UNCLAS	I OF 2		TR-JEB		entite.			NL		-
	11		14				The second secon	The second secon		1.0.00
			na Transfer Transfer Transfer	A second						
	驪									ŧ.
			汇			Ē			[]	
						Besson"	/雷			
	and the second	M	ma 区							

A METHOD FOR CALCULATING WAVE PACKET TRAJECTORIES AND WAVE HEIGHTS

by J.Ernest Breeding, Jr. K.C. Matson Nourollah Riahi

ADA064110

COPY

FILE

300

TECHNICAL REPORT No. JEB-1 Department of Oceanography Florida State University

MARCH, 1978

Approved for public release; distribution unlimited

70 01 90 004

Sponsored by the Geography Programs, Earth Sciences Division, Office of Naval Research, under Contract No. NOOOI4-77-C-0329.

ERRATA SHEET NOVEMBER 1978

Breeding, J. Ernest, Jr., K.C. Matson, and Nourallah Riahi, A.1 "A Method for Calculating Wave Packet Trajectories and Wave Heights," Report JEB-1, Department of Oceanography, Florida State University, Tallahassee, March 1978.

There is a miscopy in Equation (2-48) on page 13. The equation should read

$$\frac{\partial^{2} U}{(\partial x')^{2}} = \frac{\cosh I}{2} \left\{ -\left[(\sinh I + I) \frac{\partial U}{\partial x'} + U \frac{\partial I}{\partial x'} (1 - I \cosh I) \right] \cosh I \frac{\partial I}{\partial x'} + (\sinh I + I) \frac{\partial^{2} U}{(\partial x')^{2}} + \frac{\partial U}{\partial x'} \frac{\partial I}{\partial x'} (2 + \cosh I - I \cosh I) + (2 - 48) \right. \\ \left. + U \left[\frac{\partial^{2} I}{(\partial x')^{2}} (1 - I \cosh I) + (\frac{\partial I}{\partial x'})^{2} \cosh I (I \cosh I - \cosh I) \right] \right\}$$

The FORMAT statements at MAIN 122 and MAIN 124 on page 39 should be changed to

1 FORMAT (6F10.7) 2 FORMAT (12F2.0) 2341-79

N00014-17-6-0329

MR-TECHNICAL REPORT NO. JEB -Department of Oceanography Florida State University A METHOD FOR CALCULATING WAVE PACKET TRAJECTORIES AND WAVE HEIGHTS Part 1. by 10 J. Ernest/Breeding, Jr. , Department of Oceanography Florida State University Tallahassee, Florida 32306 K.C. Matson Naval Coastal Systems Center Panama dity, Florida 32407 Nourollah Riahi Math Department Wintrop College Rock Hill, South Carolina 29733 12111p. March, 1978

This research was supported by the Geography Programs, Earth Sciences Division, Office of Naval Research under Contract No N00014-77-C-0329. Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.

ABSTRACT

The theory and numerical methods are presented for determining the paths of gravity water wave packets. A ray curvature expression is used to determine the wave packet trajectories where the speed of the packet is given by $G = (d\omega/dk) \cos \phi$. The symbol ω denotes the angular frequency, k is the wave number, and ϕ is the difference between the direction of the wave packet and the direction of the wavelets within the packet. At each point of the wave packet trajectory the wavelet direction is determined using Snell's law with phase velocity. The wave height is computed along the wave packet paths accounting for the effects of shoaling, refraction, and energy dissipation. The computer program is described and sample printouts and plots are presented.

nit R	Radia Social Soc
814F9047100	D
	- div.conferty 10555
۸	nill per a wester
11	4

ii

ACKNOWLEDGMENTS

We express our appreciation to Kimberly Crane Oppenheimer, Pete H. Oppenheimer, S. Shang, and Ellen Walker Breeding for their assistance in preparing this report. The research was supported by the Geography Programs, Earth Sciences Division, Office of Naval Research under Contract No. N00014-77-C-0329.

TABLE OF CONTENTS

Page

Abstrac	t	ii			
Acknowledgmentsiii					
Table of Contentsiv					
List of	Fig	guresvii			
Chapter	·I.	1			
Chapter	II	THEORY			
2.1	Ray	Curvature for Wave Packets			
	a.	Locally parallel wave speed contours3			
	b.	Properties of the group ray curvature4			
	c.	Wavelet directions5			
2.2	Spat	ial Derivatives of G, U, v, and h			
	a.	Determination of h and its partial derivatives7			
	b.	Rotation of axes to make computations9			
	с.	Derivatives of v11			
	d.	Derivatives of u13			
	e.	Derivatives of G13			
2.3	Comp	outation of Gravity Water Wave Packet14			
	a.	Determining the path14			
	b.	Reflection points15			
2.4	Wave	e Height Calculations16			
	a.	Without energy dissipation17			
	ь.	With energy dissipation			

				5-
	2.5	Refr	paction Coefficient18	8
		a.	Ray separation equation1	9
		b.	Solution for parallel water depth contours19	9
		c.	Numerical solutions of the ray separation equation20	0
		d.	Reflection points2	3
		e.	Caustics and focal points23	3
	2.6	Fric	ction Coefficient24	4
	2.7	Wave	Breaking Criterion24	4
Cha	apter	, III	THE COMPUTER PROGRAM2	5
	3.1	Desc	cription of the Computer Program2	5
	3.2	Prog	gram MAIN20	6
	3.3	Subr	coutine TITLE2	6
	3.4	Subr	coutine AXIS220	6
	3.5	Subr	coutine NUMCON2	6
	3.6	Subr	coutine SHORE2	7
	3.7	Subr	outine RAYN2	7
	3.8	Subr	coutine MOVE2	9
	3.9	Subr	Poutine HEIGHT	2
	3.10) Sul	proutine SURFCE	5
	3.11	Sul	proutine VELCTY	5
	3.12	Sul	proutine CONDER3	6
	3.13	Sut	proutine PCD	6
	3.14	Sut	proutine STORE3	6
	3.15	Sul	proutine DRAW3	6
	3.16	Lis	sting of the Computer Program	7

Pag	e
Chapter IV USING THE COMPUTER PROGRAM	
4.1 Preparation of the Water Depth Grid58	
4.2 Preparing a Computer Run	
4.3 The Printed Output when NPT \neq 0	
4.4 The Printed Output when NPT = 065	
4.5 The Plots66	
4.6 Examples of Computer Output66	
References81	
Notation	
Distribution List96	

LIST OF FIGURES

Page

Figure (2-1).	Relationship between the Wave Packet and Wavelet Incremental Distances6
Figure (2-2).	Selection of Water Depths about Ray Point (X,Y) = (4.2, 3.8)8
Figure (2-3).	Relationships between the Coordinate Systems, a Ray, and a Depth Contour10
Figure (4-1).	Format of the Input Parameters60
Figure (4-2).	Sample Input Data for a Computer Run
Figure (4-3).	Listing for Ray Number 1 of Sample Input Data
Figure (4-4).	Listing for Ray Number 2 of Sample Input Data
Figure (4-5).	Listing for Ray Number 3 of Sample Input Data70
Figure (4-6).	Listing for Ray Number 4 of Sample Input Data71
Figure (4-7).	Listing for Ray Number 5 of Sample Input Data72
Figure (4-8).	Listing for Ray Number 6 of Sample Input Data73
Figure (4-9).	Plot for Sample Input Data74
Figure (4-10).	Gulf of Mexico off the Southwestern Florida Coast75
Figure (4-11).	Plot of Rays off the Southwestern Florida Coast
Figure (4-12).	Listing of Rays when NPT = 077
Figure (4-13).	Listing of Rays Moving toward Deep

Figure (4-14).	Listing of Ray Particulars Near a Reflection Point79
Figure (4-15).	Listing for a Ray with a False Reflection80

: .

CHAPTER I

It has been shown by Breeding (1978) that a wave packet refracts according to Snell's law with the geometric group velocity G where

 $G = (d\omega/dk) \cos \phi \qquad (1-1)$

The symbol ω denotes the angular frequency and k is the wave number. The angle ϕ is the difference between the direction of the wave packet and the direction of the wavelets within the packet. The wavelet direction at each point of the wave packet trajectory is determined by Snell's law with phase velocity.

In this work a numerical method is presented for determining the paths of gravity water wave packets. Further, a procedure is developed for computing the wave heights along the paths accounting for the effects of shoaling, refraction, and energy dissipation.

There are a number of papers in which numerical methods are presented for calculating and plotting the trajectories of monochromatic rays. Skovgaard, et al (1975) summarize a number of these methods and present one of their own. The numerical methods for calculating and plotting rays which are presented in this work are based on the Wilson (1966) program. However, extensive modifications of the Wilson program were required in order to compute the path of a wave packet.

In Chapter II, an expression is derived for the ray curvature of a wave packet. The assumption is made that the wave speed contours are locally parallel in the vicinity of each point of a ray. Properties of the packet ray curvature are discussed, and a procedure is described for computing the wavelet directions. A method is described for computing the water depth, phase speed, group speeds, and their spatial derivatives from a square grid of water depth values. To simplify the ray curvature calculations a coordinate system is defined with an axis parallel to the water depth contours at each ray point. The numerical procedure for computing the trajectories of gravity water wave packets is described. Rules for dealing with reflection points, which occur when the ray curvature becomes infinite, are established.

The shoaling, refraction, and friction coefficients used to compute the wave height are presented. The refraction coefficient is evaluated on the assumption that the wave speed contours are locally parallel in the vicinity of a ray point. A method for computing the refraction coefficient near a reflection point is described. A procedure for locating caustics and focal points is discussed. Chapter II ends with a discussion of the wave breaking criterion. Chapter III contains a description of the computer

Chapter III contains a description of the computer program and a program listing. A guide to using the program and an explanation of the computer output is given in Chapter IV. The principal notation used in the report is presented following the references.

CHAPTER II THEORY

2.1 Ray Curvature for Wave Packets. The ray curvature κ of a ray moving with phase speed v was derived by Munk and Arthur (1952) and Arthur, et al (1952) as

$$\kappa_{v} = \frac{\delta Y}{\delta A_{1v}} = \frac{1}{v} \left(sin Y \frac{\partial v}{\partial x} - coa Y \frac{\partial v}{\partial y} \right)$$
(2-1)

where x,y are the Cartesian coordinates, γ is the direction of the ray with respect to the positive x-axis, and s_v is the arc length along the ray.

The ray curvature $\boldsymbol{\kappa}_{G}$ for the trajectory of a wave packet is given by

$$\kappa_{\rm G} = \frac{\partial \theta}{\partial A_{\rm G}} = \frac{1}{G} \left(\sin \theta \frac{\partial G}{\partial x} - \cos \theta \frac{\partial G}{\partial y} \right)$$
(2-2)

where θ is the direction of the ray with respect to the positive x-axis, ds_G is an element of arc length along the ray, and G is the geometric group speed defined by (Breeding, 1978)

$$G = U \cos \phi$$
 (2-3)

where

$$U = \frac{\partial \omega}{\partial \mathbf{k}} \tag{2-4}$$

is the collinear group speed, $\omega = 2\pi f$ is the angular frequency, f = 1/T is the frequency, T is the wave period, $k = 2\pi\lambda$ is the wave number, λ is the wavelength, and

$$\Phi = \Theta - \Upsilon \tag{2-5}$$

a. Locally parallel wave speed contours

The calculations are simplified by making the assumption that the wave speed contours are locally parallel in the vicinity of each point of the ray trajectory. Further, we chose a x'y'-coordinate system such that the y'-derivatives of v, U, and G are zero. Accordingly, in the primed system the space derivative of Equation (2-3) is

$$\frac{\partial G}{\partial X'} = \frac{\partial U}{\partial X'} \cos \phi' - U \sin \phi' \left(\frac{\partial \theta'}{\partial X'} - \frac{\partial Y'}{\partial X'}\right) \qquad (2-6)$$

Expressions for the space derivatives of θ ' and γ ' are derived from Equations (2-1) and (2-2) where

$$\partial x' = \partial A_{U} \cos Y'$$
 (2-7)
 $\partial x' = \partial A_{G} \cos \Theta'$ (2-8)

Thus,

$$\frac{dY}{dX'} = \frac{\tan Y'}{v} \frac{dv}{dX'}$$
(2-9)
$$\frac{d\theta}{dX'} = \frac{\tan \theta'}{G} \frac{dG}{dX'}$$

(2-10)

where it should be noted that $d\gamma = d\gamma'$, and $d\theta = d\theta'$, $\phi = \phi'$, and $\kappa_G = \kappa_G'$. When Equations (2-9) and(2-10) are substituted into (2-6) and the terms rearranged, it is found that

$$\frac{\partial G}{\partial X'} = \frac{\frac{\partial U}{\partial X'} \cos \phi + \frac{U \sin \phi \tan Y'}{V} \frac{\partial V}{\partial X'}}{1 + \tan \phi \tan \theta'}$$
(2-11)

After Equations (2-2) and (2-11) are combined and the result is simplified, it is found that

$$K_{G} = \frac{\frac{1}{U} \frac{\partial U}{\partial x^{\prime}} + \frac{\tan \phi}{v} \frac{\tan \gamma}{\partial x^{\prime}}}{\csc \theta' + \tan \phi} \frac{\partial U}{\partial x c \theta'}$$
(2-12)

b. Properties of the group ray curvature

The ray curvature of a wave packet defined by Equation (2-12) exhibits some very remarkable properties. Under

4

various conditions the trigonometric terms of the equation can become infinite or have indeterminate forms. The value of $\kappa_{\rm G}$ approaches zero as θ' approaches a direction either parallel or perpendicular to the wave speed contours, provided γ' does not have a direction parallel to the contours. This means that given a sufficiently long path, refraction tends to turn the wave packet so that it is directed either parallel or perpendicular to the wave speed contours. In the limit θ' or γ' together approach a direction parallel to the wave speed contours, $\kappa_{\rm G}$ approaches a finite nonzero number. As γ' , but not θ' , approaches a direction parallel to the wave speed contours, $\kappa_{\rm G}$ approaches infinity and the wave group undergoes total reflection.

For parallel wave speed contours, the value of θ ' at a reflection point can be determined using Snell's law, which is the integrated form of the ray curvature expression. Snell's law for a wave packet can be written

$$\frac{\sin \theta'}{U \cos (\theta' - \lambda')} = C_{\mathbf{A}}$$
(2-13)

where C_s is a constant. When the wavelet direction is parallel to the wave speed contours (Equation 2-13) becomes

$$\sin \theta' = \pm U C_{a} \sin \theta' \qquad (2-14)$$

where the sign is positive or negative depending on whether sin $\gamma' = \pm 1$. Equation (2-14) holds for all values of U and C₅ only if θ' is an integral multiple of 180° . Accordingly, at a reflection point the wavelet direction becomes parallel to the wave speed contours, the wave packet direction becomes perpendicular to the contours, the geometric group velocity goes to zero, and the ray curvature becomes infinite.

c. Wavelet directions

Both the wave packet and wavelet directions must be computed in determining each point of a ray path. Equation (2-1) can be used to calculate γ . However, since the packet and wavelets travel with different velocities, the incremental distances by which they advance are different. The wavelet incremental distance must extend to the wave speed contour reached by the wave packet. This is illustrated in Figure (2-1) where the wave speed contours are assumed to be locally parallel. From the figure, it is seen that

$$\Delta \mathbf{A}_{\mathbf{V}} = \frac{\mathbf{Cos} \theta}{\mathbf{Cos} \mathbf{Y}'} \Delta \mathbf{A}_{\mathbf{G}}$$
(2-15)

)

Equation (2-15) is well behaved except at reflection points where $\cos \gamma' = 0$ and $\kappa_{G} = \infty$. The wavelet direction can be calculated using Snell's

The wavelet direction can be calculated using Snell's law with phase velocity. This offers the advantage that the wavelet incremental distance, which must be determined in the ray curvature method, is replaced by the wave speed which is computed at each point of the packet trajectory.

In order to be consistent with the rest of the computations, it is necessary to present Snell's law in a form such that the incident angle is defined with respect to the positive x'-axis. To do this, a number of rules are employed where the subscripts n and (n + 1) refer to consecutive points of a ray and n is a positive integer. The first step, if necessary, is to successively add or subtract 360° from the incident wavelet angle until it is within the range $0 \leq \gamma_n' \leq 360^{\circ}$. Then, when Snell's law is given by

$$Y_{m+1} = 0$$
 reason $\left(\frac{V_{m+1}}{V_m} \operatorname{sin} Y_m\right)$ (2-16)

where $-90^{\circ} \leq \gamma_{n+1} \leq 90^{\circ}$, the angle γ_{n+1}' is defined by the following scheme.

 $Y_{m+1} = \begin{cases} Y_{m+1}^{*}, & Y_{m}^{'} \leq 90^{\circ} \\ 180^{\circ} - Y_{m+1}^{*}, & 90^{\circ} < Y_{m}^{'} \leq 270^{\circ} \\ 360^{\circ} + Y_{m+1}^{*}, & Y_{m}^{'} > 270^{\circ} \end{cases}$ (2-17)

2.2 Spatial Derivatives of G, U, v, and h. In this section relations are presented for connecting the partial derivatives of G, U, v, and h.

a. Determination of h and its partial derivatives

For each ray point the water depth h is interpolated from a quadratic surface equation which is fitted to the water depths at 12 grid points as illustrated in Figure (2-2). The use of a quadratic surface makes it possible to evaluate second derivatives which are required in calculating the wave height. The surface is approximated by the general quadratic equation (Dobson, 1967)

$$h = E_1 + E_2 x + E_3 y + E_4 x^2 + E_5 xy + E_6 y^2$$
 (2-18)

Figure (2-2). SELECTION OF WATER DEPTHS ABOUT RAY POINT (X,Y) = (4.2, 3.8)

8

where the coefficients E are determined by fitting the equation by the method of least squares to the 12 water depth values. The partial derivatives of h are readily determined from Equation (2-18).

$$\frac{\partial k}{\partial x} = E_2 + \partial E_4 x + E_5 x \qquad (2-19)$$

$$\frac{\partial k}{\partial y} = E_3 + E_5 \times + 2E_6 Y \qquad (2-20)$$

$$\frac{\partial^2 \mathbf{R}}{\partial \mathbf{x}^2} = 2 \mathbf{E}_4 \tag{2-21}$$

$$\frac{\partial^2 k}{\partial x \partial y} = E_5 \tag{2-22}$$

$$\frac{\partial^2 \mathcal{L}}{\partial y^2} = 2 E_6 \qquad (2-23)$$

b. Rotation of axes to make computations

A reference xy-coordinate system aligned with respect to the water depth grid is used to tabulate the particulars of a wave packet trajectory. However, the calculations at each point of the trajectory are made in an x'y'-coordinate system chosen such that the y'-derivatives of h are zero. The relationships between the coordinate systems, a ray, and a depth contour are illustrated in Figure (2-3). Equations relating the coordinate systems are given by

$$X' = X \cos \alpha + \psi \sin \alpha \tag{2-24}$$

y' = - x sin x + y cos x

(2 - 25)

(2 - 26)

$$\theta' = \theta - \alpha$$

$$Y' = Y - \alpha$$

(2-27)

The angle α by which the x'-axis is rotated with respect to the x-axis is given by

$$\tan \alpha = \frac{\partial k}{\partial y} / \frac{\partial k}{\partial x}$$
(2-28)

Figure (2-3). RELATIONSHIPS BETWEEN THE COORDINATE SYSTEMS, A RAY, AND A DEPTH CONTOUR

As a consequence, the positive x'-axis is perpendicular to the water depth contour in the direction of increasing h. For the assumption of locally parallel wave speed contours to be good, the variation in a between successive points of a ray must be small.

The partial derivatives of h in the x'y'-coordinate system become

$$\frac{\partial h}{\partial x'} = \frac{\partial h}{\partial x} \cos \alpha + \frac{\partial h}{\partial y} \sin \alpha \qquad (2-29)$$

$$\frac{\partial K}{\partial u'} = 0 \tag{2-30}$$

$$\frac{\partial^2 k}{(\partial x')^2} = \frac{\partial^2 k}{\partial x^2} \cos^2 \alpha + 2 \frac{\partial^2 k}{\partial x \partial y} \sin \alpha \cos \alpha + \frac{\partial^2 k}{\partial y^2} \sin^2 \alpha \qquad (2-31)$$

$$\frac{\partial^2 \mathcal{L}}{(\partial \mathbf{y}')^2} = 0 \tag{2-32}$$

$$\frac{\partial^2 \mathbf{R}}{\partial \mathbf{x}' \partial \mathbf{y}'} = \mathbf{0} \tag{2-33}$$

Alternative expressions for Equations (2-29) and (2-31) are

$$\frac{\partial \mathcal{R}}{\partial x^{\prime}} = \left[\left(\frac{\partial \mathcal{R}}{\partial x} \right)^{2} + \left(\frac{\partial \mathcal{R}}{\partial y} \right)^{2} \right]^{\frac{1}{2}}$$

$$\frac{\partial^{2} \mathcal{R}}{\partial x^{\prime}} = \frac{\partial^{2} \mathcal{R}}{\partial x^{2}} + \frac{\partial^{2} \mathcal{R}}{\partial y^{2}}$$
(2-35)

c. Derivatives of v

- 0

As a convenience in the computations, the spatial derivatives of v are expressed in terms of the spatial derivatives of h. For linear theory (Lamb, 1932) the phase speed of a gravity water wave can be defined

$$U = \frac{1}{a} \tanh \frac{I}{2} \qquad (2-36)$$

(2 - 35)

where

$$\alpha = \frac{2\pi}{2} \tag{2-37}$$

$$b = \frac{T}{4\pi}$$
(2-38)

$$I = \frac{k}{bv}$$
(2-39)

and g is the acceleration due to gravity. For a given wavelet period, a and b are constants. It can be shown (Wilson, 1966; Dobson, 1967; Breeding, 1972) that

$$\frac{\partial U}{\partial x} = W \frac{\partial R}{\partial x}$$
(2-40)
$$\frac{\partial U}{\partial y} = W \frac{\partial R}{\partial y}$$
(2-41)

where

$$W = \frac{U(1-a^2v^2)}{[aa+v^2 + R(1-a^2v^2)]}$$
(2-42)

Further

$$\frac{\partial v}{\partial x'} = W \frac{\partial k}{\partial x'}$$
(2-43)

Differentiation of Equation (2-43) yields after some simplification

$$\frac{\partial^2 \upsilon}{(\partial x')^2} = W \left[\frac{\partial^2 \mathcal{L}}{(\partial x')^2} + Y \left(\frac{\partial \mathcal{L}}{\partial x'} \right)^2 \right]$$
(2-44)

where

$$Y = -\frac{4abv^{2}}{[aabv^{2} + k(1 - a^{2}v^{2})]^{2}}$$
(2-45)

d. Derivatives of U

For linear wave theory the collinear group speed of a gravity water wave can be defined

$$U = \frac{1}{2} \left(I + \frac{I}{\text{aink I}} \right) U \qquad (2-46)$$

The spatial derivatives of U can be expressed

$$\frac{\partial U}{\partial X^{i}} = \frac{\operatorname{cach} I}{2} \left[(\operatorname{ainh} I + I) \frac{\partial U}{\partial X^{i}} + U \frac{\partial I}{\partial X^{i}} (I - I \operatorname{coth} I) \right]$$

$$\frac{\partial^{2} U}{(\partial X^{i})^{2}} = \frac{\operatorname{cach} I}{2} \left\{ - \left[(\operatorname{ainh} I + I) \frac{\partial U}{\partial X^{i}} + U \frac{\partial I}{\partial X^{i}} (I - I \operatorname{coth} I) \right] \operatorname{coth} I + \right.$$

$$\left. + (\operatorname{ainh} I + I) \frac{\partial^{2} U}{(\partial X^{i})^{2}} + \frac{\partial U}{\partial X^{i}} \frac{\partial I}{\partial X^{i}} (2 + \operatorname{coth} I - I \operatorname{coth} I) + \right.$$

$$\left. + U \left[\frac{\partial^{2} I}{(\partial X^{i})^{2}} (I - I \operatorname{coth} I) + \left(\frac{\partial I}{\partial X^{i}} \right)^{2} \operatorname{cach} I (I \operatorname{cach} I - \operatorname{coth} I) \right] \right\}$$

$$(2-48)$$

where

$$\frac{\partial I}{\partial X^{i}} = I\left(\frac{1}{\mathcal{K}}\frac{\partial \mathcal{K}}{\partial X^{i}} - \frac{1}{\mathcal{V}}\frac{\partial \mathcal{V}}{\partial X^{i}}\right)$$
(2-49)

$$\frac{\partial^{2} I}{(\partial x')^{2}} = \frac{1}{I} \left(\frac{\partial I}{\partial x'} \right)^{2} + I \left\{ \frac{1}{4} \left[\frac{\partial^{2} \ell}{(\partial x')^{2}} - \frac{1}{4} \left(\frac{\partial \ell}{\partial x'} \right)^{2} \right] - \frac{1}{V} \left[\frac{\partial^{2} V}{(\partial x')^{2}} - \frac{1}{V} \left(\frac{\partial V}{\partial x'} \right)^{2} \right] \right\}$$

$$(2-50)$$

e. Derivatives of G

Equation (2-11) can be restated as

$$\frac{\partial G}{\partial x^{i}} = \rho \left(\cos \phi \frac{\partial U}{\partial x^{i}} + \sigma \frac{\partial \sigma}{\partial x^{i}} \right)$$
(2-51)

where

$$P = (1 + \tan \phi \tan \theta')^{-1} \qquad (2-52)$$

$$T = \frac{U}{V} \operatorname{Ain} \phi \tan \gamma' \tag{2-53}$$

The second spatial derivative of G is given by

$$\frac{\partial^{2}G}{(\partial x^{'})^{2}} = \rho\left(\cos\phi\frac{\partial^{2}U}{(\partial x^{'})^{2}} + \overline{U}\frac{\partial^{2}U}{(\partial x^{'})^{2}}\right) + \left(\cos\phi\frac{\partial\rho}{\partial x^{'}} - \rho\sin\phi\frac{\partial\phi^{'}}{\partial x^{'}}\right)\frac{\partial U}{\partial x^{'}} + \left(\rho\frac{\partial\overline{U}}{\partial x^{'}} + \overline{U}\frac{\partial\rho}{\partial x^{'}}\right)\frac{\partial\overline{U}}{\partial x^{'}}$$

$$(2-54)$$

where

$$\frac{\partial \rho}{\partial x^{i}} = -\rho^{2} \left(\tan \theta' \sec^{2} \phi \, \frac{\partial \phi'}{\partial x^{i}} + \tan \phi \, \sec^{2} \theta' \frac{\partial \theta'}{\partial x^{i}} \right) \qquad (2-55)$$

$$\frac{\partial \sigma}{\partial x'} = \sigma \left(\frac{1}{U} \frac{\partial U}{\partial x'} - \frac{1}{V} \frac{\partial V}{\partial x'} \right) + \frac{U}{V} \left(\cos \phi \tan Y' \frac{\partial \phi'}{\partial x'} + \sin \phi \sec^2 Y' \frac{\partial Y'}{\partial x'} \right)$$
(2-56)

The derivatives of γ' and θ' are defined by Equations (2-9) and (2-10), and

$$\frac{\partial \Phi'}{\partial x'} = \frac{\partial \Theta'}{\partial x'} - \frac{\partial Y'}{\partial x'}$$
(2-57)

2.3 Computation of Gravity Water Wave Packet Trajectories. In this section a method is presented for computing the surface trajectories of gravity water wave packets.

a. Determining the path

Successive points of a wave packet trajectory are found by iteration using Equation (2-12) for the ray curvature. The ray curvature is calculated on the assumption that the water depth contours are locally parallel in the vicinity of each point of the trajectory. At each point of the wave packet trajectory the wavelet direction is found using Snell's law with phase velocity as defined by Equations (2-16) and (2-17). The coordinates of each ray point are defined by

$$X_{m+1} = X_m + D_m \cos \overline{\theta}$$
 (2-58)

$$y_{m+1} = y_m + D_m \operatorname{Ain} \theta$$
 (2-59)

$$\bar{\Theta} = \frac{1}{2} \left(\Theta_{m} + \Theta_{m+1} \right)$$
(2-60)

$$\theta_{m+1} = \theta_m + \Delta \theta \tag{2-61}$$

$$\Delta \theta = \frac{1}{2} \left[(\kappa_G)_m + (\kappa_G)_{m+1} \right] \mathbb{D}_m \qquad (2-62)$$

$$\mathbf{D}_{\mathsf{M}} = \mathbf{G}\left(\Delta t\right) / \mathbf{GRID} \tag{2-63}$$

where D_n is the incremental distance in grid units between the points n and (n + 1) of a ray, GRID is the grid unit distance in units consistent with G, and (Δ t) is the time step.

b. Reflection points

Reflection points require special consideration. The waves are assumed to reflect if any of three criteria are satisfied. The first test for reflection is based on Snell's law with phase velocity. Reflection occurs if

$$\frac{U_{m+1}}{U_m} \sin Y_m > 1 \qquad (2-64)$$

As a reflection point is approached the ray curvature changes so quickly that calculations of the ray curvature by iteration may cease to converge. If convergence fails reflection is assumed if the following conditions are met.

$$\frac{U_{m+1}}{U_{m}} > 1 \qquad (2-65)$$

$$\tan Y' > \tan 80^{\circ}$$

The first condition requires that the phase speed increases between the last two ray points, and the second condition requires that the wavelet direction be consistent with total reflection.

A third criterion is used to specify reflection points in order to maintain accuracy in calculating the wave packet trajectory. Very near a reflection point, due to the rapidly changing ray curvature, the estimates of ray points can become erratic. Therefore, reflection is assumed if the following conditions are met

$$\frac{U_{n+1}}{U_n} > 1$$

$$\tan \gamma' > \tan 89.5^{\circ} \qquad (2-66)$$

$$\tan \theta' < \tan 75^{\circ}$$

When a reflection point is determined on the basis of either the second or third criteria, it is advisable to examine the printout to determine if the ray particulars are consistent with total reflection. The values of $\kappa_{\rm G}$, γ' , θ' , and G should exhibit the behavior described in Section (2.1), b.

When a reflection occurs there is an option to either halt the wave packet trajectory or to continue it as a reflection. When the wave packet reflection option is chosen, the reflection angles are determined by the relations

$$\theta_{r_{i}}' = -\theta_{i}' + 180^{\circ}$$
 (2-67)
 $Y_{r_{i}}' = -Y_{i}' + 180^{\circ}$ (2-68)

The subscript r denotes the reflection angles, and the subscript i signifies the angles at the last ray point reached prior to where the reflection criterion is satisfied.

The ray curvature calculations are more likely to converge and the accuracy of the path is increased if there is a restriction on how much the ray direction can change between successive ray points. Accordingly, if γ' is within 15° of a direction for which the ray curvature is infinite, the time step between ray points is successively halved, as necessary, until $|\Delta\theta|$ is less than 1°. In the event it is necessary to reduce the time step to less than 0.5 seconds the ray is stopped.

2.4 Wave Height Calculations. Modification of the wave height due to refraction, shoaling, and energy dissipation is considered. The wave height H increases when adjacent rays converge and it decreases when the rays diverge; this effect is accounted for by the refraction coefficient K_R . The shoaling coefficient K_S accounts for the change in H due to the variation in the propagation speed of the wave packet. The loss in energy due to wave motion at the sea bottom is determined by the friction coefficient K_F .

a. Without energy dissipation

The average rate of energy transmission F can be defined

$$F = ELG \qquad (2-69)$$

where ${\mathcal E}$ is the energy per unit area and ℓ is the perpendicular distance between rays. The energy is assumed to be conserved along the ray. Therefore

$$F_{i+1} = F_{i}$$
 (2-70)

where j and (j + 1) denote consecutive ray points. It is further assumed that E is proportional to H^2 . Accordingly, it follows from Equations (2-69) and (2-70) that

$$H_{i+1} = (K_{s})_{i+1} (K_{R})_{i+1} H_{i}$$
(2-71)

where $(K_s)_{j+1}$ and $(K_R)_{j+1}$ are the shoaling and refraction coefficients, respectively, between points j and (j+1).

$$(K_{S})_{\frac{1}{2}+1} = \left(\frac{G_{\frac{1}{2}}}{G_{\frac{1}{2}+1}}\right)^{\frac{1}{2}}$$

$$(2-72)$$

$$(K_{R})_{\frac{1}{2}+1} = \left(\frac{l_{\frac{1}{2}}}{l_{\frac{1}{2}+1}}\right)^{\frac{1}{2}}$$

$$(2-73)$$

If H_0 is the initial wave height, then the wave height at the n-th point is

$$H_{m} = K_{s} K_{R} H_{o} \qquad (2-74)$$

where

$$K_{s} = (K_{s})_{1} (K_{s})_{2} \cdots (K_{s})_{m} = \left(\frac{G_{o}}{G_{m}}\right)^{\frac{1}{2}}$$
(2-75)

$$(2-69)$$

$$K_{R} = (K_{R})_{I}(K_{R})_{a}\cdots(K_{R})_{m} = \left(\frac{l_{o}}{l_{m}}\right)^{\overline{a}}$$
(2-76)

b. With energy dissipation

To account for energy losses, Equation (2-70) can be restated

$$F_{i_{1}+1} = (K_{F})_{i_{1}+1} F_{i_{1}}$$
 (2-77)

where $(K_F)_{j+1}$ is the friction coefficient between the points j and (j+1). As a result, the relationship between the wave heights at consecutive ray points can be expressed by

$$H_{\dot{z}^{+1}} = (K_s)_{\dot{z}^{+1}} (K_R)_{\dot{z}^{+1}} (K_F)_{\dot{z}^{+1}}$$
(2-78)

In terms of the initial wave height, the wave height at the n-th point is given by

$$H_{m} = K_{s} K_{R} K_{F} H_{0} \qquad (2-79)$$

where

$$K_{F} = (K_{F})_{1} (K_{F})_{2} \cdots (K_{F})_{m} = (K_{F})_{m} (K_{F})_{m}$$
 (2-80)

2.5 Refraction Coefficient. In computing $K_{\rm R}$ it is convenient to define

$$\beta = \frac{l_m}{l_0} \tag{2-81}$$

where β is called the ray separation factor. Equation (2-76) for the refraction coefficient becomes

$$K_{R} = \left|\beta\right|^{-\frac{1}{2}}$$
(2-82)

a. Ray separation equation

^

In considering the refraction of monochromatic waves, Munk and Arthur (1952) have shown that β can be determined from a second-order differential equation called the ray separation equation. The equation can be stated

$$\frac{\partial^{*}\beta}{\partial t^{*}} + \frac{\partial \beta}{\partial t} + \frac{\partial \beta}{\partial t} = 0 \qquad (2-83)$$

where t is time. For a wave packet trajectory

$$p = -2\left(\cos\theta \frac{\partial G}{\partial X} + \sin\theta \frac{\partial G}{\partial Y}\right) \qquad (2-84)$$

$$q = G\left(\sin^2\theta \frac{\partial^2 G}{\partial X^2} - 2\sin\theta \cos\theta \frac{\partial^2 G}{\partial X \partial y} + \cos^2\theta \frac{\partial^2 G}{\partial y^2}\right) \qquad (2-85)$$

The calculations for p and q can be simplified in the same manner as in calculating the wave packet ray curvature by using the x'y'-coordinate system. Then, p and q reduce to

$$p = -2\cos\theta' \frac{\Delta G}{\Delta X'} \qquad (2-86)$$

 $q = G \sin^2 \theta' \frac{\partial^2 G}{(\partial x')^2} \qquad (2-87)$

b. Solution for parallel water depth contours

There is a simple solution to Equations (2-83), (2-86), and (2-87) when the water depth contours are everywhere parallel. Then, with the x'y'-coordinate system defined as in Section 2.2, b, it can be shown that

$$\beta = \frac{\cos \theta_m}{\cos \theta_0}$$
(2-88)

where the subscript 0 denotes the initial value and the subscript n depicts the value at the n-th ray point. The time derivative of Equation (2-88) is

$$\frac{\partial \beta}{\partial t} = - \frac{\sin^2 \theta_n}{\cos \theta_0} \frac{\partial G}{\partial x'}$$

where Equations (2-8) and (2-10) are used.

c. Numerical solutions of the ray separation equation

20

Several numerical methods can be used to solve the ray separation equation. The assumption is made that the water depth contours are locally parallel in the neighborhood of each ray point; therefore, p and q are defined by Equations (2-86) and (2-87). An easy to use fourth order finite difference solution to Equation (2-83) is the Fox method (Salvadori and Baron, 1961). However, this method has the disadvantage that the time step must be constant between successive ray points. When p and q do not change much between ray points, the general solution of a homogeneous second-order differential equation with constant coefficients (Wylie, 1951) can be used to solve the ray separation equation. This solution has 3 cases depending on the value of $(p^2 - 4q)$. The value of β at each new ray point is found using the values of p and q at the last point. There is usually little difference between the results obtained by this method and the Fox method.

