.- AD=AO64 194 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 5/8
A DEVELOPMENT SYSTEH FOR MICROPROCESSOR BASED PATTERN RECOGNIZE==ETC(U)
ol:c 78 JRLE
UNCLASSIFIED AF I'I.CWI T78=12-VOL~-1

T

= 122

o
3 3

=
[*19

""l TR =

— |3

NLzs i pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

AFIT/GCS/EE/78-12

()

ABAO0G4194

———y S ———

DDC FILE COPY.

FI8
o r:r’%
o150
r

A DEVELOPMENT SYSTEM FOR
MICROPROCESSOR BASED PATTERN RECOGNIZERS

THESIS A

i Gu

FIT/GCS/EE/78-12 John R. Leary raign) 02 1r
i Captain, USAF E : ,
l FEB © 1979 b

- . o
l - N e T v -

“ ‘_-quﬁl:JL.f

|

]

S NS e e

—~g—— w=

o~ -

' ,-——\\\ Sl
) B
| AFIT/GCS/EE/78-12= Vol~ 3 : | |

-

- "’@ A DEVELOPMENT SYSTEM FOR
© MICROPROCESSOR BASED PATTERN RECOGNIZERS, Vo lume L,

THESIS

: VOLUME I ‘
k-}:\ Moagter's thesis,
Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
in Partial Fulfillment of the
. Requirements for the Degree of

Master of Science

| OABLESS K W ,‘-__/

by . s € .*mlm/ b
: BT et Sl 70
am—— | wonaonnrs 0
i LAY
> o o 1
{ :)
3 :» 1Y GOBES l
1 b ¢ gl o SPCOIAL
l L
Graduate Computer Systems ' -
m Decomims 78 |
{ !

Approved for public release; dist;;bution unlimited

o TR T J O—.

Preface

This thesis presents a system of computer programs. They
are designed for student use. However, their design is modular,
the code is ANSI FORTRAN and the common 8080 assembler. This
design was selected to make the system transportable. Over 4000
source lines are included. If a user does not require the complete
system, individual routines may easily be extracted.

Some notes of appreciation are due. Charlie Dutra, Tom
Gabrielle, Gene Mechler, and Professor V. 0. McBrien all partici-
pated in educating me and in creating the opportunity for this
thesis. My typist, Ms. Nancy Myers, produced an amazing transforma-
tion in the manuscript in aimost no time at all. The members of
my thesis committee have graciously endured my moments of confu-
sion and given solid support. I am thankful for Professor Richard's
careful comments and Dr. Hartrum's understanding. Without
Dr. Kabrisky's perspicacious underwriting not even the statement of
my objectives in this bottom 1ine would exist. I sincerely thank
all who have helped me.

A special note follows: MJ, Jack, Amy, Moira, Nancy -
your patience with me has been magnificent. You have my promise

that 'the best is yet to be.' Thank you.

John R. Leary

ii

{
;
!
Volume I ,
Table of Contents
Page
Preface . . . L) . . . L] L L] L] L] L] L] ii
List of Figures . L] L . L] L] . . . L] . L] . . L] . L] . Ll . v
LISE Of Tables . « v« o & s s fe €% % % & & 4 » % » 5 % s vii
Abstract L] . L] . . L] » . L] . L] . L] L] L] L] Ll L] . L] Ll L] L] . 1.x
IQ Introduction . . L] Ll . L] L] L] L] L] . . L] L 1
II. concepts . . = . L] L] Ll L] L] L] . . . L] L] L] L] L] . L] 4
NOLATNGH. 5 0 s i RE e G e s 4
Pattern Recognizer Design . « ¢« « « « . & 6
Pattern Classification . « ¢« ¢« ¢ ¢ ¢ « . & 10
Feature Selection « ¢« » o ¢ o .9 v v s & 14
' Pattern Recognition Applications 16
I11. REGUIFEmEnES o . i s wman s v & bk o & 5% & = 18
Goals and Objectives P AP P A 18
RESIPEIONE 470 v s ah & e e e 1¢
Required Functions . « ¢ « ¢ o & % o s & o 21
0 S S R A S 26 ,
SYSEOI NEOME . « o v 5% 5 5 v v & 5 % % 29
1v. Algorithms and Procedures . « « « « ¢ o« o o « .« 30
Data Representation . « v s ¢ s s ¢ v « & & 30 F
C]aSSification L] . L L] 35 '
Feature Selection . « « +» + « 4 o 5 v ¢ ¢ 46
Performance Benchmarks . « « « ¢« « o« ¢ « 60
Testing Procedures '« o« « » s s ¢ & + « s 90
v. msign L] @ Ll . L] 92
Data F]ow L] . . . L] . L] . . 92

System Subroutines . ¢« « « ¢« ¢« ¢ o o o o o 100

i1

-
N e T S -

9
. Table of Contents (Continued) v]
Page ’
V. Design (Continued)
Data STructures . «cie « @ o 5 o o o o & o o 108
Feature Data File (FEAT) 109)
Class Definition File (CLAS) 110

Class Definition File Index (LIST) . . 111
Distribution Data File (DIST) 116
Histogram Data File (HIST) 116
Prototype Data File (PROT) 117
Feature Vector File (FVEC) 118

1
Interpreter Segment 4 118
HHEREE . o st sy 118 *
BERENG .l ol -~ s L e 123 i
TRYOUT - . - . L] - . L] L] L] . L] L] L] L] L] 135
FORMAT L] . . . Ll L] L] L] L] . Ll Ll L] . . 141 J
Classifior Segment . o « « « « o v o % 5 &« 148
TAPEIN . L] . L] . . s . . . L] L] - Ll L3 L] 148
. DECIDE L] . L] L] Ll Ll . L] . Ll . 149
Vi. Conclusions and Recommendations . . « . o o o . 156
SHNBEY &« o s @ s % 6 % Bk s % % oS %F B 156)
CONENUSTIONS .o 5 4 e ol v o v ol s & o e 156]
Recomndations o o o e o e o o o o o o o 159 b

Bib]iogl"aphy ¢ e ® o e * o B & e © ¢ O © e 0 * e o ° o o 161

iv

Figure

—
;mv»r'bn i

O O N O O & W N

N N st b b et b b b e b
- 0O W 00O N O DD Ww N = O

v

List of Figures

Iterative Model Building Procedure
Two Path Pattern Recognizer Design
System Bubble Chart

BOX80 Classifier Distance Measure

SPSS DISCRIMINANT Results

OLPARS NMV Error Rate
BOX80 Error Rate « « « « s « o o «
OLPARS NMV-2 Error Rate
BOX80 Sample-2 Error Rate
OLPARS NMV-2 Sample-2 Error Rate .
OLPARS Overall Feature Rank . . .
OLPARS Class Pair Feature Rank . .

BOX80 Features - Figures of Merit

User Selected Feature Order

Error Rate - Selected Feature Subset

Byte-scaled Component Error Rate . .

e o o o o o o

Alphabetic Classification Experiments

Error Rate for 49 Alphabet Features
Error Rates for Merit 1 Subspaces

Error Rates for Merit 2 Subspaces

e o o o o o o

e o e o o o e o

Error Rates for Arbitrary Feature Subspaces . . .

FL TR AL K

~g——— -

e

Figure
22
23
24
25
26
27
28
29
30

| i'_) &
* 32

34
35
36
37
38
39
40

List of Figures (Continued)

Subspace 20 Error Rate (Byte-Scaled)
Subspace 49 Error Rate (Byte-Scaled)

BOX80 System Data Flow

CLAS File Index Structure
Diagram of CLAS File Structure

CLAS File Data Record-Vector Tags

CREATE Data Flow
CREATE Structure

DEFINE Data Flow . .

DEFINE Structure
Features Cluster

Features Cluster

TRYOUT Data Flow . .

TRYOUT Structure
FORMAT Data Flow
FORMAT Structure

Diagram
Plot Sample -1 .
Plot Sample -2 .

OIagram & ¢ « o »

Flowchart for DECIDE

Classifier Segment Data Flow . . .

DECIDE Structure

Diagram

vi

Page
88

89

95 1
112
113
114
120 1
) {
125 ‘
126

132

133

136 <
137 *

142

143 b

151-153 |
154

155

List of Tables

Table
Volume I

I Pearson Correlation Coefficients e
11 Identically Recognized Alphabets . . . « « ¢« « ¢« « &
111 Module and Routine Names . . « « o « « o s o & « o
IV Module and Routine Definitions o ..

v Sequence of Calls in CREATE Process . . « « ¢ « « &
VI Sequence of Calls in DEFINE Process . . « « « « T

VII Sequence of Calls in TRYOUT Process . « « « « « « &

VIII Sequence of Calls in FORMAT Process s
Volume II

A-1 FEA] FIIE Data TOPIBE o - '« o o' 4 5 % v % & » o« 4 @

A-11 CLAS File Data Structure . « « « ¢« « A R

A-IIT CLAS File Data Item Definition . « ¢ « ¢« ¢ ¢ ¢ & o @

A-1V HIST/DIST Files - Data Structure

A-V PROT File and Record Structure . « . ¢« « « ¢ o o « .
A-VI FVEC File and Record Structure . « « v« o« v ¢ o« « « &

B-1 DEFC Control Options (CREATE) . o « « o o s .5 v v
B-11I DEFD Control Options (DEFINE) .« « o ¢« « o o« ¢ « o =«
B-I11 NEXCLA Control Inputs (DEFINE) . « ¢« « v v « « ¢ «
B-1V SUBSET Control Inputs (TRYOUT) v v « « « « « ; e

vii

Page

127-128

138
144

—— ;-

’ List of Tables (Continued) -

Table Page
Volume II (Continued)
B-V FIGM Control Inputs (TRYOUT) . + + v v o v v u .. B-7
B-VI DEFT Control Options (TRYOUT) .« ¢« « o o ¢ o o « & B-8
B-VII DEFT Control Options (FORMAT) . « ¢ « ¢ o « o & . B-9
B-VIII USER Inputs to FORMAT Routines . « « « « « « « o« & B-10
B-IX TAPEIN Execution Procedif@s.ass:esasosnsnresns B=12
B-X Generating a PROT File Cassette Tape « . « « « « . B-13

C-1 CREATE LOGF QUEPHES & & « o a u v 5 = ¢ & 5. 5 & » C-2
C-11I PDEFINE Terminal OUEBUT & - o v ol o o & oils o « o & C-3
: C-II1 DEFINE LOCGF QULPUE . « % ¢ o « % » « > s % & & » » C-4
z C-1v TRYOUT LOGF Outpuf « « v o s « o v @ o v & « & » & C-5
C-v FORMAT LOGF QUEPUE i « ¢ o = w v o % v 5 s » » « C-6

D-I 1/0 Parameters for CREATE Routines D-2
D-11 1/0 Parameters for DEFINE Routines « « . . D-3
D-IIT I/0 Parameters for TRYOUT Routines D-4
D-1IV 1/0 Parameters for FORMAT Routines . . .« . « . . . D-5
D-V Utility Routine Calling Parameters . . « « « « « & D-6
D-VI Support Routine Calling Parameters « . . . D-8
D-VII SBC 80/20 Hexadecimal Data Format D-10

D-VIII User Input Routine Parameters . . . « « « « « o« . D-11

viii

Abstract

A tool for developing microprocessor based pattern recog-
nizers is presented. A two segment system of programs is imple-
mented. One segment is a subsystem consisting of a generalized
pattern classifier program and utility routines for an INTEL
SBC 80/20 microprocessor system. The other segment is a sub-
system of four interactive programs. These four programs support
feature selection, pattern class definition and performance
evaluation using procedures fitted to the classifier algorithm.
This subsystem operates on a user supplied file of feature vectors.
It produces a class defining structure for use by the classifier.
It can use a TEKTRONIX 4014 for graphics support and will operate
interactively within the CDC 6600 Intercom partition. Structured
design, modular code, buffer allocation algorithms, and ANSI
standard FORTRAN code make this segment transportable. The
classifier segment requires an 8080 system. Less than 256 bytes
of ROM are used. Data buffer locations and sizes, the number of
classes and the number of features are specified by the user.
Experiments produced estimates of classifier performance for this
system. An error rate of less than ten percent is reported for

one 26 class character recognition experiment.

ix

N |

A DEVELOPMENT SYSTEM FOR
MICROPROCESSOR BASED PATTERN RECOGNIZERS

I. Introduction

This thesis presents a development system for use as a
design tool in implementing experimental pattern recognizers.
Some characteristics of pattern recognizers are described in the
next chapter. The art of designing a pattern recognition system
is also discussed in that chapter. The development system produced
for this thesis is discussed in the three following chapters.

In chapter three, functional requirements are established.
Chapter four defines the algorithms upon which this system is
based. In chapter five, the design and use of the system is
documented. Two questions remain to be addressed. Their answers
justify the above discussion. First, of what value are pattern
recognition systems to the Air Force? And second, how does this
system relate to such Air Force pattern recognizers?

In a recent issue of Air University Review, Dr, Paul Namin

explores the military need for Identification Friend, Foe, Neutral
(IFFN) systems. He makes the point that without such systems

there is a serious limitation, i.e., the rule of visual engagement,
which restricts the degreé to which the potential of any weapons

system can be realized. An anecdote illustrates his point. It

tells of the destruction of a mu];imillion dollar weapons system
while its pilot is unaware of any threat. Namin hypothesizes

that this might occur because of marginal enemy advantage in
target detection capability. He then suggests that solutions to
the technology problem posed by IFFN need not necessarily seek
new sensor phenomena. Rather, he holds that a more effective
integration of sensor data may be produced by enhancements to
signal processing systems and "shrinkage in device cost and size."”
This is the synergistic effect of "getting more performance out
of a collection of data than any one of them can provide." (Ref 9)
This may be the general military application for pattern recog-
nition systems. At each node of a complex network of sensors

may lie a pattern recognizer. It reduces volumes of higher level
data into simple classification statements which funnel through
the network as command and control status items. Namin's IFFN is
"a technological challenge for the '80s." Classification inputs

to C4 status networks begin with simple pattern recognizers
applied to small pieces of the complex electromagnetic warfare
environment.

The development system presented in this thesis is a simple
one. It is primarily pedagogical, and is intended for AFIT
student use in exploration of experimental solutions to specific
recognition problems. But the concept and the configuration of
this system are also aimed at the practical problem of cheaply

implementing prototype pattern recognizer systems. Such

prototypes may provide sufficient empirical knowledge of key
sensor data environments for the ultimate implementation of high

reliability systems.

ITI. Concepts

This chapter presents the theoretical foundations for the
thesis. Following a brief statement of notation conventions and
some definitions, design of pattern recognizers is discussed in
general. Concepts relevant to classification algorithms are next
presented. Then the selection of pattern features is discussed.

Finally two types of pattern recognition applications are described.

Notation

Several definitions and notation conventions make this
report easier. Assume that any pattern environment may consist
of N patterns. These patterns may separate into I sets whose
members share some degree of commonality. Each of these sets of
patterns will be known as a pattern class. An arbitrary pattern
class may contain L members. Any individual pattern may be
represented by J characteristic features. If these features are
considered as an ordered J-tuple, an individual pattern can be
represented by a feature vector having J components. These
vectors will be referenced as 1XJ row matrices when th's is con-
venient. A population of feature vectors collected from the
pattern environment will be described as a data base or data set,
and denoted 2, This collection can be separated into disjoint

classes. Each of these will be denoted w. An arbitrary feature

vector in the population @ will be denoted Fn. Similarly, an
arbitrary feature vector in an arbitrary class w5 will be denoted
Fz. A consistent use of the single subscripts n and % will over-
come any possible ambiguity in specification of feature vector
class membership. These definitions are summarized in the

notation below.

Q = (F, |1<n<N) (2-1)
where
Fp = (fs fis . f5) (2-2)
I
Q= U m1 (2'3)
i=1
where F e ws (2-4)
and wy Nw, = ¢ for all i, k when i # k (2-5)
Symbol conventions are implicit in this notation. Vector com-

ponents and scalar values are represented by 1ower case letters.
Subscripts are used only when needed to clarify significant
differences and not used to establish a trail of relationships.
fhus F2 is a member of wj and context will suffice to identify the
vector of which fj is a component. With the exception of the index
limits N, I, J, and L, only vectors and matrices are denoted by

capital letters. The transpose of the usual I x J row matrix F

T

to aJ x I column matrix is denoted F'. There is one exception

to the convention for denoting matrices. The symbol DF is used

This

to denote the within-class covariance matrix for class s

L gl —

covariance is estimated by:

L
_1 T T o
pep X (FyFy =Py Py) (2-6)
2=1
4 :
where P, = L z; Fye (2-7)
2=1
'

In equation (2-6), the notation F, F, indicates a square J x J
matrix. Also, FLFzT denotes the scalar which is the square of
vector magnitude.

The definitions above make possible explanations of several

concepts upon which this thesis is based.

Pattern Recognizer Design

To recognize a pattern is to perceive it as something
previously known. With this simple statement Webster suggests
what Kanal (Ref 23:701) emphasizes as a major evolution of the
last few years: the design of a pattern recognition system has
come to be highly iterative process. A major part of this design
process is acquiring necessary and sufficient prior knowledge.

A major problem in this design process is deciding exactly

what knowledge is necessary and how much of that is sufficient

for pattern recognition. This decision is made through a two-path
modeling process.

