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j ABSTRACT

The central scientific goal of the ARPA Image Understanding Project
research program at SRI International is to investigate and develop ways
in which diverse sources of knowledge may be brought to bear on the
problem of interpreting images. The research is concerned with specific
problems that arise in processing aerial photographs for such military
aprlications as cartography, intelligence, weapon guidance, and
targeting. A key concept is the use of a generalized digital map to
guide the process of image analysistf)

““In the present phase of our program, the primary focus is on
developing a a;oad expert,a, vhose purpose is to monitor and interpret
road events in aerial imagery. The objectives, methodology, and current

status of our research are described. in this vreport. Particular

technical topics include: f{:;\\
(1)

Data Base Construction

(2) Image-to-tiap Data base Correspondence (a detailed
discussion supported by three mathematical appendices)

(3) Road Detection and Tracking
(4) Shadow and Anomaly Analysis
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I DETECTING AND INTERPRETING KOAL EVENTS IN AERIAL IMAGERY

A. Introduction

Research at SKI International under the ARPA Image Understanding
Program was initiated to investigate ways in which diverse sources of
knowledge might be brought to bear on the problem of analyzing and
interpreting aerial images. The 1initial phase of research was
exploratory and identified various means for exploiting knowledge in
processing aerial photographs for such military applications as
cartography, intelligence, weapon guidance, and targeting. b key

concept is the use of a generalized digital map to guide the process of
image analysis.

The results of this earlier work were integrated in an interactive
computer system called "Hawkeye" [3]. This system provides necessary
basic facilities for a wide range of tasks and a framework within which

specialist programs can be integrated.

Research is now focused on the development of a program capable of
expert performance in a specific task domain: road monitoring. The
following sections of this report present an overview as well as some

recent technical results produced in this ongoing effort.

B. QObjective

The primary objective of this research is to build a computer
system that "understands" the nature of roads and road events. it
should be capable of performing such tasks as:

* Finding roads in aerial imagery

* Distinguishing vehicles on roads from shadows, signposts,
road markings, etc.

* Comparing multiple images and symbolic information
pertaining to the same road segment, and deciding whether
significant changes have occurred.

——ry R - = . — . -
‘ RS T A T rae U NG

4




© e e m—— — T

It should be capable of performing the above tasks even when the
roads are partially occluded by clouds or terrain features, or are
viewed from arbitrary angles and distances, or pass through a variety of

terrains.

C. Approach

To achieve the above capabilities, we are developing two "expert"
subsystems: the "Road Expert" and the "Vehicle Expert." The Koad Expert
knows mainly about roads, how to find them in imagery, and what things
belcng on them. It works at low-to-intermediate resolution (e.g., from
1 to 20 feet of ground distance per image pixel) and has the ability to
distinguish vehicles from other road detail. The Vehicle Expert works
on higher-resolution imagery and can identify vehicles as to type. We
are concentrating our efforts on the Road Expert and therefore will

limit our discussion to this component of our system.
The major tasks automatically performed by the Road Fxpert are:
* Image/Map Correspondence: Place a newly acquired image into

geographic correspondence with the map data base.

¥ Road Tracking: Precisely mark the centerline of selected
visible sections of road in the image.

* Anomaly Analysis: Locate and analyze anomalous objects on,

and adjacent to, the road surface; identify potential
vehicles.

The image/map correspondence task is accomplished by locating roads
and road features as landmarks; correspondence is performed at
resolutions as coarse as 20 feet/pixel so that a reasonably wide field
of view (10 to 100 square miles) can be processed at one time. It is
nominally assumed that the initial combinations of uncertainties about
the estimates for the camera parameters implies uncertainties on the
ground of approximately +/- 200 feet in X and Y. The correspondence
procedure works iteratively to refine the camera parameters. A typical
goal is to reduce the implied uncertainties on the ground to about +/- 2
feet in X and Y.




Having placed the image into correspondence with our map data base,
one or more of the visible road sections are selected for monitoring.
The road center-line and lane boundaries are found to an accuracy of one

to two pixels in imagery with a resolution of 1 to 3 feet/pixel.

Given the precise road 1locations in the image, anomalous objects
are detected by =canning on and along the road pavement. These
anomalous objects are then identified as to type (e.g., vehicle, shadow,

road surface marking, signpost, etc.).

The above tasks will be supported by information about road
condition and general structure from a symbolic data base. For example,
if prior photographic coverage of the area being analyzed is available,
the problem of anomaly classification can be simplified by determining
if a similarly shaped anomaly could be found in the same general
location over some extended period of time. Additional examples of how
data-base knowledge and stored models can aid in the analysis process
include: using the time of day in discriminating shadows from objects of
interest; wutilizing the general shape and width of the road (obtained
from a map) as an aid in road tracking; providing relevant information
on the anticipated size, shape, and road orientation of potential

vehicles.

A central theme of this effort is to consider roads as a knowledge
domain. In particular, we are addressing the question of how a-priocri
knowledge can be directly invoked by the image-analysis modules (what
type of knowledge, how should it be represented, and what are the
mechanisms for its use). To achieve our goal of building a very-high-
performance system, we are developing explicit models of the image
structures we are dealing with, and additionally, models of the decision
procedures embedded in the image-processing algorithms so that the
algorithms can evaluate their own performance. Finally, we =re planning
an overall control structure which will be concerned with the problems
of coordinating analysis across a spectrum of levels of resolution, and

with integrating multisource information.
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D. Progress
1 Data Base Construction

An underlying assumption of our overall approach is the
existence of a map data base to guide the image analysis process. A
significant part of our effort is thus concerned with the questions of
what information this data base should contain and how it should be

structured; and then assembling the needed data.