A numerical method which does not require a constant time step and which better accounts for the variation of p and q along a ray is the Runge-Kutta method. This method is stable. It is also self-starting, i.e., values at the previous point are used to find values at the next point (Romanelli, 1960). For these reasons, the Runge-Kutta method was selected for the solution of the ray separation equation.

In order to use the Runge-Kutta method, Equation (2-83) is reduced to a system of first-order equations.

$$\frac{\partial \beta}{\partial t} = u \qquad (2-90)$$

$$\frac{\partial u}{\partial t} = -(\gamma u + \gamma \beta) \qquad (2-91)$$

Both fourth and fifth order solutions of β are obtained. The initial conditions are the values of β and $d\beta/dt$ at the first ray point. The latter is estimated using Equation (2-89). The solutions require the values of (p_n, q_n) at the n-th ray point and the values (p_{n+1}, q_{n+1}) at the (n+1)-th ray point. Further, the values of (p_1, q_1) , (p_2, q_2) , (p_3, q_3) , (p_4, q_4) , and (p_5, q_5) are needed along the ray at points intermediate to the ray points. They are determined, respectively, at time intervals of $(\Delta t)/3$, $(\Delta t)/4$, 0.45573725(Δt), 2(Δt)/3, and

(2 - 89)

0.8(Δ t) beyond the n-th ray point where Δ t is the time step in the calculations.

A fourth order Runge-Kutta method with a minimum truncation error bound is given by Ralston (1962). The solution for the ray separation equation becomes

$$\beta_{m+1} = \beta_{m} + 0.17476028 k_{1} - 0.55148066 k_{2} + + 1.20553560 k_{3} + 0.17118478 k_{4}$$
(2-92)
$$\left(\frac{\lambda \beta}{\lambda t}\right)_{m+1} = \left(\frac{\lambda \beta}{\lambda t}\right)_{m} + 0.17476028 L_{1} - 0.55148066 L_{2} + + 1.20553560 L_{3} + 0.17118478 L_{4}$$
(2-93)

where

$$K_{1} = (\Delta t) \left(\frac{\partial \beta}{\partial t}\right)_{M}$$
(2-94)

$$L_{I} = -(\Delta t) \left[p_{m} \left(\frac{\partial \beta}{\partial t} \right)_{m} + q_{m} \beta_{m} \right]$$
(2-95)

$$K_{a} = (\Delta t) \left[\left(\frac{\partial \beta}{\partial t} \right)_{m} + 0.4L_{1} \right]$$
(2-96)

$$L_{a} = -(\Delta t) \left[p_{a}((\frac{\partial \theta}{\partial t})_{m} + 0.4L_{1}) + q_{a}(\theta_{m} + 0.4K_{1}) \right] \qquad (2-97)$$

$$K_3 = (\Delta t) \left[\left(\frac{\partial \beta}{\partial t} \right)_m + 0.29697761L_1 + 0.15875964L_2 \right]$$
 (2-98)

$$L_{3} = -(\Delta t) \left[\Re_{3} \left(\left(\frac{\lambda \theta}{\Delta t} \right)_{M} + 0.29697761 L_{1} + 0.15875964 L_{2} \right) + (2-99) \right]$$

$$+ q_{3} \left(k_{m} + 0.29697761 K_{1} + 0.15875964 K_{2} \right) \\ K_{4} = (\Delta t) \left[\left(\frac{\Delta B}{\Delta t} \right)_{m} + 0.21810040 L_{1} - 3.05096516 L_{2} \qquad (2-100) \\ + 3.83286476 L_{3} \right]$$

$$L_{4} = -(\Delta t) \left[t_{m+1} \left(\left(\frac{\Delta B}{\Delta t} \right)_{m} + 0.21810040 L_{1} - 3.05096516L_{2} + 3.83286476L_{3} \right) + g_{m+1} \left(g_{m} + 0.21810040 K_{1} - 3.05096516K_{2} + 3.83286476K_{3} \right) \right]$$

$$(2-101)$$

A disadvantage of the Runge-Kutta method is that there is no simple means for estimating the truncation error (Milne, 1953). One procedure for controlling the error is to compute both fourth and fifth order solutions of β and to adjust the time step so that the two estimates differ by less than an arbitrary amount.

A fifth order Runge-Kutta method is given by Milne (1953). The fifth order solutions for β and $d\beta/dt$ are

$$\beta_{m+1} = \beta_m + \frac{1}{192} (23K_1 + 125K_6 - 81K_8 + 125K_9)$$
 (2-102)

$$\left(\frac{\underline{A}\underline{\beta}}{\underline{A}\underline{L}}\right)_{m+1}^{(5)} = \left(\frac{\underline{A}\underline{\beta}}{\underline{A}\underline{L}}\right)_{m} + \frac{1}{\underline{192}} \left(\underline{23L_1} + \underline{125L_6} - \underline{81L_8} + \underline{125L_9}\right) \quad (2-103)$$

where

$$K_{5} = (\Delta t) \left[\left(\frac{\partial \beta}{\partial t} \right)_{M} + \frac{L_{I}}{3} \right]$$
(2-104)

$$L_{5} = -(\Delta t) \left[p_{1} \left(\left(\frac{\delta \theta}{\delta t} \right)_{m} + \frac{L_{1}}{3} \right) + q_{1} \left(\beta_{m} + \frac{K_{1}}{3} \right) \right]$$
(2-105)

$$K_{b} = (\Delta t) \left[\left(\frac{d\rho}{dt} \right)_{m} + \frac{6L_{5} + 4L_{1}}{25} \right]$$
(2-106)

$$L_{6} = -(\Delta t) \left[\Re_{2} \left(\left(\frac{\partial \beta}{\partial t} \right)_{m} + \frac{6L_{5} + 4L_{1}}{25} \right) + \Re_{2} \left(\beta_{m} + \frac{6K_{5} + 4K_{1}}{25} \right) \right]$$
(2-107)

$$K_{\gamma} = (\Delta t) \left[\left(\frac{\partial \beta}{\partial t} \right)_{M} + \frac{15L_{6} - 12L_{5} + L_{1}}{4} \right]$$
(2-108)

$$L_{7} = -(\Delta t) \left[\frac{3}{4}m_{+1} \left(\left(\frac{3}{4} \frac{\beta}{4} \right)_{m} + \frac{15L_{6} - 12L_{5} + L_{1}}{4} \right) + \frac{9}{4}m_{+1} \left(\frac{\beta}{4}m_{+1} + \frac{15K_{6} - 12K_{5} + K_{1}}{4} \right) \right]$$
(2-109)

$$K_{8} = (\Delta t) \left[\left(\frac{\partial \beta}{\partial t} \right)_{m} + \frac{8L_{7} - 50L_{6} + 90L_{5} + 6L_{1}}{81} \right]$$
(2-110)

$$L_{g} = -(\Delta t) \left[\frac{\alpha}{\beta t} \left(\frac{\beta \beta}{\beta t} \right)_{m} + \frac{\beta L_{7} - 50 L_{6} + 90 L_{5} + 6L_{1}}{81} \right) + q_{4} \left(\beta_{m} + \frac{\beta K_{7} - 50 K_{6} + 90 K_{5} + 6 K_{1}}{81} \right) \right]$$
(2-111)

$$K_{q} = (\Delta t) \left[\left(\frac{\partial \beta}{\partial t} \right)_{m} + \frac{\delta L_{1} + 10 L_{6} + 36 L_{5} + 6 L_{1}}{75} \right] \qquad (2-112)$$

$$L_{q} = -(\Delta t) \left[\Re_{5} \left(\left(\frac{\beta \beta}{\beta t} \right)_{m} + \frac{8L_{1} + 10L_{6} + 36L_{5} + 6L_{1}}{75} \right) + \frac{9}{75} \left(\beta_{m} + \frac{8K_{1} + 10K_{6} + 36K_{5} + 6K_{1}}{75} \right) \right]$$
(2-113)

The difference between the fourth and fifth order solutions of β and $d\beta/dt$ are

$$\varepsilon_{\beta} = \beta_{m+1} - \beta_{m+1} \qquad (2-114)$$

$$\varepsilon_{\beta t} = \left(\frac{\lambda \beta}{\lambda t}\right)_{m+1} - \left(\frac{\lambda \beta}{\lambda t}\right)_{m+1} \qquad (2-115)$$

In the calculations both $|\varepsilon_{\beta}|$ and $|\varepsilon_{\beta t}|$ are monitored. If either is greater than or equal to an arbitrary constant (determined as an input parameter) the time step is halved, the corresponding (n+1)-th ray point is found, and the β and d β /dt calculations are repeated. This process continues, as necessary, until both $|\varepsilon_{\beta}|$ and $|\varepsilon_{\beta t}|$ are less than the arbitrary constant. If the time step is reduced to less than 0.5 seconds the ray is stopped.

d. Reflection points

The numerical solutions of the ray separation equation have not produced satisfactory results near reflection points. This is possibly due to the rapid change in p which approaches infinity as the reflection point is approached. The problem occurs when the wavelet direction is within 15° of being parallel to the wave speed contours. Accordingly, for this narrow region, Equations (2-88) and (2-89) for parallel water depth contours are used to evaluate β and $d\beta/dt$. The equation for β is not only well behaved but approaches a constant value at the reflection point.

e. Caustics and focal points

The value of β is monitored along a ray. If the value becomes zero or negative a focal point or caustic is located. In this case the ray is stopped.

2.6 Friction Coefficient. Energy dissipation of the waves due to bottom friction is considered. The friction coefficient is determined using a method based on the theory of Putnam and Johnson (1949) and Bretschneider and Reid (1954). Other energy dissipation methods can be substituted if desired.

In this work the friction factor c_f is defined following Jonsson (1966)

$$\tau = \frac{1}{\lambda} c_f \rho_f u_m^2 \qquad (2-116)$$

where τ is the tangential stress per unit area at the bottom, $\rho_{\rm f}$ is the density of the fluid, and $u_{\rm m}$ is the maximum velocity of the fluid at the bottom. The definition for τ given by Putnam and Johnson (1949) does not contain the factor $\frac{1}{2}$. When Equation (2-116) is used the friction coefficient becomes

$$K_{F} = \frac{(K_{F})_{m}}{F(K_{F})_{m} (\Delta A_{G})_{m+1} + 1}$$
(2-117)

where $(K_f)_m$ is defined by Equation (2-80), $(\Delta s_G)_{n+1}$ is the incremental distance between the ray points n and (n+1), and

$$F = \left(\frac{8\pi^2}{3\gamma}\right) \left(\frac{c_F H_0}{U_0}\right) \left(\frac{K_S}{T \sinh kk}\right)^3$$
(2-118)

2.7 Wave Breaking Criterion. In the program there is an option to determine if the waves break. When this option is chosen, the waves are assumed to break when the following relation is satisfied.

$$\frac{H}{\lambda} > \frac{1}{7} \tanh \hbar h \qquad (2-119)$$
CHAPTER III THE COMPUTER PROGRAM

3.1 Description of the Computer Program. The computer program is written in Fortran IV for the Control Data Cyber 70 computer systems and plotters which are compatible with the Calcomp plotting systems. With the exception of the Calcomp subroutines, a description of each program subroutine is presented. The reader is referred to a Calcomp reference manual for descriptions of the Plot, Symbol, and Number subroutines (California Computer Products, Inc., 2411 West La Palma, Anaheim, CA. 92801). With the exception of the plotting subroutines, each one is written so that it is possible to follow the subroutine listing. It will be helpful to make use of the definitions of the symbols presented with the Notation at the end of this work.

Including the 100 by 100 array for the water depth grid the program requires 30976 words (base 10). In order to reduce the size of the computer program card deck and to shorten the program listing, several program statements have frequently been combined on one computer card. This is done by separating the statements by a blank, a dollar sign, and another blank.

There is often a need to prepare forecasts for a number of different water depth grids. Further, it is frequently desirable to make a number of forecasts for the same water depth grid. To make it easier to handle the input data for these situations, the water depth grids (XYGRID) are all stored on one input file. Each grid has its own name, e.g., XYGOM1. The rest of the input parameters (RAYDAT) are stored on another input file, and the data for each run has a name, e.g., RAYDAT1. When using the program an appropriate set of control cards is used to access the input data. If this feature is not desired, the READ statements in MAIN should be changed so that the same input file is used for all the input data.

When checks of the program are made or if there are modifications to the program, it should be noted that English units are used internally in the program for the calculations. In addition, the input and output wave packet and wavelet directions are defined as the directions from which the waves come with respect to true north. Before making calculations these angles are transformed using the following relationships

 $\theta_{\rm C} = \rm CNVRSA - \theta_{\rm N} + 180 \tag{3-1}$

$$\gamma_{\rm C} = \rm CNVRSA - \gamma_{\rm N} + 180 \qquad (3-2)$$

where the subscript C refers to the calculation coordinate system, the subscript N denotes the true north coordinate

system, and CNVRSA is the direction of the positive x-axis of the water depth grid with respect to true north. The angles are in degrees.

3.2 PROGRAM MAIN. The MAIN PROGRAM controls the input, plots, and calculations for all the rays. To begin with, the values of MMAX, LI, and CORI are assigned values, and LII is calculated. Two statements are used to read numbers used in the surface fitting procedure in SURFCE. Then, descriptive information is read which is used for all plots. Next, two read statements are used to obtain input parameters for a specific plot. If MOE \neq 0 there is a conversion from Metric to English units. The value of CIN is changed from seconds to hours, and the values of AMM, ANN, DY, and SCLI are determined. Next TITLE is called.

If NXCMAT = 0 the water depths are read and stored in CMAT. If NXCMAT \neq 0 no water depths are read, and the depth grid used in the previous plot is used again. If NCO \neq 0 sounding depths for the plot are read and NUMCON is called. If NCO = 0 no sounding depths are read; in this case there must be no sounding depth card. SHORE is called if NSH \neq 0.

Next, the input parameters for a given ray are read. If MOE \neq 0 there is a conversion from Metric to English units. The values of SDLTAT and WL are defined, and the computational values of the wave packet and wavelet directions are determined. MAXQ is initialized to one and FUD, BRK, REFLCT, RFLBUM, REFRCT, RFRBUM, FLAGR, FLAG3, IFLG, and α are initialized to zero. If COL \neq 0 the plotter will pause before a ray is plotted. The values of A and AV are changed from degrees to radians. Then RAYN is called. After all rays for a given plot are determined the comment: THIS IS THE END is written on the output.

3.3 Subroutine TITLE. TITLE is called by MAIN to draw labels and straight line borders on a plot. The labels consist of PROJCT, DATE1, DATE2, SCL, CIN, NPLOT, and DIR. If NAX \neq 0, AXIS2 is called.

3.4 Subroutine AXIS2. AXIS2 is called by TITLE to prepare xy-axes for the plot. The axes are calibrated with tick marks, and the origin and every fifth tick mark are numbered. Finally, each axis is labeled.

3.5 Subroutine NUMCON. If NCO > 0, NUMCON is called by MAIN to locate NCO sounding water depths on a plot. The sounding depths are stored in the array CONTUR. If MOE \neq 0 the sounding depths are converted from Metric to English values before the calculations are made. The search for the sounding depths begins one grid unit from the end of a column starting with the second y-column. The column is searched separately for each depth. If necessary, the sounding depths are located by linear interpolation. After all the sounding depths for a given column are found, they are drawn at their respective locations on the plot. In the event MOE \neq 0 the English values are converted back to Metric values before being drawn on the plot.

This process is repeated for additional y-columns where the next column is determined by adding NNSKIP to the number of the previous y-column. The process stops when the y-column selected is greater than (NN-1). A restriction on the use of this subroutine is that $(\partial h/\partial x)|_{h=0} \ge 0$ for the entire depth grid.

3.6 Subroutine SHORE. If NSH $\neq 0$, SHORE is called by MAIN to draw the shoreline on the plot. Beginning with the first y-column in CMAT, each column is searched for the location of the zero water depth. The search in each column begins with the maximum value of x, and if necessary, the point of zero water depth is found by linear interpolation. The shoreline is the line drawn connecting these points. To use this subroutine it is necessary that $(\partial h/\partial x)|_{h=0} \geq 0$.

3.7 Subroutine RAYN. This subroutine is called by MAIN to control the calculation of the wave packet trajectory and the wave particulars along the trajectory. Initially, NDP, NFK, NGO, and FLAG1 are set equal to one. Also, KREST, KCIN, and RCOUNT are put equal to zero. SURFCE is called to calculate ray particulars for the first ray point. FLAG1 and INUM are set equal to zero. The saved values of α , γ , h, v, u, and G are initialized. MOVE is called to calculate the initial value of D, and HEIGHT is called to determine the initial wave height. The travel time is initialized to zero, and the initial wave packet and wavelet directions are converted to degrees and to values measured with respect to true north for later printout. Then the value of NPT is checked to determine how much printout is desired.

If NPT = 0 printout occurs at the first and last ray points. When NPT \neq 0, PCD is called to calculate PCTDIF and printout occurs for selected ray points depending upon the value of SK. The ray parameters which appear in the output depend upon the value of NPT. The procedure employed to obtain the output when NPT \neq 0 is presented below. However, there is little difference in the routine used to obtain output when NPT = 0.

Printout occurs for the first ray point or if the number of the ray point is an integral multiple of SK. Then α is changed to degrees, and if MOE \neq 0 the English values of the ray parameters are changed to Metric values. If the ratio of FUD to LI has no remainder, page and column headings are written. First, the page heading is written. Next, if the ray is at the first point the initial value of d β /dt is written. In addition, if MOE = 0 the printout contains: THE OUTPUT IS IN ENGLISH UNITS. H, HGT(FEET). G, U, V(FEET/ SECOND). If instead MOE \neq 0 the printout contains: THE OUTPUT IS IN METRIC UNITS. H, HGT(METER). G, U, V(METER/ SECOND). Then the column headings are written.

FUD is increased by one and the ray particulars are written. One of three formats is used. If RFLBUM $\neq 0$ (determined in HEIGHT) the format for a reflection breakup of the time step interval is chosen. Further, RFLBUM is set equal to zero. If RFLBUM = 0 and RFRBUM $\neq 0$ (determined in HEIGHT) the format for a refraction breakup is used and RFRBUM is set equal to zero. The remaining format is used if there has not been a breakup of the time step interval.

The value of α is changed back to radians. If MOE \neq 0 the ray particulars which were changed to Metric values are converted back to English values for use in the calculations. The values of the ray point number, the coordinates of the ray point, and the number of breakup intervals are saved. Then STORE is called.

After returning from STORE, if MIT = 2 (determined in MOVE), if NPT \neq 0, and if the ratio of FUD to LI has no remainder, then page and column headings are written. FUD is increased by one, and the printed output contains the statement: PACKET CURVATURE AVERAGED. If after returning from STORE, NPT = 0 or MIT = 1 the previous write statements are omitted.

When at the first ray point the value of NDP is checked. If NDP = 2 (determined in SURFCE) the printed output is: RAY REACHED SHORE. The ray is stopped and the program returns to MAIN. If NDP = 1 the number of the ray point is increased by one, and the dimension of the AX and AY arrays is checked (described below). For points beyond the first the value of NGO is checked. If NGO = 1 the ray point number is increased by one, and the size of the AX and AY arrays is checked. If NGO \neq 1 the ray is stopped, the printed output contains: RAY REACHED GRID BOUNDARY, and the program returns to MAIN.

Before the next ray point is calculated a check is made to determine if there is additional storage space in the AX and AY arrays. If the sum of the number of ray points and the number of tick marks (if any) exceeds MMAX the ray is stopped. The statement in the printed output is: DIMENSION OF OUTPUT-ARRAYS EXCEEDED. The ray particulars for the last point are written if they have not been previously written. Page and column headings appear when appropriate, and the format used is determined as explained above for the output of other ray points. The program returns to MAIN.

If the dimension of the output arrays is not exceeded, the value of G is saved and MOVE is called to find the next ray point. After the return to RAYN the ray is stopped if NDP \neq 1 or MIT = 3, 4, 5, 6, 7, or 8. The ray particulars for the last ray point are written unless they have already appeared in the output. In addition, one of the following descriptive printouts occurs. If NDP \neq 1 (determined in SURFCE) the printout is: RAY REACHED SHORE. When MIT = 3 (determined in MOVE) the printout is: PACKET CURVATURE ITERATION NOT CONVERGING. If MIT = 4 (determined in HEIGHT) the statement is: CAUSTIC OR FOCAL POINT. When MIT = 5 (determined in HEIGHT) the printout contains: WAVE BREAKS. When MIT = 6 (determined in MOVE), which can occur when ROP = 0, there is no descriptive printout. If MIT = 7 (determined in MOVE) the printout is: REFLECTION HANG-UP. Finally, if MIT = 8 (determined in HEIGHT) the printout is: BREAKUP TIME STEP LESS THAN 0.5 SECOND.

After the return from MOVE to RAYN, the ray continues if NDP = 1 and MIT = 1 or 2 (determined in MOVE). The travel time is computed. The values of α , $\kappa_{\rm G}$, h, D, G, v, U, H, KS, K_F, and K_R are saved in case printout is required at the last ray point. The wave packet and wavelet angles are converted to degrees and are defined with respect to true north. Then, as described above, PCD is called if desired, the ray particulars are written if required, and MOVE is called if appropriate to find the next ray point.

3.8 Subroutine MOVE. MOVE is called by RAYN to determine the path of the wave packet. NUMT and MIT are initialized to one. The values of the geometric group speed and ray curvature are saved for use if the time step interval is divided into smaller intervals. At the second ray point the value of $\kappa_{\rm G}$ is saved; at other points the values of the ray curvature and the average ray curvature are saved.

The value of the incremental distance to the next ray point is computed. If at the first ray point the program returns to MOVE. At the second ray point the average ray curvature is set equal to the ray curvature obtained at the first point. For points beyond the second this latter step is ignored.

A check is made to determine if there is a breakup of the time step interval due to the calculation of the ray separation factor. If so, REFRCT was set equal to one in HEIGHT. Further, a check is made to determine if there is or should be a breakup of the time step interval due to a reflection point. If REFLCT \neq 0 a reflection breakup has occurred; if $|\tan \gamma'| > \tan 75^\circ$ and $|\tan \theta'| < \tan 75^\circ$ a reflection breakup should occur. Accordingly, if REFRCT \neq 0 or REFLCT \neq 0 or $|\tan \gamma'| < \tan 75^\circ$ or $|\tan \theta'| > \tan 75^\circ$ the iteration for the next point begins. Otherwise, REFLCT and RFLBUM are set equal to one before the iteration for the next point begins. The value of RFLBUM determines the format for the printed output of the ray particulars.

A maximum of fifty iterations can occur in locating a new point. On the first iteration the average ray direction to and the position of the next point are estimated using the ray curvature of the present point. Beyond the first iteration the average of the ray curvatures at the present point and the approximated next point is used to obtain a new estimate of the ray point. With each iteration SURFCE is called to calculate the ray curvature and other ray particulars at the estimated position of the next point. After the return to MOVE, the wavelet direction γ^\prime is computed.

If FLAG2 \neq 0 (determined in SURFCE) a reflection occurs due to Snell's law with phase velocity. In this case, REF = 1 and there is a reflection (described below). If FLAG2 = 0, DUD is calculated. If MIT > 2 the program returns to RAYN. If MIT = 2 (described below) a check is made to determine if the ray is too close to a reflection point (described below). If MIT = 1 the value of NDP is examined. If NDP = 2 (determined in SURFCE), h < 0 so the program returns to RAYN. If NDP \neq 2 the ray curvature at the latest estimate of the new point is averaged with the value at the present point; the average is used in the next approximation of the new point. The average ray curvature is saved on the 48th and 49th iterations.

The check for the convergence of the ray curvature depends upon both the number of the ray point and the number of the iteration. For the first or second ray point and on the first iteration the average ray curvature is saved and the second iteration begins. Beyond the first iteration successive curvature averages are checked, and if they differ by less than 0.00009/D convergence has occurred. The new point is checked to see if it is too close to a reflection point. If convergence has not occurred the iteration continues.

Beyond the second ray point and on the first iteration the ray curvature average for the estimated new point is compared with the ray curvature average of the present point. If the values differ by less than 0.00009/D convergence has occurred. On successive iterations curvature averages are checked to see if they differ by less than 0.00009/D. When convergence occurs the check is made to determine if the new point is too close to a reflection point.

If convergence has not occurred after fifty iterations the ray curvatures on the 48th and 50th iterations are compared to see if they differ by less than 0.00009/D. If so, the ray curvature is assumed to have converged to two values. This would happen if estimates of the new ray point alternate between two grid cells. For this situation MIT = 2, and the average of the ray curvature averages for the 49th and 50th iterations is determined and used to locate the next ray point. The point is checked to see if it is too close to a reflection point.

If after fifty iterations convergence is not achieved a check is made to find if the convergence failed because of a reflection point. This is possible since the ray curvature becomes infinite at a reflection point. Reflection is assumed if DUD > 1, i.e., the phase speed increases between the last two ray points, and if $|\tan \gamma'| > \tan 80^\circ$. Then REF = 2 and the reflection begins (described below). If the conditions for reflection are not met MIT = 3, and the program returns to RAYN.

It is desirable to get close to a reflection point in order to accurately define the ray path. But problems occur if a ray gets too close to a reflection point due to the rapidly increasing ray curvature. This can cause the convergence procedure to fail with a resulting reflection as discussed above. However, very near a reflection point the estimates of ray points become erratic even if the iterations of the ray curvature converge. Accordingly, a reflection is assumed if DUD > 1, $|\tan \gamma'| > \tan 89.5^{\circ}$, and $|\tan \theta'| < \tan 75^{\circ}$. Then REF = 3 and the reflection begins. Otherwise, there is no reflection and a check is made to determine if the new point lies too close to a grid boundary (described below).

A reflection begins with a check of NPT. If NPT \neq 0 the ratio of FUD to LI is checked. If the ratio has no remainder page and column headings are written. The printout values of θ , γ , α , and the ray number are calculated. If MOE = 0 the ray particulars at the reflection point are written. If MOE \neq 0 the English values of the ray particulars are converted to metric values before being written. FUD is increased by one and the value of α is converted back to radians. If MOE \neq 0 the metric values of the ray particulars are converted back to English values. Page and column headings are written if the remainder of the ratio of FUD to LI is zero. Then the type of reflection is written. If REF = 1 the printed output contains: REFLECTION: SNELLS LAW WITH PHASE VELOCITY. When REF = 2 the output is: REFLECTION: PACKET CURVATURE ITERATION NOT CONVERGING. Finally, if REF = 3 the output is: REFLECTION: NEAR REFLECTION POINT. After the write statement FUD is increased by one. The previous write statements are omitted if NPT = 0.

If ROP = 0 the reflection procedure is stopped, MIT = 6, and the program returns to RAYN. If ROP \neq 0 the ray continues beyond the reflection point. After setting FLAG2 = 0 the reflection angles are calculated and the wavelet direction is saved. RCOUNT is increased by one, and if then RCOUNT > 2 there has been more than one reflection at the same point. In this case MIT = 7 and the program returns to RAYN. If RCOUNT < 2, FLAG1 is set equal to one and SURFCE is called to calculate the ray particulars based on the reflection angles. Then FLAG1 = 0, FLAGR = 1, and the values of the ray separation coefficients are saved. This is followed by iterating to the point after reflection using the procedure discussed above.

With the exception of reflection points and if a ray has not been stopped, each new ray point is checked to determine if the point lies within $1\frac{1}{2}$ grid units of a boundary of the water depth grid. If it does NGO = 2. Otherwise, NGO remains equal to one.

A number of quantities are saved in case a breakup of the time step interval occurs in HEIGHT. The quantitites saved are the coordinates of the previous point, the coordinates of the new point, the previous rotation angle, the present rotation angle, the wave packet direction, the previous wavelet direction, the new wavelet direction, the two previous values of phase speed, and new values of h, v, U, G, and D. Average values of the wave packet and wavelet directions are calculated for use if the values of p and q are determined at intermediate ray points. The values of the wave packet direction, wavelet direction, and ray curvature are updated, and RCOUNT is initialized to zero.

If REFLCT = 1 the values of x and y are updated and HEIGHT is called. If REFLCT \neq 1 the average values of the packet and wavelet directions are used to determine the values of p and q at the five intermediate points needed for the Runge-Kutta method. In order to keep the wavelet direction from changing on the calls to SURFCE, FLAG1 is set equal to one. After all the values of p and q are computed at the intermediate points SURFCE is called again to reevaluate quantities at the new ray point. Then FLAG1 is set equal to zero, the values of x and y are updated, and HEIGHT is called.

Upon the return to MOVE from HEIGHT, if BRK = 1 there has been a breakup of the time step interval in HEIGHT. Iteration begins for a new point with the new time step interval. If BRK \neq 1 the printout values of both the wave packet and wavelet directions are placed, if necessary, in the range of 0 to 360°. Then, the program returns to RAYN.

3.9 Subroutine HEIGHT. This subroutine is called to calculate the wave height. For the first ray point HEIGHT is called by RAYN. The values of p and q are initialized, and the tolerance for the fourth and fifth order calculations of β and d β /dt is calculated. Further, the initial value of d β /dt is computed, and the initial values of the friction, refraction, and shoaling coefficients, and the wave height are determined. The program returns to RAYN.

For ray points beyond the first point this subroutine is called by MOVE. The shoaling and friction coefficients are computed. The values of K_F , p, β , and $d\beta/dt$ are saved in case there is a breakup of the time step interval.

The method used in determining β and $d\beta/dt$ depends upon the values of NFK (determined in SURFCE), REFLCT (determined in MOVE), and |dh/dx'| (determined in SURFCE). If NFK = 1 the values of $d\beta/dt$, the difference between the fourth and fifth order solutions of β , and the difference between the fourth and fifth order solutions of $d\beta/dt$ are equated to zero. That is, β is assumed to be constant since the ray is in deep water. The value of β is used to calculate the refraction coefficient.

If NFK = 2 and REFLCT \neq 0 the ray is near a reflection point, and β and $d\beta/dt$ are calculated using the analytical solution for parallel wave speed contours. If FLAGR \neq 0 (determined in MOVE), ROP is put equal to zero; as a result, a ray is not continued beyond a second reflection point should one occur. The refraction coefficient is computed.

If NFK = 2 and REFLCT = 0 the method used to determine

 β and $d\beta/dt$ depends upon the value of |dh/dx'|. If $|dh/dx'| \leq 0.00001$, then $d\beta/dt$, the difference between the fourth and fifth order solutions of β , and the difference between the fourth and fifth order solutions of $d\beta/dt$ are equated to zero. That is, β is assumed to be constant since the water depth is taken as invariant. If |dh/dx'| > 0.00001 the Runge-Kutta method is used to calculate β and $d\beta/dt$. The fourth order and fifth order solutions as well as the difference of these solutions are determined for both β and $d\beta/dt$. However, before making the calculations, if FLAGR $\neq 0$ the value of ROP is set equal to zero. The refraction coefficient is calculated using the value of β .

After the refraction coefficient is computed several checks are made to determine if the calculations are sufficiently accurate with the time step which was used. Near a reflection point the ray curvature is large; it is necessary to reduce the time step in order to keep successive changes in the wave packet direction small enough to determine an accurate ray path. When computing the ray separation factor using the Runge-Kutta method it is desirable to be able to reduce the time step, if necessary, to keep the truncation error small. Only one of these checks is made at a time. The check to be made is determined by the value of REFLCT. However, regardless of the value of REFLCT, if IFLG \neq 0 the value of the breakup time step has previously been determined. In this case the value of INUM is increased by one. The new value of INUM is compared with NUMT to determine if the next ray point should be computed with the breakup time step (described below).

If REFLCT \neq 0 and IFLG = 0 the change in the absolute value of the ray direction is checked. If the change is less than 1° the time step is not too large and the value of NUMT is checked (explained below). If the change is greater than or equal to 1° there is a breakup of the time step interval (described below).

If REFLCT = 0 and IFLG = 0 the difference between the Runge-Kutta fourth and fifth order solutions of β and the similar difference of the solutions for $d\beta/dt$ are checked. If the absolute values of both differences are less than BZTOL the time step interval is not divided and NUMT is checked. But, if the absolute value of either difference is greater than or equal to BZTOL there is a breakup of the time step interval and REFRCT = 1. Further, RFRBUM = 1 to determine the format of the printed output of the ray particulars.