Box (Ref 2:24) discusses a philosophy of model building.
Fig 1 presents his three stage procedure to find adequate models

from known data. In pattern recognition the data are the patterns

-

System knowledge

Identify tentative
model

A

Estimate parameters
of this model

Check the adequacy
of this model

Fig. 1.

Iterative Model Building Procedure

S TP

ik

-

of interest. Here two paths produce a classification model and

a representation model. These are respectively equivalent to

Webster's present perception and previous knowledge. In the one

path, features model the patterns. In the other path, class

defining structures model the pattern environment. Through the j
former we come to know the latter.

Box explains his procedure as follows. In the first stage
system knowledge is used to hypothesize tentative models. Here
statistically inefficient methods are used because precise
formulations are not yet available. In the second stage, parameters
are estimated for the tentative model. Non-linear least squares
procedures are used to estimate these parameters and then covar-
iance matrices. After fitting the tentative model to observed
data, in the third stage, the fitted model is checked in relation
to the observations so as to reveal model inaccuracies and achieve
improvement. Inspection of error functions indicates whether the : 1
entertained model is adequate, or if and how the model is to be
revised. After diagnostic checks satisfy the user as to model
adequacy, the derived model is used.

The appeal of Box's process lies in its generality. It
~applies equally well to each path. Fig 2 shows these paths.

-Clearly these paths are not independent. Production of an error
rate requires both features and a class defining structure.

Obviously the class defining structure is built in terms of

S A~

uotjeual] ubisag 42zLuboday udalieqd yied om] -z °*6L4

$94Nn32n43§ sse|) Jo
Kdenbapy ystiiqe3s3

930y 40443
uoL3edLLSSR|)
ure3qo

$34N30N43S
Bururyag ssey)
SALAIQ

saJnjea{ 40
Koenbapy ysiiqe3s3

218y 40443
uoL3edLyLsse|)
uteqo

saanjea4 AjLjuap]

* LSPO}
JatLsseld (g)

o6 ajenbapy

anuLjuo) as|3
¢ |3poj| 91eULR]LY 03

SL |9pOKW 31

\

: 9Py
ssunjes4

yd
A)

_ JUBWUOJL LAUT Uuu33]ed _

(v)

i

g ——

R e————

features. However, feature idént{fication does not end once a
class defining structure has been derived. MNor is pattern recog-
nizer design complete once an error rate has been validated.
This is the point of this general discussion.

The two paths of Fig 2 lead into the next two sections of
this chapter. They cover feature selection and pattern classi-

fication. Pattern classification is presented first.

Pattern Classification

Put simply, in terms of the notation stated earlier, the
task of a pattern classifier is to assign an unknown pattern FB
from an unknown data set Q' to that class w; C 2 with whose mem-
bers Fﬁ shares the greatest similarity. This assignment can
be made in several ways. Bayesian classifiers, minimum distance
and nearest neighbor classifiers are germane to this thesis.

Bayesian Classifiers. In these classifiers the a priori

probability of wy and the class-conditional probability density

functions of the members of class wg

Decision functions d, (Fn) are used to establish class membership.

are explicitly known.

That is, the probability of misclassification is minimum when

is a maximum with respect to a choice of i. Therefore
d (F,) = - {d;(F)} » Few (2-9)
10

e

In this expression the a priori probability is often assumed
identical for each class. It is also common to assume the multi-

variate normal density which is ‘

o J/2 -1 oy =l p T hs |

P(F lwg) = (2% 2y) "exp(<45(F Py)23 (F -P5) ") (2-10)
The symbols Fn’ Pi’ i J and w; are all used as earlier defined.
Using equation (2-9) a decision function can be written using the

monotonic log function to simplify the exponential form of the

Gaussian density. *

d;(F) = 1n[Pr(mi)]-z1n|zil-g(Fn-Pi)zgl(Fn-pi)T (2-11)

(Dividing all p (F /u;) by 2n"/2

does not change their relative
magnitudes.) In a Bayes classifier, the set of decision functions
relates the unknown pattern to all classes. The maximum decision

function provides the index of the class to which the unknown !

feature vector is assigned (Ref 13:13).

Minimum Distance Rules. Many classification procedures ' j
can be said to follow this technique. The simplest of them first i 4
establish a prototype for each class. Then the unknown is assigned
to that class whose prototype is closest, in a Euclidean distance
sense, to the unknown. This rule requires two assumptions. One is that
in F, and Foe1 € ©ys the vector (Fz’ F2+1) is also in P (Ref 12:11).
This concept is required to justify the usual choice of the centroid
of the class as its prototype. It also supports the second

assumption which is that similarity between pattern is consistently

11

i ot p— _— - - sl A T

—

reflected by the Euclidean metric on the feature space. This
rule can be concisely stated as follows:

(2-12)

dk(Fn) = m::n {-IFn- P].I)+ F, o6 ouy

where 1 < i < I.

Nearest Neighbor (NN) Classifiers. Fix and Hodges

(Ref 11) are credited with suggesting a variant of this classifi-
cation rule. Again a set of distances are computed for the
unknown Fn. However, the assumption that the members of a class
form a convex set is not needed. This is because the measured
distances relate Fn to each Fo within each w;. The unknown
pattern is assigned to the class which contains its nearest
neighbor. The assumption that the Euclidean metric consistently
reflects pattern similarity must stiil exist. The rule is robust
since it can be sensitive to any actual distribution of F2 given
that 2 is sufficient. If a vote is taken among the K nearest
neighbors of Fn then a K-NN rule is said to be used. The risk

of error in this latter rule tends to the éayes risk as K and N
tend to infinity. Das Gupta (Ref 9:15) notes that NN rules are
also related to rules bas.’ r.. estimates of density functions.
The obvious problems with the NN rule are a sensitivity to bad
data points, and a computational cost for data storage and
execution time which tends to become excessive as the NN risk

tends toward the Bayesian risk.

12

— e e g e et i

—

Comments. Three comments on classification rules establish
a perspective for the algorithms deveioped in this thesis.

(1) Das Gupta (Ref 9:15) notes that the usefulness of a
classification rule is determined by its simplicity as well as its
robustness. Although conceptual simplicity is useful in that a
rule may be easily understood, computational simplicity produces
the efficiency which permits a rule to be used effectively in
practice.

(2) There are complicated treatments of indecision zones
and tolerance regions which may be asymptotically optimal for
large numbers of classes (Ref 9:13). These may justify the
simplistic approach of covering the feature space with as many
"tight" subclasses as possible in order to optimize classification.

(3) Chen (Ref 4:6) notes that experimental results have
established that there is always a small subset of good learning
samples which dominate performance. This possible insensitivity
to sample size of good quality neighborhoods_can lead to an
experimental procedure. In it, one uses analytical intuition to
uncover the kernel of good-neighbor patterns which may define the
optimal class. Undesirable samples can be said to belong to the
"husk" of such a class. The idea is an outgrowth of that of the
edited or condensed NN rule which attempts to eliminate samples

on the wrong side of class boundaries.

13

Feature Selection

The term "identify" was used deliberately in the first
block of the features path in Fig 2. It covers extraction of
measurements which characterize digitized pattern data. It also
encompasses the selection of the minimum subset of these values
which is adequate for acceptable classification. Extraction is
a problem dependent task. The more general question of selec-
tion is addressed below.

The problem here is essentially one of computational bene-
fit. The number of features extracted from the pattern data is
often deliberately too great. (See Chapter 4 under benchmarks.)
This leaves a need to reduce the measurement set to one whose
size is manageable. There are many possible subsets. The total
number to be evaluated when j features are selected from J

features is

1= (g) = TTJ!J.-J ; (2-13)

There are many techniques which have been applied to this
evaluation. The prob]ém is one of choosing a better subset. It
is an accepted fact that there is only one guaranteed way to find
the best subset. Cover has shown this to be exhaustive search
(Ref 8:117). Jain reports that added features may actually degrade
the performance of a classifier. Thus subset selection is moti-

vated by more than an interest in computational efficiency (Ref 21:1).

14

Subset selection methods are basically search procedures.
There is basic agreement that the best control on such a search
procedure is to estimate probability of error by computing the
empirical error rate on a large test data set (Ref 34:72). The
simplest subset selection algorithms establish a figure of merit
for each feature and then pick the best n features. Sequential
ordering processes are used to reduce computation. Chen (Ref 3:89)
notes that dynamic programming is a good technique for sequential
search. He states that the search for one best feature at a
time is computationally the most efficient. Stearns describes
the bias that may unintentionally derive from previous selections
in such a search. Sequential searches produce nests of subsets
in which

5, SZC W Sn.
Features that are "powerful" in early stages remain in the final
set even though they may no longer be needed. He suggests a
"plus m, take away n" search to avoid the fact that the two best
features may not be the best pair (Ref 34).

In summary, computational cost is a key factor in subset
selection. The most critical element of any search procedure
appears to be evaluation of error probability. This is best
estimated by an empirical error rate. Finally, while nested
selection procedures may bias results, they offer efficiency of

implementation.

15

-

s .T_..«..—‘ o

Pattern Recognition Applications

The algorithms implemented for this thesis are evaluated in
terms of two differing applications of pattern recognizers in
Chapter IV. A brief background on these different applications is
given below.

Character Recognizers. Considerable work has been done

at AFIT in investigating techniques which apply to the recogni-
tion of two-dimensional data. In these efforts features have
been extracted from various digital representations of pictures
using the two-dimensional Fourier transform. This is consistent
with the work of Kabrisky whose research produced a model of the
human visual system (Ref 22). Tallman's dissertation indicates
that hardprinted characters can be recognized by use of low
frequency filtered Fourier components (Ref 35)., Efforts by
Sponaugle to generalize this work towards recognition of multi-
font typeset letter data are the basis for test data and benchmark
comparisoné given later in this report (Ref 33).

Waveform Recognizers. Signal classification can use pattern

recognition techniques to advantage. Feucht's recent article in

Computer Design is motivated by this fact (Ref 10:68). Hall and

Bouvier produced AFIT theses dealing successfully with waveform
pattern recognizers (Refs 14, 1). Radar signature pattern
recognizers are found in Air Force operations. The classifier

algorithm implemented for this thesis was originally designed by

16

the author for use in a Space Object Identification application
(Ref 25). Many of the procedures present in this thesis are
eclectic outgrowths of the synergy of that development project.
These range from the concept of biased samples to which Chen
attests (Ref 4:60) to the use of asymmetric class boundaries
(Ref 32). Finally, a sample of radar signatures was used by
Kulchak (Ref 24) to produce the Frequency of Binary Words (FOBW)

feature vectors referenced later in this report.

17

ITT. Requirements

In this chapter the structure of the thesis is developed.
The goals and objectives of the project are stated. These are
addressed in a short discussion of underlying assumptions. There-
after follows a statement of the functional requirements for the
development system produced in this effort. A bubble chart is
presented and used to explain the concept of system data flow
upon which this development system is based. A short statement
of design and coding standards is then given. Selection of a

name for ‘the system concludes the chapter.

Goals and Objectives

The ultimate purpose of this thesis is to support experi-
mental implementation of microprocessor based pattern recognizers.
Meeting this goal requires production of a system of programs.
This system is intended to be a designer's tool. As such, it aims
to facilitate the process of recognizer development, and to drive
that development towards a specific microprocessor implementa-
tion. The system is also intended to be used and modified by
students as they develop, experiment with, and investigate pattern
recognition algorithms.

In order to achieve these goals, three specific develop-

ment objectives are stated for the system. Its design is required

18

to model a key recognizer element, the pattern classifier. To
simplify student implementation of pattern recognizers, this
model classifier is to be programmed for a specific microprocessor.
The system design is also required to generalize the process of
deriving a class defining data structure. The classifier bases
its decisions upon this structure. Thus, system error-rate is a
function of this structure. Effective generalization of this
process makes the system an effective tool for designers of
pattern recognizers in general. Finally, a series of benchmark
performance measurements are required. These demonstrate the
system as a framework for both potential users and experimenters.
They also serve to qualify system worth. All of these require-
ments boil down to three specifics:

(1) Design and implement a pattern classifier for a
microprocessor system.

(2) Design and implement the supporting'functions necessary
to generate the class defining data structure with which the
classifier can make acceptable decisions.

(3) Experimentally demonstrate the above.

Assumptions
The worth of the goal set for the above becomes clear in a

discussion of several assumptions. This follows.

19

Microprocessors are readily available, inexpensive, and
small in size. Small microprocessor systems can become elements
of large networks. These systems can be interfaced to large
random access memories (RAM), disk storage, and high speed pro-
cessing technology. In the light of Namin's concept which intro-
duced this report, one should therefore assume that microprocessors
must be addressed by any effort to upgrade sensor data processing.

The task of implementing a pattern recognizer crosses
many disciplines. Data processing obstacles can be major ones to
individuals otherwise highly qualified to analytically determine
significantly discriminating pattern features. The task of tuning
an optimal classifier or generating a class defining structure
may similarly sidetrack would-be designers whose talents tend
towards the more critical task of designing efficient feature
extraction hardware. Given these postulates, the worth of a
general purpose design tool with a pre-selected classifier algor-
ithm becomes clear. This argument strengthens considerably when
the would-be designer is a thesis student pressed by time.

Pre-selection of a simplistic classifier as an element of
a recognizer system may provide a benefit aside from its economy.
An optimum classifier can only optimize the processing of its in-
put features. It may well be far more critical to the implemen-
tation of successful pattern recognizers to place limited "model-T"

systems in the environment than to initially seek high performance

20

-

systems. The search for better input features becomes tedious and
intractable without a computer yardstick for their evaluation.

What better yardstick is there than the performance of a "model-T"
classifier which operates in the actual data environment? The
answer to the foregoing question is obviously moot. Future experi-

ments may resolve it.

Required Functions

The specific objectives stated above were analyzed in the
light of the concepts and techniques of pattern recognition which
were presented in the previous chapter. Broad functional require-
ments were thus derived to accomplish the stated objectives. These
functional requirements were then studied with data processing and
software design considerations in mind. From this effort a data
flow diagram was produced which reflects the overall system opera-
tion. This data flow diagram and the functions it embodies are
described in the fo]]owing‘paragraphs.

System Segments. The system should consist of two segments.

One, a Classifier Segment, should implement the selected pattern

classifier design in a microbrocessor. The other, an Interpreter
Segment, should implement those functions required to interpret a
sample data set of feature vectors in such a way as is required
to produce a class defining data structure fit for the classifier.
The specific functional requirements for each of these segments

are stated in the two paragraphs below.

21

pu—— e |

(1) The Classifier Segment should consist of software which
resides in a microprocessor. This software should implement the
classifier and its supporting routines. It should:

(a) be able to assign unknown patterns to their
proper classes with an acceptable error-rate.

(b) be able to record classification decisions.

(c) be coded so as to be independent of the loca-
tions and sizes of buffers required for feature data and for the
class defining structure.

(d) be coded so as to be independent of the number
of features and the number of classes which comprise a given
application.

(e) be implemented within less than 256 bytes of
memory to allow storage within one ROM data page of 100H locations.

(2) The Interpreter Segment should consist of software
which can be used as readily as possible to produce a class de-
fining structure for the former segment. In this sense it should

| (a) be coded in FORTRAN using a top-down structured
design, and conforming as closely as possible to ANSI standards
so as to maximize intelligibility, modifiability, and transport-
ability.

(b) be able to adjust the size of memory buffers
used for data files and internal structures to fit the size of

user resources.

22

-

(c) be able to generate and to refine a class
defining data structure which fits the classifier segment.

(d) be able to select and evaluate a subset of
pattern features for its capacity in discriminating hetween pattern
classes.

(e) be able to support analytical evaluation of
class and feature characteristics.

(f) be able to support efficient transfer of the
class defining structure to microprocessor storage.

(g) be able to produce and document a simulated
error-rate for the microprocessor implementation of the classifier.

(h) be able to operate in either an interactive or
a batched computer process.

System Data Flow. An analysis of the data processed by

the system led to the bubble chart presented in Figure 3. This
chart reflects the requirement for two system segments and indi-
cates their conceptual and physical interface. The Interpreter
Segment processes feature data and generates class definitions.
These two data types are the primary system currency. Class
definitions are denoted prototypes for convenience. These are
based upon the feature vector data provided to the system. These
latter data are organized for efficient system use in the process
labeled "CREATE" on the figure. Multiple feature vector files

provide a capacity to store test samples, segregate patterns

23

il S —

¥ e/

M014d Yivd - LAVHI 3788NE W3LSAS

‘€ 014

~gyooA 241402}

we o4 Q\h.:\ ﬂ
’ Q .
. LNFWDIS (VYL YOS) pon- 4
YILIVIIFINT a A {go——— o
s —_— ——= —— T _n3wo3S AQOWn.WbQY\QQU\S\&
PYEVF 21 4% \\ 75
FuNoYINT o5 i
e G T
pi?2%? .4
P\Q\.\:\m&b%{ sav wA2|]
N

24

typical of data classes, and subset the overall data set into
manageable pieces. Class definitions, or prototypes, are produced
by the process labeled "DEFINE" on the chart. This process allows
refinement of specific prototypes by selective use of input feature
data. The capacity of the complete class defining structure to
assign feature vectors to their proper classes is measured by a
classification error-rate. This is documented by the process
labeled "TRYOUT" on the figure. This same process supports selec-
tion of feature subsets, and evaluation of these subsets in terms
of their respective classification error-rates. The process
labeled "FORMAT" on the chart configures the class defining struc-
ture for transfer to the classifier segment. It also satisfies
the requirement to support analysis of feature data by producing
various graphic displays. These include three-dimensional plots
of histogram data prodhced by the "CREATE" and the "DEFINE"
processes. These displays reflect the distribution of values
occurring within a given feature dimension both within the entire
data set and within a given class. The basic process of the
classifier segment is reflected by the label "DECIDE" on the figure.
This process receives its input from the sensor environment
through a proéess which is implicit on the chart. This is the
process of feature vector generation which is assumed to operate

in a parallel and controlling relation to the "DECIDE" process.

