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Preface

What began as an evaluation of the angular integrals arising in
the finite element solution of the neutron transport equation, has
grown into the development of a computational procedure for applying
phase-space finite elements to the same equation. The entire project
is an extension of the doctoral dissertation work being done by Capt
John Souderse. As such, I hope that this research answers all of the
questions he has posede.

I am grateful to my thesis advisor Lt David D. Hardin, PhD for
suggesting this topic and for providing advice, support, constant
encouragement, and great patience throughout this endeavore.

I am most appreciative to my wife, Paula, and my daughters, Chris-
tine, Amy, and Stacie for their patience and understanding in enduring

my many absences while this thesis was being prepared.

Ronald C. Wheaton
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AFIT/GNE/PH/78D-R5
Abstract

Phase-Opace finite elements are applied to the static monoenergetic
neutron transport equation in two-dimensional cylindrical geometry by
computer subroutines written by the author to collectively assemble
the global phase-space matrix for solution. The technique uses a vari-
ational formulation based on the second-order self-adjoint form of the
transport equation within which the dependent variable approximated by

the finite elements is the even-parity component of the angular flux.
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APPLICATION OF PHASE-SPACE FINITE sSLEMENTS TO THE

NEUTRON TRANSPORT BQUATION IN CYLINDRICAL GEOMETRY

1 Introduction

The label finite element method was first introduced by Clough in
his treatment of plane elasticity problems in 1960, but the initial
efforts to use the method had appeared even earlier in the applied
mathematics literature with the work of Courant (Ref 1:9). Courant's
approach in 1943 used an assemblage of triangular domains with piecewise
continuous functions defined over each domain. However, his novel
approach did not mature until Greenstadt applied it and developed the
mathematical basis for the finite element method as it is used today
(Ref 1:10).

Unlike finite difference methods, which lead to a pointwise
approximation of the governing differential equations over a solution
region that is an array of grid points, the finite element method uses
a piecewise approximation to the governing equations for a solution
region made up of many small, interconnected sub-regions, or elements.
Over each element, Lhe solution of the governing equations is assumed
to be both a function of the independent variables and some undetermined
coefficientse These element coefficients are then determined so that

the assemblage of element solutions is in some sense an optimal approxi-




mation to the true solution. In addition, the coefficients are chosen
so that any required contiruity cof the solution or its derivatives is
mointained in crossing element bourdariese

By Lhe early 197C's the successful application of the finite
elewent method to problems in solid mechanics, heat conduction, and
other areas led to the application of the method to neutronics problems.
Initially, the weulron diffusion equations were treated most cxtensively,
followed by increased applications to the neutron transport equation in
one-dimensional slab, spherical, and cylindrical geometries as well as
two-dimensional cartesian geometry (Refs 2; 3; 4).

Solutions of the transport equation based on finite element tech-
niques often use discrelte ordinutc approximations for the angular
variables (Ref 3). Still other approaches include simultaneous approxi-
mations of both the angular and spatial variables by finite elements
(Ref 2).

The purpose of this paper is to examine several aspects of the
finite element method as applied to the static monoenergetic transport
equation with anisotropic scattering and sources in two-dimensional
cylindrical geometrye The technique uses a variational formulation
based on the second-order self-adjoint form of the transport equation
within which the dependent variable approximated by the finite elements
is the even-parity component of the angular fluxe. This component is
quite attractive for finite element approximations because it requires
that only half of the angular domain be considered. In addition, the
even-parity component is always positive and easily integrated to find

the scalar flux distribution (Ref 4:149).
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Before discussing the computer implementation aspects of the finite
element method as applied to the monoenergetic neutron transport equation,
the theoretical basis for the second-order even-parity form of the trans-
port equation will be developede Along with this development, a broad
overview of the finite element method will be presented and the vari-
ational formulation for the application of the method will bhe stated.

Then the method of computer application will be discussed by describing
the computer subroutines written by the author to assemble the system
equations for solution. I['inally, some conclusions will be presented

regarding needed computer code improvements.
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i i1 1 Theory

As in other fields, the advances in computer technology have been
the driving force behind the scientist's ability to solve more and more
complex problems as well as the means by which he can increase the
accuracy of the problems he has already solvede But advances in computer
technology are not the only means of increasing accuracy. Often the
application of another numerical method can bring about a significant
increase in accuracy. 7The resulting use of finite elements in solving
the neutron transport equation is one of the most recent steps in the
quest for increased accuracye

Present discrete ordinate solution methods lead to anomalous
scalar flux distortions when applied to transport problems havihg strong
absorbers and localized neutron sources (Ref 5:255)e. Thus, as more and
more complex geometries are encountered, the finite difference methods
can be augmented by the finite element method whose elements can accu-
rately represent complex shapes and eliminate the ray effects. Conse-
quently, computer codes based entirely on the finite element method
have been developed to solve the transport equatione.

In this chapter the neutron streaming term, ._n‘_'vw , of the trans-
port equation will be developed for the problem domain being considered
in this thesis. The even-parity form of the transport equation will then
be developed, followed by a discussion of the variational formulation
of the transport equation and an overview of the finite element methode.

A brief development of the tensor product basis will conclude the chapter.
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Problem Domain - Cylindrical Coordinates

The monoenergetic transport equation can be written as - y

LvP (e, 2)+sg(v) ¢ (x,8)= fo‘(v“),__')%rx_x)u»,s(\-%) (1)

where -g_-vW is the streaming terme In cartesian geometry this : p

streaming term can be calculated quite simply. It has the form

\/_\-,“" c,os')!.%‘?;'-#smxaﬁ) "‘/‘"%% (2) ]
in rectangular coordinates (Ref 6:59) where /(,:j}-t and X is the l
angle between the planes formed by the L and z unit vectors and the z
and x unit vectors. However, in curvilinear coordinates the streaming
term takes on a somewhat more complicated forme As an example, the ]

Rq¢@ term in cylindrical coordinates is (Ref 6:59) - : !
V\- Cos X3¢ >‘. . i »‘X.( ) Y M )t (3)

where (/ is the polar angle,/uz,&.;, and X is the angle between the
planes formed by the SL and z unit vectors and the z and r unit vectors.
Figure 1 shows the cylindrical coordinate system corresponding to Eq (3).
This paper deals with the application of the finite element method >

in cylindrical geometry to the transport equation. The problem domain

e

in which c¢ylindrical geometry is assumed is the air over ground burst
problem domain (Ref 7) of weapon physics. Since, in this domain the
air density varies only with altitude, azimuthal symmetry can be assumed

and the conservation form of Eq (2) becomes (Ref 6:58)

VA cos . Ar®) 2 (V-4 sw ) 0%

« Y v oK M FEY (4)

Eq (4) is the streaming term which will be calculated in this thesis y L

by applying the finite element method.
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Even-Parity Transport Equation

The finite element method will be applied to the even-parity form
of the transport equation since the even-parity component of the angular
flux requires that only half of the angular domain be considered, making
it quite attractive for finite element approximationse In addition, the
even-parity component is always positive and easily integrated to find
the scalar flux distribution (Ref 4:149). The following derivation is

that of Kaplan and Davis (Ref 8). Consider the monoenergetic transport
equation,

A VP(x,2) + g(v)¥(r.a) = f@(r.&-a’)”(r.&%&' +Yx,8) (1)
in the convex region D with total macroscopic cross section 0;(:3 and

angular scattering cross section Q(r_,l_\-.r_\,’) defined such that
6s(¥) = [0 (x,n-a)de

where 6;@3 is the macroscopic scattering cross section. Assume the

region is surrounded hy a vacuum so that on the surface R of D the

vacuum boundary condition is

W, &)=0, —-n(x)< © (5)

where n is the outward unit normal to R and rp is any r € R. Eq (1)
is also valid for -f , thus,

- &9 @(x,~0)+ 5 (x) Yx,g) = fﬂ;(r,-&-.n’)#{:.&')ols’aS(:,-&) 6)

Adding Eqs (1) and (6) and post-multiplying by 1/2 leads to
29 43[06a) - Ae-2)] § + oS [Ae0) + Us-0)] ]
Iy f { 3[o(n 29+ g(r,ay ) Oe,2)} da

+ %[ Yr,2) + $(x,-2)] @)

7




or

29 ns) + q() Heo)= [oln e o) ale + S5 (o)
with the terms ')L(w_r'_g.) z -‘-[ r)&) -(/(:,-,&)] 3 lP(I,-ﬂ)‘ li[ﬂ!.-ﬁ) +(f(r,._;_;)]'

s©ne 2= [u-,(v V) + 03 s (x, '-&')] v and  Qy(x 8 = 'k[s(!r&) *S(\’-s'@] s

Let ’)4(:\41,) be the odd-parity flux and 9’(1',-11.) be the even-parity flux.
By substracting Eq (6) from Eq (1) and multiplying by 1/2, we get the

similar result

2 v{ [Ueg) + Ae-n) + ) 5[060) - As-a)]})

. f HCICE IR CERY [P Y
+[Se0) - S(x-8)] 9)

or

4-v ‘V(: .\1)-\- e;(v) X(x,a)= ja;(:.-g -8') W(:,&’)l& ~ S fc,8) (10)
where the additional substitutions S'u(x:,&&')='x[0;(!' Ba)oy(x 8 41’)]
and Su(xa) ~1[5(r,_)~ 5(1-,—.&)] have been made. Since Oy is an even
function of &8 , that is, Sy(Y~2&)= o5(x,2-a’) , the integral

in Eq (8) can be written as

f oyxr,n-8) fr.a)de’ <X f §(% 20" )y, e)e’ +1 fg(r,&"(—e%,-a')i&’
= f a(s,22) 3 [ Bee)+ Ay, ~g) d o’
= fci(r,-&--&’) He, o) da’

and Eq (8) becomes

29 Mx,8) + () Yx,a) = f o(x,2-3)Hna)da’ +Sfx,2) 1)

- 4
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Similarly, since Oy is an odd function of .g~.g,’ such that Si(r,-d_}'.&’)g

"Q!,-&'&') » the integral in Eq (10) can be written as ’

Jae 00 et < [afe,a0)MeaMa 4 [ (e a2oadhe

= f“‘u(fdl-'i—') %[0{:,-&’)— w(\_r,--g’)] da’
b f Ou(r,2-2) Xx,2")da’
and Eq (10) becomes

L7 Y, ) + sg(x) A, 2) < f ou(s, & 8 )X(r,0)d 4 S g)(12)
By putting the boundary condition in terms of the even-parity and odd-

parity fluxes, we can write Eq (5) as

Wer)* 5 [Uar9) + A )]+ ¥ (e, ) - eey-a)]
‘Krl) £) + Xrs, &)

