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Preface

AL G RN ey A TR st X

The effects of electron-electron collisions are ]
important in plasmas of appreciable fractional ionization.

These effects can be adequately described by the Fokker-

PR

Planck treatment. Unfortunately, the resulting expression

greatly complicates the analysis and, for this reason, is

often ignored. 1In this investigation, the Fokker-Planck

expression is replaced by a simple relaxation term.

Although this approach introduces considerable error, it

does serve to indicate several important features which

must be included to represent the physical situation
adequately., Hopefully, this information will be useful

in any further attempts to simplify the Fokker-Planck

.
i ey~ oo

’ treatment.
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A. M. Hunter for suggesting this problem. Their sugges-
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Abstract

The electron-electron collision term of the steady-
state Boltzmann equation is replaced by a simple relaxation

term that effectively linearizes the equation. Additional

assumptions are made to simplify the equation further.
Ionization is ignored and a two-level atom is assumed. The
effects of a DC electric field are included., Using the
relaxation term to account for electron-electron collisions,
an approximate analytic solution is derived, Temporal and
steady-state characteristics of the relaxation term are
compared to those of the standard Fokker-Planck term., The
relaxation term is judged invalid for energies greater than

the excitation threshold.




I Introduction

There exists a large class of problems in plasma
physics where important physical quantities are sensitive
to the detailed form of the electron distribution function.
To predict these quantities accurately, the time-independent
Boltzmann equation must be solved.

This equation is very difficult to solve in
general. Some simplifying assumptions must be made, even
to solve the equation numerically. In addition, terms
are often neglected on the basis of complexity. The
effects of electron-electron collisions are particularly
difficult to handle because of the non-linear terms intro-
duced.,

For high electron number densities, electron-electron
collisions can be very important. These interactions tend
to drive the distribution toward a Maxwellian and can
appreciably alter the high energy part of the distribution.
Therefore, there exists a need for a simple, but accurate,
term to descrive the effects of electron-electron collisions,
In an effort to fulfill this need, a simple Krook=-type
relaxation term is developed and its characteristics are
investigated.

The theory leading to the Boltzmann equation and
the Fokker-Planck collision term are reviewed in Section
II. with this background, a simple relaxation term is
developed and an approximate solution to the Boltzmann

equation is derived in Section III. The results of the
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relaxation term and the Fokker-Planck term are analyzed
and compared in Section IV. Finally, the conclusions
reached and recommendations for future work are presented

in Section V.

e




II Theory

In this section, the problem is carefully defined
and the governing equation is derived. The assumptions
necessary to arrive at this equation are stated as they
occur in the derivaction. The macroscopic effects and
non-Coulomb interactions are incorporated using the
classical Boltzmann formalism. The Coulomb interactions
are included using the Fokker-Planck approximation.
Finally, the assumptions are justified using order of

magnitude estimates where possible.

he Boltzmann Equation
The plasma considered here is assumed to consist
of electrons, singly-charged ions, and neutral particles.

Internal excitation levels are ignored for the ions

"and only one level (above the ground state) is allowed

for the neutrals. Ionization is ignored for both ions
and neutrals., Electron loss mechanisms, such as attach-
ment and recombinations, are also ignored. Therefore,
the number densities of the various particles can bé
treated as parameters in what follows.

It is assumed that the equations of kinetic

theory are applicable. This is acceptable provided (Ref 13)
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where

mass of species «

kinetic temperature of species «
number density of species
Boltzmann's constant

= Planck's constant/zr

=3
2 g
Wounon

*t=R B
]

In accordance with kinetic theory, a velocity distribution
function Ex(g.x,t) is defined for each species such that
the average number density of particles of type « with
velocities between v and v + dv, located in the spatial
volume element dr centered at r, at time t is given by
F‘(g,x.t)dgdz; the average being carried out over a macro-
scopically infintesimal time interval. Ground state neutrals
and excited neutrals are to be regarded as separate species.
The distribution functions Fy are determined by the

Boltzmann equation, This equation may be written symbolically

as

J{F ey} = ?-F—ﬂ;f%ﬂ““ (1)
where

D=d+vv+Ey, e
and

= external macroscopic force on species &
gradient operator in velocity space

aam
il

= gradient operator in configuration space

m
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from the interaction between particles. Macroscopic

represents the change in F_, resulting

effects, such as external forces, are usually included

in §. Microscopic effects, such as excitation by

D FulrL,v,t)
in [ ) ¥y
ot eoll

In general, the change in F_, resulting from interactions

electron impact, are usually included

with other species depends on the distribution functions
of these species., Therefore, this term couples the
equation for one species to all the other equations,

Fortunately, for many problems a knowledge of the
electron distribution is sufficient to describe the
important features of the system adequately. To simplify
the problem, this assumption is made here. Furthermore,
the distributions of the other species are assumed Maxwellian,

With these assumptions, a complete statistical
solution requires that the electron distribution function
F(r,v,t) be determined using Eq (1). Note that F(r,v,t),
with no subscript, will be used exclusively for the electron
distribution function.

It is assumed that F(r,v,t) is spatially homogeneous,
and the only external forces result from a constant electric
field E . Since F 1is now independent of r, it will be
denoted by F(¥,t). The second term of Eq (2) vanishes

in this case and Eq (1) becomes

YIF(yt) _eE _ 3F(yb)
3t =% Flgyt)= It e i

= G AT L LR N
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where 4

m = electron mass
electron charge
total number density of electrons

-e

Ne

The normalization is such that

Ne = J‘F(\_z,lﬁdy_ (4)
all ¥

In general, n, should be expressed as a function of the
time, but the neglect of electron sources and sinks requires
that n, be constant.

The right side of Eq (3) involves the interactions
of the electrons with themselves and the other plasma
species. It is assumed that these terms impart little net
motion to the electrons. 1In fact, these interactions should
tend to produce an is&tropic velocity distribution. The
second term in Eq (3) accounts for the external field effects.
This term does produce anisotropic effects. If the field is
not too large, the electrons will be accelerated very little
between the randomizing collisions. The principal'gffect of
the field is a heating of the electrons; the anisotropic
drift in the direction of the field is a relatively minor
effect,

The above arguments motivate an expansion of F(v,t)

in spherical harmonics., For small anisotropic effects a

first order expansion is adequate and F(v,t) is given by

Flg,t)= Folv,®) + F (v,t) cos® (5)
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where © 1is the angle between v and the applied field E . f
If Eq (5) is substituted into the left side of Eq (3), the

result is @

|

|

PYACAR) AF.lvt)  eE dFolv,t) ’
el e Seleer = G056 Tl

JF (vt
e oste W) L ek sl b = SR

(6)

(o“

Equation (6) is now integrated over all solid angles d.Q.

where

dL = sinededd

and § is the azimuthal angle about the polar axis. The

resulting equation is b

(7)

DFG(V“H € 3 F(vt)
% ot ;W\ V'- gvv F(V,‘E)_] 4“ J at

col |

If Eq (6) is multiplied by cos @ and again integrated over
all solid angles, Eq (8) is obtained:

3F (vt) _ 2E JRlyt) _ 3 AF(wd

The collisional integrals in Eqs (7) and (8) remain
to be evaluated. The analysis can be simplified by consi=-

dering each process separately. Since electron sources and
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sinks have been ignored, the collision term takes the forms 1

DF(\.’,‘t) = AF (v, ) + AF(y,t) i dF(y,b)
2t coll L >t m.el:gi-.c 2t laast 73
SF (v ) AF(Y,t) SF (v.t)
b at u:I::;-e."— t lCL * t ICC (9)

The first term on the right side of Eq (9) represents
the effect of elastic collisions with neutral particles in
the ground state. If the neutral particles are assumed
infinitely massive, these collisions will have no effect on

an isotropic distribution. Therefore,

QFulv,t)
i R
2t c,lf:*'\c

n

o

For an anisotropic distribution, these collisions will tend
to reduce the degree of asymmetry. Using the standard form
of the Boltzmann collision integral, it can be shown that

(Ref 23:82)

AR | en = -y, Filyt)

elaghic

where 7, is known as the momentum transfer collision
frequency for electron-neutral collisions. The collision
frequency may be expressed in terms of the momentum transfer
cross section G, (v)

Vm = NoV 0 (v)

where

n, = total number density of neutral particles

——— A.I




In general, v, 1is a function of the electron velocity.

However, it is assumed here that

ap.(v) = —R;"L‘-

where Rm is a constant momentum transfer rate. Therefore

U = naRa

and (from Appendix D), R = 5.928 x 10'8 emo-sec™t,  with

this choice for Ry the collision frequency used here is
approximately the same as that for electrons and ground state
Argon atoms.