25

- —

Standards

Standards are applied to ensure that the system which is
produced meets general requirements. That is, it must be intelli-
gible, modifiable, and transportable. These requirements affect
software design and program coding.

Design. The expression of requirements in this chapter
illustrates the key design standard to be applied to the develop-
ment of this system. This standard requires that design decisions
be made in a structured sequence. In this process, basic ideas
are successively decomposed into subordinate concepts. These
concepts are refined and the process is repeated until it has
produced concrete tasks, specifications and definitions. The
process is called structured design by IBM (Ref 20). Earlier,
Niklaus Wirth termed it development by stepwise refinement. (Ref 36).
Applied to the design of computer software, the technique requires
that the functions of a program solution first be specified.

Then the data processed by each function are identified. Finally,
functional relationships are determined. Program and data speci-
fications are refined in parallel. Binding decisions about

process logic and data representation are delayed as long as
possible. Thus the advantages of various data formats become clear
in contrast to one another. Processing paths are produced by
choice and not forced by prior decision or arbitrary assumption.

Wirth justifies his technique of stepwise refinement with the

26

argument that it produces a degree of modularity which greatly

eases program adaptation to changes of purpose, function, or
operating environment. This modularity therefore becomes a support-
ing requirement to ensure the modifiability and transportability

of the system.

Progranming. Adherence to American National Standards
Institute (ANSI) FORTRAN standards facilitates transportability.
Use of structured programming conventions enhances intelligibility,
modifiability and transportability. Use of these standards aﬁd
conventions is therefore a supporting requirement.

ANSI FORTRAN standards are clearly defined for CDC FORTRAN
IV (Ref 7). This FORTRAN includes ANSI standard X3.9-1966. Since
FORTRAN is a well-used and documented language, these standards
are widely exceeded by off-the~shelf compilers. Therefore adherence
to the standard often imposes a restriction. Some of the more
important cases in which CDC FORTRAN IV should be restricted for
this project are listed below.

(1) Input/output syntax will usé the syntax READ (u,f)
iolist or WRITE (u,f) iolist as defined by CDC.

(2) Data labels will be restricted to six characters.

(3) Data statements will not use implicit loop syntax.

(4) Hollerith constants will only appear in data state-
ments or subroutine call statements, and will use the nH syntax

as defined by CDC.

27

(5) Array references will be consistent with dimension
specifications.

(6) Only sequential file access logic will be used.
(8
(9

)
(7) Subscript expressions will be avoided.

) Mixed mode expressions will be avoided.

) Non-standard system functions and subroutines will be
avoided.

(10) Deviations from ANSI standards will be commented in
the program code.

Structured programming conventions are guidelines which
simplify program construction as much as they enhance program
modifiability. FORTRAN does not admit such key structured
programming constructs as the DO-WHILE. Moreover, FORTRAN pro-
vides a GOTO construct which must be used at times. However,
inasmuch as possible structured programming technique will be
used. When logic structures are complex, indentation will be
used. The code will be segmented as much as possible. Each
subroutine will have a single entry and a single exit. Module
sizes will be limited to one page if possible. Logic flow will
be sequential, with imbedded procedure calls, as much as possi-
ble. To ensure intelligibility of the program code, a ratio of
at least one explanatory comment to each seven source lines
will be maintained. Finally, meaningful names will be used wher-

ever possible.(Ref 20:8-1).

28

R ——— - —_—

System Name

Consistent with the last convention stated above, the
name assigned to this development system should be descriptive.
An 8080 microprocessor system is available to support this
project. The system's classifier segment will be coded to
operate on this microprocessor system. This classifier is de-

fined in the following chapter. It references n dimensional

rectangular regions in its assignment of class membership. These

can be visualized as boxes in n-space. For these reasons, the

system is called the BOX80 system.

29

— P ST

& ’?!!?i‘ih " £

——————

IV. Algorithms

The design of the BOX80 system rests upon its classification
algorithm. A specialized data structure supports this algorithm.
It contains user-provided pattern features and related values from
which pattern class boundaries are defined. To produce this
structure, one of several data representation algorithms is first
applied to the user feature data. Class prototypes are defined.
Then a heuristic feature subset selection algorithm is applied to
these prototypes to reduce the size of the class defining data
structure. This facilitates microprocessor implementation of the
classifier. All of these algorithms were tested individually
against various performance benchmarks before their implementa-
tion in the BOX80 system. Then as the system was developed, the
algorithms were exercised as system modules were verified.
Algorithms for data representation, classification and feature
subset selection are discussed in this chapter. Related performance
benchmarks, and testing procedures for system modules are presented

as well,

Data Representation

To allow comparison of histogram displays between classes,
and to enable byte sized component output for microprocessor use,

scaling options are provided.

30

In creating the BOX80 feature vector data file, three
scaling options are provided to standardize the range of component
variation. These simplify later data comparisons. They are
implemented by an energy, a unitizing, and a shifting transform.
Each of these scaling options maintains relative angles between
vectors. However, vector magnitudes vary. Given a feature vector
Fn with components fnj’ these three options produce a new vector

Fﬁ as follows.

Energy normalization:

FL = F /e (4-1)
L 2
where e = 3, f . (4-2)
& nj
Jj=1
Unit normalization:
[=
Fo = Fo/ IRyl i
h - ¢ 2k
where [F | = (J};‘_l foj) (4-4)
Shift normalization:
Fa = an + B (4-5)
where m = 1/(atb) (4-6)
in which a = max { fnjln=1, Ny, j=1, J }
b = -min { fnjln=1, Ny, j=1, J }
and N = number of vectors in the data set
J = dimensionality of the feature space
and Be=(b,b, .. .Db) (4-7)

31

From the above, it is clear that eéch Fﬁ results from a
linear shift of the original Fn' Therefore relative angles be-
tween the Fﬁ remain the same as the angles between the Fn'
However, vector magnitudes do vary. For shift normalization
there is a constant variation for the entire set {Fn}. For unit
normalization, all vector magnitudes collapse to unity. In energy
normalization while the energies of the Fa become unity, their
magnitudes become less than 1.

An additional transform is provided. This 'squaring'
transform increases the precision possible in component values.
However, it causes a twisting of the feature space which may
change 'natural' relationships. It is provided as an input trans-
form for experimentation only. This transform standardizes each
feature component to the range apparent in the data set. This
facilitates observation and measurement of data variation in each
dimension of the feature space. Transformed vectors are produced
as follows.

Squaring transform:

= -1
P *Fal ~ + B (4-8)
in which T = diagonal J x J matrix of tjj;
Ty B .+ b.
where i3 (aJ bJ) for
ag = max { fnj|n=1’ N}
bj = -min { fnj|n=1, N}

and B = (bl’ T bJ) for bj as defined above.

32

e
-~ e o U —— - -
¢ by X - a 10
TR AT . . i L3
i A Tor o8 e

In this transform both relative angles, and magnitudes of Fé vary
from those of Fn.

Normalization of feature component values using component
variances measured from the user data set was considered as a
possibility. Since there is some possibility that the distri-
butions represented in that data set will not reflect those of
the true population, this means of normalizing component values
was not implemented. To cover the possibility that true popula-
tion minimum and maximum values are not represented in the user
data base, the ranges (atb) referenced above can be extended by
a fractional proportion with Tittle problem.

In the generation of the microprocessor data structure
which defines class boundaries, a transformation is necessary to
map feature vector and prototype components into an eight bit
range. Here, the squaring transformation of equation (4-8) is
used since it preserves the greatest component precision. Since
class boundaries exist at this point, no distortion of performance
occurs. Use of this transformation implicitly assumes that it
can be embedded into an independent feature generation process
efficiently. This is a simple operation requiring only one add
and one multiply for each feature.

In transforming class definitions there are two separate
algorithms used. First, as given in equation (4-8),

M
F' = F, T+ B,

33

i ML 45

Similarly, for class mean vectors, known as prototypes,

1, B, (4-9)

s =
This prototype transform is readily derived at the vector level

as follows:

L
1
P =5 2 F! (4-10)
1T Lo 2
L
=1 X (r, 4) (4-11)
2=1
L_
1 -1
= (E)1 %8 (4-12)
L eyt
=k hp. - ‘ (4-13)
where
L = the order of class i

and T, B are defined as in (4-8)

The second algorithm operates on class boundaries. These
are established by means of diagonal matrices referenced to the
prototype vector. These matrices are explained in detail in the
next section. To simplify this discussion of their transforma-
tion, consider class boundaries to have been defined by a diagonal
class covariance matrix, LI The transformation for this class
diagonal covariance matrix is clearly understood at the component
level,

h

where j%i is the jt

p;J is the jth component of P;

component of z%

34

) . -th . =
fzj is the j~ component of rz
tjj is the jth member of T
bj is the jth member of B
. 2% (pts- £1)%) % (4-14)
G (T 2 g Ty .
L & Pty gty
* {p Lfoqledin ilati} 3 (4-15)
=1 3] AN
TS R R (4-16)
ty D& P
L
e ¢ 21k y
AT 22=21 (p;4-Fp3)" 2 (4-17)
JJ
Thus
o i)

This transformaticn is provided as an option prior to the
calculation of classification error rates. The option, through
its use of integer calculations, allows simulation of micro-
processor performance by the BOX80 system. The transformation is
also exercised prior to output of the class defining data struc-
ture in microprocessor format. This allows byte sized encoding

of output component values.

Classification Algorithm

A feature vector associated with an unknown pattern is
assigned to a known data class by a classification algorithm.

The BOX80 system classification algorithm partitions hyperspace

35

into regions which can be visualized as hyperspace boxes. Class
membership is derived from the identifier of the hyperspace box
which contains the unknown feature vector. Since these boxes
need not necessarily be mutually exclusive of one another, the
containment property is obtained through a distance measurement
with which decision ambiguities are resolved.

The BOX80 classification algorithm was designed to maxi-
mize operating efficiency within a microprocessor implementation.
Minimum use of memory, ‘as required, reduces execution time. This
algorithm was also designed with the number of feature dimensions
and the number of pattern classes as parameters of its execution.
Any combination of I classes and J feature dimensions can be
processed given that sufficient memory is available.

The algorithm is implemented within both of the B0OX80
system segments. There are small variations between these imple-
mentations. In one instance the implementation is‘in FORTRAN.
Here, the referenced data structure is a two-dimensional array
containing a collection of vectors. Each class is defined by
a set of three of these vectors. Two options are provided this
implementation. One uses a Euclidean norm for the distance
measurement rather than the supremum norm. The other option
enables processing of scaled data. It substitute§ truncated
integers for real values of referenced vector components. In

the second instance the algorithm has no options. Its referenced

36

AT R

-

data structure is a linear list partitioned into a series of
segments, one for each data class. This instance occurs in the
micro-processor based classifier routine. It is written in the
assembly language for the 8080. (Ref 16)

Memory requirements for data used by the above two imple-
mentations of the BOX80 classifier are calculated in terms of
the numbers of classes (I) and features (J) to be processed.
Memory (M) required for the Interpreter Segment's FORTRAN data
structure is

M= (J+3) (2I+K) - (4-19)
Memory required for the 8080 Classifier Segment implementation
is calculated

M = [(33)+11(1) (4-20)
The FORTRAN implementation references a data structure in which
vector dimensionality has been increased by three extra values.
This produces the factor (J+3). The factor K indicates the number
of classes having asymmetric boundaries. This differs with the
8080 implementation which adds only one extra value, a class
identifier, to each class. This implementation assumes that each
class has asymmetric boundaries.

The algorithm implements a variation of the minimum dis-
tance classification rule. An unknown vector is assigned member-
ship in that class to which it is nearest. However, this algorithm
exhibits facets of other common classifier algorithms. From the

perspective that the algorithm references the multivariate

37

covariance of each class' features, it can be considered a
variant of a Bayesian decision rule. However, no formulation of
the a priori probability of class membership is wade. Furthermore,
feature dimensions must be assumed to present uncorrelated, inde-
pendent measurements of pattern variation. Finally, these feature
measurements must be assumed to be completely representative of
pattern class membership and must be assumed to generate Gaussian
distributions. Therefore, although the algorithm has a statisti-
cal flavor, it is not a true Bayesian algorithm. However, from
the standpoint that its referenced data structure partitions the
feature space into a collection of hyperspace boxes each of which
bounds a neighborhood of a given class, it can be considered a
variant of a condensed nearest neighbor rule. This perspective
is justified by the fact that each class boundary is statistically
constructed so as to enclose an advantageous subset of class
members. Here, in discriminating between classes to produce the
classification assignment, the evaluation of distances to class
boundaries is analogous to evaluation of distances to the nearest
neighbors of the unknown pattern. The weakness in this comparison
lies in the fact that the BOX80 algorithm tends to benefit from
convex class boundaries. The NN algorithm needs no such assump-
tion.

The data structure which establishes each class' boundaries

consists of a vector and a pair of diagonal matrices. The vector

38

TR

is a class mean or prototype vector. For class i consisting of
a set oy of feature vectors Fz of dimensionality J, this proto-

type vector is

L
.
Py = I‘EE% Fye (4-21)

The two diagonal matrices establish class boundaries in terms of
component variation from this mean. These matrices are most
clearly defined at the component level. Consider a class of
feature vectors represented by L members of dimensionality J. A
feature vector within w, is

1

F, = (F f

I} 1) ¢ - frg) (4-22)

le’--'
and the prototype vector for the class is

Pi= (Pyps o v e Pygo v v v Pyy) (4-23)

The diagonal matrix which establishes boundaries less than this
prototype is
& 0 (4-24)
0 o axy
The diagonal matrix which establishes boundaries greater than the
prototype is similarly represented
+i +

F [zjj]' (4-25)

Note that the subscripts of matrix components do not reflect

membership in class i. This is simply a convenient notation.

39

‘ e

These components are formed as follows.

VOO £, > Pyey 2. = 1 i (p..-F,)21 (4-26)
IS L Bl St T

1RF Fo < Povs 20 = [& ‘E (ps~F.)21 (4-27)
8y = i3° “ij L & P

In defining a class in terms of a class mean vector and two
boundary matrices, a minimum Euclidean distance algorithm can be
constructed. However, a scaled distance measurement is used here.
That is, the distance of an unknown vector from a class prototype
will be measured in each component dimension in terms of a number
of boundary units. This is a distance measure similar to the
Mahalanobis distance. Given uncorrelated features, and using the
simplying assumption made for equations (4-14) to (4-18)

J

P(F ew;)> N
L B e =

2
(l-oj Je (4-28)

Where the features are correlated, this probability can be

written
J

Po(F, € 0;) > max (0, (1 3, c,3.2)) (4-29)
J J%l
These bounds are derived from Tchebychef's inequality by Godwin
(Ref 12:63).
To assign class membership to an arbitrary feature vector

Fn with components fj, first a composite boundary matrix, Z], is

formed for each class i. This produces

40

A o 1) x
7 = [zjj T (4-30)

In this composite boundary matrix

1 (i) = * -

iff fj > Py then 235 23 (4-31)

1 (i) = 7. oo
and iff fj 2 Py then Z5; Z35 (4-32)

Distance from an unknown Fn to this class is next computed, first

" as a vector and then as a scalar. This effects a classifying

decision rule as follows

3 i ¥
Din = (Pi - Fn) Z (4-33)
vdsn = 1Dl (4-34)
The scalar din is considered a member of the set
¥ = (d d d
A = { in’ ¢ o in® * * ° In}. (4-35)

Class membership is then assigned to that class to which

distance is minimum. That is

oMl <0y i (4-36)
Several notes about this algorithm are worthwhile. The

two-sided approach to defining class boundaries was suggested by

Pacheco (Ref 32:11) in the course of a review of the radar signa-

ture recognizer described in Chapter 2. The simpler process

which uses a single boundary matrix to define both sides of a

symmetric hyperspace boundary for a class can be described as a

minimum distance classifier having a Mahalanobis' distance metric.

The assumption that feature dimensions are uncorrelated and

41

-

therefore independent allows the composite boundary matrix, 21, to
be considered as a diagonal covariance matrix, Lo In this case

.th

the distance measurement to the i class can be written.

& & -1 j

The equivalence of this expression to equation (4-33) is readily

seen in a simple example. Let dimensionality J=2, and

X=Ps-F (4-38)

where X = (p.1-f 15 Pio-fio). (4-39)
2

Let x71 = [1/011 i (4-40)

0 1/022
_ Jxd=2¢x2
where 2) & (p:.~f)2) - (4-41)
e os. = - Y Py

JJ L 2=1

In this example it is notationally clear that
=[xy, x,1 [1/62, 0 x (4-42)
in : (ol 11 1
2
0 1/022 Xo

From the rules of matrix algebra, this is

2
da. o 2 2 X
in = [xlloll, X2/°221 [1] (4-43)
g
which is
2" 2. ¢ 2.2
din = x1 /o11 + Xo /022. (4-44)

Equation (4-44) defines the square of the Eucledian norm in two

space. Thus one sees that

42

d?n 5 lDinlz
where Dy = [X;, X,] [1/011
0
which is
D, = (P; - F.) 7.

