

NEVERSINK RESERVOIR DAM SULLIVAN COUNTY NEW YORK INVENTORY NO 348

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

DDC FILE COPY

NEW YORK DISTRICT CORPS OF ENGINEERS

AUGUST 1978

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

79 01 25 023

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG HUMBER 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Phase I Inspection Report Phase I Inspection Report Neversink Reservoir Dam National Dam Safety Program Sullivan County, New York 6. PERFORMING ORG. REPORT NUMBER Inventory No. N.Y. 348 7. AUTHOR(*) E. CONTRACT OR GRANT NUMBER(6) DACW51-78-C-0035 John B. Stetson 15 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 3. FERFORMING ORGANIZATION NAME AND ADDRESS Dale Engineering Company √ Bankers Trust Building Utica, New York 13501 11. CONTROLLING OFFICE NAME AND ADDRESS New York State Department of Environmental Con-18 September 1978 servation / 50 Wolf Road 13. NUMBER OF PACES Albany, New York 12233
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS, (of this report) Department of the Army 26 Federal Plaza / New York District, CofE UNCLASSIFIED New York, New York 10007 154. DECLASSIFICATION/DOWNGEADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution unlimited. 17. CISTRIBUTION STATEMENT (of the abstract entered in Flock 20, Il dillerent item Report) National Dam Safety Program. Neversink Reservoir Dam, (348), 18. SUPPLEMENTARY NOTES Delware River Basin, Sullivan County, New York. Phase I Inspection Report. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety Sullivan County National Dam Safety Program Neversink Reservoir Dam Neversink River Visual Inspection Hydrology, Structural Stability 20 ABSTRACT (Continue on reverse side if necessary and identity by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. Neversink Reservoir Dam was judged to be safe.

TABLE OF CONTENTS

	Page
Assessment of General Conditions	i
Photographic Overview of Dam	ii-ix
Section 1 - Project Information	1-4
Section 2 - Engineering Data	5
Section 3 - Visual Inspection	6-7
Section 4 - Operational Procedures	8
Section 5 - Hydraulic/Hydrology	9-10
Section 6 - Structural Stability	11-13
Section 7 - Assessment/Remedial Measures	14-15

FIGURES

Figure Figure		Location Plan Locality Map (January 1948)	BOOMBOUNCE SPECIFICATION
Figure	3 -	Location Plan (January 1948)	•
Figure	4 -	General Topography (January 1948)	1
		Detail Topography (January 1948)	37
		Plan (January 1948)	AISTERNATION IN
Figure	7 -	Profile (January 1948)	Cist.
Figure	8 -	Sections (January 1948)	^
Figure	9 -	Plan and Boring Data - Borrow Area No. 1 (January 1948)	H
Figure	10 -	Plan and Boring Data - Borrow Area No. 2 (January 1948)	
Figure	11 -	Weir and Channels - Topography (January 194	8)
Figure	12 -	Weir and Channels - Plan and Section (January 1948)	
Figure	13 -	Weir and Channels - Plan and Section (January 1948)	
Figure	14 -	Weir and Channels - Plan and Section (January 1948)	
Figure	15 -	Weir and Channels - Section (January 1948)	
		Diversion Tunnel - Closure Details (January	1948)

ASSESSION OF REAL PROPERTY CORES CONTROL AVAIL AND OF SPECIAL PORTS COLL AVAIL AND OF SPECIAL PORTS

APPENDIX

Field Inspection Report	1
Previous Inspection Reports/Relevant Correspondence	E
Hydrologic and Hydraulic Computations	(
References	T
Attachments	E

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam Neversink Dam & Reservoir NY348

State Located New York
County Located Sullivan
Stream Neversink River
Date of Inspection July 21, 1978

ASSESSMENT OF GENERAL CONDITIONS

The Neversink Dam is an earthen dam with a concrete cutoff wall. The cutoff wall is founded on rock and the foundation is grouted. The dam has been in operation since 1953 and has received continual maintenance by the City of New York, owner of the structure. This investigation has found nothing to deem the dam unsafe. The visual inspection encountered a number of maintenance items which should be performed. The embankment has a large number of animal holes which should be filled and seeded to prevent surface erosion. The owner should consider retaining the grassed embankment and to continue mowing rather than planting crown vetch which easily conceals seepage, minor sloughing and surface cracks should they occur. Some deterioration of the spillway concrete has occurred which should be repaired. Exposed shale along the western upstream abutment should be protected from erosion. An analysis of the dam's spillway indicates the structure is capable of passing a Probable Maximum Flood.

OF NEW JOOD HE WAS TO PROFESSIONAL HISTORY OF PROFESSIONAL HISTORY OF THE PROFESSIONAL

Approved By: Date: // September 1978 Dale Engineering Company

John B. Stetson, President

Col. Clark H. Benn

New York District Engineer

Overview of Neversink Dam Embankment.

 View east along downstream side of the top of dam.

2. View of downstream embankment from same location.

3. View of upstream embankment and riprap.

4. View of right upstream embankment near abutment.

5. View of downstream embankment from below dam. In left center of picture is a small shed which remains after construction.

6. Typical woodchuck hole in downstream embankment (estimate 100 holes in embankment).

7. Another woodchuck hole showing extent of earth that can be removed. Minor sloughing also occurs.

8. Gate house area showing control gate mechanism. Full time staff keeps facility well maintained.

9. View of emergency spillway from stilling basin area. Notice significant vegetative growth in spillway. Left is fence.

Discharge tunnel is submerged in basin.

10. View of downstream area below stilling basin.

11. Stilling basin weir.

12. View of entrance to discharge tunnel. Some spalling has occurred.

13. Spillway side channel. Significant spalling has occurred in this area.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM NAME OF DAM - NEVERSINK ID# - NY617

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

Authority for this report is provided by the National Dam Inspection Act, Public Law 92-367 of 1972. It has been prepared in accordance with a contract for professional services between Dale Engineering Company and The New York State Department of Environmental Conservation.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the structural and hydraulic condition of the Neversink Dam and appurtenant structures, owned by the City of New York, and to determine if the dam constitutes a hazard to human life or property and to transmit findings to the State of New York.

This Phase I inspection report does not relieve an owner or operator of a dam of the legal duties, obligations or liabilities associated with the ownership or operation of the dam. In addition, due to the limited scope of services for these Phase I investigations, the investigators had to rely upon the data furnished to them. Therefore, this investigation is limited to visual inspection, review of data prepared by others, and simplified hydrologic, hydraulic and structural stability evaluations where appropriate. The investigators do not assume responsibility for defects or deficiencies in the dam or in the data provided.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

The Neversink Dam is an earth embankment with a concrete cutoff wall. The concrete cutoff wall is founded on rock and extends from the rock foundation up to an elevation of 160 feet below the top of the dam at its center and slopes up to an elevation of 20 feet below the top of the dam near the abutments. The concrete core wall is surrounded by a central core section composed of Class A embankment compacted to 97 percent of maximum density. The remainder of the dam is composed of Class B embankment constructed to less stringent compaction requirements. The Class B embankment is covered by rock to a depth of 20 feet at both the upstream and downstream toes and reducing in depth to 10 feet near the top. The rock embanking is topped with 24 inches of earth cover and 12 inches of topsoil. The upstream slope of the dam is 2-1/2 horizontal to 1 vertical at the top flattening to 3-1/2 on 1 at the

toe. Downstream, the slopes are 3 to 1 at the top and 4 to 1 at the toe. The dam is approximately 3,000 feet long and has a maximum height of approximately 190 feet. The top width of the structure is 60 feet. The upstream face is riprapped for a length of 225 feet along the slope with the riprap terminating at an elevation of approximately 60 feet below the reservoir flow line.

The major spillway is located near the northeast end of the dam and is a side trough spillway with an ogee crest and a trough which discharges into a 30 foot diameter tunnel which conducts the flow to a stilling pool in the Neversink River. An aboveground waste channel is provided to carry flows which cannot be accommodated in the tunnel. This waste channel is spanned by a steel arch bridge which carries a highway across the channel to the dam. Flow in the Neversink River is maintained by regulating a discharge from the reservoir to the discharge tunnel through gates in the control building.

b. Location

The Neversink Dam is located in the Town of Neversink, Sullivan County, New York.

c. Size Classification

The maximum height of the dam is approximatley 190 feet. The storage volume of the dam is approximately 142,000 acre feet. Therefore, the dam is in the large size category as defined by the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

There are many small residential developments situated along the banks of the Neversink River, the receiving stream from the impoundment. Route 55, a New York State Highway traverses across the top of the dam. Therefore, the dam is in the high hazard category as defined by the Recommended Guidelines for Safety Inspection of Dams.

e. Ownership

The dam is owned by the New York City Bureau of Water Supply.

f. Purpose of Dam

The dam presently functions as a water source for the City of New York. Flows from the impoundment are conducted through the Delaware Aqueduct to the New York City Water System.

g. Design and Construction History

The Neversink Dam was designed by the New York Board of Water Supply. Construction began in 1941 and was completed in 1953. Detailed accounts of the construction may be found in the Delaware Water Supply News which were published during this era.

h. Normal Operational Procedures

The Neversink Dam and Reservoir are actively operated as a water supply for the City of New York. A full-time staff provides routine maintenance and overall surveilance of the dam, reservoir and upland drainage area.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area of the Neversink is 89.5 square miles.

b. Discharge at Dam Site

No discharge records are available at this site.

Computed Discharges:

Ungated spillway	, top of dam	120,000 cfs
Ungated spillway		50,400 cfs
Ungated spillway		98,500 cfs

c. Elevation (feet above MSL)

Top of dam	1460
Maximum pool - PMF	1452
Spillway crest	1440
Stream bed at centerline of dam	1265

d. Reservoir

Length of maximum pool	27,000 feet
Length of normal pool	26,500 feet

e. Storage

Top of dam	142,000 acr	e feet
Normal pool	112,000 acr	e feet

f. Reservoir Surface

Top of dam	1750.3 acre
Spillway pool	1477.76 acre

g. Dam

Type - Earth.
Length - 2450 feet.
Height - 190 feet.
Freeboard between normal reservoir and top of dam - 20 feet.
Top width - 60 feet.
Side slopes - 2.5 horizontal to 1 vertical - upstream.
3 horizontal to 1 vertical - downstream.
Zoning - Yes.
Impervious core - Core wall.
Grout curtain - Extensive grouting.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

The information available for review of the Neversink Dam included:

- 1) Contract description of work and specifications or the construction of Neversink Dam, Contract 365, January 2, 1948.
- 2) Contract description of work and specification for the construction of Neversink Tunnel, Contract 386, January 2, 1948.
- 3) Drawings titled "Distribution of Various Class B Materials, Place in Neversink Dam", Section at Sta 18 + 00, December 31, 1949, brought up to date December, 1950.
- 4) Drawing on borrow area locations dated October 31, 1947.
- 5) Drawing on borrow area No. 1, Soil Analysis dated December 29, 1945.
- Drawing on borrow area No. 2, Soil Analysis dated December 30, 1946.
- 7) Drawing on Neversink Tunnel, Contract 386, entitled "Generalized Geologic Sections Showing Geology as Exposed During Excavation".
- 8) U.S.G.S. quad sheets of the area.
- 9) See Appendix D of this report for other references.

2.2 CONSTRUCTION

The information regarding the dam's construction is stored in the archives of the New York City Board of Water Supply. A significant amount of information on the construction was obtained from the Delaware Water Supply News (See Appendix D).

2.3 OPERATION

See Section 4.

2.4 EVALUATION

The Engineering data reviewed, indicates that the dam was carefully constructed. A complete evaluation of the vast amounts of data are beyond the scope of this report. Nothing has been found to require additional research for review of such data at this time.

