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Preface

This report is the result of an investigation into
the application of linear stochastic optimal estimation
and control techniques toward the solution of the problem

of actively controlling the inertial instrument test plat-

form at the Frank J. Seiler Research Laboratory. The

system is modeled as a linear system with random (stochastic)
disturbances. A forced separation concept is employed

in order to investigate the effects of the Kalman filter

and the optimal controller, independently. The results

indicate that the optimal estimation and control system

is capable of improving the performance of the inertial
instrument test platform but not capable of meeting the
- design specifications for the platform as presently con-
figured.
I would like to extend my appreciation to my lab
sponsor, Mr. Bill J. Simmons of FJSRL, for his technical
assistance and to Dr. Peter S. Maybeck and Dr. John J.
:E D'Azzo for their valuable assistance in reviewing this
| thesis. I would like to extend particular appreciation
to Dr. Gary B. Lamont, not only for the guidance he pro-
vided throughout this study, but also for his guidance
and tutelage over the past 18 months, without which I
would not have obtained the academic tools necessary to
undertake this project.

' I would like to thank my family and close friends
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who continually provided encouragement during the many
difficult times; they were always there when I needed
them.

Special thanks is due Mrs. Margaret Voigt for her

patience and skill in typing this manuscript.

Phillip L. Toler




) Contents

*.
1 Y Page
% BEGRACE . i e e el e et e e e A S S ii
FI0E OF VAGULSE o« o .« s 2 5 % % o m % & @ 5w . vi
Eiat of Tables i o o wildlle uome el ke el el e viii
BREEEBEE 5 s o ¢ % 5w W a s e e w w wA ix
3 it IRCYOAUCEION o v s o o e e e e el w 1
Background@ . . . .+ s SRR S R 1 ‘
Statement of the Problem . . . . . . . 7 j
Rgssumptions < o . o W ol o s e e s e e 8 | 4
Degsign APProaAch. . « s =« s o o s = & @ 10
Organization of Report . . . . . . . . 15
II Kalman Filter Development . . . . . . . . 17
Justification for Kalman Filter T S 17
Development of System Truth Model Jie 20
System Dynamics Model (Platform) e 21
TiRtmeter o Gl 6 s o e a6 w e 23
Angular Motion Sensor . . . . . . . 24
Process Noise Filter . . . . . . . . 24
Pneumatic Actuator Dynamics . . . 25
shaker Dynamics . ¢ o « o o o = = 25
Combined State Equations . . . . . . 25
Kalman Filter Model . . . . . . . . . . 30
Process Noise Covariance Model v 32
Measurement Noise Covariance Model . 34
Analysis of Optimal Kalman Filter Per-
fomance . . - . . ] . - . . . . . - - 3 5
Reduced Order Kalman Filter . . . . . . 47
Noise Filter Reduction . . . . . . . 47
Tiltmeter Model Reduction . . . . 50
Seismometer Model Reduction . . . . 52
SUMMALY « « ¢ o o o o o o o o o o o o o 55
ﬁ k III. Controller Development . . . . . . . . . . 57
Separation of Controller Segment . . . 57
1 Continuous System Models . . . . . . . 58
3 Seismic Isolation Platform . . . . . 59
¢ Pneumatic Actuator . . . . . . . . . 59
] Shaker Actuator . . . ¢« ¢ o ¢ o o & 59
Environmental Disturbance (Noise)
E, Mode l . . 5 . . - . . . . . . . . . 5 9
iv




Discrete System Models I e
Position Feedback Loop . . . . . . .
Discrete State Space Model . . . .

Pneumatic Controller (Compensator), D(z)

SUMMBESY o 5 o e e s s e e el e

IV. Selection of Kalman Filter Model . . . . .

General Form of the Algorithm
Input . . . « . & .
Gutput . . s 4 v e e e
SUPArVisor . .« « » o« o »

Computation Times . . . .
Input/Output Computatxon Times
Pneumatic Control Loop Algorithm
Optimal Regulator Algorithm . . .
Kalman Filter Algorithm . . . . .

Kalman Filter Performance Evaluations
Optimal Kalman Filter . . . . . .
Seven-State Kalman Filter .
Other Filter Models . . . .
Filter Selection . . . . .

Implementation Considerations

SUMMAYY o+ ¢ o o & & o s » o »

. e & e e

V. Conclusions and Recommendations . . . . . .

CONnCIUBIONE .« &« « o 's « s @ & & & ¢ %
Recommendations . ¢ ¢« « « ¢ ¢ « ¢ o o

BiBlIographty « ¢ & « ¢ & v s s v w5 s & & 5 % w o
Appendix A: General Covariance Analysis Program .
Appendix B: One-Sigma Time Histories . . . . . .

Appendix C: Program STM - Quantized Eigenvalues
Analyses Program . . . « « « « « o o

Appendix D: Sub-Optimal Filter Models . . . . . .
Appendix E: Augmented Kalman Filter Models

Vi ta . . . . . . . . . . . . . . . . . . . . . . .

100
103
105
108

118
127
130
134

o o



Figure

10

11

12

13
14
15

16

17
18

19
20

List of Figures

Concrete BloCk o o o« v o o & &' « o & & o

Cross-Section of the Seismic Isolation
BlIaCEorm . . o o hy e e s e e el e s o e

Location of Pneumatic Cylinders . . . .
Platform Control LOOPS . .« « « « « « « &

Separation of Linear Stochastic Control
Problem . v o e Gl e e o e sew e e

System Truth Model . . . . . . . « ¢« . .

Frequency Response of Electromagnetic
Actuator (shaker) . . ¢« ¢« ¢ ¢« ¢ o o o &

Filter/Controller Configuration . . . .
Kalman Eilter < ¢ « ¢ s o & v =« & o = =

Platform Tilt (One-Sigma Estimate Error)
200 Bz Sample Rate . . « ¢« o « s « o« o &

Platform Rate (One-Sigma Estimate Error)
200 Hz Sampling Rate . . . « « « « « . .

Platform Rate Prediction Error versus
Sampling Rate . « ¢ « & ¢« « « o« » » % =

Optimal Filter Wordlength . . . . . . .
Process Noise Filter Frequency Response

Comparison of Tiltmeter Model Frequency
RESPONSE « « s ¢ ¢ s o « o o o o o o« o o

Comparison of Tiltmeter Model Phase
RESPONSE ¢ « ¢ ¢ o o o o o o o o o o o o

Seismometer Frequency Response . . . . .

Isolation Platform Time Response to 1l.25
Foot-Pound Step Input . . « « « ¢ « « &

Block Diagram of Platform and Actuators

Block Diagram of Pneumatic Loop . . . =«

Page

13
22

26
29
33

37

38

42
48
49

51

53
54

61
62
63

- -
L




e B BT W51 A N e A O sl o it i 2 Chte e i caigd e

> Figure Page
S
21 Graph of Difference Equation for 0 (kT) . 71
23 One-Sigma Optimal Filter Tilt Error . . 89
24 One-Sigma Optimal Filter Rate Error . . 90
25 One-Sigma Seven-State Filter Tilt Error 91
{ 26 One-Sigma Seven-State Filter Rate Error 92 I
é 27 Algorithm Computations Sequence . . . . 96
i 28 Optimal Filter Rate Prediction Error:
g Sampling Rate is 40 Hz . . . . . . . . . 109
1 29 Optimal Filter Rate Prediction Error:
; Sampling Rate is 50 HZ . . . ¢« « o « « & 110
: 30 Optimal Filter Rate Prediction Error:
Sampling Rate is 100 Hz . . . . . . . . 10
31 Optimal Filter Rate Prediction Error:
Sampling Rate is 2 kHz . . . . . « « « . 112
¢ 32 Optimal Filter Rate Prediction Error:
Sampling Rate is 20 kHz . . . . . . . . 113
33 Optimal Filter (200 Hz) Low Process Noise 114
34 Optimal Filter (200 Hz) Increased Tilt-
1 meter Sensitivity . . ¢ . ¢ ¢ ¢ ¢ ¢ o . 115
?' 35 Optimal Filter (200 Hz) Increased Seis-
2 mometer Sensitivity . ¢ « ¢ ¢ o o « &« o« o 116
1 36 Optimal Filter (200 Hz) Increased Tilt-
1 meter and Seismometer Sensitivity . . . 117

TN Pt o e

vii




s

Table

IX

III

Iv

RN R T

List of Tables

Page
Comparison of One-Sigma Prediction Errors
at Different Sampling Rates . . . . . . . 41
Effects of Decreasing the Error Sources
tnaise) 2t 200 BR . & soe 5 2 % & % » & 43
PDP-11/03 Instruction Execution Times . . 82
Filter/Controller Maximum Sampling Rates 87
Maximum Sampling Rates Using High-Speed
MUEEIBEIEY . v n o e R e e e e R 95

viii




Abstract

The study is directed toward the analysis and im-
plentation of an optimal estimator (Kalman filter) and
an optimal regulator to provide active control of the
inertial instrument test platform at the Frank J. Seiler
Research Laboratory. The design specifications are to
maintain angular position within :1.0x10‘3 arsceconds
and angular rate with 11.667x10'5 arcseconds/seconds.

A forced separation concept is utilized to allow
the independent evaluation of the Kalman filter and the

optimal regulator. Optimal and suboptimal Kalman filter

models are developed and evaluated at physically realizable

sampling rates. A general optimal estimation and control
algorithm is developed and a proposed sequence of

algorithm computations is presented.
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ANALYSIS AND IMPLEMENTATION OF OPTIMAL
ESTIMATION AND CONTROL FOR THE FJSRL

SEISMIC ISOLATION PLATFORM

I. Introduction

The Seismic Isolation Platform at the United States
Air Force Academy's Frank J. Seiler Research Laboratory
(FJSRL) is an inertial instrument test platform designed
to provide a high degree of isolation from environmental
disturbances. An active control system is needed to pro-
vide the isolation required for testing and evaluating

highly advanced inertial components and systems (Ref 1).

Background

As depicted in Figures 1 and 2, the inertial instru-
ment test platform, as viewed from above, is a 25 feet by
25 feet square with nine circular test tables extending
approximately 2 feet from the top surface of the platform.
Viewed from below, the platform is cruciform shaped. The
platform is constructed of steel reinforced concrete, is
9 feet high, and weighs approximately 450,000 pounds. The
platform is located beneath a false floor in the laboratory
and the test tables protrude through holes in this floor.
The platform is supported by twenty pneumatic cylinders

that essentially float the platform a fraction of an inch
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Figure 1. Concrete Block (Ref 2:14)

#LAB FLOOR 4TEST PIERS (9)

—

- BASE LLAB 1:' 4
: . COMPACTED AGGREGATE FiLL 1 ;

| ’ Figure 2. Cross-Section of the Seismic Isolation Platform
(Ref 2:15)




above the base slab. The pneumatic cyclinders rest on

red oak blocks that, in turn, rest on the base slab.

The base slab rests on a compacted aggregate fill base
that is designed to minimize the coupling of vibrations

in order to separate the platform base from the building
foundation. The pneumatic cylinders are arranged as de-
picted in Figure 3. The inner twelve cylinders regulate
the height of the platform (referenced to the base slab)
and the outer eight cylinders are used in a push-pull con-
figuration to regulate angular motion about the horizontal
axis.

The system consisting of the platform and the pneu-
matic cylinders has a natural frequency, as measured by
FJSRL in January 1977, of 1.3Hz and acts, effectively, as
a passive isolation system (low pass filter) for distur-
bances above 1.3Hz (Ref 3). Unfortunately, many of the
disturbances of interest, e.g. earthquakes, ocean waves,
and barometric pressure variations, have frequencies below
1.3Hz and, therefore, an active control system is required
to isolate the platform from these disturbances.

In order to provide active control of the platform,

a combination of tiltmeters, angular motion sensors, and
actuators are attached to the platform as depicted in
Figure 4. The eight angular motion control cylinders
(Fig 3), in combination with the tiltmeters (on the sur-
face of the platform), provide closed-loop control of

angular motion about the platform's center of gravity.
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" Angular Motion Control Cylinders

C) Height Control Cylinders'

Figure 3. Location of Pneumatic Cylinders (Ref 2; 17)

Additional damping control is prbvided by a second control
loop consisting of angular motion sensors (seismometers)
and electromagnetic one-dimensional dampers (shakers).

The shakers are attached at the four corners of the plat-
form at the approximate level of the center of gravity.

A separate height control system consists of the
twelve inner pneumatic cylinders, and sensors that measure
the.distance between the base slab and the bottom of the
platfcrﬁ. Since the height control is not significantly
affected by external disturbances (Ref 4:3), it is not

mentioned further in this study.

The platform was constructed with the cruciform bottom

N
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in order to locate the center of gravity at the level of

the pneumatic cylindets. In this way, the coupling be-
tween the various modes of motion are minimized.

From the beginning, the problem of interest has been
that of designing and implementing controllers to provide
the desired degree of isolation (angular position within
£1.0 x 10~° arcsecond and angular rate within :1.667 x
10-5 arcseconds/second). Farly investigations and attempts
at stabilizing the platform were primarily analog control
systems (Ref 5-8). The latest analog design, although
successful in meeting the specification for angular posi-
tion, was unable to meet the angular rate requirements
(Ref 8).

More recently, attempts have been made to provide
digital control to the platform (Ref 1), including attempts
at implementing various Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR) filters at FJSKL (Ref 9).
Digital control is desirable because it is less affected
by noise and other disturbances than analog systems, per-
mits the use of sensitive control elements with relatively
low energy signals, and has phase characteristics that
cannot be duplicated by an analog system (Ref 9). Digital
control is more flexible than analog control because changes
in sensors or actuators can often be incorporated with
only software modifications. An additional benefit of
digital controllers is their adaptability to the solution

of stochastic optimal estimation and control. It is this




latter trait of digital control that is most useful for
this investigation.

To date, the attempts at digital control of the plat-
form have not been successful. Although some design work
has demonstrated the feasibility of digital control (Ref 1:

9) , the actual implementations of these designs have not

been successful. The failure of the implemented controllers/

filters to meet the theoretical performance levels is due
primarily to the effects of slow sampling rates, finite
wordlengths, the uncertainties in the system models, pro-
cess noise, and the sensitivities of the sensors employed.
In the previous digital attempts (Ref l: 9), the platform
was modeled as a completely deterministic system.

