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Preface

This thesis presents a system of computer programs. They

are designed for student use. However, thei r design is modular ,

the code is ANSI FORTRAN and the common 8080 assembler. This

design was selected to make the system transportable. Over 4000

source l ines are included. If a user does not require the complete

system, individual routines may easily be extracted.

Some notes of appreciation are due. Charlie Dutra, Tom

Gabrielle , Gene Mechler, and Professor V. 0. McBrien all partici-

pated in educating me and in creating the opportunity for this

P thesis. My typist , Ms. Nancy Myers, produced an amazing transforma-

tion in the manuscript in almost no time at all. The members of

m y thesis coninittee have graciously endured my moments of confu-

sion and given solid support. I am thankful for Professor Richard ’s

careful conmients and Dr. Hartrum’s understanding. Without

Dr. Kabris ky ’s perspicacious underwri ting not even the statement of

my objectives in this bottom line would exist. I sincerely thank

all who have helped me.

A special note follows : MJ, Jack , Amy, Moira , Nancy —

your patience wi th me has been magnifi cent. You have my promise

that ‘the best is yet to be.’ Thank you.

John R. Leary
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Abstract

A tool for developing microprocessor based pattern recog-

nizers is presented. A two segment system of programs is imple-

mented. One segment is a subsystem consisting of a generalized

pattern classifier program and utility routines for an INTEL

SBC 80/20 microprocessor system. The other segment is a sub-

system of four interactive programs. These four programs support

feature selection , pattern class definition and performance

evaluation using procedures fitted to the classifier algorithm.

This subsystem operates on a user supplied file of feature vectors.( It produces a class defining structure for use by the classifier.

It can use a TEKTRONIX 4014 for graphics support and will operate

interactively wi thin the CDC 6600 Intercom partiti on. Structured

design , modular code, buffer allocation algori thms , and ANSI

standard FORTRAN code make this segment transportable. The

classifier segment requires an 8080 system. Less than 256 bytes

of ROM are used. Data buffer locations and sizes, the num ber of

classes and the number of feature s are specified by the user.

Experiments produced estimates of classifier performance for this

system. An error rate of less than ten percent is reported for

one 26 class character recognition experiment.

C
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A DEVELOPMENT SYSTEM FOR

MiCROPROCESSOR BASED PATTERN RECOGNIZERS

I. Introduction

This thesis presents a development system for use as a

design tool in implementing experimental pattern recognizers.

Some characteristics of pattern recognizers are described in the

next chapter. The art of designing a pattern recognition system

is also discussed in that chapter. The development system produced

for this thesis is discussed in the three fol l owing chapters .

In chapter three , functional requirements are established.

Chapter four defines the algorithms upon which this system is

based. In chapter five , the design and use of the system is

documented. Two questi ons remain to be addressed. Their answers

justify the above discussion . First , of what value are pattern

recognition systems to the Air Force? And second , how does this

system relate to such Air Force pattern recognizers ?

In a recent issue of Air University Review , Dr. Paul Namin

explores the military need for Identification Friend , Foe, Neutral

(JFFN) systems. He makes the point that wi thout such systems

there is a serious limitation , i.e., the rule of vi sual engagement,

which restricts the degree to which the potential of any weapons

system can be realized. An anecdote illustrates his point. It

1
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tells of the destruction of a mu ltiniill ion dollar weapons system

while its pilot is unaware of any threat. Naniin hypothesizes

that this mi ght occur because of marginal enemy advantage in

target detection capability . He then suggests that solutions to

the technology problem posed by IFFN need not necessarily seek

new sensor phenomena. Rather , he holds that a more effective

integration of sensor data may be produced by enhancements to

signal processing systems and “shrinkage in device cost and size.”

This is the synergistic effect of “getting more performance out

of a collection of data than any one of them can provide. ” (Ref 9)

This may be the general military appl i cati on for pattern recog-

nition systems. At each node of a complex network of sensors

may lie a pattern recognizer. It reduces volumes of highe r level

data into simple classifi cation statements which funnel through

the network as command and control status items. Namin ’s IFFN is

“a technological challenge for the ‘80s.” Classification inputs

to c4 status networks begi n wi th simple pattern recognizers
applied to small pieces of the complex electromagneti c warfare

environment.

The development system presented in this thesis is a simple

one. It is primarily pedagogical , and is intended for AFIT

student use in exploration of experimental solu tions to specific

recogni tion problems. But the concept and the configurat ion of

this system are also aimed at the practi cal probl em of cheaply

( implementing prototype pattern recognizer systems. Such



4
prototypes may provide sufficient empirical knowledge of key

sensor data environments for the ultimate implementation of high

reliability systems.

(
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II. Concepts

This chapter presents the theoretical foundations for the

thesis. Following a brief statement of notation conventions and

some definitions , design of pattern recognizers is discussed in

general. Concepts relevant to classification algorithms are next

presented. Then the selection of pattern features is discussed.

Finally two types of pattern recogniti on applications are described.

Notation

Several definitions and notation conventions make this

( report easier. Assume that any pattern envi ronment may consist

of N patterns. These patterns may separate into I sets whose

members share some degree of commonality . Each of these sets of

patterns will be known as a pattern class. An arbitrary pattern

class may contain L members. Any individual pattern may be

represented by J characteristic features. If these features are

considered as an ordered J—tuple , an indiv id ual pattern can be

represented by a feature vector having J components . These

vectors will be referenced as 1XJ row matri ces when t h s  is con-

venient. A population of feature vectors collected from the

pattern environment will be descri bed as a data base or data set,

and denoted ~1. This collec tion can be separated into disjoint

classes. Each of these will be denoted ‘~~. An arbitrary 
feature4



(
vector in the population fl will be denoted F~. Similarly, an

arbitrary feature vector in an arbitrary class will be denoted

F
~
. A consistent use of the single subscripts n and ~. will over-

come any possible ambiguit y in specification of feature vector

class membership. These definitions are summarized in the

notation below.

Si = {F~~1<n<N} (2—1)

where

F~ = (f1, . . . f
3, . . . fe.) (2—2)

I

~~ u ~~~. (2—3 )
id 

•
~

where F c (ii . (2-4)

and W i fl W~ = ~ for all i , k when i ~ k (2—5)

Symbol conventions are implicit in this notation. Vector com-

ponents and scalar values are represented by lower case letters.

Subscripts are used onl y when needed to clarify si gnifi cant

differences and not used to establish a trail of relationships .

Thus F
~ 

is a member of and context will suffice to identify the

vector of which f~ is a component. With the exception of the index

limits N, I, J, and L, only vectors and matrices are denoted by

capital letters. The transpose of the usual I x J row matrix F

to a J x I column matrix is denoted FT. There is one exception

to the convention for denoting matrices. The symbol E.~ is used

to denote the within -class covariance matrix for class w 1. This

5
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covariance is estimated by:

= 

~~ ~ 

(F~~F~ — p Tp )  (2—6)

where P
~ 

= 
~~ 

F~. (2—7)
L 1

In equation (2—6), the notation FJF~ indicates a square J x J

matrix. Also , FLFJ denotes the scalar which is the square of

vector magnitude.

The definiti ons above make possible explana tions of several

concepts upon which this thesis is based.

Pattern Recognizer Design

To recogn ize a pattern is to perceive it as something

previously known . With this simple statement Webster suggests

what Kanal (Ref 23:701) emphasizes as a major evolution of the

last few years: the design of a pattern recognition system has

come to be highly iterative process. A major part of this design

process is acquiring necessary and sufficient prior knowledge.

A major problem in this design process is deciding exactly

what knowledge is necessary and how much of that is sufficient

• for pattern recognition. This decision is made through a two-path

modelin g process.

Box (Ref 2:24) discusses a philosophy of model building.

Fig 1 presents his three stage procedure to find adequate models

from known data. In pattern recognition the data are the patterns

(

6
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II System knowled ge

Identify tentative
model

( Estimate parameters
of this model

Check the adequacy 1
of this model

( Fig. 1. Iterative Model Building Procedure



of interest. Here two paths produce a classification model and

a representation model. These are respectivel y equi valen t to

Webster’s present perception and previous knowledge. In the one

path, features model the patterns. In the other path , class

defining structures model the pattern environment . Through the

former we come to know the latter.

Box explains his procedure as follows . In the first stage

system knowledge is used to hypothesize tentative models. Here

statisti call y ineffici ent methods are used because precise

formulations are not yet available. In the second stage, parameters

are estimated for the tentative model . Non—linear least squares

procedures are used to estimate these parameters and then covar-

iance matrices. After fitting the tentative model to observed

data, in the third stage, the fitted model is checked in relation

to the observations so as to reveal model inaccuracies and achieve

improvement. Inspection of error functions indicates whether the

entertained model is adequate, or if and how the model is to be

revised. After diagnostic checks satisfy the user as to model

adequacy , the deri ved model is used.

The appeal of Box ’s process l ies in its generality. It

applies equally well to each path. Fig 2 shows these paths.

Clearly these paths are not Independent. Production of an error

rate requires both features and a class defining structure.

Obviously the class defining structure is built in terms of

8
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(
features. However , feature identification does not end once a

class defining structure has been derived. Nor is pattern recog-

nizer design complete once an error rate has been validated.

This is the point of this general discussion.

The two paths of Fig 2 lead into the next two sections of

this chapter. They cover feature selection and pattern classi-

fication . Pattern classification is presented first.

Pattern Classification

Put simply, in terms of the notation stated earlier , the

task of a pattern classifier is to assign an unknown pattern F .,

from an unknown data set Si’ to that class Si wi th whose mem-

( bers F , shares the greatest similari ty . This assignment can

be made in several ways. Bayesian classifiers , minimum di s tance

and nearest neighbor classifiers are germane to this thesis.

Bayesian Classifiers. In these classifiers the a priori

probability of and the class—conditional probability density

functions of the members of class are explicitly known .

Decision functions d1 (Fe) are used to establish class membership .

That -is , the probability of misclassification is minimum when

d1(F~) = p(F~jW~) ‘
~r 

&~
), I = 1, . - . I (2—8)

is a maximum with respect to a choice of i. Therefore

dk(Fn) = max {d
~
(F
~
)) •-* F,~ tUk (2— 9)

(T

10 -
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In this expression the a priori probability is often assumed

i dentical for each class. It is also common to assume the mul ti-

variate normal density which is

p (F0t w )  = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2-10)

The symbols F0, P ,  ~~
, J and are all used as earlier defined.

Using equation (2—9) a decision function can be written using the

monotonic log function to simplify the exponential form of the

Gaussian density .

d
~
(F
~
) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2—11)

(Dividing all p (Fn/()Ji ) by 27T
3/’2 does not change their relati ve

magnitudes.) In a Bayes classifier , the set of decision functions

relates the unknown pattern to all classes. The maximum decision

function provides the index of the class to which the unknown

feature vector is assigned (Ref 13:13).

Minimum Distance Rules. Many classification procedures

can be said to follow this technique. The simplest of them first

establish a prototype for each class. Then the unknown is assigned

to that class whose prototype is closest , in a Euclidean distance

sense , to the unknown . This rule require s two assumptions. One is that

in and FL+l c w~ , the vector (FL— FL+l) is also in w~ (Ref 12:11).

This concept is required to justify the usual choice of the centroid

of the class as its prototype. It also supports the second

( assumption which is that similarity between pattern is consistently

11
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reflected by the Euclidean metric on the feature space. This

rule can be concisely stated as follows :

(2—12)
dk(Ffl) 

= mm HF,,- F~ } -~~ F,, C

where 1 < i < I.

Nearest Neighbor (NN) Classifiers. Fix and Hodges

(Ref ii) are credited with suggesting a variant of this classifi-

cation rule. Again a set of distances are computed for the

unknown F~. However, the assumption that the members of a class

form a convex set is not needed. This is because the measured

distances relate F,, to each FL wi thi n each w~~. The unknown

pattern is assigned to the class which contains its nearest

neighbor. The assumption that the Euclidean metric consistently

reflects pattern simi larity must sti ll exi st. The rule i s robust

since it can be sensitive to any actual distribution of FL given

that Si is sufficient. If a vote is taken among the K nearest

neighbors of F,, then a K—NN rule is said to be used. The risk

of error in thi s latter rule tends to the Bayes risk as K and N

tend to infinity . Das Gupta (Ref 9:15) notes that FiN rules are

also related to rules ba~~
3 ‘ . estimates of density f’inctions.

The obvious problems wi th the NN rule are a sensitivity to bad

data points, and a computational cost for data storage and

execution time which tends to become excessive as the Nil risk

tends toward the Bayesian risk.

C
12
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Comments. Three comments on classification rules establish

a perspective for the algorithms developed in this thesis.

(1) Das Gupta (Ref 9:15) notes that the usefulness of a

classification rule is determined by its simplicity as well as its

robustness. Al though conceptual simplicity is useful in that a

rule may be easily understood , computational simplicity produces

the efficiency which permits a rule to be used effectively in

practice.

(2) There are complicated treatments of indecision zones

and tolerance regions which may be asymptotically optima l for

large numbers of classes (Ref 9:13). These may justify the

simplistic approach of covering the feature space wi th as many

“tight” subclasses as possible in order to optimize classification.

(3) Chen (Ref 4:6) notes that experimental results have

established that there is always a small subset of good learning

samples which dominate performance. This possible insensitivity I~
.

to sample size of good quality neighborhoods can lead to an

experimental procedure. In it , one uses analytical intuition to

uncover the kernel of good-neighbor patterns which may define the

optimal class. Undesirable samp’es can be said to belon g to the

“husk” of such a class. The idea is an outgrowth of that of the

edited or condensed UN rule whi ch attempts to eli minate samples

on the wrong side of class boundaries.

13
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Feature Selection

The term “identify ” was used deliberately in the first

block of the features path in Fig 2. It covers extraction of

measurements which characterize digit ized pattern data. It also

encompasses the selection of the minimum subset of these values

which is adequate for acceptable classification . Extraction is

a problem dependent task. The more general question of selec-

tion is addressed below.

The problem here is essentially one of computational bene-

fit. The number of features extracted from the pattern data is

often deliberatel y too great. (See Chapter 4 under benchmarks.)

This leaves a need to reduce the measurement set to one whose

size is manageable. There are many possible subsets. The total

number to be evaluated when j features are selected from )

features is

T = (
~
) = j!(J-j)! (2-13)

There are many techniques which have been appl i ed to this

evaluation. The problem is one of choosing a better subset. It

is an accepted fact that there is only one guaranteed way to find
0

the best subset. Cover has shown this to be exhaustive search

(Ref 8:117). Jam reports that added features may actually degrade

the performance of a classifier. Thus subset selection is moti-

vated by more than an interest in computational efficiency (Ref 21:1).
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Subset selection methods are basically search procedures.

There is basic agreement that the best control on such a search

procedure is to estimate probability of error by computing the

empirical error rate on a large test data set (Ref 34:72). The

simplest subset selection algori thms establish a figure of merit

for each feature and then pick the best n features. Sequential

ordering processes are used to reduce computation. Chen (Ref 3:89)

notes that dynamic programming is a good technique for sequential

search. He states that the search for one best featare at a

time is computationally the most efficient. Stearns describes

the bias that may unintentionally derive from previous selections

in such a search. Sequential searches produce nests of subsets

in which

~1c ~2
c •

Features that are “powerful” in early stages remain in the final

set even though they may no longer be needed. He suggests a

“pl us m , take away n ” search to avoid the fact that the two best

features may not be the best pair (Ref 34).

In summ ary, computational cost is a key factor in subset

selection. The most critical element of any search procedure

appears to be evaluation of error probability. This is best

estimated by an empirical error rate. Finally, while nested

selection procedures may bias results , they offer effi c iency of

implementation.

/
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Pattern Recognition App lications

The algorithms implemented for this thesis are evaluated in

terms of two differing applicati ons of pattern recognizers in

Chapter IV. A brief background on these different applications is

given below.

Character Recognizers. Considerable work has been done

at AFIT in investigating techniques which apply to the recogni-

tion of two-dimensional data. In these efforts features have

been extracted from various digital representations of pictures

using the two-dimensional Fourier transform. This is consistent

with the work of Kabrisky whose research produced a model of the

human visual system (Ref 22). Tallman ’s dissertation indicates

that hardprinted characters can be recognized by use of low

frequency fi l tered Fourier components (Ref 35). Efforts by

Sponaugle to generalize this work towards recognition of multi -

font typeset letter data are the basis for test data and benchmark

comparisons given later in this report (Ref 33).

Waveform Recognizers. Signal classifi cation can use pattern

recognition techniques to advantage. Feucht’s recent article in

Computer Design is motivated by this fact (Ref 10:68). Hall and

Bouvier pro duced AFIT theses deal i n g su ccess ful ly with wav eform

pattern recognizers (Refs 14, 1). Radar signature pattern

recognizers are found in Air Force operations. The classifier

algorithm implemented for this thesis was originally designed by

(
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(
the author for use in a Space Object Identification application

(Ref 25). Many of the procedures present in this thesis are

eclectic outgrowths of the synergy of that development project.

These range from the concept of biased samples to which Chen

attests (Ref 4:60) to the use of asymmetric class boundaries

(Ref 32). Finally, a sample of radar sig na tures was used by

Kulchak (Ref 24) to produce the Frequency of Binary Words (FOBW)

feature vectors referenced later in this report.

(

(
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III. ReSjuirements

In this chapter the structure of the thesis is developed.

The goals and objectives of the project are stated. These are

addressed in a short discussion of underlying assumptions. There-

after follows a statement of the functional requirements for the

development system produced in this effort. A bubble chart is

presented and used to explain the concept of system data flow

upon which this development system is based. A short statement

of design and coding standards is then given. Selection of a

name for ‘the system concludes the chapter.

( Goals and Objectives

The ultimate purpose of this thesis is to support experi-

mental implementation of microprocessor based pattern recognizers.

Meeting this goal requires production of a system of programs.

This system is intended to be a designer ’s tool , As such , it aims

to facilitate the process of recognizer developmen t, and to drive

that development towards a specific microprocessor implementa-

tion. The system is also intended to be used and modified by

students as they develop , experiment with , and investigate pattern

recognition algori thms.

In order to achieve these goals , three specifi c develop—

nient objectives are stated for the system. Its design is required

(
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to model a key recognizer element , the pattern classifier. To

simplify student implementation of pattern recognizers, this

model classifier is to be programmed for a specifi c microprocessor.

The system design is also required to generalize the process of

deriving a class defining data structure. The classifier bases

its decisions upon this structure. Thus , system error—rate is a

function of this structure. Effective generalization of this

process makes the system an effective tool for designers of

pattern recognizers i n general . Finall y, a series of benchmark

performance measurements are required. These demonstrate the

system as a framework for both potential users and experimenters.

They also serve to qualify system worth. All of these require—

( ments boil down to three specifics:

(1) Design and implement a pattern classifier for a

microprocessor system.

(2) Design and implement the supporting functions necessary

to generate the class defining data structure with which the

classifier can make acceptable decisions.