The second term in Eq (9) represents the effect of
inelastic collisions (excitation) with neutral particles in
the ground state. These interactions convert high-energy
electrons to low-energy electrons. Inelastic collisions
have a large effect on the bulk of the distribution, but a

minor effect on anisotropities (Ref 12). Therefore

dF. (v,t) R
e i T O

The effect on Fo(v.t) can also be calculated using the
Boltzmann collision integral formalism, but the result is
most conveniently expressed in terms of energy. For now,

this effect will be denoted by

d Fe(v,tz‘ o

ot nelastic




The third and fourth terms in Eq (9) represent the
above effects for excited state neutrals as opposed to
ground state neutrals., These interactions, known as
superelastic collisions, convert low-energy electrons to
high~energy electrons. These terms are neglected by assuming
negligible excited state populations. This assumption is
discussed further at the end of this section.,

The fifth term represents the effects of the Coulomb
interactions between ions and electrons, and the sixth
between electrons and electrons. Since the Boltzmann
collision integral is based on short-range, binary collisions;
this formulation is not well suited to the long-range Coulomd
interactions. The Fokker-Planck equation, presented in the
next section, is appropriate in this case. The Fokker-Planck
equation will be used only for the electron-electron collision
term. The results for the electron-ion collision term are
relatively simple and will only be quoted. If the ions are
assumed infinitely massive, the argument presented for
elastic collisions with neutrals yields

d Falv,t)

2t Iec'. =

It can be shown (Ref 23:82)

QF, (v, &)
ot

L= =Ver Fi(yt)

e

where V., 1is an effective electron-ion collision frequency.
It is shown at the end of this section that v, < vV, for

the fractional ionizations considered here, Therefore,

10
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electron-ion collisions will be ignored entirely. 1In

AR (v) i
addition 'S'E"'u will be ignored. Electron-electron
collisions will tend to reduce the anisotropity of the
distribution. However, for the fractional ionizations
considered here, the elastic collisions with neutrals are
the dominant effect (Ref 21:284)., It remains to calculate
aFo(V,t) 2
e - s JORE The next section is devoted exclusively to
determining this term.

The collision term may now be expressed as

IF(vt)]  — dF(vd)

2t el = TT3F et CosO ﬁa'—(—"—tvu ol A19)

where
.?_E_%ﬂlcd‘z - VY F (v,t) (11)
_z_._;%%ﬂ'w_-_ amv't)‘.,fn:.m + al-‘.,(\'.Ulee (12)

Using Eqs (10) through (12) in Eqs (7) and (8) results in a
set of coupled equations independent of © and ® . The

steady-state results are

_eE A = QF,(V\ BF., \
Imlvz 3‘-/ vt F, (V).] a ot mfl':sh'o-.- ;év ‘2& (13)
_.s._E-'_ d Flv) - 14
—r 2V F, L) =

Equation (14) is now substituted into Eq (13). The

resulting time-independent equation involves only Fy (v),

11
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and if Um is independent of V the desired expression is

ek [_L d (y2d6W éF(v) L ARW
6”\‘ vm V" :l— )] "\:l::‘h& 3"'. - (15)

Equation (15) may be transformed from velocity space to

energy space in a straightforward manner, Let
£=+% mv?

and

= j‘mvtfi(v)&v =fn(s)aa

The number density of electrons with energies between £
and € +4€ is nE)dE€ « Equation (15), after the appropriate

transformations, takes the following forms

2 - '\(23 dn(:) Inle) onle)
3‘2;’;: J— llnehs-hr.-.. at lee (16)
where
. e*E”
€ = Zm, (17)

The second term in Eq (16) may be deduced from physical
arguments. A more rigorous treatment is given by Nielsen
(Ref 18), Let x denote the excitation energy of the
neutral particles, and R(E) the rate at which excitations
occur for electrons with energy £ . The excitation rate is
related to the total excitation cross section 0, by

R(e) = (%)""mn (18)




Inelastic collisions can affect the electron distribution

function in two ways. Firstly, electrons with energy &
can produce excitations at the rate R(€) and lose energy
x in the process. This represents a net loss of electrons
with energy € . Clearly, this loss is proportional to the
number density of electrons with energy £ and the number
density of neutral particles in the ground state, Secondly,
electrons with energy €+x can produce excitations at the
rate R(E+x) and lose energy x in the process, This
represents a net gain of electrons with energy €& . This
gain is proportional to the number density of electrons with
energy £+4+x and the number density of unexcited neutral
particles. Therefore, the second term in Eq (16) may be

expressed as

agff" en . = N REEDN(s4x)-n,R(eINe) (19)

tnelastic

As previously mentioned, superelastic collisions are ignored
in Eq (19). The form of R(€) depends on the form of T (£) .
The determination of T3 (€% 1is of great practical interest,

but will not be considered here, It is assumed here that

e () = R () "* (20)
where
o) £<x
R(g) = (21)
R, € 2x
13




From Appendix D

-1

R, = 1.703 x 10"8 cm’ - sec (102)

With this choice for R,» the excitation rate used
here is approximately equal to that for excitation from the
ground state of Argon. Equations (16) and (19) may be
combined to yield the following form of the steady-state

Boltzmann equations

FER[2-e92] = nRE@AInGio-n RO+ ] (22)

where ¢ is given by Eq (17) and R(€) is given by Eq (21).
The explicit form of %ﬁt[et is deduced below.

The Fokker-Planck Electron-Electron Collision Term

To derive the expression for the electron-electron
collision term, it is necessary to digress temporarily and
consider the electron velocity distribution F(v,t). From
Appendix A, the effect of electron-electron collisions may
be described using the Fokker-Planck equation in the
following form:

oF (y,t) R - W
e |, = = L5 FtdCavy)

bl
+";.'§. Sviov; F(y,e)caviavyy (58)
where

{av)) = K"t'_rﬂ"i W(y,av) d(ay) (56)

aviavyy = K‘IJAVLAVJ‘ Y (y,ay)diay) (57)

14




and W(y-sy,ay)d(ay) is the probability that an electron

changes its velocity from v-4yY to Yy in a time ot as a

result of electron-electron collisions. PFor an infintesimal

time interval at, w_(_‘-’nfdil__éi__m may be expressed in terms of

the Coulomb differential scattering cross section o as

(Ref 22)

‘P(!.Afz:'“!’ = Fy, T (g, )udy 40 (23)
where
AV = V-
w= ly-yv|

o (u,0) = (Zﬁ%)[my

and 6 1is the scattering angle in the center-of-mass
coordinate system. Using Eq (23), Eqs (56) and (57) can

be rewritten as
<AVa>=”AV; F(y/t) o (u,2) e dy'd N (24)
(Av;AvJ-):jjA veav; Flyj)a(u,n) e dy’dS (25)

The above integrals are easier to calculate in a local
coordinate system oriented with respect to the relative
velocity w Dbetween the scattering electrons. It is worth
noting that w 1is not the velocity change Ay of a parti-
cular electron upon scattering. However, for elastic

scattering between particles of equal mass Ay = + w.

15
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A fundamental problem arises when performing the above
integrations; the integrals diverge logarithmically at
small scattering angles. This is due to the long-range
nature of the Coulomb force. It can be shown that the
Debye length is the maximum distance over which mutual
electron interactions are effective (Ref 5). This provides
a natural limit in performing the integrations; scattering
between electrons with impact parameters greater than the
Debye length is ignored,

If the integrals are evaluated in the local coordi-
nate system and transformed back into the fixed coordinate

system, the result is (Ref 22)

vy =T 3o (26)
aviavy)y =[7 2% (27)
bV;_ aVJ'
where

h=2 fF(y;t\w'Ax’ (28)
3 = [Feje)mdy’ SRR .
M= M‘:\fq An AA | (30)

= and

3. (K’T’)'/z o

N =Ze M ne

In Eq (31), KT 1is proportional to the average electron

energy; for non-Maxwellian distributions, T can bve

16




regarded as an effective electron temperature, The quantity
A is actually the ratio of the Debye length to the classical
distance of closest approach for two electrons with relative
velocity « . Since /A appears as the argument of a loga-
rithm, it is customary to neglect this velocity dependence
and use an average relative velocity .« = Mﬁ?ﬁ??;:.