SECTION 3 - VISUAL INSPECTION

3.1 SUMMARY

a. General

The visual inspection of Neversink Dam and Reservoir took place on July 21, 1978. The large earthen dam has, reportedly, not undergone any significant improvements since being put into operation. Mr. Ben Musso, Section Engineer in charge of maintenance of the dam has been working and/or living at the site from the beginning of the dam's construction. He indicated that the New York City Board of Water Supply, designers and managers of construction of the facility, routinely inspected the dam for a number of years after its construction. Early efforts included routine maintenance and record keeping of piezometers and the survey of monuments on top of the dam. Mr. Musso was questioned about an incident referred to in a text on earth dams (Ref. 12) related to internal embankment cracking. The text referring to a discussion in the Delaware Water Supply News (Ref. 7) indicated that the rigid concrete cutoff wall which extended well up into the embankment, produced internal cracking in the embankment due to the high compression stress developed near the top of the concrete structure. This internal cracking reportedly produced a pervious zone 50 feet above the foundation in the otherwise very impervious core area. Mr. Musso indicated he was unaware of this situation. The inspection did not detect any sloughing, seepage or cracking in regards to that specific incident.

b. Dam

The dam and spillway system visually conforms to the plans. The dam embankment is shown in Photographs 2 and 5. A cover crop of crown vetch is being established on the downstream face (See Photograph 2) to eliminate the need for mowing the embankment. At this time, the major portion of the embankment receives periodic mowings. Animal holes have been a continued source of nuisance in maintenance of the embankment. The inspection disclosed approximately 100 woodchuck holes on the dam. Minor sloughing and minor erosion around woodchuck holes is evident in a number of locations on the face of the embankment. The embankment was inspected below the toe and at the abutments with no evidence of sloughing, movement or seepage. The west abutment has outcropping of loose rock material. This material does not show signs of erosion, but should be protected against future erosion potential. The riprap is generally in good condition.

c. Spillway

The spillway is a masonry ogee type structure which falls in three tiers into a large side channel spillway trough. Significant spalling of the concrete floor system with some undermining of the spillway facing has occurred and minor seepage was evident at the time of inspection. The masonry work generally remains in good

condition. Drain covers in the spillway were removed at the time of inspection making the drainage system subject to possible clogging from debris over the spillway. The spillway discharge tunnel was viewed from above but no visual assessment could be made of the structure.

d. Appurtenant Structures

The drawdown intake structure was visited in the below grade intake area. It was demonstrated by the Bureau of Water Supply that the system was operating properly.

e. Reservoir Area

The reservoir area is generally forested; some exposed ground areas have contributed relatively small amounts of erosion and sediment into the reservoir in the past. The Bureau of Water Supply has planted trees in these areas to stabilize the bank of the reservoir.

f. Downstream Channel

The downstream channel was found to be in good condition.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

Operational procedures were not observed by the inspection team. The dam and reservoir is owned by the New York City Board of Water Supply and are maintained by the staff of the Delaware Division located in Grahamsville, New York. It is the staff's responsibility to maintain and operate the facilities under the direction of the central office in New York City. Operators are believed to be on duty at all times at the site. Mr. Ben Musso indicated operation manuals and/or procedures are documented for all appurtenances. During normal conditions, the water surface elevation of the reservoir is at the spillway crest.

Control gates in the intake chamber building can divert flows via a tunnel into Rondout Reservoir and into the Delaware Aqueduct system and/or into the Neversink River. Maximum discharge in Neversink River under normal head is 200 MGD, while maximum discharge into Rondout is 500 MGD. Neversink Reservoir contains 37 billion gallons of water. The New York City Water Board augments discharges into the Delaware River System to meet minimum daily flow requirements according to a Delaware River Basin Agreement. During hot summer weather periods, flows are augmented above the minimum level to provide a proper dissolved oxygen-temperature relationship to support fish populations downstream of the dam.

4.2 MAINTENANCE OF DAM

The dam is maintained by its full-time maintenance staff. The Delaware Division Operations Center has a complete staff capable in operation and maintenance engineering for the facility.

SECTION 5 - HYDROLOGY AND HYDRAULICS

5.1 EVALUATION OF FEATURES

a. Design Data

For this report, no information relevant to the hydrologic and/or hydraulic design for the dam was available. Analysis provided in Appendix C was performed utilizing information obtained from construction documents and other general sources of information listed in the reference section of this report. Dimensions used in the hydraulic studies were scaled from the plans (in some instances, dimensions were scaled at 1 inch = 100 feet).

The massive earth embankment of the Neversink Dam spans the valley of the Neversink River, a tributary of the Delaware River, forming the Neversink Reservoir. The drainage area contributing to the reservoir is approximately 90 square miles, including 3 square miles of reservoir water surface. The volume of the impounded water is a function of the natural watershed. For the purpose of this investigation, the dam and spillway were analyzed with respect to their flood control potential. This potential was assumed through the development of the Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the PMF through the reservoir system. The PMF is that hypothetical flow induced by the most critical combination of precipitation, minimum infiltration losses and concentration of run-off at a specific location that is considered reasonably possible for a particular drainage area. For the dam location, little hydrologic information was found available from previous studies.

The hydrologic analysis was performed using the unit hydrograph method to develop the flood hydrograph. An attempt was made to acquire data from U.S.G.S. on their stream gage at Neversink which is below the dam. The gage, which was installed in 1941, had recorded a significant event on November 25, 1950 with a peak discharge of 22,300 cfs prior to the dam's construction. The record of the flood hydrograph is being located in U.S.G.S.'s archives. This data was not available at the time of preparation of this report. An attempt to reconstitute this flood using unit hydrograph parameters is shown in Appendix C. A magnitude of only 12,000 cfs was derived using only PMF criteria (i.e. loss rating etc.). In addition to the stream gage record for the flood, additional rainfall data is needed to prepare an isohyetal map for the storm over the drainage area. For this study only a limited amount of recorded rainfall data for the flood event was available, whereas, additional non-recording data will be needed to complete this particular analysis.

Using only available information, both Clark and Snyder coefficients for unit hydrograph parameters were estimated. For the Clark Method, values of Tc = 7.40 and R = 3.17 were computed. For the Snyder Method, values of Tpr = 5.2 and CP = 0.625 were used to

derive two unit hydrographs and two flood hydrographs. The more severe discharge was then used as the flood hydrograph in the spillway flood analysis.

The Probable Maximum Flood (PMF) hydrograph was determined using Probable Maximum Precipitation rainfall data obtained in Hydrometeorlogical Report No. 51. An index rainfall of 24.0 inches for a 200 square mile area for a period of 24 hours was adopted for the analysis. Both the PMF and 1/2 PMF (SPF) were evaluated. The 1/2 PMF was assumed to be approximately the Standard Project Flood (SPF) in utilizing the U.S. Army Corps of Engineers Hydrologic Engineering Center's Computer Program UHCOMP. The peak discharges for the Clark Method were 57,000 cfs for the 1/2 PMF (SPF) and 107,300 for the PMF. The peak discharges for the Snyder Method were 60,000 for the 1/2 PMF (SPF) and 113,300 for the PMF.

Hydraulic studies were performed on the side channel spillway, the side channel trough, and discharge tunnel. These computations are included in Appendix C. A spillway rating curve was obtained from this analysis. The weir control (with free discharge) was found to be in effect up through a discharge of 75,000 cfs at elevation 1450 at which time weir submergence occurs. The stage-discharge relationship was developed up through elevation 1454 with a spillway flow of 102,100. At this elevation, the waste channel was computed to be flowing at a depth of around 30 feet with the discharge tunnel flowing at a capacity of 48,300 cfs.

The flood hydrographs derived using Snyder's parameters were routed over the structure using the U.S. Army Corps of Engineers Hydrologic Engineering Center's Progam HEC-1 using the Modified Puls Method. No drawndown conduits were included in this flood routing. The peak flow discharges were approximately 50,400 and 98,500 cfs for the 1/2 PMF (SPF) and PMF events. These discharges reflect a reduction greater than 15 percent in peak discharge due to the effect of the large reservoir and a significant allocation of surcharge freeboard above the normal pool elevation. The computed stage-discharge relationship in Appendix C indicates that the dam would pass the PMF with 7 feet of freeboard. This appears to be a safe margin. The Clark and Snyder parameters producing similar unit hydrographs from very generalized data. It would be prudent to complete the work started with reconstitution of the flood of record to verify the derived unit hydrograph.

b. Experience Data

Information obtained from knowledgeable people at the site indicates that the spillway is flowing during the spring of each year. Since the dam's construction, no significant flows relative to spillway capacity have been reported.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations and Data Review

The dam embankment shows no misalignment, sloughing, surface cracks or erosion which would indicate structural movement or distress. Riprap on the upstream face of the embankment and reservoir slopes in the vicinity of the spillway area is generally in good condition. The downstream slope of the embankment is covered with grasses which are mowed. A crown vetch cover crop is being implanted on the downstream face. No indication of seepage was noted on the embankments downstream slope or surface area immediately beyond the downstream toe. Many small animal burrows were noted on the downstream face.

The sites shale rock is exposed in the impounding slope along the western side of the reservoir, in the vicinity of the dams westerly abutment. At the area close to the abutment, the shale has become "benched" at several levels. The weathered shale residue (soil-size pieces) remains accumulated on the slope. The condition does not appear to be effecting the abutment area of the dam.

The stone masonry spillway (waste weir) is generally in structurally good condition, but limited seepage occurs through the spillway masonry. The floor of the spillway chute (weir channel) consists of poured concrete. Deterioration (spalling and cracking) of this concrete has occurred at several locations. Masonry for the waste channel downstream of the spillway weir channel generally is in good condition.

b. Geology and Seismic Stability

The general area encompassing the reservoir site is underlain by Upper Devonian sandstone, siltstone, and shale of the Walton Formation. A geologic section of the subsurface for the centerline of the dam shown in the Delaware Water Supply News (pages 704-705) clearly depicts the subsurface materials based upon borings and excavations.

Geologically, the area shale tends to weather readily and thus often gives the appearance of severely disintegrated rock, in time. Occasionally, siltstones also weather easily.* Although the bedding is essentially horizontal in this area, there is extensive high angle jointing present.**

Neither the New York State Geologic Map (1970) nor the Preliminary Brittle Structures Map of New York of the New York State Geologic Survey (1971) indicate the presence of faults in the general region of the reservoir. However, the geologic section shown in the Delaware Water Supply News (page 704) indicates the presence of a decayed crush zone near the west slope of the dam site. A crush zone usually is suggestive of faulting. The only known earthquake recorded for this area, occurring in 1957 about 18 miles southwest of the reservoir, registered 3.5 on the Richter Scale. The dam is located in an area designated Zone 1 on the Seismic Probability map.

c. Data Review and Stability Evaluation

Various design, construction, and as-built drawings have been available for review, as has been considerable written material on the different aspects of construction appearing in the Delaware Water Supply News.

The design information indicates this dam to be an earthen structure that is provided with a central concrete cutoff wall which extends to rock. In the dams originally deeper valley section, the cutoff wall is supported on caisson foundations which penetrate to sound rock underlying the site. The earthen embankment is constructed with a core section and a cutoff trench section (surrounding the concrete cutoff wall) of impervious clay. The lower section of the outer shell portions are constructed with semi-impervious clay mixture soils. Pervious sand and gravel material was utilized for the upper sections of the outer shell.

- * Such weathered materials would not make a good dam foundation. Sheet No. 13 of Contract 386 in the dam's construction required all such materials be removed down to solid rock. The Delaware Water Supply News, reporting on construction of the dam, indicates all such weathered material encountered was removed.
- ** A significant amount of grouting was done in order to prevent seepage through the bedding planes and joints (Delaware Water Supply News, page 701).

An earth slope of 2-1/2 to 1 (horizontal to vertical) is utilized for the upper portion of the upstream face; the lower section of the upstream face is constructed at a 3-1/2 to 1 (horizontal to vertical) slope. On this upstream face, the upper section is provided with a dry rubble paving (riprap), with the lower section having a surface of rock embanking. On the downstream face, a slope of 3 to 1 (horizontal to vertical) has been utilized for the upper section of the dam, with a 4 to 1 slope being used for the lower section. A rock embanking cover is provided for the downstream slope of the structural embankment. An approximately three foot thickness of plain earth and topsoil (for grassing) overlies the downstream rock embanking. A toe zone of rock embanking is also indicated for the downstream slope.

Visually, the embankment is in good condition with no indication of instability, deterioration, or seepage problems. The literature review indicates that some cracking of embankment was experienced near to the cutoff wall during construction, probably from settlement of the foundation soils, but no remaining indication of that or other structural problems was evident at the time of the field inspection. The dams design is in general accordance with the engineering professions past practice for similar type structures where satisfactory performance has resulted. It is anticipated that, properly maintained, this dam will continue to serve satisfactorily for future loading conditions which are similar to those of the past. Maintenance should extend to protection of the (eroding) natural shale exposed along the western side of the reservoir adjacent to the westerly abutment, and include repair of deteriorated concrete in the spillway area.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

On the basis of the Phase I visual examination, the earth embankment of the Neversink Dam appears to be adequate for normal reservoir operation. A vast amount of narrative information (See References, Appendix D) on this structure has been reviewed, however, the data is far short of being complete. In general, the data indicates that the structure has been designed using modern standards. The New York Board of Water Supply has not been able to provide design data which is located in their archives.