(3) Experimentally demonstrate the above.

Assumptions

The worth of the goal set for the above becomes clear in a

discussion of several assumptions. This follows .

(
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Microprocessors are readi ly avai lable , inexpensi ve, and

small in size. Small microprocessor systems can become elements

of large networks . These systems can be interfaced to large

random access memories (RAM), disk storage, and high speed pro-

cessing technology. In the light of Watuin ’s concept which intro-

duced this report , one should therefore assume that microprocessors

must be addressed by any effort to upgrade sensor data processing.

The task of implementing a pattern recognizer crosses

many disciplines. Data processing obstacles can be major ones to

individuals otherwise highly qualified to analytically determine

significantly discriminating pattern features. The task of tuning

an optimal classifi er or generatin g a class defin ing structure

may similarly sidetrack would—be designers whose talents tend

towards the more critical task of designing efficient feature

extraction hardware. Given these postulates, the worth of a

general purpose design tool with a pre—selected classifier algor-

ithm becomes clear. This argument strengthens considerably when

the would-be designer is a thesis student pressed by time.

Pre—selec tion of a simplistic classifier as an element of

a recognizer system may provide a benefit aside from its economy.

An optimum classifier can only optimize the processing of its in-

put features. It may well be far more critical to the implemen-

tation of successful pattern recognizers to place limi ted “model—I”

systems in the environment than to initially seek high performance

20
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(
systems. The search for better input features becomes tedious and

intractable wi thout a computer yardstick for their evaluation.

What better yardstick is there than the performance of a “model-I”

classifier which operates in the actual data environment? The

answer to the foregoing question is obviously moot. Future experi-

ments may resolve it.

Required Functions

The specific objectives stated above were analyzed in the

light of the concepts and techniques of pattern recognition which

were presented in the previous chapter. Broad functional require-

ments were thus derived to accomplish the stated objectives. These

functional requirements were then studied with data processing and

software design considerations in mind. From this effort a data

flow diagram was produced which reflects the overall system opera-

tion. This data flow diagram and the functions it embodies are

described in the fol l owing paragraphs.

System Segments. The system should consist of two segments,

One, a Classi fier Segment, should implement the selected pattern

classifier design in a mi croprocessor. The other, an Interpreter

Segment, should implement those functions required to interpret a

sample data set of feature vectors in such a way as is required

to produce a class defining data structure fit for the classifier.

The specific functional requirements for each of these segments

are stated in the two paragraphs below.
(
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(1) The C l a s s i f i e r  Segment should consist of software which

resides in a microprocessor. This software should implement the

classifier and its supporting routines. It should:

(a) be able to assign unknown patterns to their

proper classes wi th an acceptable error-rate.

(b) be able to record classifi cation decisions ,

(c) be coded so as to be independent of the loca-

tions and sizes of buffers requi red for feature data and for the

class defining structure.

(d) be coded so as to be independent of the number

of features and the number of classes which comprise a given

appl ication.

(e) be implemented within less than 256 bytes of

memory to allow storage within one ROM data page of 100H locations .

(2) The Interpreter Segment should consist of software

which can be used as readily as possible to produce a class de-

fining structure for the former segment. In this sense it should

(a) be coded in FORTRAN using a top—down structured

design, and conformi ng as closely as possib le to ANSI standards

so as to maximize intelligibility , modifiability , and transport-

ability .

(b) be able to adjust the size of memory buffers

used for data files and internal structures to fit the size of

user resources.

I
,
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(c) be able to generate and to refine a class

defining data structure which fits the classifier segment.

(d) be able to select and evaluate a subset of

pattern features for its capacity in discriminating between pattern

classes.

(e) be able to support analytical evaluation of

class and feature characteristics.

(f) be able to support efficient transfer of the

class defining structure to microprocessor storage.

(g) be able to produce and document a simulated

error-rate for the microprocessor implementation of the classifier.

(h) be able to operate in either an interactive or

( a batched computer process.

~ys tem Data Flow. An analysis of the data processed by

the system led to the bubble chart presented in Figure 3. This

chart reflects the requirement for two system segi~ents and indi-

cates their conceptual and physical Interface. The Interpreter

Segment processes feature data and generates class definitions.

These two data types are the primary system currency. Class

definitions are denoted prototypes for convenience. These are

based upon the feature vector data provided to the system. These

latter data are organized for efficient system use in the process

labeled “CREATE” on the figure. Mul tiple feature vector files

provide a capacity to store test samples, segregate patterns

/

23

- - - 
- ‘

—
~~*~~~~~~ 

-



‘4

‘I

I

~~ t~L~~L I  \
-

~~~~ ~~~~ 

~~~~~~~ \~~~~~~ 
‘~
.\ ~

? 
I

I ~~~~~~ ~~~~~~~ ~~~~~~~ 
~~~~;c~ 

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

) I ~
~~~

çy.

~%lLr b
\

~
2

24

-1 _____ _______________________________________



typical of data classes , and subset the overall data set into

manageable pieces. Class definitions , or prototypes, are produced

by the process labeled “DEFINE” on the chart. This process allows

refinement of specific prototypes by selective use of input feature

data. The capacity of the complete class defining structure to

assign feature vectors to their proper classes is measured by a

classification error—rate. This is documented by the process

labeled “TRYOUT” on the figure . This same process supports selec-

tion of feature subsets , an d evalua tion of these subse ts in terms

of their respective classification error—rates. The process

labeled “FORMAT” on the chart configures the class defining struc-

ture for transfer to the classifier segment. It also satisfies

the requirement to support analysis of feature data by producing

various graphic displays. These include three-dimensional plots

of histogram data produced by the “CREATE” and the “DEFI N E”

processes. These displays reflect the distribution of values

occurring within a given feature dimension both wi thin the enti re

data set and wi thin a given class. The basic process of the

classifier segment is reflected by the label “DECIDE” on the figure.

Th i s process rece ives its input from the sensor env i ronmen t

through a process which is implicit on the chart. This is the

process of feature vector generation which is assumed to operate

in a parallel and controlling relation to the “DEC IDE ” process.

25
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Standards

Standards are applied to ensure that the system which is

produced meets general requirements. That is , it must be intelli-

gible , modifiable , and transportable. These requirements affect

software design and progralil coding.

Design. The expression of requirements in this chapter

i l lustrates the key design standard to be applied to the develop-

ment of this system. This standard requires that design decisions

be made in a structured sequence. In this process , basic ideas

are successively decomposed into subordinate concepts. These

concepts are refined and the process is repeated until it has

produced concrete tasks , specifications and definitions. The

process is called structured design by IBM (Ref 20). Earlier ,

Niklaus Wirt h termed it development by stepwise refinement (Ref 36) .

Applied to the design of computer software , the technique requires

that the functions of a program solution first be specifi ed .

Then the data processed by each function are identified. Finall y,

functional relationships are determined. Program and data speci—

fications are refined in parallel . Binding decisions about

process logic and data representation are delayed as long as

possible. Thus the advantages of various data formats become clear

in contrast to one another. Processing paths are produced by

choice and not forced by prior decision or arbitrary assumption.

Wi rth justifies his technique of stepwise refinement with the

(
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argument that it produces a degree of modularity which greatly

eases program adaptation to changes of purpose , function , or

operating environment. This modularity therefore become s a support-

ing requirement to ensure the modifiability and transportability

of the system.

Programming. Adherence to American National Standards

Institute (ANSI) FORTRAN standards facilitates transportability .

Use of structured programming conventions enhances intelligibility ,

modifiability and transportability. Use of these standards and

conventions is therefore a supporting requirement.

AN SI FORTRAN standards are clearl y define d for CDC FORTRAN

IV (Ref 7). This FORTRAN includes ANSI standard X3.9-1966. Since

FORTRAN is a well-used and documented language , these standards

are widely exceeded by off—the—shelf compilers . There fo re adherence

to the standard often imposes a restriction. Some of the more

important cases in which CDC FORTRAN IV should be restricted for

this project are listed below.

(1) Input/output syntax will use the syntax READ (u,f)

iol i st or WRITE (u ,f) jou st as defined by COC.

(2) Data label s will be restricted to six characters.

(3) Data statements will not use implicit l oop syntax.

(4) Hol lerith constants will only appear in data state—

men ts or subrou ti ne call statements, and will use the nH syntax

as defined by COC.

27
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(5) Array references will be consistent with dimension

sped fications.

(C) Only sequential file access logic will be used.

(7) Subscrip ; expressions will be avoided.

(8) Mixed mode expressions will be avoided.

(9) Non—standard system function s and subroutines wil l be

avoided.

(10) Deviations from ANSI standards will be commented in

the program code.

Structured programming conventions are guidelines which

simplify program construction as much as they enhance program

modifiability . FORTRAI4 does not admit such key structured

programming constructs as the DO-WHILE. Moreover , FORTRAN pro-

vides a GOTO construct which must be used at times. However,

inasmuch as possible structured programming technique will be

used. When log ic structures are complex , indentation will be

used. The code will be segmented as much as possible. Each

subroutine will have a single entry and a single exit. Module

sizes will be limited to one page if possible. Logic flow will

be sequential , wi th imbedded procedure calls , as much as possi-

ble. To ensure intelligibility of the program code, a ratio of

at leas t one exp lana tory comment to each seven source li nes

will be maintained. Finally, meaningful names will be used wher-

ever possible .(Ref 20:8—1).

(
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System Name

Consistent wi th the last convention stated above , the

name assigned to this development system should be descriptive.

An 8080 microprocessor system is available to support this

project. The system ’s classifier segment will be coded to

operate on this microprocessor system. This classifier is de-

fined in the following chapter. It references n dimensional

rectangular regions in its assignment of class membership. These

can be visualized as boxes in n—space . For these reasons , the

system is called the BOX8O system.

I’
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IV . Algorithms

The design of the BOX8O system rests upon its classification

algorithm. A specialized data structure supports this algorithm.

It contains user-provided pattern features and related va l ues from

which pattern class boundaries are defined. To produce this

structure , one of several data representation algorithms is fi rst

applied to the user feature data. Class prototypes are defined.

Then a heuristic feature subset selection algorithm is applied to

these prototypes to reduce the size of the class defining data

structure . This facilitates microprocessor implementation of the

classifier. All of these algori thms were tested individually

against various performance benchmarks before their implementa-

tion in the BOX8O system. Then as the system was developed , the

algorithms were exercised as system modules were verified.

Al gorithms for data representation , classification and feature

subset selection are discussed in thL chapter. Related performance

benchmarks , and testing procedures for system modules are presented

as well.

Data Representation

To allow comparison of histogram displays between classes ,

and to enable byte sized coniponent output for microprocessor use,

scaling options are provided.

30
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In creating the BOX8O feature vector data file , three

scaling options are provided to standardize the range of component

variation. These simplify later data comparisons . They are

implemented by an energy , a unitizing, and a shifting transform.

Each of these scaling options maintains relative angles between

vectors. However , vector magnitudes vary. Given a feature vector

F0 with components ~~ these three options produce a new vector

as follows .

Energy normalization :

F~ = Fn/e (4—1)

‘3
where e = ~~ f~.

2 
(4-2)

j=1 ~

Unit normalization:

F~ = F0/ 1F0 1 (4—3 )

‘3 1
where I F ~ I (

~ f 2)i (4 4)
j~1 ~

Shift normalization :

F~ = mF~ + B (4-5)

where m = 1/(a+b) (4—6)

in which a = max { f~~Jn= l~ N , j=1, ‘3 }

b = —mm { f~~In= 1~ N , j=1, ‘3 )

and N = number of vectors in the data set

‘3 = dimensionality of the feature space

and B = (b, b, . . . b) (4—7)
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From the above , it is clear that each F~ resul ts from a

linear shift of the original Fn~ 
Therefore relative angles be-

tween the F, remain the same as the angles between the F~.

However, vector magnitudes do vary. For shift normalization

there is a constant variation for the entire set {F~}. For unit

normalization , all vector magnitudes collapse to unity . In energy

normalization while the energies of the F, become unity , their

magnitudes become less than 1.

An additional transform is provided. This ‘squaring ’

transform increases the precision possible in component va l ues.

However, it causes a twisting of the feature space which may

change ‘natural ’ relationships. It is provided as an input trans-

( form for experimentation only. This transform standardizes each

feature component to the range apparent in the data set. This

facilitates observation and measurement of data variation in each

dimension of the feature space. Transformed vectors are produced

as follows. -

Squaring transform:

= F0T~ + B (4-8)

in which T = diagonal J x ‘3 matrix of ~~~

where t,~ = (a ,~ + b~) for

a~ = max { f~jIn=1~ N I

b~ = —mm { f~~In= 1 N I

and B ( b1, . . ., b~) for b. as defined above .(
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In this transform both relative angles , and magnitudes of F~ vary

from those of F1,.

Normalization of feature component values using component

variances measured from the user data set was considered as a

possibility . Since there is some possibility that the distri-

butions represented in that data set will not reflect those of

the true population , this means of normalizing componen t valu es

was not implemented. To cover the possibility that true popula-

tion minimum and maximum values are not represented in the user

data base , the ranges (a+b) referenced above can be extended by

a fractional proportion wi th little problem.

In the generation of the microprocessor data structure

which defines class boundaries , a trans forma tion is necessary to

map feature vector and prototype components into an eight bit

range. Here, the squaring transformation of equation (4-8) is

used since it preserves the greatest component precision . Since

class boundaries exist at this point , no distortion of performance

occurs. Use of this transformation implicitly assumes that it

can be embedded into an independent feature generation process

efficiently. This is a simple operation requ i ring onl y one ad d

and one multiply for each feature.

In transforming class defi n iti ons there are two separa te

al gorithms used. Fi rst, as given in equation (4— 8),

F, = F~ T~~+ B.

I
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- -

Similarly, for class mean vectors, known as pro totypes ,

= J~ T~~+ B. (4—9)

This prototype transform is readily derived at the vector level

as fol lows: 
L

P~ = ~~ F~ (4-10)
z= 1

L
= ~~ (Fj~~+ B) (4—11)

~
= 1
L—

= (.
~

- ~ F ) i 1+ B (4-12)
9 1  £

= P1T~~+ B - 
(4-13)

where

I = the order of class I

an d T, B are defined as in (4-8)

The second algorithm operates on class boundaries. These

are established by means of diagonal matrices referenced to the

prototype vector. These matrices are explained in detail in the

next section. To simplify this discussion of their transforma-

tion , consider class boundaries to have been defined by a diagonal

class covar ian ce ma tr ix , 
~i• 

The transformation for this class

diagonal covariance matrix is clearly understood at the component

level , -

where J~.j is the ~th componen t of

is the j  component of P1

/
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fjj is the ~th component of

~~ is the ~th member of T

b~ is the ~th member of B

U~j = 
~~~ ~~~i 

~~~~~~ 
½ (4-14)

L p ’..-I-b . f .+b. 2 ½
= 

1 
~~ 

( 13 3 - 
U 3’

I) 1 (4—15 )

= 

~~~~~~~~~~~~~~~ ~ 
½ - 

(4-16)

= “~ 
( o f ) 2 

~ 
½ (4-17)

Thus

= a~~/t~ (4—18)

This transformation is provided as an option prior to the

calculation of classification error rates. The option , through

its use of integer calculations , allows simulation of micro-

processor performance by the BOX8O system. The transformation is

also exercised prior to output of the class defining data struc-

ture i n mic roprocessor forma t. Thi s al l ows byte sized encod ing

of output component values.

Classification Algori thm -

A feature vector associated wi th an unknown pattern is

assigned to a known data class by a classification algorithm.

The BOX8O system classification algorithm partitions hyperspace

(
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into regions which can be visualized as hyperspace boxes. Class

membership is derived from the i dentifier of the hyperspace box

which contains the unknown feature vector. Since these boxes

need not necessarily be mutually exclusive of one another , the

containment property is obtained through a distance measurement

with which decision ambiguities are resolved.

The BOX8O classifi cation algorithm was designed to maxi-

mize operating efficiency wi thin a microprocessor implementation.

Minimum use of memory , ~as requi red, reduces execution time. This

algorithm was also designed with the number of feature dimensions

and the number of pattern classes as parameters of its execution.

Any combi na tion of I classes an d J feature dimens i ons can be( processed given that sufficient memory is available.

The algorithm is implemented within both of the BOX8O

system segments. There are small variations between these imple-

mentations. In one instance the implementation is in FORTRAN .

Here, the referenced data structure is a two-dimensional array

containing a collection of vectors. Each class is defined by

a set of three of these vectors. Two options are provided this

implementation. One uses a Euclidean norm for the distance

measurement rather than the supremum norm. The other option

enables processing of scaled data. It substitutes truncated

integers for real values of referenced vector components. In

the second Instance the algorithm has no options. Its referenced

(
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data structure is a linear list partitioned into a series of

segments , one for each data class. This instance occurs in the

micro-processor based classifier routine. It is written in the

assembly language for the 8080. (Ref 16) 
-

Memory requirements for data used by the above two imple-

mentations of the BOX8O classifier are calculated in terms of

the numbers of classes (I) and features (‘3) to be processed.

Memory (H) required for the Interpreter Segment’s FORTRAN data

structure is

M = (‘3+3) (2I+K) (4-19)

Memory required for the 8080 Classifier Segment implementation

is calculated

M = [(3J)+1](I) (4-20)

The FORTRAN imp l ementati on references a data struc ture i n wh ich

vector dimensionality has been increased by three extra values.

This produces the factor (J+3). The factor K indicates the number

of classes having asymmetric boundaries. This differs with the

8080 implementation which adds only one extra value , a cl ass

identifier , to each class. This implementation assumes that each

class has asymmetric boundaries.

The algorithm implements a variation of the minimum dis—

tance classification rule. An unknown vector is assigned member-

ship in that class to which it is nearest. However, this algori thm

exhib its facets of other common classifier algorithms . From the

perspect ive tha t the al gor i thm references the mu l tivar ia te

37
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covariance of each class ’ features, it can be considered a

variant of a Bayesian decision rule. However, no formulation of

the a priori probability of class membership is ~de. Furthermore ,

feature dimensions must be assumed to present uncorrelated , inde-

pendent measurements of pattern variation. Finally, these feature

measurements must be assumed to be completely representative of

pattern class membership and must be assumed to generate Gaussian

distributions. Therefore, although the algorithm has a statisti—

cal flavor , it is not a true Bayesian algorithm. However, from

the standpoint that its referenced data structure partitions the

feature space into a collection of hyperspace boxes each of which

bounds a neighborhood of a given class , it can be considered a

variant of a condensed nearest neighbor rule. This perspective

is justified by the fact that each class boundary is statistically

constructed so as to enclose an advantageous subset of class

members . Here , in discriminating between classes to produce the

classification assi gnment , the evalua ti on of di stances to cl ass

boun dar ies i s analo gous to evaluat ion of di stances to the near est

neighbors of the unknown pattern. The weakness in this comparison

lies in the fact that the BOX8O algorithm tends to benefit from

convex class boundaries. The NN algorithm needs no such assump—

ti on.

The data structure which establishes each class ’ bound ar ies

consists of a vector and a pair of diagonal matrices. The vector
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I

is a class mean or prototype vecto r. For class i consisting of

a set of feature vectors F~ of dimensiona lity ‘3 , this proto-

type vector is

L
= E FR . (4—21)1

The two diagonal matrices establish class boundaries in terms of

component variation from this mean. These matrices are most

clearly defined at the component level . Consider a class of

feature vectors represented by L members of dimensiona lity ‘3. A

feature vector within is

F
~ 

= (F
~i

) . . . f~~, . . . f~~) (4—22)

( and the prototype vector for the class is

= (P 11, . . . I’.
~j’ 

. . . P.~ ) (4—23)

The diagonal matrix which establishes boundaries less than this

prototype is

.
. 

0 (4—24).zjj

0 ~~. J x J

The diagonal matrix which establishes boundaries greater than the

prototype is similarly represented

= [z~~]. (4—25)

No te tha t the subscr i pts of ma tr i x components do no t reflect

membership in class i. This is simply a convenient notation .

(
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These components are formed as follows .

iff 
~Rj 

> 

~ij ’ 
Z~~ = [ 

~ 
f ) 2

~~ (4-26)

iff f9~ < ~~~ zjj = [ 

~

- 

~~ 
(P j j —f Rj )2i

~ 
(4—27 )

In defining a class in terms of a class mean vector and two

boundary niatrices , a minimum Euclidean distance algorithm can be

constructed. However , a scaled distance measurement is used here.

That is , the distance of an unknown vector from a class prototype

will be measured in each component dimension in terms of a number

of boundary units. This is a distance measure similar to the

( Mahalanobis distance. Given uncorrelated features , and using the

siniplying assumption made for equations (4—14) to (4—18)

P ( F  £ ~~) > 1 1  (i~a~
2). (4-28)

Where the features are correlated , this probability can be

wri tten
- 

J -

Pr(F n c w~~) > max fo , (1— E a.2)) (4—29)
j  3=1~~

These bounds are derived from Tchebychef’s i nequality by Godwin

(Ref 12:63).

To assign class membership to an arbitrary feature vector

with components f
3
, first a composite boundary matrix , Z1 , is

formed for each class i. This produces -

(
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.