We have selected five distinct geographic sites scattered
around the San Francisco Bay Area, have acquired multiple photographic
coverage for each of these =sites, and are currently building = detailed
data base for one of these sites (PM280). Figure 1 shows one of our

images of this site.

At present, the Road Expert data base contains two different
forms of information. The first form is a loosely coupled collection of
digital and nondigital information about our test sites. The second
form is an initial implementation of a tightly integrated digital data

base for each site.

The following sources of information have been used to
construct the data base:
(1) digitized aerial images of the various sites including

information concerning camera focal length, day of vear,
approximate altitude and location

(2) USGS 7.5 minute series topographic maps (the 3-D
information in these maps 1is of very limited utility for
our purposes due to the crude altitude and spatial
resolution)

(3) California Department of Transportation road construction
plans for some sites containing post-construction survey
data
The current digital (site) data base consists of a collection

of disk files containing information about 1linear road segments and

"point" features on the road surface.

Each linear road segment is described by the 3-D « oordinates
of its end-points, its width, and a photometric model for the road
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cross-section. Each segment description also includes a pointer to
other nearby road segments whose relative positions can be used by the

Road Expert for verification of acquisition.

Each point feature described in the data base is assumed to
lie on a horizontal plane surface, but this restriction will be relaxed
in the future. The photometric appearance of each point feature is
defined by extracting a window containing the feature from some
previously seen image of the site (see Figure 2). The 3-D geometry of
the patch is defined by the coordinates of the window in the image, the
calibration of the image to the 3-D world coordinates, and the z-
elevation of the road surface at this point feature. The present
structure and content of the data base was chosen in order to support
experiments in automatic acquisition and calibration (see Section 11 of
this report); consequently, it is still incomplete with respect to other
needs of the road expert. One addition currently planned is to provide
a more complete geometric model for the principal roads at each site.
This will enable the data base to direct the road tracker to analyze an

entire site automatically.

In addition to expanding the size and scope of our data base
along the lines indicated above, we plan to use the capabilities of the
Road Expert itself to automate many of the steps required for such data

base construction.

2. Ilmage/Data Lase Correspondence

This task 1involves locating a few known road features
(landmarks) in a newly acquired image, and then using the correspondence
between the location of these landmarks and their geographic coordinates
as stored in our map data base to determine the precise location (and
orientation) that the "camera" was in when the image was acquired.
Given the camera parameters, we can now derive a transformation that
will assign geographic (x, 1y, z) coordinates to every point in the
image. Figure 2 shows some of the landmarks we are currently using for
the PM280 site. The search in the image for the landmarks is a




sequential process guided by our continually more precise estimate of
the camera's location. Figure 3 shows an example of the uncertainty
ellipse generated by the '"camera calibration strategist" to delimit the
search for the first landmark. (This ellipse is based on a mathematical
model of the calibration process and assumed a-priori knowledge of
initial wuncertainty in camera location.) Once the first landmark has
been located, the camera calibration strategist can refine pcsition
estimate and even further narrow the search for the second landmark as

also shown in Figure 3.

Our work on the correspondence problem, employing an iterative
approach which combines error modeling, feature matching, and refinement
of the camera location estimate, has resulted in a number of extensions
to the existing theory. A more complete exposition of the above
approach and its status is contained in Section 1I1 and Appendices A-C.
However, it is important to note here that we have been able to
establish image/map correspondence to an average error of between 2-3
feet of ground distance. Thus, given the potential robustness of this
approach, we believe that it can play an important role in an image
matching navigation or terminal homing system (e.g., the cruise

missile).

Additional work in this particular task will be primarily
directed to improving the performance and flexibility of our landmark
detectors, especially in regards to the question of verification and

filtering out of false matches.

3. Road Tracking

We have evolved a number of techniques capable of tracking
roads in aerial imagery across a 1-20 feet/pixel spectrum of
resolutions. Most of these results have been described in our previous
reports (see References 4 and 13) and under the conditions available in
our current imagery, perform extremely well. Figure 4 shows the
performance of the low-resolution road tracker. The low-resolution road

tracker uses a road model which assumes 1local homogeneity in intensity




along the road and contrast in intensity between the road and the
adjacent terrain. A linking algorithm uses an optimization technique to
find a "best estimate" of the global road path based on local agreement
with the road model described above. Figures 5a and 5b show some
examples of the high-resolution road tracker. Using a road model in
which we assume segments exhibiting relatively smooth/slow changes in
direction and also in the intensity profile normal to road direction, we
have been able to achieve surprisingly robust performance in tracking
the road center line, In many cases, roads that have almost no
discernible contrast at their edges can be readily fcllowed. Note that
the clouds appearing in these images were generated by a synthesis
program we were forced to resort to in order to get a variety of cloud
cover conditions needed to adequately test our techniques (see Appendix
)R

Future work on road tracking will be primarily concerned with
maintaining current 1levels of performance as the viewing conditions
become increasingly more difficult (e.g., greater degrees of cloud cover
or occlusion by shadows and adjacent terrain features) and with the
problem of "verification." Rather than just making a best estimate of
road location, we want the road tracker to also estimate the likelihood

that this best estimate is indeed a visible segment of road.

4.  Anomaly Analysis

The high-resolution road tracker discussed earlier assumes
that roads in images are regions where the brightness varies in a
predictable way. Small regions in which the brightness is significantly
different from that predicted by the road moqel are called anomalies.
These anomalies arise from such things as verkicles, road markings,
shadows of various objects on or off the road, overhanging trees, and
discolorations of the road surface. We are investigating methods for

detecting and classifying these anomalies.