If the calculations meet the criteria for accuracy using the assigned time step the value of NUMT is checked. If NUMT > 1 the initial time step interval has been broken. In this case IFLG = 1. The value of INUM is increased by one, and the new value of INUM is compared with NUMT to determine if the calculations should continue with the breakup time step (described below). When IFLG = 1 further checks for a breakup of the time step interval are not made at new ray points until the breakup ends and calculations are resumed with the initial time step.

When NUMT < 1 the time step has its initial value. If $\beta < 0$ there is a focal point or caustic. Then MIT = 4, BRK = $\overline{0}$, and the program returns to MOVE. When $\beta > 0$ the values of p and q at the present point are set equal to the values at the new point. The wave height is computed. If WBCOP = 0 the program returns to MOVE. If WBCOP $\neq 0$ a test is made to determine if the wave breaks. Then the program returns to MOVE, and if the wave breaks MIT = 5.

The time step interval is halved for a breakup. It is possible for a time step to be halved many times with successive breakups. Thus, it is necessary to place a lower limit on the value of a time step to prevent an inordinate amount of calculations. The new value of the time step is checked, and if it is less than 0.5 sec the ray is stopped. Then MIT = 8, BRK = 0, and the program returns to MOVE.

If the new time step is greater than 0.5 sec the breakup continues. It is necessary to return to the previous ray point. Accordingly, the saved values of G and D are recovered. To determine a new point in MOVE, BRK = 1. The number of intervals, NUMT, the initial time step is divided into is calculated. If at the second ray point the value of the ray curvature is recovered. At other points both the ray curvature and average ray curvature are restored. Further, the values of θ , γ , α , x, y, β , d β /dt, p, K_F, and the two previous values of v are recovered. The program returns to MOVE.

There are as many ray points in a breakup as required for the travel time to equal the initial time step. Thus, during a breakup, after each new point is determined there is a check to see if the breakup is complete. If INUM < NUMT the breakup is incomplete and the ray is continued with the breakup time step. The value of D is computed and the values of p and q are updated. If there is a focal point or caustic MIT = 4, BRK = 0, and the program returns to MOVE. Otherwise, BRK = 1 and the program returns to MOVE.

When INUM \geq NUMT the breakup ends and calculations resume with the initial time step. The values of IFLG, INUM, and BRK are set equal to zero, and D is computed. There is a check for a focal point or caustic, p and q are updated, and REFRCT and REFLCT are set equal to zero. The wave height is calculated, if WBCOP \neq 0 there is a check to see if the wave breaks, and the program returns to MOVE, as explained above. 3.10 Subroutine SURFCE. SURFCE is called by RAYN and MOVE to calculate h, α , γ , G, p, q, $\kappa_{\rm G}$, and other ray particulars. At the first ray point twelve values of h from CMAT are selected about the point as shown in Figure (2-2). A quadratic surface is fit to the set of water depths. At successive ray points the quadratic surface is determined only if there is a change in the set of twelve water depths. The water depth and its partial derivatives in the fixed xy-system, $\partial h/\partial x$, $\partial h/\partial y$, $\partial^2 h/\partial x^2$, $\partial^2 h/\partial y^2$, and $\partial^2 h/\partial x \partial y$, are determined at the ray point by interpolating on the quadratic surface.

If $h \leq 0$, NDP = 2 and there is a RETURN. If h > 0 the ratio of the water depth to the deep water wavelength is computed. If $h/\lambda_d > 0.64$, which defines deep water, NFK = 1. If $h/\lambda_d \leq 0.64$, NFK = 2. VELCTY is called, and after the return if NFK = 1, W = 0. If NFK = 2, CONDER is called to compute W. The values of $\partial v/\partial x$ and $\partial v/\partial y$ are calculated using W.

At each ray point the water depth contours are assumed to be locally parallel, and a x'y'-coordinate system is chosen such that the y'-derivatives vanish. The value of dh/dx' is computed, and if it exceeds 0.00001 the angle α by which the x'-axis is rotated with respect to the x-axis is computed. If $|dh/dx'| \leq 0.00001$ the water depth is assumed to be constant and α remains constant.

If FLAG1 = 0, γ' is computed, and if necessary it is placed within the range $|\gamma'| \leq 360^{\circ}$. A check is made to determine if there is total reflection. If there is, FLAG2 = 1 and there is a RETURN. Otherwise, FLAG2 = 0 and the new γ' is computed using Snell's law with phase velocity following a set of rules. Using the values of γ', γ is computed. When FLAG1 \neq 0 these steps for computing the new wavelet direction and the test for total reflection are omitted.

The values of ϕ , G, and dv/dx' are calculated. If NFK = 2, dU/dx' is determined using its unsimplified expression. If NFK \neq 2, the deep water formula is used to calculate dU/dx'. The value of dU/dx' is used in computing dG/dx'.

If NFK $\neq 2$, the coefficients of the ray separation equation and the ray curvature are set equal to zero. Then there is a RETURN. If NFK = 2, p, $d^2h/(dx')^2$, $d^2v/(dx')^2$, $d^2U/(dx')^2$, $d^2G/(dx')^2$, q, and κ_G are computed. This is followed by a RETURN.

3.11 Subroutine VELCTY. VELCTY is called by SURFCE to calculate v and U. At the first ray point the deep water value of the phase speed and several constants for the ray are computed. If NFK \neq 2 (determined in SURFCE) the deep water value of the phase speed is used, and its value is saved for calculations at the next point. The deep water value of the collinear group speed is calculated, and the

program returns to SURFCE.

If NFK = 2 an iterative technique is used to determine v. The iteration continues until the estimate of v differs by less than 0.00005 from an average of the previous estimates of v or until ninety iterations have taken place. The value of v is saved for calculations at the next point, and U is computed using its complete expression. Then the program returns to SURFCE.

3.12 Subroutine CONDER. CONDER is called by SURFCE to compute W. After computing some constants, if NFK = 1 (determined in SURFCE) the program returns to SURFCE. If NFK ≠ 1 the value of W is calculated, then the program returns to SURFCE.

3.13 Subroutine PCD. PCD is called by RAYN. The four water depths in CMAT which are closest to a ray point are compared with the respective depths computed from the twelve point surface fit. The percentage difference of the interpolated water depth to the actual water depth is determined for each grid point, and PCTDIF is the maximum percentage difference of the four values. If the product of the four water depth values in CMAT is zero, PCTDIF = 999.

3.14 Subroutine STORE. STORE is called by RAYN. If CIN \leq 0 the x and y coordinates of a ray point are stored in the Ax and Ay arrays, respectively. Then, the program returns to RAYN. If CIN > 0 tick marks at travel time intervals equal to CIN are determined along the ray. The travel time is computed using the geometric group speed of the ray. The coordinates of the tick marks are tagged with negative x-values and are stored in sequence with the ray points in the Ax and Ay arrays. The program returns to RAYN.

3.15 Subroutine DRAW. DRAW is called by RAYN to plot each ray. To save plotting time, odd numbered rays begin at their initial points and even numbered rays start at their terminal points. If FAN = 0 a ray is numbered at its initial point, otherwise a ray is numbered at its terminal point. If $CIN \leq 0$ a ray has no tick marks. If CIN > 0tick marks are placed on a ray for those positions where the x coordinate is stored in the Ax array with a negative value. The negative values are changed to positive values.

The coordinates for plotting the tick marks depend upon the positions of the tick mark on the ray and the first ray point that is prior to and located more than a specified distance from the tick mark. The separation requirement is necessary since if the two points are too close together numerical inaccuracies in the calculations prevent the tick mark from being perpendicular to the ray. Every tenth tick mark is larger than the others. The program returns to RAYN. THIS PAGE IS BEST QUALITY PRACTICABLE

37

3.16 Listing of the Computer Program.

	PROGRAM MAIN (INPUT, DUTPUT, RAYDAT, XYGRID, PLOTT, TAPES=INPUT	MAIN	1
	\$,TAPE6=OUTPUT, TAPE1=RAYDAT, TAPE2=XYGRID)	MAIN	2
С	THIS IS A PROGRAM FOR CALCULATING AND FLOTTING THE PATHS OF SURFACE	HAIN	3
С	GRAVITY WATER WAVE PACKETS AND FOR CALCULATING THE WAVE HEIGHTS	MAIN	4
С	ALONG THESE PATHS CONSIDERING THE EFFECTS OF SHOALING, REFFACTION,	MAIN	5
С	AND ENERGY DISSIPATION.	MAIN	6
С		HAIN	7
C	THIS PROGRAM HAS COMPLETED NOVEMBER 1977 UNDER A CONTRACT WITH THE	MAIN	8
С	GEOGRAPHY PROGRAMS, EARTH SCIENCES DIVISION, THE OFFICE OF NAVAL	MAIN	9
С	RESEARCH. THE PROGRAM WAS PREPARED BY	MAIN	10
С	J. ERNEST BREEDING, JR., DEPT. OF OCEANOGRAPHY, FLORIDA STATE	MAIN	11
С	UNIVERSITY, TALLAHASSEE, FL. 32306	HAIN	12
С	K. C. MATSON, NAVAL COASTAL SYSTEMS LAB, PANAMA CITY, FL. 32407	MAIN	13
С	NOUFOLLAH RIAHI, DEPT. OF OCEANOGRAPHY, FLORIDA STATE UNIVERSITY	MAIN	14
С		MAIN	15
2	THIS PROGRAM IS BASED ON A PROGRAM FOR COMPUTING THE PATHS OF	MAIN	16
C	MONOCHROMATIC RAYS BY	MAIN	17
С	W. STANLEY WILSON, A METHOD FOR CALCULATING AND PLOTTING SUFFACE	MAIN	18
С	WAVE RAYS. TECHNICAL MEMORANDUN NO. 17. COASTAL ENGINEERING	MAIN	19
С	RESEAPCH CENTER, 57 PP. (1966) (AD 636 771).	MAIN	24
С	WITH THE EXCEPTION OF THE PLOTTING SUBROUTINES, THE WILSON PROGRAM	MAIN	21
C	HAS EXTENSIVELY MODIFIED IN ORDER TO COMPUTE THE PATH OF A HAVE	MAIN	22
C	PACKET, AND A SUBROUTINE WAS ADDED FOR COMPUTING THE MAVE HEIGHT.	MAIN	23
С		MAIN	24
C	THE PROGRAM IS WRITTEN IN FORTRAN IN FOR THE CONTPOL DATA CYBER	MATN	25
C	70 COMPUTER SYSTEMS AND THE GOULD FLOITER.	MATN	26
c		MAIN	27
C	INPUT FARAMETERS.	MAIN	28
č	A.AV ARE. RESPECTIVELY. THE INITIAL DIRECTIONS FROM WHICH THE WAVE	MATN	29
Č.	PACKET AND FAVELETS COME WITH RESECT TO IRUE NORTH.	MAIN	34
C	CE IS THE FRIGIION FACTOR FOR THE FRIGIION COFFFICIENT.	MAIN	31
õ	IF CIN IS NOT ZERO IT IS THE TRAVEL TIME IN SECONDS BETHEEN SUCCESSIN	FMATN	32
č	TICK MARKS ON A RAY.	PAIN	33
C	CMAT IS THE WATER DEPTH GRID.	MATN	34
C	CNVPSA IS THE DIRECTION OF THE FOSITIVE X-AXIS OF THE MATER DEPTH	MAIN	35
C	GRID WITH RESPECT TO TRUE NORTH.	MAIN	36
С	IF COL (IS/IS NOT) ZERG THE PLOTTER (WILL NOT/WILL) PAUSE BEFORE	MAIN	37
C	A FAY IS PLOTTED.	MAIN	38
С	CONTUR SPECIFIES THE SOUNDING CEPTHS IN FEET OR METERS.	MAIN	39
С	DATE1, DATE2 DEFINE THE YEAR, MONTH, AND DAY.	MAIN	40
С	DCON IS A FACTOF TO CONVERT THE WATER DEPTHS IN CMAT TO FEET	MAIN	41
С	OR METERS.	MAIN	42
С	DELTAT IS THE TIME STEP IN SECONDS.	MAIN	43
С	DIR IS AN IDENTIFIER.	MAIN	44
С	EM ARE SURFACE FITTING NUMBERS USED WITH CMAT.	MAIN	45
С	IF FAN (IS/IS NOT) ZERO A PAY IS NUMBERED AT ITS (INITIAL/TERMINAL)	MAIN	46
С	POINT.	MAIN	47
С	GRID IS THE NUMBER OF FEET OF METERS PER GRID UNIT FOR A GIVEN RUN	.MAIN	48
С	HGTZ IS THE INITIAL HAVE HEIGHT IN FEET OR METERS.	MAIN	49
С	HT IS THE HEIGHT OF THE PLOT IN INCHES OR CENTIMETERS.	MAIN	50
С	KRTOL DETERMINES THE ACCURACY IN CALCULATING THE REFRACTION	MAIN	51
С	COEFFICIENT.	MAIN	52
С	MN, NN ARE THE MAXIMUN X,Y FOR A GIVEN WATER DEPTH GRID.	MAIN	53
С	NNSKIP IS THE AMOUNT ADDED TO THE Y-COLUMN IN SELECTING THE NEXT	MAIN	54
С	COLUPN FOR LOCATING SOUNDING VALUES.	MAIN	55
С	IF MOE (IS/IS NOT) ZERO (ENGLISH/METRIC) UNITS ARE USED.	MAIN	56
C	MXPLOT IS THE NUMBER OF PLOTS OR COMPUTER RUNS.	MAIN	57

C IF NAX (IS/IS NOT) ZERO THE AXES OF THE PLOT (WILL NOT/WILL) BE MAIN 58 C CALIBRATED. MAIN 59 C IF NCO IS NOT ZERO IT SPECIFIES THE NUMBER OF SOUNDING VALUES FOR MAIN 60 С A PLOT . 61 MAIN C NOR IS THE NUMBER OF RAYS FOR A GIVEN RUN. MATN 62 IF NPT IS ZERO FRINTED OUTPUT OCCURS FOR THE INITIAL AND TERMINAL С MAIN 63 C POINTS OF A PAY, ANU IF NPT IS NOT ZERO PRINTED OUTPUT OCCURS 64 MAIN ADDITIONALLY FOR THUSE POINTS WHICH ARE AN INTEGRAL MULTIPLE C MAIN 65 C OF SK. MAIN 66 С IF NSH (IS/IS NOT) ZERO THE SHORELINE (IS NOT/IS) DRAWN. 67 MAIN IF NXCMAT IS ZERO A WATER DEPTH GRID IS INPUT FOR THE RUN, AND IF C MAIN 68 NXCMAT IS NOT ZERO THE DEPTH GRID FOR THE FREVIOUS PLOT IS C MAIN 69 C USED AGAIN. MAIN 74 PROJCT IS AN IDENTIFIER. C MAIN 71 IF ROP (IS/IS NOT) ZERO THE RAY (IS NOT/IS) CONTINUED BEYOND A C MAIN 72 C REFLECTION FOINT. MAIN 73 С S ARE SURFACE FITTING NUMBERS USED WITH CMAT. MAIN 74 C SK. SEE NPT. 75 MAIN IT IS THE WAVELET PERIOD IN SECONDS. C 76 MAIN С IF WBCOP (IS/IS NOT) ZERO THE WAVE BREAK TEST (IS NOT/IS) MADE. 77 MAIN C X, Y ARE THE INITIAL RAY COORDINATES. 78 MAIN C MAIN 79 OUTPUT OF THE RAY PARTICULARS. С MAIN 80 ALFA IS THE ANGLE OF THE ROTATED XY-SYSTEM (WHERE THE Y-С MAIN 61 C DERIVATIVES VANISH) PELATIVE TO THE WATER DEPTH GRID XY-SYSTEM. MAIN 82 С D IS THE DISTANCE IN GRID UNITS BETWEEN SUCCESSIVE RAY POINTS. MAIN 83 C D(BETA)/DT IS THE INITIAL VALUE OF THE TIME DERIVATIVE OF THE MAIN 84 RAY SEPARATION FACTOR. C MATN 85 FK IS THE RAY CURVATURE OF THE PACKET IN RADIANS/GRID UNIT. С MAIN 66 С G = U COS (PACK - HAVE) IS THE GEOMETRIC GROUP SPEED IN MAIN 67 С FEET/SECOND OR HETERS/SECOND. MAIN 88 С H IS THE WATER DEPTH IN FEET OF METEPS. MAIN 89 HGT IS THE WAVE HEIGHT IN FEET OR METERS. C MAIN 90 C KF IS THE FRICTION COEFFICIENT. MAIN 91 KR IS THE REFRACTION COEFFICIENT. C MAIN 92 С KS IS THE SHOALING CUEFFICIENT. MAIN 93 MAX IS AN INCEX TO NUMBER POINTS ALONG A RAY. С MAIN 94 С NO IS THE NUMBER OF INTERVALS THE INPUT FIME STEP IS DIVIDED INTO. HAIN 95 PACK IS THE DIRECTION FROM WHICH THE WAVE PACKET (RAY) COMES. С MAIN 96 POTDIF IS THE HAXIMUM OF THE PERCENTAGE DIFFERENCES AT THE 4 GRID C MAIN 97 С POINTS CLOSEST TO THE PAY POINT OF THE SURFACE FIT DERIVED WATER MAIN 59 С DEPTH RELATIVE TO THE ACTUAL DEPTH. MAIN 99 С U IS THE COLLINEAR GROUP SPEED IN FEET/SECOND OF METERS/SECOND. H4IN 100 С V IS THE PHASE SPEED IN FEET/SECOND OR METERS/SECOND. MAIN 1 3 1 C WAVE IS THE DIRECTION FROM WHICH THE WAVELETS (IN A PACKET) COME. MAIN 102 X.Y ARE THE COORDINATES OF A RAY POINT. C MAIN 103 DIFENSION 5(6,6), EH(6, 12), C(12), YVH(6), E(6) MAIN 104 \$, CMAT(100, 190), AX(200), AY(2000), CONTUR(9) MAIN 135 REAL KR, KF, KS, KRTOL, KF C MAIN 106 INTEGER DX1. DX2, RUP, H3 COP, FAN, COL, FUD, ERK, SK, FLAGR, FLAG3 MAIN 1.7 \$, REFLCT, RFLBUM, REFRCT, RFRBUM MAIN 108 COMMON S, EM. E. YVH, CHAT, C, AX, AY, CONTUR, PROJCT, GRID, DCON, FAN, CATE1 MAIN 109 \$,DATE2,CIN,DIR,ROP,TT,W3COP,MOE,DY,GELTAT,SULTAT,D,HGT,HGTZ,SVX MAIN 110 \$, SVY, SDEP, H, DEP, HL, V, SAVV, PPEV, SPREV, U, SAVU, GZERO, G, SG, SVG, GUD, KS MAIN 111 \$, DGDX, SVA, TPI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DHOX MAIN 112 \$,SVFKB,SAVFK,FKHAR,MAXQ,SK,FUD,NUMT,INUM,IFLG,PCOUNT,AMM,ANN MAIN 113 \$, REFLCT, RFLEUM, REFRCT, RFRBUM, BFK, FLAG1, FLAG2, FLAG3, FLAGP, KFC, GF, BZMAIN 114 \$,SBZ,BDZ,SBLZ,KRTOL,KR,POT,P1,P2,P3,P4,P5,QOT,Q1,Q2,Q3,Q4,Q5 MAIN 115

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TO DDC

C THE MAIN PROGRAM IS USED TO READ THE INPUT DATA, TO CONTROL THE HATN 116 C CALCULATIONS FOR EACH RAY, AND TO PREPARE THE PLOTS. SUBROUTINES MAIN 117 C TITLE, NUMCON, SHORE, PLOT, AND RAYN ARE CALLED. HAIN 118 CALL PLOTS (10.,0.,5HPLOTT, 120) MAIN 119 MMAX=2000 \$ LI=63 \$ LII=(LI-4)/3 \$ COFI=12. MAIN 120 READ (1,1) ((S(DX2,0X1), DX2=1,6), DX1=1,6) MATH 121 1 FOPMAT (8F16.7) MAIN 122 READ (1,2) ((EF(DX1, DX2), DX2=1,12), DX1=1,6) MAIN 123 2 FORMAT (36F2.0) MAIN 124 READ (1,3) (MXFLUT, PROJUT, DATE1, DATE2, DIR) MAIN 125 FORMAT (12,1X,3(A6,1X),A6) 3 MAIN 126 DO 399 NPLOT=1, MXPLOT MAIN 127 READ (1,4) (NOF, NPT, SK, HT, CIN, NAX, NSH, NCO, NXCHAT) MATN 128 4 FORMAT (3(2X,13),5X,2(F3.3,2X),4(2X,13)) MAIN 129 READ (1,5) (MM, NN, CNVR 5A, GRID, DCON, HOE, NNS KIP) MATN 130 5 FOFMAT (2(2X,13),1X,F7.3,2(1X,F9.3),4X,13,2X,13) MAIN 131 IF (MOE .EQ. U) GO TO 2) MAIN 132 C CONVERT TO ENGLISH UNITS FOR CALCULATIONS MAIN 133 HT=HT/2.54 \$ DCON=DCON/0.3048 \$ 3RID=GRID/0.3048 MAIN 134 CIN=CIN/3600. \$ AMM=M4-1. \$ ANN=NN-1. 20 MAIN 135 DY=ANN/HT \$ SCLI=GFID+DY+COFI MAIN 136 CALL TITLE (NPLOT, NAX, SCLI, HT) MAIN 137 IF (NXCMAT .NE. 0) GO TO 3939 MAIN 138 READ (2,11) ((CHAT(J,I), I=1, 1M), J=1, NN) MAIN 139 11 FORMAT (16F5.0) MAIN 140 3939 IF (NCO .LE. 0) GO TO 493 141 MAIN READ (1,495) (CONTUR(I), I=1, NCC) MAIN 142 495 FORMAT (9F8.2) MAIN 143 CALL NUMCON (MM, NN, NCO, NNSKIP) MAIN 144 493 IF (NSH .EQ. 0) GO TO 3937 MAIN 145 CALL SHORE (MM, NN) MAIN 146 3937 DO 15 N=1,NCR MAIN 147 READ (1,6) (DELTAT, TT, A, Y, A, AV, HGTZ, GF, KRTOL, FOP, HBCOP, FAN, COL) MAIN 148 FOPMAT (7(F6.2,2X),2(F6.4,2X),4(11,1X)) 6 149 MAIN IF (MOE .EQ. 0) GO TO 22 MATN 150 HGTZ=HGTZ/0.3043 MAIN 151 22 SOLTAT= OELTAT & HL=32. 2* (TT**2)/6.2831854 152 MAIN A=CNVRSA-A+180. & AV=CNVRSA-AV+180. \$ MAXQ=1 \$ FU0=0. MAIN 153 BRK=0. \$ REFLCT=0. \$ RFLBUM=0. \$ REFRCT=0. \$ RFRBUM=0. MAIN 154 FLAGR=0. \$ FLAG3=. \$ IFLG=0 \$ ALFA=0. MAIN 155 IF (COL .EQ. 0) GO TO 4321 MAIN 156 CALL PLOT (3.,0.4,-3) MAIN 157 4321 A=4*.0174532925 \$ AV=AV*.0174532925 MAIN 158 CALL RAYN(X,Y,A,NPLOT, N, MAX, LI, NPT, LII, AV) MATN 159 15 CONTINUE MAIN 160 CALL PLOT (-3.,-.4,-3) MAIN 161 CALL PLCT (0., C., 999) MAIN 162 399 CONTINUE MAIN 163 WRITE (6.9999) MAIN 164 9999 FOFMAT (1H1,17H THIS IS THE END.) MAIN 165 CALL EXIT MAIN 166 END MAIN 167

SUBROUTINE TITLE (NPLOT, NAX, SCLI, HT)	TITLE
DIMENSION S(6,6), EM(6,12), C(12), YVN(6), E(6)	TITLE
\$,CMAT(100,100),AX(200),AY(2010),CONTUR(9)	TITLE
REAL KR, KF, KS, KRTOL, KFC	TITLE
COMMON S,EH,E,YVH,CMAT,C,AX,AY,CONTUR,PROJCT,GRID,DCON,FAN,C	DATE1 TITLE
\$,DATE2,CIN,UIR,ROP,TT,W5COP,M0E,DY,GELTAT,SDLTAT,D,HGT,HGTZ,	SVX TITLE
\$, SVY, SDEP, H, DEP, HL, V, SAVV, PREV, SPREV, U, SAVU, GZERO, G, SG, SVS, D	DUD, KS TITLE
\$, DGDX, SVA, TPI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DF	OX TITLE
\$, SVEKB, SAVEK, EKSAK, FAXG, SK, FUD, NUPI, INUM, FEG, KCOUNT, AMM, ANN	IIILE
S,REFLUT,RFLEUM,REFRUT, RFRBUM, BFK,FLAGI,FLAG2,FLAG3,FLAGR,RFL	, SF, BZILILE 1
$b_{1} > b_{2} > b_{2} > b_{2} > b_{2} > b_{2} > b_{2} > b_{1} > b_{2} > b_{1} > b_{2} > b_{2$	
C ARE DANN SUBCOTINE THE FLOT IS LABELED AND STRAIGHTELINE BUNDERS	
CARE DRAMN. SUBPOUTINES STPSUE, NOFBER, FEUT, AND AXISE ARE CALL	
	TITLE 1
C DRAW LARELS FOR PLOT	TITLE 1
CALL SYMBOL (1.25.3.42.17HPRC.I. NO	TITLE 1
CALL SYMBOL(1.25,2.4,.2, PROJCT,906)	TITLE 1
CALL SYM30L (1.25,4.0,.2,0ATF1,50.,6)	TITLE 1
CALL SYMBOL (1.25,5.2,.2, DATE2,90.,2)	TITLE 2
CALL SYHBOL(1.53,0.4,.2,23HSCL = 1/ , CIN =,90.,23)	TITLE 2
CALL NUMBER (1.50,2.0, 2, SCLI,92., -1)	TITLE 2
CALL NUMBEP(1.50,5.2,.2,CIN+3600.,90.,-1)	TITLE 2
CALL SYMBOL(1.75, j.4, 2, 19H PLCT NO. , DIR. =, 90., 19)	TITLE 2
CALL NUMBER(1.75,2.2,.2, XNPLOT,90.,-1)	TITLE 2
CALL SYM30L(1.75,4.4,.2,DIR,90.,6)	TITLE 2
IF (NAX .NE. 0) GO TO 705	TITLE 2
C DRAW STRAIGHT-LINE BORDERS FOR FLOT	TITLE 2
CALL PLOT(3., 0.4, 3)	TITLE 2
CALL FLOT (3., HI+.4, 2)	TITLE 3
	IIILE 3
$705 \text{GALL} \text{AXIS2(3,0.4,1HT,1.)} \text{HI} \\ 90,0.1.,0.1.$	TITLE 3
CALL ALISTING 4 (17) 4 (1	
76 = 7 +	
	TITLE 3
IF (NAX .NE. J) GO TO 707	TITLE 3
CALL PLCT(30.4.2)	TITLE 3
707 CALL PLOT(3., C.4, -3)	TITLE 3
YHT=HT	TITLE 4
RETURN	TITLE 4
END	TITLE 4
SUBROUTINE AXIS2(X,Y,3C),NC,SIZE,THETA,YMIN,DY)	AAIS2
DIMENSION BCD (16)	AXIS2
C SUBSOUTINES BLOT NUMBER AND SYNOOL AGE ONLIGE	AXIS2
BICH-1.0	AXISZ
IF (NC GE, A) GO TO 2	AXISZ
BIGN=-1.0	AVISO
2 NAC=TAPS(NC) \$ TH=THETA*.017453204	AYICO
N=DY+SIZE+0.5 \$ CTH=COS(TH) & STH=SIN(TH) & TN=N	AX IS2
X3=X \$ Y3=Y \$ XA=X-0.1*BIGN*SIH \$ Y4=Y+0.1*BIGN*CTH	AXIS2 1
	HALSE I

ITY PRACTICABLE

	S BEST QUALITY		
THIS FAGE	NIGNISHED TO DOG		
FROM COFT	41		
C 004.	AVIS LITE CALTONATED TICK HACKS		
U DRAM	CALL DICTION VA TA	AXIS2	11
		AXISZ	12
		AXISZ	13
	XC=XB+CTH/DY & YC=YB+STH/DY	ALTE?	14
	GALL FLOT(XC.YC.2)	ANISC	10
	XA=XA+CTH/DY \$ YA=YA+STH/DY	ANISZ ANISZ	12
	CALL PLOT(XA,YA,2)	AXIS2	1.6
	XB=XC I YB=YC	AXTS2	19
20	CONTINUE	AXIS2	20
	ABSV=YMIN+TN \$ XA=XB-(.20*BIGN05)*STH02857*CTH	AXIS2	21
	YA=YE+ (.20+BIGN05) +3 TH02857+STH \$ N=N+1	AXIS2	22
C NUME	ER THE ORIGIN AND EVERY FIFTH TICK MARK	AXIS2	23
	00 30 I=1,N	AXIS2	24
	IF (AMOJ(ABSV,5.) .NE. D.) GO TO 100	AKIS2	25
100	CALL NUMBER (XA, YA, .1, A BSV, THETA, -1)	AXIS2	26
100	ASSVEAUSVEI, & XAEXA-GIAVBY & YAEYA-SIHVDY	AXIS2	27
5U		AXIS2	28
U LADE	L INC HAIS TNC=NACCAT & YA-YA/SITE/2 (= DEATACHARTH_/_ DZACTONE ZCLASTO	AXIS2	29
	$Y \Delta = Y + (S T / F / 2 , 0 (S + T N C) + S T H ($	AXISC	30
	CALL SYMBOL (XA.YA., 14, BOD.THETA.NAC)	ANISC	31
	RETURN	AVICO	32
	END	AY IS2	35
		AV101	54
	SUBROUTINE NUMCON (MM, NN, NCO, NNSKIP)	NJMCON	1
	DIMENSION S(6,6),EM(6,12),C(12),YVW(6),E(6)	NUMCON	2
1	, CHAT (130, 100), AX(200)), AY(2000), CONTUR(9)	NUMCON	3
	REAL KP, KF, KS, KRTOL, KFC	NUMEON	4
	COMMON SIEMIE, YVA, CMAT, J, AX, AY, CONTUR, PROJET, GRIG, DCON, FAN, DATEL	NUMEON	5
1	, DAY EZ JULN, DIR, "UP, II, HIGOP, MUE, DI, PELIAI, SULIAI, U, HG/, HG/Z, SVA	NUMCON	0
1	S DONY SUEP STUDEP STUPS AV VERKEVS SPREVSUS AV USEZERUSUS SUSSEUUS KS. N DONY SUA TDE SAV SUEV DUE ALEA SUALEA SAVEA ONDOA DELA ODOA	NUMCON	
	STUGDA, STANT I SATASATA THI TALEA STANE A SAACE AT SAACE AT SATASATU DE LA DUSA.	NINCON	G G
	LAFEL DI JEL PIN AFFROI A GINA DEK ELGA FLAGA FLAGA LA GALA FLAGA KOLA	NUMCON	10
9	S.C. BOZ. SELZ. KRIOL.K? .POT.P1.P2.P3.P4.P5.00T.01.U2.03.04.05	NJMCON	11
C IN T	HIS SUBROUTINE SPECIFIED SOUNLING DEPTHS ARE LOCATED AND	NUMEON	12
C OPAN	IN ON THE PLOT. SUBROJTINES NUMBER AND PLOT ARE CALLED.	NU ICON	13
	NOC=NN-1 \$ MODD=MM-1	NUMCON	14
	IF (MOE .EQ. 0) GO TO 2	NUMCON	15
C CONV	ERT TO ENGLISH UNITS FOR CALCULATIONS	NUMCON	16
	DO 7000 KG=1, NCO	NUMEON	17
	CONTUR (KC) = CONTUR (KC) / J. 3048	NUMCON	15
7300		NUMEON	19
	DO GAR 1-2 NOA NEKTR	NUMEON	24
٤		NUMCON	22
C SEL	CT SOUNDING DEPIH	NUMCON	23
U SCL		NUMCON	24
	KHII=0 \$ NDIF=3 \$ I=MM-1	NUMEON	25
C SEAF	CH COLUMN FOR THE GIVEN SOUNGING DEFTH	NUMEON	26
	00 1010 II=1, MCDD	NJMCON	27
	XI=I-1 \$ IL=I+1 \$ XL=IL-1	NUMCON	28
	IF (KWIT .GT. C) GO TO 8000	NUMCON	29
	IF (CHAT(J,I) .GT. J) GO TO 20	NUMCON	36
	KHIT=1	NUMCON	31
20	IF (CMAT(J,I) *GCON-CONTJR(KC)) 12,11,13	NUMEON	32
11	AX (KKK) =XI 5 AY (KKK) =GONTUR (KC) 5 KKK=KKK+1 5 NDIF=3	NUMCON	33
		NUMEON	34
12	50 10 (14)// 14)/NULP	NUMCON	39
14	GO TO 1010	NUNCON	37
13	GQ TQ (77.15.15) NDIF	NUMCON	38
15	NOIF=2	NUMEON	39
	GO TO 1010	NUMCON	40