The dam embankment shows no sign of movement, seepage or distress and is generally in good condition. The visual inspection located a significant number of animal holes, believed to be woodchuck holes, in the downstream embankment. The holes have caused minor sloughing and erosion and present a nuisance to individuals who have to mow and maintain the dam embankment. The New York Department of Environmental Conservation Fish and Game Section indicate woodchucks will burrow very close to the surface (See Appendix E) and should not be capable of causing piping in a large dam. The downstream face of the dam is being implanted with crown vetch in an effort to minimize mowing and maintenance work. This will make it difficult to visually inspect the embankment surface and is not beneficial to overall dam safety considerations. It is important to notice problems at the embankment at an early stage. While frequent mowing of the embankment can be a significant expense, it allows the dam owner the opportunity to routinely visually inspect the embankment surface.

A minor amount of seepage was located in the spillway masonry. Deterioration of the spillway trough has also occurred in a number of locations. Some weathered shale rock was noticed on the west abutment. The condition does not appear to be effecting this abutment area of the dam. The dam has been found capable of passing the Probable Maximum Flood with 7 feet of freeboard based on the analysis prepared in this report. Further work on verification of the unit hydrograph, the basis for the flood routing, has been suggested.

7.2 REMEDIAL MEASURES

a. Alternatives

The following recommendations are made following this investigation.

 The downstream embankment should not be planted with crown vetch plant material. The embankment should continue to be mowed.

- 2) Minor erosion and sloughing problems from animal holes should be attended to.
- Deteriorated concrete surfaces in the spillway area should be repaired.
- 4) The exposed shale along the face of western upstream abutment of the reservoir should be protected from erosion.

LOCATION PLAN

FIGURE I

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

FIGURE 7

I

I

-

3100-116-0016

FROM COPY FURNISHED TO DDC CONTRACT 365 SHEET 6 SHEETS IN SET, 26 BOARD OF WATER SUPPLY NEVERSINK DAM BORROW AREA No. 1 PLAN AND BORING DATA AREASES. SELEV 1520 200 1480 1460 1440 1420 1380 1360 8 25.159 (24.40.50) (34.40.50) (34.60) (50c 30s 70g 30c 30s 70g 30; 0 402.503.00 • Se burders = 100 (50 10) (5 \$0,25,75 20,20,20 30,60,50 \$0,60,50 2 Surface of nock 406 403 870 . 5 Bonng Numbers (Contract 340) 5c 75 75 5c 75 75 5c 75 805 23 92 27 ELEV 1520 350 300 1400 460 440 450 80 360 340 900

THIS PAGE IS BEST QUALITY PRACTICABLE

300-211-0016

......

-

I

I

1

П

E1

THIS PAGE IS BEST QUALITY PRACTICABLE

Pa

=

=

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC CONTRACT 365 SHEET 13 SHEETS IN SET, 26 BOARD OF WATER SUPPLY
NEVERSINK DAM
WASTE CHANNEL
PLAN AND SECTION
JAMMARY 2, 1948 ELEV TAGO 1300 for & Cath wore שנים של ביום ביום יות בוב ביום ישיחש שיפרשים ליחים · canada PLAN SECTION B-B Ţ-, Eusting steel by thesa O. stilling. 1500c 300

JUD-112-0012

UIU 164-0144

1

П

1

APPENDIX A
FIELD INSPECTION REPORT

CHECK LIST

PHASE 1

Name D	Jam	NEVE	ERS	INK	DAM	∞ ∞	ESER	VOIR	Coun	ty _	SULL	IVAN	Name Dam NEVERSINK DAM & RESERVOIR County SULLIVAN State NEW YORK 10 # NY 348	Z	N Y	ORK	4 0	N	348
Type of Dam)£	Dam		EARTHEN	NEN EN							Hazard	Hazard Category HIGH	I	된				
Date(s	~	Inspec	tion	7	Z N	21,	197	∞	Weat	her	Date(s) Inspection JULY 21, 1978 Weather SUNNY	_	Temperature 800	rature	∞ 	00			
Pool E	<u>e</u>	Pool Elevation at Time	at	Time		Insp	ection	n 14	129.2	2	of Inspection 1429,22 M.S.L.	Tai	Tailwater at Time of Inspection	t Time	of Ir	spection	5	1	

Inspection Personnel:

N. F. DUNLEVY	DALE ENGINEERING CO.	BEN MUSSO, SECTION ENGR, IN CHG, OF MAINT.
F. W. BYSZEWSKI	DALE ENGINEERING CO.	BOB BURNICK, ASSISTANT DIVISION ENGINEER
D. MCCARTHEY	DALE ENGINEERING CO.	
B, COLWELL	DALE ENGINEERING CO.	

N, F, DUNLEVY

Recorder

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	N/A	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	N/A	
DRAINS	N/A	
WATER PASSAGES	N/A	
FOUNDATION	N/A	

SHEET 2

CONCRETE/MASONRY DAMS

i

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	N/A	
STRUCTURAL CRACKING	N/A	
VERTICAL & HORIZONTAL ALIGNMENT	N/A	
MONOLITH JOINTS	N/A	
CONSTRUCTION JOINTS	N/A	
STAFF GAGE OF RECORDER	N/A	
		SHEFT

EMBANKMENT

TOOKE EVALUATION OF	OBSERVALIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Some slight surface cracks. An estimated number of woodchuck holes were observed on the downstream face.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None.	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	Slight sloughing areas around woodchuck holes noted. Believed to be created from animal holes	
VERTICAL AND HORIZONTAL ALINEMENT OF THE CREST	Good.	
RIPRAP FAILURES	None.	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	No seepage noted nor erosion. Rock on west abutment shows some weathering.	
ANY NOTICEABLE SEEPAGE	None.	
STAFF GAGE AND RECORDER	None.	
DRAINS	All drains located were open; no flow.	

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Some surface spalling. Very minor leaking through joints in the masonry.	
APPROACH CHANNEL	Reservoir face.	
DISCHARGE CHANNEL	Some vegetative growth which should be removed from emergency spillway	
BRIDGE AND PIERS	Good.	

GATED SPILLWAY

NOTION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
TO COLUMN TO THE	None	
APPROACH CHANNEL	None.	
DISCHARGE CHANNEL	None.	
BRIDGE AND PIERS	None.	
GATES AND OPERATION EQUIPMENT	None.	

OUTLET WORKS

NOT VISIBLE

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Surface spalling of approximately l"on 20% of invert concrete panels. Two small areas have exposed the welded wire fabric reinforcement.	
INTAKE STRUCTURE	1	
OUTLET STRUCTURE		
OUTLET CHANNEL	Good.	
EMERGENCY GATE		

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	Good; clear.	
SLOPES	Relatively flat.	
APPROXIMATE NO. OF HOMES AND POPULATION	Small community below dam.	

INSTRUMENTATION

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	Monuments at top of dam; appear to be in place. Have not been surveyed in recent years.	
OBSERVATION WELLS	Yes, located at top of dam. Has not been inspected in years. Wells seem to be in place.	
WEIRS	None observed.	
PIEZOMETERS	None observed.	
отнек	None.	

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Sloped areas are treed. No apparent potential for slides.	
SEDIMENTATION	Some erosion has taken place. Trees have been planted to correct problem.	

CHECK LIST	ENGINEERING DATA	CONSTRUCTION, OPERATION	PHASE 1
		DES I GN	

Neversink	NY 348
DAM	1
9	
NAME OF DAM	# 01
	OPERATION

ITEM	REMARKS
AS-BUILT DRAWINGS	See N.Y.C. Board of Water Supply.
REGIONAL VICINITY MAP	See this report.
CONSTRUCTION HISTORY	See this report and N.Y.C. Board of Water Supply.
TYPICAL SECTIONS OF DAM	See this report.
OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS	See this report.
RAINFALL/RESERVOIR RECORDS	U.S.G.S. Gage below dam at Neversink.

ITEM	REMARKS
DESIGN REPORTS	See N.Y.C. Board of Water Supply.
GEOLOGY REPORTS	See N.Y.C. Board of Water Supply.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	See N.Y.C. Board of Water Supply.
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	See N.Y.C. Board of Water Supply.
POST-CONSTRUCTION SURVEYS OF DAM	See N.Y.C. Board of Water Supply.
BORROW SOURCES	See N.Y.C. Board of Water Supply.

0

MONITORING SYSTEMS	None in use; available at site. Data with N.Y.C. Board of Water Supply.
MODIFICATIONS	None noted.
HIGH POOL RECORDS	Data not available.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	No data available.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None noted.
MAINTENANCE OPERATION: RECORDS	See N.Y.C. Board of Water Supply.

ITEM	REMARKS
SPILLWAY PLAN	See this report and N.Y.C. Board of Water Supply.
SECTIONS	
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	See this report and N.Y.C. Board of Water Supply.

CHECK LIST HYDROLOGIC & HYDRAULIC ENGINEERING DATA

DRAINAGE A	REA CHARACTERISTICS: 90- sq. miles
ELEVATION	TOP NORMAL POOL (STORAGE CAPACITY): 1440 -
	TOP FLOOD CONTROL POOL (STORAGE CAPACITY):
ELEVATION	MAXIMUM DESIGN POOL:
ELEVATION	TOP DAM: 1460.0
CREST:	
a.	Elevation 1440
ь.	Type Concrete ogee weir into side channel trough into 30'
	width dia. tunnel.
d.	Length 600 feet
e.	Location Spillover East Aburment
f.	Number and Type of Gates None
	KKS: (Drawdown)
a.	Type Pipes regulated by broom gates
ь.	Location Intake house tunneled into outlet tunnel
с.	Entrance Inverts
	Exit Inverts -
e.	Emergency Draindown Facilities Peak capacity 115MGD, 19MGD at flow, 57MGD day of inspection for fish life consideration
HYDROMETEC	(hot day). PROLOGICAL GATES:
a.	Type U.S.G.S. gauge at lower extremity of stilling basin area.
ь.	Location
	Records
MAXIMUM NO	N-DAMAGING DISCHARGE:

APPENDIX B

PREVIOUS INSPECTION REPORTS

STATE OF THE STATE

DEPARTMENT OF TURBLE WORKS

ALBA	X Y
15, 1901	Dan No. 162-1366
July 11188	
7	
the Construction	or Reconstruction of a Dam
de to the Superintendent of	of Public Works, Albany, N. Y., in compliance with the
te Conservation Law (see th	in I page of this application) for the approval of specifica-
3. 55212. 55232.	1 garsink dem. Accs. 63k14, 50k35, 63375, (38b), 3357, 63337, 6336b, 63339, 6330), 6370, 3336, 63361, 43265, 63358.
construction of a dam	herein described. All provisions of law will be complied
	to complete the work covered by the application about
Severginit River	flowing into Delevere River in the
	County of Sullivan
	br' to, dam, village main cross-roads or mouth of a stream)
Found of Wate	r apply of the City of New York.
120 1 11 Str	Mer York, For York.
blic voter	To the second se
oit upon or its p	ond flood any State lands? no
ed dari is1	square miles
	serial continued 1,500 acre
1: /	