0 , 22(x)<o0 (13a)

where r, is any r € R and n is the outward unit normal to R. In a

B

similar fashion, we can write }
Uin,) = Vs, 8)- K @)=0 , Rm(r)>0
Eqs (11), (12), (13a), and (13b) are the first-order form of the trans-
port equation and its corresponding boundary condition (Ref 8:167).
We now wish to determine the second-order even-parity transport
equation in terms of "P , the even-parity fluxe. In order to do this, we

will assume Eq (11) to be an integral equation for ‘Kr,.l) and introduce

the linear operator Gg(g), which maps functions of & into other functions

o

of 4 such that for any integrable function, f(;,.“,) 3

e, s v




Gsln{f(x.&)}= oe (9 fie, ) - jdg'(r,e'&’)f(:,ﬂ.ln’ (14a)

Likewise, introduce the Gu(g) operator such that

GJ!)[‘(:.{L;! = oz (0 FE, ) - f 6,(5, & 2% (x, 24')d & (14b)

With the above definitions of the Gg and G ~operators, Eqs (11) and (12)

can be rewritten as
R-VX + q% =S
= 3

Gy¥ =S, -~ g-vx (15a)

and

Lo+ G X=S,

G =S, - A v¥ (15b)

For now we will assume that the Gg and Gu operators are invertible and

-1 1

form the new operators Kg = GS and Ku = Gu- o Operating on Eq (15b)

with the Gu-1 operator, we form

6. [6.%] = 67 [Su- 2-v¥]

X = Ky[Sy-2-9¢) = K,[5,)- Ku[2-w¢] (16)
Substituting Eq (16) for the odd-parity flux into Eq (15a) results in

Gy¥ =S, - .&-v[K“Su]-o .&-V[Ku (-ev#')]
-

~a-9[Ky (879)]+ Gy ¥ = 5, -2-9[K,S,) (17)
which is the second-order even-parity form of the transport equation.

Its corresponding boundary condition is the dual set

10
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‘P(I)Q * Kn[su. -4V W(I,J‘_Lﬂ (o]

y 21 L0 (18a)

wﬁ’-)'&) = Ku[su -4v v(xv&)]

© , A >O (18b)

Earlier we assumed that the Gu operator was invertible; we will
now determine its form in order to make the Ku operator physically
significant. The G operator defined by Eq (14b) can be proven to be
self-adjoint and positive definite (Ref 8:174,175). In forming its
inverse, we will take advantage of the fact that o depends only on
&+8’ and expand U;“(r,a-;_\_,') in Legendre polynomials as

“
Ox,4-2") = r“m(a"*‘)a(& .g’) (19)
0 4w
where Gg% and CE“ are macroscopic cross sections as in the previous
derivations. Making use of the spherical harmonics addition theorem

(Ref 6:609), we can write
Pa-g4 = _“"_§ Y PV
1(£&) = a5 g PRCCR/NEY)

where * denotes the complex conjugate. Substituting this expression

into Eq (19) gives,

GUx,0-8923 3 L SE0Y,(8)Ypu(8)

Az 0 ma~L

and Eq (14b) expanded in spherical harmonics assumes the form

G.m[«v.s)] ool & UMY

o0 ma-£
-J[f a4, wuoryie) (£ 1 6nvsia’
.I l
Collecting terms, we have
LY
cuolfcm) = T T [ %0 &, Ypuw
11

st ot (o - T

A e

- ———




RS )f i) Vi 29Y,a2d 8’

§z0 Ry

or
c 4 f
G .M [f&,@)] ‘,Eog- JO; o) - Y,_,‘(-SL)}-_~ .'J‘F &S J‘.) (20)
where Jlj‘ Jmk are the Kronecker delta that arise from the fact

that the Y, form a complete orthogonal set (Ref 6:608). Eq (20) can,

thus, be written as

o0 +f

GM [f-&,&)] =¢Z 1 ‘[ (D) € Vi) - 07 Y,J-a,)f,,]

=0 mx-~

or

Gyn ke, o)< T § o)t e o)

L0 m=-L

The inverse of Gu(g) is the integral operator

. -1 o 44 : -l
Ky[fe,) 2 6 N (w0 - 90) £ V(0
or

Kulfer,0)s glLL, o) - m,)ﬁ-m*)]

In the above, the cross section term can be rewritten as

U - GGy

WY1 T 0dL) - )
3 ' + ;‘Zm_.
n- g1

so that

12
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o +£
Ko[fe,) = ?:‘;,[Z )X S 4w

2=0 M=

o 4f

E 1 )

or
| p )
Ku[f(r,&)]= = [ﬂ-&) +f¢;.4r,4_1.-;s')ﬂ&ug } (22)
where
—~ a2+l Yx)
St 289 Z w "o - '@ ) Rea )

is defined as the macroscopic Ku scattering cross section. It will have
a finite number of terms whenever the scattering cross section g is
expanded in a finite number of terms. A similar expression for Kg can
also be derived using Eq (14a) and the d;a scattering cross section.
Before moving to the section on the finite element method, we will
first look at a variational formulation based on the even-paiity trans-

port equation which was just derived.

Variational Formulation

As has beer shown, Lhe transport equation and boundary conditions
can be derived in various forms. However, a desirable form of the
problem is one in which the solution minimizes or makes stationary a
functional subject to the given boundary conditionse.

It can be proven that the solution of Eq (17) minimizes the

functional (Ref 8:169)

F(w) ’j;[q--u» Ku(&0u)> + <w:6yu>

13

e

e et i

—— e




,c':"’.lﬁ

‘2<-&'VU.’K‘S“>‘ 2<“,SJ>] de + [fl {L'-V-‘—(:)lu’. A-ﬂ:] dx (23)

where the following definition of the inner product holds on the

space of complex functions of {Q :
- X
<4, Wa> = [+l v da

and where the second integral is a surface integral over the boundary

R of the domain D. For all u satisfying the essential boundary con-
ditions, the variational functional results in the following equivalent
weak-form of the second-order even-parity flux equation as derived in i
Appendix B

[[<e-wnk(a-wwy+ <n,6¥>)dx

+£[ﬂ|&-n|n“‘d&i\: . fD[<s.z—vv\,r<usu>
+<1,5> ] dx (k)

A O e

R

The finite element method will be implemented in the following

chapters using this equation for the even-parity fluxe.

Finite Element Method

The numerical technique of finite differences uses difference
operators to approximate the derivatives in a partial differential
equations In contrast to this, the finite element method does not
approximate an opefator; it assumes, for an assemblage of discrete
elements, a trial solution satisfying the boundary conditions of the

problem. The trial solution and its undetermined coefficients are

required to satisfy the exact equation in an integral sense; this

1
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determines the values of the undetermined coefficientse.

Additionally, the accuracy of the problem solution and the degree
of approximation depend upon the size and number of elements used and
the approximating funclions sclecled for each element. The following
concepts will be discussed in this section: the element, generalized
coordinates and shape functions, natural coordinates, global nodes, and
tent functionse.

The Element. In the finite element method the problem domain is
divided into a finite number of subdomains, or cells, which are inter-
connected at nodal points and on the element boundaries. Of course,
this division can be quite physical in nature, with each cell being
thought of as separate from another like building blocks. Or, the
division can be mathematical, with the problem domain (continuum) being
zoned into regions by imaginary lines or planes. No mattef how the
division is done, the finite element method solves the problem collec-
tively for the whole domain by finding a solution for each of its parts,
the elementsa

Determining the shape of the basic element to be used in the
finite element method depends upon such things as the problem geometry
and the number of independent variables needed to describe the problem.
Thus, one-, two-, and three-dimensional elements with stfaight or
curved sides are possibles Only straight sided elements such as those
in Figure 2 will bhe considered in this thesis.

As stated earlier, the element ,nodes are points on the element
boundary where adjacent elements are considered to be connected. In

addition, they are the points where the field variables of the problem

15
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Fig. 2 Trianguiar Elements
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are used to define the approximating functions, also known as interpola-
tion functions, for the element. Therefore, nodes can be classified as
either exterior (boundary) nodes or as interior nodes (Figure 2c¢c). The
element interpolation or shape functions will be discussed in the next
sectione

Generalized Coordinates and Shape Functions. In the finite

element method those functions describing the behavior of the field
variables within an element are called approximating functions, inter-
polation functions, or shape functions (Ref 1:131). Polynomials, which
are easily differentiated and integrated as well as mathematically
easier to handle in formulating the element equations and in computer
calculations, are the most widely used shape functions, although many
other functions could be used. Ultimately, the function which is used
should obey certain inter-element continuity requirements for the field
variable and possibly its derivatives. The additional requirement that
the polynomial expansion remain unchanged during a linear transformation
from one cartesian coordinate system to another is also desirable. In
this paper only two-dimensional polynomials will be used to generate
the shape functions. The form of these complete two-dimensional poly-
nomials of order N can be written as (Ref 1:13%2)
Ny g0
R(xy)=L opxtyd, i+j Em
R=\
where the number of terms in the expansion is N = (n+1) (n+2)/2.
As an example, the shape functions for a rectangular element with

nodes at each of its corners will now be derived. Consider the element
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"ig. 3 Rectangular Element

in Figure % over which an expression of the following form is assumed:

or

where

and

49‘(X,Y) o cxr & a;r +¢%;y *-(&Z)ty

[o<]
[P]

"

[~

[

¢ - [Pl

5 =3 o]

x y xy]

(25)

The superscript e indicates that the equations are only valid for the
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th Gl . . :
e elements The coefficients C¥1 in this polynomial series representa-

tion of the field variable are called generalized coordinates since they

have no physical meaning and merely fix the magnitude of the solution 49.

An evaluation of the above expressions at each of the nodes of the rectan-

gle results in the simultaneous equations
e
@,
03
e e e ae e
s = 20 ®=ara” "0 "4 G

e

05 = F + o X THSRT L WA

or, in matrix notation,

e e e e

<f gt %

TR
R
L

[(/e]T =[] [°‘°]T (26)

where
[¢) =[5 w5 o5 o]
and
I X N XN
[Ge] 2l X2 X2 XN
I X3 Y3 Xys
[ Xq Y4 X4

The generalized coordinates can be expressed as the solution of Eq (26),

that is,
=] T
(] < [6*] [¢9] |

Substitution of Eq (27) into Eq (25) leads to

ve =[p)le[@2) [N e[0q)" (asal

with
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[Ne] X [':’][G“]~| (28b)

The Ni are the shape f{unctions associated with the nodal values (or
nodal degrees of freedom)s As a result, the undetermined coefficients
in Eq (28a) now have physical meaning just as do the unknowns in a
finite difference scheme. Also, the shape function Ni referring to
node i is equal to one at node i and zero at all of the other nodes

of the element.

