
0F A084106					escontraum grantineum		AND A CONTRACT OF A CONTRACT O	Normality Construction			
	E			Ê.	ţ,	NGCOM MALAND SPACEARCA NGCOM MALAND		appenerant: appenerant:			
				NUMBER OF STREET, STRE						FILL.	Seesse
		HERRICA Harver Harver Harver Harver Harver Harver Harver Harver Harver Harver Harver Harver Harver Harver	Rê kî	END DATE FILMED 4 -79 DDC					ĸ		

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the United States Government.

States.

Think

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO ARLCD-TR-78057 . TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED Ultraviolet-Ozone and Ultraviolet-Oxidant 6 Jun 76-30 Dec 77 Treatment of Pink Water. -----UMBER 8. CONTRACT OR GRANT NUMBER(+) 7. AUTHOR(.) Interagency Argreement Milton /Roth No._ DA-0059. Joseph M. Murphy, Jr 6 9. PERFORMING ORGANIZATION NAME AND ADDRESS Westgate Research Corp. West Los Angeles, CA Naval Weapons Support Center PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Crane, IN 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE ARRADCOM, TSD November 1978 Scientific & Tech. Info. Div. (DRDAR-TSS NUMBER OF PAGES Dover, NJ 07801 43 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) ARRADCOM, LCWSL Unclassified Manufacturing Technology Division 15. DECLASSIFICATION/DOWNGRADING SCHEDULE (DRDAR-LCM-SA) Dover, NJ 07801 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. of the ebstract entered in Block 20, If different from Report) 17 DISTRIBUTION -D6-0059 SUPPL EMENTARY NOTES 2 1979 FEB 19 LITT 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) B Ultraviolet Pollution abatement Ozone Trinitrotoluene Oxidant Ammunition Pink Water Army Ammunition Plants 20. ABSTRACT (Continue as reverse side H necessary and identify by block number) Pink water, a solution of trinitrotoluene (TNT and other nitrobodies is a major pollutant at AAP's which manufacture TNT and load, assemble and pack bombs and other ammunition. Two of the new tech-nologies being investigated as alternatives to carbon adsorption, which is currently used to purify pink water, are covered in this report. One method involves the use of ultraviolet (uv) ozone; the other, uv-oxidant. -DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter 41016378 12 With the second second second

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (Cont)

In the uv-ozone study, a pilot system with a volume of 3.79 cubic meters per day was evaluated. This system reduced dissolved TNT and RDX to less than one milligram per liter with no by-products requiring disposal. A larger, 18.9 cubic meter per day plant, is proposed.

In evaluating the uv-oxidant process, commercially available uv-light, water-purification units were used in conjunction with oxidants such as hydrogen peroxide or oxone, a blend of potassium persulfate oxidants. Variables such as film depth, dilutions, uv wavelength, and operation of the units in series rather than in parallel, were examined in optimizing the system.

> UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entervit)

> > S. S. S.

Bit Zakala

FOREWORD

Experimental work for the uv-ozone portion of this study was conducted by Westgate Research Corporation, West Los Angeles, California. The uv-oxidant study was conducted by the Naval Weapons Support Center at Crane, Indiana.

This project was conducted in conjunction with the US Environmental Protection Agency, under Interagency Agreement D6-0059. Dr. Herbert S. Skovronek of the Industrial Waste Treatment Research Laboratory, Edison, NJ, served as the EPA's Project Officer.

al of the start

DOC Buff Section D UNANNOLANCED D INSTREMATION BY BISTREMATION ATMINISTREMATING	DDC Buff Section CI UNANNOLINCED CI INSTRACTIONALITY COULS	ACESSIC	N for	1411.74			1
UNANNOLAICED D IUSTIFICATION BY BISTREAM DOCATION COLLS	UNANNOLAICED D JUSTIFRIANTION BY DISTRANTION ALIAN COLLS	NTIS					- 1
INSTRECTATION PY DISTRECTIONALITY COLORS	UNSTREATION BA BISTREATION AND AND AND AND AND AND AND AND AND AN	DOC		Buff 3	Seci	1041	
ex DISTR: BATTLOG A TRANSMENT COULS	ex DISTR: Balling Alternation (Books	UNANNO	MCD				
DISPLAYING ADALASI. IV COOLS	DISTRIBUTING ATRIANELITY CODES	USTIFIC.	NOG				
		EX	and a la	13# L'S	TT	0306	2
Λ		DISTRIC					

TABLE OF CONTENTS

Page No.

A State of Long State of State State

Introduction	1
UV-Ozone Treatment of Pink Water	2
Description of Ultrox Pilot Plant	2
Pilot Plant Operation	2
Test Procedures	3
Preliminary Testing	3
Pink Water Tests	5
Specific Analysis	5
Discussion of Test Results	9
Design of UV-Ozone Pilot Plant	9
UV-Oxidant Treatment of Pink Water	16
Description of UV-Oxidant Pilot Plant	16
Parameter Variations for Optimization of the System	17
Chemical Reactions	25
Additional Analyses	25
Design Parameters of Full-Scale Treatment System	26
Conclusions	28
UV-Ozone Treatment	28
UV-Oxidant Treatment	28
Recommendations	29
UV-Ozone Treatment	29
UV-Oxidant Treatment	29
References	30
Distribution List	31

A PARTY AND A PART

LIST OF TABLES

		Page No.
1	UV-Ozone treatment of TNT in water	4
2	UV-Ozone treatment of ARRADCOM pink water	6
3	Comparison of synthetic sample and ARRADCOM pink water tests	7
4	Analysis of synthetic sample and ARRADCOM pink water	8
5	Oxidation in the UV-2000 and UV-500 systems with Oxone or H_2O_2	18
6	Analyses of various concentrations of Oxone and H_2O_2	20
7	Evaluation of UV-2000 system operating in series mode	22
8	Alternatives for treatment of pink water	23
	LIST OF FIGURES	
1	UV-ozone reactor assembly	11
2	Pattern of water flow through pilot plant reactor	12
3	The 920 m ³ pd (5000 gpd) pilot plant assembly	14
4	Effect of pink water dilution on TOC reduction	24
5	Basic design of the UV-oxidant system	27 .

VERT A MARKET A MARKET A MARKET AND A MARKET A

.

INTRODUCTION

Pink water is generated by (1) trinitrotoluene (TNT) manufacturing plants, (2) load, assemble, and pack (LAP) operations, and (3) unloading or demilitarizing TNT-loaded munitions. Pink water from manufacturing operations may contain \propto TNT, TNT isomers, and dinitrotoluenes (DNT), while pink water generated by LAP and demilitarization operations may contain \propto TNT, cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetranitramine (HMX), and wax.

The volume and concentration of pink water streams vary widely, but, at full mobilization, volumes of 378.5 m³pd (100,000 gpd) per line at concentrations of 100 to 150 ppm are typical (ref 1). Currently, activated carbon is the most widely used process for pink water abatement. The carbon is used once, then burned, which results in a high cost operation and an air pollution problem. Systems for thermal regeneration and carbon reuse tried in the past involved a high risk of explosion and a high loss of carbon. A new thermal regeneration process using rotary kilns has been piloted and appears to be safe and cost effective, but has yet to be implemented. Consequently, new technologies for abatement of pink water, such as the uv-ozone and uv-oxidant processes described in this report, continue to be investigated.