C LIN	EARLY INTERPOLATE FOR THE SOUNDING DEPTH	NJMCON	41
77	SLPX=(DCON*(CHAT(J,IL)-CMAT(J,I)))/(XL-XI)	NUMCON	42
	XP=(CONTUR(KC)-DOON+CHAT(J,I))/SLPX+XI	NUMCCN	43
	AX (KKK) = XP 3 AY (KKK) = 3 ONTUR (KC) 3 KKK = KKK+1	NUMCON	44
	GO TO (81,82),NDIF	NUMCON	45
81	NDIF=2	NUMCON	46
	GO TO 1010	NUMCON	47
82	NDIF=1	NUMCON	48
1010	I = I - 1	NUMCON	49
8000	CONTINUE	NUMCON	50
C DRAI	A OUT SOUNDING DEPTHS FOR EACH SELECTED Y-COLUMN	NUMCON	51
	KKK=KKK-1	NUMCON	52
	IF (KKK-1) 5000,668,670	NUMCON	53
613		NUMCON	54
		NUMCON	55
		NJMCON	56
	00 997 15=1AU,KKK	NJMCON	57
	IF (AX(IA) .LE. AX(IB)) GO TO 997	NJHCON	58
	XMIN=AX(IA) \$ AX(IA)=AX(IB) \$ AX(IB)=XMIN	NUMCON	59
	XMIN=AY(IA) 3 AY(IA)=AY(IE) 3 AY(IB)=XMIN	NUMCON	60
997	CONTINUE	NUMCON	61
668	IF (MOD(J,2) .NE. 0) GO TO 104	NUMCON	62
	KONE=KKK ? KADD=-1 \$ LAST=1	NUMCON	63
	GO TO 135	NUMCON	64
104	KONE=1 \$ KADD=1 \$ LAST=KKK	NUMCON	65
105	IF (MOE .EQ. 0) GD TO 4	NUMEON	66
C CONI	VERT SOUNDING DEPTH TO METRIC UNITS BEFORE DEAFING ON PLOT	NJMCON	67
	AY (KONE) = AY (KONE) * 0.3348	NJACON	68
4	CALL NUMBER (AX (KONE) / DY, YJ/DY, U.1 (KONE), J.C, -1)	NJACON	70
	IF (KONE .EO. LASI) GJ TO SCOU	NJACON	7.
	KONE=KONE+KADD	NUFLOR	71
	60 10 135	NJACON	73
5000		NUMCON	75
		NIMCON	75
		NUMCON	76
	END	none on	
	SUPPOLITINE SHORE (MM. NY)	SHOFE	,
	SO = SO = S(5, 6) + EH(5, 12) + C(12) + YVH(6) + E(6)	SHORE	2
	5. (+01, 1, 1, 1, 1), AY (2, 0, 1), AY (2, 1, 0, 1, 0, 0, 1, 0, 0)	SHORE	3
	REAL KE.KE.KS.KPIOL.KEC	SHOKE	4
	COMMON S.FM.F.YVN.CMAT AX.AY.CONTUP.PPO.JCT.GEID.DCON.FAN.DATE1	SHORE	5
	S. DATE2 .CIN. CIR. FOP. TT. HECOP. MOF. DY. DELTAT. SULTAT. D. HGT. HGTZ. SVX	SHORE	6
	SUVY SDEP, W. DEP, WL V, SAVV, PREV, SPPEV, U. SAVU, GZERO, G. S. SVS, DUJ, KS	SHONE	7
	F.DGDX, SVA, TFI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, JELA, DHDX	SHORE	8
	\$, SVEKO, SAVEK, EKBAR, MAX Q, SK, FUC, NUMT, INUM, IFLG, FCOUNT, AMM, ANN	SHORE	9
	\$,REFLCT,RFLBUP,REFRCT,RFRBUP,BFK,FLAG1,FLAG2,FLAG3,FLAGR,KFC,3F,BZ	SHOKE	10
	\$,SEZ,GOZ,SBLZ,KFTCL,KR,POT,P1,P2,P3,P4,P5,QOT,Q1,Q2,Q3,Q4,Q5	SHORE	11
C IN	THIS SUBROUTINE THE SHORELINE IS ORAHN. SUBROUTINE PLOT IS USED.	SHOFE	12
	PONT(X1,X2,D1,D2)=X1-J1+((X1-X2)/(D1-D2))	SHORE	13
	IC=3	SHOKE	14
C SEL	ECT Y-COLUMN	SHORE	15
	DO 1 J=1, NN	SHORE	16
	Y J=J-1 & JL=J-1 & YL=JL-1 & I=MM	SHORE	17
C SEA	RCH COLUMN FOR ZERD WATER DEPTH STARTING WITH MAXIMUM X	SHORE	18
	DO 2 II=1,MM	SHORE	19
	XI=I-1 & IL=I+1 & XL=IL-1	SHORE	20
	IF (CMAT(J,I)) 103,200,300	SHOKE	21

THIS PAGE IS BEST QUALITY PRACTICABLE

100	IF (IC .GT. 2) GO TO 102	SHORE	22
LIN	FARLY INTERPOLATE FOR ZERO WATER DEPTH	SHORE	23
101	XP=PONT(XI-XI-CMAT(J-I)-CMAT(J-IL))	SHORE	24
	CALL PLOT(XP/QY.YJ/DY.IC)	STORE	25
	IC=2	SHORE	26
	60 TO 1	SHORE	27
102	TE (J .LE. 1) 60 TO 111	SHORE	28
	YP=PONT(YJ.YL.CMAT(J.1), CMAT(JL.1))	SHORE	29
	CALL PLOT (C. J. YP/DY . IC)	SHORE	30
	IC=2	SHORE	31
	XP=PONT(XI.XL.CMAT(J.I).CMAT(J.IL))	SHORE	32
	CALL PLOT (XP/DY,YJ/DY, IC)	SHORE	33
	60 TO 1	SHORE	34
200	IF (II .NE. MM) GO TO 231	SHOKE	35
	CALL PLOT(XI/DY.YJ/DY.IC)	SHOKE	36
	IF (1C .GT. 2) GO TO 204	SHORE	37
	IC=3	SHORE	38
	GO TO 1	SHORE	39
204	IC=2	SHORE	44
	GO TO 1	SHORE	41
201	IF (IC .LE. 2) GO TO 207	SHORE	42
	IF (J .LE. 1) GO TO 237	SHOFE	43
	YP=PONT (YJ.YL. CHAT (J.1), CHAT (JL.1))	SHORE	44
	CALL PLOT (C. D. YP/DY.IC)	SHORE	45
	IC=2	SHORE	46
207	CALL PLOT(XI/DY,YJ/DY,IC)	SHOFE	47
	IC=2	SHORE	48
	GO TO 1	SHORE	49
300	IF (II .NE. MM) GO TO 2	SHORE	50
	IF (IC .GT. 2) GO TO 1	SHORE	51
	YP=PONT (YJ,YL, CMAT (J,1), CMAT (JL,1))	STORE	52
	CALL PLOT (C.O, YP/DY, IC)	SHORE	53
	IC=3	STORE	54
	GO TO 1	SHORE	55
2	I=I-1	SHORE	56
	CONTINUE	CHONE	
*		SHORE	51
		SHORE	20
	END	SHORE	59
		STURE	00

SUBROUTINE RAYN(X,Y,A,NPLOT,N,MMAX,LI,NPT,LII,AV)	RAYN	1
DIMENSION S(6,6),EM(6,12),C(12),YVN(6),E(6)	RAYN	2
\$, CPAT(100,100), AX(2000), AY(2000), CONTUR(9)	RAYN	
REAL KR, KF, KS, KRTOL, KFC	RAYN	4
INTEGER DX1, DX2, SK, FUJ, RCOUNT, FLAG1, RFLBUM, RFREUM	RAYN	9
COMMON S, EM, E, YVH, CHAT, 3, AX, AY, CONTUR, PROJET, GRID, DEON, FAN, DATE1	RAYN	(
\$,DATE2,CIN,DIR,ROP,TT,H3COP,MCE,DY,JELTAT,SDLTAT,D,HGT,HGTZ,S/X	RAYN	1
\$, SVY, SDEP, W, DEP, HL, V, 3 AVV, PREV, SPREV, U, 5 AVU, GZERO, G, SG, SVG, DUD, KS	RAYN	
\$.0GDX, SVA, TFI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DHOX	KAYN	

\$, SVFKB, SAVFK, FKBAR, MAXQ, SK, FUD, NUMT, INUM, IFLG, RCOUNT, AMM, ANN RAYN 10 \$, REFLCT, RFLPUM, REFRCT, RFRBUM, BRK, FLAG1, FLAG2, FLAG3, FLAGR, KFC, CF, BZRAYN 11 \$, SEZ, BDZ, SBCZ, KETOL, KR, POT, P1, P2, P3, P4, P5, QOT, Q1, Q2, Q3, Q4, Q5 RAYN 12 C THIS SUBROUTINE IS USED TO CONTFOL THE CALCULATION OF THE WAVE RAYN 13 C PACKET PARTICULARS, HOST OF THE PRINTED OUTPUT, AND THE PLOTS OF RAYN 14 C THE WAVE PACKET PATHS. SUBROUTINES SURFCE, MOVE, HEIGHT, RAYN 15 C PCD, STORE, AND DRAW ARE CALLED. RAYN 16 NDP=1 \$ NFK=1 \$ NGO=1 \$ KREST=0 \$ KCIN=0 \$ RCOUNT=0. \$ FLAG1=1. RAYN 17 CALL SURFCE(X,Y,A,FK,NFK,NDP,AV) RAYN 18 FLAG1=C. & INUM=D & SVALFA=ALFA & SAV=AV & SDEP=DEP RAYN 19 SAVV=V & PREV=SAVV & SAVU=U & SG=G & GZERO=G RAYN 20 CALL MOVE(X,Y,A,FK,NGO,MIT,NFK,NOP,AV,LI,NPT) RAYN 21 CALL HEIGHT (X, Y, A, FK, NGO, NIT, NFK, NDP, AV) RAYN 22 TIPEQ=0. \$ ANGLE=A*57.29577951 \$ ANGLE=CNVRSA-ANGLE+180. FAYN 23 GAM=AV*57.29577951 \$ GAM=CNVRSA-GAM+180. RAYN 24 FAYN 25 IF (NPT .NE. 2) GO TO 150 IF (N .LE. 1) GO TO 810 RAYIN 26 IF (MOD(N,LII) .NE. 0) GO TO 803 RAYN 27 C WRITE PAGE AND COLUMN HEADINGS RAYN 28 800 WRITE (6,8) (PROJCT, DATE1, DATE2, NPLOT) RAYN 29 FORMAT (1H1,11HFR0JECT NO.,A6,1H,,2X,2A6,1H,,5X,8HPLOT NO.,I3,//) RAYN 30 8 IF (HOE .NE. 0) GO TO 455 RAYN 31 WRITE (6,450) RLYN 32 FORMAT (1X, 52HTHE OUTPUT IS IN ENGLISH UNITS. H, HGT (FEET) . G, U, VRAYN 450 33 314H(FEET/SECOND).,//) RAYN 34 GO TO 452 RLYN 35 455 WRITE (6,451) RAYN 36 FOPPAT (1X, 52HTHE OUTPUT IS IN METRIC UNITS. H, HGT (METER) . 3, U, VRAYN 37 451 \$15H(METER/SECOND) .,//) RAYN 38 452 WFITE (6,851) RAYN 39 851 FORMAT (1X, 1HN, 2X, 6HPERIOD, 1X, 3HMAX, 2X, 1HX, 6X, 1HY, 6X, 1HH, 7X, +HPACKRAYN 45 \$,3X,4HWAVE,3X,3HHGT,5X,6HDELTAT,1X,2HGF,7X,5HKRTOL,//) RAYN 41 803 ALFA=ALFA*57.29577951 RAYN 42 IF (MOE .EQ. L) GO TO 210 RAYN 43 DEP=CEP*0.3048 \$ G=G*0.3048 \$ U=U*0.3048 RAYN 44 V=V*0.3048 1 HGT=HGT*1.3048 RAYN 45 C WRITE FAY PARTICULARS FOR THE INITIAL POINT REYN 46 WRITE (6,853) (N,TT,MAXQ,X,Y,DEP,ANGLE,GAM,HGT,DELTAT,CF,KRTOL) 210 RAYN 47 853 FORMAT (1X, I3, F6.1, 1X, I5, 2F7.2, F8.2, 2F7.2, F8.4, F6.2, 2(1X, F8.6)) RAYN 48 GO TO 522 RAYN 49 3 MAX0=1+MAX0 RAYN 50 IF (MAXQ+KCIN .LT. MMAX) GO TO 399 RAYN 51 WRITE (6,401) RAYN 52 431 FORMAT (80X, 35HDIMENSION OF OUTPUT-ARRAYS EXCEEDED) RAYN 53 GO TO 15 RLYN 54 399 ZCXY=G RAYN 55 CALL MOVE (X, Y, A, FK, NGO, MIT, NFK, NDP, AV, LI, NPT) RAYN 56 IF (NOP .EQ. 1) GO TO 396 RAYN 57

	THIS PAGE IS BEST QUALITY	PRACTICABLE	
	FINDE OUT 1 FOUNDING 10 DEC		
402	WPITE (6-403)	PAYN	5.8
403	FORMAT (BOX . 17 HRAY REACHED SHORE)	RAYN	59
	MAXQ=MAXQ=1	RAYN	50
	GO TO 15	RAYN	61
396	GO TO (397,397,404,514,515,525,516,528) .MIT	RAYN	62
434	WRITE (6,435)	RAYN	63
405	FORMAT (30X,41HPACKET CURVATURE ITERATION NOT CONVERGING)	RAYN	64
	NAXQ=NAXQ-1	RAYN	65
	GO TO 15	RAYN	66
514	WRITE (6,504)	RAYN	67
504	FORMAT (80X, 22HCAUSTIC OR FOCAL POINT)	RAYN	68
	MAXQ=MAXQ-1	RAYN	69
	GO TO 15	RAYN	70
515	WRITE (6,505)	RAYN	71
505	FORMAT (3)X, 11HWAVE BREAKS)	RAYN	72
	MAXQ=PAXQ-1	RAYN	73
	GO TO 15	RAYN	74
525	IF (NPT .NE. 0) GO TO 527	RAYN	75
	WRITE (6,526)	RAYN	76
526	FOFMAT (80X,10HREFLECTION)	RAYN	77
527	MAXQ=MAXQ+1	RAYN	78
	GO TO 15	RAYN	79
516	WRITE (6,517)	RAYN	80
.517	FORMAT (BUX, 18HREFLECTION HANG-UP)	RAYN	51
	HAXQ=HAXQ-1	RAYN	82
	GO TO 15	RAYN	83
528	WRITE (6,529)	RAYN	84
529	FORMAT (80X,38HBREAKUP TIME STEP LESS THAN 0.5 SECOND)	RAYN	85
	MAXQ=MAXQ-1	RAYN	86
	GO TO 15	RAYN	37
397	TIME0=TIME0+(D+GRID/(18]0.+(G+ZCXY))) & PALFA=ALFA+57.2957795	1 RAYN	88
	ANGLE=A*57.29577951 \$ ANGLE=CNVRSA+ANGLE+180. \$ PFK=FK	RAYN	89
	PDEP=DEP \$ PD=D \$ PG=3 \$ PV=V \$ PU=U \$ PHGT=HGT \$ PKS=KS	RAYN	90
	PKF=KFC \$ PKR=KP \$ GAM=AV*57.29577951 \$ GAM=CNVPSA-GAH+180.	RAYN	91
	IF (NPT .EQ. 0) GO TO 161	RAYN	92
160	CALL PCD(C,E,PCTDIF)	RAYI	93
	IF (MAXQ .EQ. 1 .OF. 40)(MAXQ,SK) .EQ. C) GO TO 3041	RAYN	94
	GO TO 161	RAYN	95
C WRI	TE FAY PARTICULARS FOR SELECTED RAY POINTS	RAYN	96
3041	ALFA=ALFA*57.29577951	RAYN	97
	IF (MOE .EQ. 3) GO TO 200	RAYN	98
	DEP=DEP*0.3048 \$ G=G*J.3048 \$ U=U*0.3048	RAYN	99
	V=V*0.3343 £ HGT=HGT*1.3048	RAYN	100
200	IF (MOD(FUD,LI) .NE. 3) GO TO 3043	RAYN	101
C WRI	TE PAGE AND COLUMN HEADINGS	RAYN	102
	WRITE (6,7) (PROJET, DATE1, DATE2, NPLOT, TT, N, DELTAT, CF, KRTOL)	RAYN	103
7	FORMAT (1H1,11HPROJECT N0., A6,1H,,2X,2A6,1H,,5X,8HPLOT N0.,13	, 1H , , RAY N	104
	\$1X,7HPERIOD=,F5.1,4HSEC.,1H,,1X,7HFAY NO.,13,1H,,1X,7HDELTAT=	, RAYN	105
	<pre>%F6.2,1H,,1X,3HCF=,F8.0,1H,,1X,6HKKIUL=,F8.0,//)</pre>	RAYN	106
	1F (MAXG .NE. 1) GU (J 453	RAYN	107
	1F (MUE +NE+ J) 60 10 465	RAYN	108
	WPILE (0,4/0) BUZ	RAYN	109
470	FORMAL (1X, 52HTHE OUIPUL IS IN ENGLISH UNITS. H, HGT (FEET).	J.U. VRAYN	110
	$514 \text{M(FEE}/560 \text{MO}) = 323, 13 \text{MO}(861 \text{A})/01 = 9610 \cdot 39//)$	RAYN	111
		RATN	112
465	HALIE (0,4/1) BUZ	KATN	113
4/1	PURMAI VIX, SCHIME CUIPUI IS IN MEIRIC UNITS. H, HGI (METER) .	U, VKATN	114
	$\mathbf{P} = \mathbf{P} = $	RATN	115

453	WRITE (6,150)	RAYN	116
150	FORMAT (1X, 3HMAX, 1X, 1HX, 6X, 1HY, 6X, 1HH, 7X, 4HPACK, 3X, 4HWAVE, 3X, 1HD,	RAYN	117
	\$9X,2HFK,8X,4HALFA,5X,1H3,5X,1HU,5X,	RAYN	118
	\$1HV, 5X, 3HHGT, 5X, 2HKS, 6X, 2HKF, 7X, 2HNO, 1X, 2HKR, 7X, 6HPCTDIF, //)	RAYN	119
3043	FUD=FUD*1.	RAYN	120
	IF (RFLBUM .NE. 0) GO TO 518	RAYN	121
	IF (PFREUM .NE. U) GO TO 520	RAYN	122
	WRITE (6,612) (MAXQ,X,Y,DEP,ANGLE,GAM,D,FK,ALFA,G,U,V,HGT,	RAYN	123
	\$KS,KFC,KR,PCTDIF)	RAYN	124
612	FORMAT (1X, 14, 2F7.2, F3.2, 2F7.2, 2E10.2, F3.2, 1X, 3F6.2,	RAYN	125
	\$3F8.4,4X,F9.4,F7.2)	RAYN	126
	GO TO 522	RAYN	127
518	RFLEUM=RFRBUM=0	RAYN	128
C USE	FOPMAT FOR REFLECTION GREAK UP OF TIME STEP INTERVAL	RAYN	129
	WRITE (6,613) (MAXQ,X,Y,DEP,ANGLE,GAN,D,FK,ALFA,G,U,V,HGT,	RAYN	130
	\$KS,KFC,NUMT,KR,PCTDIF)	RAYN	131
613	FOPMAT (1X, I4, 2F7.2, F3.2, 2F7.2, E10.2, 1H*, E9.2, F8.2, 1X, 3F6.2,	RAYN	132
	\$3F8.4,1X,I3,F9.4,F7.2)	RAYN	133
	GO TO 522	RAYN	134
520	RFRBUH=0.	RAYN	139
C USE	FORMAT FOR PEFRACTION (BETA) ÉREAK UP OF TIME STEP INTERVAL	RAYN	136
	WRITE (6,614) (MAXQ,X,Y,DEP,ANGLE,GAM,D,FK,ALFA,G,U,V,HGT,	RAYN	137
	\$KS,KFC,NUMT,KR,PCTDIF)	RAYN	138
614	FOPMAT (1X, 14, 2F7, 2, F3, 2, 2F7, 2, 2E10, 2, F8, 2, 1X, 3F6, 2	RAYN	139
	\$,3F8.4,1X,13,1H*,F8.4,F7.2)	RAYN	140
522	ALFA=ALFA*0.J1745329	RAYN	141
	IF (MOE .EQ. 3) GO TO 161	RAYN	142
	DEP=DEP/0.3048 \$ G=G/J.3048 \$ U=U/0.3043	RAYN	143
	V=V/0.3048 \$ HGT=HGT/0.3048	RAYN	144
161	KHAX=MAXQ & PX=X & PY=Y & KNUFT=NUMT	RAYN	1+5
	CALL STORE(X,Y,A,KMAX, TIMEQ,KCIN,KREST)	RAYN	146
	GO TO (10,11) FIT	RAYN	147
11	IF (NPT .EQ. 3) GO TO 13	RAYN	148
	IF (MOD(FUD,LI) .NE, J) GO TO 3653	RAYN	149
	WRITE (6,7) (PROJCT, DATE1, DATE2, NPLOT, TT, N, DELTAT, CF, KRTOL)	RAYN	150
	WRITE (6,150)	RAYN	151
3053	FUC=FU0+1.	RAYN	152
	WRITE (6,9)	RAYN	153
9	FORMAT (80X,25HPACKET CURVATURE AVERAGED)	RAYN	154
10	IF (MAXO .GT. 1) GO TO 13	RAYN	155
	GO TO (3,402),NDP	RAYN	156
13	IF (NGO .EQ. 1) GO TO 3	RAYN	157
	WRITE (6,407)	RAYN	158
407	FORMAT (8CX, 25HRAY REACHED GRID BOUNDARY)	RAYN	159
15	IF (NPT .NE. 0) GO TO 190	RAYN	160
	IF (MOE .EQ. 0) GO TO 212	RAYN	161
	PDEP=PDEP+0.3048 \$ PG=P3*C.3048 \$ PU=PU+0.3048	RAYN	162
	PV=PV+0.3048 \$ PHGT=PHGT+0.3048	RAYN	163
C WRI	TE FAY PARTICULARS FOR THE TERMINAL FOINT	RAYN	164
212	HRITE (6,854) (N,TT,K4AX,PX,PY,PDEP,ANGLE,GAM,PHGT)	RAYN	165
854	FOPMAT (1H*, I3, F5.1, 1X, I5, 2F7.2, F8.2, 2F7.2, F8.4, //)	RAYN	166
190	IF (MAXQ .LE. 1 .DR. NPT .EQ. Q .OR.	RAYN	167
	\$MOC(PAXQ,SK) .EQ. 0) 30 TO 1900	RAYN	168
C RAY	PARTICULARS HAVE NOT BEEN WRITTEN FOR THE LAST POINT	RAYN	169
	IF (MGD(FUD,LI) .NE. 0) GO TO 3031	RAYN	170
	WRITE (6,7) (PROJCT, DATE1, DATE2, NPLCT, TT, N, DELTAT, CF, KRTOL)	RAYN	171
	WRITE (6,150)	RAYN	172
3031	TE (HOE	PAYN	177

RAYN

MOVE

39

190

PDEP=PDEP*0.3048 \$ PG=PG*0.3048 \$ PU=PU*J.3048 RAYN 174 PV=PV*0.3048 \$ PHGT=PHGT *0.3048 RAYN 175 3030 IF (PFLEUM .NE. 0) GO TO 558 RAYN 176 RAYN 177 IF (RFRBUM .NE. J) GO TO 563 WRITE (6,612) (KMAX, PX, PY, PDEP, ANGLE, GAM, PD, PFK, PALFA, PG, RAYN 176 \$PU, PV, PHGT, PKS, PKF, PKR, PCTDIF) RAYN 179 RAYN 180 GO TO 1900 RAYN 558 RFLBUM=RFRBUM=D 181 WRITE (6,613) (KMAX, PX, PY, PDEP, ANGLE, GAM, PD, PFK, PALFA, PG, RAYN 182 \$PU, PV, PHGI, PKS, PKF, KNUMT, PKR, PCTDIF) RAYN 183 GO TO 1900 RAYN 184 185 RAYN 560 RFR8UM=0. WRITE (6,614) (KMAX, PX, PY, PDEP, ANGLE, GAM, PD, PFK, PALFA, PG, RAYN 186 RAYN \$PU, PV, PHGI, PKS, PKF, KNUMI, PKR, PCTDIF) 187 RAYN 108 1930 CALL DRAWIN, KMAX, KCIN, KREST) RETURN RAYN 189

END

IF (FLAG2 .EQ. 0) GO TO 86

SUEROUTINE MOVE (X, Y, A, FK, NGC, MIT, NFK, NDP, AV, LI, NPT)	MOVE	1
DIMENSION S(6.6), EM(6.12), C(12), YVN(6), E(6)	MOVE	2
\$, CHAT(103,100), AX(2003), AY(2000), CONTUR(9)	MOVE	3
REAL KP, KF, KS, KºTOL, KFC	MOVE	4
INTEGEF REF.ROP.REFLCT.REFRCT.FLAG1.FLAG2.FLAG3.RCOUNT.FUJ.ERK	MOVE	5
COMMON S, EM, E, YVH, CMAT, C, AX, AY, CONTUR, PROJCT, GFID, DCON, FAN, CATE1	MOVE	6
\$, DATE2, CIN, DIR, ROP, TT, HECOP, MUE, DY, DELTAT, SPLTAT, C, HGT, HGTZ, SVX	NOVE	7
\$, 5VY, SDEP, H, DEP, HL, V, SAVV, PFEV, SPREV, U, JAVU, GZERO, G, SG, SV3, UU, KS	MOVE	8
3, DGDX, SVA, TPI, SAV, SVAV, PHÍ, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DHOK	HOVE	9
\$, SVFK5, SAVFK, FKEAR, MAXA, SK, FUD, NUMT, INUM, IFLG, FCOUNT, AMM, ANN	MOVE	10
\$, REFLCT, RFLEUM, PEFRCT, RFRBUH, BPK, FLAG1, FLAG2, FLAG3, FLAGA, KFC, JF, B.	ZMOVE	11
\$, SBZ, 30Z, SBCZ, KFTOL, K ² , POT, F1, P2, P3, P4, F5, Q0T, Q1, Q2, Q3, Q4, Q5	NOVE	12
C IN THIS SUBROUTINE THE PATH OF THE WAVE PACKET IS DETERMINED.	MOVE	13
C TESTS ARE MADE TO LOCATE A REFLECTION FOINT, AND IF DESIRED	MOVE	14
C THE RAY PATH IS CONTINUED BEYOND THE REFLECTION POINT.	MOVE	15
C SUBROUTINES SURFCE AND HEIGHT ARE CALLED.	MOVE	16
NUMT=1 3 MIT=1	MOVE	17
C SAVE VALUES IN CASE OF BREAK UP OF TIME STEP INTERVAL	MOVE	18
SVC=G	HOVE	19
IF (PAX0 .NE. 2) GO TO 3033	MOVE	20
SVFKB=FK	MOVE	21
GO TO 202	MOVE	22
3033 SVFKB=FKBAR \$ SAVFK=FK	MOVE	23
C COMPUTE THE INCREMENTAL DISTANCE TO THE NEXT RAY POINT	MOVE	24
2J2 D=(G+SOLTAT)/GRID	MOVE	25
203 IF (PAXG-2) 38,102,104	MOVE	26
102 FKEAR=FK	MOVE	27
C CHECK FUF TIME STEP BREAK UP DUE TO BETA CALCULATION OR REFLECTION	HOVE	28
104 IF (REFROT .NE. J .OR. REFLCT .NE. 0	MOVE	29
\$.OR. ABS(TAN(SAV-SVALFA)) .LE. 3.7320508	MOVE	30
\$.0F. ABS(TAN(A-SVALFA)) .GE. 3.7320508) GO TO 81	HOVE	31
REFLCT=1 \$ PFL6UM=1	MOVE	32
C ITERATE TO FIND VALUES FOR THE NEXT POINT	MOVE	33
81 00 20 IT=1,50	MOVE	34
39 DELA=FKBAR#D \$ AA=A+DELA \$ ABAR=A+0.5+DELA	MOVE	35
DELK=D*COS(ABAR) & UELY=D*SIN(ABAR) & XX=X+DELX & YY=Y+DELY	MOVE	36
CALL SURFCE(XX,YY,AA,FK,NFK,NDP,AAV)	MOVE	37
AVP=AAV-ALFA	MOVE	38

1.1	승규는 승규에서 잘 잘 잘 하는 것을 다 가지 않는 것을 다 가지 않는 것을 물건을 가지 않는 것이 가지 않는 것이 것을 같이다.		
	REF=1	MOVE	40
	GO TO 13	MOVE	41
86	DUD=SAVV/PREV	MOVE	1.2
	GO TO (111.6.38.38.38.38.38.38) MTT	NOUE	+ 2
101		RUVE	43
		MOVE	40 44
		MOVE	45
	IF (11 .NE. 49) 60 TO 88	MOVE	46
	SVFK=FKBAR	MOVE	47
88	IF (IT-48) 5,37,9	HOVE	48
37	FKKPP=FK3AR	NOVE	49
5	IF (MAXG .GT. 2) GO TO 9	MOVE	50
	IF (IT .LE. 1) GO TO 20	MOVE	51
C TES	ST THE CONVERGENCE OF THE PAY CURVATURE CALCULATIONS	MOVE	
9		MOVE	26
20		NOVE	55
20	TE ADERENTED ERADA IT A ATEAN IN SO TO IA	MOVE	54
	17 (AOS (F KKPP-F KS4R) .LE. 0.6660970) G0 10 18	MOVE	55
L UEI	TERTINE IF CONVERGENCE FAILED DUE TO A REFLECTION POINT	HOVE	56
	IF (DUD .GT. 1.J .AND.	MOVE	57
	CARSITANIANDAN OF 5 27120100 CO TO 01	MOVE	5.8
		HOVE	50
	HII=3	HUVE	29
	GO TO 38	MOVE	54
91	REF=2	MOVE	61
	GO TO 13	MOVE	62
18	FKBAR=.5*(FKBAR+SVFK) \$ MIT=2	MOVE	63
	GO TO 39	MOVE	54
C DET	FRMINE IF TOO CLOSE TO A REFLECTION POINT	MOVE	65
6	IF (DUD .LF. 1. V .OF.	MOVE	66
	\$A35(TAN(AVP)) .LE. 114.588650 .CR.	MOVE	67
	CARS(TAN(A-SVALEA))	MOVE	68
		HOVE	69
c	REF-5	MOVE	7.
6 866	SIN REFECTION	NOVE	7.
13	IF (NP) .EU. 0) 60 10 14	MOVE	7.2
	IF (MOD (FUD, LI) .NE. 3) GO TO 3043	MUVE	12
C WKI	ITE PAGE AND COLUPN HEADINGS	MUVE	13
	WRITE (6,96) (PROJET, DATE1, DATE2, NPLOT, TT, N, SELTAT, GF, KPTJL)	MOVE	74
96	FOFMAT(1H1,11HPR0JECT N0.,A6,1H,,2X,2A6,1H,,5X,8HPLOT N0.,I3,1H,,	MOVE	75
	\$1X,7HPERIOD=,F5.1,4HSEC.,1H,,1X,7HRAY NO.,13,1H,,1X,7HGELTAT=,	MOVE	76
	\$F6.2,1H,,1X,3HCF=,F3.0,1H,,1X,6HKETCL=,F8.6,//)	HOVE	77
	WRITE (6, 150)	MOVE	78
150	FORMAT (1X, 3HMAX, 1X, 1HX, 6X, 1HY, 6X, 1HH, 7X, 4HPACK, 3X, 4HHAVE, 3X, 1HD,	MOVE	79
	\$9X.2HEK.8X.4HA1EA.5X.1HG.5X.1HU.5X.	MOVE	84
	\$1HV.5X.3HHGT.5X.2HKS.6X.2HKF.7X.2HNG.1X.2HKR.7X.6HPCTDIF.//)	MOVE	81
3043	$2 \text{ DACK} = A + 57 \cdot 29577951 + 2 \text{ DACK} = CACK + 180$	MOVE	82
5040		MOVE	83
	RAVE-AV 7/232/321 3 RAVE-UNVESA-PRVETISU. D KNAA-TAKU-1	HOVE	0.0
	SVALFA = SVALFA = 57, 23577 951	NOVE	04
	1F (MUE .EU. 0) GO TO 210	FILVE	05
	SDEP=SDEP+0.3048 \$ SG=SG+0.3048 \$ SAVU=SAVU+0.3048	MUVE	86
	SAVV=SAVV*0.3048 B HGT=HGT+0.3048	MOVE	87
C WRI	ITE RAY PARTICULARS	NOVE	88
210	WRITE (6,151) (KMAX,X,Y,SDEF,PAGK,WAVE,SD,FK,SVALFA,SG,	MOVE	89
	\$SAVU, SAVV, HGT, KS, KFC, KF)	MOVE	90
151	FORMAT (1X,1H*, I3, 2F7. 2, F8. 2, 2F7. 2, 2E10. 2, F8. 2, 1X, 3F6. 2, 3F8. 4	MOVE	91
	\$.4X.F9.4)	MOVE	92
	FUD=FUD+1 \$ SVALFA=SVALFA*0.01745329	MOVE	93
	IF (MOE . FO. 0) GO TO 212	MOVE	94
	SUEPENERAL STAR & SCESSIA, 3048 & SAVIESAVILA, 3048	MOVE	95
		HOVE	96
24.2		MOVE	90
616	TE THOUT TOUGHT AND	HOVE	91
	HALLE (0,96) (PRUJUL, UALEL, UALEZ, NPLUL, IL, N, SULTAL, GF, KRTOL)	NUVE	98
	MRIIE (6,150)	MUVE	99