One difficulty encountered in calculating shape functions in this
way is the computational effort required to obtain [G]~ when and‘if
it exists. Thus, researchers tried to obtain the shape functions by
inspection and, as we shall see, they succeeded with the aid of a

special coordinate system called natural coordinates.

Natural Coordinatese In contrast to a global coordinate system

which is defined for an entire body or structure, one can define a

local coordinate system, called a natural coordinate system, which

applies to a specific element (Refs 1:138, 139; 9:83). It is usually
set up so that some of the natural coordinates are equal to one at
primary external nodes. In this way, the natural coordinates, when
used to derive the shape functions, not only simplify the formulation
but also facilitate the evaluation of the integrals arising in the
element equationse An example of a natural coordinate system for a

quadrilateral element (forming a canonical element in the local system)

is shown in Figure 4. The rectangular element of Figure 4 is also a

member of the serendipity family of elements (Refs 1:170; 9:31-42)

which contain only exterior nodes. The shape functions for these
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Fig. 4 Natural Coordinates for a General Quadrilateral

elements were found by inspection and have the form

Ni(&m)= '-‘1'(‘ +££,—)(\+717I;) . (29)

for a linear element (Ref 1:171). The element maintains the necessary

G TR N e ey

—

&b ety

T

'continuity of the field variable 40 along its bouddanies.

In concluding this section, it should be noted that the ease with
which the shape functions can be found for the rectangular elements
makes them appealing for use in the finite element method. But, their
use is limited because they cannot represent curved boundaries as well

as triangles or elements with curved sides.

TR T T AT TR T A bR

Global Nodes and Tent Functionse Once all of the element proper-~

L2

ties have been found for a system modeled by the finite element method,

-

the overall system properties can be determined by an assembly process.
That is, the element matrix equations, Eq (28a), describing the element !
properties are combined to form the matrix equations describing the

properties of the entire modeled systeme The assembly process uses nodal

21




compatibility as its basis; the value of the field variable at a node
where elements are connected is the same for each element sharing the
node. Iigure 5 illustratles this point for a node shared by five

triangles. In order to implement the assembly process on a digital

Fig. 5 Tent Function at a Global Node

computer, a global numbering system for the nodes must be formed. Figure

6 shows a mesh of four linear rectangles along with its global node
numbering system and each elements local node numbering system. A
global node number I is assigned to each node in the mesh. In each
element in wﬁich a given node appears the index I is used to identify
ite For computer use, the global nodes are usually stored in a matrix.
Thus, a matrix IE (e,i) may be defined such that IE (e,i) is the global

node number of the ith local node in the eth element. The IE matrix
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Zﬁ = local node C) = global node

Fig. 6 Finite Element Mesh

for the above rectangular mesh is shown in Figure 7. At each global
node in the mesh, a global shape function, or tent function (Fig. 5),
is defined as the element shape function of the local node correspond-

ing to the global node. If we denote these tent functions as TI(x.y)

1E i=1 2 3 4
e = 1 1 2 5 L
2 2 % 6 5
P, b 5 8 7
b 5 6 9 8

Fig. 7 1IE Matrix for a Rectangular Element Mesh
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and the global node values of the field variable as 4&:, then the form

of the global problem solution for a mesh of N global nodes is
N
(ﬂ(x, ¥) = IZ ‘/I TI(X.)’) (30)
el

Tensor Product Basis

In this section, the four-dimensional space-angle subspace, within
which the finite element method will be applied, is formulatede.

In the work of Kaper, Leaf and Lindeman (Ref 2:20), the finite
element method is used to solve a six-group transport equation for the
tensor product of a finite dimensional subspace whose approximating
functions depend on the spatial variables (x,y) and another finite
dimensional subspace whose approximating functions depend on the angular
variables(}tfn,g). In this thesis, a similar tensor product is used,
but the spatial and angular subspaces are generated in the cylindrical
geometry previously discussed. Thus, the resulting tensor product
subspace is four-dimensional with (r,z) spatial variables and(/L,1()
angular variables. Mathematically, the formulation can be written as

(Ref 10:135)

NM
L L S(r,dA;(u,x)
sz 3:] J
where
S;(v,2) = functions of the spatial subspace
‘5()%’9 = functions of the angular subspace
24




IITI  Computer Application

In this chapter the finite element method will be implemented in
the cylindrical coordinate system of chapter II using the weak form of

the even-parity flux equation

fD [<&-v'q'Ku(__f_1.v‘P)> + (11,(53 ¢> ] s
i&-&'lh"’d&& =f;) [<2-v%,K 50>
*<’I)Sa>} dy (24)

In addition, it will be assumed that the trial functions in the above

N
formulation, ¥ , are equal to X £| Yiz Si(v,3) A"(/‘.‘)L)

S
and that the test functions,?” , are equal to A‘?A»,‘X)SK(Y,e) where

S is the spatial shape function for local nodes i and K and A is the
angular shape function for local nodes j and L. These shape functions
are calculated by use of Eq (29). By choosing the test functions to be
the same as the trial functions used to represent the even-parity flux,
the Galerkin method for deriving the finite element equations is estab-
lished (Ref 1:108).

The implementation of the finite element method in Eq (24) is
based on a modular programming approach which uses FORTRAN IV. 1In
this approach the program or code is written in units or modules, each
one performing a basic task independent of the other modules. In
FORTRAN, these modules are subroutine or function subprograms. In
addition, the finite elements used in the formulation of the element

equations are the L4-dimensional space-angle phase-space elements of

chapter II generated over the tensor product subspace. Since it is
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difficult to visualize a lt-dimensional element, the subroutines used to
code the even-parity ecquation deal wilh separate rectangular (r,z)

spatial and Cu,y) angular tinite elements and their productse These

rectangular space and angle finite elements are mapped into the canonical

rectangle of Figure 4.

The linear transformaticn

£l vl [/ ()
n / T | lere)/(are)

takes a rectangle having an arbitrary set of coordinates (r1,zq),
(r,,2,), (r,,z ), (r,,z,) into the canonical rectangle. A similar
transformation is used for the cuw'x) angular element. The inverse
mapping is given by

-l
\d Y,

o X + L1° i §
sl i) el 2 Sk ("*“)]n (31)
for the spatial element and a similar form is used for the angular
element.

Eq (31) and a similar equation for the angular variables were
implemented on the computer in such a manner that the coordinate
positions in the global spatial and angular elements could he deter-
mined immediately after the positions in the corresponding canonical
elements had been assigned. This logic was used so that all the
element computations could be done for the canonical element with
changes to the global variables made as needed. As implemented on the

computer, this procedure also permits calculation of the spatial and
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angular shape functions at local nodes, i,K,j,L in the canonical ¥ ' f

~4-

elements corresponding to the global space-angle elements being '
L

considered. In addition, the modular nature of the shape function

S SN o

routine allows either the use of higher order elements or the use
of entirely different elements without changing any of the other sub-

routinese. ‘

~»

As stated earlier, the coordinate limits of the canonical
element (-1 to +1) make Gaussian numerical integration most attrac-

tive for evaluating the space-angle integrals of Eq (24). As a

AL e TR e

result, Gauss-Legendre quadrature was used in the subroutines. As : *
implemented, the numerical integration is carried out on an element

by element basis over the four space-angle variables simultaneously.

Lo Te R e avee

The integrands calculated in the procedure are the inner product and

'3
a

boundary terms of Eq (24) evaluated for all possible tensor products
of the local shape functionse The resulting integrands are thus
four-dimensionale Since CDC FORIRAN allows the use of no more than
three dimensions in an array, the integrand arrays had to be compacted 1
into two-dimensional arrays in the integration subroutine.
Provisions have also been included in the subroutines for use of
any combination of up to five user stored Gaussian quadrature rules. ; £
In addition to the space-angle integrations, a second integration
over the entire angular domain is required by Eqs (14a) and (22) for

the Gg and Ku operators.

- ok e

A closer look at Eqs (14a) and (22) reveals that for every space-
angle element being integrated the operators each introduce an addition=-
al integral which involves not only the current 4k neutron direction

but also all other possible JL( directions., Ikor this reason two
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separate integration routines were established, one to perform the
space-angle integrations element by element and another to perform

the angular iuntegrations required by the Gg and Ku operators appearing
in the integrands of the space-angle phase-space integralse.

An additional complication also arises when the Gg and Ku oper-
ations are performed on a given function of the space-angle variables.
Although the same function appears on the right-hand side of Eqs (14a)
and (22), outside of the integral as well as within it, the function
within the integral depends upon different angular variables. As a
result, all functions operated on hy the Gg and Ku operators had to
be duplicated so that the equations could be properly coded for com-
puter use.

In order to implement the Gg and Ku operations on the computer,

it is also necessary to evaluate the scattering cross sections

appearing in their definitions. From chapter II we have

( . ,n') z "(v)( 24+ \ )P (32a)

10
& AU (o) ;
Sefr,2-2) .-.Z 4w ( 0 - 510 )fi(.g-.g") (32b)

2=0

where Gz“ is the expansion coefficient from Eq (19)e In addition, we

have

6 (x,20) = T[G(ran) + G(x,ga)] G
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Su(r,a2): §[S(naa)- Gle,-aa)] G

where

2L+ ,
S(nes): ) FY(TFIRE D) (55
L=0
- 28
o5 (x,-2-2)= z %’(Y)(—%)F}(—.-&’) (35b)
L=0

L=0
'_” 7.1+l
88 - T Y, 61924 ) [plan)- B-2a)
L=0
or i
!
2 :
Oy(r,2-4)= t ()( 1) (33b) ;
f=even ‘
L 2L+
S(can) ) @WEr)R(ag’) (340) |
d=odd ;
Thus, by comparison of Eqs (32a) and (33b) as well as Eqs (19) and
(34b), we see that d" d"‘ for 1 even and 6;":6;‘ for 1 odd.
Therefore, all the scattering cross sectioas can be coded in terms of
ey




the known cross sections GZf which may be either isotropic or aniso-
tropic in nature. ) 1
Along with the Gg and Ku operators and their associated scattering
cross sections, the &9 term of Eq (24) was also coded as developed
in chapter II for two-dimensional cylindrical geometry. In contrast,
the source terms Su and Sw as well as the boundary term were not eval-
uated; they were merely set equal to zero in their respective function )
subroutinese. Several utility subroutines, which were written in order
to further modularize the computer coding, brought the total number
of subroutines to 45.
The final step in applying the finite element method to the weak ]
form of the second-order even-parity equation is the assembly of the 1
global phase-space matrix from the element phase-space matrices. This 4
procedure is complicated somewhat by the fact that the global space-
angle nodes as well as the local space-angle nodes are located in a
Lk-dimensional phase-space. The assembly subroutine takes this into
account by relying on two IE(e,i) matrices, one for the angular ;
domain and one for the spatial domain, to determine the global
space and global angle nodes. Once they are calculated, they can
be combined to identify the global phase-space node corresponding to W
a given local spatial node paired with a local angular node.
Once the procedure for labeling the global phase-space nodes
has been established, the assembly procedure can be implemented
as follows. First, form a null coefficient matrix GA whose dimen-
sions are (# space-angle nodes X # space-angle nodes), or NSAN X

