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ABSTRACT

A new method for the numerical simulation of three-dimensional

incompressible flows is described, Our vortex-in-cell (VIC) method 1

traces the motion of the vortex filaments in the velocity field these l
filaments create on an Eulerian mesh via the fast integration of a ]
Poisson equation. By incorporating the viscous or subgrid-scale

effects into a filtering procedure, the computed scales of motion !;
are assumed to be essentially inviscid. Results on tracing a :
periodic array of single vortex rings are compared with a Green's :

function calculation.
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1. INTRODUCTION

In this paper, we describe a new method for the numerical simula-
tion of three-dimensional incompressible flows. Our approach differs
from other numerical fluid simulations in that, rather than solving
the Navier-Stokes equations on an Eulerian mesh, we trace the motion
of the vortex filaments in the velocity field these filaments create.
In addition, the velocity field is not calculated directly by Biot-
Savart's law of interaction as in[1’2’3], but by creating a mesh-record
of the vorticity field, then integrating a Poisson equation to get the
stream function and generating a mesh-record of the velocity field.

The vortex filaments are then stepped forward in time.
Vortex pushing methods--as distinct from Navier-Stokes methods--

(4-8]

have a history of success in two dimensions . In three dimen-

(1,2,3]

sions , one of us has applied it to a small number of simple
vortex filaments, but at considerable cost because of the time required
to sum all the mutual Biot-Savart type interactions between the many
elements in all the filaments. The "cell" or "mesh" method speeds up
the calculation of the interactions and allows the three d._mensional
vortex pushing method to be applied to a space densely filled with
vortex filaments, each filament being resolved in fine detail along its
length. The techniques of making optimal use of the mesh for evaluating
interactions between different fluid elements are the same as those

used by plasma physicists for calculating particle interactionstg-]?].

In creating a code for the evaluation of local flow fields due to a

family of vortex filaments we have therefore taken over the principles
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and architecture of a code developed for magnetic field evaluations

[12]

in plasma simulations
An outline of the remaining sections of the paper 1is as follows.
The fundamentals of vorticity dynamics relevant to our technique are
discussed in Section 2 and a description of the computational method
is given in Section 3. In Section 4, the results of computational
experiments involving vortex rings are presented and discussed while

conclusions and suggestions for further work are given in Section 5.

2. BASIC PRINCIPLES
We assume an unbounded incompressible flow, fully periodic in the
three dimensions. In each periodic box, the vorticity field consists
of a collection of vortex filaments. The governing dynamic equation

for the vorticity in these filaments, W= 9X o , is

Y

Dy

Dt ™ R vvzm (2.1)

where Vv 1is the viscosity and the velocity field is determined kinema-

tically from
.[?B-VX$ (2.2)

In the following we assume that the computed scales of motion are essen-
tially inviscid. Any viscous or subgrid-scale effects on the computed
fields are incorporated into the filtering procedure introduced below
and described in more detail in the next section.

Thus, from the Kelvin and Helmholtz theorems, each filament may be

followed throughout the time history of the flow in a material reference

e Sl sl i a




frame with the circulation T of each filament remaining constant in

r-fa'-d’l-ffzﬁ-dx (2.3)
A

Here A 1is the cross-section area of the filament. In particular,

time.

the vorticity field in each box is taken to be

- > by N -
2@ :}rc(r-r') s ) (2.1)
where G is a filter function and the unfiltered vorticity is generated

by the space curves ?i(g) as follows:
-
5 or
a@) =3 v, f 62,(6)) 5t a - (2.5)
i

Here € 1is a parameter which traces each filament along its length at
any instant in time. 7The summation is over individual vortex filaments.
The evolution of each space curve is determined from the filtered velo-

city by
37, (€)
ot

fo#) @) @ (2.6)

with U determined from (2.2). Using the same filter G in (2.6) as

in (2.4) will ensure momentum conservation.

3; COMPUTATIONAL DESCRIPTION
For a variety of reasons, the vorticity field and other fields are
conveniently expressed in Fourier space, just as in the more successful
numerical attacks on the turbulence problem by solution of the Navier-
(13-17]

Stokes equation . The main reason why the velocity component

is recorded in spectral form is that calculus (differentiation and
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integration) translates to algebra (multiplication and division) in

the spectral domain. Of course, this implies periodicity in all

three dimensions. However, the potential of getting away from finite-

B8 Ty e ST

difference methods by means of spectra cannot be fully realized. In
principle, local evaluation of F(T) by summation of individually
calculated trigonometric functions sin(ﬁ;:) . cos(ﬁ'?) would

eliminate grids. In practice, when this has to be done at a large

number of places, as in vortex tracing, one must first transform the i
spectrum F(:) onto some grid and then interpolate for arbitrary T
from nearest grid data. Likewise, when the excitation of a spectrum
by local sources of vorticity is evaluated, a similar act of inter-
polation is called for.