In 1976, two investigations were completed in which
the platform was modeled as a stochastic system (Ref 2: 4).
Stochastic modeling of the system permits the application
of optimal estimation and stochastic control methods to
the problem of isolation of the test platform. Optimal
estimation is desirable because it allows consideration
of the stochastic (random) characteristics of the platform
system, including system modeling errors, the randomness
of the environmental disturbances, the process noise, and

the error sources attributed to the sensors.

Statement of the Problem

The purpose of this study is to analyze and implement

an optimal estimator and controller for use at FJSRL for
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the active control of the seismic isolation platform.
The specifications are dictated by the performance
criteria for new generation inertial components (Ref 5).
These criteria require that the angular position (tilt)
of the platform be maintained within $0.001 arcseconds
and the angular rate (velocity) be maintained within
t0.001 arcseconds per minute (]..667x1.0.s arcseconds per
second). In addition, the controller must be effective
in the frequency band of 0-20 Hz (Ref 8) with a step in-
put (for testing purposes) of 2.5 foot-pounds. A step
input, applied directly to the top surface of the block,
is used for testing because it is easily modeled in the
s-domain and also in the discrete (z) domain. The 2.5
foot-pound step input was chosen because it has been demon-
strated that it approximates the disturbance caused by
moderate environmental disturbances on the passive plat-

form (Ref 2:20).

Assumptions

The system is considered to be linear over the fre-
quency band of 0-20 Hz and it is assumed that the construc-
tion of the platform and the locations of the sensors is
such that the coupling of the modes of motion is minimized
to the extent that they can be considered separately. The
linearity assumption has been supported by previous studies
(Ref 8) and is justified by the fact that only small pertur-

bations occur when the platform is being controlled.
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Structural resonances above 20 Hz (the total number

is unknown) are disregarded. It is assumed that these

structural modes will not have a significant impact on

the performance of the system due to natural passive damping

(Ref 8). If it is determined that they do have an effect,
the model can be redesigned to take them into account.

Pseudo-noise can be added to the system model to represent
the inaccuracies in the system model resulting from struc- i %

tural resonances.

The process and measurement noises can be modeled |
as White and Gaussian. The White assumption is valid due

to the wideband characteristics of the noise and the very

narrow band characteristics of the system (wideband noise

driving a limited bandwidth system). The Gaussian assump-

tion is based on the Central Limit Theorem since the pro-

cess and measurement noises are composed of several inde~

pendent additive noises (Ref 10). The process noise and

measurement noise are considered to be independent (Ref 4:6). #

This assumption is based on the fact that the sensors are

separated and the measurement process does not corrupt the

state being measured.
A PDP-11/03 minicomputer has been designated, by FJSRL,
for use in implementing the digital control system for the !

seismic isolation platform. The central computing system in

L

the PDP-11/03 is the LSI-1ll minicomputer board. The filter/

controller algorithm developed in this study is implemented

in LSI-1l1l compatible assembly code.




Design Approach

The approach is defined as the solution of a linear
stochastic estimation and control problem. A linear

stochastic system is described by the matrix equations

k(t) = Fx(t) + Lu(t) + Gw(t) (1)

and

z(t) = Hx(t) + v(t,) (2)

k)
where F, L, G, and H are time invariant matrices derived
from the system transfer functions. The column vector

x(t) is the state variable vector, u(t) is the control

input vector, w(t) represents the environmental disturbances
to the noise shaping filter, 5(tk) is the sampled measure=
ment vector, and !(tk) represents the sampled measurement

noise.

The objective of the linear stochastic control problem

|
!

is to find the discrete-time control input

alty) = =C(g)R(t) (3)

that minimizes the guadratic performance index

Y
I = E{1/28" (ty ) VeR(ty, ) +
I 1/20xT (£ V(g X(E) + uT(£)U(t)ulg) ]} (4)

where g(tk) is a discrete-time estimate of the state vector,
x(t,), u(t,) is the discrete control input vector (put

through a zero-order hold, 20H). E is the expected value

10
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operator, and t is the terminal time. The matrices V

N+1
V, and U are weighting matrices that assign performance

fl

costs, over the entire time interval of interest, due to
the terminal states, the present states, and the control
inputs, respectively. The performance of the optimal con-
troller is a function of the values chosen for these
weighting matrices. Only through the proper selection of
these weighting matrices can g(tk) meet the design speci-

fications.

With the assumptions previously stated, employment of the

Separation Principle was considered to simplify the design
and analysis of the system. The Separation Principle states:

The optimal stochastic controller for a linear system

driven by white Gaussian noise, subject to a guadratic

cost criterion, consists of an optimal linear Kalman
filter cascaded with the optimal feedback grain matrix
of the corresponding deterministic optimal control

problem (Ref 11:II-16).

The Separation Principle is depicted in Figure 5.

In the investigation, a "forced separation" of the
Kalman filter and the optimal controller is invoked, based
on engineering judgement, to take advantage of some of the
physical properties of the system elements. Because of
the inherent dynamics of the system elements (the pneumatic
actuator has a settling time of 20 seconds and the electro-
magnetic actuator has a natural frequency of 26 Hz) and,
because the pneumatic actuator is actually part of the plat-
form support system, the states associated with the pneu-

matic actuator are not included in the system state space

models used in the analyses of the Kalman filter. 1In

1l
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addition, the states associated with the sensors are not
included in the system model used in the developrment of
the optimal controller because these states contain
stochastic properties (measurement noises) and it was con-
sidered desirable to eliminate stochastic effects from

the development and analysis of the optimal controller.
The concept of a "forced separation" is necessary because,
although the system being investigated meets the White
Gaussian noise and quadratic cost function criteria, the
Separation Principle does not apply, in the strict sense,
because, in this investigation, the states represented by
the Kalman filter model are not the same states as those
represented by the optimal controller model. By utilizing

the concept of "forced separation", the optimal estimation

and control problem is separated into the design and analysis

of a Kalman filter independent of the design and analysis
of the corresponding optimal controller. Without the
"forced separation", the development and analysis of the
optimal estimation and control problem would be far more
complex, if at all tractable.

The designs of a Kalman filter and a deterministic
optimal controller were investigated by Richard Brunson
and Martin J. Burkhart, respectively (Ref 2: 4). The
approach taken 11 c¢nis investigation is based, in part,
on their efforts. Both investigations were based on a
sampling rate of 200 Hz (based on engineering judgment,

using five times the Nyquist frequency*) and involved,

12
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Figure 5. Separation of Linear Stochastic
Control Problem

primarily, feasibility studies. The approach here extends

the study to a more specific analysis of various combina-
tions of Kalman filters and optimal controllers at various

sampling rates. In addition, a specific algorithm for the

filter that provides the best results is developed for
implementation on the PDP-11/03 minicomputer.
Since the implementation is accomplished on a digital

computer, the effects of finite wordlength are examined.

i, y *The Nygquist frequency is twice the bandwidth of the system.
‘ 3 It is the minimum sampling frequency required to avoid
E aliasing (folding). Also, reference Shannon's Theorem.

ﬁ 13
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The investigation includes the effects of conversion gquan-
tization (A/D and D/A), coefficient quantization, and
roundoff, truncation, and overflow due to arithmetic oper-
ations. 1In addition the numerical precision problems
associated with the Kalman filter are discussed, along
with the appropriate techniques for decreasing the effects
of these problems.

Previously derived component transfer functions (Ref
2: 4) are used to develop a system "truth model", in state
variable form, as the basis for designing an optimal Kalman
filter. The optimal filter is analyzed for the effects of
sampling rate and finite wordlength. In addition, a sensi-
tivity analysis is performed (using covariance analysis
techniques) to demonstrate the effects of the various noise
sources separately. Using various simplifying assumptions,
four suboptimal Kalman filter models (reduced order filters)
are developed for comparison and possible implementation.

Using component transfer functions, an optimal con-
troller is developed under the assumption that it is re:
ceiving "perfect" information from the Kalman filter, i.e.
exact knowledge of the entire state. The design of the
optimal controller is based, primarily on the linear quad-
ratic full-state feedback controller developed by Burkhart
(Ref 2). This model is derived for a sampling rate of
200 Hz.

A general estimation and control algorithm is designed

and each filter model investigated (in cascade with the

14
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appropriate optimal controller) to determine which filter
provides the best results. This is accomplished by deter-
mining the computation time involved for each combination
and, thus, the maximum sampling rate possible for each
combination. Each Kalman filter model is then tuned at
this maximum sampling rate and the results compared by
utilizing a covariance analyses. A brief description of
considerations for implementing the algorithm is presented

as a baseline for future investigations.

Organization of Report

The report is divided into five chapters. 1In Chapter
II, the "truth model" Kalman filter is derived and analyzed
and various suboptimal filters are developed. Prominent
in the analysis are the effects of sampling rate, finite
wordlength, and noise sources.

In Chapter III, the optimal controller is discussed
in terms of the expected results and previous conclusions.

In Chapter IV, a general optimal estimation and con-
trol algorithm is developed. Each Kalman filter is, in
turn, combined with the appropriate optimal controller
and analyzed. Prominent in the analysis are the filter
tuning process and the effects of sampling rate. The
results of this analysis are compared and a "best cut"
combination selected. The effects of quantization, con-
version, computational delay, and specific characteristics

of the minicomputer (LSI-11) are discussed.

15
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Finally, in Chapter V, general and specific conclu-

sions and recommendations are discussed.
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II. Kalman Filter Development

The development of the optimal Kalman filter is based
on the state variable (truth) model of the seismic plat-
form system composed of the platform dynamics, the sen-
sors;,; and the process and measurement noise sources. In
this chapter, the system truth model is developed and the
optimal Kalman filter is designed and analyzed. The
Kalman filter based on the system "truth" model, i.e. the
optimal Kalman filter, is used as a "benchmark" to deter-
mine the best performance that can be expected from the
optimal estimation of the state of the seismic isolation
platform system. The effects of finite wordlength, sampling
rate and noise levels are investigated. 1In addition, by
making various simplifying assumptions, four sub~optimal
Kalman filters are developed based on reduced-order system
models. In Chapter IV, these suboptimal filters, and the
appropriate optimal filter, are combined, in turn, with
the optimal controller developed in Chapter III. Each fil-
ter/controller combination is analyzed and compared for
implementation in the form of a Linear Quadratic Gaussian

(LQG) controller.

Justification for Kalman Filter

As mentioned previously, attempts at controlling the
platform using deterministic digital control methods failed
to provide the specified control of the seismic isolation

platform. Deterministic approaches do not include con-
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siderations of the effects of uncertainties in the system
model, random effects of process and measurement noises,
or the sensitivities of the sensors employed.

Although the best model available for the seismic
isolation platform is used for this study, there remain
uncertainties that must Be‘considered. There is some
question as to the homogeneity of the platform structure
and this leads to uncertainties about the exact center of
gravity. The assumption of the decoupling of the modes
of motion might not be valid. Uncertainties about the
bending modes and resonant frequencies add to the overall
inaccuracy of the system "truth model". In addition, there
is process noise, measurement noise, and possible biases
in the measurement sensors that must be considered. A
difficulty in determining the current state of the plat-
form angular rate arises because there is no direct measure-
ment of this state; rather, it is determined, indirectly,
from the measurements of the platform tilt and rate. Also,
the sensors are most accurate in different frequency bands.
The tiltmeter is effective in the 0-1] Hz range, and the
angular rate sensor is more accurate in the higher, 1-20
Hz range. All of these factors contribute to inaccuracies
in the determination of current system states. A stochastic
estimator is required to filter the effects of the "noise"
due to the above factor. Under the assumption of linearity
and white Gaussian noise sources, it can be shown that a

Kalman filter is the "optimal" estimator of the current

18
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state of the system (Ref 11:I-44).

A Kalman filter is a recursive data processing algo-
rithm that uses information about the system dynamics,
initial states, and statistics of the process and measure-
ment noise to generate an "optimal" estimate of the current
states of the system. A Kalman filter attempts to minimize
the uncertainties and random noise from a system through
the application of all current measurements combined with
the assumed statistics of the system. Since it is recur-
sive, it is not required that all past information be
remembered (stored in the computer); the estimation and co-
variance from the previous update are sufficient statistics.

The optimal estimation problem is separated from the
optimal control problem, in this investigation, by invoking
the forced separation concept described in Chapter I.

This permits the independent design and analysis of the
optimal estimator (Kalman filter) without consideration of
the optimal control gain (addressed in Chapter III). The
outputs of the Kalman filter (state estimates) become the
current state inputs to the optimal controller when the
controller and estimator are recombined (Chapter 1IV).

Brunson investigated the feasibility of employing a
Kalman filter to improve the estimates of the system states
of the seismic platform (Ref 4). Because the design was
based on early, less accurate, system models and, because
the implementation was analyzed for a HP-21MX minicomputer,

the results are used in this investigation, primarily, as

19
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background reference and as a basis for possible design

techniques.

Development of System Truth Model

The seismic isolation platform system used for the
design of the Kalman filter consists of the platform,
sensors (tiltmeters and seismometers), and noise sources.
The platform system can be modeled as a linear stochastic
system and can be represented, in state variable form,

by the equation
k(t) = F(t)x(t) + G(t)w(t) + L(t)u(t) (5)

where
F(t) system matrix
G(t) matrix of states corrupted by process noise
L(t) control matrix
x(t) state vector
w(t) process noise vector
u(t) control input vector

The measurement equation for the system is given by

z(t ) = H(t )x(t) + vit)) (6)

where

z(t measurement vector

k)
H(tk) measurement matrix
§(tk) state vector

!(tk) measurement noise vector

20
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The matrices F(t), G(t), L(t), and H(t) are assumed
to be time-invariant and are, therefore, expressed as
F, G, L, and H through the remainder of this thesis.
The truth model is depicted, in block diagram form, in

Figure 6.

The process noise, w(t), and the measurement noise,
v(t,), are considerad to be independent and, therefore,
uncorrelated.