We have augmented the high resolution road tracker to produce
a "difference image" obtained by subtracting the road model from the




original image. This difference image produces isolated and enhanced
anomalies simplifying the following analysis and classification tasks.
The initial detection of anomalies is done by thresholding the absolute
value of the difference image. The cptimum threshold to apply is a
function of the variation to be expected in the road surface. This
variation 1is calculated during the correlation road tracking phase as
the RMS average amount by which the road surface differs from the road
model, after suspected anomalies are masked out. Figures 6a through 6d

show an example of the above process.

Understanding shadows in aerial images is crucial to
successfully classifying the anomalies. A significant proportion of the
anomalies in our library of images are shadows of objects. The vehicles
themselves cast shadows, which must be removed from the initially-
detected anomaly before classification can take place. Even more to the
point, shadows can serve a useful purpose in helping to locate vehicles,

and can also be used as landmarks in performing the correspondence task.

In addition to finding shadows as deviations from the detected
road model, we are investigating two additional techniques which appear
rather promising. First, we note that shadows are usually among the
darkest objects in an 1image. 1f we can properly select an intensity
threshold, we can mark the shadows (at least on the road surface) and
exclude almost everything else. l.ocal thresﬁold setting can be
accomplished by choosing a value lower than the measured intensity of
some known dark area on the road surface, such as a tar patch (located
using map data base information), or even the oil slick which appears in
the center of each lane of almost any road. On the other hand, the
threshold should not be set lower than the measured intensity of shadows
either detected in the image, or predicted from data base information.
Figures 7a and 7b show some examples of the effectiveness of this form

of threshcld-based shadow detection.

A second approach to detecting shadows is based on the fact
that for the locally planar and constant reflectance road surface (at
least along a path parallel to the road direction) the intensity




variation across a shadow edge is a function of the ratio of secondary
(diffuse sky-light) to primary (direct sunlight plus diffuse sky-light)
illumination, and is roughly constant in any single image. Once we have
found one shadow (e.g., by predicting 1its location from data base
information, time of day, date, and latitude and longitude of the scene)
we can determine the required ratio (or intensity difference in an image
digitized on a logarithmic brightness scale) and use it to detect other
shadows on the road surface. Obviously the ratio will have some range
of variation, and in particular it will be somewhat higher for shadows
cast by small or thin objects (such a$ passenger cars) than for shadows
cast by large, solid objects (such as, say, a freeway overpass). The
ratio for a shadow edge falling across a road oil slick might also tend
to be a bit higher than the ratic for a clean section of pavement
because of reduced film sensitivity in the darker area. Figure 8 shows
some typical examples of the intensity ratio across shadow and non-

shadow edges on the road surface in an image.

The problem of distinguishing vehicles from other. road
anomalies can be simplified by noting that, in addition to their size
and shape characteristics, vehicles have a range of 1local intensity
variations (due to shadows, highlights from metal and glass, differently
oriented surfaces, etc.) far exceeding that of most other road
artifacts. Once a vehicle has been detected, additional analysis
usually requires separating the image from its cast shadow. This can be
accomplished in a number of different ways. For example, we can use the
methods for general shadow detection mentioned above, or we can predict
the location of the shadow by assuming the vehicle height (five feet for

for passenger cars) and knowing the sun location, time of day, etc.

Anothér technique for separating a vehicle from its shadow is
based on the specific assumption that vehicles are 1likely to be
rectangular 1in their aerial views, with their 1long edges oriented
parallel to the road. If pixels in either the difference image or the
original are projected to a line perpendicular to the road orientation
and we plot average brightness as a function of distance across the

s : - P 1




road, we see a significant discontinuity at the boundary between car and

shadow.

Our work in the next several months will concentrate on
combining the results of several different tests to determine not only
what is and is not shadow, but also to actually classify each anomaly.
We hope the method will be general enough to accommodate various kinds
of evidence. It should take 1into account each method's estimate of its
own confidence, if it can be obtained. Rather than choose one method
over another, we hope to be able to integrate the results to come up

with a consensus.

E.  Comments

We see the military relevance of our work extending well beyond the
specific road monitoring scenario presented above. In particular, a
Road Expert can be applied to such problems as:

(1) Intelligence: monitoring roads for movement of military

forces

(2) Weapon Guidance: use of roads as landmarks for "Map-
Matching" systems

(3) Targeting: detection of vehicles for interdiction of road
traffic

(4) Cartography: compilation and updating. of maps with
respect to roads and other linear features
In accord with our generalized view of the applicability of the
Road Expert we are constructing, we are attempting to achieve a level of
performance and understanding in each of the functional tasks which far
exceeds that which would be required for dealing with the road

monitoring scenario alone.

The remainder of this report presents a detailed discussion of our
image~to-map data base calibration procedure (supported by three

mathematical appendices).
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TX THE SRI ROAD EXPERT: IMAGE-TO-DATA EASE CORRESPONDENCE

A. Introduction

Computing an image-to-data base correspondence is a general problem
occurring in all knowledge-based systems. In most image tasks the
correspondence 1is a projective transformation and can be modeled as a
function of the camera parameters, such as focal length, X, Y, Z,
heading, piteh, and roll. If the parameters are known precisely, the
model can precisely predict the two-dimensional image coordinates for

any three-dimensional data base point.

One common form of the image-to~data base correspondence problem is
to be given good estimates of the camera parameters and be asked to
improve them. This task is important in many military situations. For
example, in navigation it is the crucial step that improves the system's
estimate of the location of the plane or missile. In change detection
it is wused to align two images of the same area so that the
corresponding regions can be compared. In the Road Expert it is the key
to the utilization of the data base in subsequent tasks such as road

monitoring.