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

	FROM COFT FURNISHED TO DIO
 The maximum height of the proposed data days r's 	be for the stream is $\frac{1}{2}$. Then $f = \frac{1}{2} f $
 The Law 4 part of the satural shore of the post i. 	icet versually above the spills of
at leverywhere else the shere will be at least 12	teet above the spillers of
11. State if any damage to life or to any buddines, in	or other property could be carred by any posterior
faltire of the proposed dam of those you'll or use	a in the call gradule designs
Liver to god beyond Tendbourne, Jon Your.	
12. The natural material of the bed on which the pre-	osed dam will rest is (clay, sand, gravel, boulders
gamite, shale, slate, finestone, etc.) Sandston with Int	
13. Facing downstream, what is the nature of material	
the averburden of giac of titl.	
14. Facing downstream, what is the nature of the mate-	al composing the left bank? Standatone
with practically to overburden.	
15. State the character of the bed and the banks in r	spect to the hardness, perviousness, water beaches
effect of exposure to air and to water, uniformity, etc. Ledg	rock directly under the cut-off end
will be the roughly ground. The global till	is quite isocratous. To legere of
rd and eraval are rel tively nevelous,	
to. Are there any porous scams or fessures beneath the	undation of the proposed dam? All genus
and flow a how that' cos-off -1 will be	homography growted.
17. Warres The spillway of the above proposed cen-	will be 800 feet long in the clear; the waters
will be held as the right and by a settering see 13, and seem	the top of which will be the feet of the
the spitterest, and have a top with of 60 feet; and	
the top of which will be 20 feet above the so Herest.	
18. The spilling is designed to safely discharge . 100	
19. Pipes shire mass, etc., ar flood disclouge will be pro-	ided through the dan as follows:
When will be an included from the real out an	
solving at the best of the day.	
20. While the rescharge which of the friend which	all used on the doors. "
71. Argus, where the forces didant there will be not	rou bult o
the part of a second	tore :

the Port of the rest of the party of the register

APPENDIX C
HYDROLOGIC AND HYDRAULIC COMPUTATIONS

DALE

DESIGN BRIEF

UESIGNED BY	JPG_	DATE 8.7.78
CHECKED BY	2010	PAGE OF
PROJECT NO SESION SUBJECT	2210 SHORT TITLE NY DAM INSPECTION NEVERSINK RESERVOIR DAM	REF. DWGS.
	ESTIMATE OF CLARK'S PARAMETERS	
	ESTIMATE OF TO (BPR)	
	To = (11.9 L3/H).385 = (11.9 (21.439)3/1500).34	5 5.35 He
	3C S	
	$L = \frac{1.8 (5.1)^{.7}}{1900 (2.0)^{.8} (3.8911)^{.7}}$	5 = <u>1000</u> - 10 = 3.89 Cu
	= <u>33542, 339</u> = 12,483 2687.01	
	TG = L/.6 = 12.483/.6 = 20.805 HR	
	MORTH ATLANTIC DIV WATER RESOURCES STUDY	(FEB 72)
	TC+R = 10 (a) (DA/5).25	
	= 10 (1.03) (89.504/81).25 = 10.56	
	$R/(T_C+R')=.30$ To $+R=1$	
	R/(10.56) = .30 Tc = 1	10-56-25:17 = 7.40

DALE

DESIGN BRIEF

HED BY	70			DATE 8.7.78
(80 BY				PAGE C-Z OF
ct NO2	210 SHORT TITL	NY DAM	INSPECTIONS	
N SUBJECT	NEVERSINK	RESERVOIR 1	DAM	REF. DWGS.
T-1-1-1				
ESTIA	MATE OF SLIYD	ER PARAMETE	P 5	
640	$C_{p} = 0.65$ $C_{T} = 2.000$			
	Cp = 0.6 5	ass med	THIS PAGE IS B	ST QUALITY PRACTICABLE
	$C_{7} = 2.000$	assumer'	FROM COPY FURN	
	= Ce (L x La)	0:3		
	= CE (L x Lca)			
I I I	= 2.0(20×3) 4.9			
TP	7.1			
+ + + + .	= tp/5.5 = 49	166= 69		
		7.3		
to	- tp +.25 (ta	-t-)		
tp.	= 4.9 +.25 (2	-0.9) = 5.4		
50	HMARY OF PARA	meters .		
	CLARK'S.			SHYDER'S
BA	K	TE: 5.		
50	5 (CM METHOD)	Te = 20		Tpr = 5.2 Cp = 0.625
, Up	PETN ATLANTIC	UN TC = 7.	47	Cp - 0.625
	R/(Tc+R) = 0	30		
	R = 3			

DALE

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

DESIGN BRIEF

	0 1	PAGE C-3 OF
A/Y	11111 1:120-1-	- 1/
	DAM INSPECTI	0N5
NEVERSINK KESE	EVOIR DAM	REF. DWGS.
10-4	DR.	
TOP NYDROMETS	OROLOGIZAL KE	EPORT NO DI
DURATION	DENTH	% OF INDEX
		. 109
		128
		136
		154
		158
		73
		88
		100
		116
		120
		53
		67
		81
		94
		97
* PMP IND	EX RAIL FALL -	24 HR DURATION
		200 MIZ
RATION		% OF INDEX
6 HR		83,7
12 He		100,0
		110.3
48 HR		126.5
72 HR		131,3
	D-A- DMP HYDROMETE D-A- DMP HYDROMETE WHE WHE IZ HE AB HE IZ HE Z4 HE	6 HR 12 HR 29,9 24 HR 31.9 48 HR 32.8 72 He 36.8 6 HR 17.1 112 He 20.5 24 HR 23.3 48 HR 27.0 72 HR 28.0 6 HR 18.5 24 HR 28.0 6 HR 18.5 24 HR 22.5 ** PMP INDEX RAINFALL -

PROJECT NAM	WE WY	DAM INSPEC	TION		_ DATE 8.24.7
SUBJECT					PROJECT NO. ZZI
	FLOOD OF REWED				DRAWN BY MED
	HOVEMBER	2 25, 1950			
	RAINFALL	AT PRATTSVI	LLE 3.66	INCHES	TOTAL
	TRACE OF	POSITION OF	SIGNIFICANT	RAINFA	۷۷
	0.09		0.19		
	0.10		0,33		
	0.17		0.31		
	0.16		0.42		
	0.12		0.77		
	0.19		0.97		
	0,19		0.52		
	0,23		7 7	ERIODS -	2 HR EALN
	0.38				
	0.39				
	0,53				
	0,44				
	0.43				
	0.09				
		ORS-IND EACH			

```
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, 6=STOP)
LINTER TIME INTERVAL (MIN) = 120.
SELECT 1-c (1=TIME INT,2=UNIT H,3=RAIN, ==RUNOFF,5=FNT, '6=STOP)
LATER DRAINAGE AREA (SQMI) = 89.50
SELECT 1-3 (1=INPUT UH, 2=CLARK, 3=SNYDER)
ENTER NUMBER OF TIME-AREA ORDINATES (U=10NE)=
FATER CLARKS TC AND R (HRS) = 7.40 3.20
     TP
            CF
                  TC
    5.62 0.691 7.40 3.20
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNCFF,5=PNT, '6=STOF) 3
ENTER RATIO IMPERVIOUS = 0.00
SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
ENTER NUMBER PERIODS OF RAIN = 7
ENTER RAINFALL (IN/TIME INT) =
0.15 0.33 0.31 0.47 0.77 0.97

ENTER STORM TOTAL (0=SUM OF RAIN) (1%) = 3.66
                                                            0.52
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS, 3=SCS)
                                               1
ENTER INITIAL LOSS(IN), CONSTANT LOSS(IN/HR) = 1.00 C.10
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, '6=STOP)
ENTER A TITLE PLEASE - NEVERSINK NOV.55
EATER STRTQ, GRCSN, AND RTIOR = 189.00 189.00 1.00
 FR MIN RAIN LOSS EXCESS UNIT HG
                                   RECSN
                                           FLOW
 2 0 0.20 0.20 0.00
                         1366. 1.9.
                                            189.
                                   1 9.
     0 0.34 0.34 0.00
                           4561.
 4
                                            189.
                                   1.9.
                          7096.
 6
     0 0.32 0.32 0.00
                                            189.
                                   1 9.
 8
    U C.44 C.28 C.16
                          6744.
                                            407.
                                   1 9.
     0 0.80 0.20 0.60
 10
                                            1738.
                          4333.
                                    1.9.
 12
     0 1.01 0.20 0.81
                           2270.
                                            5167.
 14
     0 0.54 0.20 0.34
                                    1.9.
                           1189.
                                            9685.
 10
                                    1 9.
     U
                            625.
                                           12228.
 10
     0
                                    1 9.
                            327.
                                           11(27.
     Ü
                                    1 9.
                                           7:44.
 20
                            171.
                                    109.
 22
     0
                             90.
                                           4314.
 64
     Ü
                             41.
                                    189.
                                            2350.
     0
 26
                                    129.
                                           1321.
 33
     0
                                    109.
                                            783.
 30
     0
                                    189.
                                            500.
     C
                                    129.
 32
                                            349.
 34
    0
                                    1:9.
                                            258.
36
     0
                                    119.
                                            205.
16TAL 3.65 1.74 1.91 28818. 34U2. 58444.
```

6-8

3780. 58749.

```
FROM COFY FURNISHED TO DDC
SELECT 1-6 (1=TIME INT, 2=UNIT H, 3=RAI , 4=RUNOFF, 5=PNT, '6=STOP)
ENTER TIME INTERVAL (MIN) = 12C.
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RA1:,4=RUNCFF,5=PNT, '6=STOP)
ENTER DRAINAGE AREA (SQMI) = 89.50
SELECT 1-3 (1=INPUT UH, 2=CLARK, 5=SNIDER )
ENTER SNYDERS CP AND TP (HRS) = 0.62 5.20
ENTER INITIAL EST. CLARKS TO & (HPS) (0=DEFAULT)= 0.00
             CP
     TP
                   TC
   4.44 0.561 6.10 3.74
5.09 0.662 6.23 3.96
    5.23 0.655 6.23
                           4.15
         0.644
                  6.14
    5.28
                           4.27
          0.630
                   0.07
    5.26
                           4.34
                  6.07
    5.24
                           4.34
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAI 1,4=RUNOFF,5=PNT,'6=STOP) 3
ENTER RATIO IMPERVIOUS = C.00
SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
ENTER NUMBER PERIODS OF RAIN = 7
ENTER RAINFALL (IN/TIME INT) =
C.19 0.33 0.31 C 42
ENTER STORM TOTAL (U=SUM OF RAIN) (IN =
                                           0.77
                                                      0.97
                                                                 0.52
                                             3.0
                                                  3.66
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS 3=SCS)
ENTER INITIAL LOSS(IN), CONSTANT LOSS IN/HR) = 1.00 C.10
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAI ,4=RUNCFF,5=PNT,'6=STOP)
ENTER A TITLE PLEASE - NEVERSING NO .55
ENTER STRTQ, GRCSN, AND RTIOR = 189 00 189.00 1.00
FR MIN RAIN LOSS EXCESS UNIT MG RECSN FLOW
 2 0 0.20 0.20 0.00 1446.
4 0 0.34 0.34 0.00 4788.
6 C 0.32 0.32 0.00 6943.
                                     169.
                                              189.
                                      189.
                                               189.
                                      189.
                                               189.
                             5863.
3678.
2301.
1440.
901.
564.
353.
 8 C C.44
             0.28 0.16 5863.
                                      189.
                                               420.
        0.80 0.20 0.60 3678.
1.01 0.20 0.81 2301.
 10 0 0.80 0.20 0.60
                                      189.
                                              1823.
 12 0
                                      189.
                                             5344.
                                      189.
189.
 14
         0.54 0.20 6.34
    U
                           1446.
                                              9663.
 16
     C
                                             11547.
                                      189.
 10
     C
                                              9873.
 20
     0
                                      189.
                                              6772.
                             221.
                                      189.
      6
                                             4512.
 22
                             139.
      C
                                      189.
                                              2769.
 24
 26
      0
                              87.
                                      189.
                                              1004.
 28 0
                                      189.
                              55.
                                              1200.
 36 0
                                      189.
                                              822.
 32
      0
                                      189.
                                               585.
 34
      U
                                      109.
                                               437.
                                      189.
 36
      0
                                              339.
 38
      U
                                      189.
                                               263.
 40
      C
                                      189.
                                               208.
```