THIS	PAGE	IS BEST	QUALITY	PRACTICABL
FROM	COPY	FIRMISE	TED TO DDI	0

C HR	ITE TYPE OF REFLECTION	HOVE	100
3040	4 GO TO (97,98,99), REF	MOVE	101
97	HRITE (6,152)	MOVE	102
152	FORMAT (1X,43HREFLECTION: SNELLS LAW WITH PHASE VELOCITY)	MOVE	163
	GO TO 300	MOVE	104
98	WPITE (6,153)	MOVE	105
153	3 FORMAT (1X,44HREFLECTION: PACKET CURVATURE ITERATION NOT	MOVE	106
	\$,10HCONVERGING)	MOVE	117
	GO TO 3UO	MOVE	108
99	WRITE (6,154)	MOVE	119
154	FOFMAT (1X,34HREFLECTION: NEAR REFLECTION POINT)	MOVE	110
300	FU0=FU0+1.	MOVE	111
14	IF (ROP .NE. 0) GO TO 301	MOVE	112
	MIT=6	MOVE	113
	GO TO 38	MOVE	114
301	FLAG2=0.	MOVE	115
C COM	PUTE REFLECTION ANGLES	MOVE	116
	SAV=2.4SVALFA-SAV+3.1415927 & A=2.4SVALFA-A+3.1415927 & AV=SAV	MOVE	117
	RCOUNT=RCOUNT+1.	MOVE	118
C TES	ST FOR REFLECTION HANG-UP	MOVE	119
	IF (FCOUNT .LT. 2) GO TO 305	MOVE	120
	MIT=7	MOVE	121
	GO TO 38	MOVE	122
305	FLAG1=1.	MOVE	123
	CALL SURFCE(X,Y,A,FK,NFK,NDP,SAV)	MOVE	124
	FLAG1=0. \$ PATI=POT \$ QATI=QOT \$ FLAGR=1.	MOVE	125
	GO TO 102	MOVE	126
C DET	TERMINE IF POINT IS TOO CLOSE TO A GRID BOUNDARY	NOVE	127
92	IF ((XX-1.5)*((AdM-1.5)-XX) .GE. U.C .AND.	MOVE	:28
	\$(YY-1.5)*((ANN-1.5)-YY) .GE. C.U) GC TO 309	MOVE	129
	NG 0 = 2	MOVE	130
309	SVX=X \$ SVY=Y \$ XS=XX \$ YS=YY \$ SSALFA=SVALFA \$ SVALFA=ALFA	MUVE	131
	SVA=A & SVAV=SAV & SAV=AAV & FCOUNT=0.	MOVE	132
	SPREV=PREV \$ PREV=SAVV \$ SDEP=DEP \$ SAVV=V \$ SAVU=U \$ SG=G	MOVE	133
	AAA=.5*(AA+A) 3 A=AA 8 AAAV=.5*(AAV+AV) 8 AV=AAV 8 FK=FKK 8 5]=0	MOVE	134
	IF (REFLCT .EQ. 1) GO TO 40	MOVE	135
C COM	MPUTE P AND Q FOP THE INTERMEDIATE POINTS	MOVE	136
	XX=X+(1./3.) +DELX+ (ABS (COS (AAA)))	MOVE	137
	YY=Y+(1./3.)+DELY+(ABS(SIN(AAA))) 7 FLAG1=1.	LOVE	138
	CALL SURFCE(XX, YY, AAA, FKK, NFK, NOP, AAAV)	MOVE	139
	P1=POT & Q1=QOT & XX=X+.4*DELX*(AES(COS(AAA)))	MOVE	140
	YY=Y+.4*DELY*(ABS(SIN(AAA)))	MOVE	141
	GALL SURFCE(XX,YY,AAA,FKK,NFK,NDP,AAAV)	MOVE	142
	P2=P0T \$ Q2=Q0T \$ XX=(+.45573725+DELX*(ABS(COS(AAA)))	MOVE	143
	YY=Y+.45573725*DELY+(A BS (SIN(AAA)))	MOVE	144
	CALL SURFCE(XX,YY,AAA,FKK,NFK,NDP,AAAV)	MOVE	145
	P3=P01 \$ Q3=Q01 \$ XX=X+(2./3.) #DELX*(AB5(C05(AAA)))	NOVE	146
	YY=Y+(2./3.)+DELY+(ABS(SIN(AAA)))	MOVE	147
	CALL SURFCE(XX,YY,AAA,FKK,NFK,NDP,AAAV)	HOVE	148
	P4=POT \$ Q4=QOT \$ XX=X +. 8* DELX*(ABS(COS(AAA)))	NOVE	149
	YY=Y+. 8*DELY*(ABS(SIN(AAA)))	MOVE	150
	CALL SURFCE (XX, YY, AAA, FKK, NFK, NDP, AAAV)	MOVE	151
	PS=POT \$ Q5=QOT	MOVE	152
	CALL SURFCE (XS,YS,AA, FKK, NFK, NDP, AAV)	MOVE	153
	FLAG1=0	MOVE	154
40	X=XC & Y=VC	MOVE	155

	THE THE PROPERTY PROVIDENT AND PROVIDENT	ACTICABLE	
	PAGE IS BEST QUALITY	-	1
	50 THE COPY FURNISHED TO LOG		
	CALL HETCHTAY & A FR NCO HTT NEW NOE AND	MOUS	151
	TE (DEV EG 1) CO TO 23	HOVE	150
C PI	AF ANGLES IN THE PANGE 1 TO 360 DECEFES FOR THE PETNICA OUTPUT	MOVE	156
	CNVPSA=CNVPSA+, 0.174532025	MOVE	150
51	$T = \left(A - C - b - 0 \right) = \left(D - D - 5 \right)$	HOVE	159
51		HOVE	161
		MOVE	162
50	TE (A I. 6. 2831853) (2) TO 52	HOVE	167
20	A=4=6, 2831853	HOVE	165
		MOVE	165
52		MOVE	105
25		MOVE	167
54		HOVE	16.
24		MOVE	100
	NA-MAA0 (5021022)	MOVE	109
57	TE (AV 1T 6 2931953) CO TO 55	HOVE	171
23	$\frac{1}{1} (AV + C) = 0 (0 + C) (0 + C) $	HOVE	172
		HOVE	177
	55 10 55	HO VL	113
55	AV=CNVRSA-AV+3.1415927 & CNVRSA=CNVRSA+57.29577951	MOVE	174
38	RETURN	MOVE	175
	END	MOVE	176
	SUBROUTINE HEIGHT(X,Y,A,FK,NGO,MIT,NFK,NDP,AV)	HEIGHT	1
	DIMENSION S(6,6), EM(6,12), C(12), YVW(6), E(6)	HEIGHT	2
	\$, CHAT(110,10), AX(2003), AY(2000), CONTUR(9)	HEIGHT	3
	REAL KP,KF,KS,KRTOL,KFC	HEIGHT	4
	\$,L1,L2,L3,L4,L5,L6,L7,L8,L9,K1,K2,K3,K4,K5,K6,K7,K8,K9	HEIGHT	5
	INTEGER DX1, DX2, W3COP, REFLCT, REFRCT, FLAGR, FFL, UM, RFFBUM, BRK	HEIGHT	6
	COMMON S, EH, E, YVH, CHAT, C, AX, AY, CONTUR, PROJET, GRID, DEON, FAN, DATE1	HEIGHT	7
	\$, DATE2, CIN, DIR, ROF, TT, HBCOP, MOE, DY, DEL TAT, SOLTAT, D, HGT, HGTZ, SVX	HEIGHT	8
	\$, SVY, SDEP, W, DEP, WL, V, SAVV, PFEV, SPREV, U, SAVU, GZERO, G, SG, SVG, BUD, KS	HEIGHT	9
	\$, DGDX, SVA, TFI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DHDX	HEIGHT	10
	\$, SVFKB, SAVFK, FKFAR, MAXQ, SK, FUD, NULT, INUM, IFLG, RCOUNT, AMM, ANN	HEIGHT	11
	\$,REFLCT,RFLBUM,KEFRCT,RFRBUM,BFK,FLAG1,FLAG2,FLAG3,FLAGP,KFC,3F,33	CHEIGHT	12
	\$, SBZ, 3DZ, S&UZ, KRTOL, KR, POT, P1, P2, F3, P4, P5, QCT, Q1, Q2, Q3, Q4, Q5	HEIGHT	13
C IN	THIS SUBROUTINE THE HAVE HEIGHT IS COMPUTED. THE TIME STEP	HEIGHT	14
CIS	SUCCESSIVELY HALVED, IF NECESSARY, TO MAINTAIN THE DESIRED	HEIGHT	15
C ACC	CURACY IN COMFUTING THE REFRACTION COEFFICIENT, OR THE RAY	HEIGHT	16
C PAT	TH IF NEAR A FEFLECTION POINT.	HEIGHT	17
	IF (MAXQ .GT. 1) GO TO 2	HEIGHT	18
	PATI=POT 5 CATI=QOT \$ BZTOL=KRTCL**2	HEIGHT	19
C COM	PUTE INITIAL D(GETA)/DT	HEIGHT	25
	BDZ=-TAN(A-ALFA) *SIN(A-ALFA) *CGUX/GRID	HEIGHT	21
	KF=BZ=KR=KS=1. B HGT=HGTZ*KS*KF*KR \$ KFC=KF	HEIGHT	22
	GO TO 38	HEIGHT	23
C CON	1FUTE SHOALING COEFFICIENF	HEIGHT	24
2	KS=SQRT(ABS(GZERO/G))	HEIGHT	25
C COM	PUTE FRICTION COEFFICIENT	HEIGHT	26
	SKH=6,283185308*DEP/(/*TT)	HEIGHT	27
	KF=1./(KFC+.8195+CF+HGTZ+D+GRIù/((TT++3)+GZERO)+	HEIGHT	28
	\$(2.*KS/(EXP(SKH)-EXP(-SKH))**3+1.)	HEIGHT	29
	KFC=KFC+KF \$ PSAV=PATI \$ SBZ=BZ \$ SBDZ=BDZ	HEIGHT	30
	IF (NFK .EQ. 1) GO TO 35	HEIGHT	31
	IF (REFLCT .EQ. J) GO TO 33	HEIGHT	32
C CON	APUTE BETA AND D(BETA) / DT ANALYTICALLY NEAR A REFLECTION POINT	HEIGHT	33
	PREA=A-DELA-ALFA \$ TPII=COS(PREA)/BZ \$ TPI=ACOS(TPII)	HEIGHT	34
	BZ=COS(A-ALFA)/COS(TPI)	HEIGHT	35
	BDZ=-(SIN(A-ALFA)++2)/COS(TPI)+UGDX/GRID	HEIGHT	36
	IF (FLAGR .EQ. C) GO TO 71	HEIGHT	37
	ROP=0	HEIGHT	38
	60 10 71	HEIGHT	39
33	IF (AUS(UHDX/GRID) .GT. 0.00001) GO TO 31	HEIGHT	+0
30	50Z=E6Z=60Z=0.	HEIGHT	41
	60 (0, /1	HEIGHT	42

THIS PAGE IS BEST QUALITY PRACTICARLE

31 IF (FLAGR . EQ. 0) GO TO 32	HEIGHT.	43
	HEIGHT	44
ROP = 0	HEIGHT	45
C COMPUTE EETA AND D (BETA) / DT USING FUNGE KUTTA METHOD	HEIGHT	46
32 K1=DELTAT*OCZ \$ L1=-DELTAT*(PATI*BUZ*QATI*BZ)	HEIGHT	47
K2=BELTAT*(BDZ+.4*L1)	HEIGHT	48
L2=-OELTAT*(P2*(30Z*0.4*L1)+02*(8Z*0.4*K1))	HEIGHT	49
K3=DELTAT*(0DZ+j.29697761*L1+j.15875964*L2)	HEIGHT	50
L3=-DELTAT*(P3*(30Z+0.23697761*L1+0.15875964*L2)+Q3*(3Z+	HEIGHT	51
\$0.29697761*K1+0.15875364*K2))	HEIGHT	52
K4=DELTAT* (007+J.21010440+L1-3.05096516+L2+3.83280476+L3)	HEIGHT	53
L4=-DELTAT*(POT*(30Z+0.21810040*L1-3.05096516*L2+3.03286476*L3)	HEIGHT	54
\$+Q0T*(BZ+).21813346*K1-3.05696516*K2+3.03286476*K3))	HEIGHT	55
K5=DELTAT*(802+L1/3.)	HEIGHT	56
L5=-DELTAT*(P1*(3DZ+L1/3.)+01*(8Z+K1/3.))	HEIGHT	57
V6-051 TATE/D074/6 NI 54 (814)/25 N	HETCHT	F 0
NO-UELINI (NULTIO, 1274) \times 1/27/	HEIGHI	20
LO - UE [TAT (P2 + (3)2 + (0 + 1)7 + (-1)7 +	HELGHI	59
	HEIGHI	60
E/ UELIAI* (POI* (552*(1)*10-12**********************************	HEIGHT	01
	HEIGHI	66
	HEIGHI	03
	HEIGHI	04
$\mathbf{D} = \mathbf{D} = \mathbf{U} + \mathbf{U} = \mathbf{D} + \mathbf{U} + \mathbf{U} = \mathbf{U} + \mathbf{U} = \mathbf{U} + \mathbf{U} = \mathbf{U} + \mathbf{U} + \mathbf{U} = \mathbf{U} + $	HEIGHT	65
	HEIGHI	60
$f_{14} = f_{24} + f_{14} + f_{25} + f_{25} + f_{14} + f_{25} + f$	HEIGHT	6.0
0 10 + 1/2 10 + 100 20 + 102 3 + 112 2 5 - 24 5 - 24 5 - 24 5 - 20 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	HEIGHT	60
0 2 2 - 0 2 4 (1 + 1 + 2 + 1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 + 1	HETCHT	23
	HEIGHT	71
	HETCHT	72
D2-5270+114/0525-K1-0.99140000 K21142393900 K370+1110415-K4	HEICHT	73
EQ7-072-275 I ED7-072-275	HETCHT	74
	HEIGHT	75
71 KD-1 //CONTINGERISIENT	HEIGHT	76
	HETCHT	77
	HETCHT	78
C NEAR A REFLECTION FORM LINE THE CHANGE IN THE PACKET OFFICITION	HEIGHT	79
IF (ABS(OFLA) 117, 6117453293) GO TO 22	HEIGHT	80
	HEIGHT	81
411 IF (IFLG .NE. 0) 50 TO 55	HEIGHT	82
C REQUIRE THAT THE BELA CALOURATION HAS THE DESTRED ACCUPACY	HETCHT	83
IF (ABS(FAZ) GE, BZIOL OR, ASS(FBZZ) GE, BZIOL) 60 TO 21	HEIGHT	84
	HEIGHT	95
22 TE (NUHT -1E- 1) 50 TO +	HEIGHT	86
IFIG=1	HEIGHT	87
60 10 55	HEIGHT	88
21 REFECT=1. & RERBUH=1.	HEIGHT	89
C BPEAK UP TIME STEP INTERVAL AND RESUME CALCULATIONS	HEIGHT	90
58 DELTAT = .5 *DELTAT	HEIGHT	91
IF (GELTAT .GE. 0.5) 30 TO 81	HEIGHT	92
MIT=8 \$ 3FK=0.	HEIGHT	93
GO TO 3A	HEIGHT	94
81 G=SVG \$ D=G*DELTAT/GRID \$ BRK=1. \$ NUMT=2*NUMT	HEIGHT	95
C RECOVER SAVED VALUES	HEIGHT	96

¹This statement has been removed.

IF (MAXO .NE. 2) GO TO 59 HEIGHT 97 FK=SVFKB HEIGHT 9A GO TO 61 99 HEIGHT 59 FKBAR=SVFKB \$ FK=SAVFK HEIGHT 100 61 A=SVA \$ SAV=SVAV \$ SAVV=PREV \$ FREV=SPREV \$ SVALFA=SSALFA HEIGHT 101 X=SVX \$ Y=SVY \$ UZ=SUZ \$ BDZ=SUDZ \$ PATI=PSAV \$ KFC=KFC/KF HEIGHT 102 GO TO 39 HEIGHT 103 55 INUM=INUM+1. HEIGHT 104 IF (INUH .LT. NUMT) GO TO 64 155 HEIGHT C RESUME CALCULATIONS WITH ORIGINAL TIME STEP HEIGHT 106 IFLG=0 \$ INUM=0 \$ CELTAT=SOLIAT \$ BRK=0 HEIGHT 137 D=G*DELTAT/GRID HEIGHT 108 GO TO 4 HEIGHT 139 D=G*DELTAT/GRID \$ PATI=POT \$ GATI=QOT HEIGHT 64 110 C TEST FOR FOCAL FOINT OR CAUSTIC HEIGHT 111 IF (BZ .GT. 0.) GO TO 67 HEIGHT 112 68 MIT=4 \$ BFK=0. HEIGHT 113 GO TO 38 HETGHT 114 67 BRK=1. HEIGHT 115 HEIGHT 116 GO TO 38 IF (BZ .LE. 0.) GO TO 68 HEIGHT 117 4 PATI=POT \$ DATI=QOT \$ REFRCT=0 \$ FEFLCT=0 HEIGHT 118 C COMPUTE WAVE HEIGHT HEIGHT 119 HGT=HGTZ*KS*KFC*KR HEIGHT 120 HEIGHT 121 IF (WBCOP .EQ. 0) GO TO 38 C TEST FOR HAVE BREAK HEIGHT 122 IF (HGT/(V*TT) .LE. (1./7.)*TANH(SKH)) GO TO 38 HEIGHT 123 HEIGHT 124 MIT=5 HEIGHT 125 38 RETURN HEIGHT 126 END SUBPOUTINE SURFCE(X,Y, A, FK, NFK, NDP, AV) SURFACE 1 DIMENSION S(6,6), EM(6, 12), C(12), YVH(6), E(6) SURFACE 2 \$, CMAT(100,100), AX(2000), AY(2000), CONTUR(9) SURFACE 3 REAL KF, KF, KS, KR, TOL, KFC SJRFACE 4 INTEGER FLAG1, FLAG2 SURFACE 5 COMMON S, EM, E, YVH, CMAT, C, AX, AY, CONTUR, PROJET, GRID, DCON, FAN, DATE1 SURFACE 6 \$,DATE2,CIN,DIR, ROP, IT, HBCOP, MOE, DY, DELTAT, SDLFAT, J, HGT, HGTZ, SVX SURFACE 7 \$, SVY, SDEP, H, DEP, HL, V, SAVV, PREV, SPREV, U, SAVU, GZERO, G, SG, SVG, DUD, KS SJRFACE 8 SJRFACE \$,DGDX,SVA,TFI,SAV,SVAV,PHI,ALFA,SVALFA,SSALFA,CNVRSA,DELA,DHDX 9 \$, SVEKB, SAVEK, FKBAR, MAXQ, SK, FUD, NUMT, INUM, IFLG, ECOUNT, AMM, ANN SURFACE 10 \$,REFLCT,RFLEUM,PEFRCT,RFRBUM,ERK,FLAG1,FLAG2,FLAG3,FLAGR,KFC,JF,BZSURFACE 11 \$,SBZ,86Z,SBLZ,KRTUL,KR,POT,P1,P2,P3,P4,P5,Q0T,Q1,Q2,Q3,Q4,Q5 JUR FALE 12 C IN THIS SUBROUTINE THE HATER DEPTH, ROTATION ANGLE, HAVELET SJRFACE 13 C DIRECTION, GEOMETRIC GROUP VELOCITY, COEFFICIENTS OF THE RAY SURFACE 14 C SEFARATION EQUATION, AND THE PACKET RAY CURVATURE ARE COMPUTED. SJRFACE 15 C SUBROUTINES VELCTY AND CONDER ARE CALLED. SURFACE 16 I=X \$ J=Y \$ FI=I \$ FJ=J \$ XL=X+1.-FI \$ YL=Y+1.-FJ SJRFACE 17 IF (MAXQ .LE. 1) GO TO 1 SURFACE 18 IF (ZI .NE. FI) GO TO 1 SUR FACE 19 IF (ZJ .EQ. FJ) GO TO 3 SURFACE 20 ZI=FI \$ ZJ=FJ SURFACE 1 21

52.

FROM COPY FURNISHED TO DDC

C SE	LECT 12 WATER DEPTHS ABOUT RAY POINT	SURFACE	22
	C(1)=CHAT(J+1,I) & C(2)=CHAT(J+2,I) & C(3)=CHAT(J,I+1)	SURFACE	23
	C(4)=CHAT(J+1,I+1) & C(5)=CHAT(J+2,I+1) & C(6)=CHAT(J+3,I+1)	SJRFACE	24
	C(7)=CMAT(J,I+2) & C(3)=CMAT(J+1,I+2) & C(9)=CMAT(J+2,I+2)	SUFFACE	25
	C(10)=CHAT(J+3,I+2) \$ C(11)=CHAT(J+1,I+3) \$ C(12)=CHAT(J+2,I+3)	SURFACE	26
CFI	T QUADRATIC SURFACE TO 12 HATER DEPTHS	SURFACE	27
	DO 318 II=1,6	SJRFACE	28
	YVW(II)=0.	SUR FACE	29
	00 318 L=1,12	SURFACE	30
	YVH(II)=YVH(II)+C(L)*EH(II,L)	SJRFACE	31
318	CONTINUE	SURFACE	32
	00 319 II=1,6	SURFACE	33
	E(II) = 0.	SURFACE	34
	D0 319 JJ=1,6	SURFACE	35
	E(II) = E(II) + S(JJ, II) + YVA(JJ)	SURFACE	36
319	CONTINUE	SURFACE	37
0 00	MPOTE INTERFOLATED NATER DEPTH	SURFACE	38
5	$DEF = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{3}, e_{4}, e_{4}, e_{4}, e_{4}, e_{4}, e_{4}, e_{5}, $	SURFACE	39
	APPOTE PAPITAL DEPIVATIVES OF WATER DEPTH IN FIXED XY-SYSTEM	SURFACE	40
	$M_X = \{E_1(2) + 2, e_1(4) + \lambda_L + E_1(5) + Y_L\} + U \cup U \cup N$	SURFACE	41
	$\mathbf{H} = \{\mathbf{e}(\mathbf{x}) + \mathbf{e}(\mathbf{y}) + \mathbf{x} + \mathbf{e}(\mathbf{y}) + \mathbf{z} + \mathbf{t} = \mathbf{y} + \mathbf{t} = \mathbf{t} + \mathbf{t} + \mathbf{t} = \mathbf{t} + \mathbf{t} + \mathbf{t} + \mathbf{t} = \mathbf{t} + $	SURFACE	42
	$H_{X,K} = 2 \cdot T = (4) \cdot U \cup V = K + T = 2 \cdot T = (6) \cdot U \cup V = K + T = (6) \cdot U \cup V = $	SJRFACE	43
		SURFALE	44
		SURFACE	45
221		SURFACE	40
324		SURFACE	41
	NF K= 2	SJRFALE	45
777		SUFFALE	49
320	CALL VELCTVAL TE MANO DER NEK HA	SJRFAUE	50
523	TE VERTINE EQ. 20 CO TO 102	SURFACE	51
		SURFACE	52
		SURFACE	55
1.0		SIDEACE	55
40	CALL CONDER (DN.TT.V. MAYD.NEK)	SUPFACE	56
		SIRFACE	57
		SURTACE	
10	VX=++X % VY=++HY % DHOX=SQRT((HX++2)+(HY++2))	SURFACE	50
	IF (ABS(DHDX/GFI3) .GT. 0.000C1) GO TO 8	SURFALE	59
	60 10 9	SURFACE	66
0 00	PERIODE FOTATION ANGLE	SURFACE	51
8		SURFACE	02
	IF (FLAGI .NE. U) GUIIU 12	SURFACE	60
0 10	THE WAVELET DIRECTION IN RUTATED AT-STSTER USING SNELLS LAW	SURFACE	65
C #1	CONSAUSION EN TUTAL REFLECTION DE TO THE RAVELETS	SURFACE	65
14	G = 5AV = ALFA	SURFACE	67
14	IF (RCD) 16-13-17	SUPEACE	6.8
16		SUR FACE	69
10	GO TO 14	SURFACE	70
17	GP=GP=6,2831853	SURFACE	71
	GD TO 14	SURFACE	72
13	ARG1=V+SIN(GP)/SAVV	SURFACE	73
	IF (ABS(ARG1) .LE. 1.) GO TO 18	SURFACE	74
	FLAG2=1.	SURFACE	75
	GO TO 403	SURFACE	76
18	FLAG2=0. \$ GPT=ASIN(ARG1)	SURFACE	77

THIS PAGE IS BEST QUALITY PRACTICABLE

		IF (ABS(GP) .LE. 4.7123889) GO TO 20	SURFACE	78
		AVP=6.2331853+GPT	SURFACE	79
		GO TO 22	SURFACE	86
2	20	IF (ABS(GP) .LE. 1.5707963) GO TO 23	SURFACE	81
		AV P=3.1415927-GPT	SURFACE	82
		GO TO 22	SURFACE	83
	23	AVP=GPT	SUFFACE	84
	22	AV=AVF+ALFA	SURFACE	85
1	12	PHI=A-AV \$ G=U*COS(PHI)	SURFACE	86
		DVDX=+*DHDX \$ 6433=12.5063708/TT \$ 8484=3483*068/V	SUPFACE	87
		IF (NFK .EQ. 2) GO TO 25	SUFFACE	88
		DUCX = DVDX/2.	SURFACE	89
		G0 T0 27	SUR FALE	9.3
2	25	DUDX = (1, 2)(EXP(BARk) - EXP(-BARk)) + (BAR3 + DHDX - BARk + (BAR3 + DHDX - BARk + CBAR3 + DHDX - BARk + DHDX + DHDX + BARk + DHDX + BARk + DHDX +	SIRFACE	91
		$\$^{+}$ DVDX) + ((EXE(BAR4) + EXP(-BAR4))/(EXP(BAR4) - EXP(-BAR4)) + DVDX + (EXP(SURFACE	92
		\$84P4) - FXP(-64P4)/2.)	SUPEACE	03
2	27	RHO=1./(1.+TAN(PHI)*TAN(A-ALFA)) \$ SIGMA=U*SIN(PHI)*TAN(AV-ALFA)/	VSURFACE	94
		DGDX = RHO* (DUDX*COS(PHI)*SIGMA*DVDX)	SURFACE	95
		IF (NEK .EQ. 2) 60 TO 23	SUPEACE	66
		POT=0. \$ 00T=0. \$ FK=0.	SUFFACE	97
		60 10 403	SURFACE	Q.S.
С	COM	PUTE P IN ROTATED XY-SYSTEM	SURFACE	99
2	2.8	POT=(-2.*COS(A-ALFA)*)GJX)/GRID \$ DAVDX=TAN(AV-ALFA)*DVDX/V	SURFACE	100
		DAOX = IAN(A - 4LEA) + DGCX/G + DEHIDX = DAOX - DAVAX	SIRFACE	1.1
		$R = (R + 0^{+2}) + (T + 0 (A - A) = A) + (P + T + 2) + (C + 1) +$	SUPEACE	102
		TAN(PHT) + DADX (COS (A - 4 F A) + 2))	SIRFACE	102
		DSTGPX=STGPA+(DUUX/U=DV)X/V)+U+(COS(PHT)+TAN(AV=ALEA)+OPHTOX+	SIDEACE	1.1.
		$S_1(P+1) = r_0 v_0 v_1(r_0) (av - a(Fa) + 2) v_0$	SIDEACE	105
		$DHOX X = (COS(A) FA)^{++}2)^{+} X X + 2 - ^{+}SIN(A) FA)^{+}COS(A) FA)^{+} HXY + (SIN(A) FA)^{+}$	SIRFACE	16
		2) 4 H YY	SIDEACE	1.7
		SHA=6.2831454/(32.2#TT) \$ SMAR=1./64.4	SIDELOS	104
			SUPEACE	100
			SUPEACE	11.3
			SIDENCE	111
		DTOX X = (DTOX + 2) / 20 F + 3 0 2 4 7 (DHOX X - (DHOX + 2) / DFP) / DFP - (DVOX Y)	SUPEACE	112
			SIDEACE	117
	30	DI(DXY = (1, / (FXP(DASh) = FYP(-BAP(1)) + (- ((FYP(BAP(1) = FYP(-BAP(1)) + Ex))))	SUBECCE	110
		\$ R R L	SUPEACE	115
			SURTACE	
		\$+((EXP(BAF4)	SURFACE	116
		3-EXP(-EA24))*.5+BAR4)*0JDXX+0VDX*CICX*(2.*(EXP(3AR4)+EXP(-EAR4))*	SURFACE	117
		5 .5-3AF4/TANH(BAR4))+V*(JIDXX*(1BAF4/TANH(BAR4))+(UIDX**2)+2/(SURFACE	110
		sexp(ear4) - exp(-ear4) ($sexp(ear4) - exp(-ear4)$) + 5) - ($exp(sexp(ear4) - exp(-ear4)$) + 5) - ($exp(ear4) - exp(-ear4)$) + 5) - ($exp(ear4) - exp(ear4) - exp(ear4)$) + 5) - ($exp(ear4) - exp(ear4) - exp(ear4)$) + 5) - ($exp(ear4) - exp(ear4) - exp(ear4)$) + 5) - ($exp(ear4) - exp(ear4) - exp(ear4)$) + 5) - ($exp(ear4) - exp(ear4) - exp(ear4) - exp(ear4)$) + 5) - ($exp(ear4) - exp(ear4) - exp($	SURFACE	119
		\$)+EXP(-PAP4))*.5)))	SJRFACE	120
	32	DGDXX=RHOT(LOS(PHI)*DUDXX+SIGPA*DVDXX)+(COS(PHI)*DRHODX-RHO*SIN	SURFACE	121
-		\$(PHI) - CHIDX) - DUDX + (RHO DSIGDX + SIGMA - DRHODX) - DVDX	SJRFACE	122
C	COM	PUTE U IN PUTATED XT-STSTEM	SURFACE	123
-		QUI= (G+(SIN(A+ALFA)++2)+OGDXX)/(GRID++2)	SURFACE	124
C	COM	PUTE PACKET FAT CURVATURE IN ROTATED XY-SYSTEM	SURFACE	125
		FK=SIN(A-ALFA)+UGDX/G	SURFACE	126
4	03	KETUKN	SURFACE	121
		ENU	SURFACE	128

54.

	SUBROUTINE VELCTY(V, TT, MAXQ, DEP, NFK, U)	VELCTY	1
C IN	THIS SUBROUTINE THE PHASE VELOCITY AND COLLINEAR GROUP	VELCTY	2
C VEL	OCITY ARE COMPUTED.	VELCTY	3
	IF (HAXQ .GT. 1) GO TO 102	VELCTY	4
	BAR=6.2831854/TT \$ CXX0=TT*32.2/6.2831854 \$ CCC=CXX0	VELCTY	5
	GO TO 103	VELCTY	6
102	CCC=XCXY	VELCTY	7
103	IF (NFK .EQ. 2) GO TO 135	VELCTY	8
	V=CXXO	VELCTY	9
	GO TO 106	VELCTY	10
105	DO 1000 M=1,90	VELCTY	11
	V=CXXO*TANH(BAR*DEP/CCC)	VELCTY	12
	IF (AES(V-CCC) .LT. 0.00035) GO TO 106	VELCTY	13
1000	CCC=(V+CCC)/2.	VELCTY	14
106	XCXY=V \$ BAR2=2.*BAR*DEP/V	VELCTY	15
	IF (NFK .EQ. 2) GO TO 3336	VELCTY	16
	U=.5+V	VELCTY	17
	60 10 107	VELCTY	18
3036	0 = .5 + V + (1 + 2 + BAR2 / (EXP(BAR2) - EXP(-BAR2)))	VELCTY	19
107	REIDRN	VELCTY	26
	ENU	VELCTY	21
	SUBFOUTINE CONDER(DN,TT,V,MAXQ,NFK)	CONDER	1
CIN	THIS SUEROUTINE WEDN IS COMPUTED.	CONDER	2
	$C1 = 17/12.5663708 \pm C2 = 5.28318547(32.2*TT)$	CONDER	3
	IF (NFK .EQ. 1) GO TO 125	CONDER	4
	C3=C2+V \$ A1=C3/(1+C3) \$ A2=C3/(1-C3) \$ A3=ALOG(1+C3)	CONDER	5
	A4 = ALOG(1 - C3) 5 $DN = (DN/C1) + (1 - / (A1 + A2 + A3 + (-A4)))$	CONDER	6
105	REIURN	CONDER	7
	END	CONDER	8
		PCU	1
	DIMENSION E(5),5(12)	PUU	2
C IN	THIS SUBROUTINE THE UIFFERENCE BEINGEN THE WATER DEPTH AND THE	P.0	3
C UEF	THE COMPOLED FROM THE 12-DUINT SOMEACE FIT IS DETERMINED FOR	PCU	4
C THE	4 GETU PUTNIS CLUSEST IS THE RAY PUTNI AND THE MAXIFUM	PUU	5
L PER	TE CLUME CONTRETENCE OF THE 4 IS DETERTINED.	PUU	0
	PCT0F-002	PCU	-
		P.U	0
0.01		P00	
901	$r_1 - a_{33} \land \forall_{54} - \langle c_{13} \rangle + c_{23} + c_{33} + c_{43} + c_{23} + $	PSU	10
	$F = F + O = \{1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	PCU	12
	= -AOS(100) - (E(1) + E(2) + 2 + E(3) + E(4) + 4 + E(2) + 2 + E(0) + 1 + 0 + 0 + 1 + 0 + 1 + 0 + 0 + 1 + 0 + 0	PCO	12
	$ \begin{array}{c} r \rightarrow r \text{d} \text{d} \text{d} \text{d} \text{d} \text{d} \text{d} \text{d}$	PCD	10
9.12	PETIDN	PCD	15
302		PCD	16
		100	
	SUBROUTINE STOPE(A,Y,A,KMAX,TIMEQ,KCIN,KREST)	STORE	1
	DIMENSION S(6,6), EM(6, 12), C(12), YVW(6), E(6)	STORE	2
	\$, CMAT(100,100), AX(2000), AY(2000), CONTUR(9)	STORE	3
	REAL KR, KF, KS, KRTUL, KFC	STORE	4
	COMMON S, EM, E, YVH, CMAT, C, AX, AY, CONTUR, PROJCT, GRID, CCON, FAN, DATE1	STORE	5
	\$, DATE2, CIN, DIR, POP, IT, HBCOP, MOE, DY, DELTAT, SOLTAT, D, HGT, HGTZ, SVX	STORE	6
	S, SVY, SDEP, W, DEP, WL, V, SAVV, PFEV, SPREV, U, SAVU, GZERO, G, SG, SVS, DUD, KS	STORE	-
	B, DGDX, SVA, TFI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DHDX	STORE	6
	J,SVFK3, SAVFK, FK3AK, MAX Q, SK, FUO, NUMT, INUM, IFLG, ACOUNT, AMM, ANN	STORE	9