The basic approach we are using to refine a correspondence is to
locate known features in the image and use their 1locations to improve
the correspondence (see Figure 9). The data base contains descriptions
of the available features. From these descriptions a set of features is
chosen to be located that is based on the predicted viewpoint and
viewing conditions. The estimates of the camera parameters are used to
predict what the features look like and where they are likely to appear.
Feature detection techniques ("operators") are chosen to locate the
features and they are applied. Since the operators may not locate their
intended features, their results are verified either by locating a
larger portion of the features or by checking the relative positions of

1




other features. After a set of features has been found, their locations
are used to refine the estimates of the camera parameters. The
parameters are refined by searching the parameter space for sets of
parameter values that minimize the distances between the predicted
locations of features and the locations determined by the operators. If
the correspondence 1is not precise enough, the whole process can be

repeated.

The important computations and decisions required to refine a

correspondence are listed below:

(1) selection of features

(2) prediction of the appearance of a feature

(3) selection of an operator to locate the feature

(4) prediction of the nominal image location of a feature

(5) prediction of the range of image locations about a
feature's nominal location

(6) selection of the order in which to apply the operators
(7) application of the operators
(8) verification of the results produced by an operator

(9) decision of when to use the results of one or more
operators to help other operators locate their features

(10) decision of when to update the whole correspondence
(11) computation of a refined correspondence

(12) decision to stop

A number of people have worked on individual items in this list [1,
5, 6, 7, 6, 9, 10, 11, and 12], but mainly for pairs of images that were

taken closely in time and from similar viewpoints.

There are several factors in the military domain, as well as other
domains, that increase the difficulty of these items beyond current
capabilities. Examples of such factors are a wide variety of
viewpoints, a distribution of shadows, and the possibility of clouds.
All of them make it more difficult to select features, predict the
appearance of features, and locate features. Therefore, they increase
the need for feature verification and strategy-based decisions. Which

12
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operators should be used for an image taken from this viewpoint and
under these conditions? When should the results of one operator be used
to reduce the predicted search area for a nearby feature? This type of

question becomes more important as features become harder to find.

Our research goal is to produce an automatic system to refine
correspondences within the road domain. To reach this goal we need to
develop new models and techniques for several of the items in the above
list. So far we have concentrated on a few of them: the prediction of
the range of image locations for a feature, the verification of the
results of an operator, and the computation of a refined correspondence.
In this section we will state our assumptions, describe our new

techniques, and present an example.

B. Assunptions

Our assumptions are summarized in Figure 10.

Figure 11 1is a typical picture to be processed by the system. We
assume that the resolution of the digital images will be between 20
feet/pixel and 1 foot/pixel. Figure 12, which is another picture of the
site shown in Figure 11, is displayed so that one pixel corresponds to
approximately sixteen feet on the ground. Figure 13 is a portion of
Figure 11 displayed at its full resolution of approximately 1
foot /pixel. '

We assume that we will have a data base of the area on the ground
contained in each picture to be analyzed. The data base contains the
geometry and topology of the rcads and the locations of other features,
such as road markings. Since we expect to obtain repetitive coverage of
the areas of interest, the data base may also contain information about
the appearances of the road sections and features derived from previous

images.

Images of the same site may be taken at different times of the day

so the shadows may be different. Notice the variation in shadows
between Figures 11 and 12, Part of the information expected by the

13
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system for each picture is the day of the year and the time of day at

which the picture was taken.

Some of the images may contain clouds that obscure some of the
roads and other data base features (e.g., see Figure 14); and more
generally, terrain features, buildings, and trees may obscure features
of interest. The implication is that the system should be able to
handle operators that find multiple matches, incorrect matches, or no

matches at all.

Different pictures of the same region may be from different
viewpoints. In particular, they may be from significantly different
altitudes (e.g., twice as higzh) or different angles (e.g., U5-degree
obliques versus vertical pictures). Figures 11 and 12 are pictures of
the same site except that Figure 12 was taken from approximately twice
the height and at a heading that is different from that of Figure 11 by
almost 90 degrees. The wide variety of viewpoints implies that
intensity correlation is not always sufficient to 1locate features.

Other operators will be necessary.

Even though the viewpoint may vary widely, we expect to be given
good estimates of the camera parameters for each picture. The camera
parameters can be factored into two convenient =sets: internal camera
parameters and external camera parameters. The internal parameters
describe the camera-specific information, such as the focal length of
the 1lens. The external parameters describe the relative position and
orientation of the camera with respect to the world renrasented in the
data base. Generally, the a priori estimates of the iuternal parameters

are much better than the estimates of the external parameters.

We expect a measure of the uncertainty associated with each
parameter estimate. For example, the HEADING might be estimated to be
7% degrees, plus or minus one degree. These uncertainties are used to
predict the regions in a picture to be searched in order to locate a
feature. we will refer to these search regions as "uncertainty
regions." The smaller the uncértainties, the smaller the uncertainty
regions; the smaller the uncertainty regions, the easier it is to
automatically locate the desired features.

14
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Two of our most important assumptions restrict the range of initial
uncertainties about the camera parameter estimates. The first one
restricts the combined internal and external uncertainties so that they
do not imply uncertainty regions on the ground of more than
approximately plus or minus 200 feet. The second one restricts the size
of each parameter's uncertainty so that it is relatively small. The
first assumption, 1in effect, restricts the sizes of the uncertainty
regions that have to be searched to locate a feature. For example, if
an image has a resolution of 1 foot/pixel, the largest uncertainty
region would then be approximately U400 x 400 pixels. The second
assumption limits the portion of the parameter space that the optimizer
has to search. It also indirectly limits the maximum geometric change

in the appearance of a feature.

An implicit assumpt ion behind the characterization of a
correspondence as a function of the camera parameters is that the
imaging process can be modeled as a perspective transformation. If it
cannot, a different mapping function would have to be used, but the same

numerical approach would apply.