~~~

Zi = ~~~~~ (4—30)

In this composite boundary matrix

iff f~ > p.~ then ~~~ = (4-31)

and 1ff f~ < p.~ then = z~~. (4—32)

Distance from an unknown F,, to this class is next computed , first
- as a vector and then as a scalar. This effects a classifying

decision rule as follows

Din = — F,,) Z1 (4—33)

= I I D in I~ • (4 34)

The scalar dj,, is considered a member of the set

* 
= ~~~~ . . . d1,,, . . d1~}• (4 35)

Class membership is then assigned to that class to which

distance is minimum. That is
- 

dk = MIN {d. ) F~ c ~k 
- (4-36)

Several notes about this algorithm are worthwhile. The

two—sided approach to defining class bouudaries was suggested by

Pacheco (Ref 32:11) in the course of a revie~’ of the radar signa-

ture recognizer descri bed in Chapter 2. The simpler process

which uses a single boundary matrix to define both sides of a

symmetric hyperspace boundary for a class can be described as a

minimum distance classifier having a Mahalanobis ’ distance metric.

( The assump ti on that fea ture di mensi ons a re uncorrela ted an d
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therefore independent allows the composite boundary matrix , Z’, to

be considered as a diagonal covariance matrix , 
~~ 

in th is case

the distance measurement to the ~th class can be written.

d~,, = (F 1,— P1 ) f~
1 (F 1,

_ P
1 )
T. (4—37)

The equivalence of this expression to equation (4-33) is readily

seen in a simple example. Let dimensional ity ‘3=2, and

X = P
~ 

— F,, (4—38)

where X = 

~~~~~~~~~~~~~~~~ ~i2~~n2~ 
(4 39)

Let ~:~
1 

= [1/a ii
2 

~ 1 (4-40)
LO

J x J = 2 x 2

where 
= 

~~ 
(p~~-f~~)

2 ) (4-41)

In this example it is notationally clear that

= [x1, x2J 1/a~ 0 x1 (4-42)

0 1/022 X 2 
-

From the rules of matrix algebra , this is

d~,, [x1/a~1, X
2/a~ 2 J [

~
] (4-43)

which is

x 1
2/a~1 + x2

2/a~2. (4—44)

Equation (4-44) defines the square of the Eucledian norm in two

space. Thus one sees that
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= 1D m !2 
(4 45)

where D~1, = [x1, x2] 1/o
~~ 

0 
-

0 1/0
22

which is

Din 
= (P~ - F~) Z

i. (4-47)

In this way the equivalence of equations (4-37) and (4-33) has

been demonstrated.

The foregoing presentation of the BOX8O classification

algorithm avoids one issue and glosses over another . The former

is a programmatic statement of the actual algorithm which refer-

ences the defined computer data structure . This is presented at

the close of this chapter. - The latter is the derivation of the

BOX8O nomenclature . This explanation follows .

(1) The J dimensional region defined by equation (4—37) forms

an ellipsoid in hyperspace whose shape is specified by 
~ 

(Ref 13:36).

This ellipsoid has its -axes oriented along the axes of the space

since is diagonal.

(2) The ‘3 dimensional region defi ned by equation (4—33)

forms a hyperrectangle about the prototype vector , P.s. This

results from a computationa lly simplifying norm used to produce

the magnitude of Din e This norm is defined as follows

I I D ~~~ IJ = sup (x1, . . . x~ . . . x3) (4— 48)

where D in = 

~ i
_F

n ) = (x 1, . . . Xj~ . . . Xj) (4—49)

43

— —~~-—--—— — — -,-~-==~v.~___ .—--- --- .- -
~~~~~~~~~

—- — _
~
__

.~ —

,~~~~
- . -.. -~-;.~*4~~.:- . - —



This norm produces a well—defined metric and is well known for

its computational simplicity (Ref 7:104). It can be shown that

in the limit

1 D 1/P
r

ix~ I I = max ix~I (4-50)
3

(3) The region bounded by the vector pair

= + (4-51)

and U’- = P. + ~~~ (4-52)

encloses a subset of F~ c w .) • Fig 4 describes this region for

and in a space having ‘3=2 dimensions.

+ 

~~~~~~~~ 

~1
+

DiR = P1 — F~ = (4,4), I 1 D 1R II = 4

D2R = P2 — FR 
= (3,2), 1 1 D 2R I J =

( Fig. 4. BOX8 O Distance Measure
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The rectangular aspect of these class regions , from the

sup norm distance metric , becomes clear in this figure .

Classification Algorithm:

1. p~pcedure CLASS (FEAT(I ,L),IC)

2. begin

3. set DMIH = 1E1O

4. for all classes I do

5. begin

6. set Dt~AX: = -1E1O

7. set NCAV (to index class I , P~)

8. set NCSDL (to index class I , Z~~)
- 9. set NCSDR (to index class I, Z~’) -~

10. if NCSDR eq 0 then

11. set NCSDR : = NCSDL

12. for all dimensions J do

13. begin

14. set NCSD:NCSDL

15. set DFEAT : CLAS (J,NCAV)_FEAT(J,L ) -

16. if DFEAT gt 0.0 then

17. set NCSD:=NCSDR

18. set DFEAT : DFEAT/CLAS(J ,NCSD)

19. if ABS(DFEAT) gt DMAX then

20. set DMJ½X :=ABS (DFEAT)

21. end “3‘
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22. if DMAX it D MIN then

23. set IC: 1

24. end “I”

25. “80X80 CLASSIFIER”

26. end “CLASS”

Feature Selection

Good features make good pattern recognizers . Unnecessary

pattern features make inefficient pattern recognizers . Thus ,

identifying the best features is important to developing an accept-

abl e pattern recognizer.

The literature reflects considerable work done to solve the

general problem of i dentifying features. This problem may be

approached in one of three ways. Firstly, one may rely upon

analytical theory to identify just the set of features which should

be extracted from the pattern environment. However, theory does

not always identify a set of measurements which suffice to com-

pletely classify a pattern environment. In another techni que , one

may compute a large set of candidate features ar?d then rely on

transforms and fi l ters prior to classification to generate a

smaller set of significant factors. In a third method , one may

evaluate a candidate set of features in the light of a classifi-

cation algorithm , and preselect the most desirable subset. The

reco gn i zer then opera tes d i rec tly on thi s subse t of fea ture s

( wi thout added processing.
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An assumption underlying this thesis has been that con-

venience and efficiency are more critical factors in developing

an initial recognition model than a proven optimality or a com-

prehensive analytical basis. Stearn s (Ref 34:71) notes that

from the standpoint of hardware , reducing the original set of

measurements by principal component analysis and transforms

may even produce a loss in overall system performance . His argu-

ment allows that when a transform to a subspace is effected ,

all features of the original space have to have been generated.

Thus , even though subsequent processing may benefi t by reduced

subspace dimensions , the computational costs of feature extrac-

tion must still be carried. This argument led to the develop-

ment of a subset selection al gorithm to implement the BOX8O

system.

Prior selection of an acceptable subset of features has

advantages for microprocessor implementations of distributed

pattern recognition systems. In such a system the master processor

can be used to extract features from the environment. Its feature

extraction software may initially be coded to generate many

feasible and reasonable pattern characteristics. The slave

processor can be used to execute a pattern classifier and produce

recognition decisions. Once a subset of features has been

selected by a process such as that supported by the BOX8O Inter-

~~eter Segment, the feature extraction algorithm can be stream—

lined by straightforward .deletion of extraneous computations .

47 

~~~~~~~~~~~~~~~~~



The result is a process which uses less time. Then the new class

defining data structure is provided to the classifier and another

data—gathering, recognizer evaluation cycle can begin.

Search algorithms for finding a better subset of features

have two common elements as described in chapter II. Estimation

of error probability by calculation of an empirical error rate

is the best evaluation for any feature subset. Before a subset

can be evaluated , it must be constructed by a mapping from the

original feature set. The BOX8O System does not implement

search algorithm . Instead , the search iteration is opened to

the user. Thus , the user can specify the mapping which creates

the subset to be tested. He can also control the search itera-

tion by his evaluation of the empirical error rate which applies

to the subset of interest.

In order to guide the user towards selection of trial sub-

sets of features, a figure of merit is calculated for each feature.

This figure of merit reflects the contribution that its associated

feature makes to the recognition decision . To establish this

contribution a set of interclass distance vectors are computed.

Combinations of these vectors produce diagonal matrices whose

components are the figures of merit for their respective feature

dimensions. Three different matrices are computed based upon

the distance measurement of equation (4—33). In this case, a

pro totype vec tor represen ting an ‘unknown ’ cl ass is su bsti tu ted
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for the unknown feature vector of the original equation . Two sets

of matrices {D11,} and {Dni } are computed for each class as follows .

Xin = (I)~ — 

~~ ~ 
(4—53)

an d X 1,.~ = (P~ — P1) ~ (4—54)

where I < i < I,

1 < n <  I

and matrices Z1 and ZT1 are established as for equation (4-33). A

diagonal matrix is constructed from each of the vectors and

Xr,~ 
simply by considering the vector components as the appropriate

members of the matrix ’ diagonal . Thus

( Din + X in

and D
~~

÷ X
~

The set of matrices {Din ll < n < I) establish the distances from

class i to each of the other class prototypes in the data structure .

Components of these diagonal matrices are measured in the boundary

units of class I. On the other hand , the set matrices {D1,~ I 1  < i < I}

reflect the opposing distances to class i from each of the other

class prototypes in the data structure. Components of these

diagonal matrices are measured in the boundary units of each of

the “other” classes. Opposing matri ces Din and 
~~ 

are rare ly the

same which indicates that this distance measurement does not form a

metric on the discrete space of prototype vectors.

( A series of exper imen ts was used to evalu ate these in terc l ass
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distances. One set of merit figures resul ted from each experiment.

A measure of the ‘volume ’ of each class was sought. Three were

produced. For the fi rst (subscripted 3 below to match program

code), a distance matrix was calculated for each class ,

= (D~1, + D~1 )1 n/i. (4-55)

Then a merit matrix for the feature space was deri ved from these

I
M3 = ~~~~~ v~ . (4-56)

i=1

The components of this diagonal matrix became figures of merit

for their respective feature dimensions.

Each component of the diagonal matrix , M3, is related to

the total interclass distance in its dimension . Experimentation

wi th these component values as merit figures led to the realiza-

tion that overlap between a pair of classes in a given dimension

was not as well reflected in this figure of merit as possible.

This can be seen in a numeri cal example. Let

V = 16.0 0 and V = 1.0 01 16.0 2 0.5
O 8.0 . 9.0

for a 2 c lass , 3 dimension instance. Note that in this case

= D1~.

Here the merit matrix is -

17.0 0
o 16.5 (
O 17.Uj
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and the differences among the feature merits , ~~~ are not appre —

ciable. However , the components of the postulated V.~ show that

in feature dimension 3 the classes are almost equally separated

at large distances of 8.0 and 9.0 boundary units. Therefore, the

classes are readily separable in this dimension. This is clear

from the operation of the classifier algorithm which computes for

this dimension ,

= {d 13, . . . d13, . . . d13} (4-57)

in which

d13 = (p 13 — ~~~~~~~~ 
- (4-58)

Al lowing that ‘~~ for symmetric classes , and considering

each cla ss i n turn as the unknown ,
/ ‘— 8 0  (1) -

‘p 13 p23, — .

and (p23 - p13) = 9.0

In a Tchebyshev sense there is little likelihood of confusion

between the two classes in dimension 3. However, similar compu-

tations for dimension 1 indicate

~ ii - p21) = 16.0 a~~

and (P
21 

- p11) 
= 1 a~~~.

Here, in the same sense , the likelihood of confusion between classes

is great. A similar condition exists to an even greater degree in

dimension 2. To rectify this situation another set of merit

figure was computed as follows .
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1
,

I
M2 = ~ 

VLL= 1

In this case, the components of the diagonal matrix M2 are more

sensitive to the appearance of a small component within some

matrix V .~. Using the V .~ matrices of the previous example this

M2 matrix is

16.0 0.0 0.0
N2 = 0.0 8.0 0.0

0.0 0.0 72.0

Here there is clear indication of the strength of feature 3. The

appearance of the relatively small values 8.0 and 16.0 at com-

ponents rn11, ni22 c H2 indicate that in these features many classes

are relatively close to one another. However a given feature may

discriminate well between all but one class. This instance is

not reflected well by the components of t12. Thus a third merit

matrix was generated. This is 
F I

I I
= E in (11 Din )i fl $ 1. (4 60)

1=1 m=1

This formulation differs from the earlier ones in the use of a

logarithmi c sum , and in the use of matrices 
~~~ 

only. Explana-

tion follows .

(1) The logarithmic sum produces merit figures which form

the same ordered sequence by magnitude as the merit figures

produced by the matrix product.

(
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I I
= ii ( U 0. ), n $ 1 (4-61)

i=1 n 1  ~

However the values of the logarithmi c sum are not nearly so

likely to overflow the floating point limit of the computer. It

\-L~s hypothesized that this matrix product formulation would reflect

dimensions having single class confusion by a greater variation in

its- components than there would exist among components of H2. (The

notion was that in the double product , components would change

geometrically, while in the sum of products they would vary arithme-

tically). Testing with merit figures from M2 to M1 is reported

in the next section. Some experimenting, in a three class problem ,

was done with the M1 figures of merit. These appeared more robust

than N2 figures. However, the 26—class alphabet problem created

overfl ow in the H1 matrix. The N1 merit figures , as can be seen

in the next section , do not reflect the robustness of the H1 figures.

(2) Merit matrix H1 is formed from matrices Di,, only,

since this produces results equivalent to those obtained with the

matrix sum (D~ + Dni ) as for ma tr ix M21. This is because

I I
ii (D

in
) = n (D ,,~), i=n (4—62)

1.~1 ‘1=1

These procedure s for establishing merit figures for feature

dimensions have a similar basis to those of Michael and Lin (Ref 28:172).

They produce a means of ordering features in terms of capacity to

discriminate between classes. They are intended only as a starting

(
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point for a heuristic , manually controlled search for a good sub-

set of features.

To establish subsets of features , the BOX8O system uses a

mapping algorithm which maps the original feature space into a

subspace. This mapping process references an ordered list of

feature dimension tags. Each tag is the number of a feature in

the original space. An ordering may be constructed by sorting

these feature tags by their respecti ve merit figures. An arbi-

trary order may also be manually input. The mapping algorithm

is imbedded in a routine which computes error rates for J differ-

ent subspaces. These error rates can be generated during a

single iteration of the trial classifier. The process of con—

structing tentative feature subspaces is thus piggybacked onto

the BOX8O performance evaluation functi on.

Subspaces constructed by the mapping algorithm are bdsed

on a nesting of proper subsets of features. These subsets con—

tam an increasing number of features from 1 to ‘3. Each subset

is contained by its successor.

In the classification procedure described earlier , a

distance vector is calculated. This is

Din = (P
1 

— F,,) z’ (4—63)

The map pi n g al gor it hm opera tes on the componen ts of th i s vector

to produce a set of ‘3 nested subsets , S~• An error rate is com-

puted for each of these. An example may clarify the process.

Let ‘3=3 and (3 ,1,2) be a list of feature tags ordered by figure
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of merit. Let the distance vector

= (14.0, 63.1, 9.0).

Uere , the mapping algorithm constructs

Si c:: S2~~ S3
(9.0) (9.0, 14.0) (9.0, 14.0, 63.1)

as the set of nested subsets. Each of these is considered a distance

vector in its respective subspace of the original three—dimensional

space. The decision rule is operated on each of these vectors at

once. This is the key point. Rather than operate the decision rule

on each vector in series , these nested vectors are processed in

parallel. Since the max and mm functions which implement the

decision rule can be done in a parallel fashion , some execution cost

is saved. Thus , for each j, 1<j<J ,

dik 
= Mm { HS~I l 1 1<i<I) -+ S

i ~
and a class assignment is obtained and an error rate is computed for

each subspace.

Finally, a special procedure , termed a zapping process , is used

to modify the tentative class definition structure to establish a chosen

subspace as the basis for future trial recognition experiments .

In this process , selected components of all members of the set of

~~ and Z matrices (which reflect class boundaries) are increased

to large va l ues in each matrix. The effect is to nullify all measure-

ments made in those dimensions.

The algorithm used for computation of merit figures , and

the algorithm used to map and evaluate feature subspaces are
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presented in the following two paragraphs. The former is titled

MERIT. The latter is termed LOOK.

~j~~r i t h m  for N~pping and Subspace Evaluation:

1. Procedure LOOK [DIS (J),ITAG(J),RATE(J),NEW ,Kt1OW ,IJ

2. begi n

3. if NEW eq 1 then

4. be~~n

5. for all ‘3 do

6. be~~~
7. set CLOS[(J) = 1E9

8. set ISAV(J) = 0

9.

10. end

11. for all ‘3 do

12.

13. set K = ITAG(J)

14. set W ORK( J ) = D I S(K)

15. 
~~~~~~~~ 

“3“

• 16. for all J d o

17. begin

18. set RMAG = -1E20

19. for K from 1 to J do

20. begin

21. if WORK(K) ~~ RMAG then
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22. set RMAG = WORK(K)

23. end “K”

24. if RMAG le CLOSE(J) then

25. begin

26. set IPICK(J) = I

27. set CLCE[ (J) = RMAG

28. end

29. if fl EW ~~ 2 then

30. if IPICK(J) eq KNOW then

31. set RATE(J) = RATE (J) + 1.