\$, REFLCT, RFLBUM, REFRCT, RFRBUM, BFK, FLAG1, FLAG2, FLAG3, FLAGR, KFC, CF, B.	ZSTOKE	10
\$, S & Z, B & Z, S & B Z, K K T O L, K R, P & O T, P 1, P 2, P 3, P 4, P 5, Q & T, Q 1, Q 2, Q 3, Q 4, Q 5	STORE	11
C IN THIS SUBROUTINE THE COORDINATES OF EACH RAY POINT ARE STORED.	STORE	12
C IF DESIRED, THE LOCATION OF TICK MARKS AT EQUAL TIME INTERVALS	STORE	13
C ALONG THE RAY ARE COMPUTED AND STORED.	STORE	14
IF (CIN .LE. 0) GO TO 433	STORE	15
IF (KMAX .GT. 1) GO TO 401	STOKE	16
AT=0.	STORE	17
C STORE COORDINATES OF POINT	STORE	18
403 KQ=KMAX+KCIN \$ AX(KQ)=X \$ AY(KQ)=Y	STOKE	19
IF (CIN .LE. 0.) GC TO 205	STORE	20
402 ZA=A \$ ZCXY=G	STORE	21
GO TO 205	STORE	22
401 ET=TIMEQ+AT	STORE	23
IF (CIN-ET) 405,404,403	STORE	24
C RAY POINT AND TICK MARK COINCIDE, STORE WITH NEGATIVE X	STORE	25
404 KQ=KMAX+KCIN I AX(KQ)=-X & AY(KQ)=Y & KREST=KREST+1 & AT=AT+CIN	STORE	26
GO TO 402	STOFE	27
C COMPUTE LOCATION OF TICK MARK AND STOPE WITH NEGATIVE X	STORE	28
405 DSC=(ET-CIN)*(G+ZCXY)*3600./(GFID*2.)	STORE	29
AA=(A+ZA)/2. S XM=DSC+CDS(AA) F YM=DSC+SIN(AA)	STORE	30
KQ=KHAX+KCIN \$ AX(KQ)=-X+XH \$ AY(KQ)=Y-YM	STORE	31
KREST=KREST+1 \$ KCIN=K CIN+1 \$ AT=AT+CIN	STOFE	32
GO TO 401	STORE	33
205 RETURN	STOKE	34
END	STORE	35
SUBFOUTINE DRAH (N,KMAX,KCIN,KREST)	DRAN	1
DIMENSION S(6,6),EM(6,12),C(12),YVH(6),E(6)	DPAn	2
\$,CMAT(100,100),AX(2001),AY(2000),CONTUR(9)	DRAN	3
INTEGER FAN	DRAH	4
REAL KR, KF, KS, KRTOL, KF C	DRAH	5
COMMON S,EM,E,YVA,CMAT,C,AX,AY,CONTUR,PROJCT,GF1D,DCON,FAN,DATE1	DRAF	6
\$,DATE2,CIN,DIR,ROP,TT,WBCOP,MOE,DY,CELTAT,SCLTAT,D,HGT,HGTZ,SVX	DRAM	7
\$, SVY, SDEP, H, DEP, HL, V, SAVV, PPEV, SPREV, U, SAVU, GZERO, G, SG, SVG, DUJ, KS	DRAH	8
I, DGDX, SVA, TFI, SAV, SVAV, PHI, ALFA, SVALFA, SSALFA, CNVRSA, DELA, DHDX	DRAN	9
\$,SVFK6,SAVFK,FK5AR,HAXQ,SK,FU0,NUFT,INUH,IFLG,FCOUNT,AM",ANN	DRAN	10
\$,REFLCT,RFLEUM,REFRCT,RFRBUM,BFK,FLAG1,FLAG2,FLAG3,FLAGP,KFC,3F,B	ZDRAH	11
\$, SbZ, BDZ, SBDZ, KFTOL, KR, POT, P1, F2, P3, P4, P5, Q0T, Q1, Q2, Q3, Q4, Q5	DRAM	12
C IN THIS SUBROUTINE THE RAYS ARE DEAWN AND NUMBERED. IF DESIRED,	DRAW	13
C TICK HAFKS ARE DRAWN ON THE RAY AT EQUAL TIME INTERVALS.	DRAN	14
C SUBROUTINES NUABER AND PLOT ARE CALLED.	DRAN	15
XN=N \$ KMAX=KFAX+KCIN	DRAM	16
IF (AX(KMAX) .GE. 0.) GD TO 601	DRAH	17
AX (KMAX) = -AX (KMAX) + KRESI = KRESI = 1	DEAN	18
DUL IF UNUDERED AV UT I TU TU TU AVAILA DATUT	UKAN	19
WINGEWENT A KANDEL I LASTA I ADALASTA	DPAN	20
REVERNED AND COTO 214	DRAM	21
TE TEAM TO TO TO TO 211	DRAK	22
CALL NUTDER (AXINDAX)/DT ATINDAX/UT AJ.1,XN,U.C,-1)	DRAW	23
TE (MAY LE A) CO TO AGE	DRAM	24
CO TO 405	DRAN	25
C BEGIN ODD-NUMBERED RAY WITH THE INTITAL DOTNT	DEAL	20

104	KTWO=2 \$ KADD=1 \$ LAST =KMAX \$ MC=0.	DRAH	28	
	IF (FAN .NE. J) GO TO 111	DRAM	29	
C NUM	BER RAY AT THE INITIAL POINT	DRAH	30	
	CALL NUMBER (AX(1)/0Y, AY(1)/0Y,0.1.XN,0.01)	DRAM	31	
111	CALL PLOT (AX(1)/DY, AY(1)/DY.3)	DRAM	32	
	IF (KMAX .LE. 1) GO TO 106	DRAM	33	
105	IF (CIN .LE. D.) GO TO 330	DRAH	34	
	IF (AX(KTWO) .LT. C.) GO TO 302	DRAM	35	
C DRA	AW SEGMENT OF RAY	DRAH	36	
300	CALL PLOT (AX(KTHO)/DY,AY(KTHO)/DY,2)	DRAW	37	
	GO TO 303	DRAN	38	
302	AX (KTHO) =- AX (KTHO) \$ # I= .05 \$ HC=1 C+KADD	DRAH	39	
	IF (MOD(MC,10) .NE. 0) GO TO 500	DEAN	40	
	WI=.10	DRAH	41	
500	XPN=AX(KTHO)/DY \$ YPN=AY(KTHO)/DY \$ KQ=KTHO-KADD	DRAH	42	
430	XPL=AX(KQ)/DY \$ YPL=AY(KQ)/DY	DRAM	43	
	IF (ABS(XPN-XPL) .LT. J.0005 .AND.	DEAK	44	
	\$ABS(YPN-YPL) .LT. 0.0005) GO TO 410	DRAM	45	
	GO TO 420	DRAN	46	
C POI	NTS TOO CLOSE TOGETHER	DRAM	47	
410	KQ=KQ-KAJD	DEAM	48	
	GO TO 430	DPAK	49	
420	OSC=SQFT((XPN-XPL) **2+(YPN-YPL)**2)	DRAN	50	
		ORAM	51	
	CALL PLOT (XFN, YFN, 2)	DRAH	52	
	XB=HI*(YPN-YPL)/05C \$ YB=-WI*(XPN-XPL)/D5C	DEAM	53	
C DRA	CALL PLOT(XFN,YFN,Z) DRAH XB=HI*(YPN-YPL)/DSC \$ YB=-WI*(XPN-XPL)/DSC DRAH C DRAH TICK MARK ON FAY DRAH			
	CALL PLOT (XPN+X3, YPN+YB, 2)	DRAM	55	
	CALL PLOT (XPN-X3, YPN-Y3, 2)	DRAH	56	
	CALL PLOT (XPN, YPN, 2)	DRAW	57	
303	IF (KTHO .EQ. LAST) GO TO 126	D÷Aw	58	
	KTHO=KTHO+KADD	DRAM	59	
	GO TO 105	DRAM	60	
106	IF (KADD .GE. 0) GO TO 108	DRAN	61	
	IF (FAN .NE. 0) GO TO 235	DRAH	62	
	CALL NUMBER (AX(1)/DY, AY(1)/DY, 0.1, XN, 0.0, -1)	DRAM	63	
	GO TO 205	DRAM	64	
108	IF (FAN .EQ. 0) GO TO 235	DRAH	65	
C NUMBER PAY AT THE TERMINAL POINT ORAH			66	
	CALL NUMBER (AX(KMAX)/DY,AY(KMAX)/DY,0.1,XN,0.0,-1)	DFAN	67	
205	RETURN	DRAW	68	
	END	DRAM	69	

CHAPTER IV USING THE COMPUTER PROGRAM

4.1 Preparation of the Water Depth Grid. Once a coastal area is selected for making wave forecasts a water depth grid must be prepared. Details with numerous illustrations for preparing water depth grids are given by Wilson (1966). It is necessary to obtain charts of the region of interest containing sufficiently detailed bathymetric information.

A water depth grid is rectangular in shape. The value of x varies between 0 and AMM while y varies from 0 to ANN. The values of AMM and ANN are defined by

$$AMM = MM - 1 \tag{4-1}$$

$$ANN = NN - 1 \tag{4-2}$$

where MM is the number of water depth values in a y-column and NN is the number of columns. The value of MM must be an integral multiple of 16. If another number is preferred the format statement in the computer program used to input the water depth values must be changed. The maximum values of MM and NN depend upon the storage capacity of the computer. In the computer program presented in this report the values of MM and NN are assumed not to exceed 100. If the grid requirements exceed the storage capacity of the computer the coastal region of interest can be divided into several overlapping grids.

The xy-coordinate system is right-handed with the x-axis extending seaward. The direction of the x-axis with respect to true north is defined as CNVRSA. The use of CNVSRA makes it possible to define the input and output ray directions with respect to true north.

The distance between water depths in the x- or y-directions is a grid interval or grid unit and is denoted by GRID. This distance must be small enough for the water depth grid to describe adequately the bottom topography. If it is desirable for rays to start in deep water the grid must extend at least several grid units seaward of the deep water depth of the largest wave period of interest. In this report deep water is defined as any depth greater than 0.64 λ_d where λ_d is the deep water wavelength. This definition of deep water is chosen since the collinear group speed is nearly invariant for greater water depths.

To determine the location of the water depths to be read from a chart lines can be drawn on tracing paper parallel to the x- and y-axes of the grid and separated a distance equal to a grid unit. The tracing paper is placed on the chart and water depths are estimated for the points defined by the intersection of the grid lines. The water depths can be recorded in any system of units.

One of the program options is to have the shoreline drawn on a plot. In order for the location of the shoreline to be computed it is necessary to determine negative values of water depths for at least two grid points landward of the shoreline. The negative values are determined by drawing the reflection of water depth contours on land with respect to the shoreline. Zero water depths can be used to fill out a column for grid points more than two grid units landward of the shore.

4.2 Preparing a Computer Run. The way in which data is prepared for a computer run is illustrated on the coding form in Figure (4-1). Eight types of computer cards are used. The columns available for each parameter are outlined by rectangles. The positions of decimal points for real numbers are indicated. If there is no decimal point the number is an integer and is placed in the rectangle as far to the right as possible. The input parameters must appear on each card as shown, and the card types must be in the order indicated.

Six computer cards are required to input the data for both S and EM. These numbers are used in the surface fitting routine and they are the same for all computer runs.

For the third type of computer card, MXPLOT is the number of runs for a given operation of the computer program. The PROJCT is a 6-character label of any combination of letters and numbers. The label can be used, for example, to indicate a project number. An alternative use is to identify which water depth grid is used for the run. It appears in both the printed output and on the plot. DATE1 and DATE2 are used to date the run. DATE1 can be used for the year and the month in the form ZZ/YY/. DATE2 can be used for the day in the form XX. The DIR is another 6-character label of any combination of letters and numbers. This label appears only on the plot. One possible label is WAVPAK, which can denote that wave packet trajectories are presented. If the rays have a common initial direction, DIR can be used to indicate that direction.

The number of rays for a given run, NOR, is input on the fourth type of computer card. The values of NPT and SK determine the amount of printed output. If NPT is not zero there is printed output for the first ray point, those points which are an integral multiple of SK, and the last point. If NPT is zero printed output occurs only for the initial and terminal ray points. The value of HT is the length of the y-axis of the plot in inches or centimeters. If CIN is not zero tick marks are placed on the rays at equal intervals of travel time given by the value of CIN in

Figure (4-1). FORMAT OF THE INPUT PARAMETERS

Vintuber of forms per pad may vary supplier

WBCOP WBCOP COL IDENTIFICATION SEQUENCE ROP PAGE OF CARD ELECTRO NUMBER* . KRTOL 08 00 . NXCMAT CF • NCO NNSKIP HGTZ . HSN SRAPHIC PUNCH MOE XAN FORTRAN Coding Form 12 43 44 FORTRAN STATEMENT • AV DCON CIN H . DATE • DIR × . GRID E 2 HT . TAT . CNVRSA × DATE1 . SK . TT TON T PROJCT M XPLOT NN CONTUR DELTAT 1 4 1 5 10 cord form 18 NOR CMAT X X • E t i 5

GX28-7327.6 U/M 050** Printed in U.S.A.

IBM
seconds. If no tick marks are desired CIN is zero.

The x- and y-axes of the plot will be calibrated and labeled if NAX is not zero. If NAX is zero the plot borders are drawn but the axes are not calibrated. The shoreline is drawn on the plot if NSH is not zero. If the shoreline is not desired NSH must be zero. The number of sounding water depths for a plot is NCO. There cannot be more than 9 sounding depths, and they are input on the CONTUR computer card. If NCO is zero there are no sounding depths; in this case the CONTUR card must be removed from the input. If a water depth grid is to be read in the input for the computer run the value of NXCMAT is zero. If NXCMAT is not zero the depth grid for the previous run is used again. This situation can arise if MXPLOT is greater than one.

The fifth type of computer card contains the input dimensions for the water depth grid. A description of the quantities MM, NN, CNVRSA, and GRID are described in the previous section. The angle CNVRSA is given in degrees and GRID is given in feet or meters. The value of DCON is chosen so that the product of DCON and a water depth in CMAT yields a value with units of feet or meters. If English units are to be used in the input and output MOE is zero. If MOE is not zero Metric units are used. The value of NNSKIP is the amount by which y is incremented in selecting columns for locating sounding water depths. For example, if NNSKIP is 15 and NN is 64, sounding water depths are located for the 2, 17, 32, 47, and 62 y-columns.

The sixth type of computer card is used to input the water depth grid (CMAT). The units of CMAT determine the value of DCON. There are 16 water depths on each card. The water depths are entered column by column starting with the first column. There are NN columns. In each column the water depths are entered starting with the land values, if any, and proceeding seaward. There are MM values per column. The format for entering the water depths does not include numbers beyond the decimal points. Near shore it may be desirable to record water depths to the nearest tenth of a foot or meter. On some computer systems it is possible to enter data routinely in this form with the indicated format for CMAT being overridden. If such a capability is not available it may be desirable to alter the format statement for CMAT in MAIN.

If NCO is not zero the CONTUR computer card is used to input the soundingwater depths in feet or meters. The number of sounding depths must agree with NCO which should not exceed 9. If NCO is zero the CONTUR card must be removed.

The eighth type of computer card is used to input the particulars for each ray. There must be as many ray cards as declared in the input for NOR. The initial time step interval between ray points in seconds is DELTAT. The wave period in seconds is TT, and X, Y are the initial ray coordinates.¹ The initial wave packet and wavelet directions are A and AV, respectively. The directions are in degrees and are the directions from which the waves come with respect to true north. The initial wave height in feet or meters is HGTZ.

The friction factor is CF. The value of KRTOL determines the accuracy of the calculations of the refraction coefficient with the exception of near reflection points. As a general rule, if accuracy is required to the second decimal point KRTOL is 0.01. If accuracy is desired to the third decimal point KRTOL is 0.001.

To continue a ray beyond a reflection point ROP is set unequal to zero. If ROP is zero a ray is stopped at a reflection point. A test is made to determine if a wave breaks if WBCOP is not zero. If WBCOP is zero there is no test to determine if a wave breaks. If the ray is to be numbered at its terminal point FAN is set unequal to zero. A group of rays should be numbered at their terminal points if they have a common origin. If FAN is zero the ray is numbered at its initial point.

A sample of input data for a computer run with 6 rays is shown in Figure (4-2). Since the water depth contours are parallel, only one of the 64 columns of water depth values is shown in the rectangle labeled CMAT. The computer output for this run is presented in Section (4.6). Therefore, if desired, these input data can be used to check the computer program.

4.3 The Printed Output when NPT $\neq 0$. The most detailed computer printout is obtained when NPT $\neq 0$. The first thing that occurs in the printout is the page heading. This contains the PROJCT, date, plot number, ray period, ray number, input time step, friction factor, and KRTOL. If at the first ray point this is followed by a statement denoting whether English or Metric units are used in the output. Further, the initial value of the time derivative of the ray separation factor is given. The column headings appear next in the output. Beyond the first point of a ray the page and column headings occur after every 60 lines of additional printout.

The column headings identify the ray particulars which appear in the output. They contain the ray point number MAX, the ray coordinates X, Y, and the water depth H in meters or feet. The wave packet and wavelet directions are denoted, respectively, by PACK and WAVE. These are the directions in degrees from which the waves come with respect to true north. The distance in grid units between ray points is given by D, and FK is the packet ray curvature in radians per grid unit. The angle in degrees by which the x'y'-coordinate system is rotated with respect to the positive X-axis for computations is given by ALFA. The geometric group speed, collinear group speed, and phase speed are denoted, respectively, by G, U,

¹The initial ray points should be at least two grid units from a grid boundary.

a . a a a a a a a a a a a a a a a a a a																-			FRU	M COL	PY FL	RNI	SHE	DI	10	DC	-	
2.33488 -1.59683 -1.53683 0.4513 0.47360 0.47360 0.13138950 0.031318950 0.00011111111 0.01111111 0.011111111 0.011111111 0.011111111 0.011111111 0.011111111 0.01011111111 0.01011111111 0.01011111111 0.01011111111 0.01011111111 0.0100111111111 0.0001111111111 0.00011111111111 0.00011111111111 0.00011111111111 0.00001111111111111 0.000011111111111	-	1_																					0	0	0	0	0	0
3.334/88 -1.59(689 0.35) 0.413(68420.0.875 0.35) 1.554(69) 1.039(591 0.031(5842.0.1875 0.018(55		1								-	-					6 7	5	3 7	53				-	-	-	-	-	-
3.33 88 -1.59(683 -0.35(683 0.47(5832) 0.35(75) -0.15(7835) -0.18(75) 0.35 0.47(3)(6842) -0.18(75) 0.08(75) 0.08(75) 0.06(45) 0.06(45) 0.47(3)(6842) -0.18(75) 0.18(75) 0.018(75) 0.06(45) 0.06(45) 0.06(45) 0.47(3)(6842) -0.18(75) 0.018(75) 0.018(75) 0.018(75) 0.018(75) 0.06(45) 0.111 111 111 111 111 111 111 111 0.111 111 111 111 111 111 111 111 0.111 111<	1	1				_		-									3	3	+								-	~
3.38+188 -1.594894 0.355 0.4136842 0.655 1.594894 1.6394593 1.635184 -0.3157895 0.05157455 0.455 -0.315184 1.635184 -0.355 0.06425 0.4735 -0.1875 0.1857 0.1857 0.06455 0.4735 -0.1875 0.1857 0.1857 0.06455 0.47336842 0.1875 0.03157895 0.06455 0.06455 0.47336842 0.1875 0.03157895 0.06455 0.06455 0.111 1.111 1.111 0.01145 0.06455 0.111 1.121 0.01145 0.06455 0.06455 0.011 1.121 0.121 0.06455 0.06455 0.011 1.121 1.111 0.111 0.111 0.111 1.123 1.144 1.144 0.144 1.111 1.144 1.144 1.144 0.165 1.121 1.145 1.144 1.144 0.165 1.122 0.114 1.145 1.144 0.165 1.150 0.114 0.114	-	1	1								-	-				•	0	0	•				-	-	-	-	0	0
3.33 1.53 583 -1.53 583 -0.33 573 -0.33 573 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570 375 570	-	1	-													0	0	0	0				-	-	0	0	0	0
3.334188 -1.59489 1.003134 0.435 0.4136893 1.003134 0.355 1.59489 1.034134 -0.375 0.135 0.031575 0.01375 0.45 1.03154 -0.315 0.135 0.135 0.0635 0.4736842 -0.315 0.135 0.135 0.0645 0.0645 0.4736842 -0.315 0.0645 0.01 0.135 0.0645 0.4736842 0.1817 0.135 0.0645 0.01 0.145 0.11111 1.1111 1.1111 1.1111 1.1111 1.1111 0.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.1111 1.1111 1.1111 1.1111 1.1111 1.11111 0.1111		1	1										-			0-	do	3 3	+			5	-	1				-
3.23+83 -1.59683 -0.3518 -0.315 -0.13175 -0.13175 1.59683 -0.0315 -0.018175 -0.018175 -0.018175 -0.018175 0.455 -0.03157845 -0.18175 0.01157895 0.01157895 0.0125 0.4736844 -0.3157845 0.0125 0.01157895 0.0125 0.0125 0.4736844 -0.3157895 0.0125 0.01151 0.125 0.0125 0.4736845 -0.3157895 0.0125 0.0125 0.125 0.1111 1.111 1.111 1.111 1.111 0.1111 1.111 1.111 1.111 1.111 0.111 1.111 1.111 1.111 1.111 1.111 0.111 1.111 1.111 1.111 1.111 1.111 0.111 1.111 1.111 1.111 1.111 1.111 1.111 0.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.1111 1.1111 1.111<	-	-	-			-		-			-	-				5	5	5	5				-	_	-	_	_	_
3.13 3.153 3.153 3.153 3.153 3.153 1.55 1.63 1.63 1.63 3.135 3.153 3.153 1.55 1.63 1.63 1.63 3.153 3.153 3.153 3.153 0.473 2.0.315 3.153 0.135 0.013 5.00 0.0645 0.0645 0.473 3.153 0.135 0.013 5.00 0.0645 0.0645 0.0645 0.111 1.11 </td <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>3</td> <td>e</td> <td>4</td> <td>2</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		1	1						-			_				3	e	4	2				0	0	0	0	0	0
3.125483 -1.59683 1.639184 -0.3157895-0.815 1.56983 1.689733 1.035184 -0.3157895-0.8157 0.4736843 -0.03157895 0.01875 0.01875 0.01875 0.4736843 -0.03157895 -0.1875 0.01875 0.06855 0.4736843 -0.1875 0.01875 0.01875 0.06855 0.4736843 -0.1875 0.01875 0.01875 0.06855 0.1111 1.2.2.3.3.3.3 0.00825 0.01855 0.01875 0.01111 1.2.2.3.3.3.3 0.00825 0.01855 0.01875 0.01111 1.2.2.3.3.3.3 0.000 0.1855 0.01875 0.01111 1.2.2.3.3.3.3 0.000 0.1855 0.01855 0.01111 1.2.2.3.3.3.3 0.000 1.1 1.1 1.1 1.2.2.3.3.3.3 0.000 1.1 1.1 1.1 1.2.2.3.3.3.3 0.00 1.1 1.1 1.2.2.3.3.3.3 1.2.2.3.3.0 0.01 1.1 1.1 1.2.2.3.3.4 0.00 1.2.5.3.5 0.00 1.1 1.1 1								-					-	-		00	20	3 2	+	-			0	0	°.	0	0	•
3.13 1.59 689 0.35 0.47 0.47 0.475 0.01875 0.01875 0.35 1.687 1.687 0.187 0.01875 0.01875 0.0535 0.0535 0.35 1.687 0.1875 0.01875 0.01875 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.185 <td></td> <td>1</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1.1</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		1	-		-								_		_	0	0	0	0	1.1			0	0	0	0	0	0
2.123488 -1.59689 -0.35 0.4736842 0.35 1.53689 1.683593 1.035184 -0.3157895-0.1875 0.0375 0.35 -0.1875 -0.1875 0.0375 0.0375 0.4736842 -0.3157895-0.1875 0.0375 0.0375 0.0625 0.0375 0.4736842 -0.3157895 -0.1875 0.0125 0.00125 0.0375 0.4736842 -0.3157895 0.0125 0.00125 0.0375 0.411 -0.111 1.111		-	-									-				5	5	5	2							-		
2.123488 -1.59689 0.35 0.375 -0.3157895 0.355 1.59689 1.036184 -0.3515 0.1875 0.01875 0.0355 0.45 -0.3157895 0.1875 0.01875 0.01875 0.01875 0.4736842 -0.3157895 -0.1875 0.01875 0.01875 0.01875 0.4736842 -0.3157895 -0.1875 0.01875 0.01875 0.01875 0.41111 1111 1111 1111 1111 1111 1111 0.1111 1111 1111 1111 1111 1111 1111 0.0111 1111 1111 1111 1111 1111 1111 0.0111 1111 1111 1111 1111 1111 1111 1111 0.0111 11111 1111 1111		-						-				_	_	-	-	5	o	- 8	3							-		_
2.23 2.25 689 0.35 0.47 5884 0.35 1.55 687 1.68 53 1.03 5187 0.18 75 0.55 687 1.68 53 0.18 75 0.03 5787 0.03 5787 0.55 60.31 5789 0.01 5789 0.03 5789 0.03 5787 0.473 6842 -0.31 5789 0.04 5 0.06 25 0.413 6842 -0.18 75 0.06 25 0.06 25 0.11 11 <t< td=""><td></td><td>1-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>0</td><td></td><td>5</td><td>5</td><td>5</td><td>5</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>		1-	1						-	-				0		5	5	5	5					-				
2.123 + 188 -1.59 683 -0.315184 -0.3151845 -0.1815 -0.			-		-		-	-								-			-	+	-	3	-		-	-	0	0
2.2.25 + 28 -1.5 9 6 8 9 0.35 0.47 3 6 8 9 3 3 0.35 7 8 9 5 - 0.18 7 5 0.03 7 5 1.5 9 6 8 9 1.0 8 9 5 9 3 1.0 3 5 1 8 4 -0.3 1 5 7 8 9 5 - 0.18 7 5 0.0 6 3 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 6 3 7 5 0.0 1 8 7 5 <td< td=""><td></td><td>5</td><td></td><td>5</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9</td><td>00</td><td>0</td><td>19</td><td>1</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>		5		5			-									9	00	0	19	1			0	0	0	0	0	0
2.223 + 188 -1.59 (689 0.035 0.475 -0.3157895-0.1 1.59 (689 1.689 (593 -0.1875 -0.3157895-0.1 0.125 -0.3157895-0.3157895 -0.3157895-0.0 0.0 0.125 -0.3157895-0.3157895 -0.1875 -0.31052463 0.0 0.111 11.11 11.11 11.11 0.0 0.125 0.0 0.0 0.125 -0.1875 -0.3157895-0.3157895 0.06 0.1 0.0 0.0 0.111 11.11 11.11 11.11 11.11 11.11 0.1 0.0 <td>G</td> <td>1 00</td> <td>15</td> <td>9</td> <td></td> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>t</td> <td></td> <td>0</td> <td>-0</td> <td>0 3</td> <td>50</td> <td>+</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	G	1 00	15	9		35								t		0	-0	0 3	50	+			-					
2.2.2 4.2.2 6.83 0.25 0.473 6.84 0.135 1.035 1.035 1.035 1.035 1.035 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.111 1.	3	5 -	3	0	0	-															1	2	0	0	0	0	~	0
2. 2 3 4 8 -1.59 6 89 0. 35 0. 47 3 6 8 9 5 3 0. 47 3 6 8 9 5 3 0. 47 3 6 8 9 5 3 0. 13 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 18 7 5 0. 47 3 6 8 9 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 31 5 7 8 9 5 - 0. 12 5 0 - 0. 6 2 5 0 - 0. 6 2 5 0 - 0. 6 1 2 5 0 - 0. 6 1 2 5 0 - 0. 6 1 2 5 - 0 - 0 1 2 5 - 0 - 0 1 2 5 - 0 - 0 1 2 1 - 0 - 1 2 - 0 - 0 1 2 1 - 0 - 1 2 - 0 - 0 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0	0	0	0	0	0										9	8	0	90									
2.23348 -1.59689 0.35 0.47 0.43 1.59689 1.68953 1.035184 -0.315 578 0.473684 -0.315 51845 -0.315 578 0.4736842 -0.315 57895 0.135 57895 0.4736842 -0.315 57895 0.0135 0.021 0.4736842 -0.3157895 0.0135 0.021 57895 0.4736842 -0.3157895 0.0135 0.021 57895 0.4736842 -0.3157895 0.0635 0.021 57895 0.11 11.1 11.1 11.1 11.1 11.1 0.01 11.1 11.1 11.1 11.1 11.1 1.1.1 11.1 11.1 11.1 11.1 11.1 0.01 11.1 11.1 11.1 11.1 11.1 1.1.1 11.1 11.1 11.1 11.1 11.1 1.1.1 11.1 11.1 11.1 11.1 11.1 1.1.1 11.1 11.1 11.1 11.1 11.1	d	1	5		3									_	10	10	- 5	53	+				3	3	3	3	ŝ	3
2.23 2.33 689 0.45 0.47 368 0.47 368 1.59 689 1.68 9593 1.03 618 -0.37 5 -0.31 578 0.473 689 1.68 9593 1.03 618 -0.31 578 -0.31 578 0.473 6842 -0.31 5789 5 0.125 0.00 0.03 578 0.473 6842 -0.31 5789 0.01 25 0.00 0.03 0.11 1.11 1.11 1.11 1.11 1.11 1.11 0.01 0.053 0.13 578 0.01 873 0.315 0.06 0.00 0.03 0.14 1.11 1.11 1.11 1.11 1.11 1.11 0.13 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	÷	- 0-	a		9							_			-		•	•	;	11	1					1		
2.23 2.23 689 -1.59 689 0.47 3 1.59 689 1.68 9593 1.03 6184 -0.375 -0.315 0.473 689 1.03 6184 -0.375 -0.315 -0.315 0.473 6842 -0.3157895 0.1875 0.0125 0.00 0.473 6842 -0.3157895 0.3157895 0.00 0.310 0.11 111 111 111 111 0.00 0.01 0.11 111 111 111 111 0.00 0.00 0.11 111 111 111 111 0.00 0.00 0.00 0.11 111 111 111 111 111 0.00 0.00 0.00 0.00 0.11 111 111 111 111 111 111 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <t< td=""><td>9</td><td>28</td><td>50</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53</td><td>C L</td><td>9 2</td><td>- 3</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	9	28	50		5											53	C L	9 2	- 3					-				
3. 33 + 88 -1.59 689 0.35 0.47 1. 59 689 1.68 9593 1.03 6184 -0.375 -0.3 1. 59 689 1.03 6184 1.68 9593 1.03 6184 -0.375 -0.3 0. 45 -0.3157895 -0.1875 0.1875 -0.3 0. 473 6842 -0.3157895 -0.3157895 0.0625 0.0 0. 473 6842 -0.3157895 -0.3157895 0.0 0.2 0. 1.1 1.1 1.1 1.1 0.0 0.2 0. 1.1 1.1 1.1 1.1 0.0 0.0 0. 0.1 1.1 1.1 1.1 0.0 0.0 0. 0.1 1.1 1.1 1.1 0.0 0.0 0.0 0. 0.1 1.1 1.1 1.1 1.1 0.0 0.0 0.0 0. 0.1 1.1 1.1 1.1 1.1 1.1 0.0 0.0 0.0 0.0 1.1 1.1 1.1 1.1 0.1 0.0 0.0 0.0 0.1 1.1 1.1 1.1 0.1 <td>-</td> <td>2</td> <td>5</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>0</td> <td>-</td> <td>3</td> <td>+</td> <td></td> <td></td> <td></td> <td>-0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	-	2	5		0									-		0	-	3	+				-0	0	0	0	0	0
3. 33 + 83 -1.59 689 -1.59 689 0.35 -0.375 -0.0 1. 59 689 1.68 9593 1.03 5184 -0.375 -0.0 1. 59 689 1.03 5184 1.68 9593 1.03 5184 -0.375 -0.0 0. 45 -0.3157895 -0.18 75 0.125 0.0 0 0. 473 6842 -0.3157895 -0.3157895 0.125 0.0 0. 473 6842 -0.3157895 -0.3157895 0.125 0.0 0. 11 1.1.1 1.1.1 1.1.1 0.125 0.0 0. 11 1.1.2 1.1.1 1.1.1 0.125 0.0 0. 0.1 1.1.3 1.1.1 1.1.1 0.1 0.0 0. 0.1 1.1.1 1.1.1 1.1.1 0.1 0.0 0. 0.1 1.1.1 1.1.1 1.1.1 0.1 0.0 0. 0.1 1.1.2 1.1.4 1.1.4 0.1 0.0 0. 0.1 1.1.1 1.1.1 1.1.1 0.1 0.0 1. 0.1 1.1.1 1.1.1 1.1.1 0.1 0.0	÷		3	0	~	0	-	-	-													-		·	•			
3	.0		0	0	0			-		-		5			-	45	65	8 5	05	1-1-			5	33	6 5	000	00	30
2	-	1	1	1										_			-	10	+		_		-		-		3	4
2		+	-	-	-				-							5.	5	. 5	. 5	1-1	1	0	1			1	1	
2	_	1	1.0					-								5	5	2	-			31 .	0	0	0	~	~	~
a. a a + 88 -1.59 6 89 -1.59 6 89 0. a 5 1.59 6 89 1.68 9 5 3 3 1.03 5 1 8 4 -0.31 7 1.59 6 89 1.03 5 1 8 4 -0.18 75 0.1 a 0.47 3 6 8 4 a -0.31 5 7 8 9 5 - 0.18 75 0.1 a 0.47 3 6 8 4 a -0.18 75 -0.18 75 0.1 a 0.47 3 6 8 4 a -0.18 75 -0.18 75 0.1 a 0.11.1 1.1.1 1.1.1 1.1.1 0.1 a 1.11 1.1.1 1.1.1 1.1.1 1.1.1 0.0 b 1.11 1.1.1 1.1.1 1.1.1 1.1.1 0.1 a 1.11 1.1.1 1.1.1 1.1.1 1.1.1 0.1 a 1.11 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 0.1 a 1.11 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 <td< td=""><td></td><td>5</td><td>5</td><td>10</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td>-</td><td>3</td><td>3</td><td>11</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		5	5	10		5								0	0		-	3	3	11		-						
a. a a + 88 -1.59 689 -1.59 689 1.03 5184 -0. 1.59 689 1.68 9593 1.03 5184 -0. 0.45 689 1.68 9593 1.03 5184 -0. 0.473 6884 -0.3157895 -0.18 75 0. 0.473 6884 -0.18 75 -0.18 75 0. 0.473 6843 -0.18 75 -0.3157895 0. 0.11.1 1.11.1 1.11.1 1.11.1 1.11.1 0.11.1 1.11.1 1.11.1 1.11.1 1.11.1 0.01 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1<	57	55	00	5	0	90					_				-	0	0	•	0				12	23	65	30	00	30
a . a a b a a a . a b a b a a . a a b a b a a . b a b a						•				_				0		0	0	0	0						-	-	~	5
a. aa + 88 -1.59 689 -1.59 689 1.68 9593 1.03 5184 1.59 689 1.68 9593 1.03 5184 1.68 9593 0.455 689 1.68 9593 1.03 5184 0.455 6842 -0.31 57895 -0.18 75 0.413 6842 -0.18 75 -0.31 57895 0.413 6842 -0.18 75 -0.37 5 0.11 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .00.1 1.11 1.11 1.11 .01 1.11 1.11 1.14 .01 1.14 1.14 1.44 .01 1.14 1.14 1.44 .01 1.14 1.14 1.44 .05 1.	0	1	1	0	0	0					-			ŝ		3	- 2	5 2	39			0						
a. a3 + 88 -1.59 689 1.03 5184 1.59 689 1.03 5184 1.03 5184 0.45 -0.315 -0.1875 0.45 -0.3157895 -0.1875 0.473 6842 -0.3157895 -0.1875 0.45 -0.1875 -0.1875 -0.1875 0.473 6842 -0.1875 -0.1875 0.473 6842 -0.1875 -0.1875 0.475 -0.1875 -0.375 -0.375 0.11 1.1<1					5		-		-				×			5	5	5	5	T			0	0	0	0	0	0
a . a a b a b a b a b a a a a a a a a a a a a a a a a 	0	- 00	9		00								d.			3	5	d	d			0						
2.23+88 -1.59689 1.689593 1.03 1.59689 1.689593 1.03 0.35 -0.375 -0.18 0.473689 -0.1875 -0.18 0.35 -0.1875 -0.18 0.35 -0.1875 -0.37 0.35 -0.1875 -0.18 0.35 -0.1875 -0.37 1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	6 8	5 - 6	5	15	53	5		-	-				AV	tre	0	3	14	36	3 80			+	60	60	90	60	3	3
a . a a a a a a a a a a	0		00	00	-	5							3	•		0	0	0	0			1						
2. 23 + 88 -1.59 6 89 1.68 9 59 3 1 1. 59 6 89 1.03 6 18 4 1 0. 25 -0.375 -0 0. 25 -0.375 -0 0. 25 -0.18 75 -0 0. 25 -0.18 75 -0 0. 25 -0.18 75 -0 0. 25 -0.18 75 -0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	4						-	~	3	5	, o	+			5	5	5	5	5			0				-	- 1	-
2. 23 + 88 -1.59 6 89 1.68 9 59 3 1. 59 6 89 1.68 9 59 3 0. 25 -0.375 0. 47 3 6 84 2 - 0.375 -0.375 0. 47 3 6 84 2 - 0.375 -0.18 75 0. 25 -0.18 75 0. 1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-		-	0	0	0	-	3.	-		3.	-			5	-	3	2.5	3 7			0	0	0	0	0	0	0
2. 23 + 88 -1.59 6 89 1. 59 6 89 1. 68 9 59 3 1. 59 6 89 1. 68 9 59 3 0. 25 6 89 1. 68 9 59 3 0. 25 6 89 1. 68 9 59 3 0. 25 6 89 1. 68 9 59 3 0. 25 6 89 1. 68 9 59 3 0. 25 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1	Γ.		5		•		•		•	•	-			5	5	5	5			0					;	-
a . a a a k 8 a b 8 b b 8 b b 8 b 1 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 8 b 1 b 8 b 1 b 8 b 1 b 8 b 1 b 8 b 1 <	0	. 0.	1 8		89			3			. 6	·	0			-	-	-	-			5	3	1	a	3	+	+
2. 23 + 88 -1.59 689 1.68 1. 59 689 1.68 0. 25 -0.31 68 0. 25 -0.13 68 1.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1.1 -0.18 .0.1.1.1.1.1 -0.18 .0.1.1.1.1 -1.11 .0.1.1.1 -1.11 .0.1.1.1 -1.11 .0.1.1 -1.11 .0.1.1 -1.11 .0.1.2 -1.11 .0.1.2 -1.11 .100 -1.25 .25 -1.25 .25 -0.01 .25 -1.20 .25 -1.20 .25 -1.20 .25 -1.20 .25 -0.01 .25 -0.01 .25 -1.20 .25 <t< td=""><td>x</td><td>2 5</td><td>-</td><td>10</td><td>5</td><td>12</td><td>-</td><td>10</td><td>-6</td><td>+</td><td>+</td><td>+</td><td></td><td></td><td>0</td><td></td><td>10</td><td>ナカ</td><td>3 0-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	x	2 5	-	10	5	12	-	10	-6	+	+	+			0		10	ナカ	3 0-				-					
2. 2 3 + 8 8 -1.5 1. 59 6 89 1.6 0. 25 6 89 1.6 0. 25 -0.3 6 84 3 - 0.3 0. 25 -0.3 -0.3 0. 25 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.1 1.1.1 .0.1 1.1.2 2.00 .15 2.0 3.3.5 2.00 .15 0.0 3.00 3.00 .100 2.0 2.00 2.00 .100 2.0 2.00 2.00 .100 2.0 2.00 .100 <td>0</td> <td>- 00</td> <td>3</td> <td>L</td> <td>-</td> <td>00</td> <td>-</td> <td>3</td> <td>-</td> <td>+</td> <td>3</td> <td>-</td> <td>3</td> <td>5</td> <td>•</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	0	- 00	3	L	-	00	-	3	-	+	3	-	3	5	•	0	0	0	0			0	-				-	
2.23+88 -1 1.596889 1 1.596889 1 0.25 8842-0 0.25 8842-0 0.111111111 .02111111111 .02111111111 .02111111111 .11111111 .02111111111 .1111111 .02111111111 .111111111 .11111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .1111111 .111111 .111111 .111111 .111111 .111111	S.		0.			-	-	-1	.0	+	0	0	10		0 8	0	. 0	.0				0	0	0	0	0	0	0
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B A A A B B A A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B B B B <t< td=""><td>-</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>•</td><td>•</td><td></td><td>•</td><td></td><td></td><td>00</td><td></td><td>-</td><td></td><td>eq</td><td>+ 1</td><td>20</td><td></td><td></td><td>01</td><td></td><td></td><td>i</td><td>i</td><td>-</td><td>. 1</td></t<>	-			0	0	0	•	•		•			00		-		eq	+ 1	20			01			i	i	-	. 1
2. 23, 488 1. 596889 0. 259689 0. 259689 0. 25568 0. 25568 0. 25568 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-	1	-	-	5	1								-	+	5	5	5	5			10	100	3	-		-	-
A A <td>~</td> <td>-</td> <td></td> <td></td> <td>3 4</td> <td></td> <td>-</td> <td></td> <td>10</td> <td></td> <td>3</td> <td>+</td> <td>3</td> <td></td> <td>9</td> <td></td> <td>d</td> <td>ż</td> <td>à</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	~	-			3 4		-		10		3	+	3		9		d	ż	à	-								
A A A A A A A A A A A A A A A A A A A	04	0 00	00	-	e	-	-		-		-		æ	-		1	-	50)	5	1		0	1					
н	+	0 1	9	5	1 3	5	-	-	0	-	. 0	0	D D	9	t	0	0	0	0 3	+ + -		0	10	0	0	0	0	0
d00000d+ I ddddd	4	5 50	5	cel	+	eq	•		à						9						F	0	1.0					
	-	6 -	-	0	0	0							-				0	10	4	1	T		100	10	10	10	10	ró

