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ABSTRACT

Underwater sound transmissions are significantly affected by

the presence of mesoscale eddies, because large sound-speed
variations and rotational currents are associated with these
phenomena. Using an earlier axisymmetric eddy model, equations
and graphs of the ocean surface are found above an eddy. The
surface is élevated above an anticyclonic eddy and depressed

in the cyclonic case (northern hemisphere). This behavior may
be used to detect and partially classify an ocean eddy. With an
appropriate eddy model, satellite altimeter data may be used to

approximate acoustically-relevant effects.
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INTRODUCTION

The effects of an ocean eddy on underwater sound transmissions
can be dramatic. In particular, major acoustical influences occur
through large sound-speed variations and relatively large currents.
Several eddy-acoustics studies have been presented at Acoustical
Society meetings, while others have appeared as published papers
or technical reports. Although most investigations have emphasized
eddy effects on sound propagation, others have been concerned
with the inverse problem of using acoustics to detect eddies and
predict their properties. Examples of some of these studies are
Refs. 1-6.

Recently, three of the authors of this Letter used an
analytical approach to obtain an approximate solution for deep-
ocean eddies, and used the solution in the development of a model
relating acoustically-relevant quantities to eddy parameters.7
The model was intended to provide a basis for analytical sound-
transmission studies. Subsequently, we considered the use of
limited observational data and analytical eddy models in
approximating acoustically-important environmental effects.8

Because of the strong interrelationships between underwater B
acoustics and ocean eddies, it is important to know when an eddy
lies in a sound-transmission path, or when its trajectory appears
to ultimately intersect such a path. It is important also to
know the characteristics of such an eddy. A possible procedure
for determining such information is to investigate one or more of
the ways in which an eddy expresses itself on the ocean surface.

For example, an eddy will affect surface height, its maximum
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rotational current should occur near the surface, and a cold
or -warm surface temperature pattern may sometimes be present.

In this Letter, we are concerned with two aspects of surface
height above an eddy. First, using the model of Ref. 7, we
examine surface height in terms of eddy parameters and location
within the eddy. Second, we consider the possible prediction of
eddy parameters from surface behavior, emphasizing the utilization

of satellite altimetry data.
II. SURFACE HEIGHT

Although mesoscale eddies are complex and varied ocean
formations, they can be divided into two distinct types: Cyclonic
eddies consist of a cold-water mass circulating in the counter-
clockwise directicn (in the northern hemisphere); anticyclonic
eddies have a warm core and rotate clockwise. A number of
actual eddies of either type can be satisfactorily described by
the model of Ref. 7. 1In this study axisymmetry was taken, so
that each horizontal section of the eddy is circular. The vanishing
of eddy-induced effects beyond a radius Lye and beles a depth Zye
was assumed.

If r is dimensional radial distance from the vertical eddy
axis and z is dimensional depth from the ocean surface in the
absence of the eddy, then the dimensional pressure within the

eddy is given by Ref. 7 as
P(r,z) =P_+p g{(1+gDA/c2)z + gzz/Zc2
A 0 0 0

- (gDzhlcgn)zn(l+Bz/D) - U,r KlJo(ur/ro)

oc¢
(1)

(1)
- Jo(a)][F (z) - F (zo)l} . (1)
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In Eq. (1),

(1)

K=+ 2ng’l(sin ¢) {am[1-F (zo)]}'1 ' (2a)

F1) (z) = (14B2/D) "/ ?%(cos [(y/2)n(1+Bz/D)
+ (1/y)sin((y/2)4n(1+Bz/D)]} , (2b)

and

y = 2nlen(l4Bz /)] 7" | (2¢c)

In the above equations PA is atmospheric pressure, and c

Po 0
are the density and sound speed at z = 0, g = 9.81 m/sec2 is
the gravitational constant, and D is unperturbed ocean depth.
The symbols A and B are constants depending on the mean ocean
state, chosen here as 0.3064 and 11.56, Uy is the maximum
rotational surface speed, &n is the natural logarithm, and Jo
is the Bessel function of order zero. The constant Q =
7.27 x 10"5 rad sec"l is the magnitude of the earth's angular
velocity, ¢ is latitude which we will take subsequently to be
35°, m = 0.582, and a = 3.83. The plus (minus) sign in Eq. (2a)
corresponds to a cyclonic (anticyclonic) eddy.

