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ABSTRACT

Underwater sound transmissions are significantly affected by

the presence of mesoscale eddies, because large sound—speed

variations and rotational currents are associated with these

phenomena. Using an earlier axisymmetric eddy model, equation~

and graphs of the ocean surface are found above an eddy. The

surface is elevated above an anticyclonic eddy and depressed

in the cyclonic case (northern hemisphere). This behavior may

be used to detect and partially classify an ocean eddy. With an

appropriate eddy model, satellite altimeter data may be used to

approximate acoustically—relevant effects.
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INTRODUCTION

The effects of an ocean eddy on underwater sound transmissions

can be dramatic. In particular, major acoustical influences occur

through large sound—speed variations and relatively large currents.

Several eddy-acoustics studies have been presented at Acoustical

Society meetings, while others have appeared as published papers

or technical reports. Although most investigations have emphasized

eddy effects on sound propagation, others have been concerned

with the inverse problem of using acoustics to detect eddies and

predict their properties. Examples of some of these studies are

Refs. 1—6.

Recently, three of the authors of this Letter used an

• analytical approach to obtain an approximate solution for deep—

ocean eddies, and used the solution in the development of a model

relating acoustically-relevant quantities to eddy parameters.7

The model was intended to provide a basis for analytical sound—

transmission studies. Subsequently, we considered the use of

limited observational data and analytical eddy models in

approximating acoustically—important environmental effects.8

Because of the strong interrelationships between underwater

acoustics and ocean eddies, it is important to know when an eddy

lies in a sound—transmission path, or when its trajectory appears

to ultimately intersect such a path. It is important also to

know the characteristics of such an eddy. A possible procedure

for determining such information is to investigate one or more of

the ways in which an eddy expresses itself on the ocean surface.

For example, an eddy will affect surface height, its maximum
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rotational current should occur near the surface, and a cold

or warm surface temperature pattern may sometimes be present.

In this Letter, we are concerned with two aspects of surface

height above an eddy. First, using the model of Ref. 7, we

examine surface height in terms of eddy parameters and location

within the eddy. Second , we consider the possible prediction of

eddy parameters from surface behavior, emphasizing the utilization

of satellite altimetry data.

II. SURFACE HEIGHT

Although mesoscale eddies are complex and varied ocean

formations, they can be divided into two distinct types: Cyclonic

eddies consist of a cold—water mass circulating in the counter-

clockwise direction (in the northern hemisphere); anticyclonic

eddies have a warm core and rotate clockwise. A number of

actual eddies of either type can be satisfactorily described by

the model of Ref. 7. In this study axisymmetry was taken, so

that each horizontal section of the eddy. is circular. The vanishing

of eddy-induced effects beyond a radius r0, and belr a depth z0,

was assumed.

If r is dimensional radial distance from the vertical eddy

axis and z is dimensional depth from the ocean surface in the

absence of the eddy, then the dimensional pressure within the

eddy is given by Ref. 7 as

P(r , z) = + p
0
g{(l+gDA/c~)z + gz 2/2c~

(gD A/C0B)tfl~l+Bz/D) 
— u0r0K(J

0
(ar/r0)

— J0 (a ) ]  (~~(l) 
( z ) — F~

1
~ (z 0 ) J }  . (1)

