appendix A.

As the form of the function to model the software life

cycle costs was being formulated, it was necessary to
compare the plots of the actual data with that computed

from the function. This capability was added in such a

way that the program will plot any number of computed

curves on the same axes as the actual data. This capability
is demonstrated in Figure B-2.

The program listing is provided as it was implemented
on a Control Data Corporation 6600 computer using available
CALCOMP routines for on-line plotting. Figure B-3 shows a
sample data deck for plotting actual data against two
computed curves. Each sequential curve is given a different
symbol to be plotted at each point from the table of symbols
numbered 1 to 13 in the CALCOMP ucer Manual (Ref 24:47).

51

20.00

16.00

12.00

(MAN-MONTHS/MONTH)
8,00

1

M
4,00

SOFTWARE LCC MODEL

o
o
.00

T T T T T T T
25.00 50.00 75.00 100.00 125.00 150.00 175.00
T (MONTHS)

1
200.00

Figure B-1.

Data Plot from LCCPLOT

12,00

[MAN-MONTHS/MONTH)
g.

SOFTWARE LCC MODEL

T r T Al Al T T
25.60 50.CC 75.60 1IC.CO 125.6C 150.C0 175.50
T (HGHTNHS)

200.

Figure B-2.

Data and Computed Plots from LCCPLOT

52

ICABLE

yoy PRACT
p s 1 v

ALl

ATTA
QU

THIS PAGE IS BEST

,

FROM CUFY FURNISHED 10 LG

LOTdDDT J0F ¥o8Q ®ieg oTdwes ‘*¢-g 8anS1y

“N.om;-m
Owsonsomnoﬁhcmﬂso

‘o ccree AT R LT
S mt.ﬂ..mi.mt.m“..ﬁu.

4o
N-o 4o . . 3 . " . .
N Ns N. N~ N.-hsoNs-nsomsoasoesom m-,s \s \; D\oﬁsohuo\scﬂ\oﬂsnwu

§/G6¢00°’yg"*
2'Gsp0°g-"
s.@b.ﬁw\unso s -
hﬁ~0~.n;o--oﬁﬁno q q’ geegreqiegee
. Bk L1%%°g1**qgle* o = . K9
SEENE o«s.m‘.ﬁ..m~.m..mm.anm.whn.Mmummn..ma
omsuﬂ-

(U]

53

1
1
.f

ICAEBLE

faAaLd

DD A

4

10 ULC

|
PRSP

AT T e
.‘.I,x;

~ry
QU

J4

- FROM COFY FURNISE

o

< DX

THIS PAGE IS Bk

(0T4T4GSLAN’TIVNLIIVLIINIT TvD
(£°0°°0)107d 17v)

°G2=(2+S1dN) |
“0=(1+S1dN)L
I=(1)1 0¢

SldN‘T=1 0¢ QQ
J

SINID4 V|Ivad mvy 1v0l4d 2
J
0h 0) 09 (0°*°PI*SLAN) AT

(RT*0,1300KW 337 3UYML40SL2°°h*p) 10AKWAS Y1v)
(*°G29°07°0°Q07=*,(SHINOW) Lu?°0*°0)SI¥V 1V)

(dILSV!NIWV *06°G*02 W (HINOW/SHINOW=NYKW) Wu’*0°0)SIXV 11VvI
(€=4*1°1)10d 1v2 02

S3AXV 3IL1VvAH3INIG I

-

AILSVINTIWY ‘% GVIN 0
b Hi 03
(2+S1dN)YIVNLIIV=d3ISY
(T+SIAN) WVNLIVSNTIRY
(T9S1dN’°*G4yN{3V)3IVIAS 1v)D
(SLdNT=T (1) vNIDJVI» (V3N
0T 04 09 (0°H3*SLdN) 4T
S1dN’s Qv 3y

]

VIVO NI aQv3y 2D
)

(202)1(202)vNLIv NOISNIWIQ
R R R s 2 s T2 I T I T T)
*S3XV 40 13S FNINIS v NO NMVM(O ¥¥¥)
¥¥¥)