At this point, before going into details, a schematic description

PEICE

of the computation is given below.
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where ¥ 1is the Fourier transform of the vector potential. The differ-

ent parts of the scheme will now be explained, namely the numerical

modeling of the vortex filaments, the interpolations that take place,

the shaping of the vortices and the time-stepping procedure.

3.1 Filament Modeling: In our model, one describes each vortex fila- [

ment by a succession of closely spaced markers. Considering a single

vortex in (2.5), we have "

w(") = I'fé(r-r@)) ar dg

at an instant t , where I is given by (2.3). Taking the Fourier

transform, we get

w(f?) f -1R-F I"f()(_‘-r(g)) br d€ d7Y

If we now discretize T into piece-wise linear sections,

- > -
"(g)j,j-l' 3 T, + (1-8) i CEEx] ,

m
~ ] e
B0 =3 f @, ) e FTE) g

j-1
j=1 o0

R B i S A AR S T4 i i T A

is the total number of markers describing the filament;

-

2 o
r = ?o . Integrating (3.1) and letting ke (rj-r]_1)= €
2

- , we obtain:

i

3
%
|
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Rather than interpolating each trigonometric function in the Fourier
series separately, it is more efficient to first distribute vorticity
onto the grid according to an interpolation process and then perform

an FFT. To do this, we must be able to express sin ej/ej as com-

-RT

- -
bination of e where ? is a function of rj and rj-l .

(18]

In our case, evaluating (3.1) by gaussian quadrature , we obtain

"y

m
o® =T, @2, )
=

:

X e-ﬁ'(~!5[(1+3'3“)}’j + (1-3"‘)?j_1]+ e-ﬂ?‘%[(].-3'%)?j+(1+3-%):j_]]

Indeed this is equivalent to the approximation,

-ie 3'}“ ie 3"5

s €1 =@ i + e 3 & cos(ej )
ej 2 3%
=
ke

iker
What we want now is to replace the pure harmonic e for arbitrary
-y

r by an approximant to be evaluated on the discrete spatial mesh.

3.2 Interpolation: 1In each of the three dimensions we use quadratic

spline interpolation to approximate eikx in terms of e1kn « In

particular eikx is represented in the interval n - ¥ <x < n + %

as the superposition of three parabolic arcs as follows:

oikx s(k)[% b = _;_)2 ik(nt1) +(3 o iy n)2)eikn

(n+ % - x)2 eik(n-])]
2

+
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Rather than choosing the function S(k) to force agreement at the

| - point x=n , we select S(k) to minimize the mean square error over

(12]

the interval n - ¥ €S x <n + % . This leads to:

s(k) =(§ sin %)3/(1 - sin2

Therefore, the three nearest grid points in each dimension (27

+

n|=
&

sinh g)

in all) will share the vorticity distribution according to the spline
function weighting on them. In other words, this is a particular way
to distribute a finite-sized vorticity on its neighboring grid points.

The quadratic spline weighting is superior to the zero-order weighting

(NGP model) and first-order weighting (CIC model) in the sense of

creating less field-noise and resulting in smoother simulation func-

[19]

tions . This is an obvious conclusion since vorticity is now dis-

tributed among three grid points instead of one or two as in the other
models and the interpolated distribution is quadratic rather than a
piece-wise step function, or first-order linear function, with discon-

tinuous derivatives. There is also a reduction of aliassing.

3.3 Shaping: It is intuitively obvious that low-lﬁl harmonics are

interpolated by a certain tabulation mesh better than high-!?

harmonics. Aliassing sets a limit at kmax = /A for each component

m

of ¥ (A = mesh spacing): any harmonic with a k-component higher

'+ than this will be misinterpreted by the interpolator as a corresponding

lower harmonic with all k-components lying within the interval

(-m/b , w/b) .

The effects of a finite cut-off of the spectrum on the piysics to

be computed is an important question separate from the question of




interpolation. Two aspects of the cut-off problem are worth emphasiz-

ing.

P Firstly, a sharp cut~off in Elspace is undesirable (no matter how
perfectly each harmonic is evaluated) because it surrounds the objects
that interact via the field with halos in ?—space. The halos decay
only weakly with distance, like . 1/r. 1If instead, the spectrum is
brought to zero more smoothly, say at least parabolically, such halos

become attenuated more strongly. A bell-shaped cut-off factor éQ(IQl)

suggests itself. Consequently, even if the object of interpolation
studies is to push up the maximum usable k , it should concentrate on
performance in the range of low and intermediate !?l;‘?[—values nearc
kmax become irrelevant.

