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‘
~A nonlinear theory for solving partially cavitating cascade problems was formulated
in two different types of input data set—ups , one specifying cavitation number and
the other the cavity length. The second method was necessary to find a unique solu-
tion because the cavity length has two different values for a specified cavitation
number in some blade geometry cases. This fact , together with the investigation of
detailed pressure distributions on the upper wetted part of the blade , •explained the
unsteady cavity phenomena previously reported in some experiments. Suggestions were
made on how to avoid the occurrence of the unsteady partial cavity phenomena when ofll
designs fluid machinery used in a partially cavitatin~ re~ ime .
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I. SUMMARY

A nonlinear theory for solving partially cavitating cascade problems

was formulated in two different types of input data set—ups, one

specifying cavitation number and the other the cavity length. The

second method was necessary to find a unique solution because the

cavity length has two di f ferent values for a specif ied cavitation

number in some blade geometry cases. This fact, together with the

investigation of detailed pressure distributions on the upper wetted

part of the blade , explained the unsteady cavity phenomena previ-

ously reported in some experiments. Suggestions were made on how

to avoid the occurrence of the unsteady partial cavity phenomena

when one designs fluid machinery used in a partially cavitating

regime.
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Iv. NOMENCLATURE

A scale factor for mapping between W and ~ planes.

1. c-coordinate corresponding to the upper cavity separation

point

C E~-coordinate corresponding to the cavity reattachxnent position

and also used as a chord length of blade

lift and drag coefficients par~lle1 and normal to the

incoming flow direction

2= Lor D/½ pU1 c

lift and drag coefficients in the direction of the

x and y axes

CLm lift coefficients in the x-direction normalized by

the geometric mean velocity Urn
pressure coefficient (= (~~

-~~)/½ pU~ )

D drag force

d spacing of cascade blades

f c-coordinate corresponding to the upper trailing edge

nonlinear equations representing the boundary value

problem for unknown solution parameters x1

i index for complex variable ( = \Ci)
L lifting force

cavity length

p static pressure

L 

q flow velocity modulus

S1,S2 total arc lengths of the upper and lower wetted part

of the blade, respectively
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s(~~) local arc length measured from either the leading

edge or the reattachment point of cavity

sg(x) sign function = 1 for x > 0

=—l for x ~ 0

TI! thickness of plano-convex blade normalized by chord

U flow velocity amplitude

W complex potential = (~~~+ihf 1)

z physical plane (= x+iy)

a flow angle made with the x-axis of the physical plane

local blade slope measured from the x-axis , clockwise

negative; for the second arc 
~2’ 

—~r is to be added

y geometric stagger angle

5 stagger angle of the potential plane cascade set-up

H ai÷~)

ç transform potential plan (= ~+i~)

c-coordinate corresponding to the upstream infinity

of the physical plane

vertical coordinate in the ~—plane

8 flow angle

horizontal coordinate in the ~-p1ane

C cavitation number (= (Pi
_P
c)/½zU~)

T logarithmic velocity normalized by U2 = £n(q/U2)~
potential function

stream function

w hodograph variable = e+iT)

vi



Subscripts:

1 and 2 denotes quantities belonging to the upstream and

downstream infinities , respectively , or

quantities belonging to the first and second

arcs, respectively

C denotes the cavity

m denotes geometric mean quantities

Superscripts:

+, -, quantities belonging to the immediate upper and

lower sides of the E~—axis
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1. INTRODUCTION

It is a common practic€~. that hydrodynamists avoid high speed

fluid machinery or components to be used under partially cavi-

tating conditions because many ac17erse hydrodynamic effects exist

for such conditions. One of the most important phenomena is that

of cavitation damage caused by c&zity bubble collapse taking

place near the material. This material damage is so severe that

components such as marine propellers after several hundred hours

of exposure to cavity collapse will become totally out of use
*(see e.g. [i] for such examples). Furthermore , it was found

in experiments that partially cavitating flows experience inher-

ent unsteady flow phenomena ; the Length of cavity changes from

a very short one to one chord ler jth in an oscillatory way (see

e.g. [2] and [3]). It is for thi s reason that effort by the

designer is directed toward either totally avoiding cavitating

conditions , if this is possible, or purposely generating super-

cavitating conditions in which cavity length is larger than the

body and thus bubble collapse occurs behind the material.

However, in recent years some marine and fluid machinery have

quite often been used in the partially cavitating flow regime.