p
~~~
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In Eq. (1),

K = ± 2~2g~~ (sin +){am [l—F~~~ (z0)]}
1 

, (2a)

F~~~ (z) = (l+Bz/D) 1”2{cos [(y/2)tn(l+Bz/D)

+ (1/y)sin((y/2)tn(l+Bz/D)J} , (2b)

and

y = 2w (Ln(l+Bz
0
/D)]~~ . (2c)

In the above equations 
~A 

is atmospheric pressure, p
0 
and c0

are the density and sound speed at z = 0, g = 9.81 rn/sec2 is

the gravitational constant, and D is unperturbed ocean depth.

The symbols A and B are constants depending on the mean ocean

state, chosen here as 0.3064 and 11.56, U0 is the maximum

rotational surface speed, &n is the natural logarithm, and

is the Bessel function of order zero. The constant ~2 =

7.27 x l0~~ rad sec~~ is the magnitude of the earth’s angular

velocity, $ is latitude which we will take subsequently to be

350 
m = 0.582, and a = 3.83. The plus (minus) sign in Eq. (2a)

corresponds to a cyclonic (anticyclonic) eddy.

An equation for the surface may be obtained from Eq. (1)

by setting the pressure equal to the constant atmospheric

pressure 
~A’ 

giving

(l+gDA/c~)z + gz2/2c~ — (gD2A/c~B)Ln(l+Bz/D)

—U0r0
K(J

0(ar/r 0)—J0(a)J (F~~~ (z)—F~~~ (z0)J 
— 0 , (3)

--

~ 
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We observe •that Ref. 7 assumes axisyminetric eddies and vanishing

vertical velocity as a boundary Condition near the surface,

which together imply the vanishing of the velocity component

normal to the surface.

III. RESULTS

Although Eq. (3) is a proper surface expression , it is more

convenient to be able to write z as an explicit function of r.

Since I z/DI is small at the surface, this can be accomplished

approximately by expanding the left side of Eq. (3) in powers

of z/D and retaining only linear terms. We obtain as a highly

accurate approximation ,

z = ± (2c2 sin +/ci mg)U0r0[J0(ar/r 0) 
— 30(a)] . (4)

The extreme value of z occurs when r = 0, and is directly

proportional to both eddy strength U0 and radius r0. In Eq. (4),

choice of the plus (minus) sign corresponds to a cyclonic

(anticyclonic ) eddy. Thus, the surface is depressed (z > 0)

above cyclonic eddies and is elevated (z < 0) in the anticyclonic

case. By examining Eq. (4) in Conjunction with Ref. 7, we make

the important and physically—plausible observation that the

approximate surface expression is independent of the futkctional

form of the potential density, and consequently of the vertical

mode structure.

Equation (4) can be written conveniently in terms of a

dimensionless height Z :

z — +(czmg/2(~u0r0sin $)z = J0 (ar/r 0) — .70(a) . (5)

~~~~~~~~~ — - - _______________________
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The graph of Eq. (5) is plotted in Fig. 1. It can be applied

for any values of the fundamental parameters U0 and r0; it

describes the magnitude of surface height in any radial direction

from the eddy center. We observe that the height deviation

from the static ocean is a maximum at the eddy center, and

decreases steadily to zero on the eddy circumference.

Figures 2 and 3, obtained from Eq. (4) or (5) or Fig. 1,

show specific surface profiles in a vertical cut through eddy

centers. Figure 2 shows the surface for various eddy radii and

U0 = 1 rn/sec. Figure 3 shows similar results for several peak

currents and a fixed radius of 125 km. In both f igures , the

max imum height deviation at the eddy center is approximately 1 m.

IV. USE OF ALTIMETRY DATA

Recent d~ve1opments in satellite altimetry instrumentation

permit reasonable accuracy in measuring ocean surface—height

perturbations. If a satellite traverses an ~~dy during an

orbit, the traversal will be nearly a linear path. Surface—

height readings along the path, when compared with those

predicted by a suitable eddy model, may predict some model

parameters. For example, this might be accomplished by

minimizing the sum of squares of the error between observed data

and that predicted by Eq. (4) at a discrete number of points

along the path. This procedure8 was proposed previously for

other types of eddy observations such as temperature and current.

In particular, for the model of Ref. 7, r0 and U0 can be obtained

uniquely. However, since height data are available only on an

eddy chord (the linear trajectory), an ambiguity can be shown

_______________________________________________________________________
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to exist in the position of the eddy center . Thus, either one

of two eddies, whose centers are on opposite sides of the chord,

could be responsible for the observed surface height. To locate

the center uniquely, additional data , such as that along a second

chord from another satellite traversal, would be required .

To specify eddy effects at all depths, Ref. 7 requires that

also be specified . This parameter cannot be determined from

surface—height information. Fortunately, however, vertical eddy

structure is relatively insensitive to variations in z0, so that

it could be reasonably estimated from past study of the eddy or

from knowledge of similar previously-studied eddy types. With all

parameter values specified , acoustically—relevant quantities, including

sound speed and current, could then be described throughout the

eddy .7

V. CONCLUSIONS

Since mesoscale eddies have a profound effect on underwater

sound transmissions, their existence and properties must be

known. Using a previously derived eddy model, equations are

derived and discussed for the mean ocean surface above a class of

axisyutmetric eddies. in addition, it is indicated how satellite

altimetry data might be used to estimate the sound—speed and

current structures within an eddy.

______ _________________ _____________________________--~~~~~~~~~
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FIGURE LEGENDS

FIG. 1. Dimensionless surfac€ height versus normalized

radial distance, Eq. (5).

FIG. 2. Surface height versus radial distance for selected

values of eddy radius r0. Maximum surface speed U0 
= 1.0 m/sec,

latitude $ = 350

FIG. 3. Surface height versus radial distance for selected

values of maximum surface speed U0. Eddy radius r0 
= 125 kin,

latitude $ = 350
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