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Preface

The effects of electron—electron collisions are

important in plasmas of appreciable fractional ionization.

These effects can be adequately described by the Fokker-

Planck treatment. Unfortunately , the resulting expression

greatly complicates the analysis and, for this reason, is

often ignored. In this investigation, the Fokker—Planck

expression is replaced by a simple relaxation term.

Although this approach introduces considerable error , it

does serve to indicate several important features which

must be included to represent the physical situation

adequately. Hopefully, this information will be useful

in any further attempts to simplify the Fokker-Planck

treatment.

I am grateful to Maj. P. E. Nielsen and Capt.

A. M. Hunter for suggesting this problem. Their sugges-

tions and insight were invaluable in overcoming several

serious problems encountered during the investigation.

Pinally, I would like to thank my family and

especially my wife, Debbie, for their understanding and

cooperation during this work. Without their support and

encouragement, the timely completion of this thesis would

have been impossible.
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Abstract

The electron—electron collision term of the steady—

state Boltzmann equation is replaced by a simple relaxation

term that effectively linearizes the equation. Additional

assumptions are made to simplify the equation further.

Ionization is ignored and a two-level atom is assumed . The

effects of a DC electric field are included. Using the

relaxation term to account for electron—electron collisions,

an approximate analytic solution is derived . Temporal and

steady-state characteristics of the relaxation term are

compared to those of the standard Fokker-Planck term. The

relaxation term is judged invalid for energies greater than 
•

the excitation threshold.
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I Introduction

There exists a large class of problems in plasma

physics where important physical quantities are sensitive

to the detailed form of the electron distribution function.

To predict these quantities accurately, the time—independent

Boltzmann equation must be solved.

This equation is very dif ficult to solve in

general. Some simplifying assumptions must be made, even

to solve the equation numerically. In addition, terms

are often neglected on the basis of complexity. The

effects of electron-electron collisions are particularly

difficult to handle because of the non-linear terms intro-

duced .

For high electron number densities, electron-electron

collisions can be very important. These interactions tend

to drive the distribution toward a Maxwellian and can

appreciably alter the high energy part of the distribution.

Therefore , there exists a need for a simple, but accurate,

term to describe the effects of electron—electron collisions.

In an effort to fulfill this need , a simple Krook-type

relaxation term is developed and its characteristics are

investigated .

The theory leading to the Boltzmann equation and

the Fokker-Planck collision term are reviewed in Section

II. With this background , a simple relaxation term is

developed and an approximate solution to the Boltzmann

equation is derived in Section III. The results of the

1
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relaxation term and the Fokker-Planck term are analyzed

and compared in Section IV, Finally, the conclusions

reached and recommendations for future work are presented

in Section V.

I 
2



II Theory

In this section, the problem is carefully defined

and the governing equation is derived. The assumptions

necessary to arrive at this equation are stated as they

occur in the deriva~jon, The macroscopic effects and

non—Coulomb interactions are incorporated using the

classical Boltzinann formalism. The Coulomb interactions

are included using the Fokker-Planck approximation.

Finally, the assumptions are justified using order of

magnitude estimates where possible.

The Boltzmann Equation •

The plasma considered here is assumed to consist

of electrons, singly—charged ions, and neutral particles.

Internal excitation levels are ignored for the ions
• and only one level (above the ground state) is allowed

for the neutrals. Ionization is ignored for both ions

and neutrals. Electron loss mechanisms, such as attach-

ment and recombinations, are also ignored. Therefore,

the number densities of the various particles can be

treated as parameters in what follows.

It is assumed that the equations of kinetic

theory are applicable. This is acceptable provided (Ref 13)



where

= mass of species ~
= kinetic temperature of species o .

n4 = number density of species o

K = Boltzmann ’s constant
Ii = Planck’s constant/zTr

In accordance with kinetic theory, a velocity distribution

function F~ (r ,v ,t) is defined for each species such that

the average number density of particles of type o( with

velocities between V and v + dv , located in the spatial

volume element dr centered at ~~~, at time t is given by

F.~
(r ,v,t)drdv; the average being carried out over a macro-

scopically infintesimal time interval. Ground state neutrals

and excited neutrals are to be regarded as separate species.

The distribution functions F~ are determined by the

Boltzmann equation. This equation may be written symbolically

as

(1)

where

(2)

and

~~~ 
external macroscopic force on species o

~~~ 
gradient operator in velocity space

Vr 
gradient operator in configuration space

4
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represents the change in F~ resulting

from the interaction between particles. Macroscopic

effects, such as external forces , are usually included

in D .  Microscopic effects, such as excitation by

electron impact , are usually included in ~~~~c.~iI

In general, the change in F0~ resulting from interactions

with other species depends on the distribution functions

of these species. Therefore, this term couples the

equation for one species to all the other equations.

Fortunately, for many problems a knowledge of the

electron distribution is sufficient to describe the

important features of the system adequately. To simplify 
•

the problem , this assumption is made here. Furthermore,

the distributions of the other species are assumed Maxwellian.

With these assumptions, a complete statistical

solution requires that the electron distribution function

F(r ,v,t) be determined using Eq (1). Note that F(r,v,t),

with no subscript , will be used exclusively for the electron

distribution function.

It is assumed that F(r ,v, t) is spatially homogeneous,

and the only external forces result from a constant electric
field E • Since F is now independent of r, it will be

denoted by F(v ,t). The second term of Eq (2) vanishes

in this case and Eq (1) becomes

_ _ _ _ _ _  

eE v F(v t)
~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~ (3)
V -) 

~~~~~~~ coil

S

-
~~~~~~~ ~~~~~~~ - ~- -~••~~
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where

in electron mass

—e = electron charge

ne = total number density of electrons

The normalization is such that

fl~~~ j F(~~d~ (4)

In general, ne should be expressed as a function of the

time , but the neglect of electron sources and sinks requires

that 
~e 

be constant.

The right side of Eq (3) involves the interactions

of the electrons with themselves and the other plasma

species. it is assumed that these terms impart little net

motion to •
the electrons. In fact, these interactions should

tend to produce an isotropic velocity distribution. The

second term in Eq (3) accounts for the external field effects.

This term does produce anisotropic effects. If the field is

• not too large, the electrons will be accelerated very little

between the randomizing collisions. The principal effect of

• the field is a heating of the electrons; the anisotropic

drift in the direction of the field is a relatively minor

effect.

The above arguments motivate an expansion of F(v ,t)

in spherical harmonics. For small anisotropic effects a

first order expansion is adequate and F(
~ , t)  is given by

F(~,i~~ F,(v,4) + F~(v,t~.) cos 9 (5 )

6
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-
~~~~~~~~~~~~

- - 
• • — —

~~~~



________  ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
- 

~~~~~~~~

where e is the angle between ~ and the applied field ~

If Eq (5) is substituted into the left side of Eq ( 3) ,  the

result is

~~~~~~~÷
cose 1

~ ’~
i_

~~~ cose ~ 1_~X

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~;~.~t :? J 1~ (6)

Equation (6) is now integrated over all solid angles 4JL.

where

d-ft ~~~~~~~~

and ~ is the azimuthal angle about the polar axis. The

resulting equation is

-
~~~E v v ~

&
~]~~~~ J �t IOII

If Eq (6) is multiplied by cos 9 and again integrated over

all solid angles, Eq (8) is obtained:

- _ _ _ _ _  = ~~~Jc
os 0 (8)

The collisional integrals in Eqs (7) and (8) remain

to be evaluated. The analysis can be simplified by consi-

dering each process separately. Since electron sources and

• 
~~~~~~~~~ ~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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sinks have been ignored , the collision term takes the form ,

= ~ ~
F(.~ t) +

~t bt 
—

- 
�F(!,*.’ ; ~F(~,t~) I ________+ 

~t ~~~~~~~~ 
- 

~~~ 
+ 

~~~
—

~~t ~~~ 
(9)

The first term on the right side of Eq (9) represents

the effect of elastic collisions with neutral particles in

the ground state. If the neutral particles are assumed

infinitely massive, these collisions will have no effect on

• an isotropic distribution. Therefore,

_ _ _ _ _  —

~~~~~~

For an anisotropic distribution, these collisions will tend

to reduce the degree o± asymmetry. Using the standard form

of the Boltzmann collision integral, it can be shown that

(Ref 23:82)

~~ i en V~~r~ v,~ )tI4$41C.

where ~Z1,,, is known as the momentum transfer collision

frequency for electron-neutral collisions, The collision

frequency may be expressed in terms of the momentum transfer

cross section c1 (v) ,

,),~= fl0 V O ~~(v )

where

n0 total number density of neutral particles

8
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In general, l)~ is a function of the electron velocity.

However, it is assumed here that

cr~~(v)

where Rm is a constant momentum transfer rate. Therefore

V,,~ n0R,~

and (from Appendix D), R
~ 

= 5.928 x io
.8 cm3-sec~~ . With

this choice for Rm l the collision frequency used here is

approximately the same as that for electrons and ground state

Argon atoms.