NSAN. Thenvfor each phase-space element € = 1,2e¢¢,E perform the

20




by
following steps. Form the element coefficient matrix [ANS[}e
mnxmn
where m = the number of spatial nodes in the element and n = the
number of angular nodes in the element, by evaluating Eq (24) for
all possible combinations of trial functions, V’, and test functions,
N « Find the global phase-space nodes corresponding to the local i,
k spatial-j, 1 angular node pairse Assemble the local coefficient
matrix into its spot in the global coefficient matrix. In abbre-
viated FORTRAN notation the procedure can be best summarized by the
following:
C
c LOOP OVER ELEMENTS
C
DOS e = 1,B
c
c FORM LOCAL ANS-MATRIX FOR ELEMENT e
C
CALL GAUSS (e,s « o,ANSF)
C
C LOOP OVER LOCAL NODES: GET GLOBAL NODES
c
DO & 1 = 1,m
I = IE(e i)
DO3 j = 140
J = IE(e,j)
2k =1mn
K = IE(e,k)
DO 11 =1
L = IE(e,1)
C
C ASSEMBLE LOCAL INTO GLOBAL
C
GA(I,J,K,L) = GA(I,J,K,L) + ANSF(i,j,k,1)
1 CONTINUE
2 CONTINUE
3% CONTINUE
4 CONTINUE
5 CONTINUE
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Of course, the source terms would be treated similarly once they
were detined in their appropriate subroutines. The accuracy of the
global source vector and global coefficient matrix will ultimately
depend upon the degree of numerical quadrature used in the finite
element integrations. When the global coefficient matrix and global
source vector have been formed for the assemblage of elements, the

assembly process has thus been completed.
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v Conclusions and Recommendations

The computer application of the finite element method to the
second order even-parity form of the transport equation was partially
accomplished in this work by the formation of 45 subroutines which
collectively assemble the global phase-space matrix for solutione
Because it falls short of actually solving the transport equation, it
cannot be considered to he a transport code. Instead, the subroutines
generated in this work should be thought of as one of the many approaches
possible in applying the method of finite elements. Of course, this
approach differs significantly from other similar approaches in that
it applies the finite elements in two~dimensional cylindrical geometry
and allows the use of anisotropic scattering. Both the cylindrical
geometry and the anistropic scattering introduce added complexity to
the calculations performed in the subroutines. Yet, the approach is
somewhat inefficient. This is due, in part, to the large number of
subroutines and to the number of subroutines which had to be dupli-
catede Inefficiency is also caused by the repeated calculation of
all local shape functions for a given spatial or angular element
when only one shape function is needed. A revision of this procedure
should be considered in future computafional refinements and improve-
mentse ‘

As discussed in the last chapter, the four-dimensional nature of
the space-angle phase-space finite elements increased the complexity
of the digital computationse. The doubly subscripted trial and test

functions SiAj and SKAL led to four-dimensional arrays in the local
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coefficient matrix culculations. These four-dimensional arrays had to
be compacted to two dimeunsions in the subroutines because four-dimen-
sional arrays could not be used in CDC ["ORTRAN.

Additionally, because of the large number of computations required
by the extra angular integrations in the Gg and Ku operations, the sub-
routines in which they are calculated may use an excessive amount of
time. It is recommended that the calculations performed in the operator
subroutines as well as the lower level routines utilized by them be
slreamlined in order to increase their efficiency.

In conclusion, although refinements and improvements in the 45
subroutines of this approach can be made, and development of the
source terms and the boundary conditions term accomplished, a method for
the application of phase-space finite elements to the éﬁisotropic even-
parity neutron transport equation in cylindrical geometry has been

presented.
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Appendix A

Computer Subroutines
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Gi = GLO3LL "STTEFENFSS®™ MATRIX .

65 = GLOIAL “LIAD'™ VESTOR .

3 4 ¥ 2 2 X « % ¥ » t N ¥V . B A s ¢ R ey s ¥ 4 o+ &

COMMON/SLEMENT /KL
COMMON/ZHILOM/ZALD (50) g AHT (50) yCHILI(530) yCHINI(S0)
DILENSION CR (MAXF) 427 (1 AXT7) , CAM VY (MAXMU) yCCHI (MAXCHI),
¥ AMSF (N MN) JANSG(MM) 9 IS(b091mY g )5 (50915) §GSINTAN),
3 GAINSAN JNSAN)

INTEGER SE 4 AE

TJMITIALI?E GLORAL MATRIZES.

PO & KIEST = 14

K = TE(SEL“TEST)

DO 3 LTEST=14N

L = JECAFLLTEST)

LKN = LTEST 4 (KTFST=41)*N
KL = L 4 (Y=1)*NEN

GS(XL) = 0.

NO 2 ITRTAL =14M

I = JE(SE,1ITRTAL)

NN 1 JTRIAL=14N

J = JE(AS,JTRIAL)

JIN = JUTRIAL ¢ (JT21AL-1)%V
1J = J ¢ (I=1)+NBN
GA(KLyI) = 0,

CONTINUE

COLTINUE

COMTIMUE 29

- N -

P o S A




& CONTINUE : )

YAXRMY = MAIXR - 3
MAX7MY = MAXT? = 1 f L 3
MAXMUIME = MAX YL - 1 1

MAXCHMY = MAXSHT - 4 ;
MAXSF = hAaX7MLe4Lvd9q
MAYAEF = MAYMU4QTVUAXYOHMA
CALL HILO(AL O, A4, SHIL Oy CHIHI g MAXY Sy MAXCHT 3 MAXMUML :
3 MEYCHMT gMAXAZ 3 S A4, PCHT) t
2 :
C LNOP OVFI EACH fLSMZMT TN PHASE-SPACE,
C

DO 12 T=1,MAX7My

7L C7(I

7HI C7(1+1)

0O 11 J=1,%A¥3M1

RLO CR(J)

PH] CR(J+1)
NC 1L K=1,MAY3H41 ‘
00 © L=14M3xyeq ‘ 1
¥L L 4+ (K=1)*4AXMIM1

-

- n

PATE -~

CALCULATE THE ELFMTITAL PHASE=SPACE “STTIFFNESS™ MATRIX.

OO0

CALL GAUSS (N M g1V yRLD9MHI 37U 0974 4yAL O (KL) g AHT (KL, ]
? CHIHI(KL) 9 SHILD (XL ) g ANSF 4 ANSS) B

C LCCP LVERXR LOCAL N)2D=S, GET GLOBAL NIJDES.

T

3
LE
no
KK

J 4+ (I-1)44Ex M1 ‘ - 4
KL p
KTEST=1,M :
TE(SETEST)

no LTEST=1,4

LL JE(AE,LTZST)

LKN = LTFST ¢ (KTFST-1)*N

KKLL = LL + (XKK=1)*NaN

GSIKKLL) = GS(XYLL) + ANSG(LKNMN)
N0 6 ITRIAL=1,M

11 TE(SELZITRIAL)

Do JTRIAL=1,N

JJ JE(AFEZJTRTAL)

JIN = JTHIAL ¢ (1T2TAL=-1)4N
IIJJ = JJ ¢ (I1I-9)*IAN

NN

T n

ASSEMALE LOCAL INTO 5LM3AL,

SRRV B A T, 3 R TGI A i -

alzNa]

GA(KVLL,yTIJJ) = GA(KKLL,IIJJ) + ANSF(LKNyJIN)
CONTTNUE

COANTINUE

CONTINUE ’ ¢
CONT TNUE
CONTIMUE T
CONT TNUE o)
CONTINUE 1
CONTINUE

RETURN 40

-
N o0 DN N

P




SUBKCUTINE HILOCKLOWAHT ,FLO, CHTHT A Y MU, MEXCHT, MEXMUMY,
S fo(H“'ig.‘"AX'r\.'\“JU’:C"I)

(]

C &2 2 4 & & * &£ 8 &4 F B 8B 9y &8 8 8N 550 ¥ » 5 » »
C SUBROUTIIE HILA CALTJLATES THT ALQyA4l93.046N) CHIHI ViC-*
C TORS FO& ELCH FLEMEUY TN THF ANGULA™ IIMLIN, -
C N » a . 4 4 a o Ll <R » ™ o § o

» s r o . » ¢ 4 & ¥

¢

C
DIMELSTON ALO(MAY) JART (HAX) y CLACAEX) y CHIHT (MAX) ,
S LMY JRTUT (MEYCHT)
C
C LOOP QVFi EACH AN3ULY2 TLEMENT AND STIRE THE 41 AND LO
C VECTORS,

C

00 2 I=1,MAYCHM]

NN 1 J=1.MAXMI)

JELEMNT = ) & (T=1)*"AXMIIML

ALCCIELZMNT) = CaMul

AHI(IELS"MT) = CLMICI+1)

CLOCIFLEMNT) = CTHAI(D)

CCHIHY (TELEMNT) = CCHI(Te1)

1 CONTINUE
2 CoOnRTINUE

KETURN

FND

SUBRCUTINE GAUSS(MyMy MMy RLOyRPHIZ2LD9yZHIGBLCyAHTI 3 CHIHNHI,

SCHILC 9 ANSF 4 ANSG)
€
( ¥ » 3 B N 43 N § ¥ ¥ % X B B2 B » VB % ¥ E BN OE NN N
C INTEGRATION OF F(Ry7,4UyCHI1) ¢D«DZ.0MU.DCHI 3Y GAUSSTAN +
C QUADRATUFE, .
C® ° & 2 &2 4 & % 2 8 8 +» 6 8 3 > ¥ ¥ F F ¥ ¥ By oo
c

REAL INTGRO1
COMMON/SPACE/XIKyFTAL/TESTS/KTESTHLTEST
COMMCN/QUANPTS/IPJINT, JPOINT/TRTIALS/ITRIAL,JTRIAL
DIMENSION ANSF (MNyHMN) g ANSG(MN)

C TUTTIALI?E ANSF AND 4NS5 VARIARLES.,
c

DO 1 KTEST =14M

00 1 LTEST=1,yN

LKN = LTEST 4 (KTEST=1)#*N

ANSG(LKN) = 0.

