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T SUMMARY

A nonlinear theory for solving partially cavitating cascade problems
was formulated in two different types of input data set-ups, one
specifying cavitation number and the other the cavity length. The
second method was necessary to find a unique solution because the
cavity length has two different values for a specified cavitation
number in some blade geometry cases. This fact, together with the
investigation of detailed pressure distributions on the upper wetted
part of the blade, explained the unsteady cavity phenomena previ-
ously reported in some experiments. Suggestions were made on how

to avoid the occurrence of the unsteady partial cavity phenomena

when one designs fluid machinery used in a partially cavitating

regime.

ii




ET,

ACKNOWLEDGMENTS

This research was carried out under the Naval Sea Systems Command,
General Hydromechanics Research Program, administered by the
David Taylor Naval Ship Research and Development Center, Contract

N00014-78-C-0146. The author is indebted to Mr. Peter Roshko

for conducting numerical computations throughout the project.




LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

7 (a)

7 (b)

7 (c)

Flow configuration for partially cavitating
cascade.

Two transform planes and definition of arc

lengths S1 and Sz.

Comparison of the present theory with a
linearized theory of Wade [13] for flat-plate
cascade at @y = 8°, y = 45° for two solidity

cases, .5 and 1.0.

Comparison between the theory and experiment

for plano-convex cascade having various blade
thickness where solidity is .625 and stagger
angles are 37° and 36°, for o, = 8° and 9°
respectively (calculated data for supercavitating
range made with [14] are also included).

Drag coefficients for the same cases as Figure 4.

Cavity length vs. cavitation number for the
same cases as Figure 4.

Calculated pressure distribution on the upper
wetted portion of plano-convex blade of par-
tially cavitating cascade having 0 percent
thickness for various cavitation numbers.

The same as Figure 7(a) except for TH = 2%.

The same as Figure 7(a) except for TH 5%.

Profiles of calculated cavity boundaries fo;
cascade of plano-convex blades having 2% thick-

ness at a, = 9° with y = 36° and solidity = .625.
iv
g : - o ) ‘ w-i

PAGE

28

29

30

31

32

33

34

35

36

37




T

IvV.

w2

L'"D

o

S1:5,

NOMENCLATURE

scale factor for mapping between W and [ planes.

g-coordinate corresponding to the upper cavity separation
point

E-coordinate corresponding to the cavity reattachment position
and also used as a chord length of blade

lift and drag coefficients parallel and normal to the

incoming flow direction t;

2 ;
e |

= L or D/% pU
lift and drag coefficients in the direction of the it
x and y axes E
lift coefficients in the x-direction normalized by

the geometric mean velocity U

pressure coefficient (= {p-pﬂ/% oUi]

drag force
spacing of cascade blades i
£-coordinate corresponding to the upper trailing edge
nonlinear equations representing the boundary value
problem for unknown solution parameters X4

index for complex variable (='V:i

lifting force

cavity length

static pressure
flow velocity modulus
total arc lengths of the upper and lower wetted part

of the blade, respectively




s (&)

sg (x)

TH

O»

local arc length measured from either the leading
edge or the reattachment point of cavity
sign function =1 for x>0

==1 for x < 0
thickness of plano-convex blade normalized by chord
flow velocity amplitude
complex potential ={¢+iw)
physical plane (= x+iﬂ
flow angle made with the x-axis of the physical plane
local blade slope measured from the x-axis, clockwise
negative; for the second arc S,, =7 is to be added
geometric stagger angle
stagger angle of the potential plane cascade set-up

:= al+y

|
transform potential plan (= £+iﬂ

g-coordinate corresponding to the upstream infinity
of the physical plane
vertical coordinate in the &-plane

flow angle

horizontal coordinate in the ¢-plane

cavitation number =(pl-pc)/%oUi

logarithmic velocity normalized by U, { = £n(q/02%
potential function
stream function

hodograph variable {= B+it




Subscripts:

1 and 2 denotes quantities belonging to the upstream and
downstream infinities, respectively, or

quantities belonging to the first and second

arcs, respectively

ﬁ c denotes the cavity
% m denotes geometric mean quantities
F Superscripts:
+, -, guantities belonging to the immediate upper and

lower sides of the §(-axis

vii




INTRODUCTION

It is a common practice that hydrodynamists avoid high speed
fluid machinery or components to be used under partially cavi-
tating conditions because many adverse hydrodynamic effects exist
for such conditions. One of the most important phenomena is that
of cavitation damage caused by cevity bubble collapse taking
place near the material. This material damage is so severe that
components such as marine propellers after several hundred hours
of exposure to cavity collapse will become totally out of use
(see e.q. [l]* for such examples). Furthermore, it was found

in experiments that partially cavitating flows experience inher-
ent unsteady flow phenomena; the length of cavity changes from

a very short one to one chord ler jth in an oscillatory way (see
e.g. [2] and [3]). It is for this reason that effort by the
designer is directed toward either totally avoiding cavitating
conditions, if this is possible, or purposely generating super-
cavitating conditions in which cavity length is larger than the

body and thus bubble collapse occurs behind the material.

However, in recent years some marine and fluid machinery have
quite often been used in the partially cavitating flow regime.
One such example is in the marine propeller area; convential and
supercavitating propellers are sometimes used under off-design

conditions, the former at a lower advance speed and the latter

* Numbers in brackets designate references at end of paper.
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at a higher advance speed than that of the design point. 1In
both cases suine portions of propeller blaues have partial cavi-
ties as were shown in experimental works by Sontvedt [4], Bohn

[5] and Peck [6].

There exists more positive designers' attitude of using the par-
tially cavitating condition in some area of fluid m-:chinery such
as pump inducers. Cavitating inducers used, for example, in
liquid propellant rockets always operate at a partially cavitat-
ing condition. Because of simplicity, such inducer blades are
made of helical profile having long straight-line face. The
cavity length is designed to be always shorter than the chord

length (see the work of Acosta [7]).

Interest has therefore grown recently in how to ana.ytically
determine the force coefficients of partially cavitating single
foil or cascade blades. Linearized theories were applied by
many researchers for both single and cascade blades. The former
include works by Acosta [8], Geurst [9], Geurst and Verbrugh
[10], wade [11] and Golden [12]. Acosta [8] and Geurst [9]
treated the flat plate single foil problem and Geurst and Verbrugh
[10] solved the problem for camber line profiles. Wade [11] and
Golden [12] considered both camber and thickness effects in the
same linearized theory framework but with different solution
methods; the former used an analytical solution method for vor-

tex and source distributions whereas the latter employed a




numerical method to determine the strength of the singularities.
For cascade configurations, Wade [13] solved flat plate cascade
problems in exactly the same manner as for single foils. Algebra
for the cascade flow becomes more complicated due “o extra cas-

cade mapping necessary for this case.

As has been seen above, all the existing analytical methods
regarding the partially cavitating flow employed the linearized
theories. The limitations of such theories are well described
in each paper [8-13]; any perturbed flow guantities due to the
existence of cavity and obstacle in the uniform flow should be
small. Ranges of flow incidence angle, cavitation number and
camber of blades for which the accuracy of the linearized

theory is maintained to a desirable degree are not known until
comparisons with experiments are made. Questions particularly
arise for the linearization procedure for the nonlinear boundary
condition on the cavity wall. Unlike the supercavitating flow
regime, the cavitation number o is relatively large compared to
the uniform flow velocity. Nevertheless, all the linearized
theories mentioned above assumed ¢ to be small. Furthermore,
partially cavitating flow around the cascade having relatively high
solidity will generate large disturbed velocity components for
which the application of the linearized theory is no longer

valid.

Under the circumstances just described, an analytical tool for

determining the hydrodynamic forces of partially cavitating
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cascade blades has been developed. The method used here is

the nonlinear potential theory, covering a complete range of geo-

metric configurations and flow parameters without generating any

inaccuracies in satisfying the boundary conditions. The method
is quite similar to that used for supercavitating cascade
flow analysis by Furuya [14], but with substantial increase in

complexity both in mathematical formulation and numerical com-

putations.

In the following sections, mathematical formulations and numer-
ical methods will be described. Some representative numerical

results will be compared with those of a linearized theory [13]

and an experiment [3].