(4-45)

|
1/022

(4-47)

In this way the equivalence of equations (4-37) and (4-33) has

been demonstrated.

The foregoing presentation of the BOX80 classification

algorithm avoids one issue and glosses over another,

The former

is a programmatic statement of the actual algorithm which refer-

ences the defined computer data structure.

the close of this chapter.

BOX80 nomenclature.

This is presented at

The latter is the derivation of the

This explanation follows.

(1) The J dimensional region defined by equation (4-37) forms

an ellipsoid in hyperspace whose shape is specified by Zy (Ref 13:36).

This ellipscid has its axes oriented along the axes of the space

since Z is diagonal.

(2) The J dimensional region defined by equation (4-33)

forms a hyperrectangle about the prototype vector, Pi'

This

results from a computationally simplifying norm used to produce

the magnitude of Din' This norm is defined as follows

Ilninll = sup (Xi, "

r , =
where D1n

(Pi'Fn) = (Xi’ .

» Xa (4-48)

ORI xJ)

. xj’ . .o XJ) (4-49)

43

This norm produces a well-defined metric and is well known for
its computational simplicity (Ref 7:104). It can be shown that
in the Timit

: 1/P
Tim %" P p o "
o (21511 = x| (4-50)

(3) The region bounded by the vector pair
R

R = b+ piz+i (4-51)

and UL

Py + Piz‘i (4-52)

encloses a subset of F£ € w;. Fig 4 describes this region for

0321 and 0520 in a space having J=2 dimensions.

D., =P

I
BN

(4’4)’ ,fnlgll T
(3)2)' ||02QH ol

1 - Fy

i

Uor " Pp =Ty

Fig. 4. BOX80 Distance Measure

44

v

The rectangular aspect of these class regions, from the

sup norm distance metric, becomes clear in this figure.

nN

10.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.

(Vo) (02} ~ (o] ($2] S w
.

Classification Algorithm:

procedure CLASS (FEAT(I,L),IC)
begin
set DMIN = 1E10
for all classes I do
begin
set DMAX: = -1E10
set NCAV (to index class I, P;)
set NCSDL (to index class I, Z7)
set NCSDR (to index class I, z*7)
if NCSDR eq O then
set NCSDR: = NCSDL
for all dimensions J do
begin
set NCSD:NCSDL
set DFEAT:=CLAS(J,NCAV)-FEAT(J,L)
if DFEAT gt 0.0 then
set NCSD:=NCSDR
set DFEAT:= DFEAT/CLAS(J,NCSD)
if ABS(DFEAT) gt DMAX then
set DMAX:=ABS(DFEAT)

end 'J'

45

22. if DMAX 1t DMIN then
23. set IC:=I

24. end "I"

25. "BOX80 CLASSIFIER"

26. end "CLASS"

Feature Selection

Good features make good pattern recognizers.

Unnecessary

pattern features make inefficient pattern recognizers.

Thus,

identifying the best features is important to developing an accept-

able pattern recognizer.

The literature reflects considerable work done to solve the

general. problem of identifying features.

approached in one of three ways. Firstly, one may rely upon

This problem may be

aralytical theory to identify just the set of features which should

be extracted from the pattern environment.

However, theory does

not always identify a set of measurements which suffice to com-

pletely classify a pattern environment. In another technique, one

may compute a large set of candidate features and then rely on

transforms and filters prior to classification to'generate a

smaller set of significant factors. In a third method, one may

evaluate a candidate set of features in the 1ight'of a classifi-

cation algorithm, and preselect the most desirable subset.

recognizer then operates directly on this subset of features

without added processing.

46

The

-

An assumption underlying this thesis has been that con-
venience and efficiency are more critical factors in developing
an initial recognition model than a proven optimality or a com-
prehensive analytical basis. Stearns (Ref 34:71) notes that
from the standpoint of hardware, reducing the original set of
measurements by principal component analysis and transforms
may even produce a loss in overall system performance. His argu-
ment allows that when a transform to a subspace is effected,
all features of the original space have to have been generated.
Thus, even tﬁough subsequent processing may benefit by reduced
subspace dimensions, the computational costs of feature extrac-
tion must still be carried. This argument led to the develop-
ment of a subset selection algorithm to implement the BOX80
system.

Prior selection of an acceptable subset of features has
advantages for microprocessor implementations of distributed
pattern recognition systems. In such a system the master processor
can be used to extract features from the environment. Its feature
extraction software may initially be coded to generate many
feasible and reasonable pattern characteristics. The slave
processor can be used to execute a pattern classifier and produce
recognition decisions. Once a subset of features has been
selected by a process such as that supported by the BOX80 Inter-
preter Segment, the feature extraction algorithm can be stream-

lined by straightforward .deletion of extrancous computations.

The result is a process which use% less time. Then the new class
defining data structure is provided to the classifier and another
data-gathering, recognizer evaluation cycle can begin.

Search algorithms for finding a better subset of features
have two common elements as described in chapter II. Estimation
of error probability by calculation of an empirical error rate
is the best evaluation for any feature subset. Before a subset
can be evaluated, it must be constructed by a mapping from the
original feature set. The BOX80 system does not implement =
search algorithm. Instead, the search iteration is opened to
the user. Thus, the user can specify the mapping which creates
the subset to be tested. He can also control the search itera-
tion by his evaluation of the empirical error rate which applies
to the subset of interest.

In order to guide the user towards selection of trial sub-
sets of features, a fiqgure of merit is calculated for each feature.
This figure of merit reflects the contribution that its associated
feature makes to the recognition decision. To establish this
contribution a set of intérclass distance vectors are computed.
Combinations of these vectors produce diagonal matrices whose
components are the figures of merit for their respective feature
dimensions. Three different matrices are computed based upon
the distance measurement of equation (4-33). In this case, a

prototype vector representing an 'unknown' class is substituted

48

for the unknown feature vector of the original equation. Two sets

of matrices {Din} and {Dni} are computed for each class as follows.
2 ’ i 2
Xin= (P5 = P) Z (4-53)

L= P " (4-54)

and X .= (P
where 1<1 <1,

len<li
and matrices Zi and Z" are established as for equation (4-33). A
diagonal matrix is constructed from each of the vectors Xin and
Xni simply by considering the vector components as the appropriate
members of the matrix' diagonal. Thus

Din ¢ xin
and Dni < xni
The set of matrices {Dinfl < n < I} establish the distances from
class i to each of the other class prototypes in the data structure.
Components of these diagonal matrices are measured in the boundary
units of class I. On the other hand, the set matrices {D ;|1 < i < I}
reflect the opposing distances to class i from each of the other
class prototypes in the data structure. Components of these
diagonal matrices are measured in the boundary units of each of
the "other" classes. Opposing matrices Din and Dni are rarely the
same which indicates that this distance measurement does not form a

metric on the discrete space of prototype vectors.

A series of experiments was used to evaluate these interclass

49

-_— g o R

T

IR

distances. One set of merit figures resulted from each experiment.

A measure of the 'volume' of each class was sought. Three were
produced. For the first (subscripted 3 below to match program

code), a distance matrix was calculated for each class,
1
Vi = gga (D,in & Dni)’ n#i. (4-55)

Then a merit matrix for the feature space was derived from these

Vi:

I .
My = 121 ¥ - (4-56)

The components of this diagonal matrix became figures of merit
for their respective feature dimensions.

Each component of the diagonal matrix, M3, is related to
the total interclass distance in its dimension. Experimentation
with these component values as merit figures led to the realiza-
tioq that overlap between a pair of classes in a given dimension
was not as well reflected in this figure of merit as possible.
This can be seen in a numerical example. Let

vy = 16.0 0 and V2 = |1.0 0

16.0 0 0.5
0 8.0 ..9.0]
for a 2 class, 3 dimension instance. MNote that in this case

Vi = Dype

Here the merit matrix is

17.0 0]
M1 =10 16.5 ¢
0 17.0

50

o |

—

and the differences among the feature merits, mjj’ are not appre-
ciable. However, the components of the postulated V, show that
in feature dimension 3 the classes are almost equally separated
at large distances of 8.0 and 9.0 boundary units. Therefore, the
classes are readily separable in this dimension. This is clear

from the operation of the classifier algorithm which computes for

this dimension,

A = {d13, « e e d]’3, e o dI3} (4"57)
in which
= (i) ‘ A
diz = (Py3 = Pp3)/233 ‘ (4-58)

Allowing that Zg;) " ogé) for symmetric classes, and considering
each class in turn as the unknown,
B (1)
(Py3 = Pp3) = 8.0 033
and (p23 - p13) = 9.0 ogg).
In a Tchebyshev sense there is little likelihood of confusion
between the two classes in dimension 3. However, similar compu-
tations for dimension 1 indicate
o AR otld
(Py1 = Ppq) = 16:0 o)
.t atel
and (P21 - pll) =107
Here, in the same sense, the likelihood of confusion between classes
is great. A similar condition exists to an even greater degree in
dimension 2. To rectify this situation another set of merit

figure- was computed as follows.

51

o

M2 = vL (4-59)

In this case, the components of the diagonal matrix M2 are more
sensitive to the appearance of a small component within some
matrix Vi' Using the Vi matrices of the previous example this
M2 matrix is

16.0 0.0 0.0
My = 0.0 8.0 0.0
0.0 0.0 72.0 .

Here there is clear indication of the strength of feature 3. The
appearance of the relatively small values 8.0 and 16.0 at com-
ponents Myps Moy € M2 indicate that in these features many classes
are re1ati§e]y close to one another. However a given feature may
discriminate well between all but one class. This instance is
not reflected well by the components of MZ' Thus a third merit
matrix was generated. This is
I I
M= X Tn(m D), n#i. (4-60)
i=1 m=1

This formulation differs from the earlier ones in the use of a
logarithmic sum, and in the use of matrices Din’ only; Explana-
tion follows.

(1) The logarithmic sum produces merit figures which form
the same ordered sequence by magnitude as the merit figures

produced by the matrix product.

52

I I
M, =11 (n D].n), n#i (4-61)
i=1 n=1 .

However the values of the logarithmic sum are not nearly so

likely to overflow the floating point 1imit of the computer. It

wus hypothesized that this matrix product formulation would reflect
dimensions having single class confusion by a greater variation in
its: components than there would exist among components of M2. (The
notion was that in the double product, components would change
geometrically, while in the sum of products they would vary arithme-
tically). Testing with merit figures from M2 to M1 is reported

in the next section. Some experimenting, in a three class problem,
was done with the Mll figures of merit. These appeared more robust
than M2 figures. However, the 26-class alphabet problem created
overflow in the Ml' matrix. The M1 merit figures, as can be seen

in the next section, do not reflect the robustness of the Ml' figures.

(2) Merit matrix My is formed from matrices D, only,

n
since this produces results equivalent to those obtained with the

matrix sum (Din + Dni) as for matrix M,;. This is because
I

itl (b;,) = m (D

—

.)s i=n (4-62)

These procedures for establishing merit figures for feature
dimensions have a similar basis to those of Michael and Lin (Ref 28:172).
They produce a means of ordering features in terms of capacity to

discriminate between classes. They are intended only as a starting

53

point for a heuristic, manually controlled search for a good sub-
set of features.

To establish subsets of features, the BOX80 system uses a
mapping algorithm which maps the original feature space into a
subspace. This mapping process references an ordered list of
feature dimension tags. Each tag is the number of a feature in
the original space. An ordering may be constructed by sorting
these feature tags by their respective merit figures. An arbi-
trary order may also be manually input. The mapping algorithm
is imbedded in a routine which computes error rates for J differ-
ent subspaces. These error rates can be generated during a
single iteration of the trial classifier. The process of con-
structing tentative feature subspaces is thus piggybacked onto
the BOX80 performance evaluation function.

Subspaces constructed by the mapping algorithm are based
on a nesting of proper subsets of features. These subsets con-
tain an increasing number of features from 1 to J. Each subset
is contained by its successor.

In the classification procedure described earlier, a
distance vector is calculated. This is

Dy, = (Py = F) 2 (4-63)
The mapping algorithm operates on the components of this vector

to produce a set of J nested subsets, S.. An error rate is com-

J
puted for each of these. An example may clarify the process.

Let J=3 and (3,1,2) be a list of feature tags ordered by figure

54

of merit. Let the distance vector

Din = (14.0, 63.1, 9.0).

Here, the mapping algorithm constructs
h1heHo 53

(9.0) (9.0, 14.0) (9.0, 14.0, 63.1)
as the set of nested subsets. Each of these is considered‘a distance
vector in its respective subspace of the original three-dimensional
space. The decision rule is operated on each of these vectors at
once. This is the key point. Rather than operate the decision rule
on each vector in series, these nested vectors are processed in
parallel. Since the max and min functions which implement the
decision rule can be done in a parallel fashion, some execution cost
is saved. Thus, for each j, 1<j<J,

djk = Min {llSjll, 1<i<I} » Sj € Wy
and a class assignment is obtained and an error rate is computed for
each subspace.

Finally, a special procedure, termed a zapping process, is used
to modify the tentative class definition structure to establish a chosen
subspace as the basis for future trial recognition experiments.

In this process, selected components of all members of the set of

Zi+ and Zi- matrices (which reflect class boundaries) are increased

to large values in each matrix. The effect is to nullify all measure-
ments made in those dimensions.

The algorithm used for computation of merit figures, and

the algorithm used to map and evaluate feature subspaces are

55

presented in the following two paragraphs. The former is titled

MERIT. The latter is termed LOOK.

10.
11.
12,
13,
14.
15.

8
18.
19.
20.
21.

Algorithm for Mapping and Subspace Evaluation:

Procedure LOOK[DIS(J),ITAG(J),RATE(J) ,NEW,KNOW,I]
begin ‘
if NEW eq 1 then
begin
for all J do
begin
set CLOSE(J) = 1E9
set ISAV(J) = 0
end
end
for all J do
begin
set K = ITAG(J)
set WORK(J) = DIS(K)
end "J"
for all J do
begin
set RMAG = -1E20
for K from 1 to J do
begin
if WORK(K) ge RMAG then

56

FEn e
e Vel L Ql L s

‘1‘""&“. %

P

a3.
34.

1.
2o

set RMAG = WORK(K)
—e-n.d— IIKII

if RMAG le CLOSE(J) then

begin
set IPICK(J) = I
set CLOSE(J) = RMAG

end
if NEW eq 2 then
if IPICK(J) eq KNOW then
set RATE(J) = RATE(J) + 1.
end
end

end

Algorithm for Figures of Merit:

procedure MERIT [CLAS(J,I),FT(J,5)]
begin
for all J do
begin
set FT(J,1):

FT(J,2): = FT(J,4):

set FT(J,3): = 0.0
gr—\-q- IIJ"
for all I do

begin

10.
11,
12.
13,
14.

16.
17.
18.
19,
2C.
21.
22.
23,
24.
29,
26.
27,
28.
29.

30.
31.
32.
33.

set ICAV (to index CLASS I, P)
set 1CSDL (to index CLASS T, Z,1)
set ICSDR (to index CLASS I, Z.*1),
if ICSDR eq 0 then
set ICSDR: = ICSDL
for all N except N=I do
begin
set NCAV (to index CLASS N, P)
set NCSDL (to index CLASS N, Z ")
set NCSDR (to index CLASS N, zn+“)
if NCSDR eq 0 then

set NCSDR: = NCSDL

for all J do
begin
if J eq 1 then begin
set FT(J,4) = 1.0
set FT(J,5) = 0.0 end

set DI(J): CLAS(J,ICAV)-CLAS(J,NCAV)

"

set DN(J) = DI(J)

set ICSD: = ICSDL

set NCSD = NCSDL
if DI(J) Tt 0 then begin

set ICSD: = ICSDR else
set NCSD: = NCSDR end
58

T RE e,

34, set DI(J):= DI(J)/CLAS(J,ICSD)
35. set DN(J):= DN(J)/CLAS(J,NCSD)
36. ‘set FT(J,3):= FT(J,3)+DI(J)+DN(J)
37 set FT(J,4):= FT(J,4)*DI(J)
38. set FT(J,5):= FT(J,5)+DI(J)+DN(J)
39. end "J"

40. end "N"

41. for all J do

42, begin

43. set FT(J,1):=FT(J,1)+Ln (FT(J,4))
44, set FT(J,2):=FT(J,2)*FT(J,5)

45. end "J"

46. end "I"
47. end "Merit"

e FT(J,3) contains figures of merit M3

*, FT(J,4) contains figures of merit M

*, FT(J,5) contains figures of merit M,

M, = In (ﬁ Din)’ E
1 :
i=1 n=1
I I :
fy = U (O + DT, 0 # 4

I I
My= 20 (X (0, +D)lun#i

59

P L e e S " - m"‘
RS o 3 g »
: . & feiel R i*ﬁwﬁ ol

Performance Benchmarks

The BOX80 system is a designer's tool. It is intended for
student use in development of experimental pattern recognition 1
systems. It produces a class-defining data structure upon which «
a microprocessor based pattern classifier can operate. BOX80 1
system performance is relfected in the error rate of its classi-
fier. This error rate is heavily dependent upon the nature of i
the data set from which the class defining data structure is i
derived. However, the B0X80 system's algorithms and procedures
do contribute to this performance. No argument is made here
that these algorithms are optimum. Nor is it claimed that BOX80
system procedures are uniquely effective. Nevertheless, these
algorithms and procedures are sufficient to generate class defining
data structures efficiently and effectively. These claims are
supported by the discussion following.