The uv-ozone studies helped establish approximate operating levels for the number of uv lamps per stage and ozone mass flow required to treat actual pink water. The uv-oxidant studies established the film depth and oxidant concentration required.

1

UV-OZONE TREATMENT OF PINK WATER

The objective of the uv-ozone testing was to establish design criteria and cost figures for a 378.5 m³pd (100,000 gpd) pink water treatment plant. Test runs were made in a 1000 gpd uv-ozone reactor. Operating and design variables for the minimum power demand and retention time required to obtain an effluent containing less than 1 mg/L of TNT and less than 1 mg/L of RDX were defined.

Description Of Ultrox Pilot Plant

The Ultrox¹ pilot plant, recently developed by the Westgate Research Corporation, is designed to demonstrate the practicality and cost effectiveness of uv-ozone oxidation for destroying organics in wastewater. The pilot plant can vary (1) UV light input and intensity, (2) ozone introduction rate, (3) mixing, and (4) water flow. The reactor is made of 304 stainless steel, passivated and electropolished to reduce chemical attack and increase reflectivity. A separate NEMA cabinet houses the ballasts from the UV lamps.

The reactor can accommodate up to 30 low-pressure, 65watt uv lamps and has six operating stages. From 0 to 30 lamps can be turned on in a test run. Ozone is uniformly diffused from the base of the reactor through spherical, porous spargers, a procedure that generates gas bubbles of less than 2.5 mm diameter to obtain maximum mass transfer. The number of spargers can be varied from stage to stage, and the overall pattern of ozone introduction and diffusion can be changed as desired.

The reactor is designed for low-pressure operation (2 psig maximum) to reduce the cost for pumping water and compressing air for ozone generation. Low-pressure operation not only provides greater safety but also reduces the thickness, weight, and cost of construction materials.

Pilot Plant Operation

The flow rate of the incoming pink water is measured by a rotameter located between the pump and the reactor inlet. The water is fed to the reactor by the use of a sealless, magnetic, gear-type drive pump with integral,

1. Registered trademark

solid-state speed control. The drive pump varies the flow of pink water through the reactor from 7.6 x 10^{-4} m³/min to 7.6 x 10^{-3} m³/min (0.2 to 2.0 gpm), and the retention time will vary from 37 to 375 minutes. In each stage the water is contacted by the ozone and, in certain stages, by UV light.

The purified water, as it leaves the reactor, overflows into a gas-water separator to eliminate any entrainment of water in the exhaust gas and then drains by gravity to a receiving sump. No internal level controls are required within the reactor.

Test Procedures

Previous experience with pink water and waters of similar composition proved that the following variables have the greatest influence on total power demand and reactor size:

- 1. Ozone concentration in sparging gas.
- 2. UV light intensity.
- 3. Placement of uv lamps within reactor.
- Temperature, composition, and concentration of incoming water.
- 5. Flow rate.

Preliminary Testing

The TOC of the ARRADCOM pink water sample was 68 mg/L, which was derived from 140 mg/L TNT, 22 mg/L RDX, and 10 mg/L wax. The synthetic solution for the shakedown tests was mixed to contain this concentration of TNT; however, large amounts of undissolved TNT were present which reacted as the oxidation progressed so that it was difficult to control operating conditions and effluent quality. This problem was corrected by dissolving small quantities of TNT in boiling water, diluting it, and inserting an in-line filter at the inlet of the pilot plant to remove residual suspended solids. Several experiments were carried out under these conditions (Table 1). These experiments helped to establish approximate operating levels for the number of UV lamps per stage and ozone mass flow required to treat

Table 1. UV-Ozone treatment of TNT in water

1

 -
Du
carbon
organic
Total

			TOCAL O	TOTAL OLGANITO CALDON (19/17)
Test No.	Temperature (^O C)	Influent	Stages 1-3 ^b (118	1-3 ^b Stages 4-6 ^c (118 min. residence)
1022	36	60	13	3.0
1023	32	55	2	2.5
1024	26	99	S	1.2
1025	33	99	ŝ	2.0
1026	33	54	10	6.5
	1			

Based on a flow rate of 1200 ± 100 mg of ozone per minute. a.

b. 7 ± 2 W uv per mg TOC

W.S.S.S.

Provide and the

4

c. 40 ± 20 W uv per mg TOC

actual pink water.

With this high concentration of TNT, additional ozone generator capacity was needed. Both an OREC² O3B2-0 and a Welsbach² W-20 were used to provide up to 2 g/min ozone (in oxygen), or approximately 1.8-2.0% ozone in oxygen.

Pink Water Tests

Results of pilot plant tests using ARRADCOM pink water are summarized in table 2. The first test (No. 1027) was run under the same approximate conditions as Test No. 1026 for a synthetic sample (TNT in water). Greater resistance to oxidation occurred with the pink water than with the synthetic solution and the TOC was only reduced to 17 mg/L during a 240-min. residence time. The residence time and number of uv lamps had to be increased in subsequent tests (1028 and 1029) to obtain a greater degree of oxidation. It appears that the reduced reactivity in the pink water sample was caused by the presence of wax and RDX which were not present in the synthetic sample.

A comparison of pink water and the synthetic sample based on the results of tests No. 1024 and 1029 is shown in table 3. The ozone-to-organic carbon ratios are about the same for the first three stages and the last three stages; however, the uv input power-to-carbon ratio had to be increased in both the first three stages and second three stages to achieve 3 mg/L TOC and 5 mg/L TOC in the pink water after six stages.

Specific Analysis

Less than 1 mg/L TNT and 1 mg/L RDX remained in the effluent, but there was also some unidentified solid residue in both the pink water and the synthetic sample (table 4). Test No. 1029 indicated that the TNT and RDX levels were below 1 mg/L after the pink water had passed through the first three stages of the reactor. This result was most encouraging, since at these operating conditions the residence time, the number of UV lamps, and the ozone mass flow input can be reduced by half of the total values used in test No. 1029.

^{2.} Registered trademark

Table 2. UV-Ozone treatment of ARRADCOM pink water

		TO	Total Organic Carbon (mg/L)	bon (mg/L)
Test No.	Temperature (^O C)	Influent	Stages 1-3 ^C	Stages 4-6 ^d
1027 ^a	29	68	22.0	17.0
1028 ^b	30	67	6.5	5.0
1029 ^b	30	70	5.0	3.0
a. Residenc	a. Residence time - 118 min.	min.		

b. Residence time - 177 min.