«««
¥¥¥ 38 AVW S107d 40 H3IAWNN ANV °STS3IHL AW NI Q3IINISIHd 1300W 3IFHL
¥¥¥ H04 VIVA GILNAW0OD H0/ANV VIVA MVY LNANI 107d 11IM WVYHI0OHA STHI w¥¥)]
A e A R R R R R R R R R R R R RS R L o)
(107441NdIND=SIdVI *INANI=hIdVI‘INdLIN0*INANT) 10TdIIT WY HI0Hd

| &
ki

BEF T shmcas BT

o

ST QUALITY PRACTICABLE
FROM COPY FURNISHED 10 LUC

THIS PAGE IS BE

e e

aN3

d01S

(§=°0°21)1014 V)
SS Nt 09

T4+WAST=WAST
(WAST’T¢14002VN1IVY1L)3INTIT 1TVD

($4°0°°0)101d 11v)
A+ (C¥¥T¥2Md=)dXI¥I*¥TMA=(1)AVYN] IV
002°1=1 09 01

001 0L 09 (0°*3N°*(nm)4n3I) 4T
ENd2Md INd’* (VI

I=(I)!L

0021=1 0S Qa
d31Sv=(202)vnLIV
NIWY=(102)IVNIJV

°G2e=(202)1¢

o=(102)1

I=WASI

S107d A3INdW0I 1NTJd ANV ILVYINID

001

09

SS
0S

(S LS S 4

55

C Life Cycle Cost Model Program

This program was written to perform the tedious and
complex computations used in the computational algorithm
for building the model presented in this thesis. The
program performs all the steps of the algorithm except
selection of factors and iterating the third and fourth
steps. The program reads in the data (manning and factors),
fits function parameters to the data, solves the matrix
equations for the model cocfficients, calculates the
sensitivities for each data set, and predicts the function
parameters for systems from known factors.

Figure C-1 shows a sample data deck for use with this
pregram. The following pages are a listing and sample
output from the program using all four of the data sets
listed in Appendix A and four factors. The predictions

are for the same four data sets. The data set fitted

parameters and predicted parameters are equal since the
matrix equations are fully determined by the four data

sets.

R T i ol e e

E

natY
vl

PRACTI

e
ST Q 1

b

THIS PAGE IS BE:

e

n
w

Lh“ri\l~mg 4V Ly

FROM CUEY Fi

TAOWOOT J0F ¥ooQ eyed oTdues ‘-0 InFTd

*14°0’n*28°0°1

*14°0'Q°29’§%"°

01T LE 66"

‘0’*1’0°6%78%"

*17°0’p°28°0°1

*14°p*p"297¢S"

SPHAC AT IS VL™

*0’°1’0°6%87R% "

N9IS3d QOW19L NO A3A VNG 90¥d INH %
(]

Om\
lﬁ\OMstmhimsOmsam\om\Om\.m;QMs.ms.m\omstwsoﬁ\'mstzstzstﬂsoauia\cﬁsDQNGM\Qﬂ\oN\.N
niLe*

B2 ‘%2

e Bl Rl nke Al Al g R R A B | e g

b8 Lk DAL R BTV RRS - hnd - Eh L e AR Al i e D S h e] e Sl | Sl e
A1 0

hg‘ng

3 LA AR AT R TR L 1 S VAR VAR VAN VARE VAR JERE TRAE VAR AR VA0 7.
A TR 2L L L9 19597 057 09 191 *9L G SR IR g G e Y SRty

AT AR RAET AT AL U AR T AR T AR /T Al TR A [I AR T-ARS T AR T ARSI R A A Sk S A Rl 3 Sl]
LIn®0l

7589

ol Sty Sl Mlhg < Rt ol Mt Sl Wit Tt

ONsoﬂsom snhs.\-n.&.s.h;oNsnh\0\.~o\.sowno.&somsa&so@nn&..@s.@su@noﬁno@no@su@;uﬂ;.ﬁ
Ll LAY LR R Rl SR AP R RS L RS RAF S RO S LAl R A S § Bl | Sle | Sial | Glel | Bl) Bl
el A R R A R AR SRS Gt Rl F R f it R R Rl R Tl L Sl Tl Gl Tt Tl el et Sl
qi8°1

08‘0¢

h

ABLE

1C

P

A
(o

RAC

P

TQu;flTE

1ED

q
e

THIS PAGE 1S BE

TC¢ DLC

INLOL

iz

FROM COFY FU!