The process noise is described as zero-mean, White
Gaussian noise. The process noise covariance matrix, Q(t),

is given by
Elw(t)w(t + 1)] = Qér (7)

The measurement noise is described as zero-mean, White
Gaussian noise and the measurement noise from the tilt-
meter is assumed to be independent of the measurement
noise from the seismometer. The sampled measurement noise

covariance matrix, R(tk), is given by

E[!(ti)z(tk)T] = JR(t;) i=k

0 i¥k (8)

In the following sections, the F, G, L, and H matrices
are derived from the system transfer functions (s-domain).

System Dynamics Model (Platform). The platform trans-

fer function, for a torque input and horizontal angular

output, is

21

" v




oS

N R L N (TR R B B AR B e el fag e S & .
G R SRR s S e T D s A LSS T S i B et

t
T
u(t) x(t) x(t) z(E.)
b X -- [ H | -
F |-
Figure 6. System Truth Model:
K, w 2
G ia) = . - b™b Arcseconds
b T a® o It a8 + 8 2 Foot-pounds (9)
b™b b
where
Cb = 0.05 :
. 7 rad/sec
Kb = 0.044 arcsecond/ft-1lb (Ref 2:16)

Solving the equation, for the given variables, yields

2.156 Arcseconds

8
T ;2 + 0.07s + 49 Foot-pounds (48)

where 6 is the angle of the platform'feferenced to local
level and T is the external torque applied to the platform.

T is composed ot torques‘from~the process noise, represented

by Tw' ppegmatic actuator, up, and electromagnetic actuator

(shaker) , ug- Therefore,

R up + ug (Foot-pounas) (11)
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The transfer function is converted to state variable
, form using phase variable techniques because the states

of interest, i.e. angular position (6) and angular rate

(8) are represented directly in the resulting form. Letting

= 8 (Arcseconds) (12) ,
X, = 8 (Arcseconds/Second) (13)
and cross-multiplying the transfer function, the state

equation become

X = (14)

uh

X, = -49xl - 0.7x2 + 2.156'1‘w + 2.156up +
* 2.156us (15)

Tiltmeter. The tiltmeter transfer function, from

Reference 4:12, is

L e R S AR DN s b 03

19.84(1 - 0.1531s2) Volts

\Y%
|
= = —r (16)

9 &> 4 12.568° + 77.68 + 198.4 Arcsscond

where V1 is the tiltmeter output. Based on results from
Brunson (Ref 4:48), the tiltmeter model, and subsequent
component models are derived in physical variable form.

Therefore, letting
X = V1 (17)
the state equations become

Xy = -3.037504x1 - 12.56x3 + X, (18)

23




Ry - -77.6x3 + Xg (19)
Xg

= 19.84x, - 198.4x3 (20)

1

and the measurement equation is

zZ; = X, (21)
Angular Motion Sensor. The angular motion sensor
(seismometer) transfer function is (Ref 4:12)
Zg - s? Volts
) 8 + 28 + 1 Arcsecond’ (22

where vy is the seismometer output. The physical variable

state equations are

Xg 2x1 - 2x6 + xq (23)
Xy = x1 - x6 (24)

(25)

e

Process Noise Filter. The process noise represents

disturbance torques from external sources, such as earth

seismic activity, that are input to the platform. The
process noise is modeled as a time correlated Gaussian
noise plus a white noise (Ref 10). A noise shaping filter
is required in order to provide noise with the desired
power spectral density properties through the range of

0-20 Hz. Brunson developed a third-order approximation

24
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for the noise shaping filter, called the process noise

filter in this study (Ref 4:14). The transfer function
is

4 1

C -
R (s + 125)3 (26)

which yields the state equations

Xg = -125x8 + x9 (27)
Xg = -125x9 + X190 (28)
X109 = -125x10 + Wy (29)

where Xg is the output from the process noise filter that
is input to the platform in the form of disturbance torque,
called Tw (see platform model description), and Wy represents
the white noise input to the filter.

Pneumatic Actuator Dynamics. The pneumatic actuator

dynamics are associated with the control of the platform
and are omitted during analysis of the Kalman filters
(forced separation).

Shaker Dynamics. In the freguency range of interest

(0-20 Hz), the shaker has essentially no dynamics. Figure
7 represents the frequency response of the shaker actuator.
For purposes of analysis, the shaker transfer function is
replaced by a constant gain.

Combined State Equations. The full set of state equa-

tions representing the truth model is

25
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#a

X, = -49x1 = 0.7x2 ua 2.156x8 + 2.156up + 2.156uS

x3 = -3.037504x1 - l2.56x3 + X,

Xy = -77.6x3 + Xg

19.84x, - 198.4x '

3

EE
wm
I

1

Xeg = 2x1 - 2x6 + x7

o ST Rl
Xg = -l25x8 + Xg
Xg = -125x9 + X710
X190 = -lZleo + Wy (30)
The F matrix is
0 1 0 0 0 0 0 0 0 0
-49 -0.7 0 0 0 0 0 2.156 0 0
-3.037504 0 =12.56 1 0 0 0 0 0
¢ 0 0 -77.6 0 1 0 0 0 0 0
i F= (31)
; 19.84 0 -198.4 0 0 0 O 0 0o 0
|
f 2 o o 0 0 =2 1 % o 0
H 1 0 0 0 0 -1 0 0 0 0
! 0 o 0 0 @ 8 & -lzs 1 @
? 0 o 0 B W % A% =38 L
|
: 0 0 0 0 0 0 0 0 0 =125
® -

and the G and L matrices are
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0 2.156 2.156
0 0 0
0 0 0
0 0 0
s e i (32)
0 0 0
0 0 0
0 0 0
Ll‘ Lo 0 i

The control input is

= " (33)

The control input up, associated with the pneumatic
actuators, is generated by a deterministic position feed-
back controller that is used to directly counter any
torque imbalance resulting from unsymmetrical positioning
of items on the platform. The control input Ugr associated
with the electromagnetic shaker activators, is ganerated
by an optimal state feedback controller. The optimal con-
tréller is used to regulate the position feedback controller
and also to control the angular rate of the platform. The
Kalman filter receives input from the sensors and the

optimal controller (Fig 8) and the control input u, is
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Figure 8. Filter/Controller Configuration

not considered in the design and analysis of the Kalman
filter. This is addressed further in Chapter III in the
discussion of the design of the controllers. Because of

the "forced separation”, ug is the only control input of in-

terest in the Kalman filter analysis, the Lu(t) term becomes:

— — —_ —

2.156 2.156

Lu(t) =

[us:] (34)
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)]
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Finally, the system measurement matrix is

H = (35)

Kalman rilter Model

A Kalman filter is a predictor-corrector type of
estimator that uses a conditional probability density,
conditioned on the actual measurements, to describe the
probabilities of possible system states. The conditional
probability density is a function of the system dynamics,
initial states, and the assumed statistics of the distur-
bance noises. Since the conditional probability density
function itself is Gaussian, it is completely described
by the first and second order statistics, i.e. conditional
mean and covariance. The general Kalman filter equations
that represent these statistics are divided into two
functions; those that propogate (predict) the conditional
mean (optimal estimate) and the covariance, and those
that update (correct) the optimal estimate and covariance
at measurement sample times.

The propagation equations (in discrete form) are

A~ = . A +
x(tg) = 0t by )x(ty ) +T(t, by ult, ;) (36)
and
- +, .7
Ex T T
& ¢(tk T)G(T)Q(T)G (1) ¢ (tk T)dt (37)
tk_l Y r
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where g(t;) is the predicted estimate vector, ¢ is the
state transition matrix (der: r2d from the system F matrix),
and P(t;) is the state covariance (prediction error)
matrix. The superscripts - and + denote before and after
a new measurement (update) is taken. The argument tk_1
represents the sample time of the preceding sample. The
superscript T is the matrix transpose operator. Since the
control input is constant between samples, the control
transition matrix, I, is given by
Bk
F(tk,tk_l) = i ¢(tk.r)L(r)dT (38)
k-1
where L is the control distribution matrix. The distur-
bance distribution matrix, G, describes which states are
corrupted by process noise and the matrix Q(t) is the
process noise covariance matrix given by Eq (7) where w(t)

is the process noise vector.

The Kalman filter update equations (in discrete form)

are
X(6) = x(t)) + K(t,) (2(t) - Hx(t])] (39)
+ - - -
and
_ T _T ko
R(t,) = P(EDH(E) [H(E)P(EDH(E) + R(g)1™H  (41)

where g(t;) is the updated estimate (corrected by measure-

ment) , P(t;) is the updated covariance (filter error) matrix,
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and K(tk) is the Kalman gain (optimal weighting) matrix.
Variable E(tk) is the sampled measurement vector, H is
the measurement matrix and the superscript -1 above the
bracketed term in Eq (39) is the matrix inversion oper-
ator. The matrix R(tk) is the measurement noise covari-
ance matrix given by Eq (8) where X(tk) is the measurement
noise vector.

Figure 9 is a block diagram of a Kalman filter. The
Kalman filter model contains the state transition matrix
(derived from the system F matrix), the H matrix, and the
G matrix, all of which have been previously derived. 1In
addition, the noise covariance matrices are required and
are derived below.

Process Noise Covariance Model. The covariance model

of the white noise source driving the noise filter was
determined using the variance of the output of the tilt-
meter (angular position) with the platform in the uncon-
trolled mode. "The uncontrolled mode is defined by the
platform floating on the pneumatic cylinders with no con-
trol feedback from the sensors" (Ref 4:17). The uncon-
trolled mode is represented by the system dynamics model
(platform), the tiltmeter, and the process noise filter.

The model state matrices, Fl and Gl' are then

J&




R e M S SRR A P M .

Figure 9. Kalman Filter (Ref 11:18). ;
0 1 0 0 0 0 0 0 T
-49 -0.7 0 0 0 2.156 O "0
-3.037504 0 -12.56 1 0 0 0 0
F= 0 0 -77.6 0 1 0 0 0 (42)

19.84 0 =-198.4 0 0 0 0 0
0 0 ¢ @ © -3 ¥ @ j
0 CRBIRL YRR I TR R R
o 0 0 0 0 0 0 =125 |
and the disturbance matrix is ,
Fo |
0 |
0 \

.Gl = 0 (43)
0 |
1 0
’ 0
b l - i
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é The RMS quiescent peak-to-peak amplitude of the con-
trolled platform has been determind to be *0.4 arcseconds.
é The RMS excursion, which can be considered to represent
the standard deviation or dne-sigma value, is, therefore,
0.2 arcseconds. Since the tiltmeter has a gain of 100

millivolts per arcsecond, the excursion corresponds to

0.02 volts output from the tiltmeter. The variance is
found, by squaring the one-sigma value, to be 0.0004 volts.
The equivalent process noise covariance model was

determined by solving for Q in the steady-state linear

covariance propagation equation

= & 7 T T
P(t) = 0 = F,P(t) + P(t)F] + G,QG] (43)

where i(t) is the time derivative of the system covariance.
The diagonal elements of P(t) are the variances of the
states. The noise covariance matrix is a one-by-one matrix
(scalar) in this model and the P33 element of the covar-
iance matrix is the variance of the output of the tilt-
meter (state x3), in volts.

The process noise covariance was found by utilizing

a computer program to integrate Eq (43) and by varying the

value of Q until the tiltmeter variance approached the

value determined for quiescent excursions. A value of

M SEERC S

1.849x10" for Q resulted in a tiltmeter variance of 0.000403.

{ This value of Q was used inthe optimal Kalman model.

%1 Measurement Noise Covariance Model. There have been

no accurate models developed for the noise characteristics

i :




of the sensors employed in the platform control system.

An estimate, however, was made by using one-half of the
threshold values of the sensors as "rough" modeis of the
one-sigma noise amplitude. The noise variances are the

one-sigma values, squared. Therefore, for the tiltmeter,

4

the threshold is 1.0x10 ° volts and the variance is 2.5

-9 3

volts. The threshold of the seismometer is 1.66x10"
7

x10
volts and the variance is 6.889x10 ' (Ref 12).
Since there ayre two independent measurement noise

sources, the measurement noise matrix, R, is the two~by-

two matrix (described by Equation 8).

2.5%10™7 0

R = 9 S (44)
0 6.889x10

Analysis of Optimal Kalman Filter Performance

Kalman filter performance can be analyzed, without
actually implementing the filter, by analyzing a time
history of the covariance of the estimates, P~ and B*,

This is possible because the covariance update and propa-
gation equations, as well as the associated Kalman gain
equation, are not dependent on the measurement realiza-
tions or the estimates.

A program called the "General Covariance Analysis
Program" (GCAP) (Ref 13) was used for the filter performance
analysis (and tuning) described in this report. Essentially,

this program generates a "true" covariance time history

35




for a filter at a given sampling rate. More specifically,

the product used most for this study is the one-sigma
values (square-roots of diagonal elements) for the system
state estimate errors. GCAP is described in more detail
in Appendix A.

The truth model represents the best available model
of the real world system. The covariance analysis of the
Kalman filter based on the truth model, at a given sampling
rate, represents a theoretical performance bound at that sam-
pling rate. This performance bound or "benchmark" is used
to evaluate the effects of varying the analysis parameters,
i.e. sampling frequency, noise levels, sensor sensitivities,
and simplifying model reductions.

The time histories of the xl1 state (angular position,
6) and the x2 state (angular rate, é) estimate errors (one-
sigma values), for a sampling rate of 200 Hz, are presented
in Figures 10 and l1l, respectively.

The shape of the plots indicate that, after an initial
transient period, the one-sigma values for " and P~ settle
to steady state conditions. This is indeeed the case since
it can be shown that stable time-invarient systems driven
by stationary noises settle to constant one-sigma values,
independent of the initial state uncertainties (Ref 11:II-63).
For the seismic isolation platform, the noises are white
Gaussian noise with noise strengths that do not vary with
time (thus stationary statistics) and the system matrices

are time-invariant. This result is important since it
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permits the implementation of an approximate Kalman filter

with a constant Kalman gain

K = pHTR! (45)

m
where P_ is the steady-state covariance. The Kalman filter
implementation is then greatly simplified (see Chapter 1IV).
The steady state one~sigma values are the values used for
performance analysis in this study.