6

c. 1200 ± 100 mg ozone per min; 7 ± 2 W uv per mg TOC

d. 1200 ± 100 mg ozone per min; 40 ± 20 W uv per mg TOC

-2.65 %

Stand State

Table 3. Comparison of synthetic sample and ARRADCOM pink water tests

1

a. Synthetic sample

7

b. Pink water

Wand and want of the second second

Table 4. Analysis of synthetic sample and ARRADCOM pink water

T

	otduno	(T/6m)	(T/bm)	Solid Residue (mg/L)
1020-1	Synthetic feed	76	,	•
1020-2	Synthetic effluent	1,	ı	ſ
1023-2	Synthetic effluent	۲۶	ı	п
1024-2	Synthetic effluent	1,	,	8
1025-2	Synthetic effluent	7	,	9
1028-2	Pink water effluent	4	1	12
1029-1	Pink water effluent after stage 3	7	۲ ۲	6
1029-2	Pink water effluent after stage 6	1	ר י	11
1028-2 1029-1 1029-2	Pink water effluent Pink water effluent after stage 3 Pink water effluent after stage 6	4 4 1	1 1 1 · · ·	

8

a states

Discussion of Test Results

The mass ratio of ozone to TOC in test No. 1029 for the first three stages was 13, which is 1.6 times the stoichiometric ratio for carbon oxidation to CO₂. Bench and pilot plant tests on a variety of wastewaters indicated that the minimum stoichiometric ratio of ozone to TOC usually is between 1.3 and 2.0, depending on the original TOC concentration and the chemical structure of the organic contaminants. (However, this calculation does not include hydrogen and nitrogen oxidation in either case.) On that basis, the pink water appears to be reacting normally.

It is more accurate to represent the total oxidation of TNT and RDX as follows:

TNT

RDX

 $C_{3}H_{6}N_{3}(NO_{2})_{3} + 18 O_{3} \rightarrow 3 CO_{2} + 6 HNO_{3} + 18 O_{2}$

The pink water contained 140 mg/L TNT and 72 mg/L RDX. According to the above equations, the theoretical amount of ozone required per liter to carry out complete oxidation is 813 mg. Since the testing found that 910 mg/L was required to obtain an acceptable effluent, the ratio of actual to stoichiometric ozone is 1.12:1 (or an ozone efficiency of 89.3%). Of course, part of the ozone may be lost by autodecomposition or volatilization.

Although a greater number of UV lamps was required to oxidize the pink water than the synthetic TNT in water solution, the number of lamps required per square meter and reaction stage has not been defined. Further tests are required to establish these exact numbers.

Design of UV-Ozone Pilot Plant

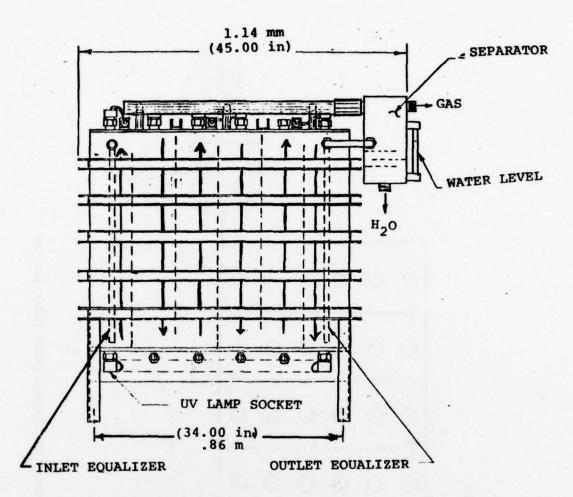
With data obtained from the 3.79 m^3pd (1000 gpd) the following design criteria were established for the 18.9 m^3pd (5000 gpd) pilot plant:

Dimensions

Reactor wet volume.....2.6 m³ (675 gal) Reactor dimensions (W x L x H).0.9 x 1.8 x 1.5 m (0.3 x 6 x 5 ft) Water flow rate18.9 m³pd (5,000 gpd) No. of UV lamps @ 65 W/lamp....144 Ozone required......17 kg/day (37.5 lb/day)

Assembly

The major components of the pilot plant are the reactor assembly, the NEMA ballast enclosure, and the ozone generator. The reactor assembly and the NEMA ballast enclosure are assembled on the same skid and the ozone generator is mounted on a separate skid.


The reactor assembly (fig 1) consists of a stainless steel tank with baffles and a cover assembly made up of the reactor cover, ozone diffuser, UV lamps, and supporting structure.

Construction

The reactor tank, $0.91m \ge 1.83m \ge 1.52m$ (3 ft \ge 6 ft ≥ 5 ft) deep, is fabricated from 0.48cm (3/16 in.) 316 stainless steel sheet. The bottom of the tank is formed from stainless steel. All parts are certified heliarc welded. A 10.2cm (4 in.) wide lip is welded to the top of the tank to form a gasket flange. A groove is cut into the flange to accommodate a rectangular Hypalon³ seal to enclose the reactor. The tank is mounted by bolting onto the metal skid.

Five baffles are located longitudinally to create six reaction stages. Water flows in an undulation path from stage to stage (fig 2). The baffles are designed for easy removal so that the number of reaction stages can be altered, as desired.

The ozone inlet manifolds, lamp venting tubes, and lamp 3. Registered trademark

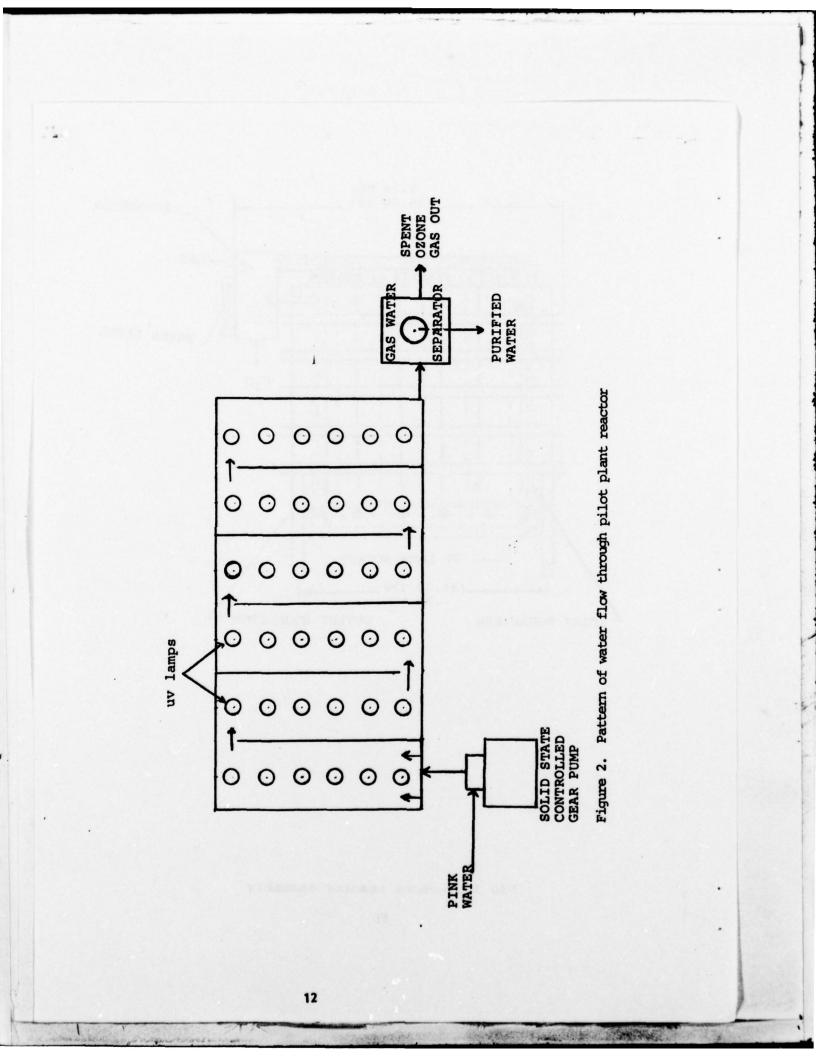


Fig 1 UV-ozone reactor assembly

11

pera.p.t.