2. NONLINEAR BOUNDARY VALUE PROBLEM

A mathematical model representing the physical flow of partial
cavity around the cascade has to be established prior to the
formulation of a nonlinear boundary value problem. The
reattachment of cavity on the upper portion of the blade makes
t such a flow model construction difficult. Highly turbulent

flows near the end point of cavity cannot be accurately repre-

sented within the framework of potential flow assumption cur-
rently taken. Among many possible flow models, we have chosen

a most realistic one as shown in Figure 1. The cavity streamline
detached from the leading edge of the blade terminatec at point

C, the location of which is either specified or determined as

part of the solution as a function of cavitation number. This
depends upon the type of input for boundary conditions, i.e., whether
lc or o is used as input data. Then the same streamline follows
the body profile Sz(x) through the trailing edge. The gap existing
between the streamline and the upper body boundary is considered
to be a turbulent wake region, which is implicitly eliminated from
the present potential theory analysis. From the trailing edge,
the wake with a constant pressure condition extends to the down-

stream infinity and is assumed to close there.

The end point of cavity is interesting from both physical and
mathematical viewpoints. In the present flow model, the point

C is termed as a single spiral vortex model named after Tulin
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[16]. From the cavity side the streamline curls in to a point C,
then immediately follows the corresponding body slope. It seems
that this behavior of the streamline more or less represents the

cavity collapse in the actual flow situation.

It must be noted that this type of cavity closure model may not
be suitable for very thick foil cases, since the gap between the
streamline and body boundary mentioned above is out of control.
It may happen that the cavity ends inside the blade structure

if the blade thickness is large. For such cases, one has to use
an open wake cavity model in which the cavity closure condition
at down infinity is relaxed but instead replaced by specifying
the cavity thickness at the end point of cavity. In this way

the streamline crossing problem mentioned above will be totally
eliminated. The mathematical formulation for the open wake model

is no more complicated than the closed wake. 1In this paper, how-

ever, the latter will be used throughout investigation.

The mathematical formulation is quite similar to that of the
supercavitating cascade flow problem in [14], thus repetition

of detailed explanations will be avoided.

The partially cavitating flow around the cascade shown in
Figure 1 is first mapped onto the potential plane W = ¢+i¥ and

then to the upper half of the transform plane ¢ by the cascade

mapping function, see Figures 2(a) and (b), respectively. The




cascade mapping function and its derivative are given by the

following equations:

- '6 -
W = f% {e lsln (l—;/;f + 8 Zn(l-C/Cl)} (1)

where
c. = A ei(:r/2-6) (2)

§ = .al+'y,

and A is a scaling factor between the two planes, yet to

be krniown. Thus, the derivative of W on the £ axis is given

gﬂ - g ; cos §
dg ™ (4)

(£-A sin §)° + (Acos 6)2. |

The stagger angle § of the W-plane cascade set-up in Equation (3)
was determined by the coordinate point (949, ¥g) where

'150 = dU1°s:Ln (al+y) 5)

¥

0 dUl'cos (a1+y).

Introducing a hodograph variable w

.

-iB -]
%g =qge . Uze S (6)
or
w = 08+i 7 (7)
T = 1n(q/U2) (8)

where 02 denotes the velocity at downstream infinity, we can
express the boundary conditions on the real axis ¢ in the z-plane

as follows:




(1) trm0) , == <k <=1 , £ <% <m

(ii) Tt =2n (V1 + c/Uz) ¢ Db <& <¢

i

(iii) 8 = sl(stan' dy/dx) -1 <E <0
,31+1r 0 <& < b
82+'rr S <<E = £,

This is a typical mixed-type boundary value problem, the solu-

tion of which can readily be found by the same approach as used

in [14], but in a somewhat more complicated form due to the

existence of two branch cuts, - 1 < £ < b and ¢ <& < f.

Analytically continuing the upper half of £-plane into the lower
*

half plane with w(g ) = m*(i), where * denotes the complex con-

jugate, these boundary conditions (i) - (iii) will be expressed

as follows:

(1) w =6 =03 =™ < <=1, £f <f <=

(ii) o - 2izn6/1+&/02); b <¢ <c¢

(iii) w o+ w

281 7‘1 <E <0

2(61+w); 0 <& <b
2(32+n); e <& ¢ E,

The homogeneous part of the solution H(¢) for which the right
hand sides of (i) - (iii) are all zero is obtained by consider-
ing the singularity at the end point of cavity and no singular-

ities anywhere else;

- : . BTG LS. - S ,____.&_J
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‘ e=C

The general solution G(z) satisfying the mixed boundary conditions ,

is defined by G(Z) = w(Z)/H(Z) and obtained by applying the ;
Cauchy integral formula;

'

G(z) = z—il-f(c*-c‘) LA

-

& ™5 .