One such example is in the marine propeller area; convential and

supercavitating propellers are sometimes used under off—design

conditions, the former at a lower advance speed and the latter

* Numbers in brackets designate references at end of paper.
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at a higher advance speed than that of the design point. In

both cases s~~ne portions of propeller b1aue~ have partial cavi-

ties as were shown in experimental works by Sontvedt [4], Bohn

F 
[5] and Peck [6].

There exists more positive designers ’ attitude of using the par-

tially cavitating condition in some area of fluid rri -~chinery such

as pump inducers. Cavitating inducers used, for example, in

liquid propellant rockets always operate at a partially cavitat-

ing condition . Because of simplicity , such inducer blades are

made of helical profile having long straight-line face . ~ ie

cavity length is designed to be always shorter than the chord

length (see the work of Acosta [7]).

Interest has therefore grown recently in how to ana .ytically

determine the force coefficients of partially cavitating single

foil or cascade blades. Linearized theories were applied by

many researchers for both single and cascade blades. The former

include works by Acosta [8], Geurst [9], Geurst and Verbrugh

[10], Wade [11] and Golden [12]. Acosta [8] and Geurst [9]

treated the flat plate single foil problem and Geurst and Verbrugh

[10] solved the problem for camber line profiles . Wade [ii] and

Golden [12] considered both camber and thickness effects in the

same linearized theory framework but with different solution

methods; the former used an analytical solution method for vor-

tex and source distributions whereas the latter employed a

2
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numerical method to determine the strength of the singularities.

For cascade configurations , Wade [13] solved flat plate cascade

problems in exactly the same manner as for single foils. Algebra

for the cascade flow becomes more complicated due ~.o extra cas-

cade mapping necessary for this case.

As has been seen above, all the existing analytical methods

regarding the partially cavitating flow employed the linearized

theories. The limitations of such theories are well described

in each paper [8-13]; any perturbed flow quantities due to the

existence of cavity and obstacle in the uniform flow should be

small. Ranges of flow incidence angle , cavitation number and

camber of blades for which the accuracy of the linearized

theory is maintained to a desirable degree are not known until

comparisons with experiments are made. Questions particularly

arise for the linearization procedure for the nonlinear boundary

condition on the cavity wall. Unlike the supercavitating flow

regime, the cavitation number o is relatively large compared to

the uniform flow velocity. Nevertheless, all the linearized

theories mentioned above assumed o to be small. Furthermore ,

partially cavitating flow around the cascade having relatively high

solidity will generate large disturbed velocity components for

which the application of the linearized theory is no longer

valid.

Under the circumstances just described , an analytical tool for

determining the hydrodynarnic forces of partially cavitating

_ _
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cascade blades has been developed. The method used here is

the nonlinear potential theory, covering a complete range of geo-

metric configurations and flow parameters without generating any

inaccuracies in satisfying the boundary conditions. The method

is quite similar to that used for supercavitating cascade

flow analysis by Furuya [14], but with substantial increase in

complexity both in mathematical formulation and numerical com-

putations.

In the following sections, mathematical formulations and numer-

ical methods will be described. Some representative numerical

results will be compared with those of a linearized theory [13]

and an experiment [3].

4



2. NONLINEAR BOUNDARY VALUE PROBLEM

A mathematical model representilL; the physical flow of partial

cavity around the cascade has to be established prior to the

formulation of a nonlinear boundary value problem . The

reattachment of cavity on the upper portion of the blade makes

such a flow model construction difficult. Highly turbulent

flows near the end point of cavity cannot be accurately repre-

sented within the framework of potential flow assumption cur-

rently taken. Among many possible flow models , we have chosen

a most realistic one as shown in Figure 1. The cavity streamline

detached from the leading edge of the blade terminat~~ at point

C, the location of which is either specified or determined as

part of the solution as a function of cavitation number. This

depends upon the type of input for boundary conditions , i.e., whether

or C ~~S used as input data. Then the same streamline follows

the body profile ~2
(x) through the trailing edge. The gap existing

between the streamline and the upper body boundary is considered

to be a turbulent wake region , which is implicitly eliminated from

the present potential theory analysis . From the trailing edge ,

the wake with a constant pressure condition extends to the down-

stream infinity and is assumed to close there.