A State of the second s

conduits are welded across the reactor and provide adequate crosswise stiffening. Longitudinal stiffening is achieved by three strips of stainless steel welded to the cover plate, the manifolds, the ozone air vent, and the wiring conduits. A diagram of the proposed pilot system is shown in figure 3.

Cover Assembly

The following openings are punched into the cover plate:

- One hundred and forty four holes, 2.86 cm (1 1/8 in.) in diameter (in a geometric pattern) for the quartz tubes that enclose the UV lamps. Nipples are welded at the top surfaces of these openings so that the quartz tubes are sealed to the cover by compression nuts with O-rings.
- 2. Six holes, 2.54 cm (1 in.) diameter, for the spent ozone gas outlets.
- 3. Six holes, 3.81 cm (1 in.) square, for mating with the lamp support structure.
- Six holes, 1.59 cm (5/8 in.) diameter, for the outboard lamp support and cooling air vent lines.
- 5. Two nipples, 3.81 cm (1½ in.) NPT, for water inlets.

The lower lamp support structure consists of 3.81 cm (1½ in.) square tubes with a 0.159 cm (0.0625 in.) wall thickness. Holes of 2.54 cm (1 in.) diameter are drilled on the upper side of the tubes at appropriate positions to install the quartz tube support and sealing assemblies which are welded to the upper side of the tube. A 1.27 cm (½ in.) diameter hole is drilled through the outboard end of the conduit to attach the vent tube which also acts as a support for the end of the square tube. The center of the square tube is supported by welding the ozone line to the diffusers running parallel to the conduits.

NEMA Ballast Enclosure

A standard 1.52 cm x 0.91 m x 0.31 m (5ft x 3ft x

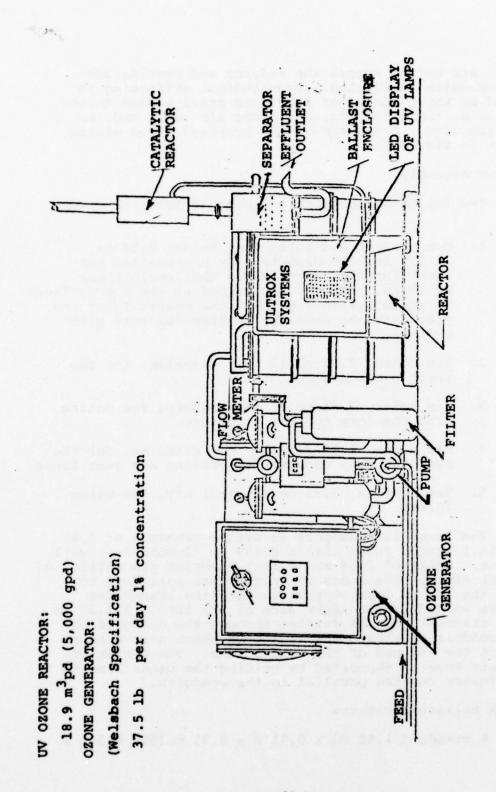


Fig 3. The 920 m^3 pd (5000 gpd) pilot plant assembly

lft) deep, 16-gauge NEMA cabinet is used to contain and cool 72 lamp ballasts. The ballasts are mounted on racks in six rows within the cabinet. A rotary air blower, mounted at the base of the cabinet, directs the air upward for cooling the ballasts. The air exits at the top of the cabinet.

The cabinet door contains a mounted LED display behind a glass window. The display shows visually the number UV lamps "on" in the reactor. Elastomer gasketing and springloaded screw clamps seal the door.

Ozone Generators

A number of manufacturers can supply generators which meet the $18.9 \text{ m}^3/\text{d}$ (5,000 gpd) pilot plant criteria of 17 kg (37.5 lb) of ozone per day. From some manufacturers, such as OREC or PCI, two 9.1 kg (20 lb) per day ozone generators would be required since neither one has an offthe-shelf 18.2 kg (40 lb) generator. The Welsbach generator is oversized, but it can produce 18.2 kg (40 lb) efficiently by lowering the input voltage by means of a variable voltage transformer.

UV-OXIDANT TREATMENT OF PINK WATER

Bench-scale studies researching the effects of short wavelength UV-light and H_2O_2 in the treatment of explosivecontaminated effluents have shown this treatment to be very successful (ref 2). This photo-oxidative treatment appears to be effective not only in decolorizing pink water, but also in destroying TNT, RDX, HMX, and other nitrobodies with a concurrent reduction in TOC concentration. These effects have been determined by gas, liquid, and thin-layer chromatography (GC, LC, TLC), total organic carbon (TOC), and 14C-labeled TNT assays.

The economic feasibility of using commercially available UV water purification units in conjunction with an oxidizing agent was investigated during the bench-scale studies. Variables, such as oxidants, film depth, serial passaging, and wavelength of UV light, were also examined for optimization of treatment parameters.

Description of UV-Oxidant Pilot Plant

A small-scale pilot system was designed incorporating four UV-light, water purification units connected in series. These were Model 2000 units manufactured by the Ultradynamics Corporation of Santa Monica, California, with four 40-W mercury vapor lamps (254 nm) protected by quartz jackets that are continuously cleaned by a hydraulically operated wiper assembly. The liquid capacity of each chamber is approximately 22.8 L (6 gal). The maximum film depth of approximately 5.72 cm (2½ in).

Pink water obtained from a bomb loading and steam-out operation at the Naval Weapon Support Center, Crane, IN, was used in the study. Before being pumped into the system, the water was filtered to remove suspended solids which could interfere with the treatment. Because its intense color would negatively affect the efficiency of the system, the pink water was diluted 1:1 or 1:3 with tap water to yield the following average explosive and TOC concentrations (mg/L):

	1:1 dilution	1:3 dilution
TNT	70.9	34.1
RDX	72.4	27.0

(cont)	1:1 dilution	1:3 dilution
HMX	9.4	4.1
TOC	52.6	27.0

Previous studies (ref 2) determined that 0.1% (H₂O₂) is the optimum concentration to use in treating pink water. A 35% solution of H_2O_2 (Fisher Chemical Co.) was added to the pink water to yield a final concentration of 0.1% H_2O_2 . The water was recycled from a reservoir through the UV units at a flow rate of 2.73 m³/hr (720 gph) in a continuous flow mode. Only 7.58 to 11.4 L (2 to 3 gal) of the 128.9 L (34 gal) solution were retained by the fast reservoir. Tubing volume is considered negligible because of the fast flow rate. The actual residence time of the liquid in any one unit is about 0.008 hr. A smaller commercial unit has been used to study the efficiency of the photo-oxidative treatment of pink water with respect to film depth. A Model 500 unit (also manufactured by Ultradynamics Corp.) with a 2.54 cm (1 in) film depth was used. The static capacity of its chamber is approximately 2.84 L (3/4 gal). It resembles the UV 2000 unit in structure and appearance, One gallon of pink water (undiluted or diluted) containing 0.1% H202 was recirculated through the unit and back into a reservoir at a flow rate of approximating 0.4 m^{3}/h (105 gph).