System Efficiency. Here, the cost-benefit trade-off is

critical. It makes no sense to me to optimize a classifier algor-
ithm on the basis of a data set, however extensive, which cannot

be proven optimal. In the recognition of electromagnetic patterns,
sample data collection is biased almost by definition. Sensor
locations may be constrained; hardware transients may be unpre-
dictable; the pattern environment may even be simulated. The BOX80
system is configured to provide a low cost avenue towards the

necessary class defining data structure. Finally, the BOX80

60

classifier itself is configured for low-cost microprocessor
implementation.

(1) In generating a class defining data structure, the
BOX80 system uses a system segment of four programs. These programs
optimize memory use with generalized data structures and a memory
allocation module. They communicate through standard system data
files. These files and program source code conform to ANSI
standards.‘Program structure is modular. Design conforms to top-
down concepts. As a result, this system segment is transportable,
and readily modifiable. Since it can be readily configured for
use on any minicomputer or large-scale system, it is a low cost
tool for use in pattern recognizer development. The efficiency
of the individual programs in this segment is not as critical as
the above general cost of using the system. Yet, in the alphabet
classifieation experiment discussed in thié section, the trial
classification process required -less than 55K of CDC6600 memory
and executed in less than 23 cpu seconds. This contrasts to the
similar costs of 140K memory and 41 cpu seconds for the specialized
alphabet classifier program which provided comparison data.

(2) The classifier segment of the system uses less than
256 bytes of microprocessor ROM. The class defining data structure,
of course, uses RAM memory in relation to its size as specified
in equation (4-20). No actual timing of the execution of this

segment has been performed. To some extent this timing is problem-

61

-

dependent. That is, the total time required to iterate through
the data structure for a given problem depends on the numbers of
classes and features for that problem. In addition, the very
simplicity of this algorithm indicates a speedy execution.

System Effectiveness. Here, the contribution to performance

of system algorithms and procedures is addressed. The classifier
algorithm operates with an error rate within reasonable limits of
that produced by a comparable algorithm on each of two data sets.
Similarly, the algorithm which evaluates feature merit establishes
merit figures which match, within Timits, the merit fiqures
established by other such algorithms on these data sets. Finally,
the procedures for selection of a feature subset, and for genera-
tion of the class defining data structure for a microprocessor,
successfully reduce data structure size without increasing the
classifier error rate s{gnificantly. These aspects of system per-
formance are detai]ed_in the following paragraphs. ~

Previous thesis work at AFIT produced the two data sets
with which BOX80 system performance has been evaluated (Refs 33,
24). Performance benchmarks were established for each data set.
BOX80 system algorithms were analyzed in terms of these bench-
marks both during design and after implementation. This analysis
follows.

(1) Table I and Figs 5 to 16 apply to Frequency of
Occurrence of Binary Words data. This data consists of some 500

feature vectors of 14 components which represent patterns from a

62

—— — v~ . T —

8968°1
¥92s®
PAAL
196L°
§286°-
£e68°
b8t
ysiL
ATASY
£8568°

126L°-

1£99°-
L9’
v

1926°
8628°1
868"
£158°
prig’-
685L°
868" -
5L’
668"
168L°
68¢e8°-
g9aL’
$285°-
8559~

€l

Al
85L8°
£883°1
1858°
6896°-
£938°
6685° -
165L°
1629°
1€86°
6688° -
s18L°
816L°-
YL -

PAE!

Y UTYAN 77 1O
£158° g118°-
1968° 489~
£366°1 8818~
6318 02091
N9 gus-
TS
98 9269
8999 609"~
AT 1T
b1 beL”

es 1E9y-
8- 9giL

gBE8' - 199"

. 814

gess” {17 A A 2826° €e68° 126L°- ¥i89°
686L° 9868°- 28GL° e164° 168L° 68€8°- 898L°
£988° 6886°- Tb¥L* 1829° 1666° b688°- bISL*
AN p156°- 9628° 8999° ereL” 6186%- LI48°
828°- 99s8° 0269°- 4EB9°- 8IL6°- bbBL° 1€99°-
8280°1 1678°- 2948° 169L° S 9693°- LSL*
1693°- @pgd"1 BSE8'- £8L9°- BUB"- b2S’ 9198°~
2968° 8653~ 0833°1 E9E8° A0 2656%- 1288°
169L° £829°- €§ER° 8088°1 8169° - nur
8596° 828°- L’ 8169° ggeg"y 2818°- @I89°
9693°- &286° I656%- bLLL*- I018°- £236°T BBLS'-
LsL” 9198°- 1268° sne g1e9* 88c6° - 0083°1
13 VA4 T 636L°- BV LLIL- 188° LLEL -
¥l o-w.. 6G28°- 68G8°- £189°- #198° #468°-

LE} LE] £ 94 & L2 €4

1-31dWYS vivd nEod
SIN3IDI44300 NOILYIIAN¥OO NOSAY3d
°1 3789l

$286°-

VAR
118~
91L"
i~
weL
sBsL"-
852~
-
1886°
Lee*-
8820°1
156"

U

U
§569°-
2L~
£8es°-
£0299°
¥l
6288°
1§94 3
6868°-
€189~
#198°
#658° -
1668°
8283’1
1

145]
£l
A% |
113
#1d
8
84

13

63

N

e

- ‘.— R

three-class recognition problem. Both the Online Pattern Analysis
and Recognition System (OLPARS) (Ref 5) and the Statistical Package
for the Social Sciences (Ref 30) were used to establish error

rates for the classification of this data.

(a) As in other radar pattern recognition problems,
the features in this data set are highly correlated. Table I
presents Pearson Correlation coefficients. These represent an ‘
index of the degree of linear relationship between the features.
(Ref 27). As can be seen, fewer than twenty percent of the
meaningful correlations are less than .70. Note that only one of
these is less than .50 and that nearly half of these associate
with feature 6.

(b) Using a Mahalanobis' distance based discriminant
analysis procedure (DISCRIMINANT), SPSS produced an overall
classifier error rate of 26.6 percent. (See Fig 5.) The OLPARS
system also processed this data. With the same statistical measure,
its nearest mean vector procedure (NMV) produced an error rate of
27.7 percent. (See Fig 6.) The BOX80 system error rate, 34.5
percent, is shown in Fig 7. To interpret this figure, notice
that the summary conclusion values are a percent correctly classi-
fied, a percent classified in error, and a percent rejected.

Rows of the BOX80 confusion matrix contain a count of data
vectors belonging to the class, the class id, and standard confu-
sion matrix assignment percentages. Other data output is discussed

in chapter 5. Note that SPSS and OLPARS algorithms use a process

64

-

CENTROIDS OF GROUPS IN

CROUP 1 -1.46581
CROUP Z 1.69614
(ROUP 3 99167

ITSCRIK FOEW DATA

PREDICTION RESULTS -

ACTUAL CROUP

Fﬁ?E " ?UDE
CROUP 1 |
CROUP 2 z
GROUP 3 3

REDUCED SPACE

=8
5

N OF PREDICTED GROUF HEMEERSHIF

CASES GROUP 1
198 166,
3.8 PCT
74 2.
2.4 PCT
198 18,
9.3 PCT

GROUF 2

GROUP 3
14, (48
5.1 PCT t1.1 PCT
54, zb.
65.9 PCT 31,7 PCT
3. 125.
8.9 PCT ¢5.8 PCT

73.4 PERCENT OF KNOWN CASES CORRECTLY CLASSIFIED

FIG S.

65

TR e T el e coam——_—————

SPSS DISCRIMINANT RESULTS

Overall Evaluation:

Dataset kdigrams X¥XXX passed against logic designed on firshalf

Number of dimensions =

true class

AARARA BBBB CCCC
ARRA 190 &4 St
BBBB 1 12 5
ccee 8 46 151
rejt 0 0 0

totl 199 82 207
corr 190 i2 151
Xcor 95.5 14.6 73.0
eror 9 70 56
Xerr 4.5 85.4 27.1%
rejt 0 0 0
*rBJ 9.0 000 0.0

14

total number of vectors = 488

overall correct
overall error

353 for 72.34%
135 for 27.66%

overall reject @ for 0.00%

Overall Evaluation Summary:?
Datasel kdigrams XXXX passed against logic designed on firshalf

Number of dimensions =
node %c Xe Xr
ARAA 95.48 4.52 0.00

BBBB 14.63 85.37 ©0.00
CCCC 72.95 27.05 0.00

14

overall correct
72.34%

overall error
27.66%

overall reject
0.00%

FIG 6. OLPARS NMU ERROR RATE

T —— T | i o — o —

66

-

-

i

TRYOUT
ENTER OPTIONS
i
FNS
OPENED FEATURE FILE WITH HEADER
NRMESLABLyJUs LBoXCy MV2IOPTHIHIS) FIRS) FLAS
FEAT 111017 € 2198 8 | .S0E-B2 .10E+f1
OPENED CLAS FILE WITH HERDER
NAKE LAELC JDX ICX NTC MEUC MKV
CLAS 111161 17 4\ 3 58)
SUBSET CLASS= 88
SUMMARY CONCLUSION
4582 3413 6.0080
CONFISTON MATRIX
198 186 112
62 2 9471 &2
191 324 23 52

NENT NCIX
23 19

ISYH
i

IUKER
)

FIG 7.

67

BOX80 ERROR RATE (FOBW SET 1)

v

dependent upon a full covariance matrix for each class. This is
many times more ‘expensive in computation time and in memory usage
than the BOX80 algorithm. The OLPARS NMV procedure includes an
option (-2) based upon an inverse weighting matrix. This is
similar to the BOX80 classifier algorithm, Fig 8 shows that
OLPARS' error rate using this option is virtually identical to
the BOX80 error rate. Thus the BOX80 classifier is algorithmically
acceptable. (Note that although BOX80, OLPARS and SPSS all allow
their users options to experimentally define parameters which may
decrease error rates, none were used in any of these experiments.)
(c) A second sample of vectors from the FOBW data set
was processed using the BOX80 system and using the QLPARS'
NMV-2 option. Figs 9 and 10 show respective error rates to be
again nearly identical. Note, however, the over ten percent
increase in the error rate for this sample over thqt for the pre-
vious sample. This is simply due to differences in the data
collected for each sample. The overall data set was not analyzed
to deliberately extract a worst-case subset. This leads to a
rhetorical argument which is presented as an aside. Assume that
this second sample was actually the initial sample. Allow that it
was accepted as the design test-bed. Consider the development and
usage costs for the software for both iterative generation of a
class defining structure, and for implementation of the classifier.
Would implementation of an optimal piecewise linear hyperplane

be justified?

68

o i A
Jo gy - .'1~I&N.\

[MI |
G EUPEENRT LOcls HODE IS 1

SEMTER FH CETTCN:

1 SSIMPLE HEAFEST HEPH VECTOR
2 IHVERSE VDARIPHCE METCHTING CREIGHTIHG VECTOR)
S SMAHALAMORTIS (WMETCHTING MATRELSD

SSOVOL MIEH T0 IMPLEMENT Al REJECT PDUHDRPIEE?

(R g

STUETIAL SHEVREST ~MEFH -UECTOR ~EUALUAT IOH: HFITLIHLY e
SHUPIREE OF LDIMEHZIOHS = 14

TOTRL HUMEER OF VECTORS = 487
QUERALL TORFECT 216 FOR s
QUEFPLL EFFOR tel FlR SS5.11<
IEERLL REJECT I FOR [(5 s

SO0 SO0 WMEHT A HARD COPY OF THIS MATRIXT
Ay

s YOL WMISH TO CHHH&E THE WEIGHTIMGs OF AHY REJECT VALUES?

41 »
‘“:?Iun-!ﬁ:'.'uz-m DISPLACH HRETOCEYCM HMUMaD w e
PR Fo1566 4,581 S.574 194 LEVEL 3 26 |
SR .
L U HERREST SMERM CEURLUATION “SUMMARY: AFITUML4 $eex
SHUMEER: OF TIMEMSIONS = 14 v

HODE “e %E 4

NANA B2,

OUERALL EFFOF
CI 0 §
OVEFFALL FEJECT

B %

FIG 8. OLPARS NMU-2 ERROR RATE

69

(2 37dWYS M90d) 3Lud ¥oN¥3 esxod

‘6 OId

¥¥/55=21 $9/6S=1T /9587 €¥/95=6 ¢€#/95-8

cb/95=L

0/L8=9 29/18=C Z3/1S=y

»v\mmuwa ¥/6E=E1
|8 ZE1SCN § FASCYAA JRASCH
© S3lY YOMY3 33¥SSANS

¥ G2 818 ¥c1tT € 6 2L 1Y

SIVL 33458NS

T v
ek "?\-?—w,

B300°8 L1bi £GCC" £
NOISATINGD AUtRMNS
s
YIIWON 13§ K/3 ¥31N3
£8-3881C° =¥ £8-3961¢" =G 76-3bb11° =z 78-358 28-31812° =8 78-36952° =41 :
13- =61 78-31229° =1 14-35687° =¢ 14-EE1T =6 18-32ET1° =21 14-3% 14-389%C" =11 @2+368L2° =9
K10 Y04 1TY3R 40 S3¥NII4 RASZ o
16+385Z1° =6 20+316C1° =7 ZB43CIT =y 20+ 26+35262° =61 7B+368BZ° =¢ o
BG+3LP12° =01 26+34I6T° =1 TB+3GLETT =8 70+3%452° =21 Z6+31992° =b IB+3YC6TT =11 2B+3B9GET =L 2B+3FICE" =9
SNOISN3RIQ Y04 1I¥3W J0 SN 30T
36
0+ {
SNOISNIKIQ ONY SSYTD §3IN3
13831)
168681 3114 S¥W
8881 3714 1¥3d
SiNde
SNOILd0 ¥3iN3
1noANL
i
S 9
|
a:t L L

Partlial Nearest Mean Vector Evaluation:t
Number of dimenaions = 14

true class

AAAA BBBB CCCC
AAAA 160 12 42
BBBB 33 S8 121
ccce 6 11 44
rajt 0 o 0

totl 199 81 2907
cory 160 58 44
%cor 80.4 71.6 21.3
aror 39 23 163
%err 19.6 28.4 78.7
re;t 9 0 ")
¥re) 0.0 0.0 0.0

total number of vectors = 487

overall correct 262 for 53.80%
overall error 225 for 46.20X%
overall reject A for 0.00X%X

Overall Evaluation Summary:?

Dataset kdigrams XXXX passed against logic designed on firshalf

Number of dimensions = 14
node Xc Xe Xr

ARAA 77.89 22.11 0.p@ overall correct
BDBB 80.49 19.51 ©.00 € 60%

ccee 17.39 82.61 0.00 °VoT34lSxT"

overall reject

FIG 10. OLPARS NMU-2 SAMPLE-2 ERROR RATE
FOBW DATA SET

71

e

‘ o
Fad TR R

-

(d) The OLPARS system offers a variety of feature
evaluation algorithms. Two were used to evaluate the features of
the samples discussed above. Fig 11 ranks the features on their
ability to separate class pairs. Fig 12 presents overall merit
at interclass discrimination and ranks features in this order.
Fig 13 presents BOX80 merit figures. F/M set "1LOG" corresponds
to the Ml matrix discussed earlier; F/M set "2SUM" corresponds to i
the M2 matrix. Features are ordered by descending figure of
merit. It was noted that both BOX80 sets of merit figures dis- {
agree with OLPARS feature ranking. Each set of merit figures was
then compared in terms of the classification errors which its
use produced.

(e) As discussed earlier, the BOX80 feature subset
selection process operates on a set of proper nested feature sub-
spaces during each trial recognition of the test data set. In p
Figs 7, 9 and 13 the summary conclusion percentages reflect use
of the complete set of 14 features in the class defining structure.
The "subspace tags' list gives the order of features used in each
of the nested subspaces which are evaluated. Each tag denotes the

last added feature. The rates presented for each subspace are the

percentage correctly classified followed by the percentage in
error. The nested subspaces are first, that containing the left- |
most listed subspace tag, and then, that containing the left-most

pair ot tags, and so forth. Examination of Fig 13 shows that

72 !

FCOTURES AFITAFLY

~D0D W3U WIZH TO DO MEAIUFEMENT SELECTIONM IMTEFRCTIVELY?
HevES

=00 %00 WIZH TO ZELECT AHY MERTUFEMENTS TO STHRFT WITH?

HO

~EHTEF THE DEFALULT DIZFLAY TO EE PRESENTED AT EACH ITERARTION.
1 FEHKIORLL

2 UNEEERCP

2 UHIEEC

1

.

MERZ. VHLUE CLAZE FRIE
* 2 21.8"f “~H ~IC2NA
1 NE NEANA
3 “H SNEZNA
() “~H “NCZNAH
11 ~H NCANA
4 “H NEANH
i “~H ~E/NH
2 ~H
ie ~H
£ “H
13 A
S ~H
H
R

—
2

FIG 11. OLPARS OVERALL FEATURE RANK

FEATURES AFITAF14 -

\I0 Y¥OU WIZH TO L0 MEASUPEMENT SELECTION INTERACTIVELY?