In principle, Eqs (26) through (29) can be substituted
dF

ot lea
above equations, despite their simple form, present consider-

into Eq (58) to yield an expression for + The

able computational difficulties for an arbitrary distribution
F(v,t). However, for the isotropic distributions considered
here, these results may be further simplified. The result

for an isotropic distribution Fo(v,t) is (Ref 19)

aF(vm] RIX: F‘V*’U Flx,£)dx + % fy Foxt)de ]
+F'1(x,t) + - AELIT fx F(x£)dx

-'ﬂ:F(x,t)(l- LV (1+ a)dx]} (32)

Equation (32) may be transformed from velocity space to
energy space using the same procedure as for Eq (15). The
resulting equation is conveniently expressed in the following

"flux-divergent" form (Ref 19)3:

an(Ed))] _ _ 3T '
=5 Le_ : (33)
where
5 &[P({n{-é‘%)*an] (34)
17




and

\3 0
P=2e" fxntyprdx + 28 [x"nlxt)dx (35)
# €
2 o
ag= 3 E'/‘fn(x,t) dx (36)
& = %‘-Treu(;?f:\)"thf\. (37)

Equation (33) is the final form of the electron-electron
collision term to be used in Eq (22). Since Eq (22) is a
steady-state equation, the time dependence in Egqs (33)
through (36) can be suppressed.

A Discussion of the Assumptions

The assumptions made in deriving Eqs (22) and (33)
deserve closer examination. These assumptions can be
categorized as follows:

(a) Idealizations have been used to model the

problem in a simple fashion.

(b) Effects which are small compared with the

dominant effects have been ignored,

Assumptions of the first type cannot be expected to
be valid in general, The problems considered must be re-
stricted to those with essentially the same physical charac=-
teristics as the model. Assumptions of the second type can
be rationalized using physical arguments or justified
quantitatively if the magritudes of the various effects can
be estimated.

The systems considered here are restricted to DC gas

discharges such as those commonly used to pump lasers. The

18

Vot ey




field is assumed uniform and there is no mass motion of the
gas, For these conditions, the electron distribution
Afunction can be considered spatially homogeneous. Only one
neutral ground-state species, with a number density of
1019cm'3, is considered. This is closely approximated by
a number of actual laser systems, where one species accounts
for over 90 per cent of the total gas mixture, and the number
density chosen is also representative of many actual laser
systems (Ref 15). The applied electric field E may now be
expressed in terms of €/, , where E is measured in
volts/cm and n, is the number density of the neutral
ground-state species., The €/, range considered here is

-18 -16 volts-cm®, This range is well

restricted to 10 to 10
within the stable discharge region for most systems (Ref 15),
Detailed numerical calculations for several actual laser
systems indicate that a negligible amount of energy goes into
ionization for the €/, range considered here (Ref 20),
Electron attachment and recombination are the most significant
electron loss mechanisms. The cross sections for these
processes vary depending on the species involved (Rgf 29:41).
If attachment or recombination is significant, it is neces-
sary to include the effects of ionization to insure an
appreciable electron density. The cross sections for
multiple-ionization are usually zero until very high energies
and then orders of magnitude lower than that for single-
ionization., This effect may be safely ignored in almost all

calculations.

From the preceding discussion, it is clear that

19




ionization, recombination, attachment, and multiply-

charged ions may be ignored for the systems considered here,
This does not imply that these processes are unimportant,
but only that their effects can be included in a self-
consistent manner for a given electron density., 1In this
case, it is justifiable to regard the electron number
density as a parameter. As with the electric field, this
parameter is conveniently expressed in terms of the fraction-
al ionization, "e/h, . In keeping with the stable discharge
criterion, the range of "¢/n, is restricted to 102 to
10'5. These values are also representative of those found
in numerous real systems.

Based upon the discharge parameters specified above,
the largest fractional excited-state density "*/no
consistent with stable discharge operation is approximately
10'5; and, the effects of superelastic collisions can be
neglected (Ref 15). To strengthen this argument, numerical
calculations have been performed for a variety of excited
state populations. The effect on the equilibrium electron
distribution is found to be quite small (Ref 20). ‘

The next assumption considered is that of constant
Maxwellian distributions for the neutrals and ions. Actually,
the specific distribution of thesc species is unimportant
since it does not enter into Eq (22)., Furthermore, since it
has been shown that the fractional ionization is a parameter
and the excited-state populations can be ignored, the number
densities of these species are constant. What is important

is the energy transfer between electrons and these species.

20
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Only in this context are the distribution functions for the
neutrals and ions important. The same can be said for the
assumption that the ions and neutrals are infinitely massive,
since this really implies a zero kinetic temperature., There-
fore, all of these assumptions are justified provided:

(a) the energy transfer between electrons and other
species is negligible,

(b) the kinetic temperature change of the neutrals
and ions is negligible during the time the
electron distribution reaches steady-state.

Both of these conditions are reasonable in view of the large
mass differential between electrons and other species, The
neutral particles can gain energy only through collisions
with the electrons and ions. Collisions with ions have
little effect because the neutrals and ions have comparable
temperatures., Collisions with electrons are inefficient
because of the large mass difference. The ions can transfer
energy with electrons or neutrals and also gain energy from
the field., The field is relatively ineffective in heating
the ions because of their large mass, The energy transfer
with neutrals and electrons has little effect by the same
argument used above, .
Even though there is a negligible energy transfer
between electrons and ions, these collisions do affect the
heating rate of the electrons., This effect has been
neglected by assuming Ve <<, . Since the number densi-

ties of the various species have been determined, these

quantities can be calculated, From Appendix D,
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Rm = §,928 x 10 and 1/m o Rm. Therefore

Vg ™ 5.928 x 1011 gec-! (38)

It can be shown that, on the average (Ref 23:258)

Ve 2 )
Y (2m) e*\2 / kT\'2
Voi = —3 n;( ) (';‘ In A

KT

where n; is the total number density of ions (cm’3) and
T 4is the kinetic temperature of the electrons. Taking

n; = 1016%m™3 and KT = 2ev (liberal estimates for the
parameters considered here)

Vey = 6.237 x 1010 gec-1

Therefore, even under the worst conditions considered here,
Vg4 is approximately an order of magnitude less than z/m.

When F(v,t) was expanded in spherical harmonics, it
was assumed that the anistropic term was small compared to
the isotropic part of the distribution for “small" electric
fields. To check the validity of this assumption, the
electron drift velocity was calculated numerically for all
parameter ranges considered here., In all cases, the drift
velocity was at least an order of magnitude less than the
thermal velocity of the electrons.

The assumptions of a single excitation level, constant
momentum transfer rate, and constant excitation rate are
gross approximations to reality. These assumptions have
been made to simplify the Boltzmann equation. The goal
is to derive an approximate analytic solution tc the

Boltzmann equation under these conditicns., Hopefully, this

22
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gsolution will predict general characteristics of the system
that are insensitive to the detailed cross sections., For
numerical solutions to the Boltzmann equation, these assump-
tions are not necessary. Another problem then arises in that
accurate cross sections (especially excitation cross sections)
are frequently unavailable.

Lastly, the assumptions used in Appendix A to derive
the Fokker-Planck equation should be mentioned. The validity
of the "weak-interaction" approximation is established in
Appendix A. Correlation effects are neglected in the deriva-
tion. Furthermore, the expansions used are carried out to
second order only and no estimates are given for the error
introduced by higher order terms. The justification of these
assumptions is non-trivial. It can be shown, however, that
these effects are quite small, A detailed discussion of
correlation effects is given by Kaufman (Ref 7:295). Higher

‘order coefficients are estimated by Gasiorowicz, et al (Ref 9).

Summary

The Boltzmann equation, subject to a number of
assumptions, has been cast into a relatively simple form.
The equation includes the effects of a constant electric
field, elastic collisions, electronic excitation and
electron-electron collisions. The equation is applicable

18 10-16 2 and

for ®/n, values from 10~ to volts-cm
"e/n, values from 102 to 10-5. The relevant equation
is Eq (22), with the Fokker-Planck electron-electron colli=-

sion term given by Eqs (33) through (37) and Eq (31).
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III Approach ]

Equation (22) is a non-linear integro-differential
equation for the steady-state electron distribution function ‘
n(¢). The non-local term, n(e+x), further complicates
matters. This equation cannot be solved exactly by any

known techniques. An approximate solution is possible if

=

the electron-electron collision term is ignored, To extend
the solution to include these effects, the term must be
] - approximated, It is not obvious from Eqs (33) through (36)

how best to approximate this term. Therefore, the general

characteristics of the Fokker-Planck term are investigated
first. This provides direction in formulating the approxi-
mate relaxation term and also an indication of its short-
comings. Finally, Eq (22) is solved approximately using

the relaxation term to include electron-electron collisions.
General Characteristics of the Fokker-Planck Term
From physical principles, electron-electron collisions

are expected to have the following features:

(a) The total electron number density is conserved,
(b) The average electron energy is conserved,
(c) A Maxwellian distribution is unaltered.