The second term in Eq (9) represents the effect of

inelastic collisions (excitation) with neutral particles in

the ground state. These interactions convert high-energy

electrons to low-energy electrons. Inelastic collisions

have a large effect on the b~dk of the distribution, but a

minor effect on anisotropities (Ref 12). Therefore

(v~.’) J  ,~ = o
-~~~~~

• The effect on F0(v,t) can also be calculated using the

Boltzmann collision integral formalism , but the result is

most conveniently expressed in terms of energy. For now,

this effect will be denoted by

en
0

9

L. •



The third and fourth terms in Eq (9) represent the

above effects for excited state neutrals as opposed to

ground state neutrals. These interactions, known as

superelastic collisions, convert low—energy electrons to

high—energy electrons. These terms are neglected by assuming

negligible excited state populations. This assumption is

discussed further at the end of this section.

The fifth term represents the effects of the Coulomb

interactions between ions and electrons , and the sixth

between electrons and electrons. Since the Boltzmann

collision integral is based on short—range, binary collisions;

this formulation is not well suited to the long—range Coulomb

interactions. The Fokker-Planck equation, presented in the •

next section , is appropriate in this case. The Fokker-Planck

equation will be used only for the electron-electron collision

term. The results for the electron-ion collision term are

relatively simple and will only be quoted . If the ions are

assumed infinitely massive, the argument presented for

elastic collisions with neutrals yields

It can be shown (Ref 23:82)

— —V~~ r,iv~

where )~~ is an effective electron—ion collision frequency.

It is shown at the end of this section that ~~~~ V,~ for

the fractional ionizations considered here. Therefore ,

_
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electron—ion collisions will be ignored entirely , In

addition will be ignored. Electron-electron

collisions will tend to reduce the anisotropity of the

distribution. However, for the fractional ionizations

considered here , the elastic collisions with neutrals are

the dominant effect (Ref 21:284). It remains to calculate

. The next section is devoted exclusively to

determining this term.

The collision term may now be expressed as

�F(~J~~ — ~ ~~
Pl (v L4~~ 10call ~~~ 

-1- cos ° ~~t 
Ic.ii

where 
• -

~E(~ct~ — ~~~ F t  ~~ 
H

)~4:. Cu ll 
f~4 V~ (11)

______  ~~Fo(v ,4~)I  6 (12)
~~ 

1cplI ~~~~~ 
+ — 

ee

Using Eqs (10) through (12) in Eqs (7) and (8) results in a

set of coupled equations independent of 6 and cP , The

steady—state results are

—~~-~~~-
i-- 

~~~
- 

~~~~~ )
1 — ~~ -~ -~~-~~- + ?F0(v\

et CL
P%
~~

. 
~~~~~ 

(13)

—~~~~~~~~ d v )  
— Li),~,, F~(v~) 

(14)

Equation (14) is now substituted into Eq (13). The

resulting time-independent equation involves only F0(v) ,

Lu ____ —

~~

.i-.

~~~~

- •  

1~ 

•
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~~~~~~~~~~~

and if is independent of V the desired expression is

_ et EZ 1..i.. cl 1 2 
____  — ~F0(v) 

~F,(v) 1(.~ tv~ L Vz J~%9 ~• V 
~~~~~jj 

— 
~t un*

e
Lis4s u~.

4 
~~~ 

( 5)

Equation (15) may be transformed from velocity space to

energy space in a straightforward manner. Let

~ ~k ~~
and

f~ TTv ’~Fo(v~~v ~~JncE )eI~

The number density of electrons with energies between 6

and £+4E is n(L~IE . Equation (15), after the appropriate

transformations, takes the following form:

2. d fh (E) dna~’1 — ____ ~ r~
(
~

) I 16— E  — 

~~~ uieV’s4;c. ~t itt

where
z. ~

~~~~ 
(17)

The second term in Eq (16) may be deduced from physical

• arguments. A more rigorous treatment is given by Nielsen

(Ref 18). Let x denote the excitation energy of the

neutral particles, and R(E.) the rate at which excitations

• occur for electrons with energy ~ • The exci tation rate is

related to the total excitation cross section c~ by

R(~
) . ( ;;;-) ç~€) (18)

12
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Inelastic collisions can affect the electron distribution

function in two ways. Firstly, electrons with energy ~

can produce excitations at the rate R ( E )  and lose energy

x in the process. This represents a net loss of electrons

with energy ~ • Clearly, this loss is proportional to the

number density of electrons with energy ~ and the number

density of neutral particles in the ground state. Secondly,

electrons with energy 2+x can produce excitations at the

rate R(E+x) and lose energy x in the process. This

represents a net gain of electrons with energy 
~~ . • This

gain is proporti onal to the number density of electrons with

energy C+x and the number density of unexcited neutral

particles. Therefore, the second term in Eq (16) may be

expressed as

(19)
m e

As previously mentioned , superelastic collisions are ignored

in Eq (19). The form of R(E) depends on the form of r,~(~)

The determination of cr~~E) is of great practical interest,

but will not be considered here. It is assumed here that

(20)

where

(0 E(X

(21)

I

13
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From Appendix D

R0 = 1.703 x 10~~ cm3 — sec —1 (102)

With this choic e for R0, the excitation rate used

here is approximately equal to that for excitation from the

ground state of Argon. Equations (16) and (19) may be

combined to yield the following form of the steady—state

Boltzmann equation:

46~~~~-E~f]~ fl 9 R(E~~~
( _ f l oR&~~(~~+~~~ e (22)

where ~ is given by Eq (17) and R(€.) is given by Eq (21).

The explicit form of ~-2~ I~~L is deduced below.

The Fokker—Planck Electron-Electron Collision Term

To derive the expression for the electron—electron

collision term , it is necessary to digress temporarily and

consider the electron velocity distribution F(v,t). From

Appendix A, the effect of electron-electron collisions may
be described using the Fokker-Planck equation in the

following form:

_ _ _ _ _  — 
~~~~~~~~~~~~~~ 

F(
~,±~ <av~> 

8
~~~~ 

F(~ ,.t)<.s~v~~v~> 
5

where

~ >= ~tS~v~ ‘1~(v,~~v )  cI (~~ \ (56)

(AvA v~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 7)



and ~~~~~~~~~~~~ is the probability that an electron
changes Its velocity from ~~~~~~~~~~~~~~ to 

~ 
in a time ~ -t as a

result of electron—electron collisions. For an iniinteslmal

time int erval ~t, ~~~~~~~~~~~~~~ may be expressed in terms of

the Coulomb differential scattering cross section c~r as

(Ref 22)

= F(~~’ ) ~~ (~~, a) tt. c1~~’c1.O_ (23)

where

L~~~~

AL-

= ~~~~~~
and e is the scattering angle in the center-of-mass

coordinate system. Using Eq (23), Eqs (56) and (57) can

be rewritten as

(24)

- 

(25)

The above integrals are easier to calculate in a local

coordinate system oriented with respect to the relative

velocity ~ between the scattering electrons. It is worth

noting that w is not the velocity change ~~~ of a parti-

cular electron upon scattering. However, for elastic

scattering between particles of equal mass A~ ~

15 
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A fundamental problem arises when performing the above

Integrations; the integrals diverge logarithmically at

small scattering angles. This is due to the long-range

nature of the Coulomb force. It can be shown that the

Debye length is the maximum distance over which mutual

electron interactions are effective (Ref 5). This provides

a natural limit in performing the integrations; scattering

between electrons with impact parameters greater than the

Debye length is ignored .