Parameter Variations for Optimization of the System

Oxidizing Agents and Film Depth Studies

To test the effectiveness of incorporating a different oxidizing agent, a monopersulfate compound, Oxone⁴ was substituted for the H_2O_2 in a number of studies using the UV-2000 and UV-500 system. In both systems, overall efficiency was significantly increased by using 0.3% Oxone in place of 0.1% H_2O_2 . Table 5 illustrates the results of treatment of a 1:3 diluted pink water solution in the UV-2000 (4-unit system) at a flow rate of 2.73 m³/d (720 gpd),

4. Oxone is a mixture of potassium monopersulfate, potassium hydrogen sulfate, and potassium sulfate, manufactured by E.I. duPont de Nemours, Inc. Table 5. Oxidation in the UV-2000 and UV-500 systems with Oxone or $\mathrm{H_2O_2}$

Ī

			TNT + 2 TNT, TNB + 4 TNB	TNT + 2 TNT, TNB + 2 0
0.1	TNT + 2 TNB + 3 TNT + 3	TNT + 2 0	+ 2 , TNB	+ 2 , TVB
PNAb	TNT	TNT	TNT TNT TNB	TNT
g/L) TOC	24.8 5.6 1.6	24.2 0.1 0.2	23.0 17.4 8.0	23.0 7.6 1.8
res (m	0 2.53 2.8	000	0.9	0 1.5 0.06
Water analyses (mg/L))X HMX TNB ^a TC	3.0 0.02 0.02	2.8 0.0 0.02	3.1 0.02 0.02	3.1 0.02 0.02
Wate RDX	26.8 0.01 0.01	27.4 0.01 0.01	20.6 0.01 0.01	20.6 0.01 0.01
TNT	30.0 0.01 0.01	34.0 0.01 0.01	29.0 0.8 0.05	29.0 0.3 0.01
UV Expo- sure (hr)	0.0 3.00 5.0	0.0 0.0 0.0	0.0 1.50	0.0 0.5 1.5
System/Oxidant%	UV-2000 0.1 H ₂ O ₂	UV-2000 0.3 oxone	UV-500 0.1 H ₂ 02	UV-500 0.3 oxone

a. Trinitrobenzene

Polynitroaromatic compounds as detected by TLC. All compounds present at barely detectable levels in most cases. Except for TNB, the other polynitroaromatics remain to be identified. þ.

c. Hour decolorization noted (app).

State State

.

18

and in the UV-500 system at a flow rate of 0.4 m^3/h (105 gph) using either 0.1% H_2O_2 or 0.3% Oxone. The solutions were analyzed by liquid, gas, and thin-layer chromatography for explosive residues and TOC concentrations.

From the results in table 5 it is evident that Oxone is far superior to H_2O_2 with respect to decolorization time, TNT elimination, and degradation of polynitroaromatic byproducts with corresponding reductions in TOC concentrations. These results also show that the 2.54 cm (1 in) film depth of the UV-500 system (compared to the 5.72 cm ($2\frac{1}{2}$ in) film depth of the UV-2000 system) enhances the efficiency of the treatment with either oxidizer.

Various concentrations of oxone were also studied, and the potential of a combination $H_2O_2/Oxone$ treatment was examined. Because of the limited time available, only the effects of 0.3% and 0.2% Oxone on diluted pink water in the UV-2000 units, and 0.3% and 0.7% Oxone on undiluted pink water in the UV-500 system were examined. A combination of 0.1% H_2O_2 and 0.1% Oxone was also examined in the UV-2000 system. Table 6 illustrates the parameters and results of the treatment.

Treatment of 1:3 diluted pink water in the UV-2000 system with 0.3%, 0.2% and 0.1% Oxone and 0.1% H_2O_2 are comparable. The TOC levels were appreciably reduced and no detectable amounts of explosives or polynitroaromatics were found after 3 hours of exposure. Treatment of an undiluted pink water solution with 0.7% Oxone in the UV-500 system is not as efficient as treatment of a 1:3 diluted pink water solution with 0.3% Oxone, but it is feasible if environmental trade-offs are allowed. The same is true of a 1:1 dilution of pink water treated in the UV-2000 system with 0.3% Oxone.

Flow Rates and Operations of Units In Series

Two flow rates were examined in the UV-2000 system. There appeared to be no major difference in results between flow rates of 2.04 and 2.73 m³ph (540 and 720 gph) while operating in a continuous flow mode. If the ultimate treatment were direct passage and not recirculation of the pink water through the UV system, the flow rate would not be critical, but the total UV exposure time or contact time of the solution in the units would be. Operation in a continuous flow mode through one to four UV- Table 6. Analyses of various concentrations of 0xone and 0xone and $\rm H_2O_2$

1

Operatin	Operating parameters	S	Ori	Original/Final		vtical 1	Analytical results (mg/L)	(mg/L)
Dilutions agent	Oxidizing agent (%)	UV contact time (hr)	t TNT	RDX	XMH	TNB	TOG	TLC
1:4	0.3 Oxone	e	28/0.01	26/0.01	28/0.01 26/0.01 27/0.02 trace/ 22.8/0.3 TNT/0 0 +2PA	trace/ 0	22.8/0.	3 TNT/0 +2PA
1:2	0.3 Oxone	m	64/0.01	55/0.1	8.5/0.02	trace/ 0.4	46.1/3.	trace/ 46.1/3.4 TNT/TNB 0.4 +2PA
1:4	0.2 Oxone	e	23/0.01	10.0%61	19/0.01 2.4/0.02	trace/ 0	trace/ 21.8/0.4 TNT/0 0 +2PA	4 TNT/0 +2PA
1:4	0.1 Cxone 0.1 H ₂ O ₂	m	23/0.01	20/0.01	20/0.01 2.5/0.02		trace/ 25.0/0.9 ТNT/0 0.1 +2PA	9 TNT/0 +2PA
					UV-5000 system	ystem		
0	0.7 Oxone	9	138/0.02	3.1/0.02	138/0.02 3.1/0.02 0.02/15.0 0/1.1 86.6/8.95 TNT/TNB +3PA/+1PA	0/1.1	86.6/8.	95 TNT/TNI +3PA/+11
1:4	0.38 Oxone	3	9.0/0.012	0.6/0.01	29.0/0.0120.6/0.01 3.1/0.02 0/0.3 23.0/1.8 TNT/0 +2PA	0/0.3	23.0/1.	8 TNT/0 +2PA

20

PERA

Sere and

2000 units in series appeared to have no major effect on overall efficiency as shown in Table 7. This table illustrates the results of treating a 1:3 dilution of pink water with 0.1% H_2O_2 through one to four units in series mode.