3

(SLIAIVANT=L/(L*T)SHOLIVA) ‘¥ Qv 02
S13ISN“I=1 02 0q

(01VS) LYWHOA It
(SIIVAN‘T=T’(1)S1Iv4aT) (11’0)av3x
S1ov4n‘’y Qv3IH

(N‘T=L“(P’I)IVNIIY) “y QV3AN ot

(1)S1ldh=N

(§1)M4% AV3H ((T)S1d4AN°*DI* (T)SLdN) AL
(I)SLdGN’(T)SLdN’¥ vy

S13¢N‘T=] 01 00

SI13SN’¥ Qv3H

J
SHO1JIV4 ONV S13S8 vIVvVa NI (gv3iy

(S’S)ISNIS NOTISNIWIQ
(0SIVIHYNYM (EIND(SG)SLIVAL(SINL NOISNIWIA
(£°6)27(5°6)SH0LIV4“(S)SLIIvHQT

NGISHIWIA
(£/G)X34(002°S)TVNLIVY(S)ISLAAN’(S)SIdN NOISNIWIA

IR T A R R R R R
XX¥

*HIALSAS NMONNNN dH1 HO4 SHILIWvHvVd 4312710344
¥¥¥ JHL GNY 4139 YIVO HIVI H404 SISAIVNY ALIATIIGSNIS 3IHL “1300W
¥y IHL 40 SEINITIATH4300 3IHL “13S VIVvA HIVI H04 SHILIWvEvd G111 4
¥¥¥ AHL FONINT SiNdIND 3H1 *031310348d 38 0) W3IISAS (03IS0dNHd V¥
¥x¥QHALIVH JIWNSSY 3HL NV ‘S13S VIVO 3HL 40 HIVI ¥04 S3INIVA MHITHI
¥¥¥ ANV SHOLIAV4 3HL ‘WILSAS FHL 40 334D 3417 3HL 9NTHNO HINOW XHi4d
¥¥¥ AQ3IANTEXI SHINOW=NVE NT ViVO [S0D 3HVM]1 408 TIVNLIV 35V WY HINMHH
¥¥¥ JML 0L SINANT 3IHL °*STSIHL AW NI O03IINISINE SWILSAS 3IHVYMLIANS 40
¥¥¥ 1800 371IAD 3417 40 1300w FIH! INIWIVIAWT OL G3SN ST wvys0¥d STIHI

2 R R RS R R R R R R R TS TN 0]

(1INdLN0=G3dVL/INANTI=H3dVLINGLINCYINANT) TAOWIZT WV HIOANS

J
J
¥¥%¥%)
¥¥%)
¥¥¥)
¥¥%)
¥¥%)
¥»¥¥)
¥¥¥)
¥¥¥)
¥¥¥)
¥¥%)