Secondly, any cut-off factor é?(lﬁl) implies a shape for the
interacting vortices which is the Fourier transform of é(l?!): this
is so because the shape enters the field interaction process twice,
namely both when the field harmonics are excited by the local sources
(vortices) and when the field harmonics react back on them. So, any

such factor in the spectral domain (introduced primarily for the purpose

of fitting the field harmonics into a finite computer ) can be interpreted

physically as vorticity-spreading.

There are gooa reasons for introducing shapes of the interacting
elements even when no interpolation is used at all and spectral data
are evaluated precisely, without grids and tabulations. Firstly, the
interacting "fluid elements" in the real world are usually much more

L numerous than those that can be accommodated in a computer with its

peripheral storage. Each element in the computer stands in for a swarm

e v ———
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of real elements. It should therefore be given a spread. Secondly,

the binary interaction of "fluid elements"

is unrealistically strong
if they are treated as delta-functions in space.

We note that the shape factor should be isotropic in space: it
knows no coordinate axes., We choose an approximately gaussian profile,
equivalent to a gaussian shape in (x,y,z)-space, but brought to a

-
strict zero at some maximum |k| . De-emphasizing the harmonics close

to, and just below kmax will further reduce aliassing.

3.4 Solving: If we now consider equation (2.2) in Fourier space, the

velocity field at the location of a '"vortex-marker' is obtained by
weighting the entries in the table of spline amplitudes with the spline
weights. The latter are deduced from the relative position of a vortex
in its interpolation cell. The spline amplitudes are obtained from the
velocity harmonics by first multiplying with a factor S(kx) and two
similar factors which have ky and kz in place of kx , then calling
a three-dimensional FFT on the resulting array.

The same factors appear again when the displacement of the kth
vorticity harmonic is calculated. The interpolation can be done for the
sum of all the harmonics, and the tables into which one interpolates are
then the FFT's of the harmonics of vorticity, modified by the factors
insuring best mean square fit in each dimension.

In going from the table of spline amplitudes for vorticity to the
table of spline amplitudes for velocity harmonics, one therefore has

not only to perform a forward and backward FFT, with equation (2.2) in

-y
k-space in between, but one must also introduce the squares of the

spline fitting factors indicated above.

10
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Similarly, we mentioned that any vorticity shaping factor should
be introduced both when the local velocity field action on the distri-
buted vorticity cloud is evaluated and when its excitation of the
vorticity harmonics is accumulated. In both cases, one could perform
a convolution in (x,y,z)-space, but is is much quicker to replace this
by a multiplication in i—space. The transform of the shape factor is
therefore introduced squared along with the above mentioned spline
fitting factors in the course of solving the equations for the velocity
field in Kk-space. It is convenient to introduce the (squared) shape
factor along with the inverse Poisson operator llk2 . In our present
163 code there are only 64 possible different values of k2 in the
sphere I?l < kmax » so any function of lfl can readily be pretabu-
lated.

3.5 Time-Stepping: So far in the code, we have been using the well

known leap-frog method with the first step generated by Euler's method.

[20]

This method is unstable but was used mainly to test our code. In
fact, we already noticed the instability of this scheme in our two-ring
experiments.

Nevertheless, used with an occasional forward Euler step, it seems
to be possible to suppress the weak instability associated with leap-
frog differencingtl].

4. RESULTS OF THE COMPUTER EXPERIMENTS
The computer used was a CDC 7600 located at NASA-Ames Research

Center, The present mesh size is 163.

A first test was done on a single vortex ring of radius R about

the =z-axis. Its center is initially located at (8,8,8) in our mesh




and thereafter moves along the z-axis. The circulation is I' = 2 .

In particular we investigated the initial speed of the vortex ring as

a function of radius and position around the ring.

To check the accuracy of our mesh technique we also computed the
speed of the vortex ring using a continuum or Green's function approach.

Since the filter we use in the mesh method is approximately gaussian,

we consider a single vortex ring of gaussian cross-section. Following

the procedure as defined by (2.4-2.6), we obtain as its filtered velo-

city of translation in free space

92 I:_ f(a) —)--—), *
& “nf 123703 g )"§g dg (4.1)

where a = ‘?¥?l|/230 , 0 1is the radius of the cross-section or
2
the width of the gaussian filter and f(a) = 21n-l“ae—a - erf(a) .

(1t should be mentioned that for 0° << R° , (k.1) can be approxi-

mated to yield _3_?_”[__ [ln 8R) ¢ P where C = 1.058 and e
at LR - ® 4

the unit vector in the direction of tramslation 2z . Note that
the actual speed of a thin vortex ring with a gaussian distribution

1§
of vorticity has been calculated by Saffman[‘]] and is given by the

above formula but with C = 0.558. The difference is due to the fact

is

that Saffman's result is based on the collective motion of an infinite

number of vortex tubes with internal interaction between the filaments

whereas our result represents the speed of a single computational

ring filament). To (4.1), we then add the Biot-Savart contributions

of the periodic images.