TOTAL 3.65 1.74 1.91 28780.

```
FROM COPY FURNISHED TO DDC
   SELECT 1-6 (1=TIME 1NT,2=UNIT H,3=RAIN,4=RUNCFF,5=PNT, '6=STOP) 1
   ENTER TIME INTERVAL (MIN) = 180.
   SELECT 1-6 (1=TIME INT, 2=UNIT H, 3=RAIN, 4=RUNOFF, 5=PNT, '6=STOP) 2
   ENTER DRAINAGE AREA (SQMI) = 64.50
   SELECT 1-3 (1=INPUT UH, 2=CLARK, 3=SNYDER)
   HATER NUMBER OF TIME-AREA ORDINATES (O=NONE)= C
   INTER CLARKS TO AND R (HRS) = 7.40 3.20
         TP
             CP TC
       5.47 0.591 7.40 3.20
   SELECT 1-c (1=TIME INT/2=UNIT H/S=RAIN/4=RUNUFF/5=PNT/'6=STOP) 3
   ATER RATIO IMPERVIOUS = 0.00
   SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
   ENTER SPS INDEX RAINFALL (IN) = 11.70
   ENTER TRSIC AND TRSDA (SQMI) =
                                       1.00 89.50
   SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS, =SCS)
                                                 1
   FINTER INITIAL LOSS(IR), CONSTANT LOSS(I /HR) =
                                                   1.00
   SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, '6=STOP)
   TER A TITLE PLEASE - NEVERSIAK SPE
   ATER STRTG, GRCSN, AND RTIOR = 189.00 189.00 1.00
                                               FLOW
   HR MIN RAIN LOSS EXCESS UNIT HG RECSN
    3 0 0.01 0.01 0.00 2242. 189.
                                               189.
   189.
                                                 189.
                                        89. 189.
89. 189.
89. 189.
189. 189.
149. 189.
  21 0 0.02 0.02 0.00
   4
   27 0 0.04 0.04 0.00
                                                189.
                                        169.
30 0 0.04 0.04 0.00

33 0 0.12 0.12 0.00

36 0 0.12 0.12 0.00

39 0 0.44 0.38 0.06

42 0 0.89 0.30 J.59

45 0 0.07 0.07 0.00
                                        89.
                                                189.
                                        89.
                                                189.
                                         29.
                                                 189.
                                        189.
                                                324.
                                        189.
                                               1886.
                                        129.
                                                4239.
 46 0 0.07 0.07 0.00
                                        169.
                                               3998.
  51 0 0.31 0.30 0.01
54 L L.31 0.30 U.U1
                                        189.
                                               2011.
                                        189.
                                                925.
    57
       0 0.85 0.30 0.55
                                        1:9.
                                                1762.
  60 0 0.85 0.30 0.55
63 0 3.08 0.30 2.78
                                        1.9.
                                               5029.
                                       189.
                                              13308.
                                        189.
   06 U c.20 U.3U 5.96
                                               35910.
  69 0 0.52 0.30 0.22
                                        1:9.
                                               57182.
                                       189.
  72 0 0.52 0.30 0.22
75 0 0.02 0.02 0.00
                                               47721.
                                        189.
                                               23696.
    78 0 0.02 0.02
                       1.66
                                       189.
                                               9716.
    1 0 1.05 0.05 0.00
                                         109.
                                                3783.
                                       109.
    34
         0 0.05 0.05 0.00
                                               1462.
    87
        0 0.17 0.17 0.00
                                        89.
                                                608.
                                                                2-9
           0.35
    90
                 0.30
                       0.05
                                         9.
                                                343.
```

64.

9.

512.

447.

93

46

0

0 0.03

0.03

0.03 0.00

0.00

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

59	C					189.	336.
112	C					189.	242.
105	0					169.	208.
100	C					169.	196.
111	0					189.	192.
114	C					189.	189.
117	0					189.	189.
TOTAL		15.63	4.63	11.00	19217.	7371.	218763.

```
SELECT 1-c (1=TIME INT/2=UNIT H/S=RAIN/4=RUNCFF/5=FNT/6=STOP)
                                                                  1
ENTER TIET INTERVAL (MIN) = 186.
CELECT 1-6 (1=TIME INT/Z=UNIT H/3=RATY/4=RUNOFF/5=PNT/6=STOP)
ENTER DRAINAGE AREA (SGMI) = 89.50
SELECT 1-3 (1=INPUT UH, 2=CLARK, 3=SNYDER)
ENTER SNYDERS CP AND TP (HRS) = 0.62 5.20
ENTER INITIAL EST. CLARKS TO & (HRS) (O=DEFAULT)= 0.00
                                                         0.00
           CP TC
                            K
    4.82 0.548 5.61
                           3.65
                   5.98
           0.583
                           3.40
    4.00
         0.606
                 6.25
                          3.30
    4.97
    5.05
           0.613
                   6.45
                            3.24
                 6.55
         0.615
                           3.19
    5.11
    5.14
         0.616 6.62
0.618 6.62
         0.616
                           3.14
    5.16
                           3.10
    5.15
         0.620 6.69
                           3.10
    5.17 0.618 6.69
                           3.07
           0.621 6.69
    5.16
                           3.07
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIM,4=RUNCFF,5=PNT, 6=STOF)
                                                                 3
ENTER RATIO IMPERVIOUS = 0.00
SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
FNTER SES INDEX RAINFALL (IN) = 11.70
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS 3=SCS)

ENTER INITIAL LOSS(IN), CONSTANT LOSS(IN/HR) = 1.00
                                                 1.00
                                                          0.10
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RA1 ,4=RUNCFF,5=PNT, '6=STOF)
ENTER A TITLE PLEASE - NEVERSINK SP
ENTER STRTQ.QRCSN.AND RTIOR = 189.00 189.00 1.00
HR MIN
        RAIN
              LOSS EXCESS UNIT HG
                                     RECSN
                                              FLOW
 3 0 0.01
              0.01 0.00
                           2679.
                                    189.
                                              109.
  6 0 0.01
              0.01 0.00
                            6937.
                                      189.
                                               189.
 9 0 0.03
              0.03 6.00
                            6026.
                                      189.
                                               189.
 12 0 0.03
              0.03 0.00
                           2368.
                                      189.
                                               189.
15 0 C.10
18 0 0.20
21 0 0.02
24 0 0.02
27 0 C.04
              0.10 0.00
                           814.
                                      109.
                                               109.
              0.20 0.00
                            280.
                                      189.
                                               189.
                    0.00
                             91.
              0.02
                                       189.
                                               189.
              0.02
                               34.
                                      189.
                                               189.
              0.04 0.00
                                      189.
                                               189.
    0 0.04
                                      189.
 30
              0.04 0.00
                                               189.
 33 0 6.12
                                               189.
              0.12 0.00
                                      189.
 36 0 0.12
              0.12 0.00
                                      189.
                                               189.
 59 0 0.44
              0.38 0.00
                                      169.
                                               350.
 42 0 0.89
              0.30 0.59
                                      189.
                                              2186.
 45 6 6.07
              0.07 6.06
                                      189.
                                              4643.
 48 0 0.07
              0.07 0.00
                                      189.
                                              3683.
 51
    C U.31
               0.30 0.01
                                              1662.
                                      109.
 54
     C C.31
               0.30
                                      189.
                    0.01
                                              782.
    0 0.85
 57
               0.50
                     0.55
                                      189.
                                              1963.
```

169.

5621.

50

0.30

0.55

0	3.08	0.30	2.70		1.0	1/:15
	4 34				189.	14:15.
	6.26	0.30	5.96		189.	40066.
(6.52	0.30	0.22		189.	06616.
C	0.52	0.30	0.22		189.	45372.
U	1.02	0.02	0.00		109.	19622.
C	0.02	0.02	0.00		189.	7736.
C	1.05	0.45				2845.
0		0.05				1098.
C	L.17	0.17				472.
C	0.35	0.30				352.
						543.
0	0.03	0.03				490.
C						307.
						230.
						203.
						194.
						191.
					Committee of the commit	189.
C					189.	189.
	15.63	4.63	11.00	19229.	7371.	218886.
	0000000000000000	0 C.52 0 C.02 C C.05 C C.05 C C.17 C C.35 C C.03 C C.03 C C.03 C C.03	0 0.52 0.30 0 0.02 0.02 0 0.02 0.02 0 0.05 0.05 0 0.05 0.05 0 0.17 0.17 0 0.35 0.30 0 0.03 0.03 0 0.03 0.03	0 0.52 0.30 0.22 0 0.02 0.02 0.00 0 0.02 0.02 0.00 0 0.05 0.05 0.00 0 0.05 0.05 0.00 0 0.35 0.30 0.05 0 0.03 0.03 0.00 0 0.03 0.03 0.00	0 0.52 0.30 0.22 0 0.02 0.02 0.00 0 0.02 0.02 0.00 0 0.05 0.05 0.00 0 0.17 0.17 0.00 0 0.35 0.30 0.05 0 0.03 0.03 0.00 0 0.03 0.03 0.00	0 0.52 0.30 0.22 189. 0 0.02 0.02 0.00 189. 0 0.02 0.02 0.00 189. 0 0.05 0.00 189. 0 0.35 0.30 0.05 189. 0 0.35 0.30 0.00 189. 0 0.03 0.03 0.00 189. 0 0.03 0.00 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. 0 189. 189. <t< td=""></t<>

WAIT GRAPH AND HYDROGRAPH COMP JULY 1966 (REVISED AUGUST 1974)
HYDROLOGIC ENGINEERING CENTER (HEC)
DAVIS, CA

--- OPERATIONS AVAILABLE ---

TIME INT = SET TIME INTERVAL OF ALL COMPUTATIONS UNIT H = COMPUTE UH BY INPUT, CLARK, OR SNYDER

RAIN = INPUT RAIN AND LOSS RATE DATA

RUNOFF = INFUT BASEFLOW, COMPUTE & FRINT HYDROGRAPH

PNT = PRINT UNIT HYDROGRAPH ONLY STOP = STOP EXECUTION OF PROGRAM

USER MUST SELECT OPERATION DESIRED MAY PETURN TO ANY OPERATION

SELECT 1-0 (1=TIME 1NT/2=UNIT H/3=RAIN/4=RUNGFF/5=PNT/6=STOP)
ENTER TIME INTERVAL(MIN)= 180.

SELECT 1-6 (1=TIME INT.2=UNIT H.3=RAIN.4=RUNUFF.5=PNT.*6=STUP)

ENTER DRAINAGE AREA (SQMI) = 69.5U

SELECT 1-5 (1=INFUT UH. Z=CLARK. 3=SNYDER)

ENTER NUMBER F TIME-AREA ORDINATES (C=4CNE) = C

ENTER CLARKS 1C AND R (RES) = 7.40 3.2C

TF CP TC R
5.47 U. 71 (.40 3.20

SELECT 1-6 (1-TIME 1MT, 2-MNIT H, 3=RAIM, 4=RU* OFF, 5=PNT, '6=STOP)

1 NTH RATIO 1 PERVIOUS = 0.00

SELECT 1-3 (1=RAIM, 2=SES, 3=PMS)

1 NTER PMS INDEX RAINFALL (IN) = 25.30

LNTER R6, R12, R24, R45, R72, R96 = 83.70 100.00 110.30 126.50 131.30

LNTER TRSFC ATD TRSDA (SEMI) = 0.00 89.50

SELECT 1-3 (1=1NIT+CONST, 2=ACUM LOSS, 3=SCS)