DO 1 ITRIAL=1,

DO 1 JUTRIAL=1,"

JIN = JTRIAL ¢ (ITRIAL=-1)*N

ANSF (LKNy JIN) = 0.

1 CONTINUE

SET UP CUORDINATE “APPING OF ELEMENT IFy, I = 1,.449ME.
b

OO0




CALL MAF(PLO,PHT,RFAS,2L0,2ZH1,7FAS, AL Uy AHI,AFAC,CHILO, ‘
CUIHLy CHIFATS) ‘
FAC = FFAC * 7TAC * AFAC # CHIFAL '1

-

(o FVALUATE NCW VARTAILES WHICH ARS EXPRESSZD IN TERMS OF
C THE | EGENNF 22073,

0O 3 I=1,I°0INT

xI1 = 0(1) ]
0O 3 J=1,IPOINT

FIAY = 0()

NGO 3 K=1, JRPOINT |
XIK = QN(K) .

0O 2 L=1,J20INT

ETAL = QN(L)

WEIGHT = W(TI)*W(J) AW (K)*¥WW (L)

SET U'P TZR4S TO 3E INTFGRATED A0 CARRY QUT INTEGRATION l
RY CfLCULATING ANS = SUM OF APF(XILFTA) .

OOHDHO

CO 2 KTEST=1,M
N0 2 LTEST=1,N
L« = LTEST + (KTEST=~1)*N
ANSG (LKID = ANS3(_KN) + WEIGHT*TNTSRD2(XIK,ETAL,XII,
$  E1PJ)CFAC
N0 2 ITRIAL =1,M
00 2 JTRIAL =1,N
JIN = JTRIAL + (TTRIAL=-1)%N
ANSF(LKNy JLN) = ANSF(LKN,JIN) + WEISHT*INTGRD1(XIK,
3 ETALGXIILETAJ) *FAC
2 CONTINUE
3 CONTINUE
RETUPN s
END r

SURROGUTINE MAP (WLO,WHI,WFAC,XLOyX4I,XFAC,YLO,YHI,YFAC,
$ ZLDy7HI , 7FAC)

c
c‘v.!00“!.!'.lo.!Q'OOOUOOO!Q‘
C THTS SUAFQUTINE ZOMPUTES THE SCALING TACTORS WFAC,XFAC,
C YACy, ANC ZFAC USED TO MAP COORDINATES IN THE WyX & Y,Z
C PLANES INTC THE A'yX* § Y®,2¢ PLANFS,
l"00040!!!00..!‘00~!'0.!‘.!.0

« & w2 s«

OO0

OMMEN/MAPSPAC/A 40,7 g D/MAPANGL /F oF 3Gy H

(WLO + W4I) /2,

(WHI WLN) /2.

(XHI + XLO)/2.

(XHI XL0) 72,

(YHI YLO)/?2,

(YHI - YLO)/2, y
(7HI ¢ 2L0)72. :

C
A
A
¢
0
E
F
G
H (7ZHI Lo z2.

I+ 1 1t + 1

k2




WFAC
XFAC
YFAC
7FAC
KETUF
END

T Moo

Z U an

PEAL FUMCTLION INTGRDL(YIK,ETALHXITLFTAY)

|‘\'; R L T T T S T S S I S U SR S R DT SR R B S . B
S SUBRCUTIIE InT6 31 CELCHLL™ S THE LHTESRAND 0F THE STREAM®
oOTHG O ANTC SCLITERALNSG P4ARS STACE MATRIXY TR THF WEAK FORM gFe
f TUT SNCYED *-PpRAITY SFION) OFNER TRANSPORT ENUATION. i
O SUKQUTTILE THNTGSDY USFIS THT FOLLOWIIS SJUNCTIIN SUB/R*S .
L sKU ODELTST 3INDCCS i
N 5G ODFLTFL ODELTR2 ¥
[ TRIAL TEST TF1AL2 i
i > 4+ B A & B N R+ e b A BRSPS N
~

EXTERNAL ONFLTTL,0ONELTR2,TFIAL,TRIALR

F1 = EK'(0JELTLyONELTR2yXIKZETALyXiI,ETAJ)*0IELTST

3 (YIXyZTAL,XIT,ETAJ) 4

F2 = GO(TRIAL,TRTAL2yXIKyETALGZXIT,ZTAJ)*TEST(XIKHZETAL,
B X11,E04 0 ;

F2 = JRIAL(XIK,CTAL,YIT,ETAJI*TTET(XIK,ETAL,,XIT,ETAY)
i FONDCCS(XTIKySTAL Y ¥YTHETAY)

INTGEDL = F1 ¢ F?2 & A2

FCTURN

FND

FUNCTION «KU(FCT,FCT2, YIKyFTAL,XII,ETAY)

£
A P U O O 2 T T A ST Y SR T S ST SR S S TS S S
~ FUNCTION F¥U DETERMINES THPE VALUE 0 THE OPERATOR vYU,. »
- PO I BT TR S S S S S T S ST Y U B U SRR SR N
~

TYTERNLL SINGHMAKUL,FCT2

Lo EA(XIK)

7L 7(FTAL)

ArU'T = AMU(XTI)

CH1IJ = CHI(ETAY)

FRU = FOI(X1IK,ETALZXTILZETAJ)/ZXT(RL,7L) ¢+
b Gl USSP (STIGMNAKITyFOT29yRKy 7L yAMNT, THTI V)
CESUCN

ENU

b3

- s

D e




~
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~
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~
N
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<

~
ol
~
C*
~

A

FAL FUKCTION INTARO2(XIK,"TAL,YIL,FTA

L N R R T R U B R R S U T T T R Y B T Y N B I R 3
<HNRRCU tE INT3FT2 GILCILATES THE THUTEGRANNS OF THE »
SAURCE Vr”IOV I THE WEAY TORM OF TH5 "EVEN"=-D2APTITY SECOMND
NRIFE IwrpSency E€NnYAT INYy, »
TUORCUNINE ItT5232 JUFES THT FOLLOWINS TJNCTION SUYR!eS ¥

S6 TEST ’ L

R ONELTS™ »

QY »

SUNCTTION SU 4Er IPEPATIN N RY FUNTSTION RKU WILL ~EQUIRE*
UANITICATION (5FE FINCTYTIOMNS ODFLTRP? AN TRIAL?2)Y, L

¥ v ¥4 &£ X B £ N 4 a4 s N ¥ 4 X R e 4 DXy ¥ r s

eEXTCE AL S

F1 = SAIXIL,FTAL,XIT)STAY *TESTIXIK,FTAL,XII,ETA)

F2 = RVU(SI,KikySTALyXIT4ETAS) *0VFLTST(XIKy ETAL, XL,

T OFTAD

TNTGI N2 = F1 ¢ F?

FETUCN '
FNL i

FUNCIION GG(FCTaMCT2yXIK,ETALyXII, ETAJ)

* % 4 & x F 2 x & B N B P 4 2 0§ X ) v 8 2 ¥ N n oy 4o
FINCTION GG SFETE~ALYFS THEZ VALUE 0F THE OPFFATOR GG, -
» M L s 4 A e on N 4 RN N Yy B » 2 % 4 8 8 3 ¥ N

EXTFr NAL SAiGMAG,,FCT2

oK = REX1Y<)

ZL = Z2(=TAL)

AMUT = AMU(X1T)

CHIJ = CHI(ETAY)

66 = XT(RKsTL) CT(YIKGFETAL,XII,ETAY) - GAUSS2(TIGMAG
N FCTI2,FKy Ly AMUT 43HI))

PETURN

FND

FUNC™ ION XT(R,7)

% % B3 3 M R B 3NN s XN NN YN LN s
FIMCTICH XT CALCULATFS THF ANIbOT\UPIC TOTAL 7R03S SFCT, *
4 4 4 % A B 2N s N o ¢+ % 2 ¥V @ ¥ »x 8 »

XT = 1.
FNN
Ll

g —— i —




FUNCTICN QCELTPL(XIK,) FTAL,XYITI,ETA))

€
f® 4 &% % & 3 4 4 8 & 4 4 L+ ¥ 9 4 5 3 7 § & 8 § v 5 5 » &4 ¥ ¥
C FUNCTION OGLZLTRL SALZULATES THE OMFRA J)T7 DFL TRIAL TERM »
C (THE STRFAMING T#R4) IN ZYLIMDSICAL >00DINATES., ®
C*® +» » % 2 & % 5 3 & 8 % ¢ 5 3 4 & % + % 8 % N v & % & % ¥ 3
C

COMMON/MNONTS /M N/TATALC /T4 J

TR = TPILLIXIKsZTAL,XIT,ETAY)

CALL TFRTIV(MyN,I,J,71,Nn2,07)

PK = & (X1K)

AMUT = AvMDIXTID)

CH1J) = CHI(STAY)

£ = 1. = ANUITE~2

8 = COPT(A) / ®K

COFLTRL = 7 COS(SHI DA ((RK*D1)+TR) - RB¥C2 + AMUI*D3

FEJUEN

END

FUNCTION ONELTR2(XIK,CTALyYII,ETA))
C
C* » & % 2 3 5 4 4 & % ¥ % % 4 3 3 3 < ¥ ¢ 4 % ¥ % % 1 & % 8
C FUNCTICH OFSLTRK2 CALTULATFET THF OMZGA D37 OFL TRIAL TERM *
C (THE STRFAMING TFIM) IN CYI INNDSRICAL SOORRDINATES FO? USE *
€ In FUNCTIONM GAUSS?, - *
C* 7 & & &% & % 5 3 & ¢ 8 ¢ ¥ % % % 4 = F & % 4 F ¥ % ¢ 2 ¥ L
C

COMMON/ZNCODFS /M N/TRTALS/TIHJ/LNONEZ ))

TPZ = TRIAL2(XIKyETALyYII, eTA))

CALL DERIV2(Mytly1,J9,01,02,023)

FK = k(XTK)

EMUT = AMU(XIT)

CHIJ = CHI(ETAY)

A = 1, = AMUT*+2

B = SORT(A) / RX

ODCLTR2 = P*COS(ZHI)) * ((RK*D1) + 22) = B#12 + AMU1*D3
FETUFN -
END

FUMCTION ONELTSTIXIK,FTALXIILZETY))

C‘-lOJOJOO-'"lO‘.4‘0~J|‘0'.OQ“"
C FUNCTIOMN CDTLTST CALCULATES THFE OMEARY D)7 NDEL TEST TERM ¢
C (THE STRFAMING TEIM) IN CYLINDFICAL CJJ0DINATES, i
e GEL IR SR S SR N N S B R TR R S B O SRR IR B N B N SR N
C

b5

- ——— A S————— IR

—

e




Py issae b N SR £ s VATESTS £% 510
TST = IFSTUIXTCLEFNL T T o BTN )
CALL DFRIVI(MgeNKelL 9N149m2,03)
Ok o= b I(XTK)

AMUT = AMU(XIT)

CHIJ = GHI(ETA D)

A T Y = KMTAND

R = SARPTCA)Y £ PX

CNELTST = ReCAS(IHIN *((RK®N1) & TST) = 3¥N2 + AMUI*D3
(/p'Tl]yN

N

FUNCTION TRIAL(XIK,ETALZXII,ETAN

F .;4.;44&‘;4l~¥¥‘14|.5"."‘.‘

F!NCTION TRIAL CALCULATES THE VALUE 2% THE TRIAL SOLUTION®
S(TI)*YA(Y) . .