J
J

ISNOD 343IM SHOLIVA ONTMOIT0d 3HL w?//7¢,°0380 3IHIAM QL3S vivd

" ¥
‘€1’///77¢13A0W 1S5S0 371040 34T IYVMLIA0SW ‘X0 ///7THT) LVWHOS
S13SN (16‘G)3LTHM

16

T DLC

140434 INdinN INTHd

QUALITY PRACTICABLE
e

s
A4
ShiD

CcCLLL

(I)XM1=(IM’1)D 0

SI1JIV4N‘I=T 06 0Q
(HIAT'VIHYNYMIS/S/S/T/QLIVINYSLIASNMLSIIVALIHVISTT 11v)D

(P’1)SH01Jv4=(r‘1)S1Jv41L
S1Jv4AN‘TI=L NR 00
(IM*IIN4=(1 Al

Sl13snN‘T=1 08 00

¢§/1=IM% 06 00

N

08

THIS PAGE IS BEST

FROM COFY FUR

SIN3IJIT 44300 1300W 3IHL H04 3A70S

oL

((2x» ¥
N¥(2/13STINA=)dAXI="T)/(N¥(S/13ISTINA=10L) ¥ (2?1ISIIN4¥°2=(T“13SI) ¥4

(r’1381)vN1Jv+i0i=101
N1=F 0S 04Q

0=101 Sh
(T+W=N)/(€’13ST)INMI=(S*L13ST)I XS

(I13SIIWWNLIIV+(E?1ISTINA=(S 1 34SI) NS on i
NfuW=T Oh 00 §
(1361)S1dON=W _

Gt 01 09 ((13SI)ISI4ONBI°*(1381)S1A4AN) AT
(C¥¥XVAI¥*2)/%1=(2*13S{)x%4
T=XVRWT C(XVYWIZLIASIIAVALIV L9 (1L3ST)IvnLIv) 4T
N’TI=T 0% 04
(13S1)S1dN=N
T=%xvWl
S13SN‘TI=13ST 09 04

09
0%

59

0¢

ViVQ 3H1 0L SH3AL13Wvyvd 14 J

=
.
-
(&
-4
-4
(4]
<

1
0
P
b

(&]
= |

=]
-
=1

JALIT

11

THIS PAGE IS BEST Q!

FROM COFY FURN

B

U

1Sk

313/7(81)2%002=(¢“LISNIS ont
IMD/7€2CII*(((2413STIM4%2) /X3
0000h* (T/L3STINA+(2¥¥(2/13STIINI¥2)/(XA=V) ¥ (T 13SI)%4=)=(2'PISN3S

NI/ (VL) (((2713ST)IMA%2)/(X3=1))=(T1*LISNAS

Si1JvdAN‘I=L OnY 00
002%(E/13SIINA+((27L3STINI*2)/(¥3=T) ¥ (T1413SI)¥4=27D

(0000n¥(24138T)¥4=)dX3=x3
((XS?0TVIS!Xh T4/ SHOLIV A XS W HILIWYHVA w///7u"3T70AD 3417 Hx

INOW 002 NO (3Sv8 SISATVYNY ALTAILISN3S .24 L3S VIvO w’////)1vwH04 1el
(SLOVANT=[([)S1IV40T) “J3ST (T1¢1“G)3ILIHM
S13SN‘T1=13S1 0G1 0Q

¥

J
SINTIVA SISATYNY ALTATLISNIS FHL (N0 INT¥d ANV FINdWO]D J

<
(74(9°219/XG)T 0TIV XT)1VYnX04 96
(/1= (LI)D){T1)SLIIVAAT (96°G)TLTIHM 0%t
SLIV4NYTI=T 0€1 0Q
(/770100 XS T80 XS, TV, XE1 ¥
43013Vd4 w?//%4iM00704 SINITIIT 443003 T3IA0W Q3IATH3A 3HL w’//7)17WHOA Sé6