LNTER INITIAL LOSS(IN), LONSTANT LOSS(IN/HR) = 1.00 L.10

4

							FF.5=PN	T, '6=STOP)
				- NE	VERSINK P		0.0	1 00
ERICK	5	RIGIGR	LSMIAT	D KIIEK	- 10	9.00 189	.00	1.00
FR M	IN	RAIN	LOSS	EXCESS	UNIT HG	RECSN	FLOW	
3	0		0.06	0.00	2242.	189.	189.	
6	U			0.00	6230.	189.	189.	
9	0	0.24	0.24	0.00	6156.	189.	189.	
12	C		0.24	0.00	2942.	189.	189.	
15	0	0.82	0.55	0.27	1064.	189.	794.	
10	C		0.50	1.36	365.	189.	4922.	
21	0		0.09	0.00	140.	189.	10335.	
64	U		0.69	0.00	51.	189.	9355.	
27	C		0.30	0.11		109.	4724.	
30	Ĺ		0.50	0.11		169.	2673.	
33	0		0.30	1.34		189.	5118.	
50	L		0.50	1.34		189.	12756.	
39	U		0.30	5.26		169.	29099.	
42	Ü		0.50	10.99		189.		
45	C		0.30	0.32		189.	107267.	
48	C		0.30	0.32		189.	87993.	
51	O		0.02	0.00		169.		
54	0		0.02	0.00		189.		
57	C		0.07	0.00			6508.	
66	C		0.47	0.00		189.	2455	
63	G		0.24	0.00			916.	
66	L		0.30	0.19			676.	
69	\mathbf{G}		0.03	0.00		189.	1390.	
16	C.	6.63	0.13	0.00		189.	1359.	
75	C					189.	748.	
70	(189.	391.	
ĉ 1	C					189.	262	
c 4	U					189.	216.	
d7	C					189.	199	
70	0					189.	189.	
43	C					189.	189.	
TOTAL		26.42	4.8	1 21.61	19217.	5859.	42114	7.

```
ENTER TIME INTERVAL (MIN) = 18C.
SELECT 1-6 (1=TIME INT,2=UNIT H,3=KAIN,4=RUVOFF,5=PNT, 6=STOP)
ENTER DRAINAGE AREA (SUMI) = 89.50
SELECT 1-5 (1=INPUT UH, Z=CLARK, 3=SNYDER)
LATER SNYDERS CP AND TP (HRS) = 0.62 5.20
ENTER INITIAL EST. CLARKS TO 8 (HRS) (C=DEFAULT)= 0.00
                                                         0.00
           Ch
                   TC
     TP
    4.82
          0.548
                   5.61
                          3.65
                          3.40
    4.88 0.583
                   5.98
    4.97
          0.4.06
                   6.25
                          3.30
    5.05
          0.613
                  6.43
                          3.24
                          3.19
   5.11
         0.615
                  6.55
         0.516
                          3.14
   5.14
                  6.62
        0.010
                          3.10
   5.16
                  6.62
    5.15
         0.620
                  6.69
                          3.10
         6.018
                  0.69
    5.17
                          3.07
         0.621
                  6.69
                          3.07
    5.16
SELECT 1-6 (1=TIME INT, 2=UNIT H, 3=RAIN, 4=RL GFF, 5=PNT, 6=STOP)
ENTER RATIO IMPERVIOUS = C.00
SELECT 1-3 ( 1=RAIN, 2=SIS, 3=PMS )
ENTER PMS INDEX RAINFALL (IN) = 23.30
ENTER RO,R12,R24,R48,R72,R96 = 83.70 100.00 110.30 126.50 131.30 0.0 ENTER TRSPC AND TRSDA (SQMI) = 0.00 89.50
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS, 3=SCS)
                                                1
ENTER INITIAL LOSS (IN), CONSTANT LUSS (IN/HR) =
                                                1.00
                                                          0.10
SELECT 1-6 (1=TIME INT.Z=UNIT H.3=RAIN.4=RUNCFF.5=PNT. 6=STOP)
ENTER A TITLE PLEASE - NEVERSINK PMF
LATER STRIGGORCSN, AND RIOR = 189.00 1.9.00
 HR MIN
        RAIN LOSS EXCESS UNIT HG
                                    PECS:
                                             FLOW
 3 0 6.06 0.06 0.66 2679.
                                    189.
                                             189.
        0.06 0.06 0.00
                           6937.
                                             189.
     0
                                     189.
  9
     C
        11.24 0.24 0.01
                           6020.
                                    189.
                                              189.
```

SELECT 1-0 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, '6=STOP)

12	C	C.24	0.24	0.00	2366.	189.	189.
15	0	0.82	0.55	0.27	814.	189.	912.
18	0	1.66	0.30	1.36	280.	189.	5705.
21	U	L.09	0.09	0.00	97.	189.	11249.
24	C	0.09	0.09	0.00	34.	189.	9016.
27	O	0.41	0.30	0.11		189.	3924.
30	0	0.41	0.30	0.11		189.	2429.
33	C	1.64	0.30	1.34		189.	5611.
36	0	1.64	0.30	1.34		189.	14138.
39	C	5.56	0.30	5.26		189.	32039.
42	0	11.29	0.30	10.99		189.	77481.
45	U	0.62	0.30	0.32		189.	113261.
48	0	0.62	0.30	0.32		189.	83365.
51	C	0.02	0.02	0.00		189.	35148.
54	0	0.02	0.02	0.00		189.	13467.
57	L	0.07	0.07	0.00		189.	4838.
60	0	0.07	0.07	0.00		189.	1777.
63	C	0.24	0.24	0.00		189.	678.
66	O	0.49	0.30	0.19		189.	740.
69	C	0.03	0.03	0.00		189.	1518.
72	0	0.03	0.03	0.00		189.	1333.
75	0					189.	639.
78	C					189.	344.
81	U					189.	242.
64	0					189.	207.
07	0					189.	195.
90	0					189.	189.
93	C					189.	189.
TOTAL		26.42	4.81	21.61	19229.	5859.	421390.

of 12

DESIGN BRIEF

H GNED BY.	AA	<u>v</u>			DE	SIGN	ВКІ	EF	DATE_	8/78
)	724	0		_ SHORT	TITLE	NEVER.	INK -	SPILLWAY		L-17 OF
HON SUBJE	CT								REF. D	wgs
								111	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
		7046 	of -	SON /	ENTI					MAGE
	Σ. ,	Syama	er 7	BLE :	LAK	E Ecer.	k	SPILLWAY	FLOW	2
	7 ,	SPILL	WAY C	DUTFL) L	ALCULAT	rons			
		p.	Diver	KON	Tunne	e Fee	w			3
		A	Waste	G	MANNEL	Flow	y			4-8
	亚	Spi	LLWAY	Zw	Now	CALGU	LATION			
	4	1.	Spice	way	Well	Fio	w)			9-10
	_	/44	artica 1		A E	(a) Eve	Sugar	ERGENCE		"
	4						JUBIN	-AOGOCE		
	Ŧ	D	1AWNGS							
		A	. SPIC	LWAY	PROF	K.E				/2
			ANI (ANI)				100			
				-						

2) of 12

DESIGN BRIEF

ESIGNED BY						PAGE 4-18 OF	
10JECT NO	2210	SHORT TITLE	NEVERSINK	- LAKE	ELEV	us Spiceway	FLOW
ESIGN SUBJECT_						REF. DWGS.	
TTTT							
	-				+ -		
		30.7	MARY				
		LAKE ELEV.	Cox	WAY FLO			-
			376	MAY FLO			
		1440 (ft)		0			-
	1				fs		
		1442		5,620			
	The state of the s			10,500			
		1144		16,500			
				23,400			
		1446		31,200		MEIR CONTROL	LHARG
				40,100		TEIR CO. DIS	
		1948		50,000		Me FRED	
				60, 800		W	
		1450		72, 100		V	
				83,200		4 CONTRO	NCE
		1452		91,900		WEIR CONTROL WEIR SUBMIRE	
	1			98, 900		sub.	
		1454		102,100		(°)	
	-						
	-						
		PMF = 100,000	4				-
		FMF ~ 700,600	43				
		see text of calc	ulations A-	Mind	values		
		Jec Next Or Care		(Ad) Tronas	70		+-

DIETLAL CON LANATIC.

10 X 10 PER 117.

ü

FROM COPY FURNISHED TO DDC

	_	
1		_
/		? 1
ı		,
•	_	_

	0.5	SIGN RP		of a
DESIGNED BY AMS	0.	SIGN DK		DATE 8/8/78
CHECKED BY				PAGE 6-20 F
PROJECT NO. 2210	SHORT TITLE	NEVERSINK -	DIVERSION TUNN	
DESIGN SUBJECT				REF. DWGS.
object - determine	man flow in	Annal soilles	u no flow	n waste channel
	1420 ± (scaled from			
		30'd rore. tunnel		(4)
		20 4 COLL	ek	. 1295 ± w/ Q = \$0,000 (eft.) -
			ekt (es	1. 1265 ± (no flow weir)
		960'±	,	eight of How
			9 = CLh 12	= 50,000 ds assumed
			4.0 × 170	1 x h = 50,000
				h= 18' (will be submerged)
				let h= 30'
had	available =	had lest		
clevation ch	ange = ent	trance loss +	elocity hand + f	thing losses + pipe loss
A is		ten 29 +	√¹ + €	など + 千世号
1420 - 1299		T.10 +	1.0: +	·2 + ·02 960 7 12
1120 - 127.		-	17 6	* 960' ±
			f = Darry - W	eisbach coefficient
			, 002	to .02 - rough " "
			C use f	.02 (conversative)
T	= 1.94	V2		
125		0111		
	V = 64.4	tos (moc		
				the comment will be a second

DESIGN BRIEF

_	
1	12
et.	14

			ESIGN DK			0 0 -	9
HECKED BY	2210		NEVERSINK -	WASTE	****	8-9-76 6-210F	,
PROJECT NO		SHORT TITLE			REF. DV	v Gs	
object	- determ	ine attlow (7	botal) for :	denth in	n waste chan	onef.	
weste	channel 1473	geometry ± L=290'	bu#17± s	6'290'	·0207	≈ .020	
		b=40'	1 ² a=	5' × 40	$\frac{0+45}{2} = 1$	117.5 sq ft. 51.21	
				= 217.3	- 4.15		
	n= .03	5 rock piep.	-rubble.				
	V = 1.49	r23 51/2 =	1.49 × 4. 23 ×	02) 2	= 1.49 + 2	.58 × .14	
	= 15.4	fps					
		15.4 fp					
	,	$0h = E \times \frac{V^{1}}{29}$ $128' = 1.94 \times V = 65.1$	ing . Quand	46,100			
				49,400	ets		

THIS PAGE IS BEST QUALITY FRACTICABLE FROM COFY FURNISHED TO DDG

3

DESIGN BRIEF

CHECKED BY						6-22 01 8
PROJECT NOSHORT TITLE_			NEVERSINK -	WATTE	CHANNEL	CALC
DESIGN SUBJECT					REF. D	w G S
objective)		- determine and	How for 1	o' dooth of	bu in wast	a channel
		50 /Jz	$a = 45' \times 10'$	= 450 f	¥* 62.4	
		40'				
			r = 9 = 45	62.4	7.21	. 13 = 3.73
		n= .035				
	V= 1	149 173 5/2	= 1.49 = 3.7	* .141 =	22.4 fp	5
			2.4 fps ×			
	\32	= 1.94 1/64.4	-> V - 66.2	· Q+unnel	46,80	o cli
				Image: square of the point of	SE, 90	क की
Sobjective] -	determine Q	for '5' i,	waite :	honnel	
						4
		15' /12	p = 40	+ 2 (16.8)	= 67.2	ft
	\	40	r= % =	712.5/67 2	= 10.6	r¥s = 4,83
		n= .035	5= .14/1	7.2		
	V =	1.42 r 2/ 5 /2	= 1.49 ×	83141	35 = 290	for
		^				
						.5 A' = 20,400 e
			137 = 1.94 1/4.4	. v = 67.4	.Q=	47, 700 1
	1 1 1					Q= 67, 100 .1

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

DESIGN BRIEF

SIGNED BY		DATE
ECKED BY		PAGE 23 OF
DARCT NO.	SHORT TITLE	
VACI NV	WORT HILE	
HIGH SUBJECT		REF. DWGS.
1111	a . If of A HA.	
note to self	with the of 12 in wa	A channel, the water surface eler. will be
142	3 ± + 17 ± = (790 which	How in worth changel > 17' ±
	weir will be sibmerged for	Maus in wolfe channel > 17' I
OBJECT	determine total offen for	17/2' death in waite channel
	57k a= 17/2' x	/= 853.
	57/6 a = 17/2 x 17/6 p = 40 +	2 (12.5) = 79.2
	40' r= 30 = 6	53/79.1 = 10.77 138 = 4.87
	V= 1.49 13 5/2 = 1.49	4.87 × .141 - 29.3 A
	0 = VA = 393	Apr 1 853. 11' = 25,000 cfs.
	9 9 9 5 5 7 3	191 - 633. 47 - 23,000 675.
	1,949	67.6 : Que = 47,800 efs
	138 - 649 V, V=	67.6 47.800 eps
		Q151= 72,800 cfs
,		
(OBJECT)	determine total outthen for	20 a oth in waste channel
	60'	
	20 / 0 = 50	
	7 = 4	+ 7 (21.4) = 84.8'
	40' [= 2/2 =	1000/84.8 = 11.8' 123 = 5.2
	N= 13 L3 24 =	1.49 × 5.2 × .141 = 31.1
	Q = VA = 31./	AN 1000 H = 31, 100
		97 * 47 900
		77-44
The second of		10 - 70 4
		Q101 = 79,000 efs