L I O I N IR I TR O T T O R S O R T S S S U R

D2OOHDHDHD

COMMON/TFIALS/I,J
COMMON/TENT1/S,0TDXI1,3TDETAL/T NI 2/A,0DTDX12,0TDETA2
CIMELSION S(16),A(15) ,"TOXIL1(16),NTDXI2(16),

$ DTIETA1(1A) ,NTDETA2( 1K)

CALL TFNTFNC(XIK,FTAL,S,0TOXI1,DTIFTAYL)

CALL TENTFNC(XIIoETAJ,2,0TCXI2,ITIFTA2)

TRIAL = S(I)*A(J)

FRETURN

END

SURPCUTINE SCALE(N,NTNXI,OTOFTA4AYITAC,FHIFAC,0TDCHI,
3 DTN, TyCHI yXSTN)

L T U BT T NN Y SR R S R R R T R U T T L BT NN N BN R T IR I
TYIS SUBFOUTINF CALCULATFS, FOP A GIVEN ELEMENT E,THF ¥
NESIVATIVE OF THE *TEST FUNCTIONS™, T(I), WITH RESPECT TO*
CHI AND MU BY SCALING THE VALUES OTOXI AND DTDETA 8Y
(DFTA/DCHI) = 1./CKIFAC AN" (DXI/DMU) = 1./AMUFAC. AD-
NTTIONALLY, XSIN = T4F PAPTIAL OERIVATIVE OF T(I) *
SIN(CHI) WITH RESPECT T0O CHI IS COMPJTED.,

AMUFAC = SCALING SACTIP SUPCPLIFN 3¢ SUBROJTINF MAP,
CHIFAC = SCALING FACTNR SUPFLIED 3Y SUBROUTINE MAP,

LR T I EE T R TR R NP NN BT U ST N I R AR LR T TR T U BN N I

QOO OHNOOOLDOOOOOD
®

CIMEMSTION DTOXI(N) 3NDTDFTA(N) 30TDOMI(N) yDTOSHI(N) , T(N),
3 XS IN(N)
NO 1 I=1,N
NATOCHI(I)=0TNETA(I)*(1./CHIFAC)
DTOMU(I)=DTNXI(I)* (1./AMUFAC)
XSIN(I)=OTOCHI(I)*SIN(CHI)4T(I)*3)S(CHI)
1 CONTINUE
KETUF N
END

L6

« & € &% &%

\
<
3
h )
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c
c*

)

SUBRCUTINE TENTFNC (XILETA,T,0TNXI[,DTDETA)
DIMENSION T(4),0TOXI (&) ,DTDETA(4)

¥ % 3 3 3 % 8 ¥ ¥V ¥ N 3NN N 3NN E P e 8N

C T4TS SUBFOUTINE CALCULATFS THE VALUSS ©)R THE TENT FUNC=-
C TTONS ANC THEIXR DEKIVATIVES ON THE 9ASTS OF A CANONICAL
. FELEMENT WHICH IS A LINEAR SERENDIPITY RFCTAM3LF WITH

C NNDES AT (XIHETA) = (=1,-1),(1,=1),(1,1), AND (=-1,1).

ne
C

4 + ¥ 4 B3 4 2 B Y & BN NN K XN NN

f C2LCULATE THE TENT FJUNCTIONS T(I).

c

D200

ODOO

c
c*

 ;

T(1)=(1.-XI)*(1.-ETA) /4,
T(2)=(1.+4XI)*(1.-FTA) /4,
T3)=(1.+XI)*(1.+¢ETA) /4,
T)= (1e=XI)* (1.+ETA) /6,

TALCULATF THE DERIVATIVES OF THE T(I) AITH RESPECT TO XI.

DTNXI(1)=(FTA-1.) 74,
OTOXT (2)==-DTIXI(1)
DTOXI(3)=(1.+ETA) /4.,
DTDXI (4)==DTOXI(3)

CALCULATE THE DERIVATIVES OF THE T(I) WITH RESPECT TO ETA

DTOETA(1)=(XI=1.)/4,

DTOETA(2)=(=1.=X[) 74,
NDTCETA(3) =-DTDETEL(2)

NTOETA (&) ==-DTDETA (1)

RETURN

ENOD

FUNCTION TEST(XIK,ETAL,XII,ETAY)

4 B ¥ 3 B3 ¥ 4 ¥ ¥ VNN RN NN Y sy

 FUNCTION TEST CALCULATES THE VALUE N= THE TEST SOLUTION
S(K)*A(L) .

o

4

(o
c

L

E N T S A A I T S T S SN B T T T S S S

COMMCN/TESTS/K,L
COMMCN/TENT1/S,0TOXI1,"TODETA1/TFNT2/A,0TNXI2,DTDETA2
DIMENSTION S(16),8(15),"TOXI1(16),ITIXI2(15),

3 DTIETA1(15) ,OTDETA2(16)

CALL TENIFNGC(XIKyETAL,SyOTOXI1,NTNETAL)

CALL TENTFNC(XII,ETAJ,A,DTDOXI2,0TJFETA2)

TEST = S(K)*®A(L)

PETURN

END

4y

®* X ¥ X & &

* ® s«

L




SUSFCUTING DERIVIM 4y TI4J901,02,423)

4 % Y B B B ¥y R 4B RN N O 4y B oy 4 ooy
1 CALCULATES THEZ VALUF PATTTAL(R*FIT)/FARTIAL(R) .
APPEARIING TH THE STRTAMING TERM. ¢
N2 CALCULATES THS VALUFS PARTIAL(FCT*SIN(CHT))/PARTIAL®

SAT APPELRING IN THE ST2AMING TERM, g
0% GFLCULATES THF VALUF PARTIAL(SCT)/PARTIAL(Z) AP- #
PTARING IN THE STRFAMINS TFRM. .
¥ [ I S I S T I L T T Y Y ST D SR T Y ST RSN SR S S

O
¥

QOO DIC

COMMON/TZNT1/S,0C0XT, DSDETA/TENT2/A, DADXT, DANETA
COMMONIMERSOAT/AL yx“AC4aCy ZFAC/NACANGL/Fy ATACyGyCFAC
PINET STON DSOXEI(18) 4,09 CTA(LIL) 453]7(1%),DSOR(15),
NIRTIv(LH) 9 DAXT(16) , 0ADETA(13) yDADCHI(1R)4S(16),
AC1G),0349MU(12) 4, JADSIN(LG)
CALL SCALE(MyNSOIXI4ISDFTALZCFAC,77A2,DS0Z,0S0RyS,y7,
3 DTOSIN)
CALL SCA_T(1',540X[,)ADFTA,AFAC,"“27,0ADCHTI,DADMUU,
¢ A.CHILOADSIN)
D1 A())*ISDR(T)
n2 S(I)+IA0SIN(I)
D3 A(J) *0DSD7(I)
FETURN
END

i &

nonn

SUQFCGUTINE DZ21IV2(MyNyI,J921,02,03)

[3

L R T N A N I A B N A IR T B O B N R S 1

T4IS SURFCUITHE IS JSED 3Y FUNCTION JOFLTR2. ®
N1 CALTU_LATES THE vALUS PARTIAL(R*FCT) /FARTLAL(R) >
L3PEARING IN THE STRFAMING TEPM, ‘ .
P2 CALCULATES THE VALUT PARTTAL(FIT*SIN(CHI))/PARTIAL®
CHIT APPELRING TIH THE STRSAMING TERM. ¥
03 C/LCULATES THF VALUF PARTIAL(FCT)/PARTIAL(Z) etP- *
PEARING IN THZ STREAMING TFRM, &
»

LR N IR R Y T T T S U N S SN S TN S S SR Y |

DOHDOOODO YOO DO

S

]

COMMUN/TENT1/S,03DXI 9y DTOETA/TENTTWI/ZA,DADXI ,DANDETA
COMMON/MEPSPAC/AL yPTAGC,Cy ZFAC/MAPANS2 /Xy AFAC,Y,CFAC
OIMEFSICI! OSOXI(12),0SNETA(16)450337(16),0NSIR(1H),
E3 DEDSINCLFR) yNADXTI(1E) yDARETA(L3) ,DADCHLI(16) 4S(16),
$ AC10),NA0OMI(13) ,DADSIN(LS)

CALL SCALE(M,DSNYIL 4 ISOFTALZRFAC,77134,0S07,0502yS592,
3 DSCSIN)

CALL SCALE(N,NADXI,NADETALAFAC,"~-AC,DANCHI, NADMY,
b3 Ay, CHI,NADSIN)