Therefore,

T —

w(g) = H(5)G(g)

=‘/(:+l) (2=b) (z=F) 1l )fb =y dg'
g-C 2Tl
-1

{ JEFD) (=g (o) ¥7F
g'-c

b c <
+f %L d'E' +r 23 n Vl+o/U2) ae
+ [('+D) (b-£") (c'=8) 5 ¢ J “[(eral)(c'ob) (e of) & ¢
0 ET-C b Y E'-C
£
2B,+2T '
‘ +f 2 T R __dla__c " (10)
i‘/(£'+l)(€'-b)(f-5') >
(> £'=c

2.1 BOUNDARY VALUE PROBLEM TYPE I (SPECIFY CAVITATION NUMBER o)

For the problem in which the cavitation number is specified as
: an input parameter, the length of cavity is to be determined as
part of the solution. In such a problem we have a total of six
unknown quantities, Uz, %y A, b, ¢, £, regquiring six equations

to determine them uniquely;

- 0 - L& =3 " :'k'_’ A )4 j
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(1) At the upstream infinity,
w(cl) = aq + i Qn(l/Uz):

(11) At the downstream infinity,
w(=) = ay:

(1ii) Length of First Arc = Sl:

(iv) Cnd point of the streamline

(¢=f) matches the physical
trailing edge:

(v) Continuity Equation:

where S1 and 52 are depicted in Figure 2(c).

the arc length condition (iv) replaces the potential difference

condition in the supercavitating cascade prot ’em.

ence [14])

2 equations

1 equation

1 ecguation

1 eguation

1 equation

It is noted that

(see Refer-

Application of these conditions to Equation (10) yields the

following six equations;

i) At Upstream Infinity:

§f} \fc D) (¢,-b) (cl
)f Cl‘c

—f (¢ '+1) (b-& Y (' -£) °

f o L
J (e +1) (-t ) (£'=F) Ry W

£'=c

£

f—-‘t____ ﬁ_if_____
(g’ +l)(€'-b)(€'-f) i TS A / (g +1)(g'-b)(f-:') g
g’ i -

~fay+i n(1/0y) = 0

10

—l_c

U,

\/T:a) >

82+w

gy
-
——

d.

:l)
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i1) At Downstream Infinity:

%f g +f s
‘/(s +1)(b-e ) (£'=f£) vfks +1) (b=£"') (£'=£)
l '_c
P [ o
. m( \/1+c)f deg' N
. V2 (£'+1) (£'-b) (£'~£)
b E'—c

- =

l B +m %
= ag e, 0 (12}
. ‘/ (£'+1) (£'=b) (£=£)

c E"C

151} First Arc Length =

On the wetted part of the streamline,

fo = etf1 |
1
thus i ,
_ =18 @ dw |
ds, = e o HE k-
For - 1 <& < b, w(g) can be written as follows:;
ig) (&) + 8,(¢) , -1 <g <0
w(g) = :
ig) (g) + 8, (5) + m, O < <b

11




where

: R 8
g, (5) =‘/(~;+l) (b=2) (e-£) )_ _1_f 1 a

[ Gl
vy

E=C ™

/(E'+l)(b-€')(£'-f)
-1 £'=c
b

- 1 T (_%%
(E'+1) (b=g') (g'-fF) & &5 ™ 2

0 £l=c

oy

EN

f 3 dg' J‘ g * ag "
‘}(E'+l)(5"b)(5'-f) RE58 l/(5'+l)(5"b)(f‘5') R
b g =e - gl=c

After integrating the above equation, one finds:

~—
.

b
s, (8) =fsg(£) e 916) gy g
U dg
£ 2
where

1 ’
=1 3

>

sg(g) = { Z
< .