It is straightforward to show that Eq (33) has these
features, The change in the total number density, due to

: electron collisions, is given by

dne _ [ 3ne) ol Far . y
t _J ), ae = f‘ri“" = T |
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where Eq (33) has been used., Since n(€) vanishes at zero
and infinity, J(€) also vanishes at these limits by
Eq (34). Therefore, the Fokker-Planck collision term

conserves total electron number density.

Similarly, the change in the average energy € is
o€ _ L dn(e
STE = Ne g ot eede
o
s0 ©
- ‘ A £ = - _'_.
i 3— T ne |€E4T
o o

Using integration by parts and the fact that J(&) vanishes

at zero and infinity, the above equation becomes

o0
=
"n

o

or using Eqs (33) through (36)

"*lml

0

3= 7 Jlpa-
{j jx'\(x)dx +}‘-I: (ﬂalx]ﬂ'E

f[&' X'\(X)AX Zf n(x)c(x] dE

& 3““; £'”a'[_ rn(x)al Y] AS}
o P
—-—‘3)%: %{1 {f:[fw.hnlx)dx Ai-ﬁi.'lt[fn(x)a'x o\i} (39)

[} €
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The second integral in this equation can be integrated

by parts as followss

3
a = [ntdx du = n(€)de

£
.
dv = n(s)i""’di V= j.x Lm(ﬂcht
©

0 £ o o «0

‘S‘nE-‘h[ jn(@c\x]de :J‘“ dv = uv| - fvéw
o]

0 o

o

Therefore

o £ - ©
-ile

Jh 8-'/1[ SW(X\J){I d€ = {J‘n(xﬁﬁ J\x n(x)dx

- Jh[ jx-uln(x\clx} de

©

The first integral may be written in the following forms

o0 o0 - > L Y v~
= =l
fn[ jx ln(x)d)(] de = S‘V\ fx M(x\Jx]di
6 £ s o
3 /
R
-Sn fx h(ﬂdx]o\i
° )
If these expressions are substituted into Eq (39), the
right side vanishes identically., Therefore, %E::o

, and

the average electron energy is conserved by the Fokker-Planck

term.
26
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The last physical feature to be verified is station-
arity of a Maxwellian distribution n(€), where

~&/kT
RCE) = £ e (40)
The verification is straightforward and will not be given in
detail, Substituting n(€) into Eqs (34) through (36) and
integrating the first integral in Eq (35) by parts, J(&)

vanishes for all £ . As a result, using Eq (33)

d n(e) "
ot lee = °
and a Maxwellian distribution is unaltered.

Therefore, the Fokker-Planck form of the electron-
electron collision term retains the three main physical
features of these interactions. Parenthetically, this gives
further credibility to the assumptions used to derive the
Fokker-Planck equation.

An inspection of Eqs (35) and (36) reveals that the
coefficients, P and Q, involve integrals of n(g). This
not only makes the equations non-linear, but also introduces
a non-local effect. Therefore, %§59|ee depends not only
on n or its derivatives at a given energy, but also on the
shape of the distribution function over the entire energy
range. This is reasonable (and necessary) since electron-
electron collisions cannot change the number density or
average energy. Several techniques have been used to approxi-

mate this effect (Ref 17).
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A Simple Relaxation Term

Unfortunately, attempts to include the non-local
effects in a simple collision term failed. To retain the
physical features discussed above, a Krook-type relaxation

term is assumeds

on(e)] — _ n)-nd

2t lee” 26N

where ¥(€) is the characteristic time in which the distri-
bution relaxes to a Maxwellian as a result of electron-
electron collisions.

In general, € must be considered a function of
energy. There is no reason to expect the distribution to
relax uniformly at the same rate., In fact, numerical solu-
tions show that the high energy portion of the distribution
relaxes much slower than the low energy portion (Ref 16).

A qualitative description is provided by considering similar
distributions with different average energies, The result
is t’(t)«({)”?— (Ref 6:120). It is not clear that this
relationship is generally valid for a given distribution.
However, this form for <%(€) does insure that the relaxa-
tion rate decreases with increasing energy.

Attempts to include an energy-dependent relaxation
rate and retain all three physical features have also been
unsuccessful, To insure the relaxation term conserves number
density and average energy, n(f) must be altered in a
manner determined by 7 (€). With this alteration, n(f)

no longer retains ite true Maxwellian nature (with the same

\
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number density and average energy as the actual distribution).

The basic problem is that for an energy-dependent relaxation
rate, the physical features overspecify n(€). Therefore,
to employ the simple relaxation term a constant 4 is
used,

The value of 2 used here is the "self-collision
time" %, derived by Spitzer (Ref 24:133); it is basically
the average time it takes an electron with average energy to
undergo a 100% change in energy and suffer a 90° deflection

(Ref 16). The self-collision time may be expressed as

0.1561‘”1
neln /A

Log & (sec) (41)

where T is the kinetic temperature of the electrons (°K).

The final form for the relaxation term is

A n(e) :_'l‘i)_‘__m (42)
a3t lee Tee

It is easily verified that this form of the electron-
electron collision term retains all the physical features
discussed earlier, provided n(g€) has the same number
density and average energy as n(g). It is anticipated that
this term will produce a higher than normal relaxation rate
at high energies and a lower than normal rate at low energies.,

A problem does arise when using Eq (42) for finite-
differenced numerical solutions. In this case, Tn(€) is
not well defined by Eq (40). The method used to circumvent

this problem is given in Appendix C.
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Approximate Solution of the Boltzmann Equation

The Boltzmann equation may be solved approximately
if the relaxation term is used for electron-electron colli-
sions. Combining Eqs (22) and (42), the Boltzmann equation

becomes

- d d
%EIC [—2—- - £ 2—2] = noR(E.-t-x\ n(e+x)

~n,REYn(e) - nle)- R (43)

ce

A fundamental problem arises immediately in that n(g)
depends on the steady-state average energy, which is unknown
at this point. This problem is not peculiar to the relaxation
term; the Fokker-Planck term also depends on the average
energy through the quantity ln/A . However, electron-electron
collisions usually have little effect on quantities averaged
over the entire distribution function (Ref 1:22). Therefore,
Eq (43) could be solved using the techniques mentioned
earlier and ignoring electron-electron collisions. The
average energy obtained from this solution could then be
used to evaluate n(E).

The solution to Eq (43) will be restricted to the
region £2x. In this region it is reasonable to assume
NoR(E+XIn(£+x) <Ny R(E)N(E). The numerical solutions presented
in the next section show that this assumption is good until

electron-electron collisions completely dominate inelastic |
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collisions. The equation may be cast into a more convenient

form by the following change of variables

In addition

n(e) = Ne E72 K ()
_bE

2
A(E)S nea t e

where

32
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With these changes and assumptions, Eq (43) takes the

following forms

d*n A
=2 . Ax= hy (44)
dy Y :




A =] (n.R +2)] (45)

s s

3 Tee ‘j

(46)

h(y)= -

y

Equation (44) can be solved using a combination of
the WKB method and variation of parameters. Unfortunately,
the complete solution involves integrals which cannot be
evaluated in closed form., Since this approach could be
useful for future work; the results, though incomplete, are
included in Appendix E.

An approximate solution can be obtained by ignoring
the second derivative in Eq (44). In this approximation,
% is given by
24%a '45/3"

RETw ©

5(335

Using Eq (45), the solution may be expressed as

# a "'+b/31-

s (47)
RO:P ,+ ne Ro/t/ce e

Equation (47) represents a self-consistent solution provided

(48)

) o | A
Ty <<)5“h
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This requirement follows directly from Eq (44)., Differen-
tiating Eq (47) and substituting the result into Eq (48)

leads to the following requirement:
8 b\
(5)-24b<C A

In the next section, three numerical solutions to
Eq (43) are compared with solutions using the Fokker-Planck
collision term. It is easily verified that the above
requirement is satisfied for these cases. Transforming
Eq (47) back into energy cpace yields the following approxi-

mate solution to Eq (43) for £2X:

12, =y
Ne € KT
I"'noRo’tce

Since Eq (49) involves no arbitrary constants, the complete
solution to Eq (43) (subject to the imposed physical
restraints) will generally be discontinuous at the excita-
tion energy. This behavior and several other features are
investigated in the next section. Since a discontinuous
distribution function is not physically acceptable..no
attempt is made to extend the solution below the excitation 8
energy.
Summary
A simple relaxation term has been formulated that
retains the three prominent physical feature of electron=-
electron collisions. Non-local effects have been disre=-

garded., Using this term for electron-electron collisions, i«
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an approximate solution to the Boltzmann equation is

obtained for energies greater than the excitation energy.