YES

~DO YDU WISH TO SELECT ANY MEASUREMENTS TO STRRT WITH?

HD

“ENTER THE DEFAULT DISPLAY TD BE PRESENTED AT EACH ITERATION.

1 FEHER0ALL
c UHEEECPF
3, UMEEEC
e
MERS. VALLE
* & 2l.8
¢ 1 20.1
¢ 3 17.0
& 15.59
=11 12.42
4 11,536
7 9, 986
8 9.0517
¢ {3 6. 7554
9 6.5776
13 6.43275
9 S.2048
10 S, 0559
14 3.7700
FIG 12. OLPARS CLASS-PAIR FEATURE RANK
73
= - S —— e, -~ - B ———
o—— s pen

——te
3 .x'ﬂv#gg '

LI¥3W 40 S3¥NDI4 - S33NLluY3d 08X04d €T 914

¥E/5%=41 €€/99=€1

€E/99=21 EE/99=11 CC/99=01 BE/69=b 8C/67=8 EE/99=L SE/¥9=9 GE/49=C 19E/59=t SE/¥9=C +$E/C9=7 @4/4C=]
SILVY YOWY3 30¥4SENS

Yy S NEIT AE LT L UY

5 SAYL 334dsSans

8626°8 81¥C° 2859°

NOISMIINGD A¥YRKAS

/ P4

YIZUAN 135 W/d ¥31N3

$£/89=91 #€/59=€1

€E/99=21 ZE/L9=11 SE/49=01 $E/G9=6 €E/99=8 €E/99=L €€/99=9 GE/¥9=C +#E/S9=v SE€/19=C Z¥/IG=7 B¥/65=]
S3LVY YOYYI 30dSEns

Sy 17 €181€ 8 216 11T L 9§

SQYL 33vdsans

88358 81pe" 2869°

NOISATINGD AEYRHNS

1§

YIGRNN 135 W/3 ¥31N3

26-33221° =81 28-302L1° =8 76-36E92° =¥1 Z8-31855° =E]
18-3266€° =1 16-309L¢° =L 18-3ES5° =11 68+319E%" =9
SNOISNIKIQ Y04 LIY3W 40 S3NII4 KNS2

20+38E81° =¥1 20+43BL81° =2 76+36E62° =E1 26+39212° =61
29+3G682° =11 20+31662° =1 Z8+3W26E° =L 28+389LE° =9
SNOISNIWIQ 804 LIN3W 30 S¥NI4 0T

161117 3714 SY13

T 3704 1y

€0-35492° =¥ €8-39EGE”
B0-30595° =2 18-33911° =21 18-38811° =€ 18-3L320° =6

"
w

I8+32621° =6 Z8+36H51°
85439612 =€ 20+38672° =8 Z0+99T° =11 20+38297°

"o
O~ -t

ERGH
SNOILd0 ¥31N3
100141

NEZIMIN'REZLV3S MOV TNLX

74

|

-

-

performance peaks at subspace 11 for F/M set "1LOG" and at sub-
space 9 for F/M set "2SUM". In both cases feature 2 has just been
added to the subspace. Fig 14 shows BOX80 use of a user defined
set of "subspace tags" which includes features 2 and 1. Again a
performance peak is noted.

It has been noted that exhaustive search is the only method
by which the 'best' subset of features can be found. The foregoing
discussion illustrates how BOX80 algorithms can be used to guide a
heuristic search which improves performance and yet is not exhaustive.
It also illustrates the greater strength of OLPARS' feature
evaluation algorithm. The BOX80 subset evaluation technique has
no counterpart in the OLPARS system which performs each classi-
fication trial separately.

(f) Fig 15 illustrates the B0OX80 procedure for record-
ing the selection of a subset of features. The newly generated
class defining structure produces an overall error rate of 28
percent. Fig 16 shows the procedure for generating scaled
eight-bit data values for the microprocessor based classifier.

The TRYOUT module option 'B' requests this 'byte' scaling. The
zapping process referenced in the figure nullifies specified feature
dimensions (i.e., those not to be used), by arbitrerily expanding
the value of their respective boundaries (variances) to a large
value. This is further discussed in chapter 5. In this run, a

trial recognition was then accomplished using integer arithmetic.

75

¥3a30 3¥NLY34 43103135 ¥3sn v OId

JKIL NOILNI3XI STRO33S dJ 65171
4018
1n018L 1106

(% 3

d35KON 135 W/4 ¥3IN3

- ¥E/89=41 2€/19=E1

811921 28/19=11 2€/L9=81 2E/19=6 E/19=8 BC/49=L 0€/69=9 BE/69=C 6E/69= ¢2/8L=C 61/8L=1 E€E/99=1
S3LYY YOUN3 339dsSans

prElTzZIgne LSy 118 ET 9 2

SOVL 33448805

€268°6 81ve" 2869°

NOISNIINQD AN¥RkAS

4411118016 16195120
. TR
SIYL 30645INS 441334

gt

YIGRON 135 W/4 ¥3IN3

¥e/S9=¥1 2€/19=€1

2E/19=21 ZE/L9=11 TE/L9-01 ZE/19=6 TE/L9=8 BE/89=L @E/69=9 6E/69=C 8E/69=y 62/8L=F 8I/1L=1 BE/19=]
S31EY YOUM3 399454nS

eIz eTe LSy 11e 9 E T

5991 33gdsans

§998°9 814" Z8c9°

NOISNTTINOD AMYRURS

LA1TT18819'S6 78118+
OO
$O91 3dSANS 441333

§
Y3TWNN 135 W/4 ¥3IN3

76

\

WAL N

TRYOUT
ENTER OPTIONS -
¥
PNS
OPENED FEATURE FILE WITH HEADER
NAMELAELyJDs LE2ICy MWy IOFTSIHIS) FIRSs FLAS
FEAT 111117 &8 3198 8 1 .5E-02 .1GE+B1
CPENED CLAS FILE WITH HEADER
NAME LABLC JDX ICX NTC MBUC MKV NENT NCIX ISYM IUKER
CLAS 111161 17 zi 3 54] 23 19 1)
SUBSET CLASS= 99
00+0Dy ...
1
1299 06 06 66 6066060680663 80620628
CUBSET
0PS= 6 6 3 4 5 467 8 91811121214
SUKMARY CORCLUSION
J134 2566 E 864
CONFUSION HATRI
198 1856 11
82 2 3413
191 314 15
SUBSET CLASS:= @

51
g
¥
2
4
68

FIG 15. ERROR RATE - SELECTED FEATURE SUBSET

TRYOUT
ENTER OPTICONS
*
FBS
(OPENED FEATURE FILE WITH HEADER
KAMEsLAEL JDy LE¢IC) MV)IOPT.IHIS) FIRSs FLAS
FEAT 1111 17 €3 3198 @ 1 ,SBE-07 .16E+81
GPENED CLAS FILE WITH HEADER
NAME LABLC JDX ICK NTC MBUC ~ MKV NENT NCIX ISYM IUKER
CLAS 111161 17 21 3 59 (] 23 19 1]
SUBSET CLASS= 99
00DDr...
3
1 299 6 6 6 6 6 6 6 06 6 6 6 66424009
SUBSET
PS= 6 6 3 45 67 8 916111213 14
SUNNARY CONCLUSION
6935 3015 6.0008
CONFUSION MATRIX
198 187 111
82 2 33758
191 3 16 17 65
SUBSET CLASS:= 6

FIG 16. ERROR RATE - BYTE-SCALED COMPONENTS
77
i R AR . s R ‘.I foe != TR
b s ,.._i‘i\.—" _ri X

a—

-

This simulates the byte valued operations actually performed in
the microprocessor. Error rate increases by only 1.5 percent and
remains below both the error rate achieved by OLPARS(NMV-2) and
that produced by BOX80 on the original 14 component data set.

From these facts, B0OX80 procedures for subset selection, and for
generation of the class-defining structure, are judged acceptable.
(2) Figs 17 through 23 apply to Fourier transformed

alphabetic data. This data set consists of 3900 feature vectors

of 49 components each. The components of these vectors are the real

and imaginary parts of complex numbers. These numbers are output

by low frequency filtered Fourier transforms of two space images

of digitized letters. The technique used to produce these vectors

has been discussed in several AFIT theses (Ref 14, 31) as well as

in the as yet unpublished work by Sponaugle (Ref 33). These vectors

form a 26-class problem. Programs produced by Sponaugle were used

to establish benchmark error rates for classification of this data.
(a) The components of the vectors in this data set

were assumed to be largely uncorrelated because they had been

generated by an orthogonal linear transform. The use of both

real and imaginary parts of the values output by this transform

suggests the caveat 'largely' since the transform produces ortho-

gonal complex values. The size of the data set precluded use of

SPSS to generate correlation indices as was done with the FOBW

data.

78

— R — - > m-—"
. BT SYe : o

DATA TRANSFORMS:

Notation:
X = feature vector
X = unit vector

X/ |X]

o
n

mean x vector

X
N
= (22 x;)/(N)
i=]
Pi = mean X vector
ﬁx = unit mean X vector
= Py/[Pgl
P; = unit mean X vector
= PPl
RESULTS:
Overall Error Rate No. 'perfect' alphabets
A. X; Vs PX - 18.41 8
B. Xi VS Pg n 11.50 8
Gs Xi VS Pi - 11.20 8
D. Xi Vs Px - 10.88 8
E. Xi vs Pg and 1 - 7.11 36
where & such that for all o, ¢ I, 054 = [var(Pg;)12

Fig. 17. Alphabet Classification Experiments

79

(b) This data set was processed using a classification
program written by Sponaugle. The program uses a minimum distance
algorithm. It produces an overall error rate, a confusion matrix
and individual error rates for each alphabet. Appendix L records
output from this program which is summarized in Fig 17. Sponaugle's
work included heuristic experimentation which attempted to establish
appropriate normalizing transforms with which to precondition the
feature vectors. The original data (after application of centering
algorithms to the data input to the Fourrier transform), classified
with an error rate of 18.4 percent. Arguing that "thick" letters
would in general have larger vector magnitudes than "thin"
letters, as is shown diagrammatically by vectors X1 and X2,
Sponaugle normalized the feature vectors by their magnitudes and
again classified the data. His least error rate was produced
by experiment D. The intuitively difficult combination of ii and

A

Px in this experiment may be explained by the hypothesis that this
normalization retains the angular variation implicit in the origi-
nal data vectors while standardizing vector magnitudes. The

BOX80 classifier algorithm was integrated intc this minimum dis-
tance classifier. A trial classification produced the 7.1 percent
error rate reported in the figure under item E. The decrease in
error rate, and the significant increase in the count of
alphabetic fonts recognized as identical, qualifies the BOX80
classifier as significant. For reference by future AFIT experi-

ments, the identically recognized alphabetic fonts are recorded

in Table II.

80

TABLE II

Identically Recognized Alphabets

Experiment A:

28, 48, 104, 139, 16, 33, 35, 41
Experiment B:

28; 9, 10, 139, 16, 33, 35, 75
Experiment C:

€8, 9, 10; 139, 16, 33, 35, IS
Experiment D:

28, 9, 10, 139, 16, 33, 35, 75
Experiment E:

28, 9, 10, =, -, 33, 35; 75, 8, 15

19, 26, 30, 32, 25, 27, 29, 48, 50, 58

104, 127, 129, 133, 143, 41, 51, 66, 83, 90,

103, 108, 116, 140, 144, 149, 150

81

.;i555§;f’rf-

-

(c) The BOX80 system was used to process a 780 vector
subset of this alphabetic data. A subset was used only to reduce
process time; it does not affect the validity of this benchmark.
A confusion matrix for this process is shown in Fig 18, with an
overall error rate of 4.6 percent. The decrease in error rate
appears to correlate with the fact that the 30-letter sample
per class used in this experiment included 10 of the "identical"
alphabetic fonts reported in Table II. This experiment is
significantly different from that reported above in one impor-
tant respect. As noted under "system efficiency" in this section,
the BOX80 classifier used less than 55K of memory and 23 cpu
seconds for its operation. However, the alphabet classifier
required 140K of memory and 205 cpu seconds to complete a trial
classification run. After scaling this execution time by the
reduced size of the BOX30 data sample, a 2:1 throughput increase
is still indicated. The minimal BOX80 memory use results from
its efficient data structures. Thic contrasts to the far greater
memory requirement of the alphabetic classifier. It should be
noted that the alphabetic classifier accumulates and stores
extensive statistics for output; these account for part of its
memory requirement. The classification rate presented for this
set of 49 component alphabetic feature vectors correlates well with
Tallman's simulated result, 95.80 (Ref 35:86).

(d) Figs 19 through 21 show BOX80 merit figures

computed for this 49 component alphabetic data set. Notice that

82

Is——————" —EE R T o R S . e B ————— '—»“ﬁ.
: =
3

i e L SSRIRE

TUKER
]

ISTH

KCIX
8z

NENT
164

+1

JABE
KKV

-

+81
[

-

- 18t

HEU

NTE
24

3
ICX
85

af

JI
52

6847 9.0608

aAgann
S 36061

RAKELARLydDy LE+ICs BViIOFTyIHISy FIRSs FLAS

OPENED FEATURE FILE KITH HEADER
FEAT 3638 S2 30 26

OPERED CLAS FILE WITH HERDER

RAKE LAELC

CLA
SUMHARY CONCLUSION

SUBSET CLASS= 8B
9538
CONFUSION HATRIX

TRYOUT
ENTER OPTIONS

3
PRS

e e
R R
R e R
TIEOSETEEEES S MRS S S S oS ® S ==
CeessssseneESEESeRSSRs oS0
e T
CSEsToeSsssSReRESSSSS S0 e e o
PO SNSRI SRS EE TS S S eSS
TEoTeEEEESE 9D En 5SS e T)
e R R
STecoemeroSSEe SS9 Boosmn s m s m s
L N N e L L L L L L e

(=<1
6Baﬁgeﬂ.e6665%60506060ﬂ00066

ﬂ".goﬁggﬁﬂUGGG%gBGGGEQBQB\GB66
Bgeﬁﬂveﬂﬁﬂvﬁ%sﬁegegegﬂvga“oee
636ﬂnﬂsegswgﬁaeeggﬂﬁegeseeBG
066866gg%mgeﬁoegBBGA\ve“oﬁaa
ﬂggaege%gceeﬁaeﬁe.”QGEOgesg
ﬁgggggweeeggggggggggoaﬁgoa
BBBﬁo%BBBQGGGBQeﬂﬁ.Bﬁgeﬁoga
gggwea96%668064966500600“B“

e

06%6NJBBEGngegaGAOGBﬂooﬁoBo
ﬂ%ﬂveeaaeeﬂegogeasﬂgaggaoae
%ﬂ"geeeﬁgeﬂagggeaageeeeegﬂvg
—_ NN e U OO0 =N e OO0 m N - 1D O

38

[~~~ I~ R~ T~ R~ R
DI I MMM MD MM O MM

-

83

ERROR RATE FOR 49 ALPHABETIC FEATURES

FIG 18.

b
77

L17E-

o~
~
~
=
oo
- [
d od
J
O vt s O) ~O
— et et =+ od
R R - ~
L34
o8 o u e g W R
~0 = Ly "
«F st 0o od - (2]
- W
=4 2 O
L <
-+ ~
3] o Q
= =) (2
r~ "
I = (O}
ot —
N 0Q
U O~ O =t
LI 1 T T < =
L e s = I) SSOS s)
| N O e -t & O U
O O~ C~ O
" " " "
<t o . O~ a0 LD -
? (=1 Lerl N O3 =2
~+ [
wul [} O [
~o € 3 O ~t
5 = €% <o ~ = =t
- cQ 0 od U [z == (o4
-t -3 Od v vt OO O ~0 o
B . W W o T]
L]
L L A TR 1 L} S ! S (ORI | od &=
- CO O od o2 O vt
(D) v od D « ¢ g bans
~—
~ = &
wt «F < <t D D O e U S e CO w—t = o
S N en On s ey et OO OO = od ~0
-+ e oA R) 1 ' ' 1 t ' "wononou u_
[SERU N L oLd Ll tad Wd Ll L L (==] =~ O v= 2
W UJ ~0 <0 u» i i L] oo~ -~ O e
o0 O =t P~ od P~ & Ua O O e O
i B = P v D O G e € o~ I o~ U W
o e B o G o B i T C) «fF v =) CO o od -t - t—
T T SR ™ e O T TR " e e e
S od =g P~ 0D = ¢
Lo O R SU. SF th ¥ ¢ ik D o Uy Co o~ -
' O o <o CO CO v v P~ 3 (L T T S (7'
Od & OO OO v N o= & «a M d r~ u? O QO o
2 =t — G
&t «f e - 0 D) — s RS <t =t o= 1 P~ D 24
LSS - L B I Lo S o SR BT B B o <+ o ads - O
e g e e -+ e Y T B ~ =~
Ly Ly L Ll L) b LU oLul L L ot r~ o2 O (04
€I <O o =3 LI T T D O ~O o~ Uy o
- O~ wit- c o F~ o U P~ W o
) NS e v sy oYy O~ Wy od [z B 42 o~ T~ u r-
ZZ O o v o ZZ CT e e U D e — (3%}
o . . . - o - . - - - -
- —— ~O) =t
Y # fWoH n W [0 01 W | N | N | S O v O ¥~
= CO D CO -t o= w0 YU od WD N .
Ll od 2] O v W v v NN " O il Ul .
— — " "
€Q wF = w at Y (7 a2 0 M~ e o o~ uy 0 - O =
=] (5 HD e O O NN = - -
= 4 - ' IR TN
(o] Lt Lad et Lad e g L o~ O 0 U =t
v = CO R €D G s <O - P~ v (4]
] Cd b <O U P~ U el
€ Dra I S T T RS - el - ot =y
Yoo Cd ©) v P~ o~ 1D - ™M od »] u
- i TR SR S o [BT
() Lo ~O =~ W o
" " || S (AR (=] s - | et -4
s w N o~ O~ WD) p 2> (==l <
-+ [e B e] = S €Y~ W 2 1D O
-z oy _» e N CO e
oW e S~
o G O S e O O~ P - ond oY 0O =
- — e OO O OO L) €I Od LD vt o € - QO
< =+~ ' 1 ' ' t = <O <T B it # on W
o A Lt bl ol L S NSO LW = -0
- < U2 UD -0 T ¥ [k -t - -—od
. O Uy GO R S0 S~ Lo L)
L) U et Od O N ol €Y CO o ot O v CO O UD -
[- - wt c= €L (4) v €L O~ vt
< T .- - . T " “T CO [Ol SN SN~
(S) Wl 7~ 2T) L «t et O~ () QD v e w1
bl ol o N e e X 7 LA v Od (=~} o o~ O~ O~
o = CO @ = (M U 3= (= - " Ww B wn u
= Y Lt o - QN €U s C~
- "~ - - 0N D -
-
{
- - e e et e v ——
v - i e i