32. end

33. end

34. end

Algorithm for Figures of Merit:

1. p~pcedure MERIT [CLAS(J ,I),FT ( J ,5)]
2. begin

3. for all ‘3 do

4. begin

5. set FT(J,1): = FT(J,2): = FT(J ,4): = FT(J,5): = 1.0

6. set FT(J,3): = 0.0

7. end “3“

8. for all I do

9. begin
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10. set ICAV (to index CLASS I , P~)

11. set ICSDL (to index CLASS I , Z1~~)

12. set ICSDR (to index CLASS I ,

13. if ICSDR eq 0 then

14. set ICSDR : ICSDL

15. for all N except N=I do

16. begin

17. set NCAV (to index CLASS N , P1)

18. set NCSDL (to index CLASS N , Zn~~
)

19. 
~~~ 

NCSDR (to index CLASS N, Z,,~~)
2C. if NCSDR eq 0 then

21. set NCSDR: = NCSDL

22. for all ‘3 do

23. begin

24. 1 f J e q 1 then be~~~
25. set FT(J,4) = 1.0 - - 

F

26. set FT(J,5) = 0.0 end

27. set DI(J): CLAS(J ,ICAV)—CLAS(J ,NCAV )

28. set DN(J) DI(J)

29. set ICSD: = ICSDL

30. set NCSD = NCSDL

31. if DI(J) lt 0 then be~in

32. set ICSD: = ICSDR else

33. set NCSD: = NCSDR end
( 

—
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34. set DI(J): DI(J)/CLAS(J ,ICSD)

35. set DN (J):~ DN (J)/CLAS(J,NCSD)

36. set FT(J ,3): FT(J ,3)+DI(J)÷Dfl(J)

37. set FT(J ,4):= FT(J ,4)*DI(J) 
- 

-

38. set FT(J,5):= FT(J ,5)+DI(J)+DN(J)

39. end “3“

40. end “N”

41. for all ‘3 do

42. begin

43. set FT(J ,1):=FT(J,1)+Ln (FT(J,4))

44. set FT( J ,2): FT(J ,2)*FT( J ,5)

45. end “3“

46. end “I”

47. end “Merit”

FT( J ,3) contains figure s of merit N3
FT( J ,4) contains figures of merit

FT( J ,5) contains figures of meri t M2

N1 = ~ ln (E l ~~~~ 
n / i

i=1 n=1

I I
H2 = ~ I(~~~ (D

~ 
+ o 

~~~~~~ n / i
i~ 1 n=1 n n

I I
M3 = ~~ E(~~ (0. + D,,1)], n / i

1=1 n=1 ~
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Performance Benchniarks

The BOX8O system is a designer ’s tool . It is intended for

student use in development of experimental pattern recognition

systems. It produces a class-defining data structure upon which

a microprocessor based pattern classifier can operate. BOX8O

system performance is relfected in the error rate of its classi-

fier. This error rate is heavily dependent upon the nature of

the data set from which the class defining data structure is

derived. However , the 80X80 system ’s algorithms and procedures

do contribute to this performance . No argument is made here

that these algorithms are optimum. Nor is it claime d that BOX8O

system procedures are uniquely effective . Nevertheless , these

algorithms and procedures are sufficient to generate class defining

data structures efficiently and effectively. These claims are

supported by the discussion following.

~~stem Efficiency . Here , the cost-benefit trade-off is

critical. It makes no sense to me to optimi ze a classifier algor-

i thm on the basis of a data set, however extensive , which cannot

be proven optimal. In the recognition of electromagnetic patterns ,

sample data collection is biased almost by definition. Sensor

locations may be constrained; hardware transients may be unpre-

dictable; the pattern environment may even be simulated. The BOX8O

system is configured to provide a low cost avenue towards the

necessary class defining data structure . Finall y, the BOX8O
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I

classifier itself is configured for l ow—cost microprocessor

implementation.

( I )  In generating a class defining data structure , the

BOX6O system uses a system segment of four programs. These programs

optimize memory use wi th generalized data structures and a memory

allocation module. They communicate through standard system data

files. These files and program source code conform to ANSI

standards. Program structure is modular. Design conforms to top—

down concepts. As a result , this system segment is transportable ,

and readily modifiable. Since it can be readily configured for

use on any minicomputer or large—scale system , it is a low cost

tool for use in pattern recognizer development. The efficiency

of the individual programs in this segment is not as critical as

the above general cost of using the system. Yet, in the alphabet

classification experiment discussed in this section , the trial

classification process required -less than 55K of CDC6600 memory

and executed in less than 23 cpu seconds. This contrasts to the

similar costs of 140K memory and 41 cpu seconds for the specialized

al phabet classifier program which provided comparison data.

(2) The classifier segment of the system uses less than

256 bytes of microprocessor ROM. The class defining data structure ,

of cour se, uses RAM memory in relation to its size as specifi ed

in equation (4—20). No actual timing of the execution of this

segment has been performed. To some extent this timing Is problem—
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dependent. That is , the total time required to iterate through

the data structure for a given problem depends on the numbers of

classes and features for that problem. In addition , the very

simplicity of this algorithm indicates a speedy execution.

~y~ tem Effectiveness. Here, the contribution to performance

of system algorithms and procedures is addressed. The classifier

algorithm operates with an error rate within reasonable limits of

that produced by a comparable algorithm on each of two data sets.

Similarly, the algorithm which evaluates feature merit establishes

merit figures which match , within limits , the merit figures

established by other such algorithms on these data sets. Finally,

the procedures for selection of a feature subset , and for genera-

tion of the class defining data structure for a microprocessor ,

successfully reduce data structure size without increasing the

classifier error rate significantly. These aspects of system per-

formance are detailed in the following paragrap hs.

Previous thesis work at AFIT produced the two data sets

with which BOX8O system performance has been evaluated (Refs 33,

24). Performance benchmarks were established for each data set.

BOX8O system algorithms were analyzed in terms of these bench-

marks both during design and after implementation. This analysis

follows .

(1) Table I and Fi gs 5 to 16 apply to Frequenc y of

Occurrence of Binary Words data . This data consists of some 500

feature vectors of 14 components which represent patterns from a
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three-class recognition proble m . Both the Online Pattern Analysis

and Recognition System (OLPARS ) (Ref 5) and the Statistical Package

for the Social Sciences (Ref 30) were used to establish error

rates for the classification of this data.

(a) As in other radar pattern recognition problems ,

the features in this data set are highl y correlated. Table I

presents Pearson Correlation coefficients . These represent an

index of the degree of linear relationship between the features.

(Ref 27). As can be seen, fewer than twenty percent of the

meaningful correlations are less than .70. Note that only one of

these is less than .50 and that nearly half of these associate

with feature 6.

(b) Using a Mahalanob is 4 distance based discriminant

analysis procedure (DISCRIMINANT), SPSS produced an overall

classifier error rate of 26.6 percent. (See Fig 5.) The OLPARS

system also processed this data. With the same statistical measure ,

its nearest mean vector procedure (NMV) produced an error rate of

27.7 percent. (See Fig 6.) The BOX8O system error rate, 34.5

percent , is shown in Fig 7. To interpret this fi gure , notice

that the summary conclusion values are a percent correctly classi-

fied , a percent classified in error, and a percent rejected.

Rows of the BOX8O confusion matrix contain a count of data

vectors belonging to the class , the class I d , and standard confu-

sion matrix assignment percentages. Other data output is discussed
( in chapter 5. Note that SPSS and OLPARS algorithms use a process
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CE~TROIDS OF GROUPS IN REDUCED SPACE

GROUP I -1.40581 - .00974
GROUP 2 1,09014 - .5Z~I65(-~OU~ 3 .99107 .23744

[‘ISCRIM FOEW DATA

PREDICTIO N RESULTS -

ACTUAL GROUP N OF PREDICTED GROUP tIEMBERSHIF
NAME CODE CASES GROUP 1 GROUP 2 GROUP 3

GROUP 1 1 198 166. 10. 22.
83.8 PCI 5~1 PCI 11 .1 PCI

GROUP 2 2 82 2. 54. 26.
2.4 PCI 65.9 PCI 31.7 PCI

GROUP 3 3 190 10. 55. 125.
5.3 PCI 28.9 PCI 65.8 ~CT

73.4 PERCENT OF KNOWN CASES CORRECTLY CLASSIFIED

FIG 5. SPSS D I S C R I M I N A NT RESULTS
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Overa ll Ev at u ati on
Dataset. kdi yr am s XrZ* passed again st logic  de signed on fir sha l f
Number of dimen sions 14

true cLa ss

AA A A BBBB CCCC -

AAAA 190 24 51
BBBB I 12 5
CCCC 8 46 151
rejt 0 0 0

totl 199 82 20?
corr 190 12 151
Xcor 95.5 14.6 73.0
eror 9 70 56
*err 4.5 85.4 27.1 - -

rejt 0 0 0
Xrej 0.0 0.0 0.0 -

tota l number of vecto rs - 488
overal l correct. 353 for 72.34X
overa ll error 

- 135 for 27.SGX
overa ll reject 0 for 0.OGX

Overall Evaluation Summ arg
Datazet . kdigr am s ***Z passed again st logic designed on firsha i f
Number of dimen sions 14

node Xc Xe Xr

overall correct
BBBB 14.63 85.3? 0.00 ove raLi error
CCCC 72.95 ~~~~~~~~~~ 000 2?.66X

overall reject

FIG 6. OL.PARS Hill) ERROR RATE

(
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TRYOUT -

ENTER OPTIONS
I
PNS
OPENED FEA TURE FILE WITH HEADER
NAM EILAB L , LI I LR,!C, MV~JOP 1,1HIS1 FIRS, FLAS
FEAT l iii Ii 80 3 198 0 I .50E-02 .IOE+01
OPENED CL4~- FILE WITH HEADER
NAME LAELC JOl ICX NTC MEUC MKV NENT NCIX ISTN JUI ER
CLAS 111 1 01 [7 21 3 50 0 25 19 1 0
SU?SET C1~~ : 88
SUMMARY CO~~L~S ION
.6582 .3418 0.0000
CONFUSION ~A TR1X198 186  112

82 2 9 47 42
191 3Z~ 2352 -

FIG 7. ROX8 Ø ERROR RATE (FOB LJ SET 1)
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dependent upon a full covariance matrix for each class. This is

many times more -expensive in computation time and in memory usage

than the BOX8O algorithm. The OLPARS NF-IV procedure includes an

option (—2) based upon an inverse wei ghting matrix. This is

similar to the BOX8O classifier algorithm . Fig 8 shows that

OLPARS ’ erro r rate using this option is virtuall y identical to

the BOX8O error rate. Thus the 80X80 classifier is algorithmically

acceptable. (Note that although 130X80, OLPARS and SPSS all allow

their users options to experimentally define parameters which may

decrease error rates , none were used in any of these experiments.)

(c) A second sample of vectors from the FOBW data set

was processed using the BOX8O system and using the OLPARS ’

NMV-2 option. Figs 9 and 10 show respective error rates to be

again nearly identical. Note, however , the over ten percent

increase in the error rate for this sample over that for the pre—

vious sample. This is si~nply due to differences in the data

collected for each sample. The overall data set was not analyzed

to deliberately extract a worst-case subset. This leads to a

rhetorical argument which is presented as an aside . Assume that

this second sample was actually the initial sample. Al l ow that it

was accepted as the design test—bed. Consider the development and

usage costs for the software for both iterative generation of a

class defining structure , and for - mplementation of the classifier.

Would implementation of an optimal piecewi se linear hyperplane

be justified?
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Part ial  Hea r enk .  Mea n Ve ctor Ev~~L u ation* -
liumbo r of dim en si on s - 14

t rue  class

A A A A  8D8B
AAAA 160 12 42
8913 8 33 58 121
CCCC 6 11 44
rej t 0 0 0

t ot l  199 81 207
corr 160 58 44
%cor 80.4 71.6 21 .3
eror 39 23 163
Xe rr 19.6 28~~4 78.7
r ej t, 0 0 0
% r ej 0 .0  0 .0 0.0

t o t a l  nu~s,ber of vec t.o r s - 487
ov e r s l t  correct 262 for  53.8 0 %
overal l error 225 for 46.20%
overa ll reject 0 for 0.0 0 %

S

O v e r a l l  E v a l u a t i o n  Su mm ary :
Datas et kd ig r am.s X *Z* passed aga inst logic de signed on Iir s }talf
Number of d~ juen~~ion~ • 14

node Xc Xe 
- 

Xr

AAA A 77.89 22 .11  0.00 ove rL~l t correct

BDB 8 80.49 19.51 0.00 overaiJ error
CCCC 17.39 82 .61 0.00

o v e r a l l  re ject
0.00*

‘I

F I G  10 .  O LPARS ?lrl U -2 SArT PLE-2 ERROR RATE
- 

FOB U DATA SET
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(d) The OLPARS system offers a variety of feature

evaluation algorithms . Two were used to evaluate the features of

the samples discussed abo”e. Fig 11 ranks the features on their

ability to separate class pairs. Fig 12 presents overall merit

at j n terclass discrimination and ranks features in this order.

Fig 13 presents BOX8O merit figures. F/M set “ iLOG ’ corresponds

to the M 1 matrix discussed earlier; F/M set “2SU M” corresponds to

the matrix. Features are ordered by descending figure of

merit. It was noted that both 130X80 sets of merit figures dis-

agree with OLPARS feature ranking. Each set of merit figures was

then compared in terms of the classification errors which its

use produced.

(e) As discussed earlier , the BOX8O feature subset

selection process operates on a set of proper nested feature sub—

spaces during each trial recognition of the test data set. In

Figs 7, 9 and 13 the summary conclusion percentages reflect use

of the complete set of 14 features in the class defining structure .

The “subspace tags ’ list gives the order of features used in each

of the nested subspaces which are evaluated. Each tag denotes the

last added feature. The rates presented for each subspace are the

percentage correctly classified followe d by the percentage in

error. The nested subspaces are first , that containing the left-

most listed subspace tag, and then , that containing the left—most

pair ot Lags , and so forth. Examination of Fig 13 shows that
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FEt~TLIPEL A F ITAF14
- - I n  YO U i ’ I H TO DO r1EA-: u~~EMEr-1T L E L E C T I O N  I N T E F - A C T I V E L Y ?

— - - DU ,OIJ 1 1 1 : 5 - H TO ::ELECT AOl  M E A S UREMENT S TO :T A F T  W I T H ?
Mu
— - -E n TER THE DEFAULT LI :5 F- LAY TO FE PRESENTEL’ AT EACH ITERAT ION.
j  pn3~-:-~~A~ 1
2 ij H1.F:L:iF

MEAL. VALUE CLA L F-AIR
- • 2 21 .S5 . E: ‘— A \C/ ’-A

1 20. 1:s~~ : —C - :f - - — ’A
3 17. 0796 — --A \P./’~A6 15.5953 — --A \ C/ \ A

11 12 .439 1 ‘- -A \C/\A
4 11.5:3~2 ‘-A \E/\A
7 9.9L — -A ‘— B/ \A
8 9.0517 ‘A \C- —~ - A

12 E- .-7854 ‘~A \F/’—A
9 5.5776 “A \F/\ R

13 6.4375 ‘-A \B/\R
5 5 .2 0 43 \R \ I /\A

10 5.0559 ‘—H ‘-C/\A
- 14 :3. 77(10 \A ‘-. F —- \A

F I G  i i .  O L P ARS OW ERALL FEATURE RAN K

FEATURE5~ AF ITAF 14
\[IQ -? OIJ ~II7:H TO tO rIEFIL:UPEFIENT S;ELECTIDN f l -4TE FACT IVELY 7
YE S-
\t’O ~-- UU I. II5:H TO SELECT ANY r-IEASuPErIErITS: TO -START W ITH?
rio
\EHTER THE DEFAULT D IS~PLAY TO FE PRE~— EMTED AT EACH ITERATIO N.
1 F:1O-~I-OALL
a LIt-4- 1- E:FCP
3 - 

Ur-4- 1-EFC
2

MEAS . VALUE
• 2 21 . 855 8
• 1 20. 1878
• 3 17. c79 .:
6 1 5 .5 95 3

- 11 12.4-391
4 - 11.5~ 62
7 9.9852
8 9.0517
12 6.7854
9 6.5776

13 6.4375
5 5.2048

10 5. 1:559
14 3.7700

FIG 12. OL PARS CLASS-PAIR FEATURE RANK
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performance peaks at subspace 11 for F/~-1 set “1LOG” and at sub-

space 9 for F/N set “2SUM” . In both cases feature 2 has just been

added to the subspace. Fig 14 shows BOX8O use of a user defined

set of “subspace tags ” which includes features 2 and 1. Again a

performance peak is noted.

It has been noted that exhaustive search is the only method

by which the ‘best ’ subset of features can be found. The foregoing

discussion illustrates how BOX8O algori thms can be used to guide a

heuristic search which improves performance and yet is not exhaustive .

It also illustrates the greater strength of OLPARS ’ feature

evaluation algorithm. The BOX8O subset evaluation technique has

no counterpart in the OLPARS system which performs each classi-

fication trial separately.

(f) Fig 15 illustrates the BOX8O procedure for record—

ing the selection of a subset of features. The newly generated

class defining structure produces an overall error rate of 28

percent. Fig 16 shows the procedure for generating scaled

eight—bit data values for the microprocessor based classifier.

The TRYOUT module option ‘B’ requests this ‘byte ’ scaling. The

zapping process referenced in the figure nullifies specified feature

dimensions (i.e., those not to be used), by arbitrE rily expanding

the value of their respective boundaries (variances) to a large

value. This is further discussed in chapter 5. In this run , a

trial recognition was then accomplished using integer arithmetic.
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TRYIJUT
ENT ER OPTIO N S

4

FNS
OPENED FEATURE FILE WITH HEADER
N4ME ,LABL~-iD s LD,I Ci ~V ,I 1jPT,IHIS, FIRSi FLAS
FEAT 1111 17 53 3 198 0 1 .SB E-02 .IOE+01

~rENED CLAS FILE WI1H HEADER
N~;-;E LABLC JDX I CX N TC MBUC MKV NENT NC IX ISIM IUKER
CLA S 11110 1 17 Zi 3 50 0 25 19 1 0

SIJESET CLASS : 99
DD,EID,...