It would be difficult to determine the overall effect of units in series with just four units operating in a continuous flow mode with the small volumes used. Hypothetically, as the color of the solution disappears, the efficiency of the system is dramatically increased with direct passage of the colorless solution through units in The loss of energy by color absorption would be series. non-existent after the point of decolorization, thus increasing overall efficiency. This can be indirectly shown by diluting the pink water and examining TOC reduction per unit time. Studies were undertaken to examine this phenomenon using 1:1, 1:3, and 1:7 dilutions of pink water. Table 8 illustrates the results of these studies. There is a dramatic decrease of 91% in the TOC level of the pink after 3 hours of exposure in the UV-2000 system when the pink water is diluted 1:7 and only a 38% decrease with a 1:1 dilution. The relationship between these dilutions and the percentage of decrease in TOC observed after the exposure period appears to be proportional (fig 4). These results confirm the hypothesis concerning a significant increase in efficiency of the system with a decrease in color.

Effect of Wavelengths

Each of two aliquots of undiluted pink water containing 0.1% H202 was exposed to one of two wavelengths of UV light, 254 or 375 nm, in static mode, to determine if the higher wavelength were as effective in the destruction of explosives and reduction in TOC of treated solutions as the lower wavelength. The film depth of each sample was 40 mm, and each was exposed for 30 minutes. After the 30 minutes of exposure at 254nm, the pink water had completely decolorized and TOC had decreased from 89 mg/L to 9 mg/L. On the other hand, the color of the solution exposed at 375 nm was unexpectedly intensified, and no loss of TOC was noted. However, the TNT level in the pink water dropped to 0.02 mg/L after exposure at 375 nm and only to 0.15 mg/L after exposure at 254 nm. This failure to reduce the TOC level indicates that, although the higher wavelength uv-light will alter the TNT molecule, it apparently

Table 7. Evaluation of UV-2000 system operating in series mode

1

Parameters				Explo	Explosives content (mg/L)	ent (mg/L)		
UV units (no.)	UV exposure (hr) TNT	(hr) 7	LNI	RDX	XMH	TNB	TOC	PNA
1	S	× 0.	10.	<0.01 < 0.01 < 0.01	< 0.01	3.0	14.5	TNB
7	S	× 0	.01	<pre>< 0.01 < 0.01 < 0.01</pre>	< 0.01	2.5	4.4	TNB
e	5	× 0	.01	< 0.01	<0.01 ≤ 0.01 ≤ 0.02	2.9	5.0	TNB
4	S	× 0.	.01	< 0.05	<pre>< 0.01 < 0.05 < 0.05</pre>	2.0	2.5	TNB
	1							

A 1:4 pink water solution treated with 0.1% H_2O_2 was used as a sample. Note:

.

*

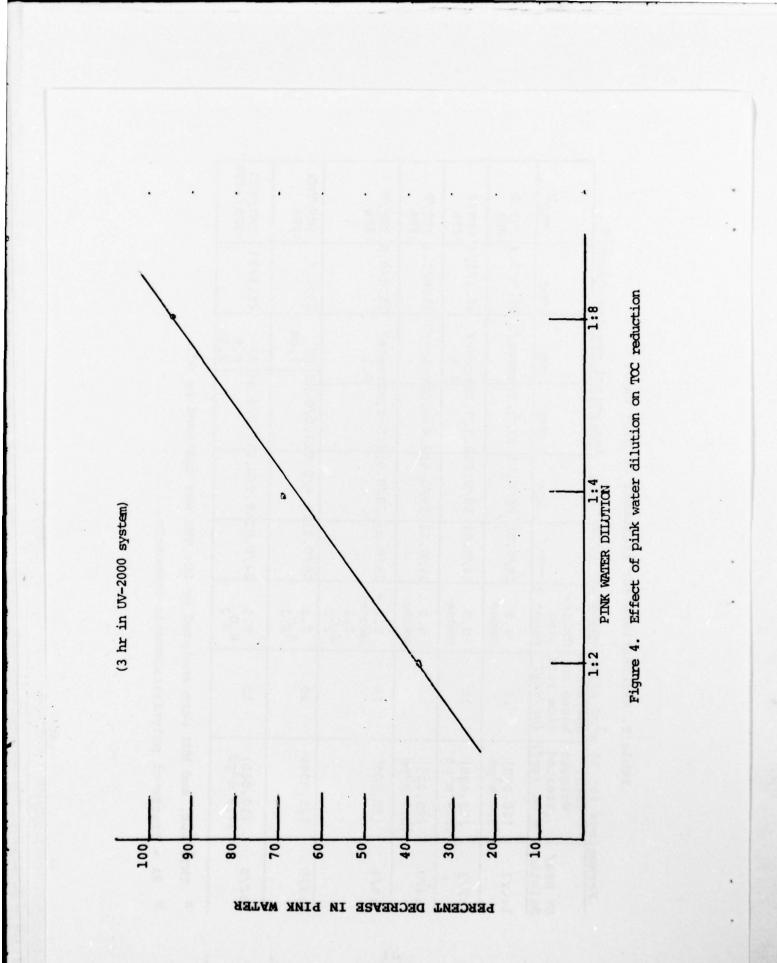
22

The second s

Table 8. Alternatives for treatment of pink water

1					<u> </u>		
) a	т _г с ^b	TNT/0/ +PNA	TNT/0 +2PA	TNT/0 +2PA	TNT/0 +2PA	TNT/TNB +2PA	45.4/13 TNT/TNB +2PA/+2PA
Analytical results (ma/L) ^a	TUC	28/0.01 26/0.01 27/0.02trace/0 22.8/0.3 TNT/0	46.1/3/4 TNT/0 +2PA	23/0.01 19/0.012.4/0.02trace/0 21.8/0.4 TNT/0 +2PA	25.0/0.9 TNT/0 +2PA	23/1.6	45.4/13
al resul	TUB	trace/0	trace/ 0.4	trace/0	trace/ 0.1	2 0/ 2.08	5 0/ 2.5
Analytic	XWH	27/0.02	8.5/0.02	2.4/0.02	2.5/0.02	13.0/0.01	56.9/0.0
	RDX	26/0.01	64/0.01 55/0.018.5/0.02 trace/ 0.4	10.0/01	0.1 + 23/0.01 20/0.012.5/0.02trace/ xone 0.1 0.1	30/0.0126.8/0.013.0/0.02 0/	64/0.0148.0/0.056.9/0.05 0/ 0.
on Orig,	ĨNT	28/0.01	64/0.01	23/0.01	23/0.01	30/0.01	64/0.01
operati	Oxidi- zing agent %	0.3 oxone	0.3 oxone	0.2 oxone	0.1 + oxone 0.1 H ₂ O ₂	0.1 H2 ⁰ 2	0.1 H ₂ 02
m ³ pd pilot operation Orig/Fin	Operation based on flow rate (hr/day)	20	10	20	20	20	10
Parameters for 19 m	Total Volumes Treated m ³ pd (gpd)	(20,000) 75.7 m ³ pd	(10,0 <u>0</u> 0) 37.9 m ³ pd	(20,000) 75.7 m ³ pd	(20,000)	(20,000)	(10,000) 37.9 m ³ pd
Paramet	UV hrs/ Dilution	1:4/3	1:2/3	1:4/3	1:4/3	1:4/5	1:2/5

TNT, RDX, and HMX were analyzed by LC; TNB was analyzed by GC.