C. Uncertainty Regions

Given parameter estimates and uncertainties about those estimates,
where in the image is a feature likely to appear? COr more specifically,
what region in the picture will have a given probability (e.g., a 95%
probability) of containing the feature? To answer this question, one
has to predict the effect on the 1ocaéion in the image of a feature
caused by changing the parameter values in accordance with their stated
uncertainties. To do that, one needs a model of their uncertainties.
The error model we use is that the parameters vary according to a joint
normal distribution, which is a reasonable assumption for measurements
produced by a device such as an inertial guidance system because each
parameter's error is a sum of several small errors. For this model the
uncertainty regions are ellipses in the image plane. The derivation of
this fact can be found in Appendix A.
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Figure 15 shows a typical uncertainty ellipse that is prescribed to
have a 95% probability of containing the actual occurrence of the
feature. The 100 dots were produced by varying the camera parameters
100 different times according to the error model and by projecting the
three-dimensional feature point onto the image plane containing the
ellipse. Notice that 92 of the points are inside the ellipse, which is

consistent with the 95% prediction.

Having found one feature, one would expect that its location would
greatly restrict the possible locations for a nearby feature. This idea
leads to a second type of uncertainty region, a relative uncertainty
region. In addition to the normal information used to compute an
uncertainty region, a vrelative uncertainty region 1is a function of
another feature and 1its location. Since the location of a nearby
feature typically adds constraints on the possible locations for a
feature, the relative uncertainty region is wusually significantly
smaller than the regular uncertainty region. Given the assumption that
the camera parameters vary according to a joint normal distribution, the
relative uncertainty regions are also ellipses. A derivation of tne
mathematical description of a relative uncertainty region is given in

Appendix B.

A relative uncertainty region is used to reduce the amount of work
required to locate a second feature after a nearby feature has been
found. This is particularly useful when a possible match for a feature
is being verified. The logic is as follows: if this is feature A, then
feature B should be in a small region over there; if B is not there (and

not occluded), this must not be A,

Figure 16 shows the initial uncertainty ellipse and the relative
uncertainty ellipse about a point feature. The large ellipse is the
uncertainty region predicted from the uncertainties about the camera
parameters. The small ellipse is the relative uncertainty region
derived from the location of the arrow just above it in the picture.

16
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D.  Point-on-a-Line Matches

Almost all previous work has involved the use of point-to-point
matches to refine correspondences. Since roads are the major objects of
interest for the road expert, we wanted to include them as features that
could be used within the image-to-data base correspondence phase as well

as in the monitoring phase.

There is a built-in trade-off between point features and line
features, such as roads: it is easier to find a point on a line than it
is to locate a point feature, but less information 1is gained by doing
so. Point-to-point matches produce twice the number of constraints for
the refinement process, but they are generally more expensive to find
because an area search 1is required as opposed to a linear search for

point-on-a-line matches.

To use linear featu we needed an operator (or operators) to find
points on roads and we had to to extend the correspondence refinement

process to include the new type of feature match.

T Point-on-a-Line Operators

Currently we have two operators that locate points on a road.
One is used at low resolution (e.g., 20 foot/pixel) when roads appear as
lines, and one is used at high resolution (e.g., 1 foot/pixel) when the
internal structure of the road is discernable. The low-resolution
operator is an extension of the Duda road operator, which has been
discussed 1in previous SRI image-understanding reports ([2]. The high-
resolution operator is an adaptation of Quam's road tracking operator
[12]. It performs a 1-D correlation of the expected road cross section
to locate possible points on the road and then tries to track the road
for a short distance to make sure that the candidate point is part of

the expected road.

17
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2. Correspondence Refinement

The correspondence refinement process (or "optimizer") is
based on Gennery's approach to calibration [11] (see Appendix C). It
solves the nonlinear problem by iteratively solving linear
approximations. For point-to-point matches a 3-D point in the world is
matched with a 2-D point in the image. In that case the optimizer has
two residuals per match to use to improve the camera parameter
estimates: the X and Y components of the difference between the
predicted image of the world point and the point in the image at which
the operator located its match. If instead of locating a specific
point, an operator locates a point on a line, the optimizer only has one
residual to use because the point could be any place along the line.
The residual for a point-on-a-line match is the distance from the point
to the line. As the optimizer searches for improved camera parameters,
the image of the 3-D line should get closer to the point located by the
operator, but the closest point on the line may slip back and forth

along the line.

So far the optimizer has only been extended to handle point-
on-a-line matches. However, since roads are generally constructed as
combinations of linear segments and arcs of circles, it may be useful to
extend the optimizer to include onther types of matches that involve a
point and an analytic curve, e.g., a point-on-an-ellipse match. The
main components of such an extension are (1) a procedure to compute the
distance between a point and the curve and (2) a procedure to compute
the partial derivatives of _that distance with respect to the camera

-

parameters.

The optimizer could even be extended to arbitrary curves by
incorporating a procedure, such as chamfering [5], that computes the

distance between a point and an arbitrary curve.

The current implementation of the optimizer is relatively
fast. It takes one second on our KL-10 to perform one iteration when
100 residuals are used to refine the estimates. (Recall that each

point-to-point match adds two residuals; each point-on-a-line match adds

18




one residual.) Five to ten iterations are normally required to achieve
convergence, which 1is defined to be a state in which the parameter

adjustments are on the order of .00005 units.