If the integrals are evaluated in the local coordi-

nate system and transformed back into the fixed coordinate

system, the result is (Ref 22)

(26)

(~v M !,) [
~ 

(27) 
•

I
where

h ~~~~~~~~~~~~~~ (28)

= 5F~~~~~~~4~ ’ . .  . (29)

r _ _ _ _  

I

and

3 f~~( T 3
\”?~) (31 )

In Eq (3 1), KT is proportional to the average electron

energy ; for non-Maxwellian distributions, T can be

• 

-• -•— - -

~~~~~~~
_____  - ________________
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regarded as an effective electron temperature. The quantity

A is actually the ratio of the Debye length to the classical

distance of closest approach for two electrons with relative

velocity ~~ • Since A appears as the argument of a loga-

rithm , it is customary to neglect this velocity dependence

and use an average relative velocity IA- ,[~3 wrIrn .

In principle, Eqs (26) through (29) can be substituted

into Eq (58) to yield an expression for • The

above equations, despite their simple form, present consider-

able computational difficulties for an arbitrary distribution

F(v,t). However, for the isotropic distributions considered

here, these results may be further simplified . The result

for an isotropic distribution F0(v,t) is (Ref 19)

t ”
~~1ee = r [~ ~~~~~~ 

F(x , i ) c ~ ac -f- ~ 
q F(~bt)cIc]

+F~ (xi) 4-j~- ~~~~~~~[ j x  F(~1t)dx

(32)

Equation (32) may be transformed from velocity space to

energy space using the same procedure as for Eq (15). The

resulting equation is conveniently expressed in the following

“flux-divergent” form (Ref 19):

— 

~ n(~ ,+) — • (3~)
~t ee

where

I 4~(~- _ 
~

-) -G~n] (34)

17
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• and

P ZE ”
~~J x x ~~~d X  + ZE~Jx~~~

n (X,4~)dX (35)

Q 3 dx (36)

(37)

Equation (33) is the final form of the electron—electron

collision term to be used in Eq (22). Since Eq (22) is a

steady—state equation, the time dependence in Eqs (33 )

-through (36) can be suppressed .

A Discussion of the Assumptions

The assumptions made in deriving Eqs (22) and (33)
deserve closer examination. These assumptions can be

categorized as follows:

(a) Idealizations have been used to model the

problem in a simple fashion.
(b) Effects which are small compared with the

dominant effects have been ignored.

Assumptions of the first type cannot be expected to

be valid in general. The problems considered must be re-

stricted to those with essentially the same physical charac-

teristics as the model. Assumptions of the second type can

be rationalized using physical arguments or justified

quantitatively if the magnitudes of the various effects can

~e estimated .

The systems considered here are restricted to DC gas

discharges such as those commonly used to pump lasers. Th~

18
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field is assumed uniform and there is no mass motion of the

gas. For these conditions , the electron distribution

function can be considered spatially homogeneous. Only one

neutral ground-state species , with a number density of

1019cm 3, is considered . This is closely approximated by

a number of actual laser systems, where one species accounts

for over 90 per cent of the total gas mixture , and the number

density chosen Is also representative of many actual laser

systems (Ref 15). The applied electric field E may now be

expressed in terms of E/~0 , where E is measured in

volts/cm and n0 is the number density of the neutral

ground—state species. The E/ range considered here is

restricted to 1o 18 to io
_16 

volts—cm2. This range is well

within the stable discharge region for most systems (Ref 15).

Detailed numerical calculations for several actual laser

systems indicate that a negligible amount of energy goes into

ionization for the ~/n0 range considered here (Ref 20).

Electron attachment and recombination are the most significant

electron loss mechani~~a. The cross sections for these

processes vary depending on the species involved (Ref 29~41).

If attachment or recombination is significant, it is neces-

sary to include the effects of ionization to insure an

appreciable electron density. The cross sections for

multiple-ionization are usually zero until very high energies

and then orders of magnitude lower than that for single—

ionization. This effect may be safely ignored in almost all

calculations.

From the preceding discussion, it is clear that

19
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ionization, recombination, attachment, and multiply—

charged ions may be ignored for the systems considered here.

This does not imply that these processes are unimportant,

but only that their effects can be included in a self-

consistent manner for a given electron density. In this

case, it is justifiable to regard the electron number

density as a parameter. As with the electric field, this

parameter is conveniently expressed in terms of the fraction-

al ionization , ‘~C./n,. . In keeping with the stable discharge

criterion, the range of ~~/n~ is restricted to 1O~~ to

10~~. These values are also representative of those found

in numerous real systems.

Based upon the discharge parameters specified above,

the largest fractional excited-state density fl~~/~~0

consistent with stable discharge operation is approximately

i0

~~

; and , the effects of superelastic collisions can be

neglected (Ref 15). To strengthen this argument, numerical

3 calculations have been performed for a variety of excited

state populations. The effect on the equilibrium electron

distribution is found to be quite small (Ref 20).

The next assumption considered is that of constant

Maxwellian distributions for the neutrals and ions. Actually,

the specific distribution of these species is unimportant

since it does not enter into Eq (22). Furthermore, since it

has been shown that the fractional ionization is a parameter

and the excited-state populations can be ignored , the number

• densities of these species are constant. What is important

is the energy transfer between electrons and these species.

20
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Only in this context are the distribution functions for the

neutrals and ions important. The same can be said for the

• assumption that the ions and neutrals are Infinitely massive,

since this really implies a zero kinetic temperature. There-

fore, all of these assumptions are justified provided :

(a) the energy transfer between electrons and other
species is negligible,

(b) the kinetic temperature change of the neutrals

and ions is negligible during the time the
electron distribution reaches steady—state.

Both of these conditions are reasonable in view of the large

mass differential between electrons and other species. The

neutral particles can gain energy only through collisions

with the electrons and ions. Collisions with ions have

little effect because the neutrals arid ions have comparable

temperatures. Collisions with electrons are inefficient

because of the large mass difference. The ions can transfer

energy with electrons or neutrals and also gain energy from

the field. The field is relatively ineffective in heating

the ions because of their large mass. The energy transfer

with neutrals and electrons has little effect by the same

argument used above. •

Even though there is a negligible energy transfer

— between electrons and ions, these collisions do affect the

heating rate of the electrons. This effect has been

neglected by assuming 2)~.<.( ~~~~ . Since the number densi-

ties of the various species have been determined , these

quantities can be calculated . From Appendix D,
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Rm = 5,928 x 1o 8 and 1) = no Rm• Therefore

= 5.928 x lO~~ sec4 (38 )

It can be shown that, on the average (Ref 23:258)

= ~~~~~~~~~ (
~~

-)2- ~~~~~~~~ A

where n~ is the total number density of ions (cm 3) and

T is the kinetic temperature of the electrons. Taking

= iol6cm 3 and KT = 2ev (liberal estimates for the

parameters considered here)

~~ei 
= 6.237 x 1010 sec4

Therefore, even under the worst conditions considered here,

is approximately an order of magnitude less than

When F(v,t) was expanded in spherical harmonics, it

was assumed that the anistropic term was small compared to

the isotropic part of the distribution for “small” electric

fields. To check the validity of this assumption, the

electron drift velocity was calculated numerically for all

parameter ranges considered here. In all cases, the drift

velocity was at least an order of magnitude less than the

thermal velocity of the electrons.

The assumptions of a single excitation level, constant

momentum transfer rate, and constant excitation rate are

gross approximations to reality. These assumptions have

been made to simplify the Boltzmann equation. The goal

• Is to derive an approximate analytic solution to the

Boltzmann equation under these conditions. Hopefully, this
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solution will predict general characteristics of the system

that are insensitive to the detailed cross sections. For

numerical solutions to the Boltzmann equation, these assump-

tions are not necessary. Another problem then arises in that

accurate cross sections (especially excitation cross sections)

are frequently unavailable.

Lastly, the assumptions used in Appendix A to derive

the Fokker—Planck equation should be mentioned . The validity

of the “weak—interaction” approximation Is established in

F Appendix A. Correlation effects are neglected in the deriva-

tion. Furthermore, the expansions used are carried out to

second order only and no estimates are given for the error

introduced by higher order terms. The justification of these

assumptions is non-trivial. It can be shown, however, that

these effects are quite small. A detailed discussion of

correlation effects is given by Kaufman (Ref 7:295). Higher

order coefficients are estimated by Gasiorowicz, et al (Ref 9).

Summary

The Boltzmann equation, subject to a number of

assumptions, has been cast into a relatively simple form.

The equation includes the effects of a constant electric

field , elastic collisions, electronic excitation and

electron—electron collisions. The equation is applicable

for E/,~ values from io~~
8 to io 16 volts—cm2 and

~e/~0 values from ~~~ to 1O~~. The relevant equation

is Eq (22), with the Fokker-Planck electron—electron colli-

sion term given by Eqs (33) through (37) and Eq (31).

- 23
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III Approach

EquatIon (22) is a non-linear integro-differential

equation for the steady-state electron distribution function

n(~). The non-local term, n(E+x), further complicates

matters. This equation cannot be solved exactly by any

known techniques. An approximate solution is possible if

the electron—electron collision term Is ignored. To extend

the solution to include these effects , the term must be

approximated. It is not obvious from Eqs (33) through (36)

how best to approximate this term. Therefore, the general

characteristics of the Fokker-Planck term are investigated

first. This provides direction in formulating the approxi-

mate relaxation term and also an indication of its short-

comings. Finally, Eq (22) is solved approximately using

the relaxation term to include electron—electron collisions.

General Characteristics of the Fokker-Planck Term

From physical principles, electron—electron collisions

are expected to have the following features:

(a) The total electron number density is conserved.
(b) The average electron energy is conserved .
(c) A Maxwellian distribution is unaltered.

It is straightforward to show that Eq (33) has these

feat~xres. The change in the total number density , due to

electron collisions , is given by

�fl~ - _ _ _  — —
~ - J  