*
i~~~~ç-~~ ø ø ø ~~~~ g ø ø ø 0 0 0 0 0 0 0 0 ~~~
SUESET
ZAPS : 0 0 3 4 5 6 7 8 9 1 0 11 12 13 14

SIJMMA R’~ Cl]~OLL~ iO N
.7134 .2866 C~ 0
CO~FIJSION MATRIX

198 1 86 112
82 2 341 54
191 316 15 68

SUBSET CLASS : 0

FIG 15. ERROR RATE — SELECTED FEATURE SUBSET

TRYOUT
ENTER OPTIONS

4

PBS
OPENED FEATURE FILE WITH HEADER
NAM E~LA E- LPJDP LE5IC , MV , IO PT ,IHIS , FIRS, FLAS
FEAT 1111 17 80 3 198 0 1 .50E-G2 .1OE4OI
OPENED CLAS FILE WITH HEADER

NAME LABLC JDX ICX NTC NBUC MKV NENT NCIX ISYM IUKER
CLAS 111101 17 21 3 50 0 25 19 1 0

SIJESET CLASS: 99
BD,OD ,

4

1 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUBSET
ZAPS: 0 0 3 4 5 6 7 8  910 11 12 13 14

SUMMAR Y CONC LUSION
.6985 .301 5 0.0000
CON FUSION MATRIX

198 187 111
82 2 3 3 7 58

191 316 17 65
Su BSET CLASS : 0

FIG 16. ERROR RAT E - BYTE -SCALED COMPONENT S
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This simulates the byte valued operations actually performed in

the microprocessor. Error rate increases by only 1.5 percent and

remains below both the error rate achieved by OLPARS(UMV—2) and

that produced by BOX8O on the original 14 component data set.

From these facts , BOX8 O procedures for subset selection , and for

generation of the class-defining structure ) are judged acceptable.

(2) Figs 17 through 23 apply to Fourier transformed

alphabetic data. This data set consists of 3900 feature vectors

of 49 components each- . The components of these vectors are the real

and imaginary parts of complex numbers . These numbers are output

by low frequency filtered Fourier transforms of two space images

of digitized letters. The technique used to produce these vectors

has been discussed in several AFIT theses (Ref 14, 31 ) as well as

in the as yet unpublished work by Sponaugle (Ref 33). These vectors

form a 26-class problem. Programs produced by Sponaugle were used

to establish benchmark error rates for classification of this data.

(a) The components of the vectors in this data set

were assumed to be largely uncorrelated because they had been

generated by an orthogonal linear transform. The use of both

real and imaginary parts of the values output by this transform

suggests the caveat ‘largely ’ since the transform produces ortho-

gonal complex values. The size of the data set precluded use of

SPSS to generate correlation indices as was done with the FOBW

data.
I
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DATA TRANSFOR MS :
Notation :
X = feature vector

~
. I ~

‘
x 

J~~ 

X 2 P~ = mean x vector

: 
unit mean X vector

= unit mean X vector

=

RESULTS:
Overall Error Rate No. ‘perfect ’ alphabets

A. x~ vs P
~ 

— 18.41 8

B. vs P~ — 
11.50 8

C. vs - 11.20 8

D. vs - 10.88 8

E. vs P~ and 1 — 7.11 36

where Y~ such that for all c E~ = [var(P~; ~~)] ~~

Fig. 17. Alphabet Classification Experiments
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(b) This data set was processed using a classification

program written by Sponaugle. The program uses a minimum distance

algorithm. It produces an overall error rate , a confusion matrix

and individual error rates for each alphabet. Appendix L records

output from this program which is surnarized in Fig 17. Sponaugle ’s

work included heuristic experimentation which attempted to establish

appropriate normalizing transforms with which to precondition the

feature vectors. The orig inal data (after application of centering

algorithms to the data input to the Fourrier transform), classified

with an error rate of 18.4 percent. Arguing that “thick” letters

would in general have larger vector magnitudes than “thin ”

letters , as is shown diagrammatically by vectors X 1 and X2,

Sponaugle normalized the feature vectors by their magnitudes and

again classified the data. His least error rate was produced

by experiment D. The intuitively difficul t combination of and

in this experiment may be e x p l a i n e d  by the hypothesis that this

normalization retains the angular variation i m p l i c i t  in the origi-

nal data vectors while standardizing vector magnitudes. The

BOX8O classifier algorithm was integrated into this minimum dis-

tance classifier. A trial classification produced the 7.1 percent

error rate reported in the figure under i tem E. The decrease in

error rate, and the significant increase in the count of

alphabetic fonts recognized as identical , qualifies the 130X80

classifier as significant. For reference by future AFIT experi-

4 nients, the identically recognized alphabetic fonts are recorded

in Table II.
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TABLE II

Identically Recognized Alphabets

Experiment A:

28, 48, 104, 139, 16, 33, 35, 41

Experiment B:

28, 9, 10, 139) 16, 33, 35, 75

Exper iment  C:

28, 9, 10, 139, 16, 33 , 35, 75

Experiment 0:

28, 9, 10, 139, 16, 33, 35 , 75

Experiment E:

28, 9, 10, - , — , 33, 35, 75, 8, 15

19, 26, 30, 32, 25, 27, 29, 48, 50, 58

104, 127, 129, 133, 143, 41, 51, 66, 83, 90,

103, 108, 116, 140, 144, 149, 150

(
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(c) The BOX8O system was used to process a 780 vector

subset of this alphabetic data . A subset was used only to reduce

process time ; it does not affect the validity of this benchmark ,

A confusion matrix for this process is shown in Fig 18, with an

overall error rate of 416 percent. The decrease in error rate

appears to correlate ~iith the fact that the 30-letter sample

per class used in this experiment included 10 of the “identical”

alp habetic fonts reported in Table II. This expe r imen t  is

significantly different from that reported above in one impor-

tant respect. As noted under “system efficiency ” in this section ,

the BOX8O classifier used less than 55K of memory and 23 cpu

seconds for its operation. However , the alphabet classifier

require d 140K of memory and 205 cpu seconds to complete a trial

classification run. After scaling this execution time by the

reduced size of the BOX8O data sample , a 2:1 throughput increase

is still indicated. The minimal BOX8O memory use results from

its efficient data structures. T~-ic contrasts to the far greater

memory requi re ment of the alphabetic classifier. It should be

noted that the alphabetic c lassif ier accumulates and stores

extensive stat is t ics for output; these account for part of its

memory requirement. The classification rate presented for this

set of 49 component alphabetic feature vectors correlates well wi th

Tailma n ’s simulated result , 95.80 (Ref 35:86).

(d) Figs 19 through 21 show BOXBO merit figures

t computed for this 49 component alphabetic data set. Notice that
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TRYOUT
ENTER OPTIC l~S

*
PNS

OP ENED FEATURE FILE WITH HEA DE R
N~~E, L~ :L,j D, LD, IC, KV~IOPT ,IHIS~ FIRS , FLA S -

FEAT 3Z~3 ~ 3~ 26 30 3 t- .ic:~~i .IO E +01
r~rsrn ‘ ~c- r ti r I T n I  ~- - -vrL rSLu ~ L l - . 1 LL ~ !I L I f l  ~~~~~

N~~ L~LC JOX ICX NTC ~ UC MKV NEWT WC IX ISIM TU NER
CL4S 3~~~1 52 85 26 20 0 104 82 1 0

SIJOSET CL~ :S: 88
SU MMA R T CC~CL USIUW
.9538 .~~ -2 0.0000
COU F~JSI~ tIA TRIX
30 1 9 3 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 2 0 9 3  0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
3 0 3 0 0 96 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 4 0 0 0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 5 0 0 3 0 9 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 6 0 0 0 0 0 9 6  0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 7 0 0 3 0 0 0 9 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
30 8 0 0 0 0 0 0 096 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 9 0 0 0 0 0 0 0 096 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 10 0 0 0 0 0 0 0 0 0100 0 0 0 0  9 0 0 0 0 0 0 0 0 0 0 0
30 1 1 0 0 0 0 0 0 0 0 0 0 96 0 0 8 0 0 9 0 3 9 0 0 0 0 0 9
30 12 0 0 0 0 0 0 0 0 0 3 096 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 13 0 0 0 0 0 0 0 0 0 0 0 096 0 0 0 0 0 0 0 0 0 3 0 0 0
30 14 0 0 0 0 0 0 0 3 0 0 0 0 6 8 9 0 0 0 0 0 0 0 0 0 0 0 0
30 15 0 0 0 3 0 0 0 0 0 0 0 0 0 076 019 0 0 0 0 0 0 0 0 0
30 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
30 1 7 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 9 3 0 0 0 0 0 0 0 0 0
30 1 8 0  0 0  0 0 0 0 0 0  0 0 0 0 0 0  0 0100 0 0 0 0 0 0 0 0
30 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
30 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 9 6 0 8 0 0 0 0
302 1 0 0 0 0 0 0  0 0 0  0 0 0  0 0 0 0 0 0 0  0100 0 0 0  0 0
30 22 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 089 0 0 3 0
30 23 0 0 0 0 0 0 0 0 0 0 0 0 ’ 0 3 0 0 0 0 0 0 0 689 0 0 0
30 24 0 0 0  0 9 0 0  0 0 0  0 0 0  0 0 0 0 0 0 0 0  0 0100 0 0
30 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 ~~ 9 6 0
30 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 096

FIG 18. ERROR RATE FOR 49 A1.PHA B E TI C FEATURES
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subspace error rates all decrease as the number of subspace

features increases. At subspace 20 the error rates are 11, 9,

and 18 percent for merit figures 1, 2, and 0, respectively.

(The 0 set consists of an arbitrary 49 components by order of

increasing dimension.) These error rates support two conclu-

sions. First, the BOX8O system outperforms the benchmark in both

error rate and number of features. Second, F/M set 2 has the lowest

error rate and is the more robust of the two figures of merit . This

agrees with the analysis reported for the FOBW data set.

(e) Fig 22 presents confusion matrices and overall

error rates for feature subspace 20 from F/M set 2. The majority

of the errors are concentrated in separating classes 15/17 and

22/23. These classes represent the letters 0 and Q and the letters
V and W which are readi ly confused by printed noise.

(f) Fig 23 shows, again via simulation , an overall

error rate and a confusion matrix for byte sealed component

values. It indi cates that the BOXCO system development hypothesis

is justified. That is, with a minimized use of memory, and the

BOX8O classi fier, an acceptable error rate can be attained.

Acceptability . The term “acceptable” has been used freely

In the foregoing discussion. From its last use, in the context

of all foregoing discussion , a precise meaning can be inferred.

Acceptability Is a complex function of cost and benefit. However,

It Is a relative term which implies not only that resources meet
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ENTER OPTIONS

8
PBS
OPENED FEATURE FILE WITH HEADER
NAHEILABLIJDI LB,IC, NV ,IOPT ,1HIS~ FIRS~ FLAS
FEAT 3030 52 30 26 30 3 I- .10E+01 .IOE+01
OPENED CLAS FILE WITH HEADER
WANE LA OLC JDX ICX NIC ME:IJC NKV WENT NCIX ISYN JUKER
CLAS 303001 52 85 26 20 0 104 82 1 0

SUBSET CLASS: 99
- 00,00,...
8

1 2 1 4 28 315 17 12 30 24 16 18 410 32 43 38 40 13 41
DDI0D~II~

8
99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUBSET
ZAPS: 0 0 0 0 5 6 7  8 9 01 1 0 0 0 0 0 0 019 20

21 22 23 025 26 27 029 031 033 34 35 36 37 039 0
042 044 45 46 47 4849
SUMNARY CONCLUSiON
.9077 .0923 0.0001
CONFUSION P~ATR I1
30 196 1 0 0 0 0 8 8 013 0 8 0 0 0 0 ~ 0 0 0 8 0 0 0 0 0
30 2 083 0 0 0 0 0 3 0-0 0 0 0 0 0 0 0 9 3 0 0 0 0 0 0 0
30 3 0 096 0 0 0 3 0 0 8 0 0 8 0 0 0 0 0 0 0 0 0 8 0 I 0
38 4 0 0 393 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 I
3 0 5 0 0 0 0 9 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 6 0 0 0 0 386 0 0 0 3 0 0 0 0 0 6 I 0 0 0 0 0 0 0 0 I
3 0 7 0 8 6 3 0 0 8 6 0 0 0 8 8 0 0 3 0 0 0 0 0 0 1 0 0 0 0
30 8 0 0 0 0 0 0 086 0 6 8 0 3 0 0 0 8 3 0 0 0 0 0 0 0 0
3 0 9 0 0 0 3 0 0 0 0 8 9 0 3 0 0 0 0 1 1 0 1 0 1 3 1 0 0 8
30 10 0 0 0  0 0 0  0 0 0100 0 0 0 0  0 0 0  0 0  0 0 0 0 0 0 0
30 11 0 3 0 0 0 0 0 0 0 093 0 0 0 0 I 0 3 0 I 8 I 0 0 I I
30 12 0 0 0 0 0 0 0 0 0 3 096 0 0 0 I 0 0 8 I 0 0 0 0 0 0
30 13 0 0 0 0 0 0 0 0 I 0 0 089 3 0 0 0 0 0 I 0 3 3 8 0 0
30 14 0 0 0 0 0 0 0 0 0 0 0 0 986 0 0 0 I 3 0 0 0 I 0 I I
30 15 0 0 0 0 I 0 3 0 I 0 0 0 0 073 019 0 I 0 0 3 0 0 0 0
30 16 I 8 0 0 0 3 0 0 0 0 0 0 0 I 096 0 0 0 0 0 0 0 0 0 0
30 17 0 0 0 6 I I 0 0 0 3 I 0 0 0 3 086 0 I 0 I 0 0 0 0 0
30 18 0 6 0 3 I 0 0 0 I 0 3 0 0 0 0 0 086 0 I I 0 0 0 I 0
30 19 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0  0100 0 0 0  0 0 0 0
30 20 I 0 0 0 0 0 0 0 3 3 0 I 0 0 0 0 0 0 093 0 0 0 I 0 0
30 21 0 0 0 0 0 0 0 0 0 0  0 0 0  0 8 0 0 0 0  0 9 6 3 0 0  0 0
30 22 0 0 0 0 0 0 0 0 I 3 0 0 0 0 0 0 0 0 0 0 089 6 0 0 0
31 23 0 0 0 0 0 0 0 0 I 0 0 0 0 0 I 0 0 8 0 0 026 73 0 0 I
30 24 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 1 0 1 0 0  I I
30 25 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 6 0 093 0
38 26 0 0 0 0 0 I 0 8 I 3 I I 0 0 0 0 I 0 0 0 I 0 0 I 096

FIG 22. SUBSPACE ae ERROR RATE (BYTE-SCALED )
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TRYOUT
ENTER OPTIONS

8
PBS
OPENED FEATURE FILE WITH HEADER
NAME,LABL,1J0, LB,IC~ MV,IUPT~IHIS, FIRS, FLASFEAT 3030 52 30 26 30 3 1- .IOE+ 01 .IOE4OI
OPENED CLAS FILE WITH HEADER
NAME LABLC JOY ICY NTC NOUC NKY WENT NCIX 151$ IUKER
CIAS 303001 52 85 26 20 0 104 82 1 0
SUBSET CLASS: 88
SUMMARY CONCLUSION
.9551 .0449 0.0000
CONFUSION MATRIX -

30 1 9 3 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 9 0 0 0 0 1 0 0
30 2 0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0
30 3 0 096 0 0 0 3 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
30 4 I 0 0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
3 0 5 0 0 3 0 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 6 0 0 0 0 096 0 0 0 3 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0
3 0 7 0 1 3 0 0 0 9 3 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0
3 0 8 0 0 0 0 0 0 8 9 3 0 3 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0
30 9 0 0 0 0 0 I 0 096 3 I 0 0 0 8 0 0 0 0 0 I I 0 0 0 0
30 1 0 0 8 0  0 0  0 0 0 0 1 0 0 0 8 0  0 0  8 1 8 0 1 0 0 1 0 0 0
30 1 1 0 0 0 0 0 0 0 0 0 0 9 6 1 0 0 0 0 0 0 3 0 1 0 0 8 0 0
30 12 0 I 0 0 I I 0 0 0 3 096 0 0 0 0 0 0 0 0 0 0 0 0 0 8
30 13 I 0 0 0 0 0 8 0 8 0 8 096 0 0 0 0 0 0 0 0 0 3 0 0 0
30 1 4 0 1 0 0 0 1 0 3 0 0 0 0 3 9 3 0 0 8 0 1 1 0 0 I 0 0 0
30 15 0 0 0 3 0 8 0 0 0 0 0 0 I 069 026 0 I 0 0 I I 0 I 0
3I I Ô 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 I 0 0 0 1 1 0 0 0 1 0 0 1
30 17 0 I 3 0 0 0 8 8 I I I I I I 3 093 I 8 8 0 0 0 8 0 0 -~~

30 18 I 0 I I I I I 0 I 0 0 0 I I 8 I 0100 0 0 I I 0 I 0 I
30 1 9 0 0 0 0  0 0 0  0 8 0 0 0 0 0 0  0 0  8100 0 0 0 0 0 0 0
3O Z 0 0 0 0 0 0 1 0 0 3 I 0 0 1 I l I I g O 9 6 1 0 0 I 0 I
38 21 I 0 0 8 I I I I I I I 0 I I I I I I 0 0180 0 I I I I
30 22 0 I I I I I I 0 0 3 I I 3 I I I I I I I 089  I I 3 0
30 23 0 I 0 0 0 0 I 0 I I 0 I 8 3 I I I I I I I 689 0 I I
31 24 I I I I I 0 0 0 0 I I I 0 I I 0 I I 0 I I 0 0100 I I
30 25 I I 0 I I I I I I I 0 I I I I I 3 I I I I I I 096 I
30 26 I I I I I I 3 I I I 0 I I I I 0 I I I I I I I I 096

( FIG 23. SUBSPACE 49 ERROR RATE (BVTE—SCALED )
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(

costs and benefits satisfy requirements , but also that a value

judgment has been made for each case. This is why no one defini-

tion was given.

Testi ng Procedures

In implementing the BOX8O system , testing was a continuing

process. Techniques varied wi th the routine or function being

tested. These are indicated below.

In each module the data processing flow was evaluated by

a trace at subroutine exit. Single entry, single exit subroutine

paths and selective output to either the journal fi le or the

terminal made this technique effective. Data buffer dumps were

( obtained from file generation processes to verify input structure

and content. To simplify verification of all modules , the basic

utility routines were independently tested. This procedure ~~‘:

not followed for support routines unique to each module because

of the overhead cost for testing drivers. Finally, a simulator,

INTERP8O (Ref 15) was used to exercise the data processing opera—

tions of the c1~ssifier module.

Computational code was veri fied by spot-checked hand

calculations , analyses for self—consistency , and comparisons with

known values. In the latter case, benchmark testing provided

comparison values. Output from these benchmarks Included statis—

tics produced via the Statistical Package for the Social Sciences

-
‘ 
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(

(SPSS), feature selecti ons i dentified by the On Line Pattern Analy-

sis and Recognition System (OLPARS), and classification decisions

obtained from specially written pilot routines. Finally, a trivial

data set was used to veri fy the computations wi thin the micro-

processor classifier module.