As Gennery points out, the optimizer can be used to filter out
"mistakes" by iteratively deleting the match with the largest residual
until the deletion no longer significantly improves that point's
residual. In practice this heuristic has prcven to be useful, but it is
expensive and theoretically unsound. For example, consider Figure 17,
which shows a set of points through which a line is to be fitted using a
least-squares approach. The one "mistake" happens to draw the line
toward it in such a way that the point with the worst residual after
convergence is one of the "good" points. Deleting the point with the
worst residual and trying again only repeats the situation. The
conclusion is to try to filter out mistakes before they are given to the
optimizer. The next subsection describes some of the ways this

filtering or verification can be done.

E. Feature Verification

As mentioned in the last subsection, it appears to be more cost-
effective to filter out mistakes, if at all possible, before applying
the optimizer. We have identified four possible methods for performing

such filtering:

(1) Operator threshold--Be suspicious of any match for which
the operator does not produce a confidence above a
certain threshold; e.g., if a 2-D correlation operator
produces a correlation of less than .8, ignore its
results.

(2) Self-support--Be suspicious of any match that cannot be
verified by 1locating a larger portion of the same
feature; e.g., if an operator locates a point that is
supposed to be on a road but the road tracker cannot
extend the match, ignore it.

(3) Pairwise support--Be suspicious of any match that is not
positioned correctly relative to some other feature that
has already been located; e.g., if an operator locates an
arrow on a road and its matching location is not at a
reasonable distance from another nearby feature that has
been verified, ignore the match.

19




TETese—

(4) Group support--Be suspicious of any match that is not
positioned correctly relative to a group of other
features that have already been located, e.g., if three
point features have been found and verified, ignore a
match for a fourth feature that does not appear at the
correct relative location.

We differentiate between these methods (or heuristics) because they

generally require different models and techniques.

It is relatively straightforward to apply all of the verification
methods to point features. The relative uncertainty regions can be used
to determine if two features are mutually consistent. This pairwise
consistency can be extended to group consistency through maximal clique

techniques [1] or through optimal embedding techniques [9].

The extension to group consistency can be achieved by constructing
a graph that has one node for each match and a link between each pair of
nodes that 1is pairwise consistent. The largest completely connected
subgraph (i.e., the largest maximal clique) represents the largest set
of mutually consistent matches. Any match that is not in that set is
pairwise inconsistent with at 1least one of the matches in the set.

Thus, it is suspicious.

Additional care has to be taken to apply the verification
techniques to point-on-a-line matches. The important test is to be able
to distinguish pairwise consistent matches from pairwise inconsistent
matches when one or more of the matches is a point-on-a-line match.
Figure 18 shows the three significantly different cases. In Figure 18a
one of the two matches is a point-to-point match and one is a point-on-
a-line match. If the slope of the 1line is known accurately, the
distance between the point and the 1line can be used to determine if the
matches are consistent. Since the uncertainties associated with each
camera parameter are relatively small, the slope of the line should
remain relatively constant . Thus the distance from the point to the

line should be relatively constant.

In Figure 18b both of the matches are point-on-a-line matches, and

the lines are essentially parallel. In this case the distance between

20




the lines 1is sufficient to check the relative positions of the two
matches. For example, if an operator is trying to locate both sets of
lanes on a freeway, the distance between the two sets of lanes should be

within a predetermined range.

It both of the matches are point-on-a-line matches and the lines
are not parallel, as in Figure 18c, some additional information is
needed in order to check their relative consistency. One solution is to
intersect the two lines and use that point 1in conjunction with a third

match to check the relative position of all three matches.

F. Example

We have implemented one fixed strategy in terms of the verification
techniques and are just beginning to explore the possibility of
automatically tailoring the verification strategies to fit specific sets
of features and tasks. The -example task is to refine the image-to-data
base correspondence for the picture shown in Figure 12 using its full
resolution of approximately 2 feet/pixel. The initial uncertainties
about the camera parameters imply uncertainties in the image of plus or
minus 95 pixels, which correspond to approximately plus or minus 190
feet on the ground. The goal is to reduce these uncertainties to
approximately plus or minus one pixel, an increase in precision of

almost two orders of magnitude.

The data base used in this example contains two types of features,
linear road segments and road surface markings. Figure 19 shows the
locations of features that are available for this site. The lines
represent the road segments and the pluses represent the surface
markings. The appearance of each road segment is described by a road
cross section model. The appearance of a surface marking is described

by an image patch from a previous picture of the site.

A fixed strategy has been implemented to use these features to
perform the task and demonstrate our new techniques. The basic approach
is to 1locate the linear features first because they are less expensive
to find, use them to refine the camera parameters, locate the point

/
r

b
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fea;ures, use them to verify the first refinement, and then perform a

second refinement using both the points and the lines.

Given estimates for the camera parameters, the system predicts the
location of the road segments in the new picture. Figure 20 shows these
predictions, which are shifted left and down approximately 60 pixels
from their actual locations, The estimates of the camera parameters are
also used to warp each road cross section to the expected size and
orientation of the corresponding road segment, In addition, the
estimates of the uncertainties about the camera parameters are used to
predict the uncertainty regions about the center points of each linear
segment, Figure 21 shows those uncertainty ellipses that have a 95%
probability of containing the desired point.

The search strategy for a linear feature is to 1look along lines
perpendicular to the expected location of the feature. The lengths of

the lines are determined by the size of the uncertainty ellipse.

The high-resolution, one-dimensional correlation operator is
applied along the search line to locate points that may be on the
desired road. The self-support method is used to verify each candidate
point. The road tracker tries to track the road for a short distance.
If it cannot, the point is abandoned. Figure 22 shows an example of the
application of self-support. The 1line on the left 1is the predicted
location of the road segment. The other line, which is crossed like a
T, represents the 1location of the match and the results of the road

tracker following the road.