DESIGN BRIEF

4	7	1	
	-	/	
•	-		

of 12

SCKED BY				_									PAGE	-24	0#	
O.MCT NO			SHORT TO	TLE												
SIGN SUBJECT													REF. DY	vGs		
		7 7	1			1	1	-		1		1	1		1	
DBJ ECTIVE	- date		tole o	11	1		27	15	de	11	ic	- 64	de	chan	.A	
Service 1.4m	42		JOIN O	r T TION	70		1	-	- 19						7	
	1214	7		a	*	51 /4	, ×	22	1/2 "	=		115	3. 4	1		
		/							(25. 1							
	40						ĺ					i				
				r + 3	P	=	1539	0.4	4	12.	7		r23	5	.45	
							ļ.,			-						
		V =	1,4	ورم ع	2,	=	1	035	*	5.4	1		141 =	32	.8	
			ļ.,.					-		1				L	1	
		Q =	VA		32.	8	fp4	*	1153					1		
										(PTUN		48,	000	efs	
			-		•	-		-			6		_			7
					-		Transpire (1			+ 1	4	OT .	- 53	.80	o et	1-
											ļ.,				1-	
(OBJECTIVE)		lateim,		4.1	14	4	1		35'	1.	1/	0			6 .4	
OBJECTIVE		es (S	* 1	104	ודוענ	02	TOP			(42)	•	100	10	META		-,,,,,
	1	115	7	a		52	12 2	. 2	5 4		131	2	rf			
		1/		1	= 4	10	, 2	24	9.)	_	6'					
		40		•												
				r=	1/2	=	131	37:	•	13.	, '		L	=	5.7	
														-		
		Į. V	- 1	49	. 73	2	2	-	.03	۶,		5.7	* .	141	- 30	1.3
		10 7 and 10 to 100	1					•				^		-		
		1 9) = V	A =		34.	3 +	*	*	13	2	s.t.	-	4.	5,00	0
					+					-	_				0 1-	
					+			-		-	Q	אטן	2	_	8, 100	
							-			-		1			3,10	
	+									+	-	70	गण		134 10	0 6
					7											-

8

DESIGN BRIEF

-	19
ot .	1

										PAGE	-25	OF	
OJECT NO.		SH	ORT TITLE										
SIGN SUBJECT										REF. D	wgs		
I I I I I I I I I I I I I I I I I I I		***************************************	*	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		Frequencial Control organisms with					
	71		, , ,										
OBJECTIVE	detern	nine 1	blal c	ut 16	w fo	, 2	74'	depth	04	Aba in	wast	chan	mel.
	67/2	'											
	127/2	/		٤ =	53.	¥×	27 1/2	2	478	st.			
	1 /			0 =	40	+ 2 (30.8) =	101.	6'			
	40'												
			r=	14	78 M	101.6		14.	5	ر کا	= 6	0	
					1								
		V=	1.49	13	5%	<u>.</u>	.49	. 6	0	.141	- 3	5.6	
							35						
		Q =	V	4	=	35.6	3 Apr	+ /	478	14 =	52,	900	ef)
										24 =			
									* 1		1		E
		1								Prot 2		1 100	.4.
	1 1			+						TOT	- 10	, ,,,,	110
	1												
OBJECTIVE] de	Homine	tote	, ,	d Nos	~ A.	30'	dopth		i a		chann	ef.
OBJECTIVE	70	Hermine	Ash						Shu	in a	unst.	chann	<i>A</i>
OBJECTIVE	- - -	temine		a =	: 5	s′*	201		Shu	in a	unst.	chann,	
OBJECTIVE	70	Homine		a =	: 5 40	5	30' 2 (31	1.6)	Shu	in a	unit.		
OBJECTIVE	70	Hemine		a =	: 5 40	5	30' 2 (31	1.6)	Shu	in a	unit.		
OBJECTIVE	70	7		a =	: 5 40 1650	5	30' 2 (31	1.6)	Shu	in a	unit.		
OBJECTIVE	70	7		a =	5 40	5	30' 2 (31	.()	56w	in a	f.	6.2	
OBJECTIVE	70	7		a =	5 40	5	30' 2 (31	.()	56w	in a	f.		
OBJECTIVE	70	7	r	a =	5 40 1650 1650	5	30' 2 (31	15.	56w 4	in a	f.	6.2	
OBJECTIVE	70	/ /-	r	a =	5 40 1650 1650	5' *	30' 2 (31	15.	56w 4	in a 1650 1 07.2	f. 13.	37,/	An o
OBJECTIVE	70	/ /-	r	a =	5 40 1650 1650	5' *	30' 2 (31	15.	56w 4	in a	f.	37,/	4
OBJECTIVE	70 b ' /	γ • · · · · · · · · · · · · · · · · · ·	C 199	a = p :	5 40 650 8 2	5' 4	90' 2 (33 2 4 99	1.6) - 15. - 250 - 9	56w 4 6.2	in 6	f. 23.	37,/	An cli
OBJECTIVE	70] b' /	Q THIS PA	CHE IS B	a =	5 40 40 1650 X	5' * 1 107.	90' 2 (33 2 4 99	1.6) - 15. - 250 - 9	56w 4 6.2	in a 1650 1 07.2	f. 23.	37,/	An cli
OBJECTIVE	70] b' /	γ • · · · · · · · · · · · · · · · · · ·	CHE IS B	a =	5 40 40 1650 X	5' * 1 107.	90' 2 (33 2 4 99	1.6) - 15. - 250 - 9	56w 4 6.2	in 6	f. 23.	37,/	An cli
OBJECTIVE	70] b' /	Q THIS PA	CHE IS B	a =	5 40 40 1650 X	5' * 1 107.	90' 2 (33 2 4 99	1.6) - 15. - 250 - 9	56w 4 6.2	in 6	f. 23.	37,/	An cli

DESIGN BRIEF

Ams JESIGNED BY CHECKED BY 2210 NEVERSINK - SPILLWAY WEIR ROJECT NO .. SHORT TITLE DESIGN SUBJECT.

> Spillway Sections. The typical overflow spillway section of a dam, as illustrated in Fig. 5-26, is a weir with rounded crest

Fig. 5-26. Spillway section "standard crest."

The coefficient varies from 3.0 to more than 4.0, depend ing primarily on the shape of the crest, the extent of end contraction, and the head Pecause of the variation in (for different weirs, it is neces sary to calibrate each weir i a high degree of accuracis desired. However, the shape of the crest is often designed as a standard crest," which was developed

REF. DWGS.

to fit the shape of the under "Handbut of to schooliv"

5.5' by king & Brate, 8th Ed, 195-28 .4 H = 5.5' by king & Bicater, 5th Ed, 195-28

.4 H = 13.75' = 14' = height for which spillway crest designed THIS PAGE IS BEST QUALITY PRACTICABLE

L= 600'

FROM COPY FURNISHED TO DDC

ELEVATION	h	h/H	C	Q = CLh (As)
1440	0	+	_	0
	1	.07	3.: , ±	1950
	2	.14	3.5 ±	5620
	3	.21	~3. /±~	10,500
		. 25	3.4 ±	13,400
	4	.29	3.43 ±	16500
		. 32	3.46	19,800
1445	5	.36	3.49	23,400
		.39	3.1	27, 200
	6	.43	3. 4	31,200
		.46	3. 7	35,500
	7	.50	3. 5/	40,100
		.54	3,65	45,000
	8	.57	3. 3	50,000
		.61	3 2	55, 300
	9	.64	3 '5	60,800
		.68	3.8	66,400
1450	10	.7/	3 3	72,100

DESIGN BRIEF

THECKED BY AMS

THECKED BY

PAGE C-27 OF

PROJECT NO. 2210 SHORT TITLE NEVERSIAN - SPILLWAY WEIR CALCULATIONS

DATE 8/8/78

PAGE C-27 OF

PROJECT NO. 2210 SHORT TITLE NEVERSIAN - SPILLWAY WEIR CALCULATIONS

REF. DWGS.

(RONT)

ELEVATION	h	6/4	С	Q = CLh 3/6
1450 1/2	10 1/2	.75	s. 83	78,200
1451	. 1/	.79	3.86	84,500
		.82	3.88	90,800/
1452	12	.86	3.90	97.396
		.89	3.9/	102,100
1453	13	.93	3.93	# NO 300
		.96	3.94	117,300
1454	14	1.00	3.96	124,500
			/	<u> </u>
			(we	ir affected by
			306	nergence . revise figures -
			=7	revise tigures

1.1					
WEIK	recw.s	REVISED	FOR	SURME	GENCE

ELEV	Н	a	Ass ned % Reduction in 2 the to Submergence	Q'=(1-%) Q
1451	11	84,500	1.5	83,200
	11/2	90,800	3.5	87,600
1452	12	97, 300	5.5	91, 900
	12/2	103,700	8.	95, 400
1453	13	110,500	10.5	98,900
	131/2	117,300	14	100,900
1454	1.4	124,500	18	102,100

(1)

DESIGN BRIEF

£ 12

		NEVERSI		L UNED	STRUCTURE	OE DME					
					SINUCTURE	UF CHE					
0120	A	SPILLWAY									
0 13 0	В	27	3								
0140	1	3									
Ø15 Ø	K	0									
0160	Ħ	-1		89							
0170	N	189	912	5765	11249	9016	39.4	2429	5611	14138	32639
Ø18 6	N	77481	113261	83365	35148	13467	48 8	1777	678	740	1518
6196	N	1333	639	344	242	207	195	189			
0200	K	1									
8218	Y				1						
0220	1	1						-1			
0 23 0	2	0	1500	3999	4500	6000	90 0	12000	15000	18000	21666
8248	3	0	1950	5629	10500	23400	312 0	50000	72100	98966	192199
0250	K	99									
0260	A										
0 27 0	A										
Ø28 Ø	A										

6119	A	RESERVOI	R ROUTIN	NG OVER	STRUCTUR	E OF SFF					
		SPILLWAY									
130	B	27	3								
146	1	3									
150	K	6									
169	Ħ	-1		89							
176	N	189	350	2186	4643	3883	1667	782	1963	5621	14815
180	N	40066	68616	45372	19622	7736	284	1098	472	352	543
196	N	496	397	236	263	194	191	189			
1266	K	1									
210	γ				1						
1220	1	1						-1			
1230	2	9	1566	3000	4500	6000	966	12000	15600	18666	21000
0240	3	9	1950	5620	10500	23400	3120	50000	72100	98966	162166
250	K	99									
260	A										
270	A										
286	A										

630

- 24

NEVERSINK DAM
RESERVOIR ROUTING OVER STRUCTURE OF SPF
SPILLWAY CONTROL

JOB SPECIFICATION

NG NHR NNIN IDAY IHR WIN METRC IPLT IPRT NSTAN

27 3 0 0 0 0 0 0 0 0

JOPER NNT

3 0

******** ********* ******** SUB-AREA RUNOF COMPUTATION ISTAQ ICOMP IECON ITAE JPLT JPRT INAME 0 0 . 0 0 HYDROGRAF DATA IHYDG IUHG TAREA SNAP TRSDA RSPC RATIO ISNOW ISANE LOCAL 0.6 -1 6 89.66 6.5 9.8 9.8 9 9 6 INPUT HYDEOGRAPH 189. 350. 2186. 3883. 1662. 4643. 782. 1963. 5621. 14815. 49966. 60616. 45372. 19622. 7736. 2845. 1098. 472. 352. 543. 498. 307. 236. 263. 194. 191. 189. PEAK 6-HOUR 24- JUR 72-HOUR TOTAL VOLUME 52994. 245 7. 9662. 69616. 216620. INCHES 5.54 10.28 11.29 11.32 AC-FT 26292. 4879. 53594. 53735.

********** ****** ***

. "1

		IST	O ICOMP	HYDROG IECON	RAPH ROUT		PRT INAME			
			1	g DOUT	THE DATA	0	6 6			
			QLOSS	CLOSS	ING DATA AVG Ø.6	IRES IS	AME Ø			
		NST	PS NSTDL	LAG	AMSKK	X 8.8 8.1	TSK STOR			
STORAGE# OUTFLOW#	ø.	15 00. 195 0.	3 466. 562 6.	4590. 1 65 00.	6 000. 23 406.	9 000. 312 00.	12000. 50000.	15000. 72100.	18 666. 989 66.	21 096. 1 62166.
			TIME	EOP STOR	AVG I	N EOP OU	T			
			1	145.	189.	189.				
			2	163.	270.	211.				
			3	388.	1268.	505.				
			4	1010.	3415.	1312.				
			5	1624.	4263.	2254.				
			6	1723.	2773.	2495.				
			7	1478.	1222.	1922.				
			8	1361.	1373	1769.				
			9	1761.	3792	2588.				
			16	3197.	10218	6262.				
			11	6245.	27441	24036.				
			12	10620.	50341.	41352.				
			13	12227.	52994.	51673.				
			14 15	9569.	32497.	34765.				
			16	5879. 3515.	13679. 5291	22359. 7294.				-TCA
			17	2542.	1972	4498.				RACTA
			18	1835.	785.	2770.			.1	LALL
			19	1373.	412.	1784.			TO QUALITY	DOG
			20	1087.	448.			- c 8	ES'L HED I	
			21	896.	517.	1164.		AGE IS	SINISI	TY PRACTICA
			22	732.	399.	952.	MITS	COSA FO		
			23	586.	269.		TIRON	,00		
			24	470.	217.	611.	7.			
			25	382.	199.	496.				
			26	317.	193.	412.				
			27	269.	196.	350.				
			SUM			216266				
			PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOL	LIME		
		CFS		46512.	24838.	8977.	21620			
		INCHES	010101	4.86	10.05	11.26	11.			
		AC-FT		23076.	47687.	53445.	5363			

RUNOFF SUMMARY, AVERAGE FLOW

PEAK 6-HOUR 24-HOUR 72-HOUR
HYDROGRAPH AT 6 66616. 52994. 24587.
ROUTED TO 6 51673. 46512. 24636.