Function options were verified by an attempt at exhaustive

testing. For each option , output val ues were examined , and fi le

and module interfaces were checked.

Several special tests were used. Graphics routines were

deliverately passed invalid data to verify program continuity ;

there were no unexpected hang—ups. Feature selecti ons were input

to feature subset procedures and used in performance measurements.

Finally, data from two disparate data sets were processed wi th the

system. Thus, memory allo cation algorithms and other adjustments

for number of classes and dimensions were checked.

-
I

I
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V. Design

This chapter presents the design of the BOX8O system.

The flow of data through the system, processin g techn iques and

routi nes , and system data struc tures are discusse d in the first

three sections. The final sections document the design of

system modules.

Data Flow

The functions of the BOX8O system separate into two broad

groups. To one group are assigned functions dealing wi th the

evalua tion of feature data and the generation of class defini-

tions. The other group contains the microprocessor—based classi-

fication function. This separation conforms to the functional

analysis of data flow presented in Chapter 3. The system is

thus implemented in two segments of program code. Each consists

of independent program modules which interact through standard

data files.

Interpreter Segment. This segment consists of four inde-

pendent modules whose functions allow the user to examine his

feature data and to produce a standard set of class definitions.

These defi ni tions are the primary produc t of the interpreter

segment. They link this segment to the second segment. The

four modules of this segment are named CREATE , DEFIPIE, TRYOUT ,

92
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H
and FORMAT. These names reflect their basic functions.

The flow of data through the Interpreter Segment is i n

a circular path. Segment modules are executed by the user in

an iterative cycle. The cycle ends when the user is satisfied

wi th the simulation of classifier performance which is docu-

mented by the TRYOUT module. At this point , the classifier

error rate should be acceptably low. In each iteration a file

of pattern class definitions is produced. Execution of the

FORMAT module can transform this data structure into one which

will interface with the Classifier Segment. This is the final

step in the interpretation process.

( Classifier Segment. This segment consists of two inde-

pendent modules. One functions as a data input routine. It

al lows the user to enter class defining data into microprocessor

memory. The second module is a pilot model of pattern classi-

fier which can be used in the user’s system. It processes a r

buffer of feature vec tors against a block of class def initi ons

and outputs a classification decision for each vector. The

modules in this segment are known as TAPEIN and DECIDE.

The Classifier Segment is intended as a test—bed wi th

which to exercise a classifier module which has been configured

to satisfy a user system. In such a system, a distributed

process would imp lement the user’s pattern recognition function.

One microprocessor, operating In master mode, would perform the

I)-_______________ - - -_ _- - 

~~

.___________________
P ~~~~~~~~~ ~~ 

.
~~~~~

‘
~~~ i4



analo g to digit al convers ions, feature extractions , and trans-

forms necessary to generate a feature vector for a given pattern.

This microprocessor would interrupt a slave processor to store

each feature vector in a RAP-I memory buffer accessible to the

slave. The slave processor would continuously operate on the

contents of this buffer, producing as output a log of classifi-

cation decisions. The 80X80 system Classifier Segment illustrates

this design concept by demonstrating a classifier program which

can be used in the slave microprocessor. The data formats and

program code for this slave processor ’ s software are a version

of the Classi fier segment’s DECIDE module.

The flow of data through the Interpreter and Classif ier

segments of the BOX8O system can be visualized as a straight

l ine path. At execution of system modules along this path various

data files are created. Files , in general , are not updated.

Rather, new fi les are created based upon the user ’s analytical

judgment. Any part of this path can be repeated. Thus the BOX8O

system data flow supports iterative development of the classifi—

cation data structure upon which the user ’s pattern recognizer

Is based. This flow is fllustrated in Figure 24. Names of the

modules and routines of the BOX8O system which implement this

flow are listed in table III. These names are defined in

table IV.

(
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DEFINE J

(
CDC 6600 

~~~~~~~~

% INTERCOM I

/ [ FORMAT ]

TAPEIN ~~~~~~~~~~~

/ \ [DECIDE ]
( INTEL
I SBC I

8 0 / 2 0 J [ G I I I T I O P

Fig. 24. BOX8O System Data Flow
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( TABLE IU (1/3)
NODULE AND ROUTINE DEFINITIONS

1. CREATE - Generates FEAT fi le from user data
DEFC — Initi al i zes CREATE module
SCAN - Produces “first—pass ” statistics on features
COPY — Generates FEAT fil e records
GETFEA — Reads user data file
PRHIST — Prints statistics and histograms

2. DEFINE — Generates CLAS file from FEAT records
DEFD - Initi al izes DEFINE module
ALLOC - Al locates memory to module buffers
NEXCLA — Controls selection of class to be processed
KERPUT — Updates class husk l ist
CLASSX — Controls processing of class data
CDEFI — Updates orototype definitions and histograms

( FANDER — Produces feature vectors as husk members
SHUCK — Identifies feature vectors as husk members
SETUM — Inserts feature boundaries into CLAS file

3. TRYOUT — Produces error rates and feature subsets
DEFT - Initializes TRYOUT module
MERIT — Computes fi gure of merit for each feature
FIGM — Presents and accepts feature meri t ranking
SUBSET — Tags dimensions for elimi nation
EVAL — Performs trial recogniti on
DOCU - Outputs error rate and confusion matri x
LOCK - Establ ishes subspace error rates

4. FORMAT - Produces microprocessor data and displays
DEFF — initializes FORMAT module
XCLAS - Controls processing CLAS file
XHIST - Controls processing HIST AND DIST file
XFEAT — Controls processing FEAT file
FILBUF - Loads buffer with PICT and STRIP input

(‘ XMIT - Sends values to hexadecimal format routine
NEXREC - Inputs user selection of data class

NEXVEC - Inputs user selection of vector

97
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TABLE IV (2/3)

NODULE AND ROUTINE DEFINITIONS

5. TAPEIN - Decodes and loads cassette tape into SBC 80/20 ROM

BYTEX — Reads a pair of hexadecimal characters
6. DECIDE - Microprocessor classifier module

CLOOP - Outputs a string of characters

OUTB - Outputs a buffe r of binary values as characters
7. UTILITIES - [ General Purpose System Routi nes]

INIIC — Initializes CLAS file index chain
ADD — Adds entry to CLAS file index chain
DEL - Deletes entry from CLAS file index chain
RIX - Reads CLAS file index chain
INDEX — Builds CLAS file table index; scales file
KERGET — Accesses CLAS file husk list
PRCLAS - Prints CLAS file
LOADC — Loads CLAS file buffer
OPENH - Opens HIST AND 01ST files
OPENX — Opens FEAT and/or CLAS files
RFEAT - Reads FEAT file record
RHIST - Reads HIST file record
WRCLAS — Writes CLAS file record
WRHIS - Writes HIST file record
STAT:! — Updates histogram
STATX - Updates statistics
XSCAL - Scales FEAT and CLAS vectors
GETCH — Reads a character (SBC 80/20)
CI - Input from RS232 port (SBC 80/20)
CNVBN - Converts to binary (SBC 80/20)
DIV - Divides 16 bits by 8 bits (Interp 80)
HILO — Compares 16 bit values (SBC 80/20)
BNBCD - Binary to BCD conversion (INTEL User Library)
COIJT — Character output routine (SBC 80/20)
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TABLE IV (3/3)
NODULE A ND ROUTINE DEFINI TIONS

SUPPORT — (Specialized Support Routines)

ENER — Computes ‘energy ’ and string of values

MARK — Draws tic mark on TEKTRONIX screen

PLOT3D — Hidden line rout ine draws 3D surfaces

PLX — Emulates CALCOMP plot routine

ILINE — Generates Intel hexadecimal byte fo rmat

JASORT — Integer ascending sort

FDSORT — Floating point descending sort

( 
ERROR — Generates error prompt (SBC 80/20)

GETCM — Gest next user command (SBC 80/20)

ERR — Generates error prompt

~

- - p — -

~

..— - - — --~~___.:~~_- — — — - -fl-- -%
_____i

~~~ 

~~~~~~~~~~~~~~~~ 
-
~~~~~ ___________



System Subroutines

In this section standard supporting techniques for data

manipulation are discussed. Additionally abstracts of utility

and support routines are presented.

Module Initialization. Each system module is initialized

by a subroutine which establishes standard file names , and

allocates memory from a single work area to the file buffers and

tables require d for processing. Record block sizes within each

system file are set by the user at system initializati on. These

two techniques simplify transport of the prototype generation

segment from one FORTRAN capable system to another. They allow

( adjustments for memory and on—line storage variations in differ-

ent systems. Record block sizing algori thms establish pointers

to starting locations of module buffers by iteratively adjusting

data parameters. These are then output for user approval of

buffer size adjustments.

File Processing. In order to design efficient structures

for feature vector and prototype data , usage and access patterns

were analyzed. A file structure was selected over the use of

incore buffers so as to allow greater data volume. Implementa-

tion using separate modules was selected in order to e~.hance

transportability . The requirement to generate prototypes via

an in teractive , time sharing process raised questions about

both memory and execution time limi tations. Execution of separate
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modules is consistent with use of mi n imum amoun ts of core and

time to complete a given function. A standard file structure

was established for data communication between modules. This

structure consists of four files which are defined in the next

section.

Requirements to access each file were analyzed in the

process of defining structure . The feature vector data has

greatest potential volume and least need for non—sequential access.

Conformance to ANSI FORTRAN specifi cations dictated a sequen-

tial access method but al lowed a BACKSPACE operation. Thus a

disk or tape based sequential file was selected for this data .

However, prototype data is accessed frequently in iterative

processing, and is not necessarily only used sequentially.

Again conforming to ANSI FORTRAN capabilities dictated use of

a sequential file. However , since its volume is limi ted , a single

record approach was chosen. Use of an embedded index to the

data vectors associated wi th each prototype supported efficient

use of in—core storage of this record. This technique also

supports revision to a multi—record random access file structure

In envi ronments, such as w ith minicomputer hosts, in which there

is extremely limited central memory4 Finally, histogram data

appeared to be too volumi nous for Incore storage, and too

Infrequently used for a multi-file solution to the restriction

posed by the ANSI sequential file standard. Therefore, two files

I
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(
of the same format were designed. One, with a single data

record, contains universe distri butions. The other, containing

one record for each data class , records distributions of data

within each data class. These four files are labeled 01ST

(universal distributions), HIST (class distributions), CLAS

(prototypes) and FEAT (feature vectors).

Utility Routines. There are three types of subroutines

wi thin the BOX8O system. In the first group are routines

uniquely specialized to support primary modules. These are

covered in the next chapter. General purpose uti l ity routi nes

are synopsized below. Table D-V gives calling parameters and

( 
their definitions. Special purpose support routines having

general usefulness are discussed in the next paragraph.

(1) ADD. One of four routines which access the index to

the prototype data file , thi s routine inserts a new entry to

that index. The index is described in the next section. It

contains two chains of entries. The entries in one chain corres-

pond to column vectors in the CLAS file data record. The entries

in the other chain correspond to unused column vector positions.

This ADD routine fol lows the ‘used’ entry chain to the appro-

priate position and rel inks an Index entry to hat position from

the top of the ‘used ’ chain.

(2) DEL. This routine deletes an entry from the index

to the prototype data file. Deletion is effected by rellnktng(.
~
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around the indi cated index entry and add ing the newly freed entry

to the unused chain. This routine does not clear the associated

column vector; it is therefore uncoupled from its referenced data

area. This eases data structure modifi cations.

(3) INITC. This routine sets constant parameter into the

prototype data file index during file initialization. See

Figure 25 for a sketch of these initialization entries.

(4) RIX. This routine reads the index to the prototype

file and extracts the entry number of the named vector. The

appropriate index entry is found via a sequential search of the

‘used’ entry chain.

(5) INDEX. In order to speed retrieval of the address of

named prototype data, this routine bu i l ds a table of 51 three

position entries. Each position records the address of a prototype

vector. Entry 51 records the address of a pair of data limits

vectors. At option , thi s routine controls scal ing of prototype

data into a specified bit range.

(6) KERGET. A set of vectors within the prototype file - j

records identi fiers of feature vectors which have been assigned to

the husk of each class. This routine obtains the identifier for

the “next” feature vector assigned to the husk of a given class.

(7) PRCLAS. This utility routine prints the three data

types stored wi thin the prototype file. The file Index , the set

of husk vectors for each class, and the prototype defini tion for

(0- the class are printed.
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(8) LOADC . This routine loads the prototype data file into

the proper program buffer.

(9) OPENH. This routine reads the header record from

HIST and 01ST files setting the x—dimension memory parameter

associated wi th the data records of the file.

(10) OPENX. This routine reads header records from

FEAT and CLAS files. The parameters set include the y-dimension

memory variable corresponding to number of data columns within the

CLAS file. These open functions are coupled so that label tests

can be made in one place. At input options , the FEAT file or the

CLAS file open can be bypassed. This is necessary when the CLAS

( 
file is either used alone , or is to be initialized or extended in

size.

(11) RHIST. This utility reads records from either DIST

or HIST files. A sequential search is made for the requested

record , and no backspace or rewind option is provided. Records

containing histogram pairs are flagged. An error indicator is

set if a missing record is requested and an end job flag is set

when an i lle gal record is requested.

(12) RFEAT. This utility routine handles input from the

FEAT file. A rewind option and a backspace option support

reprocessing the entire file or the current record block. A

sequential search is made for the requested record. Missing

records cause a fatal error flag to be set. Each block Is

€
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checked for the la st block flag; a pointer to the last vector of

the block is updated when this block is read.

(13) WRCLAS. This subroutine writes the CLAS file from

memory onto its file. In this process it assembles and outputs

the CLAS file header.

(14) WRHIS. This subroutine wri tes the MIST and DIST

file records. It assembles and outputs the file header record ,

and provides a printout of statistics and distribution value s

if requested.

(15) STATH. This routine generates a histogram from the

stream of values input on successive calls. The current histogram

( 
is always output. At receipt of a last—call indicator a mode and

the percent of all values associated with this mode are calculated.

(16) STATX. First and second order moments, minimum and

maximum values are computed from a stream of input values.

Temporary values are initia li zed at first inpu t which i s si gnalle d

to the routine by a zeroed work area parameter. The current

- minimum and maximum are always output. A last call indicator

- triggers generation of mean and variance values. At option either

the standard deviati on from the computed mean , or an average

deviation from a zero mean is computed. The latter deviation is

used fr definition of assymetric class boundaries.

(17) XSCAL. Components of vectors input to this routine

are scaled to a specified range of values . Either of two scaling
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(
algorithms is selectable for use wi th prototypes or with class

diagonal covariance matrices. (See Chapter IV.)

Support Routines. The subroutines described below each

support unique functions within the BOX8O system. However, si nce

these routines have a conceptually general utility they are dis-

cussed as a group here. Table D-VI gives calling parameters and

their definitions.

(1) MARK. This routine generates a tic mark , of specified

direction and length , on the TEKRONIX screen.

(2) ENER. This routine computes the magnitude squared , or

sum of the squares of the component values of any vector.

(3) PLOT3D. This subroutine executes a hidden line

analysis and perspecti ve transformation in order to produce a

three-dimensional plot of a two—dimensional array containing

z-axis values. The subroutine listing contains added coninents

and a source reference.

(4) PLX. This routine simulates the CALCOMP routine

PLOT i nsofar as necessary to translate the capabi l ity of PLOT3D

from CALCOfIP to TEKTRONIX output.

(5) ILINE. This routine reformats a string of 16 Integer

values in to a paper tape data format used on various micropro—

cessor systems: This line format is presented in Table D—VIII .

A process switch controls operation of this routine. It allows

generation of initial line address characters and output of special
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end of record line format. Integer to hexadecimal encoding uses

only ANSI standard FORTRAN operations.

(6) IASORT. This routine sorts an input array of N inte-

gers into ascending order. The input data sequence is lost.

(7) FDSORT. This routine sorts a pair of input arrays into

descending order based on the real value of members of one array.

It preserves the input data value sequence.

(8) DIV. This 8080 routine divides a 16—bit dividend by

an 8-bit divisor producing an 8-bit quotient and an 8—bit remainder

(Re f 15:18).

(9) BNBCD. This 8080 routine converts a 16—bit , two byte( integer into a string of 5 ASCII character codes (Ref 19:18).

(10) HILO. This 8080 routine compare s two 16—bit unsigned

integers and sets the 8080 carry condition indicator to show a

less than or equal condition ,(Ref 18:B—26). — - -

(11) COUT. This routine sends a single byte to the RS232

port of an 8080 system if the port is ready to write.

(12) CNVBN . This 8080 routine converts the BCD represented 5

hexadecima l characters to their integer values (Re f 9:8-23).

(13) GETCH. This 8080 routine reads ASCII valued characters

and strips the pari ty bit (Ref 19:B—20).

User Input Routine. To make the CREATE module as general

as possible a user suppl ied routine is referenced to read the

user file of feature data. The specifications for this module

are described below.
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GETFEA. This routine reads the file of feature data sup-

plied by the user. Its calling parameters are defined in Table

D—VII I . On the first entry to this routine , the user data file

is rewound. On the fi rst and all successive entries a feature

vector is returned. Additionally a feature vector identifier

(number of the vector wi thin its class ), a class identifier , and

an error fl ag are returned on every ca’l. If the vector returned

is not the last of its class , this flag is set to zero. If this

vector is the last of its class , this flag is set to -1. If this

fector is the last of the file , this flag is set to +10 Once the

last vector of the user fi le has been output the routine must

( 
reset all i nternal flags to allow for rewind on the next call.

Input to the routine includes a file name and buffer location

wi th size as wel l as an option swi tch with nine settings for use

as desired. 
-

Data Structures

In this section descriptions are presented for each of

the data structures used wi thin the BOX8O system. Separate para-

graphs below discuss the T’qn of each file and define its for-

mat. There are six system files. Associated wi th one file is

an index structure which is described separately. The system

names for these files are stated with brief definitions below.

(1) FEAT. This file contains feature vectors ordered

( by class.
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(2) CLAS. This file contains class prototype definitions

and an linbedded index (referenced as LIST) to class defi n iti ons.

(3) 01ST. This file contains component statist ics and

distributions on the population of data vectors input to the

CREATE module.

(4) MIST. This file contains statistics and distributions

on the data within each class processed by the DEFINE modul2.

(5) PROT. This file contains prototype definitions in

a format suitable for use by the DECIDE module.

(6) FVEC. This file contains feature vectors in a format

suitable for input to the DECIDE module.

( 
Features Data File ( FEAT ). This file is ordered by pattern

class and consists of multi-block records wi th one record per

pattern class. Each data block has the same format and has a

fixed size. This size is fixed at file creation , as earlier

stated , to give the user control over use of his available memory

resource. The first record of the file is a single header block.