~~~~~ 

c - - 
~~~~~~~ - J ( ~s~

2~



where Eq (33) has been used. Since n(E) vanishes at zero

and infinity, 3(E) also vanishes at these limits by

Eq (34). Therefore, the Fokker-Planck collision term

conserves total electron number density .

Similarly, the change in the average energy ~ is

~~ ee
0

00 .0r ~~~~~

- 

- 
I (-

o

Using integration by parts and the fact that J(~ ) vanishes

at zero and infini ty, the above equation becomes • -

00

0 H

or using Eqs (33 ) through (36)

~{J {E~
3Iz 

5xr ~(~
)
~ x +Jx

~~
I/t

~~(Y ~~~c~~~~] d e

— 
~~ 

~ (x) 
~ — (Y 4 xJ c~ €~

— 3$h

= 4;
~: [J~ { 

h1
h x ~~xjt.i £ ~ 

..I1L~

j

~~
))

~
J 

~
] Q~J~ (~~~~

9)
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I
The second integral in this equation can be integrated

• by parts as follows:

d~~~~~:(~ ) c~~

v ~~Jx~~~~~ x~ c~x

S~-”~[ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-_ 51 dv ~~ fV
cl LL~

Therefore

0s:~h1z{ (x~4rJ~~

54 ~
I
~
2

xth]~~~

The first integral may be written in the following form:

f~{ 
J~~

’
~~(x~~ x] d~ ~ 

{ ~~ d E 
-

_ {
~~~X h (~~c~X]~~~

If these expressions are substituted into Eq (39),  the 
H

right side vanishes identically. Therefore , , and

the average electron energy is conserved by the Fokker-Plarick

term.
26
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The last physical feature to be verified is station—

arity of a Maxwelliari distribution (), where

:/L ~~ /k T
E e (40)

The verification is straightforward and will not be given in

detail. Substituting i~(E) into Eqs (34) through (36) and

integrating the first integral in Eq (35) by parts, J(E)

vanishes for all £ . As a result, using Eq (33)

____ —

and a ?4axwellian distribution is unaltered.

Therefore, the Fokker—Planck form of the electron-

electron collision term retains the three main physical

features of these interactions. Parenthetically , this gives

further credibility to the assumptions used to derive the

Fokker-Planck equation.

An inspection of Eqs (35) and (36) reveals that the

coefficients, P arid Q, involve integrals of n(E). This

not only makes the equations non-linear , but also introduces

a non—local effect. Therefore , 2(ee depends not only

on n or its derivatives at a given energy , but also on the

shape of the distribution function over the entire energy

— range. This is reasonable (and necessary) since electron-

electron collisions cannot change the number density or

average energy. Several techniques have been used to approxi-

mate this effect  (Ref 17).
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A Simple Relaxation Term

Unfortunately, attempts to include the non-local

effects in a simple collision term failed. To retain the

physical features discussed above, a Krook-type relaxation

term is assumed :

____ — 
_ _ _ _ _ _ _ _

ee ~(fl

where t’~E~) is the characteristic time in which the distri-

bution relaxes to a Maxwellian as a result of electron-

electron collisions.

In general, C must be considered a function of

energy. There is no reason to expect the distribution to

relax uniformly at the same rate. In fact, numerical solu-

tions show that the high energy portion of the distribution

relaxes much slower than the low energy portion (Ref 16).

A qualitative description is provided by considering similar

distributions with different average energies. The result

(Ref 6~12Q). It is not clear that this

relationship is generally valid for a given distribution.

However , this form for t’~~) does insur e that the relaxa-

tion rate decreases with increasing energy.

Attempts to include an energy-dependent relaxation

rate and retain all three physical features have also been

unsuccessful. To insure the relaxation term conserves number

density and average energy , ~i(f. ) must be altered in a

manner determined by t’(E). With this alteration, ?i(~ )
no longer retains its true Maxwellian nature (with the same

• 
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number density and average energy as the actual distribution).

The basic problem is that for an energy-dependent relaxation

rat e, the physical features overspecify ?i(~ ). Therefore,

to employ the simple relaxation term a constant ‘r is

used .

The value of -Z’ used here is the “self—collision

time” t’ce derived by Spitzer (Ref 24:133); it is basically

the average time it takes an electron with average energy to

undergo a 100% change in energy and suffer a 90~ deflection

(Ref 16). The self—collision time may be expressed as

(sec) (41)
CC

where T is the kinetic temperature of the electrons (°K).

The final form for the relaxation term is

• ____  
— 

— 

(14~2)
~t ee

It is easily verified that this form of the electron—

electron collision term retains all the physical features

discussed earlier, provided Fi(E) has the same number

density and average energy as n ( € ) .  It is anticipated that

this term will produce a higher than normal relaxation rate

at high energies and a lower than normal rate at low energies.

A problem does arise when using Eq (42) for finite-

differenced numerical solutions. In this case, Y~(E )  is

not well defined by Eq (40) .  The method used to circumvent

this problem is given in Appendix C.
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Approximate Solution of the Boltzmann Equation

The Boltzmann equation may be solved approximately

if the relaxation term is used for electron—electron colli-

sions. Combining Eqs (22) and (42), the Boltzmann equation

become s

~~ 
[-
~
- - a 

~
j] ~ . ri 0 R ( E # x ’ “ (€+x~

_
~~0 R(i~~n(C)— ~~~~~~~~ (43)

t’ce

A fundamental problem arises immediately in that ii(E)

depends on the steady-state average energy, which is unknown

at this point. This problem is not peculiar to the relaxation

term; the Fokker-Planck term also depends on the average

energy through the quantity I~A • However , electron-electron

collisions usually have little effect on quantities averaged

over the entire distribution function (Ref 1:22). Therefore ,

Eq (43) could be solved using the techniques mentioned

earlier and ignoring electron-electron collisions. The

average energy obtained from this solution could then be

used to evaluate ii(E).

The solution to Eq (43 ) will be restricted to the

region C-~ x • In this region it is reasonable to assume

n.R(c -4- x~n(€+x)<<n0R(c)n(E). The numerical solutions presented

in the next section show that this assumption is good until

electron-electron collisions completely dominate inelastic

30
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collisions. The equation may be cast into a more convenient

form by the following change of variable:

-a€ .

In add ition

h(E’)E

‘Ii. ~bE.
~(E

’
~E ~~~ 

e

where

2. 312.
a~~~~~b

-

I 
• -

With these changes and assumptions, Eq (43 ) takes the

following form: 
-

— 4~e ~ 
(44 )

Ii



where

A ~ [~~~(n0 R0 +~~— ) ]  (“-5)

— ~~~ ~~~
- (46)

Equation (44) can be solved using a combination of

the WKB method and variation of parameters. Unfortunately ,

the complete solution involves integrals which cannot be

evaluated in closed form. Since this approach could be

useful for future work; the results, though incomplete , are

included in Appendix E.