Since the optimal estimates generated by the Kalman
filter are used as inputs of the controllers, the design
criteria for acceptable performance are that the one-sigma
errors in these estimates be at least as good as the re-

quired controller performance specifications, i.e. 1.0x10-3

arcseconds for one-sigma position error and 1.667}:10-3
arcseconds/second for one~sigma rate errors. In addition,
since the largest error occurs for values of P~ (just
before measurement update), this error (prediction error)
is used as the measurement of interest.

The one~sigma prediction errors for the optimal Kalman

filter, with a 200 Hz sampling rate, are

8 = 9:05x10"% arcseconds
(46)

§ = 3.37x10°° arcseconds/second

The position (tilt) prediction error (8) is well within
specifications but the rate prediction error is more than
two orders of magnitude larger than required. Since this

Kalman filter is based on the "best" estimate of the
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physical system, the results indicate that a Kalman filter
will not provide the required accuracy with a 200 Hz

sampling rate.

One postulated improvement is to sample at a higher %

rate since, as the sampling interval becomes shorter, the

prediction error decreases. To test this postulate, time
histories were generated at various sampling rates from
the Nyquist frequency (40 Hz) to 200kHz. The one-sigma

prediction errors obtained from this analysis are presented

in Table I. The plots of the one-sigma rate prediction
errors are presented in Figures 28 through 36 in Appendix
B. A plot of rate prediction error versus sampling rate
is presented in Figure 12.

With a three-order-of-magnitude increase in the sam-
pling rate (from 200 Hz to 200 kHz), only slightly more
than a one-order-of-magnitude decrease in the sampling rate
occurs., Obviously, a 200 kHz sampling is impossible to
implement and, in fact, a sampling rate that high would
tend to invalidate the white noise assumptions. However,
by analyzing the filter at extreme sampling rates, some
insight is gained about performance bounds of the filter.
Therefore, it is concluded that it is not possible to meet
the rate prediction error criteria with the platform,
actuators, and sensors as presently configured, at any,
physically realizable sampling rate.

Since it might be possible to improve the prediction

40




Table I

Comparison of One-Sigma Prediction
Errors at Different Sampling Rates

Sampling Angular Angular
Rate Position Error Rate Error
(arcseconds) (arcseconds,/second)

40 Hz 5.7x107 4 4.5x1072

50 Hz 3.1x1074 3.3x1072 !
100 Hz 4.4x107° 9.9x1073 '
200 Hz 9.05x10~° 3.37x10'3

2 kHz 6.7x107 5.5x10™%

20 kHz 2.5%x107 7 2.4x1074
200 kHz 1.4x1077 9.0x10™°

acceleration measurement (the seismometer sensitivity),

duction in measurement noise) does not significantly reduce

error by decreasing the error (noise) sources, an analysis

of the effects of decreasing the process ncise or increasing

the sensitivities of the sensors was performed. The
results of that analysis (in the form of one-sigma pre-
diction errors) are presented in Table II. The plots of
the one-sigma rate prediction error time history are pre-
sented in Figures 28 through 36 in Appendix B.

As expected, the prediction error is most sensitive

to changes in the noise asscciated with the angular

i but a one~order-of-magnitude increase in sensitivity (re-
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Table II

Effects of Decreasing the Error Sources
(noise) at 200 Hz

Case Type of One-Sigma One-Sigma Rate
Improvement Tilt Error (arc- Error (arcseconds/
seconds) seconds)
1 No Change 9.05x10° 3.37x10”3
2 One-order-of-  4.9x107° 1.6x10°

magnitude re-
duction of pro-
cess noise

6 3

3 One~-order-of- 6.5x10" 2.8x10°
magnitude in-
crease 1in seismom-

eter sensitivity

6 3

4 One-order-of- 8.4x10" 3.1x10°
magnitude in-

crease in tilt~

meter sensitivity

6

S Both Case 3 and 4.1x10 1.9x10°

Case 4

the prediction error. Even with the sensitivities of both
sensors improved by one order of magnitude, the prediction
error is far above the specification. It is concluded,
then, that improvements in the sensors, in the present con-
figuration, will not bring the filter rate prediction error
down significantly!

The error is due, primarily, to the fact that the
rate estimate is based on a position measurement and an

acceleration measurement. With a direct measurement of
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the angular rate, it is possible that the Kalman filter
would provide estimates for the rate that are accurate
within the specified levels.

Since it has been concluded that the optimal Kalman
filter will not meet the performance criteria, with the
system as presently configured, and, since this study is
constrained to the analysis of the system as it presently
exists, two approaches for further analysis were considered.
The first approach is to neglect the angular rate specifi-
cation and design the simplest Kalman filter that will
meet the angular position specification. This is the
approach taken by Brunson (Ref 4). The second approach
is to design the Kalman filter that meets or exceeds the
angular position specification and, in addition, provides
the smallest angular rate prediction error. It is the
latter approach that was taken in this study.

The analysis completed to this point has not con-
sidered the effects that accrue from the implementation
of the Kalman filter on a small, relatively slow, computer
(PDP-11/03). The analysis has been completed using a very
fast, 60~-bit wordlength machine and the final implementa-
tion is done on a slower, lé6-kit wordlength machine. The
filter performance is degraded further due to the limita-
tions of the smaller machine. These degradations are dis-
cussed as part of the algorithm design and implementation
considerations (Chapter IV).

As noted previously, the Kalman filters in this in-
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vestigation can be modeled as constant Kalman gain filters.
This is a result of the fact that the covariances (both
propagated and updated) reach steady state values, for

all of the system states, after an initial transient period.
The transient period is short, compared to the time the
platform is in use and, therefore, after an initial
"warm-up" time for the filter (equal to the transient time
for the covariances to reach steady state), a constant
Kalman gain filter can be used. The constant Kalman gain
implementation greatly reduces the computation time re-
qguired by the filter algorithm because the covariance equa-
tions and the Kalman gain equation (Equations 37, 40 and
41) , which are the most time consuming computations in the
filter aléorithm,arenot computed as a part of the real-
time filter. ‘The constant Kalman gain matrix is stored,

in memory, in the computer for use in the estimate update
equation (Equation 39). 1In addition, a constant Kalman
gain implementation eliminates the, often severe, numeric
difficulties caused by the covariance update equation
(Equation 40) that, normally, drive the wordlength require-
ments. The numeric difficulties often drive the implemen-
tation of the Kalman filter to some type of square-root
form, e.g. U-D Factorization, to overcome the large word-
length requirements. Since the covariance update equation
does not drive the wordlength considerations in this in-

vestigation, an eigenvalue test was used to determine
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E wordlength requirements.

In order to determine what wordlength is required
to implement the optimal Kalman filter, the effects of
quantization on the system eigenvalues were examined.
A program called STM (modified version of program described
in Ref 4) determines the normalized eigenvalue shifts
caused by quantizing the system to a finite wordlength.
A listing of STM is presented in Appendix C. The eigen-
values of the state transition matrix are the roots of the
system characteristic equation (in discrete form). The
computer program STM computes the state transition matrix
for the system and computes the true eigenvalues associated

with this state transition matrix. Next, STM quantizes

the state transition matrix for various wordlengths and
computes the eigenvalues associated with the quantized
state transition matrices. The program computes the dis-
tance from the true eigenvalues to the unit circle and the
distance (shift) between the true eigenvalues and the

guantized eigenvalues for each wordlength. The criteria

for accepting a given wordlength for implementation are
{ that the system remains stable after gquantization (roots
| inside unit circle on z-plane) and that the normalized

eigenvalue shift is less than 10 percent for each eigen-

3 value at that wordlength. The normalized shift, Sn' is

i defined as

(47)
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where IDql is the magnitude of the distance (shift) between
the true eigenvalue and the gquantized eigenvalue and chl
is the magnitude of the distance from the true eigenvalue
to the unit circle. The wordlength is acceptable only if
the 10 percent criterion (Ref 4:35) is met by each eigen-
value. In Figure 13, the maximum normalized eigenvalue
shift is plotted for wordlengths from 10 bits to 20 bits.
The wordlength where all the eigenvalue shifts are less
than 10 percent, and thus the minimum acceptable wordlength
is shown to be 13 bits. The fact that the PDP-11/03 mini-
computer has more bits than required (it is a 1l6-bit machine)
allows more flexibility in scaling and lessens the effects

of overflow due to arithmetic operations.

Reduced Order Kalman Filter

Since the optimal Kalman filter is based on a ten-state
model, the number of computations required to implement
the filter limits the range of possible sampling rates
and it is possible that a reduced order model (sub-optimal
Kalman filter) might provide a smaller prediction error
since a higher sampling rate could be employed.

In order to investigate this possibility, four sub-
optimal Kalman filter models are developed below. The
state matrices associated with the reduced models are pre-
sented in Appendix D.

Noise Filter Reduction. The frequency response of

the process noise filter is shown in Figure 1l4. The noise
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filter provides a sharp cutoff for frequencies above
approximately 20 Hz (125 radians/second, see Equation 24).
Since the 20 Hz bandwidth of the noise from the process
noise filter (exponentially correlated) is much greater
than the 1.3 Hz natural frequency of the platform, the
noise is assumed to be white (limited bandwidth system
driven by relatively broadband noise). This simplifying
assumption results in a reduced (approximate) model com-
posed of seven states. Since, as indicated by the fre-
qguency response, the process noise filter attenuated the
process noise by approximately 125 dB, a rough estimate

of the equivalent white noise for the reduced model is

S -13 15 =
Qeq = 10 QTs = 1.849x10

. (48)

where Qeq is the estimated equivalent white noise strength
and QTs is the process noise covariance used in the truth
model for the system.

Tiltmeter Model Reduction. In order to reduce the

tiltmeter model, a second-order approximation was developed
that has approximately the same frequency response as the

tiltmeter truth model (Ref 4:26). The form of this approxi-

mation is
C . 4.9(1 - 0.55s) Volts (49)
R 2 Arcsecond

s® + 8s + 49
A comparison of the frequency responses of the truth
model and reduced model is presented in Figure 15. As

indicated by the plot, the frequency response of the

50




—~— ey - =

sasuodsay Aousanboaij [opOW I938w3TTL JO uostaedwo)d °GT 2inb1g

(235/706¥) AIN3IND3IYS w
01982629 ¢ ¢ 3 01204090 1 ¢ % 1OLE04%% 1 % % _oOLERCR? Y % % -0V .. ]

19POW Y3nig

!
m

THEEEECGVEEFETTEETT TS GEYTEETESEEFETTETTSFJITEITTSELFEESTE SR

I
<

12POW I9pIQ padnpay

30N 11NOBK

°
®
]
51

&
(571381030)




,-.W.,..,,,-\..

reduced-order model has the same general shape as the

true model. The responses appear to be identical at very
low frequencies (up to approximately 2.5 Hz) and differ
by, at most, 1 dB (beyond 20 Hz). Figure 16 is a plot

of the phase response of the tiltmeter models. The
general shape of the plots are the same but the phase re-
sponse of the true model lags the response of reduced-
order model. The lag is a maximum of approximately 20
degrees (at 2 Hz) and is generally much less than 10 de-
grees. Since the measurement from the tiltmeter is con-
sidered most accurate in the 0-1 Hz range, the reduced-
order model is an adequate representﬁtion. However, the
reduced-order model will inject additional inaccuracies
(noise) into the system.

Seismometer Model Reduction. The frequency response

of the seismometer is depicted in Figure 17. The seis-
mometer exhibits essentially no dynamics in the 0-20 Hz
frequency band and is, therefore, approximated by a con-
stant gain of one. This simplifying assumption reduces
the system by two states. Two reduced models were developed
using this approximation. First, in order to investigate
the effects of the seismometer reduction in combination
with the true tiltmeter model, a five state model was
developed. The five state model consists of the platform
dynamics model (two states), the true tiltmeter model
(three states), the reduced-order seismometer model (con-

stant gain of 1), and the reduced-order noise filter model
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(constant strength white noise). Second, in order to inves-

tigate the effects of the combination of the reduced-order

models, a four state model was developed. The four state
model consists of the platform dynamics (2 states), the
reduced-order tiltmeter model (2 states), the reduced-order
seismometer model (constant gain of 1), and the reduced-
order noise filter model (constant strength white noise). 1
In Chapter IV, each filter model (in combination with E

the optimal controller) is analyzed at an appropriate sam-

pling rate, determined by the number of calculations

involved in that filter/controller implementation.

Summarx

It has been shown that, with the seismic isolation
platform as presently configured, optimal estimation by
Kalman filter techniques will not reduce the uncertainties
inherent in the system to levels low enough to meet the
minimum accuracy required for successful optimal control.
In addition, neither decreases in process noise, nor
increases in sensor sensitivities significantly improve
the performance of the Kalman filter. Possible significant
improvement can be achieved by augmenting the system with
a direct measurement of the angular rate of the platform.

Since the angular rate specification (1.667x10™°
arcseconds/second) cannot be met (the angular position
specification is surpassed by more than two orders of

magnitude), the approach followed in this thesis is to
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design for the best possible angular rate performance that !
can be expected for this system configuration. In addition !
to the optimal Kalman filter model, four sub-optimal |

models were developed for performance comparisons. The

approach is to select and implement the filter model that
provides the best rate prediction performance (smallest
error). The selected Kalman filter is combined with the

optimal controller developed in Chapter III.

ss |




e G S

III. Controller Development

The development of the controller segment is based
on discrete models of the platform and the actuators
(pneumatic cylinders and shakers). A control segment
model was proposed by Burkhart (Ref 1). The model was
developed for a sampling rate of 200 Hz and tested with
a 1.25 foot-pound step input. This chapter contains a
brief discussion of the models and techniques employed
in the development of the controller segment. In addi-
tion, pertinent results stated by Burkhart are included
as background information. In Chapter IV, a control seg-
ment is developed, in general form, based on the sampling
rate dictated by the analysis of the various filter/con-

troller combinations.