('R0 BERAA |

The arc length condition is therefore satisfied by the follow-

ing equation;
= - - = A
f4- Sl sl( 1) 0 (14)
where dwW/d¢ is given by Equation (4).

iv) End Point of the Streamline at ¢ = f Matching the Trailing Edge
of the Blade:

Similar to the above derivation, the equation f5 is obtained as

follows:

ie

S Sl S AR

Py
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i Do S RS-

f5 = S, -5, (£) =0 (15)
£
where 3 e_gz(a) o '
52(5) = —U'Z—— Iz dcs
(o
and o
g, (€) ‘/(€+l)(5-b) (=5 f o=
‘/(a +1) (b-s ) (£'=£) .
b
[ i #et e (B).
(£'+1) (b=£') (g'=£f) = "8 7 2
g'=-c
£
f 1 de' _ lf i e} a16)
- RIS .
[L21+1) (£'-b) (£'-f) §=¢ = J(s +1) (£'-b) (f=£') > Q) '
£'-c c E'=C

In order to determine the second arc length 52’ the end point of

cavity should be known. The cavity shape is expressed in terms of

, &=-coordinate;

{ 3
1 |
X=X, = cos g (£') aw ; |
= \/TE'_/‘ ® ar 9& e (
b '%f
§ ,
l p i
Y=Yy = sin g_(&') dw dg° (18) |
- V1+o / > dg’ !

b
13 :




where

b
o tE) \/Qa+1) (£-b) (£-¢) ) - %jf B, (E") ag'_
c c-¢ \/(s'+1>(b-a')(a'-f) 58
-1

E'-ec

M 1 e 1 ln( l+o)

= o = =21z
(£'+1) (b-£') (£'-£f) & ~¢& 0

e} E'_c

c £
f 1 e lf 2 dg'}. (19)
(E'+1) (£'-b) (£'-£) E'-g 7 7 T —t') £'-¢
J Jr 3 ] ﬁz +1) (£'-b) (£-€")

Eh=g g'-c

Xgr Yg are the physical coordinatgs of the blade leading edge.
The end point of the cavity (xc, yc) is obtained by setting the
upper bound of the above integrals (17) and (18) to be c. Once
(xc, yc) are determined, the second arc length S, is easily

calculated by following the body profile.

v) Continuity Equation:

The mass flow condition for the upstream and downstream is given

as;

£.2 Uy cos(aj+y)-d - U, cos(a,+y)- d=0 (20)

Equations (11), (12), (14), (15) and (20) now provide six

independent relationships for six unknown parameters.

14




2.2 BOUNDARY VALUE PROBLEM TYPE II (SPECIFY CAVITY LENGTH Zq)

The cavity length zc is used as input data in this case and
the corresponding cavitation number o is determined as a result
of the solution. Minor changes to the TYPE I problem are neces-
sary. In addition to f5 in Equation (15), one more equation,

£ is added in order to satisfy the fixed cavity length con-

7/
dition.

f7 e Tl 0 (21)
where X is calculated by setting ¢ to be ¢ in Egquation (17).
We have now seven independent equations for seven unknown solu-

tion parameters including 5.

There is absolutely no difference in final solutions between

the above two boundary value problems as long as the physical

and geometric flow conditions are the same. In ma.y actual cases,
the cavitation number,which can be simply determinea by the %
upstream static pressure and vapor pressure, is a specified Eﬁ:

put rather than the cavity length. Only the first type of

B.V.P. is therefore usually used to provide solutions {
for the problem like supercavitating flows. Special reasons g
for introducing the second type of B.V.P. in this study exist:
i) Increase the stability of the numerical iterative
method by fixing the wetted portion of the upper
blade, and
11) Avoid the numerical instability caused by the existence |
of multiple cavity-length solutions for one cavita-

tion number as reported in [9], [13] and [15].
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As will be discussed in the following section, the numerical

instability actually occurred for certain cases when the first

type of B.V.P. was used, whereas cavitation number was uniquely
determined for any specified cavity length when the second

method was employed.
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s NUMERICAL METHOD

The same Newton's functional iterative method as that in [14]
was applied to the present system of nonlinear functional
equations for determining the solution parameters. Representing

these equations and unknown parameters as

£zl = 0, (22)

the iterative method is introduced in the following relation;

ts (§ (n)) ) <§(n+1)_ 2{_(m): o8 (&“”) L

where J is a partial derivative matrix whose component is

expressed
afi
1.
By assuming a starting set of §(n) values, i(n+l) will be
calculated based on Equation (23). As has been seen in the preceding

section, £ also requires the information regarding 31 and 82 as

a function of £. Although the body inclinations S1 and 8, are

specified in the physical plane, we do not know them as a function
of mapped potential coordinate & until the complete problem is
solved. This inherently nonlinear implicit problem is conveniently
resolved as a part of the above iterative method by gradually
updating Bl and 82. The first assumption for Bl and 85 is naturally
that of constant values, i.e., straight line body assumption.