Ø

Section of the

-

b PA = Traces of polynitroaromatic compounds.

花花茶

24

A STATE AND A STATE AND A STATE AND A

cannot oxidize it. The significant reduction of TOC and rapid decolorization observed with the sample irradiated at 254 nm is a good indication that this shorter wavelength has a pronounced effect on the overall efficiency and effectiveness of the photo-oxidation system.

Chemical Reactions

The proposed mechanism of action of the H_2O_2 and Oxone (monopersulfate compound) in the treatment is the production of OH radicals which are ultimately responsible for the destruction of the explosives in the water upon exposure to UV light. The mechanism of each is outlined below with RH representing the explosive.

 $H_{2}O_{2} \rightarrow 2 \cdots OH$ $RH + OH \rightarrow R + H_{2}O$ $R \rightarrow cleavage of ring$ $HOOSO_{3} \rightarrow OH + OSO_{3}$ $RH + OH \rightarrow R + H_{2}O$ $R \rightarrow cleavage of ring$

Additional Analyses

In addition to explosive analyses, the treated samples with the higher TOC levels (2 mg/L) were analyzed for nitrosoamines (ref 3,4) and sulfonates (ref 5,6). No detectable levels of these products could be found by TLC procedures (sensitivity 50 ppb) in samples irradiated in the UV-2000 or UV-500 system with either H_2O_2 or Oxone.

In each case using H_2O_2 , the peroxide level was monitored in the treated samples. The levels of residual peroxide range between 30 and 100 ppm after 3 or 5 hours of exposure in the UV-2000 system and 1.5 hr in the UV-500 system. With direct passage (instead of recirculation) of the pink water through units in series, the H_2O_2 will probably be completely destroyed, since UV efficiency is enhanced with decolorization.

The pH of the pink water solutions containing H2O2

or Oxone was monitored before and after treatment. Before treatment, the pH values averaged 7.3 and 3.2, respectively. After treatment, the values fell to 6.4 and 2.4. If the extremely low pH of the treated water with oxone poses a problem, it can be economically and simply neutralized by the addition of lime after treatment and before discharge.

Design Parameters of Full-Scale Treatment System

If pink water is to be treated effectively in the system, it must be filtered to remove suspended solids before irradiation. This can be accomplished by use of a filter between the source of the effluent and the sump where it is discharged. The trapped explosive crystals could be reclaimed, if desired.

After eliminating the suspended solids, the liquid is diluted, if necessary, and pumped into a mixing tank where metered additions of hydrogen peroxide or Oxone are made. To be certain that a homogeneous solution is prepared, the pink water and oxidant are further mixed by an in-line triblender after which the mixture is pumped into the UVsystem for treatment. Figure 5 illustrates the basic design of the system. After treatment, the water can be discharged directly into a sewer line or, if H_2O_2 were used as the oxidizer, it could be recycled through the system for diluting untreated pink water. The treated water originally containing Oxone cannot be recycled without further treatment, since residual amounts of potassium and sulfate ions in the treated water would increase with each fresh addition of oxone.

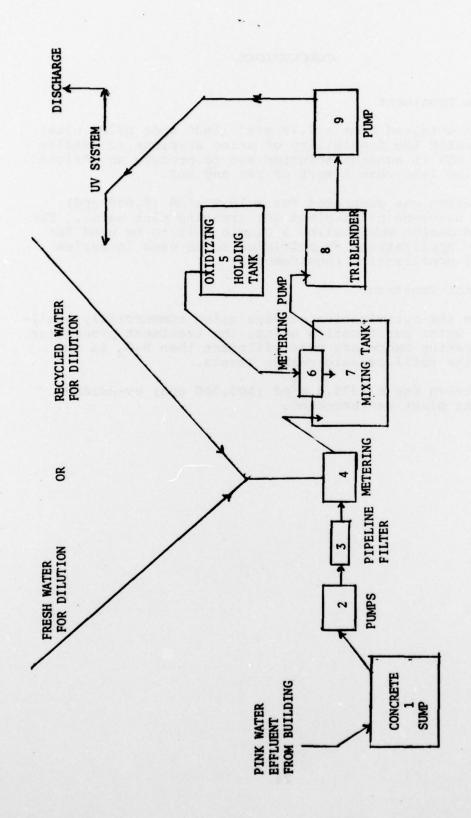


Figure 5. Basic design of the UV-oxidant system

The second se

NA Y

Shirt And

CONCLUSIONS

UV-Ozone Treatment

1. Data obtained from a 3.79 m^3pd (1000 gpd) pilot plant demonstrated the feasibility of using uv-ozone to oxidize TNT and RDX in aqueous solution and to produce an effluent containing less than 1 mg/L of TNT and RDX.

2. A design was generated for a $18.9 \text{ m}^3\text{pd}$ (5,000 gpd) modular uv-ozone pilot plant for treating pink water. The proposed design would allow a single unit to be used for low-flow applications or multiples to be used in-series for full mobilization requirements.

UV-Oxidant Treatment

1. From the optimization studies using commercially available UV water purification units, the treatment procedures incorporating Oxone are more efficient than H_2O_2 in reducing the total organic carbon levels.

2. A design for a 378.5 m³pd (100,000 gpd) uv-oxidant treatment plant was proposed.

RECOMMENDATIONS

UV-Ozone Treatment

1. A 5000 gpd (18.9 m^3 pd) pilot plant should be evaluated at an ammunition plant in order to determine the operating conditions required for achieving the minimum fixed and operating costs for a 378.5 m^3 pd (100,000 gpd) plant.

2. An economic analysis should be performed on the 18.9 m^3pd (5000 gpd) unit after process parameters have been optimized.

UV-Oxidant Treatment

1. A study should be made to develop a new design for the UV-oxidant process that would be suitable for purification of larger volumes of pink water to enhance the economics of the process.

2. Further studies of the process should be made only if more cost-effective equipment is developed to process the volume and concentration of pink water to be expected in a full-scale plant.

REFERENCES

- J. Patterson, N. I. Shapira, J. Brown, W. Duckert, and J. Polson, "State-of-the-Art: Military Explosives and Propellants Production," Environmental Protection Agency (E.P.A.) Report 600/2-76-2/3 a, b, c, October 1976.
- C. C. Andrews and J. L. Osmon, "The Effects of Ultraviolet Light on TNT and Other Explosives in Aqueous Solution," WQEC/C 77-32, Naval Weapon Support Center, Crane, Indiana, 1977.
- E. Zuesh, G. and J. Sherma, "CRC Handbook of Chromatography, Solvent 3," CRC Press, Cleveland, 1972, p. 445.
- E. Merck, "E. M. Reagents: Dying Reagents for Thin-Layer and Paper Chromatography," Darmstadt, W. Germany, 1975, p. 37, p. 83.
- 5. Ed Hais, I. M. and K. Macek, "Paper Chromatography," Academic Press, New York, 1963, p. 637.
- 6. Standard Methods for the Examination of Water and Wastewater, 14th edition, American Public Health Association, Washington, DC, 1976, 493-495.