Separation of Controller Segment

The design of the controller segment was divided into
two tasks (Fig 8). Each control task is associated with
one of the two types of actuators used in controlling the
angular motion about the horizontal axis. The justifica-
tion for the separation of the controller segment is based,
primarily, on the dynamic characteristics of the actuators.
The pneumatic actuators are slow (time constant of 20
seconds) and are actually part of the platform support
system. Due to the pneumatic actuators' dynamic response,
they are employed in a position feedback loop to counter any

torque imbalances resulting from unsymmetrical loading

7

p—_



B s =

Sk e bt S e b Bl ol

of the platform. The shakers have a much faster dynamic

response (natural fregquency is 26 Hz) and are employed

in an optimal state-feedback control (optimal regulator)
loop, to regulate the effects of the environmental dis-
turbances. In both cases, the control loops were developed
with the assumption that they are receiving perfect infor-
mation about the system states from the Kalman filter, i.e.
exact knowledge of the entire state.

The optimal regulator is designed to regulate the
pneumatic loop. The states associated with the pneumatic
actuator are the contents of registers in the computer
(derived from the pneumatic loop compensator algorithm)
and are known exactly. These states are incorporated into
the optimal control problem through the use of an augmented
state space model that is used in deriving the control law.
Assuming the exact values of the states (from the Kalman
filter and from the pneumatic loop), the deterministic
discrete-time optimal controller will minimize the discrete
performance index given in Eq (3) (Ref 15:502). This is,
again, based on the "forced separation" concept described

in Chapter I.

Continuous System Models

The development of the controllers is based on the
models of those components used in controlling angular
motion about the horizontal axis. The sensor models are

not included in the controller segment development since
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they are part of the estimator problem ("forced separation").
The models required include the seismic isolation platform
moéel, the pneumatic actuator model, the shaker actuator
model, and a model of the environmental disturbances (pro-
cess noise).

Seismic Isolation Platform. The transfer function for

the seismic isolation platform was presented in Egs (7) and
(8) (Chapter II).

Pneumatic Actuator. The pneumatic actuator transfer

function is (Ref 1:17)

e 1 Foot-pound
Hpis) = goiob VoIt i

Shaker Actuator. The shaker actuator transfer function

is (Ref 1:18)

kqws Foot-pounds
H (s) = - (51)
s 2 2 Amps
ST 2csmss + Wg
where
g = 0.7
W, - 157 radians/second
and k = 70 foot-pounds/amp

s
Environmental Disturbance (Noise) Model. To evaluate

the performance of the controller, a deterministic model

of the environmental disturbance (called process noise in
Chapter II) was developed. A torque step function, ut(t),
directly applied to the top surface of the concrete block

was selected since it is readily modeled in both the z-domain
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and the s-domain. There is some question as to the weight

of the step~input that more closely represents the pro-

cess noise. The peak overshoot of the time response of

the platform model, to a step input, approximates the aver-
age excursion of the uncontrolled platform due to the envi-
ronmental disturbances. Burkhart's model is based on an
average excursion of 0.1 arcseconds, derived from Reference
12:2. The average excursion used to determine the process
noise model for the Kalman filter was 0.2 arcseconds (Ref
8). Since no estimate of the quiescent platform oscillatory
excursion appears to be more acceptable than the others,

the "worst case" model (0.2 arcseconds) is used in this

investigation. However, for the purpose of describing the

results of Burkhart's work, the 0.1 arcsecond excursion
model is employed.
Using the computer program TOTAL, the weight of the

representative step input was determined to be 1.25 foot-

pounds. As seen in Figure 18, a 1.25 foot-pound step input

produces a peak overshoot of 0.102 arcseconds.

Figure 18 illustrates the relationships of the torques

and transfer function associated with the actuators and

the process noise.

Discrete System Models

Two discrete models were derived from the continuous
system transfer functions. A z-domain function, 6(z), of

angular position of the platform, with a step input, was
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Figure 19. Block Diagram of Platform and Actuators
(Ref 1:21)

derived for use in designing the controller for the pneu-
matic control loop. A discrete state representation of the
platform and the actuators was developed for use in the
designing of the optimal controller in the regulator loop.

Position Feedback Loop. A block diagram of the pneu-

matic loop is shown in Figure 20.
The pneumatic loop includes, along with the platform
(Gb(s)) and the pneumatic actuator (Hp(s)), an impulse

sampler, a computer algorithm D(z) and a digital-to-analog

converter (DAC). The impulse sampler in the model prepresents

the estimation process completed by the Kalman filter (de-
noted 6*(s)). The DAC is represented by a zero-order hold

(ZOH) , Hy(s). The ZOH holds the output of the DAC constant
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u,(s) + E(s) 6 (s)

:-(337 4¢1Gi(s) -
Platform
‘ u_(s) CB(S) B*(s) L
H (s P ‘Ho(sﬁt D(z) ___%_J
Pneumatic Zero-~ Digital

Actuator Order~Hold Controller

Figure 20. Block Diagram of Pneumatic Loop (Ref 1:22)

between samples and has the transfer function
Ho(s) B ————— (52)

where T is the sampling period.

The computer algorithm, D(z), is a digital computer
program (digital controller or compensator) that receives
the estimated angular position from the Kalman filter and
produces a control signal, CB(s), that is, in turn, sent
to the DAC and converted to analog form for input to the
" pneumatic actuator.

The location of the computer in the feedback loop
prohibits the reduction of the block diagram to the z-domain
transfer function e(z)/ut(z). Instead, the approach is to
solve for an expression of 6(z). First

63




| e o RIS R Al A e e

E(s) = u.(s) - Hp(s)Ho(s)CS(s) (53)

So

h e e A 5 S 3. | S s

8(s) = u (s)Gy(s) - Gy (s)H,(s)H (s)Cp(s) (54)

And taking the z-transform

B8(z) = uth(z) - GprHo(z)CD(z) (55)
1
Since
CD(Z) = D(z)6(2) (56)
f Then
uth(z)
(z) = T ¥ Gi_H,(2)D(z) (57)

The z-transforms uth(z) and GprHO(z) must be deter-
mined. Since the design objective is to meet the specified
response characteristics for a step input ut(s)Gb(s) is

evaluated with

ut(s) =1/s (58)
And
322 + Cz

z[ut(s)Gb(s)] = 7;:;;725:82+€) 69)

where
o« = ae 3Tsin(br - ) (60)
g = =-2e"3Tcoq(bT) (61)
¢ = g oot (62)
:é B o= k(B =-a+l) (63)

C = kb(a + €) (64)




e —

The coefficients, evaluated at T = 5 msec, are

B = 2.6915839x10°

C = 2.6884453x107° |
B = 1.9952834

e = 0.99650612

The z-transform for Gb(s)Hp(s)Ho(s), since Ho(s) is

a zero-order hold, is

z-1 Gb(s)Hp(S)

GprHo(z) = - Z[ = ] (65)
: Now

Gb(s)H (s) Jz4 + Lz3 + M22 + Nz

Z[——E— 1 = 3 (66)

(z=1) (z-6) (z"+Bz+¢)
where

Jd = G + kb - E (67)
L = Bkb - BE + E - ékb + H=- 6G -G (68)
M = ekb - eE + GBkb + ER + 8G - HS + H (69)
N = Gskb + €E + &G (70)

The coefficients, calculated at T = 5 msec are

J = 2.1439340x10" %7
L = 2.2435920x10°°
| M = 8.9654109x10°
| N = 2.2393891x10°
§ = 0.99975003

To verify the discrete models, an initial value veri-
fication was employed. For verification, the initial values

of the continuous time functions were compared to the initial

ARSI TV Ay i

t‘ values for the corresponding discrete-time functions. All
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the functions had initial values of zero except the dis-

crete function Gpr(z) which had an initial value equal
to the value of the coefficient J. Since J is several
orders-of-magnitude smaller than the other coefficients,

4 term, was deleted.

the term involving J, i.e., the 2z
This deletion is justified since, with single-precision
16-bit wordlength computations, J is too small to be repre-
sented and would, therefore, be rounded to zero. The re-

sulting function is
3 2

G, (s)H_(s) Lz~ + Mz“ + Nz
z[_g__E_R__. ]

5 (61)
(z=1) (2=6) (z"—B2+¢e)

To obtain GprHo(z), Egquation 71 is substituted in Equation
65 to yield

2
Lz® + Mz + N
G, HH (z) = (72)
g (z-8) (z%-Bz+e)

Finally, substituting Equations 72 and 59 into Equation 57

yields

Bz2 + Cz

(z-l)(zz+Bz+6)

8(z) = —
1 + Lz"+Mz+N

(2-6)(;7¥Bz+e)

(73)

D(z)

Discrete State Space Model. Since the zero-order hold

device maintains the control inputs constant over the sampling
period, the continuous state space model is transformed to

a discrete state space model by the following transforma-
tion:

3 = @F (74)
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r re{T-Upar (75)
o

where ¢ is the discrete state transition matrix, F is the
continuous plant matrix, T is the sampling interval, T is

the control transition matrix (discrete control matrix), and

B is the continuous control matrix. The continuous state

equation is

x(t) = Fx(t) + Lu(t) (76)
with u(t) for te[kT, (k+1)T] and the discrete state equa-
tion is

x(k + 1) = o¢x(k) + Tu(k) (72)

Using phase variable form state equations to represent
the individual transfer functions, the resulting state

matrices are

0 & 0 0 0
-49 -7 1 1725430 0 ‘
0 0 -.05 0 0
F = (78)
0 0 0 0 1
L.O 0 0 -24649 -219.84




l Lo (ddlJ3u) Junirimnvow

8 = 2.156x, (t) (80)
8§ = 2.156x, (t) (81)
and
up(t)
u(t) = us(t) (82)
ut(t)
The general form of the transition matrices is
(— —
1 2 %13 %14 15
®)1 %22 %23 24 %25
» =10 0 345 0 0 (83)
0 0 ®43 ®44 %5
L? 0 ¥5a ¥54 °5§J
and
B " =
I Fa2 13
Fa1 T22 T3
o (84)
> T34 0 0
0 r 0
L? r 0

The numerical values of the elements of the matrices
is determined by the relationships described in Equations

74 and 75 and is a function of the sampling interval, T.

Pneumatic Controller (Compensator), D(z)

The criteria used in designing the pneumatic loop com=~
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pensator, D(z), are that the system remains stable with
D¢z) in the feedback loop, that D(z) drives the platform

to zero steady-state angular position, and that the tran-
sient response (peak overshoot and settling time), to a
1.25 foot-pound input, of the controlled platform is better

than that of the uncontrolled platform (depicted in Figure

12y
The steady state response of 6(z) was analyzed by
letting
Heay = o (85)
By (2T

in Equation 73 and employing the final value theorem
z (Az+B) (2-6) D, (2)

z~-1
where
awl 3 2
P(z) = DD(z)[z + (B + 8§)z° + (e =6B)z =6¢l
+ (12?4 Mz + N (2) (87)

To insure that the steady state value of 6(z) goes
to zero, D(z) must have a factor (z-1l) in the denominator

(Ref 16:290).

Root locus techniques were used to examine the stability

and transient response of various compensators having a
factor of (z-1l) in their denominators. Using the root
loci of the expression, D(z)GprHo(t) (Equation 58), for
various D(z)'s the characteristic values of the pneumatic

loop were determined. By varying the gain and the location
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and number of poles and zeros in the compensator, a form

for D(z) was chosen that produces a stable system and a

fast transient response. The selected form for the dis-

Crete controller for the pneumatic loop was

7500(2-0.99900)(22-2.01502+1.0158)

D(z) = 5
(z=1.0) (z©=0.9752)

(88)

The response of the system, with the compensator, was
determined by evaluating the difference egquation (trans-
formed from 8(z), Equation 73) with the above D(z) in the
feedback loop (Ref 1:52). As depicted in Figure 21, the
steady~state response for the controlled system is zero
(versus 0.055 arcseconds for the uncontrolled platform,
Figure 17) and the peak overshoot is slightly less than
that for the uncontrolled platform (0.097 arcseconds versus
0.102 arcseconds). However, the settling time is slightly
greater for the compensated system (approximately 11

seconds versus 10.86 seconds). The D(z) described above

was designed based on a sampling rate of 200 Hz. It is
assumed, for analysis purposes, that the general form of
D(z) (Equation 88) is maintained through the change in
sampling rate. This assumption is based on the fact that
changes in the sampling rate will cause changes in the lo-
cations of the roots of the discrete system models (plat-~
form and pneumatic actuator), but will not change the

order of these models. Therefore, the general form of the

compensator that is used in Chapter IV for determining the

approximate sampling rate is
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Figure 21. Graph of Difference Equation for 8 (kT)
Ref 1:53)

kD(z-a)(zz—bz+c)
D(z) = (89)

(z-1.0) (z%-dz)

Burkhart determined that, with the form of D(z) in
Equation 88, the fime responses (to a 1.25 ft-1lb setep-input)
for the discrete compensator and for a thirteen-bit digitized
version of the compensator agreed within three significant
digits after 25 éeconds. It was concluded that the thirteen
bit controller shows no significant degradation of perfor-
ménce {(Ref 1:5%). .

Regulator Loop. The regulator (shaker) loop is used

- to provide further damping of the pneumatic loop and also

to provide control of the angular rate of the platform.