01 = A *NDSIR(D)
D2 = S(I)*ILDSINCY)
-N3 = A(J)*ISDZ(T)
RETUF N

END

48




™

FUNCTION TRIAL2(XIKyETALGZXIIHETA

C
c« 4 4 » ¥ X M ¥ X ¥ » 4 4 4 ¢ 3 P X ¥ B ¥ N e 0N
L TINCTION TRIAL 2 CALCULATES THF VALUF NF THF TXIIAL SOLU=- *
fTTON SCL)*A(LOSAL) TO 3% NUMERICALLY I[NTFGRBTED IN .
~ FINCTION GAUSS?, »
c 4 B 4 4 2 F e ¥ B+ R A AN PP RN ¢ oY N s
[
COMMON/TIALSZ 1, J7LNNDE/LOCAL
COMMUN/TENTIZSyNTIXTILyDTOETAL/TENTYTAD/AZDTOXI2,0TDETA2
CIFEELSTION S(1€) 4,0 (15) ,CTOXT1 (16),I7IXI2(15),
$ ITOETA1(15) y "TNDETA2( 1)
CALL TENTFHIUIXIKyETAL 97 ,NTNXT1,77)=TAYL)
CALL TFENIFIUC(YILI ETAS /iy DTOX12,0TICTA2)
TRIAL2 = S(T)*A4(LOCAL)
RETUF N
END
FUNCTIOMN SIGMAKY(R,ZyAMUI,CHIJHAMUK,CHIL)
o .
0% /- % % & % % % F ¢ % % 5 8 3 3 8 832 % 3 2 8 ¥ v 2 ap
C T4IS FUNCTION EVALUATES THE °*KU* MACROSCOPIC CROSS SECT. *
c* LT T T N B A T T D T Y P NN JEE R S T Y R BRI I TR S Y
C
AMUNCT = UZERO(AYUI,CHIJyAMUK,CHIL)
PI = 3.1415926532
SIGMIKY = 0,
L = LFORFL(INUMMY)
JF(L.EN.O)RETURN
0011=1.L,2
SIGM/ KU = SIGMAKY & (2“T+1)*XS(Ry7,I)%*P0LY (1,AMUNOT)
$ /Lo /PT/(XT(Ry7)=XS(PyZ,y1)) ;
1 CONTINUE !
RETUFN
END
FUNCTION UZERO(UyX 3" JPRIME 4XPRIMF)
F
(4, SRR b BE W7 B S L SR SRS R S Y St AR LR SR RO AR S R f
C TJNCTION UZERO COMPUTES THT VALUE MU=-ZF0 FGR THE TERM .
 OMEGA DOT OMFGA PRIMF IN CYLINDRICAL COORDIMATES. .
C¥ 7 % % % 3 5% 3 3 3 % 0 5 % 8 45 %9 0 8 35 0 8%
c
714 = 1. - U**2
72 = 1, = UPRIME'*?2
DX = X = XPRIME
UZERC = U * UPRIME & SQRT(71) ¥ SART(Z22) * COS(DX) ;
RETURN ¢
END ;
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FUNCTION SIGMAG(R,Z,AMUI,CHIJyAMJI<,ZHIL)

L L I I . R R B N R . T T DT T I I T S B N NP S Y

THIS FUNCTION NDETEIMTNES THE VELUE 07 FHE *EVEN' MACRO-
C SCNPIC SCATTFRING CTROSS SFrTION,.

C* B B 4 3 3 ¥ VY E PN SRR YN Y Y N

S IS o]

AMUNCT = UZ7ERO(AYMUT,CHIJ,AMUK,CHIL)

PT = 3.141532553¢

SIGMAG = X3(Ry72,0)/44/P1

L = LFCPPL(IDUMHYY)

IF(L.LE.1)RETURN

CO 1 I=2yL,y2

SIGMAG = SIGMAG + (2*T+1)*XS(Ry7,I)*POLY(I,AMUNOT)

b /t o /P1
1 CONTINUE

RETURN

END

FULCTICN LFCHPL(TOUAMY)
C
6* N AR O . T TR T T SO S A S U T S SO

£« ¢ 2=

»

C TINCTICN LFCGFoL CALCULATES THE ORDE«-JDF THE ZROSS SECTION®
L

f EYPANSIOL S,
Ax A ¥ 4 ¥ N X ¥ ¥ 3 K K XK ¥ XN N XN > F % BNV 4 o4
(4

COIMCMN/ZEXPANDZIPL

LFOTFL = ISL

FETUTN

FNO

FUNCTION XS(RyZyl)
f
cr 4 4 ¥ B & K F 4 ¥ ¢ 4 ¥ Ny g BB Moy AN VNN
rf TAIMCTION XS CALCULATFS THE ANISOTROTIZ SCATTERING CQOSS'
C STATICKN.,

A~ 4 % 3 2 8 % ¥ B N & % & 8 K AL F B FE B Y e ¥ oo
c
XS = 1,
TF(L.GT.N)XS=0,
FETUFM
END
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FUNCTION BPGLY (I4¥)
(0h L I A T . T U TR T T S SR S S AR S
£ THTS SUNECUTINT CALCULATES THE I'TH LF3EMNDRF PULYNOMIAL
f FIC AN IMEUT YALUE 0F X,
(0t wQJ.009!4!‘0#4444‘0»l'.oQ4‘¢A
FOLY =1
JE(TLECL ) FTURN
FCLY X
IF(IEN.1) ETURN
CI?WI 10
R =
(o) |
POLY ((2L=1)%X"PT=(L=1)*PINMIY/.
B rI
P1 = POLY
1 CONLTINUE
FETUE N
END

L IR B I

=2,T

U o xu

FULCT ION SG (Ry 7y M1, CHT)

n

o ¥ 4 » x a4 8 4 v M o0 4 N X B A2 44Ky B XYY N NN
A OFUNCTION S6 UETERMINTS THF VALUE OF THE “EVFN"=PARTTY *
© STURCE TFRM, .
ct L B R T L T T L T T T TR U U SR S T N S S )
= :

SG = 0.

FETUFN

END

FUNCTICHN SRy ZytMUYyCOHT)
c
~ L T I B S . S . S Y T S 2T I T A I N S DY SN SR N S S )
C TYNCTICN S OFTFMINFS THE VALYF NF THE "0ONDD'"=-PARITY %
£ CTUKCE TERM, *
(e S N I A R R I A S R R T B S B
n

.clJ=00

FETUCN

ND

FULGTION yDCOS(F,72,AMU,CHT)
'\‘
6% * % & # 4 4 % 3 3 & ¥ & 3 KX 3% 8B NN
S EUNCTICN ANNCOS CALCSULATES THE BOUNMARY TERMS FOR THE EL-*
F EMENT, .
ﬂl-0"0001-'!6!-1"‘#4'!.Ol‘!“"
C

PNDCOS = 0,

EFTURN

END
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FUNCTION ©(¥1)

C
s EPRE AR SRR P IS R  « LR R IR . T U S T U N SN A SO ) bl ’
fOFINCTICY R CALCULATFET THE "AJIAL COIRIINATE COIPKFSCONIING* .
C 7Y THE NCON=JLMFNSIONAL XT COORDTINATE )7 THFE “CANONICHL® -f
£ TLTMFNI, " '
A L I L L I I R B R R LT A S R N i
(i v
COMMON/MABSPAC/AZA,C,D
E = A & B*X) 3
FETJUFN
FND !
FUMCTICN 7(FTR) ;
o @
c¥ LA T R I A A T P N N U2 T U T S S S R {
CFINCTION Z CALCULATES THE 7 COORDIMNATE SORRFSPONNING TO ¥ &
f TUT NON-PIMELSIOROL FTA TONRDINATE N7 THE “CANONIRAL®™ - i
i E.EMZNT. 4 &
Ce 4 ¥ 3 ¥ B 4 s BY & NN e B Y NN YR N NN NN ‘.‘
o <
CONMrN/HI«P?DAC/A,‘,C,D y
7 2.€C & D*ETA
RETUEN
FNU
FUNCTICN A4U(XT)
ol L I T I T T I T T R BT N SIS S S R S SO T Y
P :

FIINCTICN AMI CALCULATES THF MYy COOPNINATE CORRRFSPONDING * :
C 7Y THZ NCM-DIMZNSIONAL XI COORPTNATE JF THE *“CANONICAL® * i

C FLEMFNT . b
Cc* L I L I I R S O A A S N T I T S B N O )
c

CONMON/MA PANGL /E ,F 4 3, M
AMI) = E + F2XI

RETUEN

FNO

FUNCT ION CHI(ETA)
ﬁ

L 4
Ay P T I U O T R U I IR A L A L
‘s

6 FUMNCTION CHI CALCULATFS THE CHT CONRITNATE FOQ°ESPUNC£NG :
TO “HE NCN=DIMFNSTIONAL ETA COORDINATE )% THE “CANONICAL

L
v OSLFMFNT .
re PO Y R T T R A T S ST T R T SN R R N
f;

COMMUNZMEPANGLY/Z® 4F 354 H
CH] = G ¢ HYFTA

PETUFN

END
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:
¥
SUTRCUTINE MAP2(LL 04 AHT JAFACCLNyCHILCFLC)
C g
n+ A4 & 2+ » B B ¥ ¢ B g 4 NN 4y RN sy o
C THTS SUARFQUTINT CNMPUTFS THE SCALING TACTNRS AFAC AND L4
fSrAC AS VELL AS THE TON2NIMATFE MAPOTNS YARIAA_ES USFN TO * g
C M°F CCOPLINATES TN THF {')yfHI ANGULAR PLANF INTO THF XI, *. ;
0 FTR “CANCHICKL®™ PLANF, THTS ROUTINT IS USED 3y FUNGSTIONMN * .
C GLUSS2. »
N% S 3 & % % 5 4 v y 8 9 < 4 % 5 ¢ % L 9 e 8 8 ¥ » % a4 = @ :
(o4
COMMIN/ZMAPAMNG2/A,8,0,D 0
A = (AHI + ALOY/2.
® = (AH]I - ALO)/2,
C = (CH] + CLO)YZ2.
r s (CHI = °LO)Y/2,
FEAC = 8
CFAC = 0
RETUFN
END
FUMCTION CHIZ2(ETR)
c
C+ ' % & 4 % & 4 » 5 % % & 8% % 3 4 2 ° ¥ ¢ ¥ ¥ ¥ ¥ X x>
C FIMCTION CHI2 CALCYLATFS THE CHI CONININATE CORRESPONNING?®
C 70 THZ €7A COORNINATE 0OF THE *“CANONTCAL'™ ELEMENT, *
nx A % 4 X A ¥ X B X ¥ 3 03 3 B s & s P ¢ 44 v » 3NN
(>
COMMON/MAPANC2/A4RB,4CyD
CHI2 =€ + N+FETA
FETUFN
ENC
FUNCTTON A4U2(XT)
(o
C»* » ¥ 5 8 4 3 4 M 4 0B 4 B § & s s . ¥ ¥ O P E NN NN 1
C FUNCTION AMU2. ZALCULETES THE MU COOTDIINATE CO2-ESPONODING * ;
S TY THE NCM=-DIMFMSTONAGL XTI COORPINATF JF THE “CAMONICAL® = -
O E.FMFNT . o y
(ot 3 &% 4 5 & 2 & B 8 8 & B 4 BN A Y E SN PN e
G
COMMON/MAPANG? /A, 3
AMU2 = A + B*X]
FETURN
FND -
¢
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1 4

FUNCTION GAUSS2(FCTL,FAT2,R,2,A0,341)

* 3 3 4 2 4w ¥ 4o+ BN YR SN L s o o
GP1USS? 1€ A GAUSS-LEGFNIRE MULTIPLE INTEGRATION ROUTINE o
WUICh USES AN IPOINT NUAJRS TUKE RULE JVEP THE MU, CHI .
ViPIASLES, .