The end point of cavity is interesting from both physical and

mathematical viewpoints. In the present flow model, the point

C is termed as a single spiral vortex model named after 
Tulin5
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[16]. From the cavity side the streamline curls in to a point C,

then immediately follows the corresponding body slope. It seems

that this behavior of the streamline more or less represents the

cavity collapse in the actual flow situation.

It must be noted that this type of cavity closure model may not

be suitable for very thick foil cases, since the gap between the

streamline and body boundary mentioned above is out of control.

It may happen that the cavity ends inside the blade structure

if the blade thickness is large. For such cases, one has to use

an open wake cavity model in which the cavity closure condition

at down infinity is relaxed but instead replaced by specifying

the cavity thickness at the end point of cavity. In this way

the streamline crossing problem mentioned above will be totally

eliminated. The mathematical formulation for the open wake model

is no more complicated than the closed wake. In this paper, how-

ever, the latter will be used throughout investigation.

The mathematical formulation is quite similar to that of the

supercavitating cascade flow problem in [14], thus repetition

of detailed explanations will be avoided.

The partially cavitating flow around the cascade shown in

Figure 1 is first mapped onto the potential plane W = ~+i~’ and
then to the upper half of the transform plane ~ by the cascade

mapping function , see Figures 2(a) and (b), respectively. The

6
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cascade mapp ing function and its derivative are given by the

following equations:

W = ~~ ~e~~~ Zn (l-~/~) + e~~~ n(l-C/c
4 

(1)

where
= A e~~~ ”2~~~ 

(2)

= a~+~y ,

and A is a scaling factor between the two p lanes , yet to

be known. Thus, the derivative of W on the axis is given

d W d  ~ cos 6
d~ ~ (~ —A sin 6)2 + (A cos 6)2 (4)

The stagger angle 6 of the W—plane cascade set-up in Equation (3)

was determined by the coordinate point ~~~~~ ~~~ 
where

= dU1~ sin 
~~~~~~~~~~~~~~~

= dtJ1~cos 
~~~~~

Introducing a hodograph variable ~

= q e~~
8 = U2e~~~ (6)

or
(7)

~ L n(g/U 2 ) (8)

where denotes the ve locity at downstream inf ini ty , we can

express the boundary conditions on the real axis ~ in the ;-plane

as follows :

7
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(i) = 0 , — — 1 , f < <

(ii) I = Zfl (‘/ 1 + c/U2
) , b < < c

(iii) 8 = 31(Etan
1 dy/dx) — 1 ~ < 0

0 <
~~~ < b

c < < f.

This is a typical mixed—type boundary value problem , the solu-

tion of which can readily be found by the same approach as used

in [14], but in a somewhat more complicated form due to the

existence of two branch cuts, — 1 < ~ h and c ~ < f.

Analytically continuing the upper half of c-plane into the lower

* *half plane with •
~~ 

(~ ) = ~~ ( i,). , where * denotes the complex con-

jugate, these boundary conditions (i) - (iii) will be expressed

as follows:

(j ,) + — = 0 ; — — 1, f <

(ii) + 
— = 2iLn~’~/T~~~tU2); b < < c

(iii) + 
+ w = 2 3 , ; — 1 < < 0

2(8i+lr); 
0 < ~

2(32+ii); c < < f.

The homogeneous part of the solution H(~~) for which the right

hand sides of (i) - (iii) are all zero is obtained by consider-

ing the singularity at the end point of cavity and no singular-

ities anywhere else;

8
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,J(~ +1) (c—b) (~:—f) (~~)
V

The general solution G(~~) satisfying the mixed boundary conditions

is defined by G(~ ) = ~(~~ /H(~~) and obtained by applying the

Cauchy integral formula;

G(~~) = ~~~ J(G
+_ G )  ~i

Therefore ,

w (~~) =

— / (~ +1) (c—b) (a-f) 1 2
~ i _ _ _ _V 21i J . /(~ ‘+1) (b-~’) (~ ‘-f) ~~~~—l ‘V

b 
21 

• 

~~ 2i ~n(~~~~/U2) 
_ _ _

J . /~~‘+u (b—c ’) (~~~~~
‘
~~ ~ 

.