Figure (4-2). SAMPLE INPUT DATA FOR A COMPUTER RUN

1

and V. The units are in meters/second or feet/second. The wave height is HGT in meters or feet. The shoaling coefficient is identified by KS, and KF represents the friction coefficient. The number of breakups, if any, of the initial time step is NO. The refraction coefficient is defined by KR. An estimate of how well the computed water bottom surface fits the actual water depths is given by PCTDIF (see the NOTATION). The smaller the value the better the fit. The units of H, HGT, G, U, and V are identified in the output.

The travel time along the wave packet trajectory does not appear in the output. However, it can be determined by subtracting one from MAX and multiplying the result by the input time step.

The ray particulars are printed out for the first ray point, those points which are an integral multiple of SK, and the last point. Printout occurs for a reflection point should one occur. Note that the number of ray points, NO, which occur when there is a breakup of the input time step interval is not counted in MAX. There is no printout for ray points which occur within a breakup.

If there is printed output and a ray is near a reflection point (Sections (2.3), b, (2.5), d, (3.8), and (3.9)) an asterisk appears in the printout to the left of the value of FK. If there is printed output when there is a breakup of the input time step interval due to the calculations of the refraction coefficient (Sections (2.5), c and (3.9)) an asterisk appears in the printout to the left of the value of KR. If there is no printout (SK > 1) the asterisk appears with the ray particulars for the next ray point where printout occurs. Only the asterisk with FK appears in the next printout should both conditions for an asterisk be satisfied at preceding ray points where there is no printed output. If the ray is at a reflection point (Sections (2.3), b and (3.8)) an asterisk occurs in the printout to the left of the value of MAX.

A number of descriptive printouts appear with the ray particulars when certain types of calculations occur or when a ray terminates. If the ray curvature of the wave packet is averaged in computing a ray point (Section (3.8)) the following printout appears.

(1) PACKET CURVATURE AVERAGED

If SK = 1 this descriptive printout follows the ray pariculars. If SK > 1 the descriptive printout occurs even if there is no printed output of the ray particulars. In this case, the curvature is averaged for a ray point between the ray points preceding and following the descriptive printout.

When there is a reflection one of three descriptive printouts occurs (Section (2.3), b).

(2) REFLECTION: SNELLS LAW WITH PHASE VELOCITY

(3) REFLECTION: PACKET CURVATURE ITERATION NOT CONVERGING

(4) REFLECTION: NEAR REFLECTION POINT

The ray point where one of these three descriptive printouts occurs is the last ray point if ROP = 0.

When a ray terminates one of the following descriptive printouts can appear in the output.

- (5) DIMENSION OF OUTPUT-ARRAYS EXCEEDED
- (6) RAY REACHED SHORE
- (7) RAY REACHED GRID BOUNDARY
- (8) PACKET CURVATURE ITERATION NOT CONVERGING
- (9) CAUSTIC OR FOCAL POINT
- (10) WAVE BREAKS
- (11) REFLECTION HANG-UP
- (12) BREAKUP TIME STEP LESS THAN 0.5 SECOND

Printout (5) occurs if the sum of the number of ray points and tick marks is equal to or greater than the array dimension MMAX. Printout (6) is obtained if the water depth becomes zero or negative. Printout (7) results if the ray point is within 1.5 grid units of a grid boundary. The conditions for a reflection point are not satisfied if Printout (8) occurs. Printout (9) is produced if the ray separation factor becomes zero or negative. The condition for Printout (10) is given in Section (2.7). Printout (11) is obtained if there are successive reflections at the same ray point. Printout (12) can occur if the calculation time step becomes too small in either calculating the ray path near a reflection point (Section (2.3), b) or in calculating the ray separation factor

4.4 The Printed Output when NPT = 0. When NPT = 0 there is printed output at only the first and last ray points. The page heading contains PROJCT, the date, and plot number. A statement signifies whether English or Metric units are employed. The column headings define the ray number N, the wave period, MAX, X, Y, H, PACK, WAVE, HGT, the input time step, the friction factor, and KRTOL. All of these ray particulars appear in the printed output at the first ray point. At the last ray point the input time step, the friction factor, and KRTOL are not repeated. In their place is a descriptive statement which explains why the ray terminated.

When NPT = 0, Printout (1) does not appear. There is no descriptive printout for a reflection unless the reflection occurs at the last ray point (ROP = 0). Then the following descriptive printout occurs.

(13) REFLECTION

The remaining descriptive printouts are the same as discussed in Section (4.3).

4.5 The Plots. Each plot contains a label consisting of PROJCT, the date, the scale factor, the time in seconds between tick marks on a ray, if any, the plot number, and DIR. If NAX \neq 0 the axes of the plot are calibrated and labeled. If NSH \neq 0 the shoreline is drawn. If NCO \neq 0 sounding water depth values are labeled. Each ray is numbered. If FAN = 0 the number appears at the initial ray point, and if FAN \neq 0 the ray is numbered at its terminal point.

4.6 Examples of Computer Output. Figures (4-3) through (4-8) show the printed output for the 6 rays of the sample input data presented in Figure (4-2). The plot of the rays is shown in Figure (4-9). The examples illustrate rays beginning both at an intermediate water depth and in deep water. Three different wave periods are considered. The second ray undergoes a reflection (Section (2.1), b and Section (2.5), d). For the last two rays the friction factor is assumed to be zero. Tick marks and sounding water depths are shown on the plot.

Figure (4-10) shows a portion of the Gulf of Mexico off the southwestern Florida coast. A water depth grid was prepared for this region with GRID = 14886.2 feet (4.537 km) and CNVRSA = 180°. A ray plot for this region is shown in Figure (4-11). Figure (4-12) contains the printed output for this plot when NPT = 0. The first two rays start at an intermediate water depth, whereas the remaining rays begin in deep water. Figure (4-13) displays printed output for the first portion of ray number 1. Since the water depth contours are not parallel there is a variation in ALFA.

Ray number 2 has a reflection. Figure (4-14) shows a listing of the ray particulars near the reflection point. The wave packet and wavelet angles in the xy- and x'y'- coordinate systems are defined by Equations (3-1), (3-2), (2-26), and (2-27). At the reflection point the angles in the xy-coordinate system are $\theta_C = 274.86^\circ$ and $\gamma_C = 1.94^\circ$. In the x'y'-coordinate system $\theta' = 2.41^\circ$ and $\gamma' = 89.49^\circ$.

Ray number 12 illustrates the importance of examining the ray particulars in the printout. Figure (4-15) shows the printed output for this ray. A message in the output states there is a reflection. However, a reflection is not likely since H, θ' , γ' , FK, and G do not exhibit the behavior characteristic of a reflection. At the ray point where the reflection is indicated $\theta' = 115.78^{\circ}$ and $\gamma' = 117.52^{\circ}$. This false reflection is the result of a large change in ALFA between successive ray points. When this occurs the water depth grid is not sufficiently detailed to adequately represent the changing water depth contours.

PCTOIF .001000 -2.201E-04 KRTOL= 11 .100000. 10 BE TAI / ŏ CF = • 0 0 25. TAT= DEL -0N RAY 20.0SEC. G.U.V (METFR/SECOND) PERION= -ON H, HGT (METER) PLOT UNITS 78/33/03 METRIC 3 NI PAR IS NO. DUTPUT PROJECT

¥ 2 ¥ S ¥ > \supset 0 ALFA × 0 ŝ AM PACK T > × XTX THE

** Comparison of the second -80 и орог погатело и орог погатело и орог погатело и орог погатели и погате Погатели и пос 00044444NNNNNK MMMMM333333 את אשמי הסדי ומפוש אדם אממר הדיורם סדי המדד בוחד שמש משו ממדד בפפים אדי המדיר במדי ממש את אמתי בסיים דעד המדימ את היה את המש אא אמתי בסיים דעד המחימת הממממה היה הדיור WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW אשענטרועעגיזהיאשוטאעערשאנט געכשט ארסגג געיירועגיזייעעער ערמאר געני ארגגעשייט 89450004404404523996800996655080 45/602399440497998880099655050 46.45/023994448054593569890998945 9000000454545

THIS PACE IS BEST QUALSTRE PROCESSION COPE STORE ABOM COLLA FACE IN THE OF A COLLAR FACE

> E-1 _ AMPI S OF Н R [1] B MUN RAY FOR DATA STING TUPUT H -3 -+) gure FI

TO DOG PRACTICABLE	001000	E-04		
CET QU	· = 10	64	x x ****** 0 0 0 0 0 0 0 0 0 0 0 0 0	
PAGE IS BE OPY FURMAL	0U.N. KRTC	- = 10/0	້ ແ ແ ແ ແ ແ ແ ແ ແ ແ ແ ແ ແ ແ	
THIS] FROM C	CF= .100	D(BETA)		
	25.00,		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	2.1			5
	ON 104		AUNDORAL OLD AND AND ALL AUNOLOGIAL AUNOLOGIAL AND	
	3 SEv	. (CN0	20.2444444000000000000000000044444440203	
	P5K100= 2	V (4 STER/ SEC		
	T NO. 1.	Ex). 0.U.		
	PLO	1, HU I L MET	Properties of the second secon	
	781.31	TRIC UN	שמים שאיר אירד ביר אייר אייר אייר אייר אייר אייר אייר	
	PAR 2.	N NI S	ພັດທີ່ທີ່ແກ່ນ ກາງ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	CT NO.	UTPUT I	הע ארפוסאת יות ומאמע דר על אני ארמי מער מער מאמאר מישארים אמרבפיר משמע המעשעי ארבי אמר א אמיני מאמאר אראי מאמים מארבפיר אומנין ויעי מא אמיני אראי מאמים איין איין אמיני מאמארים	
	Broad	0	אראשיני איז איז איז איז איז איז איז איז איז אי	

Figure (4-4). LISTING FOR RAY NUMBER 2 OF SAMPLE INPUT DATA

• ¥ 69

	CTDIF	53555555555555555555555555555555555555	00.666
	-	44444444444444444444444444444444444444	.9828
	NO KR	*** €00	**
- = 10/		444444 444444	.0260
DI BE TA)	¥,	 ✓ ✓	2.4810
	T KS	р шантадариодина Камартилникериооо 1.00840040041040000000000000000000000000	D SHORE
	HG	24444444444444 277777777777777777777777	1.53
	3	00000000000000000000000000000000000000	1.52
	D	NNN9440000000000 MMM3400000000000000 676666666600000000000000	1.52
	U		00
SECOND)	ALFA		:
I (METER/	~	00040040000000000000000000000000000000	- R. 03E-0
s). G.U.	Ľ	00000000000000000000000000000000000000	5.08E-02 -
HGI (METE	HAVE D	44040000000000000000000000000000000000	178.79
H .PTINU	PACK		24 177.06
TRIC			
NI	•	01100000000000000000000000000000000000	53.59
UTPUT IS	*	00000000000000000000000000000000000000	2. 43
0 HH	X X TH	ALDONONONONONH ALDONNE EMMONHE	16

DELTAT= 25.00, CF= .100000, KRTOL= .001000

÷.

.0N

RAY

PERICO= 12.0 SEC.,

1.

.0N

PLOT

.

2. 78/33/01

PAR

PROJECT NO.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

SAMPLE OF e RAY NUMBER LISTING FOR INPUT DATA . (4-2) Figure

PCTDIF ·6613 ¥ ***** * 0 0:050000 ** 0N 0-11 0483 TO/(AT ¥ BE õ K S HG T 44 $\begin{array}{c} \mathbf{u}_{\mathbf{u}} \\ \mathbf{u}_{\mathbf{u$ > A A \supset COMPANDIAL CONTRACTION CONTRACTOR CONTR 0 - 00 TER/SECOND ALFA 0 0 + 8 3E (MF -1-5 .U.V X 20-5.97E METER 0 22 ŝ AVE 94. 27 r + 5 PACK SIIND 33 10 X T ¥ NI SI > 5 8 8440388890 0544044084898489849849886 5 88458864994499449944994944949846468 8 8845864999449944994499494494686 8 88458649999 8 884586499 8 88458649 8 884584 8 88458 1nd 00 ×

.001000

KRTOL=

.

CF=

25.00.

11

DELTA

3

·ON

RAY

12.0SEC.

PER I 00=

1 .

·UN

PLOT

78/03/01

N

PAR

.0N

CT

ROJE

THE

 HARD CONF. IS DEST OUT HILL THE PRACTICAL

F1] SAMPL] OF # N NUMBE. RAY R F0] DATA STING PUT TT NI . 91 E ure 60 E F

.00100 = KRTOL CF=0.00000. •00 25. TAT= DEL 5 NO RAY 17.0SEC., PERIOD= -NO PLOT 78/03/01 N PAR ·ON PROJECT

0-

11

BE TA 1 / DT

ă

ER / SECOND) .U.VIMET 0 . (METER) н, нGT UNITS. IC x LU M ZI IS OUTPUT THE

00 б Ф Ф PCTDI . 666 9689 × * * * * t ton 2 0 000 ¥ 6865 N s ¥ ш PH w > \supset 0 MWW/N/N/N/N/HHHHHHHH ALFA 01 0 1E 5 ¥ .13E-02 0 0 36 WAVE 182.67 PACK CONTRACT AND A THORN AND 52. T 62. 10 > × MAX 72

18

TROW COLVER IS BUSIN OURITRY PROCESSING SAMPLE OF 5 R

NUMBE RAY FOR DATA LISTING INPUT DA (1-4) ure 60 EJ.

	CTDIF	00000000000000000000000000000000000000	00*666	A THIS
	۵.	44444444444444444444444444444444444444	•8696	CALL TS BEE
	×	****		A SHI DI
•	ON	0 5 5 - 10	90	A A A A A A A A A A A A A A A A A A A
/ 01 = -			1.0000	Duc the case
D (BE TA)	KF	7+70 3430007500300000000000000000000000000000	2.6016	- Halis
	× N		1	
	IG T	00-4415-984069901004949000000000000000000000000000	6.7868	E F
	T	CONSTRUCTION OF CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION	1.97	SAM
	>	0000005 4M0 M055 7400000 M000000000000000000000000000000	1.02	6 0F
	n	80000000000000000000000000000000000000	1.96	MBER
	U	MMMMAINNAINNAIAAAAAAAAAAAAAAAAAAAAAAAAA	0	NN
. (UNO	FΑ		0	RAY
VISEC	AL	44900000000000000000000000000000000000	-01	FOR TA
(METER		ໝາຍສະຍາດ ເພິ່ງ ເປັນເພິ່ງ ເພິ່ງ ເພິ	8.86E	ING T DA
1.0	Ч		N	ST
). 5.		1431370000000000000000000000000000000000	•-54E-0	LAL.
TER	0		2	8
HGT(ME	AVE	535,568666,6667,5676,6688,568,5 0.3569,556,555,567,50,170,500,568,5 0.3569,556,555,567,50,170,500,568,5 0.3569,568,66,657,567,500,568,500,568,5 0.3569,568,66,657,567,500,568,500,500,500,500,500,500,500,500,500,50	182.73	e (†
S. н,	X	80000000000000000000000000000000000000	85.40	Figur
INN DI	PA	AUMANANA A CONTRACTOR AND A CONTRACTOR	. 40	
ETR	I	NNNNNNNHHHHHHH		
W NI .		A A F B B BH M A AN MORPHIA AD DE C A F C POC AF AND AND A COLAR ME COLAR D AND D D D A AND AND AND AND AND A COLAR ME M MANAMANANANA AND F F F F	39.18	* 2 2 W
13	*	O44 THM NHO COM HOUNDALL NO JOJA	5	ω Ι
Indi			2 . 0	51
THE CL	X XTH		121	н Г Г

6, DELTAT= 25,00, CF=0,000000, KRTOL≈ .001000

PLOT NO. 1, PERIOD= 17.0 SEC., RAY NO.

.

PROJECT NO. PAR 2, 78/03/01

Figure (4-9). PLOT FOR SAMPLE INPUT DATA

GULF OF MEXICO OFF THE SOUTHWESTERN FLORIDA COAST Figure (4-10).

PRØJ. NØ. GØM 3, 78/03/01 SCL = 1/3179692, CIN = 0 PLØT NØ. 2, DIR. = WAVPAK

Figure (4-11). PLOT OF RAYS OFF THE SOUTHWESTERN FLORIDA COAST

		1 OL	DC1005 RAY REACHED GRID BOUNDARY	DUIDUD BREAKUP TIME STEP LESS THAN Q.5 SECOND	DUIDUO RAY REAGHED SHORE	OUTOOG BREAKS	DC1000 HAVE BREAKS	UDICOC MAVE BREAKS	DO1000 HAVE BREAKS	ODADOE BREAKS	QUIUCO HAVE BFEAKS .	GJ1000 HAVE BREAKS	DDLDDD MÅVE BREAKS	CO1000 REFLECTION	
		CF KF	. 00500.	. 005000	. 635369 .	. 005000	. 005000	. 005000	.002000	. 005000 .	. 005000.	. 005000	. 005000	.00500.	
	. (QNO)	ELTAT	50.00	50.00	50.30	00.00	50.03	50.00	50.00	50.00	50.00	20.00	50.00	50.03	
	FEETISE	1 0	5.0300	5.0000	5.0000	5.0303	5.3563	5.3723	5.2451	5.9992	5.3000	5.3360	5.0000	5.0400	
. 2	6.0.1	AVE HO	30.00	340.55	243.51	249.39	249.63	256.49	270.00	241.50	226.14	254.53	252.36	269.48	
PLOT NO	(FEET).	A NOK	30.03	3 39.42	277.29	254.32	253.75	268.84	259.49	244.79	270.00	2 7 0 . 93	2570.03	271.22	
	н, н.	a	14.74.74	234.53	741.43	779.94	844.32	877.93	1012.37	1188.23	1620.53	2375.57	53.96.55	3720.83	
13/01	STINU H	I	46.00	46.00	10.00	10.00 58.21	10.00	10.30	10.00	10.13	10.73	10.00	74.13	34.91	
. 78/	ENGLISI	×	56.12	5.00 36.78	8.10 9.10	12.00	17.07	22.32	24.00	590 590 590	32.00	36.00	40.00	44.00	
. 60M	IS IN	MAX X	736	572	424	434	455	477	4.671	5.7	573	576	5 20 10	239	
ECT NO	TUTPUT	ERIOD	12.0	12.0	12.9	12.3	12.0	12.0	12.0	122.0	12.0	12.0	12.0	12.0	
PROJ	SHL	a. z	-1+1	20	(MCM	\$ \$	50	0.0	~~	a 00	თთ	14		12	

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COFY FURNISHED TO DDC

Figure (4-12). LISTING OF RAYS WHEN NPT

0

-

THIS IS THE END.

		CTOIF	11.95		0051 00.1	2.17	1010	200	2.22	200	1.28	1.49	1.61		20.34	2.15	FI 100	NON SUL	1.000	PY OL T	FUR 26.7	NIS	1EL 9.9.7.	1. 	O DDC	
00100	E-05	Ľ	11-1-000 00400 00400 00400		1.0112	1.0118	1.0110		1.0128		1.0124	1.0119	1.0117		1.0107	1.00.1	1.0020	1000	106	.9803	. 9638	9499	. 92 41	5122	2 9 9 4 8 2 9 9 4 8	
• = 10	4.694	ND KR	**	5*											***		1	*		1.		5.	•••	**	***	•
130. KRT	- = 10/		1. 666 99980 99980 99980	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	- 2000 - 2000 - 2000	000 00 00 00 00 00 00 00	1000	. 5826	000 000 000 000	9900	.9796	.9791	C 8 1 0 .	2010	9776.	5115.	5773	1226.	. 9769	. 9767	. 9765	. 9764	. 9764	9763	
F= .0050	D(BETA)	KF	1.0355	. 9955	6.2.86	• • • • • • • • • • • • • • • • • • •	-000 -000 -000	0001 0001 0001 0001	. 9464	N8000	1266	. 9565	1.0001	11.000	1.00.96	1.0157	1.0010	1000	1.0359	1.0343	1.0428	1.0609	1.0795	1.1035	1.13221	
3.00.00		KS			121		000 000 000 000 000 000		+. 9082	000 000	9201	+ 9365			1000 1000 1000	0112	200 200 200 200 200	00000	0000						9458	
ELTAT=		10F	10.40 10.40 10.40		000	100 + 00 + 00 + 00 + 00 + 00 + 00 + 00 +	1000		533. 655 197. 655		000 	55.70	56.09	100	110	57.57	5000 - 200			58.256	00.00 00.00 00.00	59.58 .788	59.56 60.16	10.37	00000000000000000000000000000000000000	
1.0		>	0000 0000 0000	0.00 0.00 0.00 0.00 0.00	66.80 60.80	0.00		56.73	0.00	100	20.02	56.15	10.02 10.01	22. 20. 20. 20. 20. 20. 20. 20. 20. 20.		55.27	35.17		24-90 24-90 24-90	10. 10.	10.03	33.94	00. 20. 20.	000	1010	
AY NO.		D	300.40		36.69	100	11.01 10.00 10.00 10.00	36.53	36.40	36. 25	35.86	35.67	35.52	322 322 322	34. 34	34.54	194. 194. 194. 194. 194. 194. 194. 194.	10.22		32.011	32.57	31.47	30.45 29.85	29.25	27.67	
.0SEC F	. (ONO	FA 0	-74.29	-67.25		-+6-62		-40.10	-53.45	1000	- 559 - 559	-69.90	-63.34	- 59. 19	100.10	-88.51	-84.75	129.07		-72.02	-72.65	-82.53	-83.14	-79.84	1900 - 01 1800 - 01	
RI00= 12	FEET/SEC	AI		2461 2461 2461 2461 2461 2461 2461 2461	10 10 10 10 10 10 10 10 10 10 10 10 10 1								.146-03		-37E-03					1000		1000 1000 1000 1000	. 69. 6-02		- 5985 - 5985 - 5987 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - -	
NO. 1. PE	. 5.0.4	ΓK	1000 1000 1000 1000 1000	2000					11			.205-01 -0	194-01			196-01				11 11 11 11			.02E-U1 -	- 82E-32		1
PL01	T (FEET	٥		1414 1414	mm mm		1111	100	400	1-1-1-	101	+++ + 0 t	210	0.40	1000	100				MC O	101	1.1.1 1.1.1	00	m	no no	
	н, нб	ENVE	201 23	100	1000	2000	222	75 22	70. 21	200	22.2	41 23	70 13	FT-1-	110	40 13	1 1 1 1 + U	111	10.0 10 10 10 10 10 10 10 10 10 10 10 10 10	71 15	111		14	Me tr	10.03	
101	UNITS.	PACK	1000 C	0.00			8.N.N.0 8.800	000	000		500	200	0.00	NMA		14 M.C.	~~~~~		10.00	55 MM	itt. mmi tot	100	NIN NIN		1000	2
78/33	GLISH		1 00 00 C	0.4 a	111	300 0		1010	0.1 0.1 0.1		200	6.0 6.0 6.0	164.0	NICO	10-4 0000 1+1+1	N 601		1.10	500	100	100	101 10 1000 1000	000	269.5	1900 1900 1900 1900 1900	
60M 3.	S IN EN	I	1000 100 100 100 100 100 100 100 100 10	101	100.0 	50C		10/01	11 M		112	20.02 20.02 20.02	36.90			36.01 36.01		100	100 100 100 100	35.57	20.02 24	100	5.0	71.06		
CT NO.	UTPUT I	*	0.10 0.10 0.000	200	000			240		100	999	17.71	19.22				101	100	100	26.96	1.00	1000 1000 1000	23.00	23.94	NO. TH	
FFOJE	THE O	MAX X	+10/04	100	0 M .	1000	10 C V		200	500 500 700	104	10		0 1 1 0 1 1 1 +++		0.01	- La		500	2:05	200	1000	11	110	2000	

1-7

THIS PAGE IS BEST QUALITY PRACTICABLE

TOIF			2.86
PC	сталаранованована 1 с таларанова андар 1 с таларанова андар 1 с таларанова андар 1 с таларанова 1 с таларанова	שרשסה שעריר הרצעשר הערוס אשסיג שואר סשפראט הראסשטיג שר משתרשטויה של המתחום הריקיי האם בסטפט היוטטוטנות הוד הר מתמשל בסורש בעוג שמות הריקיי האם בסטפט היוטטוטונות הוד הר הראה הראש בערוק הארא הארא הארא הארא הארא הארא הארא האר	• 6945
IO KR	алаанаанаалала	כ ד הדיקההההההההההההההההההההההההההההההההה	•
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	. 9754
KF KF	00000000000000000000000000000000000000		1.0247
T KS	10000000000000000000000000000000000000	a ມາດອອດທະນະນາດອີດທະນະ 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.4704
T			9.54
>	0.240.00.420.00.440.440.200 0.240.00.440.440.200 4444.4444.		53.74
2	246644200000000000000000000000000000000	ໞ຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺	33.74
LFA G	0.∞0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-7.0.67
FK AI	Contract 2 1880000000 Contract 2 188000000 Contract 2 18800000000000 Contract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.13E-01 -1.03E+00
HAVE D	Contraining and a contract and	ຬຬຬຬຬຬຬ຺ຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ	342.51
AC K	2 2 2 2 2 2 2 2 2 2 2 2 2 2	201201020102020201010202020102020202020	339.39
٥	1 1 1 1 1 1 1 1 1 1 1 1 1 1	า สามาระสาราราชายาย สามาระสาราราชายาย สามาระสาราชาชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระสาราชายาย สามาระส	234.53
I	00440000440000040000 000044000044000 0000440000044000 000000	NUMPLE CONTRACTOR NONNONNONNONNONNONNONNONNONNONNONNONNON	32.50
*	20 00000000000000000000000000000000000	຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺ ຑຬຌຑໞຬຬໞຬຏຩຬຨຉ຺ຌຎຑຬ຺ໟຌຏຬຑຎຬຬຬຉຌຬຬຬຑຑຑຑຑຑຑຑຑຑຑຑຎຎ ຏຬຌຑໞຬຬໞຬຏຬຏ຺ຌຎຑໞຬໞຬຉຬຬຬຬຬຬຌຬຬຬຑຑຑຑຑຑຑຑຑຑຎຑຑຎ ຬຒຬຒໟຑຬຏຌຒຌຎຑຌຌຒຑຌຌຌຏຌຬຬຎຌຬຎຑຑຑຑຑຑຎຑຑຑຑຑຑຎ ຬຒຬຒໟຌຬຌຬຌຬຌຬຌຎຏຌຌຬຏ຺ຌຬຎຑຌຬຎຑຎຎຑຑຑຎຑຎຑຑຑຎ	36.78
	C II		

THIS PAGE IS BEST QUALITY PRACTICABLE

LISTING FOR RAY WITH A FALSE REFLECTION Figure (4-15).