The relaxation term is given by Eq (34): the approximate
solution is given by Eq (49).




IV Analysis and Comparison

In this section, the relaxation form of the electron-
electron collision term is compared to the Fokker-Planck
collision term, The temporal characteristics of the two
terms are analyzed first, Next, steady-state solutions of
the Boltzmann equation are analyzed for three sets of E/n,
and "e/y, values. The Fokker-Planck and relaxation
results are computed numerically for all cases. These
computations employ a finite-differenced energy axis with
a 20 ev maximum energy and .5 ev energy interval., The
analytic results are calculated using Eq (49) for the

three steady-state comparisons.,

Temporal Characteristics

The initial distribution is chosen to be a Gaussian
with a 10 ev average energy and 1 ev standard deviation
: (Fig. 1). The temporal characteristics of the two terms
are compared in Figs. 2 through 5. Only the effects of
electron-electron collisions ars included in these calcu-
lations. The numerical procedure described in Appendix B
is used to calculate the Fokker-Planck term; the relaxation
term is calculated using the procedure in Appendix C.

As expected, the relaxation term gives a higher than
normal rate at high energies (Fig. 2). However, the rate is
also higher at low energies, This is just the opposite of
the predictions in Section III. This result can be explained
by considering the Maxwellian used in the relaxation calcu=-

lation, It has been verified numerically that this
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Maxwellian (time-independent in this case) corresponds

exactly to the final steady-state distribution of the
Fokker-Planck term. This distribution, shown in Fig. 5,
is essentially a horizontal line for the log scale used
here. Since the initial Gaussian is symmetrical about the
average energy, the relaxation term predicts approximately
equal rates for low and high energies.

Therefore, no generally valid relationship exists
between the Fokker-Planck rates and the relaxation term
rates., Furthermore, an energy-dependent Q:ce could elimi-
nate this problem for one specific distribution only. The
non-local effects, neglected in formulating the relaxation
term, must be included to completely eliminate the problem.

The form of the distribution at t = 10" %sec is
shown in Fig. 3. The relaxation term exhibits the same
features as before; however, the diffusion characteristics

"of the Fokker-Planck term are now evident. At this point,
the distribution has spread (slightly weighted toward the
higher energies) about the average energy and the number of
electrons with the average energy has decreased slightly.

Figure 4 shows the form of the distribution ;t
t = 10" 7sec. This time closely approximates T,, for the
parameters assumed here. Obviously, the Fokker~Planck and
relaxation distributions are considerably different. However,
Fig. 4 does indicatc that in either case, 170e is a reasona-

ble time scale for electron-electron collisions to relax a

distribution to a Maxwellian.
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The steady-state condition is shown in Fig. 5. No
later times are shown because the numerical integration E
procedure was unable to advance the relaxation term any
further. It appears that the relaxation term is not well
suited to numerical integration. As mentioned previously,
the Maxwellian used in the relaxation calculation is identi-
cal to the Fokker-Planck steady-state distribution. There-

fore, both approaches should yield identical steady-state

results, This problem was not encountered when the initial

distribution differed only slightly from a Maxwellian. In

this case, both methods result in identical steady-state ;
distributions. The large average energy, coarse energy

zoning and relatively small maximum energy could be a = ‘
factor. Time did not permit a closer investigation of this

problem,

Steady-State Comparisons

Steady-state distributions for three sets of E/no
and "¢/, values are shown in Figs. 6 through 8. The
Fokker-Planck and relaxation curves represent numerical

calculations. The analytic curve represents the evaluation

S i wlany

of Eq (49) for the appropriate parameters. The excitation

threshold energy is 8 ev in all cases. For completeness,
the results of the numerical calculations are tabulated in f
Appendix F. g
There are two characteristic features of all three
cases, First, the Fokker-Planck and relaxation approaches

agree well at energies below the excitation threshold. This
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is to be expected because there are no energy loss mechanisnms

in this range; energy gained from the field must be redistri-
buted by electron-electron collisions. Inelastic and super-
elastic processes are treated identically in both numerical
procedures. Therefore, the precise rate of electron-electron
collisions should have little effect on the steady-state
solutions for energies below the excitation threshold.
Secondly, the distributions are essentially liaxwellian over
the entire energy range. The Fokker-Planck distributions
exhibit a lower temperature above threshold., The relaxation
distributions can be characterized by a single temperature
over the whole energy range. This important and discouraging
feature will now be investigated more thoroughly.

The effect of the large relaxation rate, character-

istic of the relaxation term at high energies, is evident

in all three cases, In fact, the inelastic collision
“wprocess is completely overwhelmed. The only departure from
a true Maxwellian is a discontinuity in the neighborhood of
the excitation threshold. The largest discontinuity occurs
in Fig. 6. This case corresponds to the smallest field and
fractional ionization considered. The smallest discontinuity
occurs in Fig. 7. This case corresponds to a small field

and large fractional jonization. Therefore, the approaches

agree better as the number density increases and electron-

electron collisions become more important, .
These results may be explained as follows. First, the |

relaxation term tends to overemphasize electron-electron
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collisions in all cases. Since there is an upper limit to
this effect (a true Maxwellian distribution), the relaxation
theory and Fokker-Planck theory agree better at higher

i fractional ionizations. Secondly, the relaxation theory

has been forced to conserve number density and average

energy. This requirement, together with the rapid relaxa-

tion rate at low and high energies, produces a discontinuity

in the neighborhood of the excitation threshold. Therefore, ;

the magnitude of this discontinuity can decrease as the
actual distribution approaches a Maxwellian.
The average energies of the distributions are given

in Tables III through VIII, These values indicated that

o sianiadbe i P i i e

the two approaches agree to within five per cent. The

largest difference occurs for e/, = 1072 and e = 101,

IS, o e

These are also the conditions for which the low energy portion
of the distribution is affected most. Nevertheless, the
assumption made concerning averages over the entire distri-
bution function seems to be justified.

The analytic solution derived in Section III is also ‘ﬁ
plotted in Fig. 6 through 8. Obviously, the agreement
between the analytic and numerical solutions is quiée good,
In addition, it can be concluded that the problems encountered %
with numerical solutions using the relaxation model are not
numerical in origin but result from the discontinuity at
the excitation threshold. It is surprising that the numeri- 4
cal integration procedure is able to handle the problem as i

well as it does, The slight difference in slope between 1
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the numerical and analytic solutions could result from
neglecting the second derivative in Eq (44). Another
possible explanation is that the approximation made in
solving this equation is not good for very large energies.
Furthermore, Eq (49) reveals that changing the
magnitude of che would not alter the form of the relaxa-
tion solution; the magnitude of the discontinuity would
be affected but the overall form would be unchanged. This
argument is valid provided the assumptions made in deriving
Eq (49) are justified., Since an energy-dependent ?fce
would change the nature of the analytic solution, it is
possible that such an approach would lead to better agree-

ment with the Fokker-Planck theory.
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vV Conclusion

é’ The analysis and comparisons presented in Section
| IV lead to several logical conclusions concerning the
relaxation approach to electron-electron collisions., The
approach, as presented here, is not applicable for the
electric fields and fractional ionizations commonly used
in discharge lasers. The high energy portion of the

! distribution function is of primary importance in these
devices., The relaxation collision term yields distribu-
tions too large by several orders of magnitude in this
range.

) The three most serious defects in the relaxation
approach are the followings

(a) The high relaxation rate at high energies
completely dominates the more important

} inelastic processes,

(b) Energy diffusion, an important characteristic,
is ignored.

(c) The steady-state distribution is in general
discontinuous at the excitation threshold.

The analytic solution using the relaxation approach
indicates that a different relaxation rate would not
significantly improve the situation. However, an energy-
dependent rate could possibly lead to better agreement
with the Fokker-Planck theory.

Regardless of the approach, diffusion effects
appear to play a key role in representing the physical

gsituation. It is not clear how to include this feature
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in a collision term with reasonable simplicity. Finally,
a simple but accurate, numerical procedure might be more
feasible and valuable than an approach based on drastic

assumptions.
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Appendix A

Derivation of the Fokker-Planck Equation

The purpose of this appendix is to derive an expression
that adequately describes the effects of Coulomb collisions
on the electron velocity distribution function. The Boltzmann

collision term is based on the assumption that particle

interactions are short-range, binary encounters. For electron=-

neutral interactions, this assumption is usually justified.
To describe Coulomb collisions, the effect of simultaneous
interactions between many particles must be considered.

It is not possible to solve this many-body problem
exactly, taking all the particle correlation effects into
account, However, if the interactions are assumed "weak",
these simultaneous interactions may be regarded as the sum
of many uncorrelated binary collisions. The following
considerations clarify and lend credibility to this approach.