~~~~ J ((
~~

‘+1) (Y—b) (~~‘—f)0 
~ ~~-c b V

f

+1 232+21 d~ ’ (10)
J 

~ 
f (~~‘+l) (~~‘-b ) (f-c ’) ~~

c V

2.1 BOUNDARY VALUE PROBLEM TYPE I (SPECIFY CAVITATION NUMBER c)

For the problem in which the cavitation number is specified as

an input parameter, the length of cavity is to be determined as

part of the solution. In such a problem we have a total of six

unknown quantities, ~ 2. 
~2’ 

A , b, c, f, requiring six equations

to determine them uniquely ;

9
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(i) At the upstream infinity ,
= a 1 + i tn (1/U2) : 2 equations

(ii) At the downstream infinity,
= 

~~ 
1 ecuation

(iii) Length of First Arc S1
: 1 ecuation

(iv) End point of the streamline
(~=f) matches the physical
trailing edge : 1 equation

(v) Continuity Equation : 1 equation

where S1 and S2 are depicted in Figure 2(c). It is noted that

the arc length condition (iv) replaces the potential difference

condition in the supercavitating cascade proI~~em. (see Refer-

ence [14])

Application of these conditions to Equation (10) yields the

following six equations ;

i) At Upstream Infinity:

f~~ +U (c r—b) ~~~~~ 1 
b 

~l d~~’
cl C 

- 

~J (~~~~~) (b Y )  (- ‘ -f)
1 ~;

‘ C

- 

b 

~~~~~ 
+ tn ( \

~~~
‘1 x• J / (~~‘+1) (b—Y) (~~1 f )  —

~~1 I
’ 

U2 /
0 1

C f
1 d~ ’ 1 f 32+1 d~ ’I j (~~‘+1) (~~‘-b) (Y- f) Y-c - 

~J JTi’+l) (Y-b) (f-Y) ~~~~
b V ~‘—c C v

_
~~~1+i Ln (l/U2)} = 0 (11)

10
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ii) At Downstream Infinity :

b b

~ I ~1 dY + I —
1
) ~~~~~‘+1) (b—c’) (Y-f) J r (Y+l)  ( b — Y )  ( Y - f )

—1 V Y—c 0 
~

1~~ I V’T\~~~ C 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _~ u~ )J j~~ (Y +l) (Y_ b ) (~~i _ f) +

b V

f

1 
( ~~~ ~~~~ ‘ - a 2 0 ( 12)

~~ J~ (Y + 1)  (Y—b) ( f — )~~C V

iii) First Arc Length = Si :

On the wetted part of the streamline,

dz 
— U1

thus

ds1 e~~~ ~~~~

_— 
~~~~~~

For — 1 < < b, w (C ) can be written as follows ;

ig1(~~) + 3
~ 

(
~

) , — l < < 0
=

ig1(~ ) + + iT , 0 < < b

L

ii
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____r~T

where

__________________ 

b

~~ 
_ f (~ +1) (b—c) (c—f) ij 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_____

g1 ~-c 
~J f (~~‘+1) (b-y) (Y-f) ~-1 V

b
1 ¶ ‘  + iLn (V

’i
~

ci ’
~xJ I (Y+1) (b—a’) (1 f )  

~ 
—

~~ U2 /
0 V

1 1 dY 
— 1 f ~~~ dY (13)J / (Y+1) (Y-b) ( Y-~ i T J  f ( ~ ’ +U (Y-b) (f -c)

b V Y—c c ~

Af ter integrating the above equation , one finds;

~~~~~ 
=fsg(~ ) e~~

l)~~~ dW d~LI2 d~

where

1 ,sg(~ ) =

—l , ~~ < 0 .

The arc length condition is therefore satisfied by the follow- H
ing equation ;

f~ S1 
— sl(~

1) = 0 (14)

where dW/d~ is given by Equation (4).

iv) End Point of the Streamline at ~ = f Matching the Trailing Edge
of the Blade:

Similar to the above derivation , the equation f 5 is obtained as
follows:

1 1
12
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-
~
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f
5 S

2 
— s2 (f) = 0 (15)

where

s2(~ ) 
=f  

~~~~~~ 
~~~~~~~ , d~

’

a d  
_ _ _ _ _ _ _ _ _ _  

b
(c-b) (f-c) 1 f ________________ ___

g.~(~) ~~~~~~~~~ 
— 

~~V J I (Y+1) (b-~~’) (Y - f)
.-l V

b

f 1 d~ ’ 
+ ~~~ (—“~~~J 4 /( ~~~~~~~

+1) (b— ~~’) (c f) ~~~~~~~ it ~ U
2 /0 V

C

1 1 d~ ’ i( ~~~ _ _ _J /(Y+l) (Y-b) (Y-f) ~~ 
- 

~Y j (Y+l) (Y-b) (f~~~~) 
•(16)

b V ~‘—c C V

In order to determine the second arc length 
~2’ 

the end point of

cavity should be known. The cavity shape is expressed in terms of
c-coordinate;