An approximate solution can be obtained by ignoring

the second derivative in Eq (44). In this approximation,

?~ is given by

- _ _ _ _n (if~ ~~~~~ 
e

Using Eq (45), the solution may be expressed as

r ~~ 
-

~~~~~~~b/ ~~~~~~ 

•

I (47 )
~‘ [H 1bo 1~otcej

Equation (47) represents a self-consistent solution provided

‘LI?. << (48)
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This requirement follows directly from Eq (44). Differen—

tiating Eq (47) and substituting the result into Eq (48)

leads to the following requirement :

(~~~-)
1
-z~~b << ~~~~

In the next section , three numerical solutions to

Eq (43) are compared with solutions using the Fokker-Planck

collision term. It is easily verified that the above

requirement is satisfied for these cases. Transforming

Eq (47) back into energy ~;~ce yields the following approxi-

mate solution to Eq (43) for ~�X :

r lt _ E/ I ( Tfle c- e (49)
I 4 fl oRe’Le

Since Eq (49) involves no arbitrary constants, the complete

solution to Eq (43) (subject to the imposed physical

restraints) will generally be discontinuous at the excita-

tion energy. This behavior and several other features are

investigated in the next section. Since a discontinuous

distribution function is not physically acceptable , no

attempt is made to extend the solution below the excitation

energy .

Summary

A simple relaxation term has been formulated that

retains the three prominent physical feature of electron-

electron collisions. T~Ion-local effects have been disre-

gardeci . Using this term for electron—electr on collisions,

3)
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an approximate solution to the Boltzmann equation is

~ I obtained for energies greater than the excitation energy.

The relaxation term is given by Eq (3 4) ;  the approximate

solution is given by Eq (49).
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IV Analysis and Comparison

In this section , the relaxation form of the electron—

electron collision term is compared to the Fokker-Planck

collision term. The temporal characteristics of the two

terms are analyzed first. Next, steady-state solutions of

the Boltzmann equation are analyzed for three sets of E/~0

and ‘~C/n0 values. The Fokker-Planck and relaxation

results are computed numerically for all cases. These

computations employ a finite-differenced energy axis with

a 20 ev maximum energy and .5 ev energy interval. The

analytic results are calculated using Eq (49) for the

three steady—state comparisons.

Temporal Characteristics

The initial distribution is chosen to be a Gaussian

with a 10 ev average energy and 1 ev standard deviation

(Fig. 1). The temporal characteristics of the two terms

are compared in Figs. 2 through 5. Only the effects of

electron—electron collisions ars included in these calcu-

lations. The numerical procedure described in Appendix B

is used to calculate the Fokker—Planck term ; the relaxation

term is calculated using the procedure in Appendix C.

As expected , the relaxation term gives a higher than

normal rate at high energies (Fig. 2). However, the rate is

also higher at low energies. This is just the opposite of

the predictions in Section III. This result can be explained

by considering the Maxwellian used in the relaxation calcu-

lation. It has been verified numerically that this
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Maxwellian (time-independent in this case) corresponds

exactly to the final steady—state distribution of the

Fokker-Planck term. This distribution , shown in Fig. 5,

is essentially a horizontal line for the log scale used

here. Since the initial Gaussian is symmetrical about the

average energy , the relaxation term predicts approximately

equal rates for low and high energies.

Therefore , no generally valid relationship exists

between the Fokker-Planck rates and the relaxation term

rates. Furthermore , an energy-dependent ‘tee could elimi-

nate this problem for one specific distribution only. The

non-local effects, neglected in formulating the relaxation

term, must be included to completely eliminate the problem.

The form of the distribution at t = 10 10sec is

shown in Fig. 3. The relaxation term exhibits the same

features as before; however, the diffusion characteristics

of the Fokker-Planck term are now evident. At this point,

the distribution has spread (slightly weighted toward the

higher energies) about the average energy and the number of

electrons with the average energy has decreased slightly ,

Figure 4 shows the form of the distribution at

t = 1O~~sec. This time closely approximates 
~~ce 

for the

parameters assumed here. Obviously, the Fokker-Planck and

relaxation distributions are considerably different. However,

Fig. 4 does indicat’ that in either case, ‘
~ce 

is a reasona-

ble time scale for electron—electron collisions to relax a

distribution to a Maxweilian .
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The steady—state condition is shown in Fig . 5. No

later times are shown because the numerical integration

procedure was unable to advance the relaxation term any

further. It appears that the relaxation term is not well

suited to numerical integration. As mentioned previously ,

the Maxwellian used in the relaxation calculation is identi-

cal to the Fokker-Planck steady-state distribution. There-

fore, both approaches should yield identical steady-state

results. This problem was not encountered when the initial

distribution differed only slightly from a Maxweflian. In

this case , both methods result in identical steady-state

distributions. The large average energy, coarse energy

zoning and relatively small maximum energy could be a

factor. Time did not permit a closer investigation of this

problem.

Steady-State Comparisons

Steady—state distributions for three sets of E/~0

and ~In0 values are shown in Figs. 6 through 8. The

Fokker-Planck and relaxation curves represent numerical

calculations. The analytic curve represents the evaluation

of Eq (49) for the appropriate parameters. The excitation

threshold energy is 8 ev in all cases. For completeness,

the results of the numerical calculations are tabulated in

Appendix F.

There are two characteristic features of all three

cases. First, the Fokker-Planck and relaxation approaches

agree well at energies below the excitation threshold . This
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is to be expected because there are no energy loss mechanisms

in this range; energy gained from the field must be redistri-

buted by electron—electron collisions. Inelastic and super-

elastic processes are treated identically in both numerical

• procedures. Therefore, the precise rate of electron-electron

collisions should have little effect on the steady-state

solutions for energies below the excitation threshold .

Secondly , the distributions are es3erttially l~axwe1lian over

the entire energy range. The Fokker-Planck distributions

exhibit a lower temperature above threshold . The relaxation

distributions can be characterized by a single temperature

over the whole energy range. This important and discouraging

feature will now be investigated more thoroughly.

The effect of the large relaxation rate , character-

istic of the relaxation term at high energies, is evident

in all three cases. In fact, the inelastic collision

~rocess is completely overwhelmed . The only departure from

a true Maxwellian is a discontinuity in the neighborhood of

the excitation threshold . The largest discontinuity occurs

in Fig. 6. This case corresponds to the smallest field and

fractional ionization considered . The smallest discontinuity

occurs in Fig. 7. This case correspond s to a small field

and large fractional i onization. Therefore, the approaches

agree better as the number density increases and electron-

electron collisions become more important.

These results may be explained as follows. First, the

relaxation term tends to overemphasize electron—electron

- 
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collisions in all cases. Since there is an upper limit to

this effect  (a true Maxwellian distribution), the relaxation

theory and Fokker-Planck theory agree better at higher

fractional ionizations. Secondly , the relaxation theory

has been forced to conserve number density and average

energy. This requirement , together with the rapid relaxa-

tion rate at low and high energies, produces a discontinuity

in the neighborhood of the excitation threshold . Therefore ,

the magnitude of this discontinuity can decrease as the

actual distribution approaches a Maxwellian.

The average energies of the distributions are given

in Tables III through VIII. These values indicated that

the two approaches agree to within five per cent. The

largest difference occurs for ~~~ 1O~~ arid ~/n0 =

These are also the conditions for which the low energy portion

of the distribution is affected most.  Nevertheless , the

assumption made concerning averages over the entire distri-

bution function seems to be justified .

The analytic solution derived in Section III is also

plotted in Fig. 6 through 8. Obviously, the agreement

between the analytic and numerical solutions is quite good .

In addition , it can be concluded that the problems encountered

with numerical solutions using the relaxation model are not

numerical in origin but result from the discontinuity at

the excitation threshold . It is surprising that the numeri-

cal integration procedure is able to handle the problem as

well as it does. The slight difference in slope between
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the numerical arid analytic solutions could result from

neglecting the second derivative in Eq (44). Another

possible explanation is that the approximation made in

solving this equation is not good for very large energies.

Furthermore , Eq (49) reveals that changing the

magnitude of ‘
~ ce 

would not alter the form of the relaxa-

tion solution; the magnitude of the discontinuity would

be affected but the overall form would be unchanged . This

argument is valid provided the assumptions made in deriving

Eq (49) are justified. Since an energy—dependent t’
ce

would change the nature of the analytic solution, it is

possible that such an approach would lead to better agree-

ment with the Fokker-Planck theory. •
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V Conc lusion

The analysis and comparisons presented in Section

IV lead to several logical conclusions concerning the

relaxation approach to electron—electron collisions. The

approach, as presented here , is not applicable for the

electric fields and fractional ionizations commonly used

in discharge lasers. The high energy portion of the

distribution function is of primary importance in these

devices. The relaxation collision term yields distribu-

tions too large by several orders of magnitude in this

range.

The three most serious defects in the relaxation 
• -

approach are the following s

(a) The high relaxation rate at high energies
completely dominates the more important
inelastic processes~

(b) Energy diffusion, an important characteristic ,
is ignored.

(c) The steady—state distribution is in general
discontinuous at the excitation threshold .

The analytic solution using the relaxation approach

indicates that a different relaxation rate would not

significantly improve the situation. However, an energy-

dependent rate could possibly lead to better agreement

with the Fokker-Planck theory.

Regardless of the approach , diffusion effects

appear to play a key role in representing the physical

situation. It is not clear how to include this feature
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in a collision term with reasonable simplicity. Finally ,

a simple but accurate, numerical procedure might be more

feasible and valuable than an approach based on drastic

assumptions.
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Appendix A

Derivation of the Fokker-Planck EQuation

The purpose of this appendix is to derive an expression

that adequately describes the effects of Coulomb collisions

on the electron velocity distribution function. The Boltzmann

collision term is based on the assumption that particle

interactions are short-range , binary encounters. For electron—

neutral interactions, this assumption is usually justified.

To describe Coulomb collisions, the effect of simultaneous

interactions between many particles must be considered .

It is not possible to solve this many—body problem

exactly, taking all the particle correlation effects into

account, However, if the interactions are assumed “weak” ,

these simultaneous interactions may be regarded as the sum

of many uncorrelated binary collisions. The following

considerations clarify and lend credibility to this approach.

A weak interaction is one in which the momentum change

of a particle is small compared to the total particle momen-

tum. In highly ionized plasmas, where Coulomb collisions

must be considered , the cumulative effect of many weak

interactions is more effective in deflecting an electron

than a single strong interaction. It can be shown (Ref 14:

294) that weak interactions dominate strong interactions by

a factor of 8InA , where J \. is the Coulomb factor defined

in Section II. Since (nA usually lies between 10 and 20,

weak interactions represent the overall Coulomb collisional

effect to several orders of magnitude .
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The simultaneous interactions may now be regarded as

simultaneous small perturbations and the total effect  obtained

by adding the individual perturbations linearly. Using these

ideas, the form of the Coulomb collision term can be derived

by several independent methods. The most general procedure

starts with the Liouville equation (Ref 11:115). Another

method involves expanding the Boltzmann collision integral in

powers of the momentum interchange (Ref 8). The method used

here , similar to that used in the study of Brownian motion

(Ref 23:31), results in the Fokker-Planck equation. This

• equation correctly describes , to second order, the temporal

evolution of the electron velocity distribution function

resulting from many weak, uncorrelated binary encounters.

Let F(v , t) represent the spatially homogeneous electron

velocity distribution function. ~~~~~~~~~~~~~~~ is defined

as the probability that an electron changes its velocity

from ~~~~~ to V in a time ~~t as a result of Coulomb

interactions. Since f t -  ,&~)cl (à~ ) is a probability,

the following relation must hold:

1 • (50)

The distribution function at time t i-At is related to the

distribution at time t by

V 
~~~~~~~~~~~ ~~(v-~~,Ay) 4 (~~) ( 5 t)
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Since weak interactions are being considered , A V is small

in a small time interval t~t. The terms in Eq (51) can be

expanded as follows:

F( t+ ) =F ( ~,-€) + 
~~t ’ ~~~~ 

(52)

F(~~-ay,~~~~~~~ F(~~ ,+ ) -  tAv~ 
~~~~~~~~~~~~~~~~~~~~

+E4I~V, L~v, ~~~~~~~~~ (53)

= ~~~~~~~~~ - 
_ _ _ _ _ _

+~~~~~L~V, A V ~ 
~~~~~~~~~~~~~~~~ 

(5k)

where AV~ is the Lth component of A v. If Eqs (52)
through (54) are substituted into Eq (51), the result is

F(~,-~
)
~ 

t)
~~~~~ =

-LF(~,{~~~. ~~~v ( v ,~~v )d (Av~

+±  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~‘-‘3

_ _ _ _ _ _ _  

C
+ 

L. v~~J L~~ Av~ 
Lp( v~~~ )d(~~ ) (55)
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The first term s on the left and right sides of Eq (55)

cancel identically by Eq (50). Defining

< > = ~~
-
~ S~~

v ,A
~
)
~~

(
~~~ 

(56)

= ~~~ ~~~~~~~~~~~~~~~~~~~~ (57)

Eq (55) may be rewritten as

~~~~~~~~~~~~ 
-

~~~ ~ ,: F(~~~)<AV L>

-~±~I ~~~~~~~~~~ F(~,± )<ov~~v~> (58 ) 
•

1,~)

Equation (58) is the Fokker-Planck equation, and is

phenomenological until explicit expressions are derived

for Eqs (56) and (57). The form of these equations is

considered in Section II and will not be derived here.

Short of this, several general remarks can be made concerning

the Fokker-Planck equation.

Equation (58 ) is basically a conservation equation in

velocity space. The terms (AV~) and (AV ~~v~> 
may be

interpreted as diffusion coefficients (Ref 24:125). It is

important to note that these coefficients are time-ensemble

average quantities and differ dimensionally from the corres-

ponding ensemble average quantities. The quantity <‘~i>/V

has been termed the coefficient of dynamical friction
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(Ref 2 ) .  It represents the average deceleration experienced

by an electron of velocity v due to Coulomb interactions

(Ref 8). Similarly , the quantity <~lV~~~V~) is called the

coefficient of diffusion tensor. This term describes the

random fluctuations about the average velocity (Ref 23:249).

In conclusion, it should be mentioned that applica-

tions of the Fokker-Planck equation are not restricted to

Coulomb interactions in plasmas. In fact, the theory has

been extensively used to analyze problems in stellar

dynamics (Ref 2,3,4). A mathematically rigorous discussion

is given by Haken (Ref 10).
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Appendix B

Numer~c~tl Solution of the Fokker-Planck

Electron- iectron Collision Term

(Subroutine Funee)

A significant part of this thesis effort has been the

development of a computer code to solve the Boltzmann equa-

tion under a variety of conditions. This work , in coopera-

tion with three other students , resulted in a computer

pro~;rar ~ called NGB . The operating procedure for NGE is to

be docu~ ented in an AFIT Technical Report. By mutual agree-

ment , the details of the various segments of NGB are pre~entod

as Appendices in each individual’s thesis. This appendix

fulfills this requirement for the electron—electron collision

term .

The equations used to numerically evaluate the electron—

electron collision term are derived and presented in a form

suitable for direct computer coding . Particular attention is

given to units and numerical factors. The method used here

was developed by Proctor and Canavan (Ref 19), although the

notation parallels that of Rockwood (Ref 20). Subroutine

Funee , the coding used for electron—electron collisions in

NG~ , is included at the end of this appendix.

From Section II, the elc~~t ron— eloc Lron collision term

may be expressed as
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where n (E ,t)d~ is the number density of electrons with

energies between £ and E +cIE at time t, and

(34)

p~ ZE ’
~ f K n x1~~ dx + ~~~EJx

’

~~ ~~(~~,+
‘
1d ~~ (35)

Q 3 E zJ~~~)~~ (36)

r e~ (~~) ’
~ In A (37)

A ~ / K 3 T3 \ ’/2. ( I

and 
~e 

total number c~en sity of electrons

Units and nuuerical  factors will be considered f i r s t .

Energi es ar e a~ iun~c i  to be in electron volts (cv ’s) and

number densities per cubic centiraeter (cm 3) .  The other

quantiti~~ of interest mus t have the indicated units to

insure consistency:

“-‘ cn~~
3 — ev~~

3 — I

C -- e.v — C 
-

ee.

- 3  Ic( /’- J C r .  — C V  — s ~ c~

I’-, dimen s i o n le~~
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From Eq (31), A can be rendered dimensionless by entering

the electron charge in esu’s, ne in cm 3 and KT in

ergs. Denoting the average energy by ~ , the result is

~~~~3/2. 
(er S)~~~

A = 4.15764 x io~7[ n
~
ii
~ 

(c~~
3) ’/ 2J

Since 1 ev = 1.60210 x io~
12 ergs

3Iz (~ )~/ 2.
A = 8. 43 105 x 1o9[~~~I/~~~~ 3~I/2j

and
— 

3/2.

m A  = 22. 855 19 + In 
~e~~ )

From Eq (37), with the electron mass entered in grams and the

charge in esu’s, the units for ~ are cm 3_erg s3/2_ sec _ 1
.

After converting frcm cr2.5 to cv ’s, the following result is

obtained :

(2. 57 5 4 0  x 1o 6)1,~L (cm 3_ev 3/2_sec l ) (60)

Equation (
~~

) represents only one term in the Boltzniann

equation. Therefcre , the numer i~--al pr ocedur e  used to cv •~’ u~ te

this  term must be c-~n~;i~~ nt wi th the method used to ~olve

the Boltzn -tnr i cqu a t  on. ~ brief description of the method

u .-sed in 11G~3 is ~n order .

The Folt 7~~~nn equation i s  f i n i t e —d i f f i-enced i n t o  a

set of N discrete ene~~- -~’ intervals  of w i d th  ~~C .

result~ n~ ti~ c c1~ pendent equa~~ on is then integra~ E d u sin~-

a f o r w a r d — f :  rc~~~n~: s ix th  order 0e~ r~~type ai~~or.U2im. The

in i t ial  d i st r i b u ti o n  •i~ I axwel f lan  ~- -ith reasonable , but

Co
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arbitrary , parameters. For further details, the Tec’~nical

Repor t describing NGB should be consulted.

Equation (33) riust now be expressed in a form consis—

tent wi th  the above d iffe rencing  scheme . A diagram of the

energy axis is given in Fig. 9. 
~~1r 

represents the electron

number density flux (along the energy a~:is) resulting from

electron—electron collisions.

The dif ferenced forms c Eqs (33) through ( 3 6)  are

given bc low~

—
— (6 1 )

~~( 
P~~~ ÷- F”c~y fl~ , ,  -I- fl~ Ti F 3 t  

—

~- t ~ a

(\~J~ t~2±)J (6 2)

(63)

c~ç~ 3 C~~/ 2 >  (64 )
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To insure a constant total electron number density , the

following relations are imposed :

( 65)

= J~~~~~I 
(66)

Substituting Eq (62) into Eq (66) yields

- r f P~-~~P&-~ I hç~-~- n~~-, - n~~-~ \

~~~~~~~~ ~~~~~~ ~ 
)

— (Q
k~~~
0 ~j (fl~ ± f l *j J  (67)