(S64G)3LTHM

J
SIN3III44300 300W LND INTHd 1)
3
(77(9°2194Xg)E* X2 'ST*X1)1vVWd0A né

(E/T=LA(C?TINAY T (H67G) LT ym 021
SL13IsSN‘’1=1 021 OQa

(720 a’X0T 02X’ X014 0iN,
X001 %4138 VLIVA /74w M01T04 SHILIWVHYCD A3LIT4 3HL

¥
w®/777)1VwH0A g6
(€6'8)311dM

SHILIWVAVL (3LLT4 1ND INTH

[0 SR W JSS IR 35

(C(/7*0TV 'XTh)GY+HT) LVWHOS 2
(SIJVAN‘T=T‘(I)SLIVIAI) (267G)T1Tum

(«203H30+

60

ACTICAZLE

=
&

Y

0 DUC

QUALITY

U 4

FROM COFY FURNLSH

THIS PAGE IS BES

ON3
4018

00T N1 09

T+WNNZWNN

(7409219 %xG)G*XG?2TXT1)1YwH04
(F2T=T7CIDNA)‘WNN (TTT/G) T THm
(IIML¥CINYT)D+(IM)MA={ TH) M
SI2V4AN‘T=I 011 0Q

0=(IX)%d
¢1=I% 011 0O

002 0L 09 (0°3IN*(n)4NI)HI
(SLIVANYT=T*(I)M%L) ‘% Qv3y

I=WNN
e Na XS a2Mu XS T I X012, 1SANBIN o V73,5

03 LNdWOT F¥3IM SHILIWVAHYA A3LITAIND ONIMOTT0S 3IHL W '//77¢) LVWNO4

. (L6°S)ILIHM

((XE’9°219)G /X9 TT/uMu’XS?/)LVWHO4
(SIJVANYI=PYCINL)ISNIS)‘IN (1G14G)I1THm

¢£1=IX% 0SS! 0q

SHILIWVHYE WILSAS NMONXNN 1IN0 ININd OGNV 121034d

002

111

olt

00t

Lo

Lo

0S1

61

|
!
|
i
|
|
&

SOFTWARE LIFE CYCLE COST MUDEL

4 DATA SETS WERE USED.,

TRIS PAGE IS BEST QUALTTY PRACTICABLE
FROM COPY FURNISHED TO DLC A

THE FOLLOWING FACTORS WERE CONSIDERED:

THE FITIED PARAMETERS FOLLOw:

DATA SEI
1
2

K1
.6U968Y
2.cul67
2.20299

« 7197770

THE DERIVED MUDEL COUEFFICIENTS FOLLOw:

FACTOR

2 HOL

PROG GQUAL
DEV ON TGT

MOD DESIGN

Al
2.22064
-.124945
4,67870

8.872061

% HOL
PROG wUAL
DEV UN 1GT
MOD DESIGN
Ke K3
«520291L-03 1.87500
«297442L=03 10,4170
«255102E=-02 .550006
e3U7222E=02 « 274000
B1 Cl
=.203717E~035 12,9887
«518852E=04 -e.325748
=.14258¢E=02 9,64350
=.599597E-03 14,1270

62

§
B
'

THIS PAGE IS BEST QUATLYTY FRACTICAZLE

FROM COFY F

el

e

EAY

™

HiuD

oL S

U

orgegn*® 10962¢° [0-39¢¢1IT° = se6ehn” €
65162°1 $9980°¢ 22g211*= g1oinn® 2
288n5°¢ BONHE® T 10-3826855° = 616259° T
N9IS3IA Q0w 191 NO A30 VAL 904 0H ¥ .
SY013V 4 ¥313WVYYd

*37JA0 34717 HINOW 002 NO G3SVvA SISATUNY ALIAILISN3IS 2 13S viva

h2L2g*e S6626°1 Vo=3026169° = | en66st2 1]
shietlL® 6021L°1 10-3L20529° = 029nne* 2
212¢s°8 91660 N 051021°= 2nGge1*2 Ty
N9IS3a QoW 191 NO A3Q VA 904d 0K %
: SH012v4 4313wV yVd

37040 3417 HINOW 002 NO (3SvE SISATYNV ALIAILISNIS T 13S viva

sl

63

" T S e e ————
R o R L A e is
a . .