X~~X
B 

= 
~~~~~f

cos ~~(Y) ~~~ dY (17)

= sin 
~~~~~~~~~~ dW d~~’ (18)

13
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where ___________________

- /(~ +1) (~ -b) (f-c) ~~~
- 

~ ( 
81(Y )  

_ _ _

g~~(~~) V c-~ J(~~+l) (h-~~’ ) ( Y - f )  ~~~~~ c

1 Y c

b

• -f 1 d~~’ +~~~~lnN~~~~\ x
J

~~~f~~~~~~~
’ ÷1) (b-c’) (c -f) ~~~~~~~ 

~1 ~ U2 )
0

c f

1 1 d~~’ _ 1  I ~~2
+iT dY

J ~~(~~‘÷ 1) (~~‘-b) ( Y - f )  Y-~ i T)  
~~(~~‘+l)  (

~~‘-b) ~~~~~~~~~~ 

. (19)

b 
~ ‘—c 

C

xB? 
~B 

are the physical coordinates of the blade leading edge.

The end point of the cavity (xci 
~~~ 

is obtained by setting the

upper bound of the above integrals (17) and (18) to be c. Once

(x
~~ ~~~ 

are determined , the second arc length S2 is easily

calculated by following the body profile.

• v) Continui ty Equation:

The mass flow condition for the upstream and downstream is given

as;

Ui 
cos(z

1
+y) d — Li

2 
cos (

~~2
+y)• d 0 (20)

Equations (11), (12), (14), (15) and (20) now provide six

independent relationships for six unknown parameters .

14



2.2 BOUNDARY VALUE PROBLEM TYPE II (SPECIFY CAVITY LENGTH 2c

The cavity length Z~ is used as input data in this case and

the corresponding cavitation number c is determined as a result

of the solution . Minor changes to the TYPE I problem are neces-

sary. In addition to f5 in Equation (15), one more equation ,

f7, is added in order to satisfy the fixed cavity length con-

dition.

f
7 

x — = 0 (21)

where x~ is calculated by setting ~ to be c in Equation (17).

We have now seven independent equations for seven unknown solu-

tion parameters including ~~.

There is absolutely no diff erence in final solution s between

the above two boundary value problems as long as the physical

and geometric flow conditions are the same. In mai~’ actual cases ,

the cavitation number, which can be simply determineQ by the ~.

upstream static pressure and vapor pressure, is a specified

put rather than the cavity length. Only the first type of

B.V.P. is therefore usually used to provide solutions

for the problem like supercavitating flows. Special reasons

for introducing the second type of B.V.P. in this study exist:

i) Increase the stability of the numerical iterative

method by fixing the wetted portion of the upper

blade, and

ii) Avoid the numerical instability caused by the existence

of multiple cavity-length solutions for one cavita—

tion number as reported in [9], [13] and [15].

• 

,

-. . _______
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As will be discussed in the following section , the numerical

instability actually occurred for certain cases when the f i rst

type of B.V.P. was used, whereas cavitation number was unicuely
determined for any specified cavity length when the second

method was employed .

I

,

16



3. NUMERICAL METHOD

The same Newton ’s functional iterative method as that in [14]

was applied to the pr3sent system of nonlinear functional

equations for determining the solution parameters. Representing

these equations and unknown parameters as

f Cx) = 0, (22)

the iterative method is introduced in the following relation;