DISTRIBUTION LIST

Commander

U.S. Army Armament Research and Development Command ATTN: DRDAR-CG DRDAR-LC (2) DRDAR-LCM DRDAR-LCM-SA) (6) DRDAR-SC DRDAR-TSS (5) DRDAR-LCU-P Dover, NJ 07801

Commander

U.S. Army Materiel Development and Readiness Command

ATTN: DRCDE-E DRCIS-E DRCPA-E DRCRP-I DRCDL DRCSG-S 5001 Eisenhower Avenue

Alexandria, VA 22333

Commander

U.S. Army Armament Materiel Readiness Command ATTN: DRSAR-IR

DRSAR-IRC DRSAR-IRC-P DRSAR-IRC-E DRSAR-PDM DRSAR-ASF DRSAR-LC DRSAR-LEP-L Rock Island, IL 61299

3920

Commander USDRC Installations and Services Agency ATTN: DRCIS-RI-IU DRCIS-RI-IC Rock Island, IL 61299

Project Manager for Munitions Production Base Modernization and Expansion DARCOM ATTN: DRCPM-PBM-EC DRCPM-PBM-T-EV Dover, NJ 07801

Department of the Army Chief of Research, Development and Acquisition Washington, DC 20310

Director U.S. Army Industrial Base Engineering Activity ATTN: DRXIB-MT Rock Island, IL 61299

Department of the Army Chief of Engineers ATTN: DAEN-ZCE Washington, DC 20310

Commander ARRADCOM Chemical System Laboratory ATTN: DRDAR-CLT Aberdeen Proving Ground, MD 21010

Defense Documentation Center (12) Cameron Station Alexandria, VA 22314

Commander Mobility Equipment R&D Command ATTN: DRDME-GS Fort Belvoir, VA 22060

The second

Commander U.S. Army Construction Engineering Research Laboratory ATTN: CERL-ER Champaign, IL 61820

U.S. Army Engineer District, New York ATTN: Construction District 28 Federal Plaza New York, NY 10007

Commander Milan Army Ammunition Plant ATTN: SARMI-EN Milan, TN 38358

Commander Newport Army Ammunition Plant ATTN: SARNE-S Newport, IN 47966

Commander Pine Bluff Arsenal ATTN: SARPB-ETA Pine Bluff, AR 71601

Commander Radford Army Ammunition Plant ATTN: SARRA-IE Radford, VA 24141

Commander Ravenna Army Ammunition Plant Ravenna, OH 44266

Commander Sunflower Army Ammunition Plant ATTN: SARSU-O Lawrence, KS 66044

Same and

Commander Volunteer Army Ammunition Plant ATTN: SARVO-T Chattanooga, TN 34701

Army Logistics Management Center Environmental Management ATTN: Mr. Otto Nauman (2) Fort Lee, VA 23801

Project Manager for Chemical Demilitarization and Installation Restoration ATTN: DRCPM-DRR, Mr. Harry Sholk Aberdeen Proving Ground, MD 21010

Commander Cornhusker Army Ammunition Plant ATTN: SARCO-E Grand Island, NB 68801

Commander Holston Army Ammunition Plant ATTN: SARHO-E Kingsport, TN 37662

Commander Indiana Army Ammunition Plant ATTN: SARIN-OR Charlestown, IN 47111

Commander Naval Weapons Support Center ATTN: Code 5042, Mr. C.W. Gilliam Crane, IN 47522

Commander Iowa Army Ammunition Plant ATTN: SARIO-A Middletown, IA 52638

State Cart

Commander Joliet Army Ammunition Plant ATTN: SARJO-SS-E Joliet, IL 60436

Commander Kansas Army Ammunition Plant ATTN: SARKA-CE Parsons, KS 67537

Commander Lone Star Army Ammunition Plant ATTN: SARLS-IE Texarkana, TX 57701

Commander Longhorn Army Ammunition Plant ATTN: SARLO-O Marshall, TX 75670

Commander Louisiana Army Ammunition Plant ATTN: SARLA-S Shreveport, LA 71102

U.S. Army Engineer District, Baltimore ATTN: Construction Division PO Box 1715 Baltimore, MD 21202

U.S. Army Engineer District, Norfolk ATTN: Construction Division 803 Front Street Norfolk, VA 23510

U.S. Army Engineer District, Fort Worth ATTN: Construction Division PO Box 17300 Fort Worth, TX 76102

Sales and

U.S. Army Engineer District, Omaha ATTN: Construction Division 6014 USPO and Courthouse 215 North 17th Street Omaha, NE 68102

U.S. Army Engineer District, Kansas City ATTN: Construction Division 700 Federal Building Kansas City, MO 64106

U.S. Army Engineer District, Huntsville ATTN: Construction Division PO Box 1600 West Station Huntsville, AL 35807

Commander U.S. Army Environmental Hygiene Agency ATTN: HSE-E (2) Aberdeen Proving Ground, MD 21010

Commander Badger Army Ammunition Plant ATTN: SARBA-CE Baraboo, WI 53913

Department of the Army ATTN: Chief of Engineers DAEN-MCZ-A DAEN-FEZ-A DAEN-CWZ-A DAEN-REZ-A Washington, DC 20304

U.S. Environmental Protection Agency Office of Solid Waste Management Programs Washington, DC 20460

U.S. Environmental Protection Agency Ind. Environmental Research Agency Office of Research and Development Cincinnati, OH 45268 U.S. Environmental Protection Agency National Environmental Research Center Edison Water Quality Research Laboratory Industrial Waste Technology Branch Edison, NJ 08817

Dr. John A. Brown, Chairman (Consultant) PO Box 145 Berkeley Heights, NJ 07922

Dr. Helmut Wolf (Consultant) 120 Skyline Drive Fayetteville, AR 72701

Dr. Fred Smetana (Consultant) 5452 Parkwood Drive Raleigh, NC 27612

Dr. Zachary Sherman (Consultant) 109 N. Broadway White Plains, NY 10603

U.S. Army Materiel Systems Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005

Weapon System Concept Team/CSL ATTN: DRDAR-ACW Aberdeen Proving Ground, MD 21010

Technical Library ATTN: DRDAR-CLJ-L Aberdeen Proving Ground, MD 21005

Technical Library ATTN: DRDAR-TSB-S Aberdeen Proving Ground, MD 21010

States States

The state

Technical Library ATTN: DRDAR-LCB-TL Benet Weapons Laboratory Watervliet, NY 12189

Commander U.S. Army Medical Bioengineering R&D Laboratory SGRD-UBG-L Fort Detrick, Frederick, MD 21701

and the second sec

1

13

.