A weak interaction is one in which the momentum change
of a particle is small compared to the total particle momen-
tum. In highly ionized plasmas, where Coulomb collisions
must be considered, the cumulative effect of many weak
interactions is more effective in deflecting an electron
than a single strong interaction. It can be shown (Ref 143
294) that weak interactions dominate strong interactions by
a factor of 8InA , where /\ is the Coulomb factor defined
in Section II. Since InA  usually lies between 10 and 20,
weak interactions represent the overall Coulomb collisional

effect to several orders of magnitude.
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The simultaneous interactions may now be regarded as

simultaneous small perturbations and the total effect obtained

by adding the individual perturbations linearly. Using these
ideas, the form of the Coulomb collision term can be derived
by several independent methods. The most general procedure
starts with the Liouville equation (Ref 11:115), Another
method involves expanding the Boltzmann collision integral in
powers of the momentum interchange (Ref 8). The method used
here, similar to that used in the study of Brownian motion
(Ref 23:31), results in the Fokker-Planck equation., This
equation correctly describes, to second order, the temporal
evolution of the electron velocity distribution function
resulting from many weak, uncorrelated binary encounters.

Let P(v,t) represent the spatially homogeneous electron
velocity distribution function. \l’(y—Ay,Ay)d (Ay) is defined
as the probability that an electron changes its velocity
from Y~AY to v in a time At as a result of Coulomb
interactions. since Y(v-Ay,av)d(ay) is a probability,

the following relation must holds

g\l’(y-Ay,Ay)d(Ay)z | (50

The distribution function at time t +At is related to the

distribution at time t Dby

F(y,mt)——-gc-'u-u,oW-Ag,uumw (s1)
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Since weak interactions are being considered, A v is small

in a small time interval At. The terms in Eq (51) can be

expanded as followss

QF(y,t)
Flu,t+at)= F(y,t)+ 3¢ —at (52)
aF (v, +)
Fly-ay,t) = F(y,t) - ZAVL ¢
Bl e WREAEN G
B (53)

Yle-ay,a1) = Yly,a) - 3 av; 3‘?(\%1&5{)

> ‘P(v,Ay)

8 v a (54

0]
where AV is the (th component of Av. If Eqs (52)
through (54) are substituted into Eq (51), the result is

Fly,t)+ bF'(M t)At —3 f\_f\q)(!,dv)c’(dv)

-;F(z.’d zé;i gav; Y (v,av)d(ay)

-2 )—g%’—’—cljav; Y(y,av)d(av)

+ 7 Z F("U AV, Yy fAV AV, Yy, 4 V)aay)

“)

0 3 F(y,t)
TR b SUon fAchvJ' W(y,av)d(ay) (55
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The first terms on the left and right sides of Eq (55)

cancel identically by Eq (50). Defining

{avy)

i
P
(e

At j‘Avi"V(!,AM)d(AY) (56)

{av; av;) L JA V AV, Yv, 0 v)d(aw (57)

1"
t>
(+

Eq (55) may be rewritten as

BF(V . Z Flu.8)<avid

+5 av 5V Fly,t)<av.av) (58)
4)

Equation (58) is the Fokker-Planck equation, and is

phenomenological until explicit expressions are derived

for Eqs (56) and (57). The form of these equations is

considered in Section II and will not be derived here,

Short of this, several general remarks can be made concerning

the Fokker-Planck equation. .
Equation (58) is basically a conservation equation in

velocity space. The terms (Avi> and (AVdAV,) may be

interpreted as diffusion coefficients (Ref 24:125). It is

important to note that these coefficients are time-ensemble

average quantities and differ dimensionally from the corres-

ponding ensemble average quantities., The quantity <AY>/V

has been termed the coefficient of dynamical friction
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(Ref 2). It represents the average deceleration experienced

by an electron of velocity v due to Coulomb interactions
(Ref 8). Similarly, the quantity {Av;Av;) 1is called the
coefficient of diffusion tensor. This term describes the
random fluctuations about the average velocity (Ref 23:249),
In conclusion, it should be mentioned that applica-
tions of the Fokker-Planck equation are not restricted to
Coulomb interactions in plasmas. In fact, the theory has
been extensively used to analyze problems in stellar
dynamics (Ref 2,3,4). A mathematically rigorous discussion

is given by Haken (Ref 10).
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| Appendix B

: Numerical Solution of the Fokker-Planck

Electron-Electron Collision Term

g (Subroutine Funee)

A significant part of this thesis effort has been the
; development of a computer code to solve the Boltzmann equa-

tion under a variety of conditions. This work, in coopera-

tion with three other students, resulted in a computer

program called NGB. The operating procedure for NGB is to

be documented in an AFIT Technical Report. 3By mutual agree-
ment, the details of the various segments of NGB are precented
as Appendices in each individual's thesis., This appendix
fulfills this requirement for the electron-electron collisicn 1
term,

The equations used to numerically evaluate the electron-
electron collision term are derived and presented in a form
suitable for direct computer coding. Particular attention is
given to units and numerical factors. The method used here
was developed by Proctor and Canavan (Ref 19), although the
notation parallels that of Rockwood (Ref 20). Subroutine
Funee, the coding used for electron-electron collisions in :
NGB, is included at the end of this appendix.

From Section II, the electron-electiron collision term

may be expressed as ‘

dn(ed) __ _ 3T
It e | JE

(33)




where n(€&,t)dé is the number density of electrons with

energies between &€ and §€+4d€ at time t, and

7= «[P(A-3)-an] (34

3 o
P:Zs”“JQnu¢04x4-zej}““nuﬁgax (35)

4 €
£
Q= 3£-'/2fn(x t)dx (36)
=27t @) A (37)
g /x3iTS 3
:i—_ (rr ne) (31)
and n, = total number density of electrons

Units and numerical factors will be considered first,
Energies are assumed to be in electron volts (ev's) and
number densities per cubic centimeter (cm'3). The other
quantities of interest must have the indicated units to
insure consistency:

N(E,x) ~ cm *-ev

én(t-L) .3 -
~Nem o ~ev —-sec”! i
Bt - i
3 3
# &~ Em v . see”!

/\_N dimensionless 1
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From Eq (31), A can be rendered dimensionless by entering

the electron charge in esu's, n_, in em™> and KT in

ergs. Denoting the average energy by € , the result is

T3z 32
2 £ (ergs)
A = )4'.15?64 x 10 7[ ncl/z (Cm-g)l/z

Since 1 ev = 1,60210 x 1071% ergs

A '€3/z (ev)"/zJ

Ne''z(em*)"

8.43105 x 109[

and

C 3/a
lnA = 22.85519 + In (£ ) (59) |

From Eq (37), with the electron mass entered in grams and the j
charge in esu's, the units for & are cm3-ergs3/2-sec'1. !
After converting from ergs to ev's, the following result is

obtaineds
& = (2.57540 x 10°8)[nA (em-ev3/2-gec™1) (60)

Equation (33) represents only one term in the Boltzmann
equation, Therefcre, the numerical procedure used to evaluate
this term must be consistent with the method used to solve
the Boltzmann equation. A brief description of the method
used in NGB is in order.

The Boltzmann equation is finite-differenced into a
set of N discrete energy intervals of width 4€ ., The
resulting time dependent eguation is then integrated using
a forward-marching sixth order Gear-type algorithm. The

initial distribution is Maxwellian with reasonable, but
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Fig. 9 Finite-Differenced Energy Axis

arbitrary, parameters. For further details, the Technical
Report describing NGB should be consulted.

Equation (33) must now be expressed in a form consis-
tent with the above differencing scheme., A diagram of the
energy axis is given in Fig. 9. Jk represents the electron
number density flux (along the energy axis) resulting from
electron-electron collisions,

The differenced forms of Eqs (33) through (36) are

given below:

N Tu - T4 :
?F&:—jae e (61) (3

Pe . .+ P, Ngy, +N& n - ng
+ _ feat f fi a1 R _ NRgy »\>
J-ﬁ "O([( & )(H'- €fsite A&

i mmz*r M)(n&“; Me)] (62)

-2 2 Sy
F'f'\::ngk 'ZE;“LAE-FZE& ;‘E: *nAE (63) 13
¥ % ’ E
Qp=38 ") nise v i
LTy ‘
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To insure a constant total electron number density, the

following relations are imposeds

J_\ = TN+:O

Ji.'z :n;.