In Figures 1 and 2, we plot the total velocity of translation versus
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R for a periodic array of our single rings. Our vortex-in-cell

results are compared with the Green's function method given by (4.1) {

plus image contributions. The gaussian width used in the Green's
function calculations was chosen to give the best fit to the vortex-
in-cell results and was found to be 02 = 1.1 times the cell area.
This is in good agreement with a theoretical estimate of 02 = 12/n2 |
o~ 1.2 based on a gaussian fit to the low |V| behavior of our filter.
Recall that our filter is not strictly gaussian but is brought smoothly

to zero at l?l = 1 . Figure 1 shows the velocity recorded at points !

of the ring close to the x- and y-axes, where the velocity should ?

be minimum since the images are closer. Figure 2 shows the velocity

s SN Tk R

recorded at points 45 degrees off the x- and y-axes, where the
velocity should be a maximum.

The four next figures show pictures of the initial velocity field 1{
in the middle of the mesh cells for a ring of radius R = k.

Figures 3 and 4 show the field in the planes 1.5 mesh units below
and above the plane of the ring, respectively at z = 6.5 and z = 9.5,

where the magnitude of the field is the same but pointing in opposite

directions, respectively toward and away from the center of the ring.
Figures 5 and 6 show the field in the planes x = 6.5 and x = 9.5 .

Figure 7 shows the lateral vortex profile in the (x-z)-plane at four

instants. We can see the constancy of the motion.
i‘ From these results, we derived an estimate of the CPU time per
time step to move a vortex made of m markers. For m = 360, it takes

0.41 CPU seconds per time step; for m = 720, 0.48 CPU seconds per

m
5000

step. All calculations were done with leap-frog stepping in time

time step. So in general, it takes 0.34 + CPU seconds per time

|
13 1
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that involves only one evaluation of the derivative per step.

A second test was done on a set of two vortex rings of radius

R =4 about the z-axis. Their centers are initially located at
| 3 (8,8,7) and (8,8,10) in the mesh and thereafter move also along the

z-axis. Both have the same circulation I =2 .,

R

We know that two similar vortex rings at some distance apart on
a common axis of symmetry play the following game. The velocity field
associated with the rear vortex ring has a radially outward component
at the position of the front ring and so the radius of the front ring

gradually increases (with T constant). This leads to a decrease in

L

its velocity of translation, and there is a corresponding increase in i
| the velocity of translation of the rear vortex which ultimately passes
through the larger vortex and in turn becomes the front vortex. The
maneuver is then repeated. Indeed, we observed that maneuver.
Figures 8, 9 and 10 show the initial velocity field respectively
in the planes z = 5.5, z = 8.5 and z = 11.5 . As expected, at
z=5.5and z = 11.5 , the magnitude of the field is the same but
pointing in opposite directions, respectively toward and away from | 8
the center. At z = 8.5, centrally between the two rings, the field

reaches a minimum. Figures 11 and 12 were taken at x = 6.5 and

X = 9.5 . The last five figures (13-17) show the displacement in the
(x-z)-plane and the (x-y)-plane at ten instants. We see the rings
going through each other repeatedly and the buildup of distortions due

to the influence of images. | 3
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5. FURTHER WORK

As our next step, we shall initialize our code to the Taylor~

[22]

Green vortex system . This system has the three-dimensional
periodic structure which is built into our first version of the code

(by virtue of using complex FFT's). The Taylor-Green system has

undergone both analytical study[13’23]

{o4,25]

and numerical study by methods
other than ours The system is one of continuous vorticity,
and it is important to represent such a continuum by a sufficient
number of discrete vortex filaments. Sensitivity to the coarseness

of this discretization (which is distinct from the discretization of
the spatial mesh, and the time stepping) is to be explored.

One essential improvement of our code will be to proceed to
finer meshes than 163. With a finer mesh one could then explore the
evolution of vortex structures which have not been studied hitherto,
and make reliable predictions from the computer output.

Several further code modifications are called for. The periodic
boundaries ought to be changed so that one simulates (possibly vortex-
shedding) planar walls in one or two of the three dimensions. This
is done by replacing complex FFT's with readily available sine and
cosine transforms. One would retain periodicity in the third dimen-
sion, having in mind the simulation of channel flow or flow through
a re-entrant wind-tunnel of rectangular cross-section (but with curva-
ture effects absent). Another variant is the simulation of "infinite"

[26] (27),

boundary conditions using similar approaches as in and in
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