AD-A064 141

NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY F/G 13/2
NATIONAL DAM SAFETY PROGRAM. NEVERSINK RESERVOIR DAM. (348). DE--ETC(U)
SEP 78 J B STETSON DACW51-78-C-0035

UNCLASSIFIED

2 of 2

AD AO64141

NEVERSINK DAM RESERVOIR ROUTING OVER STRUCTURE OF PHF

##15 PAGE 15 DEST QUALITY

FROM COPY FURNISHED TO DDC SPILLWAY CONTROL

THIS PAGE IS BEST QUALITY PRACTICABLE

JOB SPECIFICATION NHR NMIN IDAY IHR IMIN METRC IPLT IPRT MSTAN 27 3 JOPER NHT 3 0

******** ******** ******** ******** ******** SUB-AREA RUNOFF COMPUTATION ISTAG ICOMP IECON ITAPE JPLT JPRT INAME HYDROGRAPH DATA IHYDC IUHC TRSDA TRSPC RATIO ISNOW ISAME LOCAL TAREA SNAP -1 89.66 1.5 6.6 1.7 1.1 . INPUT HYDROG APH 912. 189. 5765. 11249. 9016. 924. 2429. 5611. 14138. 32639. 77481. 113261. 83365. 35148. 13467. 838. 1777. 678. 745. 1518. 1333. 639. 344. 242. 207. 195. 189. PEAK 6-HOUR 24-HOUF 72-HOUR TOTAL VOLUME CFS 113261. 98313. 46814. 17563. 420634. INCHES 10.28 19.57 21.95 21.98 AC-FT 48775. 92902. 104201. 164343. ******** ******** ******** ******** ******** HYDROGRAPH ROUTING ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME . . ROUTING DATA QLOSS CLOSS AVG IRES ISAME 0.0 1.5 0.0 NSTDL LAG AMSKK X TSK STORA • 6.6 1.6 0.0 -1. STORAGE# 1566. 0. 3666. 4500. 12000. 6999. 9666. 15000. 18666. 21966. OUTFLOW# ø. 1950. 5620. 10500. 23466. 31200. 50000. 72166. 98966. 162166. TIME EOP STOR AVC IN EOP OUT 1 145. 189. 189. 2 223. 551. 289. 3 867. 3369. 1127. 4 2334. 8477. 3991. 3467. 10133. 7139. 3349. 6470. 6754. 7 2695. 3177. 4873. 2532. 4020. 4476. 3526. 9875. 7316. 6-33

10

11

5727.

11153.

23689.

54766

21656.

44695.

12	17525.	95371.	94653.
13	17955.	98313.	98500.
14	13170.	59257.	58617.
15	8291.	24368.	29356.
16	5642.	9153.	15158.
17	3204.	3368.	6283.
18	2258.	1228.	3864.
19	1669.	769.	2363.
20	1426.	1129	1854.
21	1335.	1426.	1735.
22	1175.	986.	1527.
23	954.	492.	1248.
24	751.	293.	977.
25	591.	225.	768.
26	476.	261.	611.
27	386.	192.	494.

SUM

419839.

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	98500.	96576.	46168.	17453.	419839.
INCHES		10.09	19.36	21.89	21.94
AC-FT		47914.	91620.	163965.	164146.

RUNOFF SUMMARY, AVER E FLOW

		PEAK	6-HOUR	24-HOUR	72-HOUR	AREA
HYDROGRAPH AT	•	113261.	98313.	46814.	17503.	89.96
ROUTED TO	•	98566.	96576.	46168.	17453.	89.00

APPENDIX D

APPENDIX D

REFERENCES

- Department of the Army, Office of the Chief of Engineers. National Program of Investigation of Dams; Appendix D: Recommended Guidelines for Safety Inspection of Dams, 1976
- Charles H. Weidner: Water for a City Rutgers University Press (1974)
- 3. The University of the State of New York The State Education Department - State Museum and Science Service - Geological Survey: Geological Map of New York (1970)
- U.S. Nuclear Regulatory Commission: Design Basis Floods for Nuclear Power Plants, Regulating Guide 1.59, Revision 2, August 1977
- Linsley and Franzini: Water Resources Engineering, Second Edition, McGraw-Hill (1972)
- 6. Louis C. Schreiner and John T. Riede: Hydrometeorological Report No. 51, U.S. Department of Commerce National Oceanic and Atmospheric Administration National Weather Service, Office of Hydrology; Silver Springs, Maryland, September 1976
- 7. Delaware Water Supply News, 1942-1953, N.Y. State Library, Library No. S628-1097471 qD349.
- 8. Ven Te Chow: Handbook of Applied Hydrology, McGraw-Hill, 1964
- 9. The Hydrologic Engineering Center: Computer Program 723-X6-L2010, HEC-1 Flood Hydrograph Package, User's Manual, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616, January 1973
- 10. The Hydrologic Engineering Center, Art Pabst: Computer Program UHCOMP, Unpublished, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616
- North Atlantic Regional Water Resour es Study Coordinating Committee: Appendix C, Climate, Met orology and Hydrology, February 1972
- 12. Sherard, Woodward, Gizienski, Clevenger: Earth and Earth Rock Dams, John Wiley and Sons, Inc., 196
- 13. H.W. King, E.F. Brater: Handbook of Hydraulics, McGraw-Hill, 5th Edition, 1963

- 14. Ven Te Chow: Open Channel Hydraulics, McGraw-Hill, 1959
- 15. Bureau of Reclamation, United States Department of the Interior, Design of Small Dams: A Water Resources Technical Publication, Third Printing, 1965
- 16. The Hydrologic Engineering Center, Regional Frequency Studies Upper Delaware and Hudson River Basins, New York District, November 1974
- Preliminary Brittle Structures Map of New York, New York State Geological Survey, 1977

APPENDIX E

ATTACHMENTS

INFORMATION LEAFLET

N. Y. STATE CONSERVATION EDUCATION

DIVISION OF CONSERVATION EDUCATION

This material from the
Department's official magazine —
THE N. Y. STATE CONSERVATIONIST

WOODCHUCK

THE INSIDE ON THE OUTDOORS

By Clayt Seagears

Jop Wildlife Landlord is the WOODCHUCK

Its burrow is the original air conditioned unit which provides life saving shelter for countless cotton tails which under certain conditions cant survive either extreme Summer heat - r winter cold.

Wildlife Landlord

THE woodchuck is a much better little pal than most folks think he is—provided his home is located where he can't pack his paunch with produce. On a truck farm he's as welcome as a June frost and within his 100 yard operating radius he's just about as destructive. But a woodchuck on wasteland is a cherubic heast specializing in hotel management and with a university degree as an air conditioning engineer. However, if our friend was college bred, it must have been a four-year loaf—for there are few lazier animals.

In the excavating department, the woodchuck has dug up all sorts of honors which not only put him ahead of the field but under it.

For its average 10-pound size, the chunky 'chuck is our most abundant animal. His numbers, however, have been whittled to the point of virtual elimination by persistent small-bore hunters.

All this is well and good on agricultural lands. But when the woodchuck is removed from non-crop areas, the cottontail rabbit and such furbearers as the skunk also suffer.

The American cottontail, unlike his continental counterpart, digs no burrow. Nature muffed that one, for this most popular of all game animals apparently is not able to survive high summer heat unless cool retreat is available. No ther can the bunny surviwe a combination of zero weather and wind. Here's where the woodchuck hole enters. So doe the rabbit. Moreover, the 'chuck's burrow provides handy refuge from many rabbit enemies.

Woodchucks have a common blueprint for their subsoil chalets. Normally, the main entrance, or plunge hole, is identified by a generous mound of earth. On this the grizzled proprietors while away the mid-day hours, scratching, stietching and scanning a surprising amount of horizon.

Usually there are one or more other entrances. No telltale earthworks mark these and often as not they're well concealed. These not only serve as escape holes but also it is possible they are deliberate ventilators in the woodchuck's air conditioning plan. The passageways normally change course at abrupt angles here and there and terminate in grass-lined nests the size of a bushel basket. Most burrows are dug less than four feet below the surface.

Woodchucks are not clannish people. A pair may occupy a burrow but most of the year one old whistle pig seems to be the sole proprietor. The young, normally five, are born in April, hit the deck in early June and are kicked out of house and home in late summer to set up their own diggings.

The 'chuck never feeds for long without snapping upright to take a gander for enemies. His eyes are plenty sharp and an old 'chuck is one of the most difficult to approach of all animals. What's more, a full grown 'chuck has few enemies except man, for they are fierce and determined fighters and never know when they're licked. Young 'chucks, however, are persistently hunted by many predators. Owls seldom

get a crack at them because chucks unit their activities to daylight, unusual among animals.

By late September or early October, woodchucks are very fat. Then's the time they call it a season and go underground until early spring. They are true hibernators in that when torpid their body temperature approximates that of the an around them. If that air should hit the freezing point, the woodchuck could be expected to freeze, too. However, studies of hibernation have shown that when that point is reached a chemical reaction in the animal's body apparently serves as a kind of alarm clock and the critter wakes up. Then the body temperature rises to normal until danger is passed. It is unlikely, however, that the woodchuck's nest ever approaches the freezing mark. It seems to hold a constant temperature of around 40° to 50° all winter.

When hibernating, the 'chuck is curled in a tight ball and its respirations may be slowed to one every four or five namutes. After about 5½ months of this sort of thing, the woodchuck feels some subtle urge to get going. Out he comes, often as not when there's still snow on the ground. Meantime, of course, he has had to come out anyway February 2 for a preliminary survey of the shadow department and to give off a few newspaper interviews. Everybody knows that. But otherwise his torpor is uninterrupted for nearly half the year. His fat serves him well as a backlog to maintain the low spark of life. If he should be dug up during hibernation, the process of waking is slow. The 'chuck staggers a ound as though all four legs were asleep—which they were. It after 15 or 20 minutes he is as lively as ever. Put him back down a hole and he's soon out cold again.

The woodchuck poses a complex management problem. Unquestionably he has no place on agricultural lands. But when he lives on abandoned farms, in the woodlot or on brushlands, that's something else again.

There's no question but that his burrow is a lifesaver for millions of cottontails. That immediately should tag him as the rabbit hunter's best friend. Also, that burrow is a boon to the rural boy trapper who annually harvests an estimated million dollars worth of fur in New York. A large part of that fur harvest is skunk. Ask any boy where he sets his tains.

On the other hand, the woodchuck is an important source

sport for an increasing army of small-bore enthusiasts the find in him worthy tests of marksmanship and stalking ability. For the most part, however, our here has little chance against a combination of a good 'scope and a high velocity cartridge. Persistent woodchuck hunting already has cleaned out large sections of the countryside. Unfortunately, a lot of 'chuck hunting is done in spring when a bullseye on an old female means taps for her roly-poly young in the nest. And the hunter thus kills off his future sport.

Increasing, also, is the use of the so-called gas bomb for woodchuck elimination. Intelligently used, the gassing method undoubtedly is the best for necessary control work. But it should only be used when 'chucks are an actual threat to agriculture. It should be remembered that gas is non-selective. There's little question but that hundreds of thousands of cottontails and valuable furbearers have been thoughtlessly destroyed by its indiscriminate use.

A young woodchuck is good to eat. All of them provide food for thought.

—CLAYT SEAGRARS