Substituting Eq (62) into Eq (66) yields

- Pg*«P&-- Ne 4 Ng-y Ng =N k-
Jﬁ”‘[( 2 X Y €puy 5E )

(i

Equations (62) and (67) are now substituted into Eq (61)

to give

= - (e YD - ) (o 0)(2]

o Ng+ Mgt Ng- ﬂ&-n)
Ng= zai{[(P&‘“ P&-X L 3 N s8¢

g+ NN Npy N o
-(op+ae, 3( s e } iﬂ*%(uf‘{i&f; MA en

i

e T N T A I P R

(65)

(66)

(67)

|

(Q&“+Qﬁ>( %‘Lﬂﬁ)]} f=2,N)

e e[ R YA - ). () 25 e




where Eq (65) has been used for k=1 and k=N, If this

set of equations is expanded and the coefficients of the
various ny collected, the following set of equations is

obtained:

,:'&{[(P P)(qem AE) Qz+Q

+[(&+P,)(T|g;,z‘z‘{ = Q‘:_Q']m}

g = e[ P ) (T, v 2E) - 5T g

y_Q =
+[( Pe Pﬁ_.)(?(glz—.lt o )- f;*’ZQﬂ
-(Pk‘f P&-&l)(l‘} Ef..'/z+ A Q€a+ Q{..,“] n'{‘

& ; _‘J__ Ll Qf’_‘l'___Q 24
+[ (sz *"PRM (L\ €p.v, O€ e 2""—:] ﬂ{zH}
r" g {[( ‘__\_ On + Qu-1
N ZAE Nt %EN.h LE ) 1PN

__L Q,q'('@_u_-_q.
[(P”}“ uws, o aa)’ z ]"r«} e

This may be written more compactly by defining the following

quantities:

Q G'z.',l
ag = fae | (R R )T + 20 B {

s WEAER & T3 ey
by =-aae {(P B )(qmis - ) ara] g
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Using Eqs (69), Eqs (68) can be expressed in the following

simple form:

< ‘
i = bzhl—a-ln\

/
- 0
hie) nN-| () o nN (? )

Equation (70) is used to evaluate ﬁk in Funee, It remains

to find explicit expressions for a& and b&. The following

definitions considerably simplify the

derivation:
= | 0.2.5
My = ("““ * - (71
k S Eperta ;
o ket
He .= (72)

Using Eq (71), Egqs (69) may be written in the following form:

/ =

- — * Qt: + Qps
ap = 2AE {(%*Pﬁﬂ)uk T }

SRRTT. . - Ap +Q %, 5
bk - ZAE‘_ {(P& + Pﬁ'l)}uﬁq ~+ "‘—-é——-—“—"} (7))
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Using Eq (72), Eqs (63) and (64) become
P :?.E."I"AE,ZN:E n, H 2€ i i
k % L= £ &'i+ ﬂA’E{:I“E'L n}“(l—H&")p‘)

N
QE=3£&-‘/?'AEZ”LH§;L (74)
2= :

Equations (73) can now be written in the following convenient

forms

N
/ - ~i/a ~1/z “/
ag -Q_Z“' fle e, Hapt G U-Hy, )+ € 5, o

+

-l’ -1 -
+£{lﬂ£(l. z(‘- HQ,‘R‘)JA(Z-OJS(eﬁ/z er,ﬂ+ EE”" Hﬁu, Q)} nl (?5)

ko N -1z, f s
bﬁ‘gd{[gk ELH@.OfgfiEe, L(I'H*&_.‘Q)"’i-ﬁ-f & H&-.,L

-z - -z RS
+ qu ‘EL (l— H&_z‘z)]ﬂﬁ."*'o-IS(gk H&'Q + E&.' Hf{-l)ﬂ)} nl (76)

Defining two matrices Aﬁ»i and Eﬁ!l' Egs (75) and (76)

becomne

{ ; N N
oy = ZAQ‘“L bﬁ:;—:Bfﬁ.Q"L (77)
-\ A |

s o T T S R T I N ﬂ




where

.= {[g&'h— He 2 + E&" Hk“ L:l[ie_“i - o.75]

[E&(\ He., Q)+£& ,(l HEL] ‘c'_-‘h,u};} (78)

The corresponding relation for B&.L is not needed
explicitly. This will become clear in what follows. If
Eqs (77) are inserted into Eqs (70) and summed over all k,
the resulting expression vanishes for any A%'& and B&,Q

whatsoever, Therefore

Bne = i““AE:AE}N:{‘R:O
=\ = k=

and the total electron number density remains constant,
This important feature ie retained by the differenced
expressions, and is basically a result of the conditions
imposed by Eqs (65) and (66).

Unfortunately, when Eqs (70) are multiplied by £4

1 and summed over all k (with Eqs (77) inserted as before)

the result is

A N . N
gsﬁn&:‘-dig{g(AJ,L‘BLD‘ANQ wtByn} (9




the average energy remains constant only if the right side
of Eq (79) vanishes. To insure that this feature is
retained by the differenced expressions, the following

conditions must be imposed:

leiz Al.,j (8e)
Bia= 0 Hforall L (81)
AN L= 0 for all L (82)

Combining Eq (80) and Eq (81) leads to the additional

requirement:

Aﬁ. J =0 $£or all X (83)

The differenced expressions may now be reformulated in terms
/ .
of Ag g0 d% and bp. For convenience, the results so far
]

are summerized below:
v 1 ’
n\ o blnt- (Ll n,

M ! ’ ’ ¢
N =g g = (@t be) i+ be,, Ny,

TS ey

!

& o !
Ay = Oy Noy = By Ny (70)

P —

where

! N / N
awZM,uu bﬁ:;fm\&% N
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and

A&.L B {[8;"‘ Hgo Epur He,e] Lew i -075) |

Hlenl-He, J e g, (- He E™0 (78)

It was shown in Section III that

b'ﬁ(i-@‘ -0
ot lee

when n(€,t) 1is iaxwellian. The differenced expressions
developed thus far do not retain this property. Consider

a Maxwellian distribution Eﬁ where

= ' - &
nﬁ A E&/?. e f./K-r

and K 1is Boltzmann's constant. It is easily verified that

o E,Q 8& ‘I?_
R =0 == T R 8
hihk El-lsﬁ:u) n"'" hg“” ( 5)

for all & and ‘. From Egs (70) and (84)

N N |
R, =0 AgyAgha =2 Aug Mg T, (8¢6) h
R=1 y L=1

L o
ng :Z; Aﬁ-l,Lnﬁ.n&-l +é_‘A,(,"<+l Mg Ay

R e Searae

N
‘Z(ArfAz,e)?‘ﬁ& i
L=
N. N
-ﬁN:n=|AN-|)1nLﬁN—|_1§__—: A}-,N HLHN (88)
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The first sum in Eq (86) may be rewritten using Eq (85):

| = - E £, \'2
. 2 -
| LAy Z £ T,

- - Q4 =

=1 L=
N-\
i -—E A (g 90.3 S i
| 3 iz n n,
| ,t:l & gh Lt
t
N (
:ZA (fﬁf:ﬁ;'_)lz- =
% oy L-y2 \ ¢ € nen,
Since All = 0, the second sum in Eq (86) can be rewritten

: also:

k

f L

Maxwellian,

that the A

the remaining terms

_—

f A“Q

N N
ZAn,D.n,Q-h Z A\,Q"‘L n,
L= =&
It follows that n, vanishes if:
- £ Ep Y2
= AL (J‘._ﬁ.i) (89)
1,2\ TE g,
The same procedure may be applied to Egs (87) and (88). The
general expression, obtained from Eq (87), is
- €0~ Vo
A m— A L~ EP‘+|> (90)
k0 LU &R+V N\ £
Equation (90) is sufficient to guarantee that, when n_ is

k
It is evident from Eq (90)

0 for all k.

are not independent., 1In fact, only those

above the main diagonal need be calculated from Eq (78);

are given by Eq (90). It should be
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mentioned that, while the preceeding arguments have been

strictly mathematical, identical results can be obtained
from more physical arguments (Ref 19).