These values are then updated whenever the new set of x values are
obtained. The iteration procedure will be continued until x as well

as the functional relations for Bl and 82 against § converge.
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4. PRESSURE DISTRIBUTIONS, FORCE COEFFICIENTS

Once a convergent solution is obtained, the calculations for Cp,

Cq, and CD are straightforward.
Since
2
Cp =1 - (q/q)
and
L i
thus > 5
cp = 1 = U, [eXP I, w(&)i] (24)
where
Im {w(i)}= gl(E) for - l<t< b
¢n Vl1+o for b<E< ¢
-
g, (&) for @©<ge L.

The functions gl(g) and 9, (¢) were already introduced in Equations

(14) and (15).
The lift and drag coefficients in the direction of the x- and
y- axes are given
£
g ax ds
c, - f c, &.8-« (25)
-1
i
G fo i oo
: D A (26)
= P X ~3F "~ dag




where

The 1lift and
the incoming

%

p

drag coefficients CL and C

Q1Q
0n|X

gl

[oN
0]

sin Bl

oF
[0}
[

|

[of
vy

[or
n
N

1!

joF
oy

cos Bl

cos B»

D

flow angle are thus calculated

L
cL

COS a

sin a

ik
1

4

“p
“p

sin a

cOoS «

1

X~

for the first arc Sl
(=1<E&<b)

for the second arc S2
(c<g<f)

for the first arc Sl
(=1<E<Db)

for the second arc 82

(c<g<f)
-gl(g)
%¥ for the
Uo = first arc Sl
[=1<E<b)
-92(€)
5 gﬂ for the
2 3 second arc 82
(c<g<f)

in parallel and normal to

(27)
(28)




5. RESULTS AND CONCLUSIONS

The present theory was first applied to partially cavitating
flat-plate cascades and the results were compared with those of
a linearized theory of Wade [13] where the same parameters in
[13] are used in Figure 3. Not only the lifting force itself
but also the trend of the curves are significantly different

between the two theories. The discrepancies particularly become

larger as the cavitation number increases. As has been mentioned

before, it is considered that these discrepancies are attributable

to the loss of the linearized theory's accuracy for larger cavi-
tation number flows. Furthermore, the incidence angle taken in
the nonlinear theory, i.e., 8 degrees, may be alreacdy beyond

the applicable range of the linearized theory.

The theory was also compared with some experimental data of par-
tially cavitating cascade of plano-convex blades [3]. The blade
thickness used for the experiment was 8 percent chord. In order
to gradually update the present numerical calculations, the
thickness of plano-convex blade was changed, starting from 0
percent to 2, 5 and 8 percents. Each computation utilized con-
verged solution of previous results as a starting point of the
iterative procedure. The lift and drag coefficients are shown
in Figures 4 and 5. Convergent solutions were obtained for 0
and 2 percent thickness cases with the TYPE I B.V.P. in which
the cavitation number was specified. The results not only

check with the lift coefficients of fully wetted flat plate
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cascade calculated based on Thwaites [17], but also show the |
|

effects of blade camber as an increase in CL- The calculated

results of 2 percent thickness approach closer to those of the

experiment having blades of 8 percent thickness.

We encountered severe numerical instability with the same computer
program when the blade thickness was increased to 5 and 8 percents.
No matter how carefully initial values were chosen, the length

of cavity at each iteration wildly changed over a total range of
chord length and never converged. It was this time that the