The last record of the file is a single trailer block. Formats

for these three block types are given in Table A-I. The file is

produced by the CREATE module which reformats inpu t data from a

user file and adds several tag values to each data vector.

The FEAT file structure is designed to allow vari ably

sized data sets to be retrieved efficiently. Each vector within

a block is tagged with its own identifier and the identifier of

its class for ease in documenting trial error rates, as wel l as
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for convenience in manually referencing file content. The header

record was required to allow input of data into a variably sized

buffer when the file is read. Its critical parameter gives the

x—dimension of this input data buffer. The trailer record stores

minimum and maximum component values for later use in scaling

feature vector components to a byte—sized value range.

Class Definitions File CLAS ). This file consists of two

records. The ten-word header record identifies the file and

establishes the size of the prototype data record. This size is

set by the user during operation of the DEFINE module. The data

( record contains a set of vectors and a file index known as LIST.

This i ndex will be discussed in another paragraph. Data vectors

are of three types. Each class is defined by a subset of these

vectors containing from two to nine elements. Vector types include

a class prototype or mean vector , a class boundary or deviation

vector, and a class husk vector. Prototype and deviation vectors
rare directly used in the classification algorithm. The husk

vector is used in the identification of candidate feature vectors

for tne formation of mean and deviation values. Deviation vec-

tors represent an uncorrelated covariance of feature vector

components within the class. A processing option allows these

vectors to represent positive and negative zero—based deviations

— of class feature vectors from the mean vector. In either case,
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the classification algorithm operates upon these deviation vectors

as diagonalized matri ces. Thus the term vector i s used at this poi nt

only for parallelism and simplicity since a vector is indeed a

linear list of components . Formats for the file header and for

these vectors are given in Tables A-Il and A—I ll , and in Figs. 25 to 27.

(Note: The structure of the data buffer for the CLAS file data

record is intricate. The content of this buffer is varied. The

referenced figure and tables must be exami ned as a set in order to

understand this structure and content.)

Column vectors wi thin the CLAS file data record have JD

dimensions and have three tags. These tags extend column size

( 
to JDX . Tag three, for all vector types, represents the class id.

Tag two carries a code indicati ng vector type. Tag one stores

two types of value: for class mean and devi ation vectors it

contains the least and greatest componen t val ues in the class for

component scal ing in the clus ter plot process; in cl ass husk

vectors it contains the number of the next open vector component

for use in husk manipulations. Tags one and two are used as

identifiers for their respective vectors in character printouts

of this data record.

Class Definition File Index (LIST). This structure Is

an array with two items per entry, having two more entries than

there are columns for data vectors wi thin the CLAS file data

record. These entries provide an Index to the data record. The

L 
- ,



CHAIN STRUCTURE:

UTOP KTOP “USED CHAIN”

LAST ‘
~~

( 
NAME LINK 

/ 
INITIALI ZATION :

NAME LINK __________ ___________

NAME L INK __________ 

2

999999 1

j  0 4
NAME LINK

NAME L INK -

\

~~~~ME LINK 

_ _

0 rIENT+1

KEY:
UTOP - Points to position of fi rst ‘unused’ entry
KTOP - Points to position of first used entry
LAST - NAME of logically last entry
NAME - Integer name of associated vector
LINK - Points to position of next logical entry
NENT - Number of index entry positions

Fig. 25. CLAS File Index Structure
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CLAS(JDX ,ICX):

1 
___________ 

MCIX ICX

— —. —‘ _J -~~ ~~~ ><
~r CD > CD (I) CD s-i
c~~ V) .ZZ V) ~~

JO —) 

—