The shaker receives its control input from a state feed-
back control law (optimal controller) that is based on an
augmented system.state model consisting of the discrete state

space model of the inertial instrument test platform and

ll




actuators (Equations 83 and 84) combined with a discrete
state space model of the pneumatic compensator.
A state space model of the pneumatic actuator is de

rived by factoring Equation 88 into

b(z) =C{2) _ 7500 2-0.999 2°-2.0152+1.0158 ,
8(z) z Tz-1.0) (z-0.975)

and forming a state space representation for each term
using partial fraction expansion. After combining the
state representations for each term, the state space mod

of D(z) is (see Figure 19)

0 0 0 1
x (k+1) =[-0.999 1.0 0 |x (k) + |1} e(x) (
-0.999 0  0.975 1
cp(k) = 7500{[-0.999 3.36324x107° ~7.36324x107 %] x (k)
+ 6(k)} (

After augmenting the system model (Equations 83 and
84) with the compensator model (Equation 91 and 92), the
discrete pneumatic loop state space model becomes (in ge

eral form)

e ey

®11 %p12 %p13 %14 %p1s %p1s %p17 Pp1s
®p21 %p22 %p23 %p24 %p2s %p26 ®p27 %p2s
L *pas - ®»36 ®p37 %p3s
3, = |0 0 0 ®pea ®pas O 0 0 (
0 0 0 bose Ypay O 0 0
dyc; O 0 0 0 0 9 0
05, O 0 0 0 05 1.0 O
_?pal v v ’ . ®pge O épsgﬂ
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and

; Tp11 ,
i 0
3 T
’ Te o P31 (94)

r

P41

0

| 0
g
0

where ¢P is the pneumatic loop state transition matrix

and FP is the pneumatic loop control transition matrix.
The objective of the deterministic discrete optimal
controller is described by Equations 3 and 4 in Chapter
I except that, due to the forced separation, g(tk) (the
state estimate from the Kalman filter) is replaced by
§(tk) for design purposes. Thus, the design of the con-

trol law, C(tk) is assumed independent of the stochastic

‘ properties of the system.
f; The quadratic performance index, J (in Equation 4),

; can be interpreted as "system error plus control effort”
B measure of performance that uses a tradeoff between system
error, represented by gquadratic term involving the V
matrix, and control effort, represented by the quadratic
control "intensity" term involving the U matrix (Ref 17:
326).

The procedure used to solve for C(tk) was adapted from

Linear Optimal Control Systems (Ref 15:502) and consists

3




of solving the equations

clt) = {u+ rglv + Pk+1)ITI TV + P(k+1) 10 (95)

and
P(k) = OT[V + P(k+1)]1[® - TC(k)] (96)
backward in time from the terminal condition

P(n) = V (97)

£

It has been demonstrated that the solution of Equa-
tions 95 through 97 results in a steady-state solution for
C(tk) that is independent of the terminal condition. The
resulting control law is time invariant and asymptotically
stable (Ref 1:62).

The solution of the optimal control law does not
guarantee that the design specifications will be met (Ref
1:61). The optimal control law must be solved by the
iterative process of selecting various values for the
weighting matrices.V, Vf, and U, and evaluating the re-
sulting control law to determine if it meets the design
specifications. The resulting control law vector, in gen-

eral form, is

74




The results of Burkharts analysis (Fig 21) indicate
that, for the control law based on a sampling rate of
200 Hz, the angular rate specification is not met, al-

though the system does settle to within the design speci-

fication (1.667x10-5 arcseconds/second) within 0.08 seconds.
It was concluded that the angular rate specification could
not be met, at any physically realizable sampling rate,

by the designed optimal controller, due to the fact that

the angular rate of the inertial test platform was already
three orders-of-magnitude greater than the design specifi-
cation at the end of the first sample period (0.05 seconds)
(Ref 1:68). The optimal controller controlled the angular
position to less than 2.9x10-4 arcseconds (much better than

the design specification of lxlO-3 arcseconds) .

Summarz

In this chapter, the general forms of the control equa-
tions are developed. The pneumatic loop controller uses
angular position feedback to generate the control signal
to the pneumatic actuator. The matrix form of the con-
trollers are converted to scalar equation form to alleviate

the inefficiency of matrix operations with sparse matrices

and also to allow more flexibility in the ordering of the
s computations. The resulting pneumatic controller scalar

equations are (from Equation 91 and 92).

x6(k+1) = 2.156 xl(k) (99)

-
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v, = Cplk) = kp[ug (k) + x¢ (k1)) (100)
x7(k+1) = =0.999 x6(k) + x7(k) + xG(k+1) (101)
xa(k+l) = =0.999 xs(k) + 0.975 xa(k) +x6(k+1)(102)

up (k#1) = 0.999 x (k+1) + 3.36x107 2x. (k+1)
- 7.36x10"2xg (k+1) (103)

The optimal regulator uses state feedback to derive
a control law that produces the control signals to the
shaker actuator. The scalar equations representing the

optimal regulator algorithm are (from Equations 3 and 98)

us(k) = cllxl(k) + czlxz(k) + c3lx3(k)
]
+ c4lx4(k) + c51x5(k) + us(k)(104)
us(k+l) = c61x6(k+l) + c71x7(k+l) + c81x8(k+l) (105)

In Chapter 1V, these scalar equations are used to
determine a rough estimate of the computation times in-
volved in the implementation of various filter/controller
pairs. Although the results of Burkharts investigation
indicate that the angular rate specification cannot be met,
even when the input from the cascaded Kalman filter is
assumed to be within design specifications, the angular
rate specification is not neglected in the remainder of
this investigation. As mentioned in Chapter II, the design
approach is to provide improved angular rate control and

to meet or exceed the angular position design specification.
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Based on the results of Burkhart's investigation, the
optimal control approach warrants further investigation

as a method of isolating the inertial instrument test

platform at FJSRL.
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IV. Selection of Kalman Filter Model

All of the model development in the previous chapters
was based on a sampling rate of 200 Hz. The selection
of this sampling rate was based on engineering judgement
i.e., it is five times the Nyquist frequency. In reality,
since the computations involved in executing the optimal
estimation and control algorithm take a finite length of
time, the sampling rate will be limited by the instruction
execution (arithmetic, store, shift, etc.) times of the
PDP-11/03 Minicomputer. In this chapter, the Kalman filter
models developed in Chapter II are combined, in turn, with
the general model of the controllers developed in Chapter
III to determine the approximate maximum sampling rate for
each combination. Each filter is then tuned, using the
General Covariance Analysis Program (GCAP), to determine
an expected performance bound for that filter. The tuned
filter performances are compared and a "best cut" filter
model is selected as a baseline for future implementation.
In addition, some implementation considerations are pre-

sented as background for possible "follow-on" investigation.

General Form of the Algorithm

The implementation of the optimal estimation and con-
trol algorithm, developed in this investigation, is sep-
arated into five tasks:

= Input

= Output
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Supervisor

Pneumatic Control Loop

- Optimal Regulator Loop

- Kalman Filter

Input. The input task is to move the current measure-

ment from the Analog~to-Digital Converter (ADC) to a
storage register within the computer. Assuming the use
of the PDP-11/03 compatable ADC (Model aDV-1l1-3A), the
measurement enters the computer, after conversion, in off-
set binary form. The input routine checks for overflow
or underflow and the measurement data is converted to
two's complement form since the arithmetic operations used
by this algorithm are computed using two's complement

arithmetic.

s

Output. The output routine is essentially the mirror
image of the input routine. After all computations on con-
trol data are complete, the output routine converts the
data from two's complement form to offset binary form,
checks for overflow or underflow, and moves the data from
a storage register to the Digital-to-Analog Converter (DAC).

Supervisor. The supervisor routine is used to con-
trol the sequencing of the other tasks. In addition,
various "housekeeping" tasks (i.e., scaling, error checking, ;
etc) can be accomplished in this routine.

The controllers and the Kalman filter are implemented

in the remaining subroutines and are discussed in more
detail below.
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Kalman Pneumatic Optimal
Filter Control Regulator
Loop

Figure 22. Implementation Tasks for Optimal Estimation
and Control Algorithm.

Figure 22 is a block diagram representation of the
tasks involved in the optimal estimation and control al-

gorithm.

Computation Times

Based on the general form of the algorithm described
above, the total computation time for the optimal estimation

and control algorithm can be described as

o = ((TI + T

*
c + TP + T_ + TK) Lok} (106)

(0] R

where
TC = total computation time

TI = input computation time
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TO = output computation time

TP = pneumatic control loop computation time
TR = optimal regulator computation time

TK = Kalman filter computation time

The 1.1 multiplier represents a 10% overhead that is added
to represent the supervisory operations.

Since there are actually two optimal estimation and
control systems involved in isolating the platform (two
horizontal axes through the center of the platform), the

total approximate computation time, TAC' will be

TAC = 2TC

(107)

For purposes of evaluating the sampling rates for
the various Kalman filter models, the computation times
for the input, output, pneumatic controller, and optimal
regulator are considered to be the same for each filter
case.

The instruction execution times, for the PDP-11/03
Minicomputer, for the instructions employed in the optimal
estimation and control algorithm are presented in Table
IIT (Ref 18)

All arithmetic operations are assumed to be single-
precision fixed-point operations. Floating-point and/or
double precision arithmetic operations would provide more
accuracy for representing the terms, but it is felt that

the increases in computation times involved more than off-

set the benefits derived. All coefficients are normalized
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Table III

PDP-11/03 Instruction Execution Times

Assembly Execution Time
Instruction Language Code (microseconds)
Move MOV 3.5
Compare CMP 6.65
Fixed-Point Subtraction SUB 27
Fixed-Point Addition ADD il
Fixed-Point Multiply MUL 64.0
Arithmetic Shift Combined ASHC 15.09

(by scaling) so that they are represented as fractions,
In this way, the multiplication operation will always
result in a fraction and, therefore, multiplication over-
flows will be avoided. To illustrate the result, the

following simple example is presented

012 .Slo
X .1, 5 310 (108)
.01
2 o5y

where .l2 is the binary representation of .5 (decimal).

The PDP-11/03 multiplication operation will result in the

following product

(109)
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which is obviously an incorrect result. In order to cor-
rect the result, an Arithmetic Shift Combined (AHSC) in-
struction is used to shift the result right by one position
(with a zero fill), resulting in a correct representation
of the product. An AHSC instruction is provided with each
multiplication instruction in this investigation. As in-
dicated in Table III, this will increase the multiplication
computation time by 15 microseconds for each operation,
resulting in a total multiplication time of 79 microseconds.

Inout/Output Computation Times. The input routine con-

sists of one move instruction, two compare instructions
(checking for overflow/underflow), and one fixed-point sub-
traction instruction (to convert from offset-binary to two's
complement form) and results in a total computation time of
approximately 24.5 microseconds. The output routine is
essentially the mirror image of the input routine (except
one fixed-point addition instead of subtraction to convert
from two's complement to offset binary form) and also re-
sults in a total computation time of approximately 24.5
microseconds. The analog~to~digital and digital-to-analog
conversion times are not included in the calculation of the
I/0 computation times since it is assumed that an interrupt
scheme will be used for controlling the ADC, thus permitting
simultaneous conversion and filter/controller algorithm
execution, and it is also assumed that the DAC can complete

its conversion process without interferring (based on Model
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ADV~11l-A Converter) with filter/controller algorithm ex-

ecution.

Pneumatic Control Loop Algorithm. The pneumatic con-

trol loop algorithm is represented by Equations 99 throuch
103 in Chapter III.. The algorithm consists of a series of
multiplications and additions. It is assumed that the common
(constant) gain operation, Ky in Equation 100, is accom-
plished using an external analog amplifer. An example

of the steps involved in the execution of the algorithm is

(using Equation 101)

Mov TERM1,R2 (Move -0.999 into Register 2)

MUL x6 ,R2 (Multiply x_(k) by -0.999 and
store the pgoduct in Registers
2 and 3)

MoV TERM2, R4 (Move 0.975 into Register 4)

MULT x8,R4 (Multiply xa(k) by 0.975 and

store the product in Register 4)

ADD R4 ,R2 (Add the products and store
result in Register 2)

ADD xs(k+l),R2 (Add x6(k+l) to previous sum,
store result in Register 2)

Mov R2,x8(k+l) (Move the result to memory
location of xg(k+1)

The total pneumatic control algorithm requires 13 move
instructions, 6 fixed-point additions, and 5 fixed-point
multiplications, resulting in a total computation time of
approximately 565.4 microseconds.

Optimal Regulator Algorithm. The optimal regulator

algorithm is represented by Equations 104 and 105. 1In
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a manner similar to the precedure used for the pneumatic

control algorithm, the computation time for the optimal
regulator loop was determined to be approximately 694.4
microseconds.

The total computation time for the input, output, and
controllers is approximately 1308.8 microseconds. This
computation time is assumed constant for all filter/con-
troller combinations.

Kalman Filter Algorithms. The Kalman filter algorithms

are represented by Eguations 34 and 38. 1In order to allow
for control inputs, each Kalman filter model is augmented
with the state associated with the pneumatic actuator. The
augmented state represents the output torque generated by

the pneumatic actuators. Although the augmented models are
not used during the covariance analysis to determine filter
performance ("forced separation"), they are included in the
implemented algorithm and do, therefore, affect the com-
putation time for each filter. Therefore, the state matrices
referred to in the Kalman filter computation time deter-
mination are the state matrices associated with the aug-
mented filter models. These models are presented in Appendix
E. To determine the computation times for the estimate
propagation equation (Equation 34) for each filter, the
general form of the state transition matrix (¢) and the
discrete control matrix (I') was derived (using the STM

program with a sampling rate of 200 Hz) for each filter
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model. By converting the matrix equations to scalar form,
and applying the procedure employed for determing the con-
troller computation times, the approximate computation
time for the propagation equation was determined for each
filter.

To determine the computation time for the estimate
update equation (Equation 38), the matrix equation was
again converted to scalar form which resulted in the set

of equations represented below.
-~ + ~ = . "
xi(tk) = xi(tk) + killRe51dual 1] + kiZ[Re51dua1 2] (110)

The residual terms represent the difference between
the current measurement, z(tk), and the predicted measure-
ment, Hi(ti), and are common to each scalar, state estimate
update equation for a given filter model, therefore, the
residuals are computed once for each sample period. As
mentioned previouély, a constant Kalman gain implementation
is employed, and therefore, the covariance equations and
the Kalman gain equation are not computed on-line. The
computation times for the estimate update equation, for
each filter model, was determined in a manner similar to
that described for the propagation equation. :

The total approximate computation times, TAC' and
the corresponding maximum sampling rates for the various

filter/controller combinations are presented in Table IV.
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Table 1IV

Filter/Controller Maximum Sampling Rates

TAC(Eqs 106 Maximum
Filter and 107) Sampling Rate (Hz)

(milliseconds)
Optimal (10 state) 22.17 45.1
Seven-state 15.63 64.0
Six-state 12.04 83.0
Five-state 10.95 91.4
Four-state 9.46 105.7

Kalman Filter Performance Evaluations

Using the sampling rates indicated in Table III, the
General Covariance Analysis Program was employed to deter-
mine the expected performance bound for each Kalman filter
model. The object of this evaluation is to investigate
the possibility that one of the suboptimal Kalman filters,
based on the increased sample rate (relative to the optimal
filter) permitted by the reduction in the number of com-
putations required by that reduced-order model, provides
better performance than the optimal Kalman filter sampled
at the rate dictated by the large number of computations
involved. The performance measures used as criteria for
this evaluation are the platform rate prediction errors

which are produced as an output from the GCAP computer
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program. Again, the criteria are that the angular posi-
tion specification is met or exceeded and that the angular
rate prediction error is as small as possible.