L ]

JTUF L JTCIAL) IS THE 5L03AL ANGLE NOOT MATRIX, .
AZAC AN CFAT ARE COOJRDINATE SCALING TAZTORS SUPPLTIED BY *
S'"3RQUTIMNE MLP2, ¥
L 4

FUNCTION GAUSS2 USES TUNSTTONS AMU2,3412,0,W,73T1,FCT2, ¢
HTyKEy APD LHNM. ¥
. % B M 4 X s s A ¢ ¥ B B B 4 [ T S T N I I A

COMMON/HILONZALI(S0) 3 AMT(E0) yCLO(Z0) 3y CHIAHI(S0)
COMMUN/SPACF/XIKyFTAL/ZLNODE/LOCA_/NJADPTS/IPOINT
COMMUN/ZNODES/MyN/ELEMENT/E/ANGELM/NANGEL
COMMON/TRIALS/ITIIAL, JTRIAL/JEMAT/ IE(S0,416)
INTECER £

GAUSE2 = 0.

NTTERMINF THFE GLORBAL ANGLE NODE OF T45 LOCAL NODE JTRIAL
UTFD IN THE CUTEx ANTULAR FELEMENT LOJP,

J = JE(E,JTRIAL)

NTTERMINF THZ HUM3ER JOF ANCHLAR ELEMSNTS WHICH CONTAIN
G! IBAL NODE J.

NEL = NE(JyNyNANGEL, JF)

LNOP OVEF THF ANGULAR CSLEMENTS CONTAINING GLO3AL NONE J
LN CALCULATE THE JONTRI3UTION EACH 484ZS TO TH4E INTEGRAL.

DO 2 K=1,NEL
DETEF MINE i HE ELFMENT "UMBER OF THE K *TH ANGULAR ELEM.
KEL = KE(JyKyNyNENGTL 5.1F)

DETEF MINE THE LOTAL NONE NUMRER )T THE GLORBAL NODE J
IN THE K'TH ANGU_AD FELSMENT CONTATJING 1T. :

LOCAL = LiiMN(Jy ’(EL'N' JF)

THE VALUE LOCAL 4UST ARF PASSED T) FUNCTION TRIAL2(SEE
COMMON/LNOOE)

SET UP THE CAMONICAL MAPPING OF THR K *TH ANGULAR
FLEMENT 7Q BE INIZGRATED.

5k
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CALL MAP2(ALO(KE.) yAHI(KFL) g AFAT, LI (KEL) y SHTIHI(KEL) ,
g CFAC)
FAC = AFAC * CFAZ )

c
a CARRY QUT NUMERICAL QUMDRITURE OF THE K'TH ANGULER EL.,
e
GAUSE = 0.
00 1 I=1,IC0INT
I = (D)
AMUI = AM'Y2(XI) ’
DC 1 J=1,IP0INT
ETA = Q(J)
CHIJ) = CHI?(ETA)
GAUST = GAUSS ¢ W(T)'WI)*CCT1(2,7 ,AMU,CHI,AMUT,CHIY)
3 *FCT2(XIKsZTAL 9 XTIy FTA)“FAC
1 CONTINUE
6GAUSS? = GAUSS? + GAUSS
2 CONTINUE
FETURN :
FND H
FUNCYION NE (Jy Hy HANSEL,IE)
n .
f"--‘-42~-0-pmo‘ﬂlvf-\-v.ioovit!  $ ¥ & ¥ N
C T'TS SUTECUTING CALGULATES THE HUMPTP OF ELFYENTS CONTAIN®
5 TY6 GLORZL NUDE J IN THT ANGULAR ON1AIN. .

N ¥ % B 2 4 & & %k 4 3 2 3 5 2 8 8 8 5 ¥ e 8 409 B s 4 e

~
’

CIENSION IF(L0,16)
INTFCER +

I=0

00 2 F=1,NANGEL _ 4
N0 1 K=1,N

TFUJLENGTE(E,K)) T=T#1
TE(ILEN)G0 TO 7
FCMTINUE

CONTINUE

ME = ]

CE TUF N

END

NN -

FUNCTION LNN(J,KEL 4N, IF)
c
C ¥ 2 % 3 2 ¥ & % v ¥ " ¥ % 3 ¥ 8+ x PN 4 ¥ Aoy
£ TYIS SUBFCUTINE CALCULATES THE LOCAL NONF NUMAER OF GLOR=-*

C AL NODE J IN FLEMFNT XFL, :
(‘4¥l§t00!»4-.;u;';&';'n.. . & 3 4 &

R e

oD

DIMENSION IE(S0,16) i
00 1 I=1,N F

IF(IF(KEL,I).F0.,J)60 TO 2

1 CONTINUE

2 LNN = 1 34
RETUFN : e 1
END 55 . ki
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p’ ’ @ 4 4 4 4 e & % 4 2 s »
fOTuTe SufcguYIME CALSULATES THE
& LEF ELFSENT CONTALMIMS SLORAL
' ¢ B L} - 2 - < 3 & & . » W -
‘P‘
DTIEL STOY TF (00415)
INEECEF E
Ke = (
RO 2 E=x1 HAUGFL
s i e &5
TF (e BN 4R, TN =RK+A
IF(eY EN,Q)GS T 3
1 CONTINUFE -
2 LOKY THUE
T VE = E
EE TR N
N
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FULCTTION YT (JyKy My HANGEL ,TE)

s 4 + % 4 ¥
HUMaF 9T

NONE Je

N e 4+ & @& &

-

THE

»

*

q - - Ll

<'TH ANSU-

y & & B

>

Yy » & 2

.k o

e

b




Appendix B

—— — — —— — —

From Chapter 11 we have the functional

©) @
Flw = fo[<-&'V“,Ku(4-'V“)> + <uByud

-2<x:-m§)xusu> _2<§%’>] s +£U|&' 1%[ ‘*;’“’l] i

(25)

®
where <§,3> i~ L‘«-!:) 3@9 da and * stands for the complex conjugatee.

We want to show that F(u))F(W) where W= ‘P-"] and #0 . From Eq (23)

aBove, we have

F y+n = fD< (2 V¥, Ko v¥)>lr
+ fD< (2-99), K1) de
+f<(1.l-V'l)»Ku(J.1'V‘P)>1x

D
¢ Jgtaron, Kol
"'f0< 4’,634') A:
+ [D< ¥,64n 7 dx

+fD<VI,G,~P>Ar

57

(B=1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B=7)

|
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+ID<"‘GS’I> dy
-2 fD< 2-9¢ K,S, > de
2 <zom, K8, > s
—2[0 {¥,8> dy
_2[D<n,sa>l:

+]

R[G ,-&-3(!3' W dade

+2L[&|.{_L-lm| ¢ndade

+L[E|J_L-z(!)|n’ dedy

(B-8)

(B-9)

(B=10)

(B-11)

(B-12)

(B-13)

(B-14)

(B-15)

It can be seen that Eq (B=1) + Eq (B-5) + Eq (B-9) + Eq (B-11) + Eq

(B=13) equal F(¢0. Since the operators Gg’ Gu’ Kg‘ and Ku are self-

adjoint, that is,

<£@, 6, 9> = <G, #(3), 9(@>

<:3(£9va‘qéD:"

we have terms
(B=2) = (B=3)*
and

(B-6) = (B=7)*
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Therefore, terms
(B-2) + (B-3) = (B-3)* + (B=3) = 2Re(B-3)

and we find that

F(ij\) = F(‘P) (A)

+2 f[Re(&'Vﬂ»Ku(&-V ¥)> + Re X ) Gy ¥>
D (B-3) (B-7)

- <4V, K SD>-<n,5>] dr
(B-15) (B-1%) |
+$

S, lanio ¥ da ds .

(B-14)
[ <av Kk (avnd+ <1615 ] d
(B-4) (B-8)
*ﬁf | 2ol n* da de ©)
R ™ (g-15)

Because the operators Gg, G, KF’ and Ku are all positive-definite, the

u
terms (B-4), (B-8), and (B-15) in the bracketed (C) term are positive
as long as 7? is not equal to zero. Thus, the (C) term is positive.
Similarly, the operators Gg’ Gu’ Kg, and Ku are real operators;
they give real results when operating on real functions. So, as long
as we use real functions ¥ and Vl, we can drop the two Re's in the

bracketed term (B).

Using the property
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fD <{avn, €54 = —fD <, 296y dy

+ _¢; <(-&'l(‘_‘))1] "F> ri[ (B-16)

the (B-3) and (B-10) terms in the bracketed term (B) can be written as

<, -n vk fa-odl] > ds

+§R <(&‘1)“‘Kt‘&‘v DAy (B-3):

and

ID <7,-2-9v(K,S) > dv

+§R <(—&'E)W,Kusu>o{r (B-10)"

Bracketed term (B) thus becomes
ZI[ <n,-4-v[K“(.&-v 4,)]>+ <",6,¥>
D
¢+ < g V(KuS,,_)>— <%,S,5> } dy

+2ﬁ [j;lx_t-nlh dg + <(&x) K, (a-v¥)>
3 <(g-vv_u)n,|<,su>] Ax
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= 2[0[<V\‘-_c_w[m({1-v¢)] % GSQ/—[Sa—.g_-v(KuS“)}>] dy
+2§j [[& ¥+ (@ r)[ Ku(s-2¢)~ u]]d&,i!

Eqs (17), (18a), and (18b) of Chapter II are now applied to force term
(B) to zero. 'Thus, F(‘}’*’]) 15 indeed greater than F(u/). The resulting
weak form of the transport equation corresponding to its variational

formulation, kq (23), is

fD [ <L 99 Kula- 9 9)> + <n, 6,45 ] ds

+§Rfﬂ el e

:L)[(%-vn,xusp +<",S >] dy (24)
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VITA

Ronald Clark Wheaton was born on 13 March 1946 in Steubenville,
Ohioe He graduated from high school in Wintersville, Ohio in 1964 and
attended Onio University from which he received the degree of Bachelor
of Science in June 1968. After completing Officer Training School in
June 1969, he was commissioned in the USAF. Upon completion of navigator
training in April 1970, he served as a C-133 navigatbr at Travis AFB,
California and as a C-130 navigator at CCKAB, Taiwan. He also served
as a C-141 navigator at Charleston AFB, South Carolina until entering

the School of Engineering, Air Force Institute of Technology, in June

1977«
Permanent address: Route 5, Two Ridge Road
Wintersville, Ohio 43952
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