Equations (62) and (67) are now substituted into Eq (61 )

to give

= -
~~

[(
~~

)(
~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~1

• — ~~~~ 
-

~~

-

~~~
-
~

~~ L1~~~~~ ~~~~~ ~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~

fl~,+ fl~,_ i fl~ -f l 1.4~ i~\ 
flN 1

~fl~ l~~til

~~ ~~~~~~~~~~~~ ~~~~~~) ( ~~~~~~~
-
~H~~~~ )J ~~

:N
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where Eq ( 6 5)  has been used for k=1 and k~N. If this

set of equations is expanded and the coefficients of the

various 
~k 

collected , the following set of equations is

obtained :

= ~~~~~~~~~~~~~~~~~ ~~~~~~~

1÷ ~ 1~~~~~1~
-
~~~

)- ~~~~~~~~~

- 
~
- 

~ I)( ~ ~~~
-) + _ _ _ _

4(Pt~-EP~ )(~ç- L) + 
QU

~~~~~~# I]  n~~ 1]

— V~~~ 
I~~~~ Jj\ C~4 +~~~.i1— z~~ tL\.’N~ ~~~

I)\% L:~E~~~I,Z ~ i~~ )

~~~~~~~~~~~~ Z j  ~~~~~ 
(68 )

This may be written more compactly by de f in ing  the following

quant i t ies :

I — ~~ ( (  r \ (  ~ I \  Gç1 + Qç ~.i
— z~~tU~~ ~~~~~~~~~~~~~~~~~~~~~~~ ta)- 

- 

2

— ~~ f r  ~ V ~~~~~~~~ ~~ 
Q~~~~ 

_ _ _  6— 2~~~ ~~~ ~
- 

~~ 1~ ~~~ 
-J ~

6~~

-1

—.- —- -- — — -=
~~

-
~~
- 

—- ~~
_ _ _ - —,--- ----—--—--—--~~~~~~--—-—-----------—-—-— —

~
--—-——- ——-



Using Eqs (69), Eqs (68 ) can be expressed in -the following

simple form:

I
p-

~% = 
~~~~~~~~~~~

= A-1 ~~~~~~~ 
- ~ ~~~~~~~~~ 

n~~

~~~~~~~~ 
— (70)

Equation (70) is used to evaluate in Funee. It remains

to find exp l ici t  expressions for a~ and bc. The following

def in i t ions  considerably siaplify the derivation:

~~~~ 
± °

~
-
~
--) (7 1)

( 0
H (72)

I i

Using Eq ( 7 1 ) ,  Eqs (6 9)  ~‘~~y be wri t ten  ~~ the foliov’in~, form :

z~~~F~ [(P~~4~ ~~~~~~~~~ 
- ~~~~

~~~~~~~ 
f 

~~~ I~~~~~~ ’ 

~
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Usi ng Eq ( 7 2 ) ,  Eqs (63) and (64 ) become

P~ = 2. n~ ~~~~ 2 E~~ M > 1  ~~~~ n~(t— H~ 1~)

Q 3 E ~~
2 . E H  (74)

Equations ( 7 3)  can now be wri t ten in the following convenient

form :

~~~~ : ~~ ç~~(i- H~~~) 4- ~-~‘Iz 
~~

+ E~~~~~~~~~~ (t- H~~~~]4-o. 7S ( E ’
~~ H~~~~+ ~~ ~ 

)
~ ~~ 

( 75)

b~~~~{{E~\ ~~~~~~ 
~~~if ~(~ - H~~~~~~)+ E~~~~~ ~~~~

— - ½+ €f~~
_
~ ~~~~~~~~~~~~~ ~~~ 

(7 6)

D e f i n i n g  two m a t r i cc 3  I.. and P , Eqs (75) and (7 6)

become

= 

~ 
b~ ~~ 

(7 7)

6~

~~iII.tII& — - - ~~~~~~~~~~~~~~~~~~~~~~~~ — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~
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where

~~~~ H ~

~~~~~
+ E~~, (I- 

~ ~~
)j E~~~4 } (78 )

The corresponding relation for B~ is not needed

expli citly.  This will bec ome clear in what follows. If

Eqs (77 )  are inserted into Eqs (7 0)  and summed over all k ,

the resulting expression vani shes for any A~ and B~,

whatsoever.  Therefore

~~~ 

-

~~~~~ ~~~~~~~~ n A E. ~~~ E 0

and the total electron number densi ty remains constant .

This important feature is retained by the d i f fe renced

expressions , and is basically a result of the conditions

imposed by Eqs (65) and (66 ) .

Unfor tunRt e l y ,  when bqs (?0)  are mult ipl ied by ~~
and summed over all k (with Eqs (77 )  inserted as before)

-the result is

~~~~~~ 
~~~~~~~ ~~~~~~~~~~~~~~~~~~ (79)

Since
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the average energ~ remains con3tant only if the r ight side

of Eq (79) vanishes. To insure that this feature is

retained by the differenced expressions , the following

conditions must be imposed:

~~~~ A 11~ 
(80)

= o 4~or dI .Q (81 )

0 +or ~ t I  9 (82)

Combining Eq (80) and Eq (81) lead s to the additional

requirement :

A~, ( = 0 ~~OV  411 1 (83)

The di f fe renced  expressions may now be reformulated in terms

of A~ , a~ and b’~. For convenience , the results so far

are sumrnerized below :

p-,,= b — ci ’~r~1

flk & ,~1~~~i ( c +~~~~) f lk +  b’~~1 n~~1

= -- (7°)

where

(8k )
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and

= I-1~~+- E,~ )-1
~~~~~~~] ~~

E
t
L
~~~ 

- 0.75]

H €~~ (t- ~)E;’
~4~ (7 8)

It was shown in Section III that

_ _ _ _  = 0

�t let

when i~(E , t )  is F-laxwellian . The di f fe renced  expressions

developed thus far do not retain this property , Consider

a i-laxwellian d i s t r ibu t ion  ~~~~~. where

~~~ ~~~ ~~~~/KT

and K is Boltzmann ’ s constant . It is easily verified that

— f E & E.e,~. \
‘I

~~~~_ (8 5 )

for all .R~ and ~.. From Eqs ( 7 0 )  and (84)

i~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
(86)

1-4

i
~z ~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~ &t ,~~~~ +i  ~L~~f~ l

(87)

~~~~~W -l ) & 
~
‘
~~~~~fJ~~I 

- 

~~~~ 
(88)
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The first sum in Eq (86) may be rewritten using Eq (85)~

w

El A~2~~v~ = EA~~ (~~ ~~~~~ ~

=~~~~~ A~~ (
~~~~~~~~~~~

l/L

p4
‘

~~~ A ~~~~- ~~~~~~~~~~~~~~~~~~~~~~ —
a E~~1 ~~~fl ,

Since A11 = 0 , the second sum in Eq (86) can be rewritten

also:

~~
A l ,L~~~~~= ~~~~~~~

A I ,Q~~~ L~~~~I 
- 

-

It follows that 
~~ 

vani shes if :

(89)

The same procedure r a y  he applied to Eqs (87) and (88) .  The

general expre ssion , obtsined from Eq ( 8 7 ) ,  is

A = A (90)
~~~~~~~~ I

Equation (90 ) is su~~f~.ciont  to guarantee  that , when

~axwei l i an , 
~ k 0 for all k.  It is evident  from Eq (90)

that the A ,- are riot i ndepcn ~ ent , In fac t , onl y thosL
I-

~ ~

above the main  dia~ or.al need be calcu .iated from Eq (78);

the remaining terms ~r~
y g i.ve~i by hq (90). It should be
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mentioned that , while the preceeding arguments have been

strictly mathematical , identical results can be obtained

from more physical arguments (Ref 19).

In summary , given a set of nk, ~ k due to electron-

electron collisions is calculated using the following

equations:

n , — L n ~ — o ~ rt~

~~~ 1~~’ & 1 ( ~ -~~
- b’&)r~~i- b~4 1 n~+ 1 ~:21 p4-1

~~N 
O

J I hN ;  b’N n ,~,, 
(70)

where

Q’
~~ ~~A~ L hL ~~~~~~~~~~~ 

(84)

A~~= [E~~~
’
~~~~~ ÷ 

~ ,~~~][&~~~~~~~~
- o.75]

- ~ ~~, (~ 
H~~J[E~~4]~ (78)

for

A~ 1= A~~~4 1 ( i
E~~4 1 ) t / a (90)
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for

+ _ ( L  + 
0.2. 5- 71

~~ — f  ~ (72)

6 3 3/2 —1) (60)
= (2.57540 x io ) ~n~’\_. (cm —ev —sec

and

~ 3/z
(nA =22.85519 +~~~ (~~~~~) (5 9)

This pr oce dure strictly conserves total electron

number dens i ty  and average energy . For a i~axwc1lian ,

= 0 for all k. Since the A matrix depend s only on

the diffc~rcncing sch~ rr~ and not on the distr ibut ion function ,

A is calculated only onc e and stored for subsequent ca lcul a—

tions. As a result, execution tim e is min imal ,

Th ere are sev eral di~~ dvantages to this procedure .

The size of the A ma~;r ix in  given by the square of the

number of ener~y intc-rv:ls used . Thus , storage requirements

may be a l i m i t i ng  f ac to r .  Second ly , it is d i f f i c u l t  to

est imate  the ~:ri ’or in t-roduc~ d ~y in-posin ~ . conserva tion of

average energy and stationsrity of a J~ax~wlii~n.
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Appendix C

Numerical Solution of the Relaxation

Electron—Electron Collision Term

(Subroutine Furieer)

In this appendix , the numerical method used to

evaluate the relaxation electron—electron collision term

ii~ presented . The basic problem is defining a 1~1axwelli an

such that the term retains the desired conservation proper-

ties.

The relaxation collision term is given by:

_ _ _  (42)- . -

where Fi( E.) is the Maxwellian distribution with the same

average energy and number density as n ( E ) .  Equation (42)

is easily cast into a f ini te-difference form compatible

with the other terms of the Boltzmann equation. The result

is

_ _ _  - ~~- ---
~~L (91)

— 

— 
_
t,ce_

An explicit expression must now be assumed for ii .  This

is not necessary in evaluating the Fokker-Planck term where

only the ratio is required . By analogy with the

continuous 1~viaxwellian

s j ~~

~~~~~~~ e (92)
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where A and T are constants to be r~’termined.