TYPE II B.V.P. approach in which the cavity length is specified
and the corresponding cavitation number is determined was used.
The problem of numerical instability was resolved with this second
method. As was suspected from the occurrence of numerical in-
stability for thickness of 5percents with the first method, it

was found here that the cavity has two different lengths for

one cavitation number as shown in Figure 6. The lift and drag
coefficients obtained are also plotted in Figures 4 and 5 and
showed peculiar behavior in the CL - ¢ and CD - ¢ curves. As

the cavity length decreases, the cavitation number first increases
but then starts decreasing with a slight increase of CL. %~

seems that these multiple cavity length solutions and peculiar
force-vs.-o behaviors will well explain the unsteady oscilla-

tory phenomena of the partially cavitating single foil or cas-
cade flows as were observed in experiements [2] and [3]. A

recent study of Uhlman and Jiang [15] attributed the existence

of two cavity lengths for a specified o to the inaccuracy of

the linearized theory and the inherent flow instability. The

first cause is now obviously denied.
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The plano-convex foils such as of 0 and 2 percent thickness

have a single value of cavity length for a specified o while as

the thickness increases to e.g., 5 percents the cavity length
starts having double values. This fact seems to provide an
essential key for understanding the above unsteady cavity phenomena.
The detailed pressure distributions on the upper blade surface

are plotted in Figures 7(a) to (c). For the thickness of 0 and

2 percent cases, it is seen from these figures that the pressure
distributions on the upper solid boundary always indicate positive
values relative to the cavity pressures Cpc‘ On the other hand,

for the blade thickness of 5 percent (Figure 7 (c)), these pressures

rapidly become negative relative to C particularly as the cavity

pc’
length becomes shorter. This violates a theorem applied to the
present boundary value problem that the minimum pressure exists
inside the cavity (see e.g., a textbook by Birkhoff and Zarantonello
[18]) . Furthermore, even taking viscous effects into consideration,
high negative pressures cannot be sustained in actual flow field,
indicating that the cavity is ready to extend to these lower
pressure regions. As soon as the cavity becomes longer, no more

low pressure field exists. As is seen in Figure 7 (c), e.g.,

o = .37 case, the vaporization process is not fast enough to pro-

vide vapor to hold the cavity. The cavity bubble is thus shed

downstream and a new short cavity starts growing.

The generation of higher negative pressures for thicker blades
is easily understood; the higher the negative curvature of the
obstacle in the flow field, the lower the negative pressure.

As a matter of fact, the present explanation for the unsteady

partial cavity flow motion based on the steady state flow analysis
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is consistent with experimental observations. Experiments of

Meijer [2] and Wade and Acosta [3] are two well-known cases in
which the unsteady phenomena were observed. Although one tested a
single foil and the others cascade foils, a most significant coin-
cidence between the two is that both used blades whose upper profile
is of unfavorable shape for the pressure field, i.e., concave shape,
in these cases, circular arc. It is now clearly explainable why

the unsteady cavity oscillations occurred in both cases.

Based on the above discussions, it is realized that the partially
cavitating flow is either stable or unstable, depending‘upon the
pressure distributions on the wetted part of the upper blade sur-
face. Figure 6 indicates the stable partial cavity condition
' for thin flat-plate cascades. In the past, little hydrodynamic
considerations have been given for design of blade backside pro-
file. For example, the backside profiles of supercavitating
propellers were determined from a structural integrity point of
view within the limit of cavity envelope. 1In order to avoid the
occurrence of cavity oscillations if such propellers operate at
an off-design point in the partially cavitating regime, it is
recommended that the blade backside profile be properly designed
so that favorable pressure distributions Cp prevail. At least,
Cp on the backside of blades under several partially cavitating
conditions must be investigated during the design procedure; it
should be ensured that Cp is much larger than -o over the full

range of wetted upper boundary.
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Unlike linearized partial cavity or super cavitating theories,

the present nonlinear partial cavity theory has no singular be-
haviors as Zc approaches the chord length nor does the nonlinear
super-cavity theory [14]. 1In Figures 4 and 5, the regimes as Ec
becomes ¢ are depicted by dashed lines. This does not mean that

CL and CD are unknown or become infinite, but they simply have slight
discrepancies between the two nonlinear theories because the flow

models used for the partial and super-cavity regions cannot be

smoothly blended.

Figure 8 shows the boundary profiles of typical partial cavities
for @) = 9°, y = 36° and blade thickness of 2 percents at various

cavitation numbers or cavity lengths.

Finally, it must be noted that the numerical iterative method
used here provided stable convergent solutions as long as one
chose a right type of input data set-up as has been mentioned
above. Computer execution time, however, was found to be two

to six times that of supercavitating cascade computations in

[14].
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