CTOIF	1.766 2.296 2.296	2.68	3.47	26.5	2.40	6.4.9	.16	1.15	1.15	1.15	1.10	.26	1.12	1.12	1. 20	.61	.61	. 09	.64	. 6.	.16	.37	.37	.00	. 66	. 87		.76	. 4 .	2.58	2.58	4.78	3.36		3.36
٩		1.3030	1.00.1	1.0030		1.000		1.00.00	1. 3033	1.36.4		1.0000	1.0000	1.00.0			1.0000			1.000.1	1.00.1	1.00.0	1. 26.03	5000.1	1.00.1	1.00.1		1. 5003	1.0004	1.0005	1.0001	1.0012	1.0013		1.0010
NO KR																																			
		1.6000		1.0000				1.0000		1.0000	2000			1.6000		1.000	1.0000		1.606.0		1.0000		1.000						1.0000	1.6500	6656.	5555.	9666	0666.	.9998
ΚF	00000	0000	1000	0000		200	0000		0000	0000			0000	0000			0000	30		0000	2266	2000	1966	9952	19260	1000	2020	9843	1086	9756	9713	9645	1556	6006	9539
¥ S		00 1.	000	00				1.	00				00	00 1.			00 1.			00	96				1.0						98	220	101	• • • •	37 .
HGT	000000 0000000000000000000000000000000	5.90	20.00	5.00	5°-00		2.00		5. 00	5.00			5. 30	5.00		5.00	5.00			5.00	4.93		1.0.0	16.4	.0.		*****	t • 40	16.4		4.85	1.00	4.78		4.77
>	00000 00000 00000	61.53	61.50	61.50	0.1.0	61.50	61.50	61.50	61.50	61.50	61.50		61.50	61.50	01.20	61.50	61.53	61.50	01.0	01.50	61.45	01.40	61.42	61.40	21.0	61.19	01.63	61.10	94.94	00.00	60.52	59.89	29.56	01.50	59.48
ว	20.720 20.7200 20.72000 20.72000 20.720000000000	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.15		30.75	30.75	30.75	20.75	51.15	30.75	20.02	30.75	30.39	20.00	30.99	31.04	11.11	1.30	51.40	31.74	31.97	52.19	32.59	33.00	33.72	10.00	33.81
5	200202 20020 20020 20020 20020	30.75	30.75	30.75	30.75	52.02	30.75	30.75	33.75	33.75	30.75	20.75	30.75	30.75	30.75	31.75	30.75	30.75	20. 45	30.75	30.89	30.05	30.99	31.04	10.12	10.10	21.42	31.74	31.97	30.19	32.59	33.45	11.	22.13	33.79
FA	-92.34 -91.42 -83.98 -87.69 -87.33	-82.21	-77-58	-76.19	-74.63	-68.45	-50.91	-67.79	107.89	113. 88	115.65	100.001	106.21	104.33	103.67	20.10-	-84.15	-85.16	- 22. 22	- 42.78	-81.10	10.61-	-78.39	-81.08	10.00	-82.18	- 81 - 19	-80.20	-81.66	-77-04	-75.92	-73.26	- 66. 60	-20.44	-26.99
AL									'	•	•	•••	•	•	'						+	1 1	++	+. -	+ + + + + + + + + + + + + + + + + + +	1		90 90	-C.3		103	20		50-1	E -0 3
¥		.0			•••		•								•			••••	•		-2.96	10.01	-6.17	-5.33	00	10.	107.1-		-2.09	-2-94	-4.95	-12.72		177.7-	-2.221
4		.J3E-J1	10-120.0	10-192.	. C 3E - 11		L.C3E-01		- J. C -		- C 36 - 01		0.35-01	1.036-01				1.0.35-01	1		1.036-31								.075-01	101101					13E-01
0	00000	00	00	00	00		00	00		0	20	20	10	00	20		00	0	20		66	50	0	00	rα	N	50	50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	20	NG	1	L L L L L L L L L L L L L L L L L L L	000
P.AVE	672 672 672 672	. 173		273.	270 .	273	273 .		270.	273 .			270 .	273 .		273.	27.			273.	263.		563.	263.		263.	. 692	202	. 63.	. 693	269.		6.90	F UP1	263.
PACK	272 272 272 272 272 272 272 272 272 272	270.00	275.00	276.00	270.00	274.01	270.34	0.012	210.0	270.01	10.012		270.00	277.03	00.010	00.075	270.03	270.00	10.012	270.01	270.03	10.012	270.04	270.36	10.010	270.11	270.14	270.13	270.23	270.36	270.61	270.19	11.12	77.177	271.22
	3720.80 3362.36 2962.20 2645.70 2282.37	20.7091	1504.53	1113.63	045.22	732.32	16.611	1.00 . 00 A	672.75	652.37			561.31	544.00	10. 223	524.20	519.17	513.25	12.010	4 85.77	471.15	10. 10.1	433.10	410.48	10. 10.	374.19	350.44	11.11	313.33	26.052	279.23	250.33	11.	C3C.41	232.41
I	00044 00044 00044	12.48	13.10	10.51	1	0 a	16.49	10.01	12.2	91.91	00	+0.	22.22	27.74	21.26	02.20	22.31	2 32	22.34		62.53	22.07		27.47	· · · · · · · · · · · · · · · · · · ·	23.04	54.56		91.12	31.70	32.48	24. MA	1.1.0	24.91 C	34.91
*		44.00	11.00	44.03	····	11.00	44.60	11.00		46.30	· · ·	14. 20		44.20	· · · ·		44.00	44.30		++.00		31. 1.	44.00	44.60	1		· · · ·	10.1	11.11	10.00	44.62	44.03		11011	44.06
NAX X	40000 0440	25	ne Me	10	50	200	20	ine on	13	0	ac	r d	100	105		10	201	~ 1	135	1.1	10	100	10.01	173	1.4	150	00	200	502	24	220	No No		C 1 1 1 0	239
															20																				

PLOT NO. 1, PEPIOC= 12.0SEC., RAY NO. 12, DELTAT= 50.00, CF= .005000, KRTOL= .001000

THE OUTPUT IS IN ENGLISH UNITS. H.HJI(FEET). G.U.V(FEET/SECOND).

.

PROJECT NO. 60M 3. 78/33/01

D(8ETA)/DT = -0.

THIS PAGE IS BEST QUALITY PRACTICABLE

REFERENCES

- Arthur, R.S., Munk, W.H., and Isaacs, J.D., "The Direct Construction of Wave Rays," Transactions, American Geophysical Union, Volume 13, Number 6 (1952).
- Breeding, J. Ernest, Jr., "Refraction of Gravity Water Waves," Ph.D. Thesis, Columbia University, New York City, 1972 and U.S. Naval Coastal Systems Laboratory, Panama City, Florida, Report NCSL 124-72 (1972).
- Breeding, J. Ernest, Jr. "Velocities and Refraction Laws of Wave Groups: A Verification," Journal of Geophysical Research, 1978 (in press).
- 4. Bretschneider, C.L., and Reid, R.O., "Modification of Wave Height Due to Bottom Friction, Percolation, and Refraction," Beach Erosion Board Technical Memorandum Number 45 (1954).
- 5. Dobson, R.S., "Some Applications of a Digital Computer to Hydraulic Engineering Problems," Department of Civil Engineering, Stanford University, Technical Report Number 80 (1967).
- Jonsson, I.G., "Wave Boundary Layers and Friction, Factors, Proceedings of the Tenth Conference on Coastal Engineering," Volume 1, pp. 127-143. ASCE, Ann Arbor, Michigan (1966).
- Lamb, H., <u>Hydrodynamics</u>, Sixth edition, Dover, New York (1932).
- 8. Milne, W.E., <u>Numerical Solution of Differential Equations</u>, John Wiley and Sons, Inc., New York (1953).
- Munk, W.H., and Arthur, R.S., "Wave Intensity Along a Refracted Ray," in <u>Gravity Waves</u>, National Bureau of Standards Circular 521, Washington, D.C. (1952).
- Putnam, J.A., and Johnson, J.W., "Dissipation of Wave Energy by Bottom Friction," Transactions, American Geophysical Union, Volume 30 (1949).
- Ralston, A., "Runge-Kutta Methods with Minimum Error Bounds," Mathematics of Computation, Volume 16, pp. 431-437 (1962).

- 12. Romanelli, M. J., "Runge-Kutta Methods for the Solution of Ordinary Differential Equations," in <u>Mathematical</u> <u>Methods for Digital Computers</u>, edited by <u>Ralston</u>, A., and Wilf, H.S., John Wiley and Sons, Inc. (1960).
- 13. Salvadori, M.G., and Baron, M.L., Numerical Methods in Engineering, Prentice-Hall, Inc. (1961).
- 14. Skovgaard, O., Jonsson, I.G., and Bertelsen, J.A., "Computation of Wave Heights Due to Refraction and Friction," Journal of the Waterways, Harbors and Coastal Engineering Division, ASCE, Volume 101, Number WW1 (1975).
- 15. Wilson, W.S., "A Method for Calculating and Plotting Surface Wave Rays," Army Coastal Engineering Research Center, Washington, D.C., Technical Memorandum Number 17 (1966).
- Wylie, C.R., Jr., Advanced Engineering Mathematics, McGraw-Hill, New York (1951).

NOTATION

The principal symbols are defined. The expressions in parentheses are alternate representations of the symbol being defined.

A (ANGLE, PACK, SVA) The program symbol for θ . In the input and output A is the direction in degrees from which the wave packet comes with respect to true north. Internally in the program A is the direction in radians with which the wave packet moves with respect to the positive x-axis. AA The wave packet direction at the new ray point. AAA, AAAV The average of the values at the new and previous ray points, respectively, of the wave packet and wavelet directions. ABAR The average of the wave packet directions at the present and new points. ALFA (SVALFA, PALFA) The program symbol for α . AMM, ANN The maximum values of x and y, respectively, for a water depth grid. AV (AAV, GAM, WAVE, SAV, SVAV) The program symbol for y. The directions of AV are defined following the same conventions used in the definitions of A. (GP) The program symbol for γ' . AVP AX, AY The arrays used to store the locations of ray points and tick marks. A constant for a given wave period. a BDZ (SBDZ) The program symbol for $d\beta/dt$. BDZ5 The fifth order Runge-Kutta solution of dB/dt. BRK Is zero except during a breakup of the time step interval when the value is one. After returning to MOVE from HEIGHT, the value of BRK determines

where the program resumes.

BZ	(SBZ) The program symbol for β .
BZTOL	The limiting value for $ EBZ $ and $ EBDZ $ in the Runge-Kutta calculations of β and $d\beta/dt$. If $ EBZ $ or $ EBDZ $ exceeds or is equal to BZTOL the time step interval is halved.
BZ5	The fifth order Runge-Kutta solution of β .
Ъ	A constant for a given wave period.
С	An array of 12 water depths from CMAT used to fit a quadratic surface in the vicinity of the ray point.
CF	The program symbol for cf.
CIN	If CIN is not zero, its value is the travel time between tick marks along a ray. In the input CIN is in seconds, but for the calculations CIN is converted to hours. If CIN is zero there are no tick marks on a ray.
CMAT	The water depth grid in a two dimensional array.
CNVRSA	The direction of the positive x-axis of the water depth grid with respect to true north. The use of this conversion angle permits the ray direc- tions to be defined with respect to true north in the input and output.
COL	If COL is not zero the plotter will pause before the ray is plotted. If COL is zero the plotter does not pause.
CONTUR	An array containing the sounding water depths in feet or meters. There can be as many as 9 values.
CORI	A conversion factor used in calculating SCLI.
Cs	The constant of Snell's law.
°f	The friction factor.
D	(PD) The incremental distance in grid units between ray points.
DADX	The program symbol for d0/dx'.
DATE1, DATE2	The year, month, and day.

D(BETA)/DT The initial value of $d\beta/dt$.

- DCON A conversion factor to convert the water depths in CMAT to feet or meters.
- DELA The change in the wave packet direction from the present to the new ray point.
- DELTAT (SDLTAT) The time step interval in seconds between ray points.
- DELX, DELY The change in the values from the present to the new ray points of the x and y coordinates, respectively.
- DEP (SDEP, PDEP) The program symbol for h.
- DGDX (SADGDX) The program symbol for dG/dx'.

DGDXX The program symbol for $d^2G/(dx')^2$.

DHDX The program symbol for dh/dx'.

DHDXX The program symbol for $d^2h/(dx')^2$.

DIR A label of 6 letters and numbers used to identify a plot.

DN An expression used to compute W.

- DPHIDX The program symbol for $d\phi/dx'$.
- DRHODX The program symbol for dp/dx'.
- DSIGDX The program symbol for do/dx'.

DUD The ratio of the phase speed at the present ray point to the value at the previous ray point.

- DVDX The program symbol for dv/dx'.
- DVDXX The program symbol for $d^2v/(dx')^2$.
- DUDX The program symbol for dU/dx'.
- DUDXX The program symbol for $d^2 U/(dx')^2$.
- DY The number of grid units per inch or centimeter for a particular plot.

- An array of 6 coefficients of the quadratic surface equation which is fitted to the 12 water depths in the array C.
- EBDZ The program symbol for ε_{B+} .
- EBZ The program symbol for ε_{β} .

E

- EM A two dimensional array of numbers used in computing the array E.
- E The wave energy per unit area.
- F An expression used in the derivation of the friction coefficient.
- FAN If FAN is zero the rays are numbered at their initial points. When FAN is not zero the rays are numbered at their terminal points.
- FK (SVFKB, SAVFK, PFK) The program symbol for κ_{C} . It is measured in radians/grid unit.
- FKBAR (SVFKB) The average of the ray curvature at the present and new ray points.
- FKK The value of $\kappa_{\rm G}$ in radians/grid unit at the new ray point.
- FLAGR Is set equal to zero in MAIN at the beginning of a ray. The value is changed to one in MOVE if there is a reflection and the ray is continued. If FLAGR is one, in HEIGHT the value of ROP is set equal to zero.
- FLAG1 If FLAG1 is zero the wavelet direction is computed and the test for total reflection is made in SURFCE. If FLAG1 is not zero these calculations are not made.
- FLAG2 If there is total reflection due to the wavelets FLAG2 is set equal to one. Otherwise, FLAG2 is set equal to zero. The reflection test is made in SURFCE.
- FLAG3 In MAIN, FLAG3 is set equal to zero at the beginning of a ray. FLAG3 is not used in the program, and it is available for checks or modifications to the program.

FUD	An index used to determine when to write page and column headings depending upon the number of lines of printout.
f	The frequency of the wave (1/T).
F	The average rate of energy transmission of the waves.
G	(ZCXY, SG, SVG, PG) The geometric group speed.
GRID	The number of feet or meters per grid unit for a particular water depth grid.
GZERO	The value of the geometric group speed at the first ray point.
g	The acceleration due to gravity.
Н	In the theory H is the wave height. In the printed output H represents the water depth.
HGT	(PHGT) The program symbol for the wave height.
HGTZ	The initial value of HGT.
НТ	The length of the y-axis in inches or centimeters for a given plot.
НХ	The program symbol for $\partial h/\partial x$.
НХХ	The program symbol for $\partial^2 h / \partial x^2$.
НХҮ	The program symbol for $\partial^2 h / \partial x \partial y$.
НҮ	The program symbol for $\partial h/\partial y$.
НҮҮ	The program symbol for $\partial^2 h / \partial y^2$.
h	The water depth.
I	A variable depending on the ratio of water depth to phase speed.
IFLG	When IFLG is zero a check is made in HEIGHT to determine if there should be a breakup of the time step interval in order to maintain the desired accuracy in the calculations of either β or the ray path. If there is a division of the time step interval, IFLG is set equal to one once the time step interval is sufficiently reduced. When IFLG equals

one further checks for a breakup of the time step interval are not made at new ray points until the breakup ends and calculations are resumed with the initial time step.

- INUM An index to count the ray points within the broken interval when there is a division of the initial time step interval.
 - An index to number ray points.
- K Expressions used in the Runge-Kutta calculations of β and $d\beta/dt$.
- KCIN The number of tick marks along a ray which do not coincide with ray points.
- KF In the program calculations KF is an expression used to evaluate K_F . In the printed output KF is a label for the values of K_F .
- KFC (PKF) The program symbol for K_F.
- KMAX The same as MAX except in DRAW where it is the sum of MAX and KCIN.
- KR (PKR) The program symbol for K_p.
- KREST The number of tick marks along a ray.
- KRTOL Determines the accuracy in the Runge-Kutta calculations of the refraction coefficient. BZTOL depends upon KRTOL.
- KS (PKS) The program symbol for K_s.
- K_F The friction coefficient.
- K_R The refraction coefficient.
- K_S The shoaling coefficient.
- k The wave number $2\pi/\lambda$.
- L Expressions used in the Runge-Kutta calculations of β and $d\beta/dt$.
- LI When NPT is not zero LI is used to determine the number of lines of printout between page and column headings.

LII

j

When NPT is zero LII is used to determine the number of lines of printout between page and column headings.

	The perpendicular distance between rays.
х	(MAXQ, KMAX) An index to number points along a ray at time intervals equal to the initial time step.
Т	If MIT is 1 the wave packet curvature approxi-

mations in MOVE converge to one value. If MIT is 2 the curvature approximations converge to two values. If the curvature approximations do not converge and there is no reflection Mit is 3. If MIT is 4 a caustic or focal point is computed in HEIGHT. MIT is 5 if it is determined in HEIGHT that the wave breaks. When there is a reflection but the ray is not continued MIT is 6. If MIT is 7 more than one reflection from the same point is determined in MOVE. If MIT is 8 the breakup time step determined in HEIGHT is less than 0.5 seconds.

MM The dimension of x for a particular water depth grid.

MMAX The dimension of the AX and AY arrays.

- MOE If MOE is zero the input and output are in English units. If MOE is not zero the input and output are in Metric units.
- MXPLOT The number of runs and the number of plots for a given operation of the computer program.
- N The ray number.

l

MA

MI

- NAX If NAX is zero the plot has borders but the x- and y-axes are not calibrated. If NAX is not zero the x- and y-axes are calibrated and labeled.
- NCO The number of sounding water depths for a plot. The values are stored in the CONTUR array. The number of sounding depths cannot exceed 9. If NCO is zero there are no sounding depths for the plot.
- NDP The water depth is determined in SURFCE. If the value is greater than 0, NDP is 1 (initialized in RAYN). If the water depth equals or is less than 0, NDP is 2.

NFK	The value of NFK is determined in SURFCE. If the ratio of the water depth to the deep water wavelength is greater than 0.64, NFK is 1. Otherwise, NFK is 2.
NGO	The value of NGO is determined in MOVE. If a ray point lies within one and one half grid units of a grid boundary NGO is 2. Otherwise, NGO is 1. (Initialized in RAYN.)
NN	The dimension of y for a particular water depth grid.
NNSKIP	The amount by which y is incremented in selecting columns for locating sounding water depths.
NO	(NUMT, KNUMT) The number of divisions when there is a breakup of the initial time step interval.
NOR	The number of rays for a given run.
NPLOT	The plot number.
NPT	If NPT is zero printed output occurs only for the initial and terminal ray points. If NPT is not zero printed output occurs for the first ray point, those points which are an integral multiple of SK, and the last point.
NSH	If NSH is zero the shoreline is not drawn on a plot. If NSH is not zero the shoreline is drawn.
NXCMAT	If NXCMAT is zero a water depth grid is read in the input for the run. If NXCMAT is not zero the depth grid for the previous run is used again.
n	An index to number ray points.
PATI	(PSAV) A program symbol for p. The value of p at the point prior to the new ray point.
PCTDIF	An estimate of how well the quadratic surface fits the 12 water depths used to derive it. At each of the 4 water depths closest to the ray point, the percentage difference between the water depth derived from the surface fit and the actual depth is computed. PCTDIF is the maximum of these differences.

The program symbol for ϕ .

POT

PHI

(SPOT) A program symbol for p. The value of p at the new ray point.

- PREV (SPREV) The value of v at the previous ray point.
 - PROJCT A label of 6 letters and numbers used to identify a computer run.
- P(i) Program symbols for p. The values of p at points intermediate to the new and previous ray points where i = 1, 2, ..., 5.
- p A coefficient of the ray separation equation.
- QATI A program symbol for q. The value of q at the point prior to the new ray point.
- QOT (SQOT) A program symbol for q. The value of q at the new ray point.
- Q(i) Program symbols for q. The values of q at points intermediate to the new and previous ray points where i = 1, 2, ..., 5.
- q A coefficient of the ray separation equation.
- RCOUNT An index to count the number of reflections at a ray point.
- REF The value of REF is determined in MOVE and it denotes the kind of reflection. When there is reflection due to Snell's law with phase velocity REF is 1. When reflection occurs because the packet curvature iteration is not converging REF is 1 If there is reflection because the ray point is too near a reflection point REF is 3.
- REFLCT IN MAIN, REFLCT is set equal to zero at the beginning of a ray. In MOVE, REFLCT is set equal to one for those ray points where the conditions for being close to a reflection point are met.
- REFRCT IN MAIN, REFRCT is set equal to zero at the beginning of a ray. IN HEIGHT, REFRCT is set equal to one for those ray points where there is a breakup of the time step interval due to insufficient accuracy in the Runge-Kutta calculations of β and $d\beta/dt$.

RFLBUM	In MAIN, RFLBUM is set equal to zero at the beginning of a ray. In MOVE, RFLBUM is set equal to one for those ray points where the conditions for being close to a reflection point are met. The value of RFLBUM is used to determine which format statement to use in the output of the ray particulars.
RFRBUM	In MAIN, RFRBUM is set equal to zero at the beginning of a ray. In HEIGHT, RFRBUM is set equal to one for those ray points where there is a breakup of the time step interval due to insufficient accuracy in the Runge-Kutta calculations of β and $d\beta/dt$. The value of RFRBUM is used to determine which format statement to use in the output of the ray particulars.
RHO	The program symbol for ρ .
ROP	The initial value of ROP is determined in the input data. If ROP is zero a ray is not continued beyond a reflection point. If ROP is not zero a ray is continued beyond a reflection point. After a reflection ROP is set equal to zero so that a ray is not continued beyond a second reflection point if one should exist.
RT	The length of the x-axis in inches or centimeters for a given plot.
S	A two dimensional array of numbers used in computing the array E.
SCL	The scale of the plot.
SCLI	The reciprocal of SCL.
SIGMA	The program symbol for σ .
SK	See NPT.
SSALFA	The program symbol for the value of α at the previous ray point.
sG	The arc length of a wave packet trajectory (ray).
sv	The arc length of a monochromatic ray.
Т	The wave period.

Ster.

TIME	(TIMEQ) The travel time along a ray.
TPI	The initial value of the wave packet direction used in the analytical solutions of β and $d\beta/dt$.
ТТ	The program symbol for T.
t	Time.
U	(SAVU, PU) The collinear group speed $d\omega/dk$.
u _m	The maximum velocity of the fluid at the bottom.
V	(SAVV, PV) The program symbol for v.
VX	The program symbol for $\partial v / \partial x$.
VY	The program symbol for $\partial v/\partial y$.
v	The phase speed of a monochromatic wave.
Ŵ	An expression used to relate the first spatial derivatives of v and h .
WBCOP	If WBCOP is zero no test is made to determine if the wave breaks. If WBCOP is not zero a test is made in HEIGHT to determine if the wave breaks.
WL	The program symbol for the deep water value of $\boldsymbol{\lambda}.$
х	(SVX, PX) The program symbol for x.
хх	(XS) The program symbol for x at the new ray point.
x	A Cartesian coordinate of the water depth grid.
x'	A Cartesian coordinate in a system chosen such that $\partial h/\partial y' = 0$.
Y	(SVY, PY) The program symbol for y. In the theory an expression used to relate the second spatial derivatives of v to the spatial derivatives of h.
ΥVW	A one dimensional array used in computing the array E.
ΥΥ	(YS) The program symbol for y at the new ray point.

у	A Cartesian coordinate of the water depth grid.
у'	A Cartesian coordinate in a system chosen such that Əh/Əy' = 0.
α	The angle the x'-axis is rotated with respect to the x-axis such that $\partial h/\partial y' = 0$.
β	The ray separation factor.
Υ	The wavelet direction defined with respect to the positive x-axis.
γ'	The wavelet direction defined with respect to the positive x'-axis.
γ*	A quantity used in calculating the wavelet direction using Snell's law with phase velocity.
Δt	The time step interval between ray points.
ε _β	The difference between the fourth and fifth order Runge-Kutta solutions of β .
^ε βt	The difference between the fourth and fifth order Runge-Kutta solutions of d β /dt.
θ	The wave packet (ray) direction defined with respect to the positive x-axis.
θ'	The wave packet (ray) direction defined with respect to the positive x'-axis.
к _G	The ray curvature of the wave packet.
κ _v	The ray curvature of a monochromatic wave.
κ _g '	The same as $\kappa_{G}^{}$.
λ	The wavelength
π	3.1415927
ρ	An expression used in the spatial derivatives of G.
ρ _f	The density of the fluid.
σ	An expression used in the spatial derivatives of G.
τ	The tangential stress per unit area at the bottom.
----	--
φ	The angle $(\theta - \gamma)$.
φ'	The same as ϕ .
ω	The radian frequences $(2\pi f)$ of the wave

DISTRIBUTION LIST

Office of Naval Research 2 Geography Programs Code 462 Arlington, VA 22217

Defense Documentation Center 12 Cameron Station Alexandria, VA 22314

Director, Naval Research Lab 6 Attention Technical Information Officer Washington, DC 20375

Director Office of Naval Research Branch Office 536 South Clark St. Chicago, Illinois 60605

Director Office of Naval Research Branch Office 495 Summer St. Boston, MA 02210

Commanding Officer Office of Naval Research Branch Office Box 39 FPO New York 09510

Chief of Naval Research Asst. for Marine Corps Matters Code 100M Office of Naval Research Arlington, VA 22217

Office of Naval Research Code 480 National Space Technology Laboratories Bay St. Louis, MS 39520

Office of Naval Research Operational Applications Division Support Center Code 200 Arlington, VA 22217

Office of Naval Research Scientific Liaison Officer Scripps Institution of Oceanography La Jolla, CA 92093

Director, Naval Research Laboratory Attn: Library, Code 2628 Washington, DC 20375

ONR Scientific Liaison Group American Embassy, Room A-407 APO San Francisco, CA 96503

Commander Naval Oceanographic Office Attn: Library, Code 1600 Washington, DC 20374

Naval Oceanographic Office Code 3001 Washington, DC 20374

Chief of Naval Operations OP 987P1 Department of the Navy Washington, DC 20350

Oceanographer of the Navy Hoffman II Building 200 Stovall St. Alexandria, VA 22322

Naval Academy Library US Naval Academy Annapolis, MD 21402

Commanding Officer Naval Coastal Systems Center Panama City, FL 32407

Librarian Naval Intelligence 4301 Suitland Rd. Washington, DC 20390 Commanding Officer Naval Civil Engineering Laboratory Port Hueneme, CA 93041

Officer in Charge Environmental Research Production Facility Naval Postgraduate School Monterey, CA 93940

Director Amphibious Warfare Board US Atlantic Fleet Naval Amphibious Base Norfolk, Little Creek, VA 23520

Commander, Amphibious Force US Pacific Fleet Force Meteorologist Comphibpac Code 25 5 San Diego, CA 92155

Commanding General Marine Corps Development and Educational Command Quantico, VA 22134

Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code Mc-Rd-1 Washington, DC 20380

Defense Intelligence Agency Central Reference Division Code RDS-3 Washington, DC 20301

Director Coastal Engineering Research Center US Army Corps of Engineers Kingman Building Fort Belvoir, VA 22060

Chief, Wave Dynamics Division USAE-WES PO Box 631 Vicksburg, MS 39180 Commandant US Coast Guard ATTN: GECV/61 Washington, DC 20591

Office of Research and Development DS/62 US Coast Guard Washington, DC 20591

National Oceanographic Data Center D764 Environmental Data Services NOAA Washington, DC 20235

Central Intelligence Agency Attn: OCR/DD-Publications Washington, DC 20505

Dr. Donald Swift Marine Geology and Geophysics Laboratory 15 Rickenbacker Causeway AOML-NOAA Miami, FL 33149

MinisterialDirektor Dr. F. Wever RUE/FO Bundesministerium der Verteidigung Hardthoehe D-5300 Bonn, West Germany

Oberregierungsrat Dr. Ullrich RUE/FO Bundesministerium der Verteidigung Hardthoehe D-5300 Bonn, West Germany

Mr. Tage Strarup Defense Research Establishment Osterbrogades Kaserne DK-2100 Kobenhavn O, Denmark

Dr. Warren C. Thompson Dept. of Meteorology & Oceanography Naval Postgraduate School Monterey, California 93940 Dr. Yoshimi Goda, Director Wave Research Division Port and Harbor Research Instit. Ministry of Transportation 1-1 Nagase, 3 Chome Yokosuka, 239 Japan

Prof. Dr. Rer. Nat. H.G. Gierloff-Emden Institut F. Geographie Universitaet Muenchen Luisenstrasse 37/III D-800 Muenchen 2, West Germany

Dr. R. Koester Geol-Palaeontolog. Institut Universitaet Kiel Olshausenstrasse 40-60 D-2300 Kiel, West Germany

Prof. Dr. Fuehrboeter Lehrstuhl F. Hydromechanik U. Kuestenw Technische Hochschule Braunschweig Civil Engineering Dept. Beethovenstrasse 51A D-3300 Braunschweig, West Germany

Prof. Dr. Walter Hansen Direktor D. Instituts F. Meereskunde Universitaet Hamburg Heimhuderstrasse 71 D-2000 Hamburg 13, West Germany

Prof. Dr. Klaus Hasselmann Institute F. Geophysik Universitaet Hamburg Schlueterstrasse 22 D-2000 Hamburg 13, West Germany

Prof. Dr. Nils Jerlov Institute for Physical Oceanography Kobenhavns Universitet Haraldsgade 6 DK-2200 Kobenhavn, Denmark

Prof. Kiyoshi Horikawa Dept. of Civil Engineering University of Tokyo 7-3-1, Hongo, Bunkyo-Ku Tokyo 113, Japan

Prof. Dr. Eugen Seibold Geol-Paloeontolog. Institut Universitaet Kiel Olshausenstrasse 40-60 D-2300 Kiel, West Germany

Prof. Yuji Iwagaki Civil Engineering Dept. Kyoto University 9 Shimogamo Zenbucho, Sakyo-Ku Kyoto, Japan

Dr. H.J. Schoemaker Waterloopkundig Laboratorium Te Delft 61 Raam, Deift, Netherlands

Ir. M.W. Van Batenberg Physisch Laboratorium TNO Oude Waalsdorper Weg 63, Den Haag, Netherlands

Prof. Toshiyuki Shigemura National Defense Academy 1-10-20 Hashirimizu Yokosuka 239, Japan

Mr. William T. Whelan Telecommunication Enterprises, Inc. Box 88 Burtonsville, MD 20730

Dr. Benno M. Brenninkmeyer, SJ Dept. of Geology and Geophysics Boston College Chestnut Hill, MA 02167

Coastal Studies Institute Louisiana State University Baton Rouge, LA 70803

Dr. Choule J. Sonu Tetra Tech, Inc. 630 N. Rosemead Blvd. Pasadena, CA 91107

Dr. Richard A. Davis, Jr. Dept. of Geology University of South Florida Tampa, FL 33620

Dr. William T. Fox Dept. of Geology Williams College Williamstown, MA 01267

Dr. Hsiang Wang Dept. of Civil Engineering Dupont Hall University of Delaware Newark, DE 19711

Dr. John T. Kuo Henry Krumb School of Mines Seely W. Mudd Building Columbia University New York, NY 10027

Dr. Edward B. Thornton Dept. of Oceanography Naval Postgraduate School Monterey, CA 93940

Prof. C.A.M. King Dept. of Geography University of Nottingham Nottingham, England NG7 2RD

Dr. Douglas L. Inman University of California A-009 Shore Processes Laboratory La Jolla, CA 92093

Dr. Omar Shemdin Jet Propulsion Laboratory 183-501 4800 Oak Grove Dr. Pasadena, CA 91103

Dr. William L. Wood Department of Geosciences Purdue University Lafayette, IN 47907

Dr. Alan W. Niedoroda Director, Coastal Research Center University of Massachusetts Amherst, MA 01002 Dr. John B. Southard Dept. of Earth and Planetary Sciences MIT Cambridge, MA 02139

Dr. J. Ernest Breeding, Jr. Dept. of Oceanography FSU Tallahassee, FL 32306

Dr. John C. Kraft Dept. of Geology University of Delaware Newark, DE 19711

Dr. Dag Nummedal Dept. of Geology University of South Carolina Columbia, SC 29208

Mr. Fred Thomson Environmental Research Institute P.O. Box 618 Ann Arbor, MI 48107

Dr. Thomas K. Peucker Simon Fraser University Dept. of Geography Burnaby 2, B.C., Canada

Dr. Robert Dolan Department of Environmental Sciences University of Virginia Charlottesville, VA 22903

Dr. Lester A. Gerhardt Rennsselaer Polytechnic Institute Troy, New York 12181

Director Office of Naval Research Branch Office 1030 East Green Street Pasadena, California 91101

 REPORT NUMBER 2. GOVT ACCESSION NO. 4. TITLE (and Substite) A Method for Calculating Wave Packet Trajectories and Wave Heights 7. AUTHOR(*) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ACDRESS Department of Oceanography 	3. RECIPIENT'S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD COVERE Technical 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
 4. TITLE (and Substite) A Method for Calculating Wave Packet Trajectories and Wave Heights 7. AUTHOR(a) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography 	5. TYPE OF REPORT & PERIOD COVERE Technical 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
 4. TITLE (and Subtrite) A Method for Calculating Wave Packet Trajectories and Wave Heights 7. AUTHOR(s) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography 	5. TYPE OF REPORT & PERIOD COVERE Technical 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
A Method for Calculating Wave Packet Trajectories and Wave Heights 7. AUTHOR(*) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography	Technical 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
 7. AUTHOR(s) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography 	Technical 6. performing org. report number 8. contract or grant number(*)
 AUTHOR(s) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography 	 PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(*)
 AUTHOR(s) J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography 	8. CONTRACT OR GRANT NUMBER(*)
J. Ernest Breeding, Jr., K.C. Matson, and Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography	
Nourollah Riahi 9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Oceanography	N00014-77-C-0329
Department of Oceanography	10. PROGRAM ELEMENT, PROJECT, TASH
repair emerie or occurrent april	
The Florida State University	ND200 100
Tallahassee, FL 32306	NK388-138
Geography Programs	March 1978
Department of the Navy	13. NUMBER OF PAGES
Office of Naval Research, Arlington, VA	107
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	154. DECLASSIFICATION DOWNGRADING SCHEDULE
18. SUPPLEMENTARY NOTES	
 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number) -wave packets -wave height -wave refraction -shoaling coeffice -packet ray curvature -refraction coefficient 	-geometric group cient velocity ficient
-total reflection -friction coeffic	cient
20. ABSTRACT (Continue on reverse elde il necessary and identify by block number)	
The theory and numerical methods are presented paths of gravity water wave packets. A expression is used to determine the wave packets is given by $G = (d\omega)$ denotes the angular frequency, k is the wave difference between the direction of the wave direction of the wavelets within the packet	ented for determining ray curvature cket trajectories where (dk) cos ϕ . The symbol e number, and ϕ is the e packet and the . At each point of the
DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOL FTE	Omestic
S/N 0102-014-6601	ELEICATION OF THE BACE (When Date Fo

CLUHITY CLASSIFICATION OF THIS FAGE (When Data Entered)

BLOCK 20

CONT

wave packet trajectory the wavelet direction is determined using Snell's law with phase velocity. The wave height is computed along the wave packet paths accounting for the effects of shoaling, refraction, and energy dissipation. The computer program is described and sample printouts and plots are presented.