~~~~~~~

+1 

~~~
_ _ - _ ±_ ~ __ii

+2 
_ _ _ _ _ _  — —

+3 - ) 
— -

VECTOR “TAGS ”

LIST (NENT ,2)

Fig. 26. Diagram of CLAS File Structure

(
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first item of each entry contains a code for the name of a given

vector in the data record. The second item of the entry contains

a pointer to the list entry position which contains that entry

which logically fol l ows the present entry according to the value

of its name. There is obviously one entry in this index for each

column vector in the CLAS file data record . The two extra entries

in this i ndex are described by Fig 2~i. The first of these entries

is always the first entry in the array. Its first i tem points

to the first unused entry of the array. Its second item points

to the first used entry in the array. The second entry in the

array is a dummy entry whose name indicates logical ‘last’. The

( pointer item in this entry is arbitrary since the index entry

chain is not circular. These entries are used by the index

service routines to maintain the logical chain of name items.

Because of these two entries , whose physical positions are fixed ,

the name-item in each functional entry in the array refers to a

column vector in the data record whose column number is two less

than the list entry position of that name—item.

This technique of indexing the column vectors within the

CLAS fil e data record was chosen for two reasons. It allows

non-sequential generation of each of the vectors within the

prototype set for a given class without requiring the reservation

of a fixed amount of space for the vector set for each class.

-. Moreover , it supports convenie nt revision of the memory allocation
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to the CLAS file data record by allowing record extension under

program control as well as straight-fo rward modifi cation of the

in-core data structure . This latter fact adds to transporta-

bility of the prototype generation segment of the BOX8O system.

The name i tems used in this index array are structured

numbers. Their form is given by the expression

NAME = 
~ * 1000 + K

in which I is the class identifier and. K is one of the follow-

ing numbers:

K = 100 for Mean vectors

K = 201 for Negative deviation vectors

K 202 for Positive deviation vectors

K — 30n for Husk vectors, n

Distribution Data File (01ST). This file consists of two

records. The first is a header record. The second is a data

record whi ch contains stati stics and histograms for each feature

component’s values as they occur within the entire population

represented by the FEAT file. The 01ST file is generated by the

CREATE module. Table A-IV describes the record format and de-

fines the data i tems wi thin this file. The FORMAT module processes

this data. It provides graphic displays of histograms for analy—

tical use.

Histogram Data File (MIST ). This file consists of records

( generated by the DEFINE module. HIST file data records are
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processed by the FORMAT module to produce graphic displays for

analytical use. The header record for this file is identical in

format to that of the 01ST file. The data records of this file

are fixed in size, but have a variable format. Size is fixed to

the space allocated by the DEFINE module. The record format

varies in order to allow storage of histograms output by the proto-

type revision process when assymetric classes are defined. In

the symmetric format the histogram data area for each feature

dimension contains one set of eight statistics and one set of

interval counters which store the histogram . In the asymmetric

format, two sets of statistics , and two sets of hi stogram counters

( are maintained. The added pair of sets appears within the array

starting at the position indicated by the variable KTR. The

variable NI gives the number of histogram intervals maintained

in the asymmetric case. The variable NBUC gives the number of

intervals for the symmetric case. \
Prototype Data File (PROT). This file consists of a set

of class defining data records which are encoded in a super—

imposed data format. The latter format facilitates transfer of

the prototype definitions from the prototype generation segment

of the BOX8O system to the classifier segment of the system. it

is described in Table 0—V Il . This format is a data standard

(Ref 17) on the INTEL SBC 80/20 microprocessor used for execution

of the classifier segment. With minor variations , it Is also used
( on Motorola 6800 systems (Ref 26). The format for the actual
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prototype data values is given in Table A—V. Each class definition

in this prototype format consists of a string of values which

define the region of feature space assigned to the class. These

values include the prototype mean and positive and negative devia-

tion value s for each feature dimension. Each such string of

values is preceded by a class identifier.

Feature Vector File (FVEC). This file consists of feature

vector components and vector i dentifiers . These values are

ordered for processing by the classifier segment of the BOXCO

system. Data in this file is encoded in the hexadecimal format

presented in Table D-VII. The structure and content of a feature

vector record in this file is presented in Table A-VI. This file

is produced by the FORMAT module of the prototype generation seg-

ment for use in test processing. It demonstrates the feature

vector structure processed by the classifier segment.

Interpreter Segment

This segment consists of four modules . These are CREATE , 
- -

DEFINE , TRYOUT, and FORMAT. Separate subsections define the

design of each of these modules.

CREATE. This module builds a file (FEAT) of feature vectors

in BOX8O system format for -later system processing. A file

(DIST) containing statistics and histograms for all vector corn—

ponents processed may be output. Various vector transforms are

possible. Output of a statistics report as well as certain
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execu tion trace informa ti on can be provided on the LOGF file.

CREATE functions are described below with the subroutine which

implements them. Fig 28 presents a data flow chart for CREATE.

A structure diagram is given in Fig 29.

CREATE is composed of four major functional routines.

These are DEFC , SCAN , COPY , and GETFEA . The first three are

part of the BOX8O system ; the latter is intended to be a user

supplied routine. The sequence of subroutine calls wi thin this

module and the input/output parameters for specialized CREATE

subroutines are presented in Tables V and B-I. Functional

abstracts of these routines follow. -

( (1) DEFC performs module initialization functions: file

names are set, and user opti ons are requested, error checked and

set. Memory is allocated according to an algorithm which sizes

histograms and FEAT file record blocks. Space is allocated as

requested to a user buffer for input of user data through rout ine

GETFEA. -

(2) SCAN accumulates statistics on feature vector compon—

ents obtained from the user data file. A summary printout is

provided at user option.

(3) COPY processes the user data input , and builds the

output FEAT file. Vector transforms are exercised at user option

prior to output of FEAT file records. Statistics and histograms

C

are generated for these output feature vectors.
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FIg. 28. CREATE Data Flow
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TABLE V

Sequence of Call s CREATE Proc ess

Routine Description

CREATE Generates FEAT file from user data

DEFC Requests and sets module parameters

ERR Echoes error prompt to terminal

SCAN Collects statistics on users data set

*GETFEA Reads feature vector from user file

STATX Updates statistics

COPY Copies user data set into FEAT file form

( *GETFEA Reads feature vector from user file

ENER Computes the energy in a set of values

STATX Updates statistics

STATH Collects multivariate histogram

WRHIS Writes lUST file record

*(Jnderjjned routines are unique to CREATE
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(4) GETFEA is a file read routine supplied by the user.

Three sample GETFEA routines are listed in Appendix E. Table D-VIII

summarizes specifications for this user input module in terms of

its input/output parameters . 
-

CREATE processing consists of initialization followed by

a one (or two) pass process through the user data—file. Vector

transforms which can be selected for the output feature vectors

establish standard value ranges for component dimensions which

make comparisons of interclass histograms convenient by effecting

a linear shift of component values. The energy normalization ,

unitzation and vector shift transforms affect feature vector

magnitudes but preserve relative angles . The squaring transform

varies both vector magnitudes and angles in order to extract

as much precision from vector components as possible. Control

options are given in Table B— I. Outputs to the LOGF file include

a trace of subroutine exits , and a dump of input data records as

well as printouts of data base statistics and histograms .

Appendix K contains a sample of selected LOGE output. Table C—I

briefly summarizes the each possible LOGF output.

DEFINE. This module generates and revises the CLAS file.

It can be used to shuck sets of feature vectors so as to isolate

the kernel of patterns most acceptable for use in prototype genera-

tion. It can be used to enlarge the structure of a CLAS file

so as to allow for generation of sink-prototypes. Prototypes

(
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can be generated singly or as an entire set. This process defines

hyperrectangular regions in feature space which may be either

symmetrical or asymmetrical about the mean of a class of feature

vectors. The primary output of the module is a CLAS file. Secondar-

ily, a HIST file may be output. This will contain histogram

records for each class of feature vectors processed. The process

of shucking sets of feature vectors is supported by a graphic

display of vector component overlap. In addition to this support ,

a control structure and dummy calls are provided at points appro-

priate for interactive and automatic selection of husk feature

vectors. Each function of DEFINE is described below with the

( subroutine by which it is implemented. Fig 30.. presents a data

flow chart for DEFINE. Fig 31 presents a structure diagram.

DEFINE is composed of three major subroutines and many

supporting utility routines. These major subroutines are NEXCLA ,

CLASSX , and CDEFI. The supporting routines unique to DEFINE are

DEED, ALLOC , PHUSK , KERPUT , KERGET , FANDER and SETLIM. The

sequence of subroutines called in a simple execution of this

module is given in Table VI . the parameters for subroutines

unique to this module are defined in Table D-II. An abstract

of each of these routines is given below. Routines appear in

execution sequence.

(1) DEED initializes DEFINE. Table B—Il defines input

control options provided by this routine. Program parameters
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Fig. 30. DEFINE Data Flow
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TABLE V I
Sequence of Calls in DEFINE Process

Routine Description

DEFINE - 

Generates CLAS file from FEAT records
DEFD Defines module parameters

OPE UX Opens FEAT and CLAS files
ALLOC Allocates memory to initial CLAS file
ERR Echoes error prompt to terminal

LOADC Loads existing CLAS file
IIEXCL A Sets pointe r to new class and obtains controls

RFEAT Reads FEAT record
ERR Echoes error prompt to terminal

PHUSK Prints prototype husk list
KERGET Gets entry from husk

RIX Finds husk list entry in CLAS file
KERPUT Puts entry into husk list

RIX Finds husk list entry in CLI4S file index
ADD Adds a husk list entry to CLAS file
DEL Deletes a husk list entry from CLAS file

CLASSX Generates a prototype for this class of FEAT data
IfIITC Initializes index to CLAS file entries
RIX Finds prototype entries in CLAS file index
ADD Adds prototype entries into CLAS file i ndex
DEL Deletes prototype entries in CLAS file index
RFEAT Reads FEAT record for this class
FAt4DER Produces cluster plot of feature vectors
CDEFI Updates prototype component definitions

KERGET Gets entry from husk
RIX Finds husk for this class 

-

STATX Updates statistics for this class
STATH Updates histograms for this class

WRHIS Writes MIST file record
PRCLAS Prints CLAS file record

1~
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TABLE VI (Co r~tinued )

Sequence of Calls in DEFINE Process

SETLIM Inserts feature bounds into CLAS file
ADD Adds entry to CLASS file index
RFEAT Reads FEAT record

WRCLAS Writes CLAS file to disk

*Underljned routines are unique to DEFINE

(

(-
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initialized by DEFD include the block of file names referenced

by all input/output statements and the set of memory parameters

which establishes the size and structure of the CLAS file.

Comments in the listing of this routine provided in Appendix

clearly define these parameter-s. DEFD controls allocation of mem-

ory to the CLAS file through OPENX (for existing files) and ALLOC

(for new or revised files).

(2) ALLOC uses a set of statement functions to allocate

available memory to the CLAS file and the MIST file. An iterative

computation of available memory expands three file parameters

until the limi t is met. User requests to allocate space for extra

( prototypes (variable NE) are honored first; requests for histo-

gram intervals (variable NBUC ) are honored next; then , reques ts

for space for prototype husk entries (variable Mi\XKV) are filled.

If changes are made, user approval is requested. Disapproval

aborts the module.

(3) NEX CLA contro l s opti ona l process ing of each class of
data. Table B-Ill defines its input controls. Embedded in this

routine is the mechanism which allows direct user assi gnment of

feature vectors to the husk of a class. Multiple passes through

each FEAT file record are possible through an option in this

routine. General control inputs include plotting parameters, as

well as processing function selections, The primary output of

the routine (variable NEXC) i dentifies the class data set

about to be processed.
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(4) PHUSK i s a support routi ne which uses KERGET to access

and print the husk list associated with a prototype.

(5) KERGET is a support function which uses RIX to extract

consecutive husk vectors from the CLAS file entry for a given

prototype. The next stored husk entry is returned on successive

calls in which the data class specification remains the same.

(6) KERPUT is a support routine through which a short list

of husk vector numbers can be inserted into the linked list of

husk vector numbers which is maintained in the CLAS file.

(7) CLASSX is the primary control routine within DEFINE.

If the user has selected an initialization process, CLASSX

( initializes the CLAS file using INITC and ADD. If a follow-on

process has been requested , CLASSX establishes prototype locations

within the CLAS file , and allows revision of those addresses. The

major cycle of CLASSX provides FEAT records to CDEFI , FANDER ,

SHUCK or PICKER as requested by control parameters. SHUCK and

PICKER are dummy exits for either automatic or interactive graphic

ass i gnment of feature vectors to the husk of a class. In addi-

tion to this control process, CLASSX updates the current HIST

record whenever CDEFI has processed. Both an exit trace, and a

trace of internal computations are embedded in this code.

(8) FANDER produces a plot of feature vector components.

The ordinate of this plot can be scaled according to three options

C requested by NEXCLA. See Table B-Ill. The abcissa of this plot

consists of a set of discrete l ocations , one for each dimension
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of the feature space . Plotting produces a set of points for each

feature vector. These can be connected to suggest the character

of the individual feature vector. All vectors within each data

block of a given FEAT file record can be accessed and plotted by

FANDER. The effect is that of a heavily overlayed set of line

graphs which suggest -in a single display the degree of correlation

and the variance in all feature dimensions. The combination of

this picture and either a listing of vector components or the

PICKER routine supports shucking unreasonable feature vectors

from the FEAT file set used for prototype generation. Figs 32

and 33 provide samples of FANDER output.

( (9) CDEFI generates prototypes. At each call , CDEFI

processes one block of the current FEAT file record. At each

exit a prototype exists within the CLAS file which reflects all

feature vectors processed to that exit. KERGET is used to

reject from this process any feature vectors assigned to the

husk of the class. A HIST file record is updated at each call

to CDEFI and is available for use at each exit. Both an exit

trace and a log of intermediate calculations are supplied.

(10) SETLIM accesses the FEAT fi le tra i ler record to

obtain maxi m um and minimum component values established for each

dimension of the feature space by CREATE. It then uses ADD to

es tabli sh a CLAS f i le entry for this data , and updates the CLAS

file. These global component limits are used within TRYOUT and

FORMAT iii order to scale feature components Into the byte sized
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range (0—255) required for microprocessin~.

DEFINE processing has three major paths. The initializa-

tion path is followed when selected as an option at module start.

Prototypes can be initialized only as a complete set one to one

with the FEAT file. When a CLAS file is initialized the last

record of the FEAT file is entered into the CLAS file. This

record contains scale factors for the feature space which are

used -in other DEFINE paths and in both TRYOUT and FORMAT. Thus

an initial CLAS file is a pre—requisite for all other DEFINE pro-

cessing paths. The regeneration path supports selection of husk

vectors and allows definition of a new prototype without processing

( those vectors. Prototype husks are stored in the CLAS file;

this regeneration process can be a heuristic iteration. When this

path is followed, specific prototypes may be selected for revision .

A given class of feature vectors (i.e., a recor d -From the FEAT

file) may be completely processed in repetitive i terations. The

third path allows generation of asymmetric prototypes; its process-

ing parallels that of the regeneration path. A CLAS file is

output whene ver DEFINE is run. A variety of selectable outputs

may be written to the LOGF file. Appendix K contains a sample

LOGE file produced by DEFINE. Table C-ill briefly describes the

contributions of each routine to this output. A li st of term inal

outputs is presented in Table C—I l . Output messages are descri bed

in each tab le in thei r approx imate order of appearance during

program execution.
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TRYOUT. This module performs a trial classification of

the feature vectors wi thin a given FEAT file. It can be used to

evaluate the acceptability of a given CLAS file. Additionally, it

can be used to estimate the relative merit 0f individual feature

dimensions and to construct from the original feature space a sub—

space within which classification is optimal. The primary output

of this module is a summary statement of classification error rate.

Input options extend this statement to a confusion matrix format,

and to a set of error rates for each of a set of vested subspaces

of the original space . A secondary output is a revised version of

the input CLAS file. This revision reflects both scaling and

( zapping of prototype components. These and the other functions

of TRYOUT are described below with the subroutine which implements

them. Fig 34 presents a data flow chart for TRYOUT. Fig 35

presents a structure diagram.

TRYOUT is composed of seven major functional subroutines.

These are DEFT , MERIT , SUBSET, FIGM , EVAL , LOOK and DOCU. The

sequence of subroutines called as TRYOUT is executed is listed in

Table VII . The input and output parameters for unique TRYOUT

subroutines are defined in Table D— III. Each is synopsized below.

(1) DEFT initializes TRYOUT . User inputs are obtained

to define selectable options. Table B-VI defines controls i nput

by DEFT. Both CLAS and FEAT files are opened , and memory

allocation parameters are set and checked against the system
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I

TA BLE V II
Sequence of Calls in TRYOUT Process

Routine Descri ption
TRYOUT Classifies FEAT records against CLAS file

DEFT Defines module control parameters
OPENX Opens FEAT and CLAS files
ERR Echoes error prompt to terminal

LOADC Loads CLAS file
INDEX Builds special index to CLAS file

RIX Reads CLAS file index
XSCAL Scales prototype into specified value range

PRCLAS Prints CLAS file
MERIT Computes a figure of merit for each dimens ion
SUBSET Controls prototype component zapping

LOADC Loads CLAS file
INDEX Rebuilds special index to CLAS file
RIX Reads CLAS file index
XSCAL Scales prototypes as specified
PRCLAS Prints CLAS file
ERR Echoes error prompt to terminal
IASORT Sorts zap tags to ascending order

FIGM Requests subspace id or subspace tags
FDSORT Sorts subspace tags into descending order

EVAL Classifies a given feature vector against CLAS
RFEAT Reads FEAT fi le
XSCAL Scales FEAT vectors into given range
LOOK Computes feature subspace error rates

DOCU Documents classif ication error rates
PRCLAS Pr ints CLAS fil e
RFEAT Reads FEAT fil e
WRCLAS Wr ites CLAS fil e to di sk

*Underlined routines are uni que to TRYOUT
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l imit. DEFT sets ‘NAMES’ , the common block of file names used

by TRYOUT.

(2) MERIT computes five sets of figures of merit for the

feature components represented in the CLAS file prototypes.

Three of these are intermediate computations used nowhere else.

Feature evaluation algorithms (see chapter 4) are used to compute

the output sets of merit figures.

(3) SUBSET is a control subroutine which requests user

inputs to direct the process of feature zapping. This process

expands specified feature deviation values wi thin a given pro-

totype. The effect is elimination of the specified feature corn—

ponent from the classification process. Table B-IV defines user

inputs to SUBSET. Figs 18 to 23 present a sample execution of

TRYOUT showing some of these inputs.

(4) FIGM is a control subroutine through which the user

selects which set of merit figures ~re to be used in production

of an extended set of classificati on error rates. Table B—V

specifies control inputs to FIGM. A list of feature dimensions ,

considered to define a set of nested subspaces , is passed from

FIGM to LOOK which computes the subspace error rate statements.

Refer to Appendix K for a sample operation of FIGM .

(5) EVAL is the core subroutine of TRYOUT. It controls

reading of the FEAT file and classifies each feature vector

with in this file against prototypes within the CLAS file. The

BOX8O decision rule is implemented so as to admit prototypes
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whose components have been scaled into the range 0-256. This

allows simulation of the processing within DECIDE , the 80/20

classifier. Additionally an option allows the user to elect

use of the Euclidean norm rather than the Sup norm within the

decision process. EVAL outputs a summary of error rates and a

confusion matrix. It also controls execution of LOOK.

(6) DOCU is an output format routine. The summary

performance error rate, the confusion matri x , and the list of

subspace error rates are printed by DOCU.

(7) LOOK analyzes each distance vector computed within

the classif ication algorithm; The components of this vector are

re-ordered according to the list of subspace tags provided by

FIGN. Then each nested subvector is classified within its sub—

space and error rates are recorded for later output by DOCU.

There is a tight interface , that is , there are no subroutine

parameters and there is significant interlacing of common blocks ,

tieing this routine to EVAL and to DOCU . This , since LOOK is

called inside the inner most loop of TRYOUT.

TRYOUT processing consists of an initializati on sequence

and an evaluation cycle. In the former, DEFT , OPENX , INDEX and

MERIT establish processing options and parameters , load and scale

the CLAS file if opted , and compute MERIT figures. Control inputs

to this sequence are shown in Table B—VI. In the latter , FIGM ,

SUBSET , EVAL , LOOK , and DOCU allow the user to modify the feature
(5-
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dimensions used in the classifi cation process , and then perform

and document that process. A revised CLAS file is output at

end of job whenever the CLAS file has been zapped via SUBSET. A

variety of selectable outputs may be written to the LOGF file.

These are tri ggered by the standard control option (L,T,Y) and

by the TRYOUT control option (C,A). Appendix K contains a sample

LOGF file produced by TRYOUT . The contributions of each routine

to this LOGF output are sunimarized in Table C—IV in the approxi-

mate order of their generation.

FORMAT. This module produces several formats of data

wi thin each of the BOX8O system files. Its primary purpose is

the production of the PROT and FVEC files in hexadecimal paper

tape line format for input to 8080 micro processor systems.

Secondarily displays of CLAS , FEAT and HIST records are produced

on the TEKTRONIX 4014 terminal screen. The module is designed to

produce two display formats. The strip chart format, which is

only stubbed into the code , is intended to allow precise examina-

tion of ordinate and abcissa data values for individual prototypes ,

feature vectors and feature histograms . The picture format

presents a top level three-dimensional presentation of global

data variation within sets of prototypes , feature vectors and

feature histograms . These and the other functions of FORMAT are

described bel ow with the subroutine which implements them.

Fig 36 presents a data flow chart for FORMAT . Fig 37 contains a

structure diagram , while Tables B-VII and B—VI II show input
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TABLE VI II ( 1/2)

Sequence of Calls in FORMAT Process

Routine Description
FORMAT Produces output format from BOX8O file

DEFF Defines module control parameters
OPENX Opens CLAS file , and FEAT file if opted
OPENH Opens HIST file
ERR Echoes error prompt to terminal

LOADC Loads CLAS file
INDEX Builds table to index CLAS file; may scale CLAS

RIX Finds CLAS file index entries
XSCAL Scales vector components to stated range
PRCLAS Prints CLAS file

NEXREC Requests user input of next data class
ERR Echoes error prompt to terminal

4
XFEAT Controls processing each FEAT file record

RFEAT Reads FEAT file record blocks
NEXVEC Requests user choose specifi c FEAT vectors

ERR Echoes error prompt to terminal
PICT Sets up for 3-D plot
PLOT3D hidden line routine draws feature vectors

PLX Emulates CALCOMP PLOT routine -

STRIP Stub for feature vector strip chart function
XSCAL Scales vector components into stated range
XMIT Drives hexadecimal line format

ILINE Produces hexa decimal li ne output
XCLAS Controls processing each CLAS prototype

XMIT Drives hexadecimal line format
ILINE Produces hexadecimal line output

PICT Sets up for 3-D plot of prototype data
PLOT3D Hidden line routine draws prototype boundaries

PLX Emul ates CALCOMP PLOT routine( STRIP Stub for feature vector strip chart function

- —  

144



‘ TABLE V III (2/2)

Sequence of Calls in FORMAT Process

Routine Descript ion

XII IST Controls processing HIST file records
RHIST Reads HIST file records
FILBUF Builds buffer for 3—D plot
PICT Sets up for 3—D plot of histograms
PLOT3D Hidden line routine draws nistograms

PLX Emulates CALCO MP PLOT routine
STRIP Stub for histogram strip charting

*Underl i ned Routines are unique to FORMAT

(

C 
-
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options and controls. Table C-V summarizes outputs in the approx-

imate order of their appearance on the LOGF file. Table V III - shows

tIie sequence of subroutine calls execut ed in operation of FORMAT .

FORMAT is composed of five major functional routines and

several unique supporting routines. These arc described in the para-

graphs that follow. The input/output parameters for these unique

routines are defined in Table D—IV.

(1) DEFF initializes control parameters for FORMAT and

allocates available memory to buffers and tables. Input options

allow selection of a file data source and choice of a processing

option. FEAT , CLAS, and HIST files may be input. Process options

are transmit , picture and stripchart. The selected source data

file(s) are initialized via subroutine call from this module.

(2) XCLAS directs processing of CLAS file data. This

routine has three data paths. When the transmit option has been

selected , XCLAS formats a PROT file wi th the non-zapped components

of selected prototypes and prepares a count of the dirnensional ity

of the prototype space represented by the PROT file. If either

stripchart or picture opti ons have been chosen , a buffer is

filled and output to the appropriate routine when full.

(3) XFEAT controls the processing of FEAT file data. A

specia l routi ne (NEXVEC) allow s sel ecti on of spec i f ic fea ture

vectors. These are either output for transmission as hexa-

decima l data lines , or loaded into the buffer used for data

(
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display. When transmission has been opted , only values of non—

zapped features are processed.

(4) XHIST handles the flow of 1-lIST file data to the dis-

play buffer. A special subroutine (FILBUF) does the actual

movement of data i tems. A utility routine (RI-lIST) provides access

to the I-lIST file. When a DIST file (a single record MIST file

produced by CREATE recording universe distributions) has been

input , XHIST sets special processing parameters.

(5) XMIT is the controlling driver for the hexadecimal

format routine.

(6) PICT is the controlling driver for the 3—D plot rou-

tine. It requests and sets plot scaling parameters , controls

repetitive displays , and initializes TEKTRONIX graphics.

(7) STRIP is the stub for a routine which should initialize

TEKTRONIX graphics , and label and output a set of stripchart

plots wi th scaled axes.

(8) FILBIJF passes HIST record data to STRIP and PICT. It
-
‘

I

allows a LOGE file printout of feature distributions and statis-

tics as well.

(9) NEXREC is a control subroutine through which the user

selects classes of data for processing.

(10) NEXVEC is a control subroutine through which the

user identifies (sets of) feature vectors for processing.

C
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Format processing begins with the system standard initiali-

zation during which the selected data file is opened. A major

cycle through each data class can be automatic at the request for

each desire d class. Classes of data must be processed in ascend-

ing order by class number. ~ihen the transmission option is

elected , only one address may be specified for the output PROT

or FVEC file. However, when picture or stripchart options are

selected multiple display outputs are possible so that differently

scaled prcsentations can be viewed. Similarly, when FEAT files

are processed , a given data class may be processed repetitively

so that different sets of feature vectors may be output. This

should aid in the selection of a kernel of feature vectors from

which to define a class archetype. Output to the LOGF file is

minimal , consisting mainly of journal entries of user inputs .

However , a format print—out of feature statistics is provided.

Appendix K contains a sample LOGF file produced by FORMAT .

Classifier Segment

This segment consists of two modules. These are TAPEIN

and DECIDE. The former is a support module. The latter imple-

ments the BOX8O system classifier. They are described in the

following subsections.

TAPEIN. This module loads PROT and FVEC files into

microprocessor RAM in order to set up data buffers for execution

of the DECIDE module. The module is dependent upon service
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routines within the SBC 80/20 rsrs 1.0 monitor. It’s design is

based upon the ISIS routine which implements the SBC 80/20 “R”

command (Ref 19). Output from the module is simply a block of

RAM locations which are loaded with the data contained on an

input cassette tape. Timing and control variations between

paper tape and cassette tape readers necessitated the module.

TAPEIN is used as a utility of the SBC 80/20. It is

executed according to procedures detailed in Table B-IX. Data are

input to the TAPEIN module on a cassette tape produced by copying

a PROT file generated by the Interpreter Segment. The proce—

dures for generating this file are shown in Table B—X.

DECIDE. This module classifies feature vectors. It

executes within SBC 80/20 RAM and references RN-I locations to

obtain both class definitions and pattern feature vectors.

Outputs from this module are a decision by decision record of

class assignment , and a summary count of correct and incorrect

decisions. The module is designed to be a model , and not to be

a packaged subroutine . Thus , its initialization requires the

user to manually set 80/20 RAM with control values. For inter-

preter testing these initializations are duplicated by references

to assembler symbols , whi ch should be set before assembly. These

initial values specify the dirnensiona lity of the feature space

(JO), the number of pattern cl asses ( IC) , and the number of

feature vectors in the data bl ock to be processed (LB).

4 ~~
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DECIDE is intended to be used as a supporting process

within one of a pair of microprocessors which communicate via a

common buss and a central RAIl. The primary processor acquires

data , and generates feature vectors. As each vector is produced ,

the secondary process ;r is interrupted , and the vector is placed

in RAM . The secondary processor is tri ggered when the fir-st

vector is entered into the RAM data block. It continues to

execute DECIDE , producing classification decisions , until this

data block is empty.

A priori knowledge of test feature vector classification

is reflected in DECIDE output. The score keeping element of the

DECIDE process should be deleted in any actual implementation.

This code is located in code paragraph 0A5, and is shown in the

flow chart in Fig 38. Figs 39 and 40 present the data flow and

structure within DECIDE.

(
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Fig. 38. Flow Chart for DECIDE (1/3)
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VI. Conclusions and Recommendations

This thesis has presented a development system for mi cro-

processor based pattern recognizers . Two system segments were

implemented. These satisfy the functional requirements established

for the system. The algorithms developed for the system were

defi ned-and were illustrated in the preceding chapters . The

design of the computer program modules which comprise the system

was described in Chapter V. A performance evaluation was provided

for the system through a series of benchmark experiments. Specifi c

conclusions and a set of recommendations are now provided in the

following sections.

Conclusions

The BOX8O system provides a framework for experimentation.

It can be used to configure a pattern classifier which forms one

node of a two—part microprocessor based pattern recognizer. The

Classifier Segment of the BOX8O system has been tested by simula —

tion. This testing has shown that the classifier algori thm can

indeed produce recognition decisions with an acceptably low error

rate . The Interpreter Segment of the BOX8O system has been

demonstrated by experiment. Class defining structures have been

generated and trial performance has been measured. The contrast
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of this performance to independent experiments using the same

data has shown that the Interpreter Segment can support accurate

pattern recognition. The algorithms used in this latter segment

include a non—parametric , weighted , minimum—distance classifi-

cation procedure , and a manually controlled feature selection

technique.

The classifier algorithm was shown to be capable of performance

approximat ely equivalent to that obtained from OLPARS ’ and SPSS ’

al gorithms . This performance in fact exceeds that of previous

AF IT experime nts with benchmark data sets (Refs 24, 33) and veri-

fies si~iu1ated alphabet classification error rates projected by

( 
Tall I~~ N (Ref 35). Al though suboptimal , this classifier algori thm

~ery efficient. Existing AFIT programs , and even the SPSS

¶~ystem , require far more memory for class defining data structure s

than the B0X~0 classi fier requires. One execution time compari-

son showed a 2:1 run time improvement. The concept of micro-

processor development relies upon the use of byte—scaled features.

Experiments wi th both the FOBW and the alphabet data showed a less

than one percent average increase in errors when the classifier

algorithm operated on these byte scaled integer values.

The fu ture selection algorithm was shown to be comparable

to the OLPAPIS procedure . Although possibly more difficult to

use , the BOX3O procedure is more flexible than that of OLPARS.

C
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The minimu m error rate produced by the BOXBO system is equivalent

to that produced with OLPARS ’ NMV classifier. This comparison is ,

of course , highly data dependent. The 80X80 system feature

selection algorithm chose a best ~eries of nested feature subsets for

classification of the alphabet data. The series of associated

error rates decreased monotonica lly and asymptotically. The

error rate for each of these nested feature subsets was lowe r than

the error rate for every other tested featur~ subset of the same

size. The final subspaces selected for the alphabet and the FOBW

data sets each produced error rates less than or equal to

the lowest error rates obtained by previous AFIT experimenters .

Note that these previous experimenters used two and seven times

as many features for their l owest error rates as were used in the

comparable BOX8O tests.

The Interpreter Segment of the BOX8O system embodies

processing capabilities which have not yet been fully explored.

The CREATE module has options for input data transforms which

were not experimentally evaluated. The DEFINE module has the

necessary data structure to support editing the training data set

so as to define class structures based on analytically selected

class kernels. Subroutine stubs are indicated but not provided for

an automatic editing capability. The TRYOUT modul e allows selec-

tion of partially disjoint feature subsets for each data class.

Data processing structure for generation of rejection rates

exists. The FORMAT module has indicated but not provided sub-

routine stubs for strip chart graphics presentations of histogram ,
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and feature vector data. None of these capabilities was required

of the Interpreter S~g~pent. The conclusion here is that a signi-

ficant capacity for enhanced capability is deliberately designed

into the system.

Finally, the BOX8O system is transportable as required. This

fact is not explicitly shown. However , ANSI code conventions

were followed. Design is modular and data structures are sized by

the user. The use of independent modules related by standard

files supports the transportability of this code. This transport-

ability and the economy of its algorithms make the BOX8O system a

potentially valuable tool for the development of microprocessor

( 
based pattern recognizers .

Recommendations

A host of general suggestions are possible. One outweighs

all others. The system should be used in an experimental develop-

ment of a waveform pattern recognizer. The systems design for

this experiment should address the all— important problem of gener-

ating a design data sample which adequately represents the pattern

environment. Local research facilities have supported experiments

of this type which have processed electrocardiographic data.

Because of this ready availability , this data should be used for a

first experiment with the BOXCO system. A list of more specific

recommendations follows .
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(1) Error rates achievable with the asymmetric classifi-

cation option should be expe rimentally compared to those achiev-

able with the symmetric process.

(2) The TRYOUT module should be modified to experiment

with the use of reject boundaries. A constant boundary level

should be used for all classes at first. Then unique boundaries

should be used for individual classes.

(3) The capabilities of the DEFINE module for edit selec—

tion of husk feature vectors should be explored.

(4) A new module , MODIFY , should be produced to investigate

formation of synthetic classes. These should be formed between

classes whose members are easily mistaken as indicated by confusion

matrix output. This module should present interclass distance

measures in graphics and tabular form. These measures should be

designed to qualify the effect of selecting kernel patterns on

the variances and dispersions of individual features.

(5) The DEFINE module should be modified to investigate

mode based class defining structures.

All of the above experimental modifications should use

the alphabet data set produced by Sponaugle as a standard test

data set. The value of the Fourier transform features recorded on

that data set should be further qualified by a classification

experiment using the 81 space vectors generated by Sponaugle.

4.

- 
- 
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