j  (x (n)) . 
(~~

c n ) _ 
~~~ )= _ f (x~~~) 

(23)

where J is a partial derivative matrix whose component is

expressed

~f .
J 

. 

( 2 4 )

By assuming a starting set of values , ~
(n+1) will be

calculated based on Equation (23). As has been seen in the preceding

section , f also requires the information regarding 3
~ 

and 
~2 

as

a function of ~~ . Although the body inc l ina t ions  and 
~2 

are

specified in the physical plane , we do not know them as a function

of mapped potential coordinate ~ until the complete problem is

solved . This inherently non linear implicit problem is conveniently

resolved as a part of the above iterative method by gradually

updating 
~~ 

and 
~~ 

The first assumption for and 
~2 

is naturally

that of constant values , i . e . ,  straight line body assumption .

These values are then updated whenever the new set of x values are

obtained. The iteration procedure will be continued until x as well

as the functional relations for and 
~2 

against ~ converge.

17



4. PRESSURE DISTRIBUTIONS , FORCE COEFFICIENTS

Once a convergent solution is obtained , the calcu lations for C~~,

CL and CD are straightforward.

Since

C~~ = l -  
(
q/q.)

2

and
*

2 2 —i (w—w
• q = U 2e

thus 2 2
C~ = 1 - U2 [ exp ‘m ~w(~~~ ] ( 24 )

where

‘m { w ( ~~ )~~~ g1
(~~
) for - l<~~< b

~nV i~~ for b<~~< c

for c<~ < f

The functions g1(~~) and g2 
(
~ ) were already introduced in Equations

( 14)  and (15)

The lift and drag coefficients in the direction of the x- and

y- axes are given

= _j
f 

c . . d ~ (25)

-

~~~~~ 
= 7 . . d ~ (26)

18

_..~~_ i i  ~~T~~i - - -- .



where

dx (dx
= = cos for the first arc

1 (—l<~ <b)

I = — for the second arc
~~ds2 (c<~ <f)

= 
1S~~~ ~l 

for the f irs t arc S1
(—l< ~ <b)

£2 for the second arc S2
(c< ~ < f )

ds
= ~~~~~~~ ~- - sg ~~ 

e 

~~ i~ s~h:rc s1
(—l<E<b )

ds —g 2(~~)2 
= 

e for theU2 d~ second arc S
2

(c<~ <f)

The lift and drag coefficients CL and CD in parallel and normal to

the incoming flow angle are thus calculated

CL 
= CL cos a1 

— sin a1 (27)

CD 
= CL sin 

~l 
+ ç cos a1 (28)

A 
• : 



5. RESULTS AND CONCLUSIONS

The present theory was f i rst applied to partially cavitating

flat-plate cascades and the results were compared with those of

a linearized theory of Wade [13] where the same parameters in

[13] are used in Figure 3. Not only the lifting force itself

but also the trend of the curves are significantly different

between the two theories. The discrepancies particularly become

larger as the cavitation number increases. As has been mentioned

before , it is considered that these discrepancies are attributable

to the loss of the linearized theory ’s accuracy for larger cavi-

tation number flows . Furthermore , the incidence angle taken in

the nonlinear theory , i.e., 8 degrees , may be already beyond

the applicable range of the lineariz ed theory .

The theory was also compared with some experimental data of par-

tially cavitating cascade of plano-convex blades [3]. The blade

thickness used for the experiment was 8 percent chord. In order

to gradually update the present numerical calculations, the

thickness of plano-convex blade was changed, starting from 0

percent to 2, 5 and 8 percents. Each computation utilized con-

verged solution of previous results as a starting point of the

iterative procedure . The lift and drag coefficients are shown

in Figures 4 and 5. Convergent solutions were obtained for 0

and 2 percent thickness cases with the TYPE I B.V.P. in which

the cavitation number was specif ied . The results not only

check with the lif t coefficients of fu l ly  wetted f la t plate

20
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cascade calculated based on Thwaites [17], but also show the

ef f ects of blade camber as an increase in CL. The calculated

results of 2 percent thickness approach closer to those of the

experiment having blades of 8 percent thickness.

We encountered severe numerical instability with the same computer

program when the blade thickness was increased to 5 and 8 percents .

No matter how carefully initial values were chosen , the length

of cavity at each iteration wildly changed over a total range of

chord length and never converged. It was this time that the

TYPE II B.V.P. approach in which the cavity length is specified

and the corresponding cavitation number is determined was used.

The problem of numerical instability was resolved with this second

method . As was suspected from the occurrence of numerical in—

stabil i ty for thickness of 5 percents with the f i r s t  method , it

was found here that the cavity has two different lengths for

one cavitation number as shown in Figure 6. The lift and drag

coefficients obtained are also plotted in Figures 4 and 5 and

showed peculiar behavior in the CL - ~ and CD 
- C curves . As

• the cavity length decreases , the cavitation number first increases

but then starts decreasing with a slight increase of CL. It

seems that these multiple cavity length solutions and peculiar

force—vs.—ci behaviors will well explain the unsteady oscilla-

tory phenomena of the partially cavitatirig single fo i l  or cas-

cade flows as were observed in experieTnents [2] and [3]. A

recent study of Uhlman and Jiang [15] attributed the existence

of two cavity lengths for a specified c~ to the inaccuracy of

the linearized theory and the inherent flow instability . The

f ir st cause is now obviously denied.
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The piano-convex foils such as of 0 and 2 percent thickness

have a single value of cavi ty length for a specified c while as

the thickness increases to e.g., 5 percents the cavity length

star ts having double values. This fact seems to provide an

essential key for understanding the above unsteady cavity phenomena .