e

S et bt]

b g
13 =)
! <
i =
i S |
5)
| ~B4 oy
1 mu \.W . . . ®
oo G169°9] 899¢°* 11 656585 "~ L6Ng G (3]
<t (5
= s
mwm b.9911°* q109.2° 10=3691101°~ 10=-322226%° 2
s N
E (ol
n“m 78625°L 190.6°¢ 950901°=~ 1S8R 1 1 8Y]
-
8x N9IS3IA QOW 191 NO A30 vNY 90¥d T0H % :
a8 SHO LIV 4 ¥3I1INVYVd
E 2
®370A3 3417 HINOW 002 NO AG3SVH SISATYNV ALIAILISN3IS & 13S vViva
{
82L02°S honGgg° g 2L0021°= 89/8.L°h N
2869¢81" sgLhtn® 10~39GQ191°*=~ 10-3860n559° 2
L0G02°¢ 01069°T 10~32hgigh = 191208° 18"
N9IS3Q QOW 191 NO A3 YN 90¥d W0H ¥
. SH013V 4 Y31 IWVHY L
*3724)

3417 HINOW 002 NO QG3SVO SISAIVNY ALIAILIISNIS § 13S VivQ

s ol

1 50 N P

ABLE

~
v

11T PRACIT

URNLSHEL &

1
U

§BEST Q

THIS PAGE I

FROM COFLE

oonnee* 20=3222/ns" NLLL6L® n
000nGS* 20~3201662° 66202°2 1
0LIn®01 §0=32nnLpe® ! L9ine 2 2
005L8°1 §0=3162026° 839609° i

(9] 2M Y

1S3nB3y
$03LINdW0T I43M SHILIWVAHVA GI1IIATHd INIMOTIT0S 3HL

65

T e vt zact, o % I WART S Mol o e Lo el

VITA

William H. Walker IV was born on 13 March 1950 in
Minneapolis, Minnesota. He graduated from high school in
Portland, Oregon, in 1968 and attended the United States

Air Force Academy from which he received the degree of

Bachelor of Science with two majors, computer science and

mathematics, in June 1972. Upon graduvation, he received a
commission in the USAF and completed navigator training in
April 1973. He then served as a C-141A airlift navigator,
instructor navigator, and flight examiner navigator with
the 14th Military Airlift Squadron, Norton AFB, California.
He was selected to enter the School of Engineering, Air

Force Institute of Technology, in June 1977.

Permanent address: 2120 Highway 101 North

Rockaway, Oregon 97136

- v

?
4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

Arlr/acsfus/78-21

2. GOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

‘:JI; ‘laI~

AN APFROACH T0 :0FWARE LIFK CYCLZ COS

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

-illiu:'z ite alke!‘ IV
ant UsAl

8. CONTRACT OR GRANT NUMBERC(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

ri ht-ratterzon A%, Uhio 454733

4ir “orce Institute of ;echnolo:y(nfl‘-“;4

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

riffise Ary, llew York 13441

S 3 & O + 1A S i 5 J 1 132
‘ome Alr vevelopment Center (:AuC/I1.1.) T

12. REPORT DATE

75

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CL ASS. (of this report)

vnelaecssified

15a, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

approved for oublic releasey distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

ApDrp

JOSEPH P.

‘huéiic,relea:e' I&%" ATR 190-17

2 7 Sise
S8 s,
Jirectnf of Informe /3- 7

iLife Cycle Cout
odelin-~

19. KEY WORDS (Continue on reverse side if necessary and identify by block number,

20. ABSTRACT (Continue on reverse side {f necessary and identify by block number)

factorz that deseribe the coftware syctem. 4 citen-by-step
alzorithm is preszented for bulldin- the model from raw data,
model is exercized az an exarple with 2 emell amount of data,
“he moet salient factors are salected Ly use of senaitivity

“his report descriver the development of a zoftware life cyele
coatins nodel. “he model reduces life cycle cort to a function
of three raraneters which are, in turn, functions of 2 numher of

The

DD N j(::“:,3]473 EDITION OF | NOV 65 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ittt] -

g vt sl e i e i
RTINS e =

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

r analysis., Orief derccriptions of manz-ement apvlications and
recommendations zre rrerented. Appendices describe samzle datas
and two computer rro-ranc used to develor the nodel.

-

SECURITY CLASSIFICATION OF THIS F AGE(When Data Entered)
SRR S W -

-