For some road segments self-support is not sufficient to locate the
desired road because there are two or three parallel roads that all look
alike. In order to distinguish one road from another, preplanned groups
of features have been established within which pairwise and group
support can be obtained. For example, Figure 23 shows a set of three
sets of lanes, two of which are difficult to tell apart simply by
looking at their road cross sections, The relative locations of the
three sets of lanes are used to determine the correct matches. The
lines perpendicular to the roads indicate the final choice for a

consistent set of matches.
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Figure 24 shows the results of searching for all of the road
segments in the data base (shown in Figure 19). Two of the roads were
not found because the contrasts were not sufficient to produce matches
with the desired confidence. The matches were given to the optimizer
along with the initial estimates of the camera parameters and the
uncertainties about the estimates; the optimizer produced new estimates
for the parameters and new uncertainties. Figure 25 shows the new
predictions for the locations of the road segments. The new
uncertainties imply uncertainties in the image of approximately plus or

minus 1.5 pixels, close to our goal.

To verify the new estimates the surface markings were located. The
new estimates were used to predict the locations and appearances of the
features; the new uncertainties were wused to predict the uncertainty
regions; and two-dimensional correlation was wused to locate the
features. The average difference between the predicted location and the
matching location was approximately 1.3 pixels, and the largest distance
was 1.7 pixels. The final refinement based on both the lines and the
points reduced the uncertainties in the image to approximately 1.1
pixels, which is very close to our goal and corresponds to approximately

2.2 feet on the ground.

Ve have begun to experiment with pictures containing clouds that
obscure some of the features to be used for calibration; For example,
consider Figure 26 in which several of the road segments are partially
occluded. Figure 27 shows the linear features that the system could

find and verify.

G. Discussion

we have described and demonstrated a set of techniques to perform
some of the subtasks required in an automatic system to refine image-to-
data base correspondences. In particular, we discussed techniques to
compute uncertainty regions, techniques to incorporate point-on-a-line
matches, and techniques to verify the results of operators. These
techniques were combined to form a strategy, which we demonstrated in an
example task.
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Additional research is required on several other key subtasks
required in an automatic system; for example, the selection of features
and the tailoring of a strategy to different tasks. Other needs include
better feature modeling, better operators to locate features over a wide
range of viewing angles and conditions, and an alternative to least-

squares optimization.
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FIGURE 1

FIGURE 2(b)

OVERVIEW UF THE PM280 SITE FIGURE 2(a) LOCATION OF PM280 SITE LANDMARKS

ROAD SURFACE MARKINGS USED FIGURE 2(c) A POINT LANDMARK AND ITS APPEARANCE

AS “POINT" LANDMARKS IN AN IMAGE

FIGURE 3 UNCERTAINTY ELLIPSES FOR LOCATING
A KNOWN LANDMARK

The Larger Ellipse Represents the Initial Uncertainty in
Locating a Road Surface Landmark, The Smal! Ellipse
is the Refined Estimate of Location after One Other
Nearby Landmark Has Been Located.
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FIGURE 4 A ROAD LOCATED AND MARKED IN A SPECIFIED
SEARCH WINDOW BY THE LOW RESOLUTION
ROAD TRACKER

FIGURE 5(a) THE HIGH RESOLUTION ROAD TRACKER
FOLLOWING A ROAD IN THE PRESENCE
OF CLOUD COVER

FIGURE 5(b) THE HIGH RESOLUTION ROAD TRACKER
FOLLOWING A DIRT ROAD
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FIGURE 6(a) ORIGINAL SEGMENT OF AN I'MAGE

FIGURE 6(c)

INTENSITY MODEL OF THE ROAD SURFACE

29

FIGURE 6(b) DETECTION OF ANOMALOUS AREAS
ON THE ROAD SURFACE

FIGURE 6(d) SUBTRACTION OF NOMINAL ROAD SURFACE
INTENSITIES TO ENHANCE ANOMALIES
FOR FURTHER ANALYSIS




TAR PATCH = DARK VERTICAL PATCH AT LEFT CENTER

{
7 i

TAR PATCH = DARK PATCH ABOVE RIGHTMOST OVERPASS

FIGURE 7(as SHADOW EXTRACTION — THRESHOLD SET TO VALUE BELOW INTENSITY OF TAR PATCH
30
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FIGURE 7(b) SHADOW EXTRACTION THRESHOLD SET TO VALUE BELOW INTENSITY OF OIL SLICK
IN THE MIDDLE OF UPPER LANE

OVERPASS SHADOWS (2 PATCHES) 0.74, 0.73
CAR SHADOWS (3 CARS) 0.79, 0.79, 0.80
TAR PATCH (2 PATCHES) 0.85, 0.86

FIGURE 8 SHADOW BOUNDARY INTENSITY RATIOS
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GENERAL ASSUMPTIONS

APPROXIMATE

(1) Road pictures
CORAESPONDENCE (2) Repetitive coverage

(3) Ground resolutions between
20 feet/pixel and 1 foot/pixel

\

FEATURE (4) Database of roads and
o SELECTION other features
(5) Different sun angles

(6) Database features may be obscured
by clouds, terrain features, etc.