An equation for the surface may be obtained from Eq. (1)
by setting the pressure equal to the constant atmospheric

pressure PA' giving

(1+gDA/cg)z + gzz/zcg - (gDzh/ch)ln(1+Bz/D)

“Uor K13 tax/rg) -3 (a) 1 [F V) (2) ¢ M) (201 = 0 . (3)




We observe that Ref. 7 assumes axisymmetric eddies and vanishing
vertical velocity as a boundary condition near the surface,
which together imply the vanishing of the velocity component

normal to the surface.

III. RESULTS

Although Eq. (3) is a proper surface expression, it is more
convenient to be able to write z as an explicit_function of r.
Since |z/D| is small at the surface, this can be accomplished
approximately by expanding the left side of Eq. (3) in powers
of z/D and retaining only linear terms. We obtain as a highly

accurate approximation,
z =+ (2Q sin ¢/a mg)UorolJo(ur/ro) - Jo(a)] % (4)

The extreme value of z occurs when r = 0, and is directly
proportional to both eddy strength U0 and radius Ioe In Eq. (4),
choice of the plus (minus) sign corresponds to a cyclonic
(anticyclonic) eddy. Thus, the surface is depressed (z > 0)
above cyclonic eddies and is elevated (z < 0) in the anticyclonic
case. By examining Eq. (4) in conjunction with Ref. 7, we make
the important and physically-plausible observation that the -
approximate surface expression is independent of the functional
form of the potential density, and consequently of the vertical
mode structure.

Equation (4) can be written conveniently in terms of a

dimensionless height z:

z = +(amg/20U T 8in ¢)z = J (ar/ry) - Jyla) . (5)
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The graph of Eq. (5) is plotted in Fig. 1. It can be applied

0 and ro; it

describes the magnitude of surface height in any radial direction

for any values of the fundamental parameters U

from the eddy center. We observe that the height deviation
from the static ocean is a maximum at the eddy center, and
decreases steadily to zero on the eddy circumference.

Figures 2 and 3, obtained from Eq. (4) or (5) or Fig. 1,
show specific surface profiles in a vertical cut through eddy
centers. Figure 2 shows the surface for various eddy radii and
Uo = 1 m/sec. Figure 3 shows similar results for several peak
currents and a fixed radius of 125 km. In both figures, the

maximum height deviation at the eddy center is approximately 1 m.

IV. USE OF ALTIMETRY DATA

Recent débelopments in satellite altimetry instrumentation
permit reasonable accuracy in measuring ocean surface-height
perturbations. If a satellite traverses an eddy during an
orbit, the traversal will be nearly a linear path. Surface-
height readings along the path, when compared with those
predicted by a suitable eddy model, may predict some model
parameters. For example, this might be accomplished by
minimizing the sum of squares of the error between observed data
and that predicted by Eq. (4) at a discrete number of points
along the path. This procedure8 was proposed previously for
other types of eddy observations such as temperature and current.
and U, can be obtained

0 0
uniquely. However, since height data are available only on an

In particular, for the model of Ref. 7, r

eddy chord (the linear trajectory), an ambiguity can be shown




to exist in the position of the eddy center. Thus, either one
of two eddies, whose centers are on opposite sides of the chord,
could be responsible for the observed surface height. To locate
the center uniquely, additional data, such as that along a second
chord from another satellite traversal, would be required.

To specify eddy effects at all depths, Ref. 7 requires that
z, also be specified. This parameter cannot be determined from
surface-height information. Fortunately, however, vertical eddy
structure is relatively insensitive to variations in Zgs SO that

it could be reasonably estimated from past study of the eddy or

from knowledge of similar previously-studied eddy types. With all

parameter values specified, acoustically-relevant quantities, including

sound speed and current, could then be described throughout the

eddy.7

V. CONCLUSIONS

Since mesoscale eddies have a profound effect on underwater
sound transmissions, their existence and properties must be
known. Using a previously derived eddy model, equations are
derived and discussed for the mean ocean surface above a class of
axisymmetric eddies. 1In addition, it is indicated how satellite
altimetry data might be used to estimate the sound-speed and

current structures within an eddy.
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FIGURE LEGENDS

FIG. 1. Dimensionless surface height versus normalized

radial distance, Eq. (5).

FIG. 2. Surface height versus radial distance for selected
values of eddy radius ry- Maximum surface speed U, = 1.0 m/sec,

latitude ¢ = 35°.

FIG. 3. Surface height versus radial distance for selected

values of maximum surface speed Uo. Eddy radius ry = 125 km,

latitude ¢ = 35°.
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