In summary, given a set of ny, ﬁk due to electron-
electron collisions is calculated using the following

equations:

/ '
n="b,n -a n, k=1

g = ap g ~(ag+ BRI+ b Mewy fezv-1

P / /
nN: a‘N-| hN-‘ = bN F\N ﬁf-N (70)
where
N i%
! 1
dp=) Ag,n by =) Ay en (84)
R 2;; LY R f=t Ak

Ag {[Eﬁ He ot 3&1/2H§+.,z][5¢/";:'°-75]

[ I=He, ) + g -l Q)][g‘/" *H (78)
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for L ¢R

S SO R T ;
M “( b afw/) (71)
He = e (72)
kd | Rz
& = (2,57540 x 107%) [n A (e uav il Pugmartt | (00
and
3/
€
InA =22.85519 +ln (7‘:‘/‘2) (59)

This procedure strictly conserves total electron
number density and average energy. For a kaxwellian,
%k =0 for all k. Since the A matrix depends only on
the differencing scheme and not on the distribution function,
A is calculated only once and stored for subsequent calcula-
tions., As a result, execution time is minimal,

There are several disadvantages to this procedure.
The size of the A matrix is given by the square of the
number of energy intervals used. Thus, storage requirements
may be a limiting factor. Secondly, it is difficult to
estimate the error introduced by imposing conservation of

average energy and stationarity of a Maxwellian.
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Appendix C

Numerical Solution of the Relaxation

Electron-Electron Collision Term

(Subroutine Funeer)

In this appendix, the numerical method used to
evaluate the relaxation electron-electron collision term
is presented. The basic problem is defining a Maxwellian
such that the term retains the desired conservation proper-
ties.

The relaxation collision term is given by:

bn(EB_ i n(e) - n(g) (42)
3% -7 Tea

where T(€) 1is the Maxwellian distribution with the same
average energy and number density as n(£). Equation (42)
is easily cast into a finite-difference form compatible
with the other terms of the Boltzmann equation. The result

is

dn, ne—n; (91)

An explicit expression must now be assumed for n;. This
is not necessary in evaluating the Fokker-Planck term where
only the ratio ™ /n; is required. By analogy with the
continuous Maxwellian

“E./
=Aaere VT (92)




A and T are constants to be determined.

where
To conserve total number density and average energy,

the following requirements must be imposed:

The sums on the left of these equations are recognized as

the total number density and average energy (to within a

factor of A€ ). Therefore

N
(93)

€ (9k)

From Fig, 8
£ = (-'2)AcE (95)

where A € 1is the energy interval used., Using Egs (92) and

(95), Eqs (93) and (94) become

I, 8thrd w -laE/T g
Aag?e 'Z(t-"/z)le_ — C/AE_ (96)
L=
Yy = LBEL £
i ! T: ne E/A& (97)

N
Ade™ e Y (Y
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— S,
= — 8
£= 3 ac (98)

where

) e (99)

N i -LAC/T‘
Si= Z(i-‘/z_) ‘e (100)

To conserve average energy, the value of T nmust
be such that Eq (98) is satisfied. This is accomplished
using an iterative procedure with the first estimate for
T being approximately two-thirds the average energy.
Subsequently, the last calculated value of T is used as a
first estimate. For all calculations here, the value of
T 1is accepted when the difference tetween the actual and
calculated average energy is less than or equal to 16°%9,
Knowing T, +the value of A is easily calculated from

either Eq (96) or Eq (97).

The finite~differenced Maxwellian is now given by

Eq (92) and the relaxation term evaluated using Eq (91).
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Appendix D

Cross Sections and Rates

The momentum transfer rate Rm can be expressed in

terms of the momentum transfer cross section T.,(&) as

R.(€) = (%—f)‘lzo-m(e) |

where € and m are the electron energy and mass respec-
tively. Table I gives the momentum transfer cross sections
used throughout this work. These cross sections have been
constructed to yield a constant rate. Therefore, to compute
this rate it 1s sufficient to consider only one value of

the energy. For £ = 1.25 ev

-12
2 x 1.25 x 1,602 x 10 1/2
R = > — / é.%o x 10‘16)
" 9.109 x 10~
and
R = 5.928 x 10 %cm-gec™ (101)

Similarly, the excitation rate R can be expressed as

R(e) = (-2;,75)'/20:@

Table II gives the excitation cross sections used here.
These have been constructed to give a zero rate below
threshold and a constant rate R, @above threshold. The
threshold energy for all calculations is 8 ev, Using the
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‘same procedure as above, for € = 8,25 ev

2 x 8,25 x 1.602 x 10712\ 1/2 16
R, = 25 (}'0 R

9,109 x 10~

and

R, = 1.703 x 1678 on® mae™>
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g (ev)

25

75
1.25
1.75
2.25
2.75
3.25
3.75
k,25
4.75
5.25
5.75
6.25
6.75
7.25
7.75
8.25
8.75
9.25
9.75

Momentum-Transfer Cross Sections

o-m(cmz)
2.00x10"15

2.16x10"15
16

6

6.67x10"16
6.03x10"16
5.55x10716
5.15x10"16

4.85x10"16
16

8.94x10"
?7.56x10"1

4,59x10"

’-l.36xlo'16
16

16

4,17x10"
4,00x10"

3.85x10"16
16

16

3.71x10°

3.59x10"

3.48x10-16
16

3.29x10"16
~16

3038x10-

3020x10

Table I

81

& (ev)

10.25
10.75
11.25
11.75
12,25
12.75
13.25
13.75
14.25
14,75
15.25
15.75
16,25
16.75
17.25
17.75
18.25
18.75
19.25
19.75

g, (cn?)

3.12x10'16
-16
16
16
16
16
2,75x10"16
-16
16
16
16
16
16

3.05x10
2,98x10"
2,92x10"
2.86x10”
2,80x10"

2,70x10
2,65x10°
2,60x10"
2,56x10"
2,.52x10°
2,48x107
2.44x10'16
16
2,37x107 20
-16
16

2.28x10"16
-16

2.41x10°

2.34x10
2,31x10"

2,25x10




¢ (ev)

.25
75

1.25
1.75
2.25
2.75
3.25
3.75
4,25
4,75
5.25
5,75
6.25
6.75
7425
7.75
8.25
8.75
9.25
9.75

Table II

Excitation Cross Sections

o"x(cmz)
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0,00

0.00

0.00

0.00

0.00

0.00

0.00
1,00x10"16
9.70x10717
9.40x10"17
9.20x10"17

£ (ev)

10.25
10.75

11,25
11.7¢
12.25
12.75
13.25
13.75
14,25
14,75
15.25
15.75
16.25
16.75
17.25
17.75
18,25
18.75
19.25
19.75

oy (en?)

9.00x10"17
8.80x10"17
8.60x10"17
8.40x10"17
8.20x10717
8.00x10717
7.90x10"17
7.70x10"17
7.60x10"17
7.50x10"%7
?.4ox10"17
7.20x10"17
7.10x10"17
?.00x10"17
6.90x10"17
6.80x10"17
6.70x10"17
6.60x10"17
6.50x10"17
6.50x10"17




Appendix E

Analytic Solution Using the WKB Method

Equation (44) can be solved using a combination of
the WKB method and variation of parameters. The WKB method
Yields the following solution to the associated homogeneous

equations

"A”t/lj A'I,_/
L tn= é—[c,e rigo 3]

where 01 and C, are arbitrary constants of integration.

Using variation of parameters, a particular solution is

given by
-Ata A"HG
Rely) = «lj- [V,(tj)ﬁ 1 +V(y) e }
where
4;(3)h(q\
V) = e el
_ [ filh)
Vz(lj\" g W[{”-‘\L] 0‘5
and
1 =R
-F‘(,j\: 4 ¢
A'z/y

4= 'é" ¢
Vv{ﬁ{ﬁ]: g;Fi “-QLF:
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Making the appropriate substitutions, Vl(y) and Vz(y)

may be expressed as

' A‘Iz/ﬁ -%%)‘

12 & —
V.(‘j) TAE. J Y e dy (103)
.,A”l/ _q—bl/t.
_ 2o A 4 Y
\/,_(tj\-— th'at/ce Y ar 6('3

Clearly Vz(y) = -Vl(-y). and the particular solution may

be expressed as
A‘I'I./ A'lz/
. ol 4
e e
Therefore, the general solution to Eq (44) is

tfa ty 7
nly) = —ltj—[cz. eA /lj+ V,(«j)ﬁtvlq /'1—\/.(-3)': /ﬂ (104)
where the term involving C; has Dbeen disregarded. This
term is unbounded and physically unacceptable.

Atfempts to perform the integration in Eq (103) have
been unsuccessful., Furthermore, if the terms involving
Vl(y) are ignored, the constant in Eq (104) cannot be
evaluated. Even if this obstacle could be overcome, a
severe computational difficulty is encountered; the constant
A in the exponent is generally a very large number.
Therefore, the individual terms in Eq (104) are at best
difficult to calculate. For these reasons, a more straight-

forward method is used to solve Eq (44) in Section III.




Appendix F

Steady-State Distributions (Numerical Results)

This appendix contains the numerically calculated
steady-state distribution functions. Appendices B and
C contain details of the numerical procedures., Plots
of the normalized distributions, ﬁ(&), are presented

in Figs. 6 through 8.
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