S30UdSENS 2-L1I1¥3W 804 S3L1YY 40¥¥3 °e2 914

o~ o
o

b /8%

=8y =Ly
S /96=9¢

124

2l

186=9% ¥ /S4=C¥ ¥ /G&=¥b ¥ /1G6=Ch ¥ /G4=
156=4€ S /35=6E S /46=TE S /46=1E 9 /Eb=
116=20 8 JT6=12 & /86=67 81/68=61 81/68=
/ 82/ o

03=01 22/LL=8 8L=8 ¥E/S9=L 8E/1

o~
"

L 12

1
§
g
§1/48= 1

¥ /8%
¥ /96=6¢
L 12652
L1/28=11

w
Ed

€

b EHEIELE N IZH LZBY 1N
Ty €1 8% GE € 26 81 ¢ 81 91 42 8€ 2}

N A
O3 U3 e

1 -
~ & o
-

b
28288 N

=
e
.o
L v
=
=
[

=9 6E-39258° =67 +E-30S3L° =8 Z¢-3b L TE-37Ce8° =€ @E-39BEE" =GI 62-39545° =GE
=b B2-31883° =9¢ [Z-368%1° =€ L2-3¢ 1€ L2-3%VIE° =L€ [2-3ZUEL® =22 92-3%L11° =4%
=17 92-33L12° =% 92-39918° =17 SI-32 8y S2-37€8%° =11 G7-3969G° =5y G2-3358L° =62
=81 $2-34L6%° =9% €2-30509° =Lv 22-3U€1° =6 12-3L621° =1 02-38771° =E1 §2-3E951° =Bb
¥
&

- D wr v O

=By B2-3229%° =€ 02-3659%° =61 61-3n6d1° =y 61-3CBSH° =81 [1-3G/81° =91 [1-33G1€° =42
=01 €1-346L2° =L1 31-398(2° =G1 Z1-31662° =€ T1-3T41€° =87 11-3@%68° =t1 96-337%7°
SNOISN3KIQ Y04 1IY3K 40

§
L
]
P =9 -
!
8

O O O v= -0 D)

=

e g e e e e

L81° =9
B+35182° =G EH+307€C° =L €O+392C7° =07 €P+3CICH° =8 EO3CLCE° =81 E€M+30CH9° =11 €B+37C79° =6 €8+34339° =T)
8j+31218° €2+436618"° =62 €0+3/928% =67 EB+3¥4G4° =27 €B+3CT65° =GS CE@+3[066" =4E CO+38564° =EC $0+31281° =L
#g+35581° YE+3LH01° =9 10+35901° =91 $5+3CL01° =81 §0+39101° =2€ ¥B+3L401° =¥ $O+3COI1° =L1 §8+24811° =21
19+39111° Y8+35211° =18 ¥0+39210° =42 $9+¢3E¢11° =81 ¥B+39F11° =B $0+38F11° =8E $0+32411° =67 $3+3E311° =8¢ ! !
BE+3CLIT" =Ly ¥O+3SLTT" =4k $0:31811° ={2 $8+37811° =4€ $8+30311° =92 #B+39611° =€ $8+43L071° =Cp 93+3L121° =4y i
B3+30221° =10 VB+38L20° =91 ¥0+30LE1° =Gy $0+39841° =G1 $6+3G8L1% =2 9B+3€H02° =67 9B+396H2° =41 $8+31C¥eT =1 -
SNOISNIKIQ ¥04 LIN3W 30 S3unold 90
183268 2114 5872
gE8C 3114 143

:
SNOI1d0 ¥31M3 ; |
1N0A8L

AD=AD64 194

UNCLASSIFIED

— . e e — —

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 %/8
A DEVELOPMENT SYSTEM FOR MICROPROCESSOR BASED PATTERN RECOGNIZE==ETC(U)
DEC 78 J R LEARY

AFIT/8CS/EE/T8~12=VOL~1

I
|

= 22 22

o

= 0w
| TN~
— | S
25 flls e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS 19634-A

e - S

S$30UdSENS 3ANLY3d ANVALIGHY ¥04 SILVY ¥ONN3

‘12 914

Le-30128°
82-3164%°
92-32351°
¥2-32882°
82-3LL42°
y1-35202°

£8+35162°
£0+31818°
ye+35E81°
- ¥8+39111°
¥8+32L51°
§8+37221°

- 1N0A¥L LIND
L 4
Y3EAON 135 /4 ¥3IN3
¥ /Sb=tY

¥ /S6=8Y ¥ /¥b=Lh ¥ J¥6=9Y S /¥6=Sh § Jyb=¥y ¥ J¥b=EY C /¥b=24 S Ibb=1¥ § /€8=8Y 9 /Eb=5E L /T6<BC L 124=LE
L /26=9€ L 176=5€ 8 /16=94E 8 /16=E€ 8 /16=2€ 8 /16=1€ 8 /16=C b /B4=62 b /48=87 81/68=L7 81/68=92 11/88=52
11/88=42 G1/48=E7 S1/¥8=27 L1/28=1Z 81/18=62 81/18=b1 b1/€8=81 B2/bL=L1 1Z/8L=91 12/8L=C1 S/¥i=Y} 92/EL=E1
82/1L=21 BE/69=11 ZE/L9-61 88/19=b6 €4/9G=8 b¥/8G=L BS/b¥=9 E£S/9%=G #S/Sv=p 19/8E=E 18/81=Z 16/8 =1

=9
b
=12
b1

"
w

6e-3y288°
82-3L€68°
92-38L12°
¥2-35L6%°
82-322%%"
€1-366L2°

£8+302¢¢°
€0+36618°
19+30501°
$8+36211°
$8+36L1T°
¥0¢35421°

ye-3658L°
£2-36841°
92-3041€°
€2-36569°
#27-3589%°
21-388L2°

£H+3985%"
€0+31928°
¥a+36961°
¥8+39211°
pe+31311°
p9+30.81°

26-39859°
-3
§2-3669¢°
-3¢
b1-3v681°
21-31882°

£8+3878Y°
€0+35656°
pa+3CL61°
bo+3cH11°
$8+32811°
¥9+39041°

=22
=¢l
=81
=68
=61

S3LHY HOUNI 3dSEnS
bY By LYY SH bR ER 20 Iy
BYOEBE LEIESEMEECEIEBE L2 BT LI NI LI UL 12
B2OTBLLISTSIPIEI2ITIOIG 8 L 9 S ¥ € 2 1
Sa¥L 304SEnS
9698 29v8° BLGH"
NOISMIONOD ANMRHAS
L 3
RO
9L 30v4S3NnS 14193¢S
{c) ¢
YIENAN 135 W/4 H3IN3
L5-3892%" =8
16-32608° =67 E-396CE" =67 62-3905° =GE 62-3962L° =E€
LT-WIE =€ [T-3UUEL* =10 92-35LV1° =b% 92-33E2N° =4y
§2-3268%° =11 62-39898° =y SZ-3868L° =62 ¥2-33G11° =92
12-3L621° =1y 62-3¢221° =61 €2-359S1° =By 62-323G1° =G
61-3568Y* =81 [1-30/81° =91 LI-36CHE" =42 91-39508" =3¢
11-31916° =87 11-3B%4E° =41 96-33292° =7 B1+37855° =1
SNOISNINIO Y04 LIY3W 30 S3vMdld WAsz
EB43LL8T" =9
£6+30LSS" =b1 €O+IBCHY" =11 £8+37079" =b EB+ILYEY’ =y
£9+35266° =CC EB+3L86b° =¥E EB+35366° =ES ¥P+3IZ01° =(€
8+39L81" =26 B+ILLBTT =y H+ITOUI =41 ¥B+6IL =T
yO+39511° =8y $8+33p11° =85 $0+33011° =62 ¥B+3911° =p¢
PO4358TTY =92 YB+BI =€ ¥G43L020° =0y $B+3LITNC =4y
YO+3CBLT° =2 $OICHOZ =57 ¥B+3IVOBZT' =41 BO+3IEHE" =T
SNOISNINIO ¥03 LIY3W 30 SO 90
129868 3114 S¥
§58C 3014 1934
L
SNOILE0 ¥31N3
1n0AY¥L

-

<o

el

86

i

subspace error rates all decrease as the number of subspace
features increases. At subspace 20 the error rates are 11, 9,
and 18 percent for merit figures 1, 2, and 0, respectively.
(The 0 set consists of an arbitrary 49 components by order of
increasing dimension.) These error rates suppert two conclu-
sions. First, the BOX80 sysfem outperforms the benchmark in both
error rate and number of features. Second, F/M set 2 has the Towest
error rate and is the more robust of the two figures of merit. This
agrees with the analysis reported for the FOBW data set.

(e) Fig 22 presents confusion matrices and overall
error rates for feature subspace 20 from F/M set 2. The majority
of the errors are concentrated in separating classes 15/17 and
22/23. These classes represent the letters 0 and Q and the letters
V and W which are readily confused by printed noise.

(f) Fig 23 shows, again via simulation, an overall
error rate and a confusion matrix for byte sealed component
values. It indicates that the B0OX80 system development hypothesis
is justified. That is, with a minimized use of memory, and the

BOX80 classifier, an acceptable error rate can be attained.

Acceptability. The term "acceptable" has been used freely

in the foregoing discussion. From its last use, in the context
of all foregoing discussion, a precise meaning can be inferred.
Acceptability is a complex function of cost and benefit. However,

it is a relative term which implies not only that resources meet

87

ISYM IUKER

NCIX
82

NENT
164

MKV

28

1-.10E+81 . 16E+61
HEUC

B 3
ICX NTC
85 2b

-

6 6 6 6567896116666 68 061928

202223 6252627 629 631 3234353637 839 6

21428 315171236 24 16 18 4 16 32 43 38 48 13 M

OPENED FEATURE FILE WITH HEADER
NAHELABL1JDr LBoICy MV2IOFT2IHIS) FIRS, FLAS
9 6 ¢ 6 6 066 0606666660066 06080

"---""-"’-""’-'-'-'%
'a""""-"-,g'-'---"%'
ggo'600'0""-“5"0'00'“'-
oag"‘ﬂ"-"“0'-'-"%"-"
goaeaao",--'oc-"-%'-"'-
530"509500663-00'“""--'
09905003'“300'6006“00""'

<©

Bﬁago"o'e'-s"%-“"-""
50569'30"'a'anoe’-"o"-'

ooa""000"3%a"ga'"-"'
996955030aaawqoa'ggﬁo""'
BB'”'G“’GBa%""‘o"-""'
QDBB'Bﬂﬂ3a%6""-3'6"-'-'
“399ooa%oa,a'aooaﬂ"""'a
“03030%6“96'5“30"“","B'
Dg'o,“"“"’sgs"”""'-
','5%300""5""-'--"'-'

(==
(o8
=]
<<
wi o~
=x -+
L= -d
m -
O = e OJ ~ EaEmdMdEsEsmMmadMdoam s . aw
=g O~ DSBS OMasSvHEOL OSSOSO DS S EmEEms
[r —} = ‘v%ﬂmmm o~
—
o (. w w R daos oS ooSosdMmsSosoaseSs oS S mEmeam
= o~ LD - D - O D <X <o
= WY LY < == o BT
=" < £ = - O~ 0SS EO NSO ENENEEEENmE S S mE S E .
(oot L S e - - - o= oD
o [Qs iy~ - - — P—3
(=] = (el - - w u - > et N MM e 1N OISR = NN O OO O™ = D O
=P CBuels ~s =2£59_2.8 et o s i ol S s
oo _—_= X < OV = = << N E ML OIS ST TV DS DS TSSO GRS E S
= = < i) < J A -~ - U~ - X QRO MMM DI DI MMM MMM I I MMM ™M
= = o o = o o — = =208 O
- o o 20— = O e
-~ G £ "
e

88

SUBSPACE 20 ERROR RATE(BYTE-SCALED)

FIG 22.

ISYM TUKER
1

NCIX
82

NENT
164

HKY

28

1- 10E+B1 . 10E+61
HEUC

NTC
b

3
ICX
85

JIX
92
88

B449 8.0006

NAKE LABLC
CLAS 363661

NAKE,LABL1JDy LBsICs MV2IOPTHIHIS) FIRSy FLAS
SUBSET CLASS

OPENED FEATURE FILE WITH HEADER
FEAT 3638 52 30 26

OPENED CLAS FILE WITH HEADER

SUKHARY CONCLUSION

TRYOUT

ENTER OPTIONS
i
PBS

.9551

CONFUSION WATRIX

Dﬁagagegogs"'--""""'%
gogaggaoaoo’o"-ﬁ'-"s'-%'
'6“0“gogogg"g"""'W6"-
“96'06“""5'5'5""”"--'
gﬁgaggeoao3'00""”“0-'-"
'ﬂﬁ.’ﬁGﬁ“"'"ﬁ’“"'a-"-‘-
ooﬂaaﬂo0“0006%6“""0“3"‘
ea'ﬂca'0’660%3""00’3"--
gaoaeog’g"%“a"',ooa-""
6000“3033“03""’0"'3"-'
ﬁgosgﬂo%60“003""""“"'
B0305“%oaﬂggog'os"o""'s
'ggoa%g"'“"""'g""'--
-ﬁ’ﬁ%&gooog,"“-'---""'
gaauago69560053005000’“"'

O~ OO W~ NMeu N OV NM =) O

30 193 6 6

361
36 1
361
36 1
31
36 1
30 1
361
31
361
3 2
32
36 2
36 2
30

302
382

89

SUBSPACE 49 ERROR RATE(BYTE-SCALED)

FIG 23.

T

W e NN ik 4 e it e S e d

costs and benefits satisfy requirements, but also that a value
judgment has been made for each case. This is why no one defini-

tion was given.

Testing Procedures

In implementing the BOX80 system, testing was a continuing
process. Techniques varied with the routine or function being
tested. These are indicated below.

In each module the data processing flow was evaluated by
a trace at subroutine exit. Single entry, single exit subroutine
paths and selective output to either the journal file or the
terminal made this technique effective. Data buffer dumps were
obtained from file generation processes to verify input structure
and content. To simplify verification of all modules, the basic
utility routines were independently tested. This procedure v+
not followed for support routines unique to each module because
of the overhead cost for testing drivers. Finally, a simulator,
INTERP80 (Ref 15) was used to exercise the data processing opera-
tions of the classifier module.

Computational code was verified by spot-checked hand
calculations, analyses for self-consistency, and comparisons with
known values. In the latter case, benchmark testing provided
comparison values. Output from these benchmarks included statis-

tics produced via the Statistical Package for the Social Sciences

-

(SPSS), feature selections identified by the On Line Pattern Analy- \
sis and Recognition System (OLPARS), and classification decisions
obtained from specially written pilot routines. Finally, a trivial
data set was used to verify the computations within the micro-
processor classifier module.

Function options were verified by an attempt at exhaustive
testing. For each option, output values were examined, and file
and module interfaces were checked.

Several special tests were used. Graphics routines were
deliverately passed invalid data to ve}ify program continuity;
there were no unexpected hang-ups. Feature selections were input
to feature subset procedures and used in performance measurements.
Finally, data from two disparate data sets were processed with the
system. Thus, memory allocation algorithms and other adjustments

for number of classes and dimensions were checked.

9

Al

o A B Rt 1 ol St B MR A

V. Design

This chapter presents the design of the BOX80 system.
The flow of data through the system, processing techniques and
routines, and system data structures are discussed in the first
three sections. The final sections document the design of

system modules.

Data Flow

The functions of the BOX80 system separate into two broad
groups. To one group are assigned functions dealing with the
evaluation of feature data and the generation of class defini-
tions. The other group contains the microprocessor-based classi-
fication function. This separation conforms to the functional
analysis of data flow presented in Chapter 3. The system is
thus implemented in two segments of program code. Each consists
of independent program modules which interact through standard
data files.