The detailed pressure distributions on the upper blade surface

• are plotted in Figures 7(a) to (c). For the thickness of 0 and

2 percent cases, it is seen from these f igures that the pressure

distributions on the upper solid boundary always indicate positive

values rela tive to the cavi ty pressures 
~~~~ 

On the other hand ,

for the blade thickness of 5 percent (Figure 7 (c)) , these pressures

rapidly become negative relative to ~~~~ particularly as the cavity

length becomes shorter. This violates a theorem applied to the

present boundary value problem that the minimum pressure exists

inside the cavity (see e.g., a textbook by Birkhoff  and Zarantonello

[18]) . Furthermore , even taking viscous ef f ec ts into considera tion ,

high negative pressures cannot be sustained in actual flow field ,

indicating that the cavity is ready to extend to these lower

pressure regions . As soon as the cavi ty become s longer , no more

low pressure field exists. As is seen in Figure 7 (c) , e.g.,

CT = .37 case , the vaporization process is no t fas t enough to pro-

vide vapor to hold the cavity . The cavity bubble is thus shed

downstream and a new short cavity starts growing.

The generation of higher negative pressures for  thicker bla des

is easily understood ; the higher the negative curvature of the

obstacle in the flow f ie ld , the lower the negative pressure .

As a matter of fact , the presen t explana tion for the uns teady

par tial cavity flow motion based on the steady state flow analys is

22



is consistent with experimental observations. Experiments of

Meijer [2] and Wade and Acosta [3] are two well-known cases in

which the unsteady phenomena were observed. Although one tested a

single foil and the others cascade foi ls , a most significant coin-

cidence between the two is that both used blades whose upper profi le

is of unfavorable shape for the pressure field, i.e., concave shape ,

in these cases, circular arc. It is now clearly explainable why

the unsteady cavity oscillations occurred in both cases.

Based on the above discussions, it is realized that the partially

cavitating flow is either stable or unstable , depending upon the

pressure distributions on the wetted part of the upper blade sur-

face . Figure 6 indicates the stable partial cavity condition

for thin flat-plate cascades. In the past, little hydrodynamic

considerations have been given for design of blade backside pro-

file. For example , the backside profiles of supercavitating

propellers were determined from a structural integrity point of

view within the limit of cavity envelope. In order to avoid the

occurrence of cavity oscillation s if such propellers operate at

an off-design point in the partially cavitating regime , it is

recommended that the blade backside profile be properly designed

so that favorable pressure distributions Cp prevail. At least,

Cp on the backside of blades under several partially cavitating

conditions must be investigated during the design procedure ; it

should be ensured that C~ is much larger than -~~ over the ful l

range of wetted upper boundary .
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Unl ike linearized partial cavi ty or super cavitatin g theories,

the present nonlinear partial cavity theory has no singular be-

haviors as £~ approaches the chord length nor does the nonlinear

super—cavity theory [14]. In Figures 4 and 5, the regimes as

becomes c are depicted by dashed lines. This does not mean that

CL and CD are unknown or become in f in ite, but they simply have slight

discrepancies between the two nonlinear theories because the flow

models used for the partial and super—cavity regions cannot be

smoothly blended .

Figure 8 shows the boundary profiles of typical partial cavities

for = 90 , ~ = 36° and blade thickness of 2 percents at various

cavitation numbers or cavi ty lengths.

Finally, it must be noted that the numerical iterative method

used here provided stable convergent solutions as long as one

chose a right type of input data set-up as has been mentioned

above . Computer execution time , however , was found to be two

to six times that of supercavitating cascade computations in

[14].
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(a) Potential plane N =

ii?

/ 7

_ _ _  

I
~~~~~~~~~~~~~~~~~~~~~ — 

_C~~~~~~~~ e—l S~ b c f

(b) Transform plane ~ = ~+in

~~~~~~~~~~~~~~~~~~~~

(c) Definition of arc lengths S1 and S2

Figure 2 Two transform planes and definition of arc
lengths S1 and S2
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