Optimal Kalman Filter. Figures 23 and 24 are plots

of the time histories of the one-sigma errors for the plat-
form angular position and angular rate, respectively, from
the optimal Kalman filter sampled at 45.1 Hz. The steady-
state prediction errors are 2.53x10'4 Arcseconds for angular
position and 2.92):10"2 Arcseconds/Second for angular rate.

Seven-State Kalman Filter. A seven-state suboptimal

Kalman filter model was developed in Chapter II based on a
simplifying assumption which approximated the third-order
noise filter model with a roughly equivalent white noise
model. This approximation inserts more uncertainty into
the filter model. The Kalman filter tuning process consists
of inserting pseudo-noise into the reduced-order model,

by increasing the strengths of the process noise (matrix Q)
and/or the measuremerit noises (matrix R), until the true
system error approximates the error generated by the re-
duced-order filter. By varying the white noise strength
represented by the Q matrix, the equivalent white noise
driving the platform, that tuned the filter, was deter-
mined to be approximately 3.25. This is not a unique solu-
tion, since other values for Q and R (in combination) will
tune the filter. The resulting time histories for the
angular position and angular rate are presented in Figures

25 and 26. The steady-state prediction errors are 3.34::].0-4
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Arcseconds for angular position and 3.78x10'2 Arcseconds/

Second for angular rate.

Other Filter Models. 1In the process of tuning the

six-state, the five-state, and the four-state suboptimal
Kalman filters, the preliminary results indicated that the
error performances from those filters were far worse (on
the order of 200 Arcseconds/Second for the one-sigma rate
prediction error) than the performance indicated for the
higher-order filters. Based on these preliminary results,
it was felt that the time-consuming task of tuning these
reduced-order filters would be little, if any, benefit to

the performance evaluation.

Filter Selection. The performance evaluation indicated

that, based on the maximum permissible sampling rates, the
optimal Kalman filter provides better performance thaa any
of the suboptimal filters. However, the performance of the
seven-state filter approaches that of the optimal filter
and should not be eliminated from consideration. The in-
creased sampling rate possible for the seven-state filter
will tend to improve the performance of the associated con-
trollers, and it is possible that the improvement in con-
troller performance due to the increased sampling rate,

for the suboptimal filter, is greater than the improve-
ment due to better Kalman filter performance from the
optimal filter. 1In order to investigate this possibility,
two pneumatic control loop compensators and two associated

optimal regulators would be designed, one controller pair
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. based on a sampling rate of 45.1 Hz and the other based
on a sampling rate of 64 Hz. Each controller pair would
be combined, in turn, with the associated Kalman filter
and the total performance of the optimal estimation and
control system would be evaluated. Due to time constraints,
this performance analysis was not undertaken in thdis in-
vestigation but is recommended as part of a follow-on in-

vestigation.

A mulitarized version of the LSI-11 hardware multiplier

is available that reduces the multiplication execution time
from 64 microseconds to 12.2 microseconds. If the faster
multiplier is used, the maximum sampling rates for the
various filter model implementations are as indicated in
Table IV.

As expected, since the multiplication operation is the
most time consuming operation, the large reduction is
multiplication execution time results in a significant
increase in maximum sampling rates. Since the increase
in sampling rates is significant, a re-evaluation of the

p filters at these sampling rates is warranted and is recom-

1
§
|
|
¢

mended as part of a follow-on investigation.

Implementation Considerations

Of prime importance in implementing the optimal esti-
mation and control algorithm is the time lag between the
time the sampled measurements are performed and the time

the associated control signal is output. In order to
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Table V

Maximum Sampling Rates Using High-Speed Multiplier

Filter Smpling Rate (Hz)

Optimal 111

Seven-state 147

Six-state 218 zé
Five-state 237 '
Four-state 239

reduce the magnitude of the state propagation (prediction)

error generated by the state propagation equation (Equa-

tion 34), the computation lag time should be minimal. To

ensure the least possible lag time, only those computations |
that actually require the updated measurement and those

directly associated with the control output should be com- | 3

puted between measurement update and control output. A

proposed sequence of computations is presented in Figure

27,
The two optimal estimation and control systems associ- ;‘

ated with the horizontal axes through the center of gravity ‘

are assumed to be independent control systems. This

assumption is based on the assumption of decoupled modes

of motion mentioned in Chapter I. Since each of these
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l. Sample and Input Measurement

2. Update state estimate

3. Compute and output pneumatic control signal
4. Compute and output optimal regulator control
5. Start background computations

Figure 27. Algorithm Computations Sequence

control systems requires two measurements (a total of four
separate measurements) per sampling interval, it is pro-
posed that each sampling interval be separated into two
equal independent sub-intervals. In this way, only two
measurements are needed in each subinterval, thus reducing
the measurement to control output lag while, at the same
time, maintaining the same sampling rate for each control
system. Further gain could be achieved if an additonal
processing system (minicomputer) was available that would
permit the two control systems to be executed in parallel

and, thus, double the sampling rate.
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After the sampled measurements are input, the next
step is to determine the updated state estimates using
Equation 38. Using the forced separation concept, since
some of the states estimated by the Kalman filter are not
used in the control output computations, only those states
that are used in the control algorithm need to be updated
at this time, the remaining state updates will be computed
as background computations, immediately before the state
propagation computations.

The next step is to compute and output the new control
signals, beginning with the pneumatic control signal. 1In
the pneumatic compensator development discussed in this
thesis, the state variabhles were chosen so that the state
associated with the input to the pneumatic loop compensator
(x6) is proportional to the platform angular position (xl)
as represented in Equation 80. By choosing the state vari-
ables so that the state Xe is equal to state X1 the multi-
plication required in Equation 99 would be eliminated and
the pneumatic control signal could be computed simply by
solving Equation 100. In addition, by using an external
analog ampiifier to perform the multiplication associated
with the term KD (after the control signal is output), the
computation lag time is reduced.

Pinally, using Equation 104, the optimal regulator
control signal is generated and output.

The remaining equations are solved as background com-

putations in the time remaining until the samples are taken

97




= uw»w@=w¢:~mﬁw,%iﬁ¢mﬁan e e e (

for the second control system.

Summarx

Based on the results of the computation time evalua-
tions, the optimal Kalman filter provides the best per-
formance among the filter models developed. It was deter-
mined that the optimal Kalman filter can be implemented
with a maximum sampling rate of approximately 45 Hz and,
at this sampling rate, the angular position specification:
is met (2.53x10-4 Arcseconds) but the angular rate specifi-
cation is not met (2.92x10 2 Arcseconds/Second). The
performance of the filter is imppoved if the sampling rate
is increased, and various methods of increasing the sampling
rate were discussed. In addition, a proposed sequence
for algorithm computation was presented for consideration

for follow-on investigations.
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V. Conclusions and Recommendations

The purpose of this investigation was to determine
the expected performance derived from implementing linear
stochastic estimation and control techniques to the problem
of actively controlling the inertial instrument test plat-
form at FJSRL. The study was divided into six areas:

1. The development of a state space system model
from which an optimal Kalman filter was developed and
evaluated using a covariance analysis tehcnique.

2. The development of four suboptimal (reduced-order)
Kalman filter models.

3. The development of general models for a pneumatic
(position-feedback) control loop compensator and an optimal
(state-feedback) regulator.

4. The determination of the approximate maximum sampling
rates for each Kalman filter model, in turn, in combination
with the general models of the controller algorithms.

5. The tuning and performance evaluation of each Kalman
filter model, in turn, based on the appropriate maximum
sampling rate for that model.

6. A proposed sequence for the execution of the

optimal estimation and control algorithm computations.

Conclusions

The specific conclusions derived from this investi-

gation are:

1. As presently configured, the platform angular rate
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3 Arcseconds/Second)

uncertainty specification (1.667x10"
cannot be met at any physically realizable sampling rate.
The failure to meet this specification is due, primarily,
to the fact there is no direct measurement of platform
angular rate.

2. The platform angular position specification (lxlo-3
Arcseconds) can be met by the optimal Kalman filter (2.53

x10~4

Arcseconds) with a sampling rate of 45 Hz. In addi-
tion, the angular position specification can be met (Ref 1l:
75) based on a sampling rate of 200 Hz and the assumption
that the Kalman filter provides estimations that are accu-
rate within the angular positon specification. Further
investigation is requiredto determine if the angular
position specification can be met by the optimal Kalman
filter in cascade with controllers based on sampling rate
of 45 Hz.

3. A suboptimal (seven-state) Kalman filter model,
sampled at 64 Hz, meets the angular position specification
(3.3A1x10'4 Arcseconds) but fails to meet the angular rate

2 Arcseconds/Second). Further in-

specification (3.78x10"
vestigation into the performance of this filter cascaded
with the appropriate controllers is warranted due to the
possible benefits to be derived by the increased sampling

rate.

Recommendations

Five recommendations have resulted from this study:
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l. A covariance analysis of the performance of the
system, with the addition of an angular rate sensor model,
should be completed to determine if the improvement in
performance, due to the rate sensor, warrants the inclu-
sion of such a sensor.

2. The stochastic noise models used in this investi-
gation were primarily based on engineering judgement and
not on any realistic empirical models. Further study shoild
be directed toward the development of process noise and
sensor error models.

3. Further study should be directed toward the develop-
ment of accurate models of all the system components,
especially the inertial test platform (center of gravity,
homogeneity of the structure, resonances, bending modes,
etc.).

4. In order to increase the maximum sampling rates,
two recommendations are proposed:

- By employing the militarized version of the LSI-1ll
hardware multiplier the multiplication computation time
is decreased from 64 microseconds to approximately 12
microseconds and substantial increases in sampling rates
are derived.

- Even more substantial improvement can be derived
by utilizing several microprogrammable microprocessors
to perform the computations. With this appfoach, it is
possible to accomplish several operations simultaneously

(in parallel), resulting in increased sampling rates.
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5. Further testing and evaluation of the optimal
estimator and the controllers (in cascade), based on
physically realizable sampling rates, should be accom-
plished using digitally implemented (on the PDP-11/03

minicomputer) algorithms and simulated noise disturbances.

102




10.

ll.
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Appendix A

General Covariance Analysis Program

Performance analyses were performed using covariance
analysis techniques implemented on the General Covariance
Analysis Program (GCAP). Since the covariance equations
and the Kalman gain equation (equations 35, 39, and 40)
can be computed independent of any measurements, it is
possible to perform a performance analysis of a Kalman
filter design without actually simulating the sampling
process. The GCAP employs the covariance equations and
the Kalman gain equation to generate the statistics (in
the form of one-sigma time histories) of a filter design,
directly.

Two mathematic system models are used by the GCAP.

One model, called the "truth model", represents the best
available system model (used to develop the optimal Kalman
filter) and the other model, called the filter model, is

a reduced-order model used to develop a suboptimal Kalman
filter. As the order of the model is decreased, modeling
errors are introduced into the design and the Kalman filter
based upon such a reduced-order model will provide poorer
performance than the optimal filter.

In GCAP, both truth model and filter model covariance
matrices are propagated in time using a fourth-order Runge-
Kutta numerical integration formula. At each sample measure-

ment update time, the filter covariance update is performed
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where
KP(tk) =
P(tk) =
HF =

RF =

(Equation 39) and an optimal Kalman gain is computed based

on the filter model. The Kalman gain equation becomes

T - i -1
PF(tk)HF[HFPF(tk)HF * RF] (111)

Optimal Kalman filter (based on filter model)
Filter covariance prediction matrix
Filter measurement matrix

Filter measurement noise matrix

the superscript T is the matrix transpose operator,

and the superscript -1 is the matrix inversion operator.
The truth model covariance update is computed using

the Kalman gain matrix derived from the filter model. The

magnitude of the truth model covariance elements (diagonal

elements) represent the "true system" one-sigma errors.

The equation describing the system update is

Pgt,) = (I-MK_(t,) HQ)PZ(t) (I-MKy(t,)HJ)T
+ MK (t, ) RKT(t,) (112)
where
? I = Identity matrix
Hs = System measurement matrix
RS = System measurement noise matrix
and M = is the transformation matrix
| M = z_l. (113)

used to augment the K

e matrix with null elements in order
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to make the matrices conform for arithmetic matrix oper-

ations.

The tuning process involves varying the tuning param-
eters (QF and RF) until the covariance performance of the
truth model is at least a good as the covariance performance
of the filter model. Varying the tuning parameters refers
to the process of adding "pseudo-noise" to the filter
model to compensate for the modeling errors produced by
reducing the amount of information known by the system

(reducing the number of states).
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Appendix B H

The following plots are one-sigma error time his-
tories, generated by the General Covariance Analysis
Program, resulting from the sensitivity analysis of

the optimal Kalman filter, performed in Chapter II.
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Appendix C

Program STM - Quantized Eigenvalue Analyses Program

A listing of the computer program developed (modified
from Ref 3) to analyze finite wordlength effects, based
on eigemvalue shift criteria, is presented in this appendix.

The control cards required to execute the program

are

ATTACH,A,M371SUB, 10=AFIT.
ATTACH,BIMSL,10=LIBRARY, SN=ASD.
ATTACH,AFIT,AFITSUBROUTINES, ID=AFIT.

FTN.
LDSET (LIB=A/B/AFIT) .
LGO.