To conserve total number density and average energy ,

the following requirements must be imposed :

-
- 

W~~~~~~~~~~~~~~J

The sums on the left of these equations are recognized as

the total number density and average energy (to within a

factor of E~. E) .  Therefore

= (p3)

~~~~~ 

(94)

From Fig . 8

- - 
(9~~ )

where ~~~ is the energy interval used . Using Eqs (92) and

(9 .5), Eqs (93 ) and (94) become

“a ~~~~~~ 
N 

~, 
_

~~~~~~~
/-

~
- 

~~ (96)

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fl e E/ (97)
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Dividing Eq (97) by Eq ( 9 6 ) ,  the result is

— SI
~~~~~~~ 

-
~~--~~~~~~~~~ (98 )

where

14 3/
~ 

-i A E-/-1-
S, ~-YI (i..-~’a

’
) e. (99)

‘/2 _ 1A C /-i-

(100)

To conserve average energy, the value of T must

be such that Eq (98) is satisfied. This is accomplished

using an iterative procedure with the f irst  estimate for

9~ being approximately two-thirds the average energy. 
- I

Subsequently ,  the last calculated value of T is used as a

first estimate. For all calculations here , the value of

T is accepted when the difference between the actual and

calculated average energy is less than or equal Lo

Knowing T, the value of A is easily calculated from

either Eq (96) or Eq (97). -

The f inite-dif ferenced Maxwellian is now given by

Eq (92) and the relaxation term evaluated using Eq (91).
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Append ix D

Cross Sections and Rates

The momentum transfer rate Rm can be expressed in

terms of the momentum transfer cross section ~3~~(~) as

Rm(
~ 

~~~~~~~~~~

where ~ and m are the electron energy and mass respec-

tively. Table I gives the momentum transfer cross sections

used throughout this work. These cross sections have been

constructed to yield a constant rate. Therefore , to compute

this rate it is sufficient -to consider only one value of

the energy. For ~ = 1.25 ev

/2 x 1.25 x 1.602 ~ 1o
_12

~~1/2 /
R =1 I (8.940 x 10

in 9.109 x io 28 )

and

Rm = 5.928 x 10’8cm3—sec~~ (101)

Similarl y,  the excitation rate R can be expressed as

R(~) (
~~

)“
~ ~~(c)

Table II gives the excitation cross sections used here .

These have been constructed to give a zero rate below

threshold and a constant rate R0 above threshold . The

threshold energy for all calculations is 8 ev. Using the
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same procedure as above, for E.. = 8.25 ev

(2 x 8.25 x 1.602 x 10_12\1/2 f 6~R 28 (1.0 x 10~9.109 x 10 J

and

= 1.703 x io 8 cm3 sec~~ (102)
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Table I

Momentum-Transfer Cross Sections

£(ev)  q
~m (cm 2 ) E (ev ) ~r~ (cm 2 )

.25 2 .00x10~~
5 10.25 3.12x10_ 16

.75 2,16x10 ~5 10.75 3,05x10 16

1.25 8.94x10 16 11.25 2.98x10 16

1.75 7,56x10 16 11.75 2.92x10
_16

2.25 6.67x1o 16 12.25 2.86x10 16

2.75 6.o,xlo 16 12.75 2.80x10 16

3.25 5.55x10~~
6 13.25 2.75x10 16

3.75 5.1sx1o~
1.6 13.75 2,70x 10 16

4.25 k.85x10 16 14.25 2,65x1o 16

4.75 L4..s9xlo
_16 

14.75 2.60x10~~
6

5.25 - LI..36x10’16 15.25 2.56x10 ’16

.5.75 4.17x10 16 15.75 2.52x10 16

6.25 4.OOx1O~~
6 16.25 2.)-i~8x10

16

6.75 3.85x10 16 16.75 2.kkxlo
_16

7.25 3.71x10 16 17.25 2.LflxlO 16

7.7.5 3.59x10
16 17.75 2 37x1o

_16

8.25 3.48x10 16 18.25 2.34x1o 16

8.7.5 3.38x10 16 18.75 2.31x10 16

— 9.25 3.29x10 16 19.25 2.28x1o 16

9,75 3.20x 10 ’16 19.75 2,25x10 16
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Table II

Excitation Cross Sections

~ (ev) cT
~
(cm2) &(ev) 

~
—
~

(cm2)

.25 0,00 10.25 9.00x1O~~
7

.75 0.00 10.75 8,8o~io~~~
1.25 0,00 11.25 8.6Qx iO~~

7

1,75 0.00 11.75 8.14OxlO 17

2.25 0.00 12.25 8.20x10 17

2.75 0.00 12.75 8.OOxlO 17

3.25 0.00 13.25 7.90x10 17

3.75 0.00 13.75 7.70x10 17

4.25 0.00 14.25 7.60x10 17

11.75 0.00 14.75 7.50x10 17

5.25 0.00 15.25 7.40x1O~~
7

5.75 0.00 15.75 7.20x10~~
7

6.25 0.00 16.25 
- 

7 .lO xlO 17

6.75 0.00 16.75 7.OOxlO”17

7,25 0.00 17.25 6.90x10 17

7.75 0.00 17.75 6.80x10 17

8.25 1,00x10~~
6 

18.25 6.70x1O’
~~
7

8.75 9.70x10~~
7 18.75 6.60x1O~~

7

9,25 9.L10x10~~
7 19.25 6.50x1O~~

7

9,75 9.20x10”17 19.75 6.50x1O ”
~
7
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Appendix E

Analytic Solution Using the WKB Method

Equation (44) can be solved using a combination of

the WKB method and variation of parameters. The WKB method

yields the following solution to the associated homogeneous

equations

where C1 and C2 are arbitrary constants of integration.

Using variation of parameters, a particular solution is

given by

I 
_ /1 /c:1

~ 
(~) 

~~ [V,~~ e ~ “L4~
) 
~

where

v~~~~~~ 
~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~

z 

~~~ 
-w-1-~,-cj -

and -

4- 4

)

~~~. I-

w[c1 5 cj~ ~ 
.ç ’ 

— 

~~~~~~ £
‘
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Making the appropriate substitutions, V1(y) and V2(y)

may be expressed as

i1’~~j _ tH,Z,/~~
t.

V,(~
’) =-

~~

-

~~~~~~~~~

- $ ~ (103)

~~~~~~~ 

~~~~_.. u~~ ~~~~~

~~~~~~~~~~~~~ .•\ ~~ ~~

-

Clearly V2(y) = —V 1(-y ) ,  and the particular solution may

be expressed as
_ F%hh1./

~~

~~~~ ~~{V1 (~~ - V1(-~ a

Therefore, the general solution to Eq (44) is

— A~~-/~ A”V 1
_ V, -~j)e ~J 

(104)

where the -term involving C1 has been disregarded . This

term is unbounded and physically unacceptable.

Attempts to perform the integration in Eq (103) have

been unsuccessful. Furthermore , if the terms involving

V1(y) are ignored , the constant in Eq (104) cannot be

evaluated. Even if this obstacle could be overcome , a

severe computational d i f f icul ty  is encountered ; the constant

A in the exponent is generally a very large number.

Therefore , the individual terms in Eq (104) are at best

difficult to calculate , For these reasons, a more straight-

forward method is used to solve Eq (44) in Section III.

- — . ~~~~~~~~
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Appendix F

Steady—State Distributions (Numerical Results)

This appendix contains the numerically calculated

steady-state distribution functions. Appendices B and

C contain details of the numerical procedures. Plots

of the normalized distributions, ?i(~ ) ,  are presented

in Figs. 6 through 8,
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