Interpreter Segment. This segment consists of four inde-

pendent modules whose functions allow the user to examine his
feature data and to produce a standard set of class definitions.
These definitions are the primary product of the interpreter
segment. They link this segment to the second segment. The

four modules of this segment are named CREATE, DEFINE, TRYOUT,

92

and FORMAT. These names reflect their basic functions.

The flow of data through the Interpreter Segment is in
a circular path. Segment modules are executed by the user in
an iterative cycle. The cycle ends when the user is satisfied
with the simulation of classifier performance which is docu-
mented by the TRYOUT module. At this point, the classifier
error rate should be acceptably low. In each iteration a file
of pattern class definitions is produced. Execution of the
FORMAT module can transform this data structure into one which

will interface with the Classifier Segment. This is the final

step in the interpretation process.

Classifier Segment. This segment consists of two inde-

pendent modules. One functions as a data input routine. It
allows the user to enter class defining data into microprocessor
memory. The second module is a pilot model of pattern classi-
fier which can be used in the user's system. It processes a
buffer of feature vectors against a block of class definitions
and outputs a classification decision for each vector. The
modules in this segment are known as TAPEIN and DECIDE.

The Classifier Segment is intended as a test-bed with

which to exercise a classifier module which has been configured
to satisfy a user system. In such a system, a distributed
process would implement the user's pattern recognition function.

One microprocessor, operating in master mode, would perform the

93

e mAMa mee aMe ..

analog to digital conversions, feature extractions, and trans-
forms necessary to generate a feature vector for a given pattern.
This microprocessor would interrupt a slave processor to store
each feature vector in a RAM memory buffer accessible to the
slave. The slave processor would continuously operate on the
contents of this buffer, preducing as output a log of classifi-
cation decisions. The BOX80 system Classifier Segment illustrates
this design concept by demonstrating a classifier program which
can be used in the slave microprocessor. The data formats and
program code for this slave processor's software are a version
of the Classifier segment's DECIDE module.

The flow of data through the Interpreter and Classifier
segments of the B0OX80 system can be visualized as a straight
line path. At execution of system modules along this path various
data files are created. Files, in generai, are not updated.
Rather, new files are created based upon the user's analytical
judgment. Any part of this path can be repeated. Thus the BOX80
system data flow supports iterative development of the classifi-
cation data structure upon which the user's pattern recognizer
is based. This flow is illustrated in Figure 24. Names of the
modules and routines of the BOX80 system which implement this
flow are listed in table III. These names are defined in

table 1V,

—

i —— -

CDC 6600
INTERCOM

I

N
FYLE) P

INTEL
SBC
80/20

Q5.
\\

USE
DATA

y

CREATE

CLAS

FORMAT

TAPEIN | ¢—

DECIDE

RECOGNITION

BE g

DEFINE e

TRYOUT | ¢— l\

-y
i: Fig. 24.

BOX80 System Data Flow

o

(AYINTIWOLTD
(AYLH3) H0453
(NN‘LNO4“OBLI ‘NI LN05TS 3NILNCAINS
(NN'NI) 180581 3HILNCEINS
3NITI SHILNCHINS
(II'A°X)X1d 3NILNOESNS
(XUWlXURT ‘AQIH‘I2NICEL0Td IKRILNCESNS
(AQIXQI*ALI“XIDNABU 2NILN0ONING
(N330)43N3 NOILONNS

$SIANILNGY Ld0ddNS

(31A9=3)1000

(d343Ng " H=TH LNINI=3])FIaNT
(2N°g=TH' TN ¥=30)01IH
(W34=8°IN3ILCND=2°H0SINIA=A“AN3TINIG=0T n](
(ANLNIIHDLI9

(AZLNI) 30543

CASUNIg=HadYHd =0 NaNND

(8c¢H)=0) 1D

{4YHI =B ‘AYH D=))HILID
(dOI‘ITBISHUN‘I3N‘XUUI‘NIWA) T8 IS INILNONSNS
(SYT3°SNISIN‘SIHI‘LI‘KRISSYTIRIBLS 3nILN0EINS
(NSI‘QSI MY LA‘NIZ‘SYTIIXILBLS INILNDNANS

(XA “XHMIN ‘AL INEN“DT3YT “WAST 2NN I5IKISINNA INT LN0=2NS
(ITEVTSI XL “XArSY10)SYTI34N NI LACHINS
(LOII“‘XHNISTHILSINY 3N]LN0EANS
(FOZILIMNINCL LIY3NILIYIEd INTLNCEINS
(ro3I“318%1°)79071 31 ACKTIXN340 3MILNONINS
(FO3I “HIEY NI HHISO INILNONENS
(FO3I“XIT‘XAC“SHT0: 22607 3NILNONANS
(XOI'XAL SUI2°1SIT YUIS)SYI08d INILNONENS
(LOIIOXIN XM “SYTNL3ITEIA NCILINNS
(LO31°X01 “XAr“SU1dIXIANI 3INILNONENS
(£O31°SOdN IN3IN‘LSIT IUBNIXIA INILNOHINS
(LO3I°SOdNININ LSIT 3WoN) 13T 3MILNONANS
(L0331 ‘SOLN“IN3IN‘LISIT“3UUN)ICTY 3KILNONANS
(QGYI“LSIT’LININIJLINI 3NILNOXENS

$SINILNOY ALITILNEX

(RI1=9°1NdIN0"Y=30°S3INTVM "Y=TH)IILN0
(LSUTI-DNI¥LIS YU=TH N3 " ¥=-814001D
(31°91°Ar°33n4° 108d=nN031301234

Amommw.zmazu.tO»uu.20hwc.h:mmnwnmmwﬂwwmuh

! (fO3I)J334X3N MILNo2ENS
(FO3I°“G¥N‘O3NN‘D3SINIINX3IN INILNOAANS
(AN‘XHYINT)dINLS INILNOYINS

(AN’XNQIH 3N3) L01d INILNOHANS

WP TGl A LINY 3NILMO43NS
(NOST“AN‘XN’NITL/XHN JNG LSTH) 3N3114 3NTLND43NS
(LOIIXENNAL*SY1I°AIH SN L634; 1u33% INILNOAANS
(LOITAEN“YHN GIH NG LSIHILSIHY INILNGSE3NS
(LO3I“XIN‘XAr‘SIH NG SUTI)58TIY 3NILN0S3NS

. 5 y K L, (r031)4537 3NILNCHINS
(INdLINO“LNANI ‘#9=400T°ILAGLSIH IAT0LY35) LolaCd WYESGdd

A507 3INILNCHEENS

QT “¥ON‘XAC ‘SIS YIHINIOG IMILNCEENS
(FO3I‘OI“XUN“XAr ‘YWl ‘S9¥1374%34) 7803 3NILNCednS
(FO3I“XII“¥ArSy1))L358NS INILNCa3AS

(LO3I“XAr“14)u9I4 3NILN0EENS
(XQAL“SEIS‘NSIAISIA‘Ld)LIdI 3NILNCHANS

(03131437 3N1L1N0&E3NS
(P9=LNdINO‘¥I=LNdNI ‘¥9= 3907 ON3H°IAT0°“ LY34) LNOAYL WHEO5Ed

(LO3I‘XAN L¥34°SY12IKWINLIS INILNCHANS

(FO31 Y33 XArSY10)837H9d INILADEENS
(PO3T'XHN ‘XA OSIH SYT2°AM3) 14330 INILN0EINS
(FOII*XHN XQL“ISIH SYTILIYIAIXSSETD INILNONENS
(FO3I“IX3NXAM‘SUTILNLNIX INILNDEENS

(FO31°XAr’s9¥10)X3TKd IMILN0AINE

(FC31°XAMSYTDUIMINIVIININ INILNDSINS

CLOII‘EXSAH 3N‘IN20TTY 2NILNOAENE

(fO3I)C437 3MILN0H3TS
(LNGLNO‘“LNANT ‘#9+ 3501°I5TH OM3NIQT0“L634) 3NI 530 KH4EST

(FO3IO9T AN II Al 303 ‘AN SNE“HISNTIYIILID AINTLNOCZINS
(SINKHNXAL ‘AN FOSI“DSIH D34 409)Ad40D INILNRDSANS
(XHNANYFO3T 5030 ‘OSINY ANTHNYIS InILNDE3ANS
(XHN'XAQ“ANLO3]) 34330 3NILNONINT

(F3LNdLNO ‘9= LNANI ‘#I= 4007 “DSTH LUI S UISN) 3LYIYT WEsT0=d

1S3INACK W3LS, S22

S3UUN 3NILNOY¥ GNY 31NAOMW
III 318vl

Slarc oL L e ———

el
(=2)

————— o

TABLE IV (1/3)
MODULE AND ROUTINE DEFINITIONS

1. CREATE - Generates FEAT file from user data
DEFC - Initializes CREATE module
SCAN - Produces "first-pass" statistics on features
COoPY - Generates FEAT file records
GETFEA - Reads user data file
PRHIST - Prints statistics and histograms
2. DEFINE - Generates CLAS file from FEAT records
DEFD - Initializes DEFINE module
ALLOC - Allocates memory to module buffers
NEXCLA - Controls selection of class to be processed
KERPUT - Updates class husk Tist
CLASSX - Controls processing of class data
CDEFI - Updates prototype definitions and histograms
FANDER - Produces feature vectors as husk members
SHUCK - Identifies feature vectors as husk members
SETUM - Inserts feature boundaries into CLAS file
3. TRYOUT - Produces error rates and feature subsets
DEFT - Initializes TRYOUT module
MERIT - Computes figure of merit for each feature
FIGM - Presents and accepts feature merit ranking
SUBSET - Tags dimensions for elimination
EVAL - Performs trial recognition

DOCU - Outputs error rate and confusion matrix
LOCK - Establishes subspace error rates
4., FORMAT - Produces microprocessor data and displays
DEFF - Initializes FORMAT module
XCLAS - Controls processing CLAS file
XHIST - Controls processing HIST AND DIST file
XFEAT - Controls processing FEAT file
FILBUF - Loads buffer with PICT and STRIP input §
XMIT - Sends values to hexadecimal format routine 5
NEXREC - Inputs user selection of data class
NEXVEC - Inputs user selection of vector

97

v Ay A o M

i ZER e EN i o e

MODULE

TAPEIN
BYTEX

DECIDE
CLooP
OuTB

UTILITIE

INITC
ADD
DEL
RIX
INDEX
KERGET
PRCLAS
LOADC
OPENH
OPENX
RFEAT
RHIST
WRCLAS
WRHIS
STAT'
STATX
XSCAL
GETCH
CI
CNVBN
DIV
HILO
BNBCD
cout

S

-

TABLE IV (2/3)
AND ROUTINE DEFINITIONS

Decodes and loads cassette tape into SBC 80/20 ROM
Reads a pair of hexadecimal characters
Microprocessor classifier module

Qutputs a string of characters

Outputs a buffer of binary values as characters
[General Purpose System Routines]

Initializes CLAS file index chain

Adds entry to CLAS file index chain

Deletes entry from CLAS file index chain
Reads CLAS file index chain

Builds CLAS file table index; scales file
Accesses CLAS file husk Tlist

Prints CLAS file

Loads CLAS file buffer

Opens HIST AND DIST files

Opens FEAT and/or CLAS files

Reads FEAT file record

Reads HIST file record

Writes CLAS file record

Writes HIST file record

Updates histogram

Updates statistics

Scales FEAT and CLAS vectors

Reads a character (SBC 80/20)

Input from RS232 port (SBC 80/20)

Converts to binary (SBC 80/20)

Divides 16 bits by 8 bits (Interp 80)
Compares 16 bit values (SBC 80/20)

Binary to BCD conversion (INTEL User Library)
Character output routine (SBC 80/20)

98

i s et S —— ¥
; watal

R N 4

—— . —

TABLE IV (3/3)
MODULE AND ROUTINE DEFINITIONS

SUPPORT - (Specialized Support Routines)
ENER - Computes 'energy' and string of values
MARK - Draws tic mark on TEKTRONIX screen
PLOT3D - Hidden line routine draws 3D surfaces
PLX - Emulates CALCOMP plot routine
ILINE - Generates Intel hexadecimal byte format

IASORT - Integer ascending sort
FDSORT - Floating point descending sort

ERROR - Generates error prompt (SBC 80/20)
GETCM - Gest next user command (SBC 80/20)
ERR - Generates error prompt

99

A T i A 30 RS

SRS b : - % 2 ki i L Ao e

System Subroutines

In this section standard supporting techniques for data
manipulation are discussed. Additionally abstracts of utility
and support routines are presented.

Module Initialization. Each system module is initialized

by a subroutine which establishes standard file names, and
allocates memory from a single work area to the file buffers and
tables required for processing. Record block sizes within each
system file are set by the user at system initialization. These
two techniques simplify transport of the prototype generation
segment from one FORTRAN capable system to another. They allow
adjustments for memory and on-line storage variations in differ-
ent systems. Record block sizing algorithms establish pointers
to starting locations of module buffers by iteratively adjusting
data parameters. These are then output for user approval of
buffer size adjustments.

File Processing. In order to design efficient structures

for feature vector and prototype data, usage and access patterns
were analyzed. A file structure was selected over the use of
incore buffers so as to allow greater data volume. Implementa-
tion using separate modules was selected in order to e.hance
transportability. The requirement to generate prototypes via

an interactive, time sharing process raised questions about

both memory and execution time limitations. Execution of separate

100 !

— w ”,_,_.,.

modules is consistent with use of minimum amounts of core and
time to complete a given function. A standard file structure
was established for data communication between modules. This
structure consists of four files which are defined in the next
section.

Requirements to access each file were analyzed in the
process of defining structure. The feature vector data has
greatest potential volume and least need for non-sequential access.
Conformance to ANSI FORTRAN specifications dictated a sequen-
tia] access method but allowed a BACKSPACE operation. Thus a
disk or tape based sequential file was selected for this data.
However, prototype data is accessed frequently in iterative
processing, and is not necessarily only used sequentially.

Again conforming to ANSI FORTRAN capabilities dictated use of

a sequential file. However, since its volume is limited, a single
record approach was chosen. Use of an embedded index to ‘the

data vectors associated with each prototype supported efficient
use of in-core storage of this record. This technique also
supports revision to a multi-record random access file structure
in environments, such as with minicomputer hosts, in which there
is extremely limited central memory. Finally, histogram data
appeared to be too voluminous for incore storage, and too
infrequently used for a multi-file solution to the restriction

posed by the ANSI sequential file standard. Therefore, two files

101

of the same format were designed. One, with a single data
record, contains universe distributions. The other, containing
one record for each data class, records distributions of data
within each data class. These four files are labeled DIST
(universal distributions), HIST (class distributions), CLAS
(prototypes) and FEAT (feature vectors).

Utility Routines. There are three types of subroutines

within the B0OX80 system. In the first group are routines
uniquely specialized to support primary modules. These are
covered in the next chapter. General purpose utility routines
are synopsized below. Table D-V gives calling parameters and
their definitions. Special purpose support routines having
general usefulness are discussed in the next paragraph.

(1) ADD. One of four routines which access the index to
the prototype data file, this routine inserts a new entry to
that index. The index is described in the next section. It
contains two chains of entries. The entries in one chain corres-
pond to column vectors in the CLAS file data record. The entries
in the other chain correspond to unused column vector positions.
This ADD routine follows the 'used' entry chain to the appro-
priate position and relinks an index entry to hat position from
the top of the 'used' chain.

(2) DEL. This routine deletes an entry from the index
to the prototype data file. Deletion is effected by relinking

102

[QEEY, Syesv

around the indicated index entry and adding the newly freed entry
to the unused chain. This routine does not clear the associated

column vector; it is therefore uncoupled from its referenced data
area. This eases data structure modifications.

(3) INITC. This routine sets constant parameter into the
prototype data file index during file initialization. See
Figure 25 for a sketch of these initialization entries.

(4) RIX. This routine reads the index to the prototype
file and extracts the entry number of the named vector. The
appropriate index entry is found via a sequential search of the
'used' entry chain.

(5) INDEX. In order to speed retrieval of the address of
named prototype data, this routine builds a table of 51 three
position entries. Each position records the address of a prototype
vector. Entry 51 records the address of a pair of data limits
vectors. At option, this routine controls scaling of prototype
data into a specified bit range.

(6) KERGET. A set of vectors within the prototype file
records identifiers of feature vectors which have been assigned to
the husk of each class. This routine obtains the identifier for
the "next" feature vector assigned to the husk of a given class.

(7) PRCLAS. This utility routine prints the three data
types stored within the prototype file. The fiie index, the set
of husk vectors for each class, and the prototype definition for

the class are printed.

103

(8) LOADC. This routine loads the prototype data file into
the proper program buffer.

(9) OPENH. This routine reads the header record from
HIST and DIST files setting the x-dimension memory parameter
associated with the data records of the file.

(10) OPENX. This routine reads header records from
FEAT and CLAS files. The parameters set include the y-dimension
memory variable corresponding to number of data columns within the
CLAS file. These open functions are coupled so that label tests
can be made in one place. At input options, the FEAT file or the
CLAS file open can be bypassed. This is necessary when the CLAS
file is either used alone, or is to be initialized or extended in
size.

(11) RHIST. This utility reads records from either DIST
or HIST files. A sequential search is made for the requested
record, and no backspace or rewind option is provided. Records
containing histogram pairs are flagged. An error indicator is
set if a missing record is requested and an end job flag is set
when an illegal record is requested<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>