The input record file consists of the data card de-

scribed in the program and input cards containing the state

matrices F and L (in that order) by rows. The format for

the data cards is shown below (example is for 2 x 9 matrix)

Column 10 20 30 40 50 60 70

Card 1 - Dimension 2 9
Cards 2 to 5 -Data 0 1 G 0 0 0 2.156
(Right Justified) 0 2.56

~49 0 1 2 4 5 6

7 8

118




v

3

R

e A R M

gmwv:monmw.nﬁvaN..mu.u:..mavab-.m«.navN..mavz X31dW0J
(02 )WY ¢ .nu~< (GT)30°(ST)IN3 2

(ST ET)L  (GT4CTIOTIAVE(DS) AN (STESTIUB (ST¢5T)D T
C(GTST)INCUIC (ETAECTID  (STUSTINSC (ST4E€T)d NOISH3IWIO

A2 2R 12222 R R 22 RS2 A R RREZARRRRRER 2222222 AR 222222 2adidd

*03INI¥d UNV CzINdWCT €I (37CH¥ID LINMN 3HL O1 3NTIVANIIIZ

1J¥X3 3HL WOX: 3ONVISIC 3HL AS8 GS0IAIQ LJIHS 3NTIVANIOI3
G3ZIINVNO) 14IHS QG34ITWhCN 3L CNV ¢ (SINTVANS9I3 LOVX3 3HL WO¥Y)
14IHS 3NTIVAN39LI 3kl “S3NTVANIOI3 03LILINVNC 3HL ‘HLIIN3ITI0AOM

HOV3 LV °*(¥3SN ZkJ A8 C313103dS) 2SileN UNV TSLIIGN N33Ml38

K SH1I9N3T0YOM ¥C: G3ZIINNVIU SI XIWIVH NOTILIISNVYL 31VLS 3HL

: *W3ISAS 313AJSI0 3HL ¥OJ

031NdH0D W3HL 32V S3INTVANZ9I3 LIVX3 3HL °*XIYIVW NOILISNwidL
TFOYLINOJ 3HL SI & OGNV XI21Wk NOILISNVAL 31VIS 3HL SI V 3JY3IHM

vl (NINaB+ (N)XaV= (T+N) X
, A8 N3AI9 WYC4 313¥ISI0 3HL OLNI
10

Nal ¢+ Xad =
b 1]

WY0J 3HL 40 W3L1SAS SNCANILNOD vV S3ZI13YISIO WVIOO0¥d SIHL

I 3222221222222 RRRRRRARRRRZRRRRRLAL 2222 R AR 22122422 2dddd Rl

(LNalN0=$3dVL*INdNI=G3dVL¢ LNdLINO *ININIINLS HV¥I0¥d

COLLLOLLOLLLLOLLOLLLLLLLLOLLL

119




(XITIVH 9 w96 CT ¢HEN%Y) LINIUDH T1TVID
(GCCTEH N*I)0VINW TTVD

(«XI2UIVH 4 W5 CTENENCS) ININDHW 1TVD
(ST N*4)AVI¥H T1TVD

o SQQPZN“Q

o 3&*#2%&&

o o'«LNTYJI

10°G60T LNI¥d

I R R R R R R R 2 2 A R X 2 R R AR R 222122 2222 RRRRRR 22422 2R2RZ1

T ONV = S3JI®IVh W3LSAS SNONNILINOD INI¥d OGNV QV3Y
AVAS3 INI ONITdWYS LNI¥d

Q‘.’.Ql’."‘."t.“v.l.‘s¢t".bttt’t000.QQ‘Jll‘..t.t.”."".tt"'

90T LNI¥d
L0*2SLIUNCTSIIGN W X*00F QV3Y

[ 22222 2122 2 2 21 X2 2 2 RN P R R R R R RERRRR222 222222222 222222222222 2222 24

§°074 (SONCZ=ZS NI) TVA¥3LNI INIGkVS = 10
s1 1S323JM1 4C FIENITWO0YCM L1S3CeV™ = CSIIGN
) § 1S3N3 JN] 40 HISMITO¥OM L1S3TVTVKS = TSLIBN
SI T NI SMWNT0D 40 d38kAN = h
Ss1 h31SAS 3HL 40 Y300 = X
VW03 : -=St3IL3HVYVd OV3Y

 F X2 2R 2222222220222 RRRRRRRRRRRRZZ 222242 R RRRRRE2 2R Rd 2R dsss s

(AN RSNENANANENS

VLOLLLOLLLOLOLOOO

120




R B W o o Y i

AR P B gy A ki

2

(XINIVE V¥ w IEGT NN IVC1I) ININIW T1TVD
(F*I)0=(r*IINJ
(r¢1)ivoli=(r*ne

PRSP ARSI RN NI ATC NN P A D A A AN P AP A I AR R AR AR R AN AP AN RPN RS R AR RN
JY¥9I3 3NILINOY TSW] Ag 03ACJS30 SI 1I 33MIS V 3AVS ONY LNI¥d
R R L R R R PR R T g e

10V3(F*1)D+ (M 1)1V0L3=(r¢I)1vCL3
X¢t=r ¢ OuU
»¢1=1 £ 00
(STENEN X IENI*D) ADHH 1TVD
11/710410V3=10V4
001%2=1II £ 0C
JCatf*I) 34 (r¢1)1v013=(r*I)1voL3

n¥1=r 2 00

X*t=1 2 oa

10=19v4

0°1=(I*I)1vOL3
0°0=(r*1)1voL3
(Fr¢I)3=(r*I)NJ
1= % 00

A'T=I T 0OC

LR 2 AR R 222 22 AR 22 A R R R R A R E R R RS R R AR R 22 222222222 RREZZI 2R N2 AN 2 2 20

NOISNJVX3 S3I¥5S ¥OIAVL 30 SHW¥3L
00F AISUIJ YOI ONIATCS A8 ¢ v ¢ XIN¥LIUW NOILISAUYL 31VLIS 31NdHCID

(A2 AR 222222222 R 2  RE R R AR RRRR RS 2R 2 AR R R R R R A2 2222 222

7w

~

e}

CLOOLLOLLOO

Coovoooo

121




(IDM=(I)1L
%1=1I % 00
(I)30°707 LNI¥d
(I)W3-0°T=(I)30
X1=1 it 00
wZTCWID LINN WO¥S 3INVLISIO  L'eINI¥d

LA AR AR A Al AR A B R L R R A R R R R R T s R E R R R R L2 22 R 2 22222223

XI¥MIVW 31340SIC
40 S3NTVAN3II3 0L =7J2I0 JIM WO¥J 3ONVLISIO INIXd ONV 31NdHOI

/
LA AR AL AR A A R A R R R Y R R N R R R R R R R 2 e P R P R R R 22 2 222222222225

(IDH3*TO0T LNT¥d

((I)M)SEVYI=(I)NW3

A¢1=1 »1 00

IR R AR 222 22 AR 2 R NS FE R R ER R 2 AR R R R R 2 2 2222 2 2R 2R 222222222822 222

¥ . XT¥LlVA
313¥9SI0 40 S3NISAN3IOI3 3FJ) 40 S3O0NLINOYH INIXd ONV 3L1NJHOD

(82222 R 222 2 2 R 2 R R RERREZ AR R RRER22 2222222222 AR 222 22202222222

(I)M*E0T LININd

»¢1=1 £00% OQ
«SINTVANIOIS 1JVX3 w ‘«LlNIN¥d
QRIIHAMENZMT NN LV0L3)I¥IT3 T1TVD

L R2 2222222222212 2 R FARRRREZ SRR 2 2 0122222222222 222 N2

XIdluk z13¥TSIC 40 S3INTVAN3SI3 INIRd OGNV 31iNdHOD

A}

I EE AR 2222222222 R 2 RRRRIZSRRRRR2 2822 2 2R R 222222 ad2 2 22

st

-“wOOO0OLLLOLOO

K 4

“O0LOOOLOLLO

L]
o
o

(ANANANSNENE)

122

e

|



N %0T INI¥d

H19N3T10¥0M LNI¥d

~NOOO ©O

3WIS49I0CIVA=(r*I) 910V
((CCI)ESI0TAVAINIIS=910TVA ,
(2ICAINA VA EN) INYAU 9D _
(3°%0S/(rtI)e)Sev="T9A : |

: ¥éT=f 2 CO W
»1=1I 2 00 M
2SLISBN*TISIIEN=N LT 00 i
9
(SRR REZ22 2 23R A FEERERRER .‘Q‘..".t'."""’.l.i’.b .J’.'.Q’.’Q....'O U
2
" 2SL1IEN 3 o
01 TSLIGN WON3 SHI9NZIC¥0M 0= XI¥LVW NOLLISNVYL 31VIS 3ZILNVNO 2 ~
2
S R R R R 2222222 22 2 2 R E R X2 2R Y PER R 222222 2233 RRR2 2222 22222 22 2] Q
2
INNILNOD )
$ 01 09 A
0T «3703S=33S M
9 CJ 09 (*T*JI°(IINIS/(F*I)E)SBY) AT s |
T=f 9 00 |
%*1=1 9 00 1
*1=37V0S
' 22 222 2222222 2 2 R R 2R E R E s SRR R R EER ST ZZTZZ PSSR RRR 2R R 22 2R 222 2 u
9 :
INO NVH1 S$331 3
SININ3TI3 XI¥LIVH NOILISAWVR] 34VIS 1V SINVW LVhl 2010vd 31V3S GNI4 2
2
' 232222222222 2222 X EE s 2 2 RS Y REI SIS ZAC RS R AR SRR 2222222l 0 ' 5




«SZNTVAN39II
(MITH>réGTETL T

IEERZREZ22222233 222 AR ARRRRL R R RRARR 22222l s g

NOILISNVYL 3LVLS C3<ILINVAC 40 S3NTVA

3NNILINOD

(I)TM*T0T INI¥d
2¢T=1 <007 OO

0 .‘;—-z H“&

0T X*91I0V) Y913 1V

3NNILNOD

0°0=(r¢I)TL

X¢t=r 62 0d

0°0=(I)TM

%¢1=1I 02 00

22 REEREE 2222 2222 22 222

XITILVH
N3<SI3 INIXd OGNV 31NdWOD

22 2223222222222 222 2 F222REARR 2R RRRR 2222 2R 22 RARRRRRNE AR A2 a2 dd sl

¢T=ré(r

I EEARRRZIZ2 222 AR AR RRRRREZARRRRRRRZ2 2L Q4

¢I)9IUV)*£0T EINIV¥D
X¢T=1 4007 00

wkdf R D AR RINAS NI A AN edd

SXHMPQI ONNNPZCDO SQOPZHGQ

I RERRR 22222 20222222 2 RR R RRERRRTR 2222222 R 2t it idsdss]

9

Lt
s00T

0c

"o ooovoeCcoo0o

400

QO OoLo

124




o e o ‘ : v —— o , - :i4¢ﬁa1¢uwwwii1la“

WNIFRSREPRIPRNIPY

ON3
(THT) LYkd04 90T
(.SQN0D3S «$G°0T34.ST TUANIINT <NIVGWVS..*X0T) LaWN04 G071
(MI1%.= S1I8 40 Y3uhnN W) LYHUOS %01
(%°0T901) LVYHAODS £07T ,
(6°6149) L7HN04 101 1
(G*0T4°G1+) LYHHO0S 0ot
(XI2IVH 8 w®I36GTREN'0E) AINTYDA T1IVD
(STEHE X N4 9%t 08) AdHH 1TVD

1La(r¢e=(r*1ve £7
»¢T=r €1 00
X¢1=I £1 CQ !
(F¢I)O=(r *I)N4 A 4

V(D24 (rtnE=(r¢nHe
A¢T=r 2T Cu
#¢1=1 27 00
(STENEXENC 34N D) AcHH 1TV
11/10#10V3=10V4
00T¢e=I1I 2T 00
LVie(réI)as (réfne=(renag 144
»¢T=r 11 00
. X31=I 11 0Q
, *2/1Q0=19v4
; *I=(I'I)8 ot
*0=(r*De
(FI)4=(r*IINS ; :
X¢T=C 0% 00
%*1=1 01 00 \

125

IR AR R R 2 2 2 R R 2 X2 2 T2 R T2 RERRRZRRRRRRZ A2 22222 FAARRRRERERAS L Rad s s

‘8 ‘(XIY¥LVH
NOILISNVYL T0¥INOJ) XI¥iVh TCYINOD 31340SI0 INI¥d ONV 3JLINDHCI

COOLOLOLO

IR TR 22 ¥ 2 22 R R R 2 RRZRI2RERREERRSRREAAZ SRS R AR AR 2222 Addddsds )




GN3
N3anlL3d
TOTVA=9L0TVA

*0=9iCGTVA

N3¥NL3d
SIGIVA=T0IVA (VA 17°9I0WA) 4TI
TOWA=9ICTWWA(CTIVA-SIC VAISEY* LI (IVA-TOIVA)SBY) 41
(Iax°*2)/°T+TUAVA=9IAIVA
INCSLIEI=I £ 0Q

T-N=IN

9 01 09(IVA°D3°T0TWA)JI

. T 01 09

2 01 CS(IVA*3T°TATWA) 4TI

3 % 01 09(N°19°SIIdI)JI

T+S1I8I=S1lIel

(S1I8Iw«2)/°T=1QTVA

LR AR 22222 AR R A R R R A R R R R A I 2 P 2 R R e R R 2 R 2 R R N S 2

‘WIS ‘Wv2SCxd SAITIVI 3HL GL XIv8 17NS3¥ 3HL S$3SSvd

AR AR AR RN N R R RN O TR N e AR AV AN AN R AR P A D R AN AR AR AN T AR PR RARRANN I A PR Ay A

(9I0IVACTIVACN) AINVND 3NILNONENS

N3NL3Y

T=S1I6I

ONV SLIGN 01 “IVA “3TeVI¥VA 3HL S3LIUINVND 3NILNOY STIHL

-l

COO0OO0OLOOLOO

126




o M A i i

B M

Appendix D

Sub-Optimal Filter Models
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Appendix E

Augmented Kalman Filter Models
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Eight-State Model
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