(7) Wide range of viewpoints

FEATURE (8) Correspondence is a

DETECTION perspective transformation

(9) Small parameter uncertainties

(10) Maximum uncertainty regions

DATABASE [«

L on the ground of +-200 feet
S FEATURE
VERIFICATION INFORMATION FOR FACH IMAGE

(1) Internal camera parameters

v (estimates & uncertainties)

(2) External camera parameters

| CORRESPONDENCE (estimates & uncertainties)
g REFINEMENT (3) time of day and day of year

image was taken

FIGURE 9 THE BASIC CORRESPONDENCE FIGURE 10 THE CORRESPONDENCE TASK
REFINEMENT PROCESS ASSUMPTIONS

FIGURE 11 A TYPICAL AERIAL IMAGE TO BE FIGURE 12 AN AERIAL IMAGE DISPLAYED SO THAT
CALIBRATED EACH PIXEL CORRESPONDS TO
APPROXIMATELY 16 FEET ON THE
GROUND
32
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FIGURE 13 AN AERIAL IMAGE DISPLAYED S0 FIGURE 14 A TYPICAL IMAGE CCNTAINING
THAT EACH PIXEL CORRESPONDS cLouDs
TO APPROXIMATELY 1 FOOT ON
THE GROUND

FIGURE 15 A PREDICTED UNCERTAINTY FIGURE 16 AN INITIAL UNCERTAINTY ELLIPSE
ELLIPSE AND A RANDOM AND A SMALL RELATIVE
DISTRIBUTION OF POSSIBLE UNCERTAINTY ELLIPSE ABOUT
LOCATIONS FOR THE FEATURE A POINT FEATURE

FIGURE 17 A PATHOLOGICAL EXAMPLE QF
LEAST-SQUARES LINE FITTING
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FIGURE 18(a) A POINT AND FIGURE 18(b) TWO PARALLEL FIGURE 18(c) NON-PARALLEL
A LINE LINES LINES

FIGURE 19 A REFERENCE IMAGE OF THE SITE AND FIGURE 20 THE IMAGE TO BE CALIBRATED AND
THE LOCATIONS OF THE POINT AND THE PREDICTED LOCATIONS OF THE
LINE FEATURES TO BE USED IN THE FEATURES
CALIBRATION

FIGURE 21 THe PREDICTED LOCATIONS OF THE ROAD FIGURE 22 THE PREDICTED LOCATION OF A ROAD
SEGMENTS AND THE INITIAL UNCERTAINTY SEGMENT AND ITS MATCHING
ELLIPSES ABOUT THEIR MID-POINTS LOCATION
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FIGURE 23 THE PREDICTED AND MATCHING LO-
CATIONS OF THREE ROAD SEGMENTS
THAT ARE USED AS MUTUAL
SUPPORT FOR EACH OTHER

FIGURE 24 THE RESULTS OF ALL OF THE ROAD
SEGMENT DETECTION OPERATORS

FIGURE 25 THE PREDICTED LOCATIONS OF THE
FEATURES PRODUCED BY THE
IMPROVED CAMERA PARAMETERS

FIGURE 26 AN IMAGE TO BE CALIBRATED
THAT CONTAINS CLOUDS
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FIGURE 27 THE RESULTS OF ALL THE ROAD
SEGMENT DETECTION OPERATORS
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Appendix A

A LINEAR MODEL FOR PREDICTING THE DISTRIBUTION OF
ERRORS UNDER A PROJECTIVE TRANSFORMATION

1. Problem Statement

GIVEN the set of camera parameters {yi} which define a projective
transformation from 3-space to a Z-dimensional image plane {xi}, i=1,2;
and assuming that the {yi}, 1i=1,2,...J, are Jjointly distributed
according to a multivariate normal distribution function with given
covariance matrix M, THEN we wish to find a region in the image plane,
centered about the point provided by the projective transformation
H{yi}, which will be 1large enough to contain the image of the

corresponding 3-space point to some given level of probability.

2. Linear Approximation

£s an approximation to the way in which the errors in the camera

parameters produce displacements of a projected point, we will assume

that :
Axl = }(ix_l_ *ij
\%73
[1] and
- Ox
sz i 872 *ij
i)

The partial derivatives in the above equations can be computed from
the projective transformation H cr measured experimentally. The two

linear equations can be represented in matrix notation as:

[2] Ax = T(Ay)

where the transform T is the 2 x J matrix of the partial derivatives of
the xi with respect to the yj, over the J camera parameters.
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To simplify

3-space coordinate

our notation, we will assume that the image plane and

axes have their origins at the projected and

nominally imaged points respectively. Thus, the deltas in equation [2]

can be dispensed with.

3. Ihe Error Model

The multivariate normal probability density function has the form

(for dimensionality "n"):

(3]

P(X|U,M) =

o5 % x-0)" Mt (x-uy)

n

a2l Viul

where: U=E{X}

M=E{(X-U) (x-U)T}
{Al= determinant of A.

The covariance matrix M must be positive semidefinite. That is,

for any n-dimensional vector Z with real components we have:

(4]

Theorem 11:

T

ZMZ 2 0.,

If Y is distributed according to [3] with
mean vector U and covariance matrix M, then:

If X=TY+B

a constant vector,
distributed with mean V=TU+B

with T a constant matrix and B

then X 1is normally

and covariance matrix W=E[(X-V)(x=V)T]=tMTT

Thus,

given our previously stated assumptions, we can now assert

that the error distribution in the image plane will be a bivariate

normal probability density function, having the same form as equation

[3], but with mean vector V, and covariance matrix W, obtained as

described in the above theorem,

' T.W. Anderson, An Introduction to Multivariate Apalysis, p. 25, (John
Wiley & Sons, New York, New York, 1958).
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In more explicit form we have:

e
(5] P(Xl,leo’o)paslisz) - \/,5_2
2% TR 8, * s2 *V1-p
where:
S 2 2
xl 2 % p * xl %* x2 x2
— - +
s2 * )
o, By < g 2
a - o
2 2
5, = E{xl} 5, * E{xz}
x. % x
e= E‘ s1 * 32
1 2

we note that P is the coefficient of correlation between x1 and x2
and (-1<P<1)

The contours of constant probability density in the image {x1,x2}
plane are the 1loci where the exponent of the density function is
constant. They are similar coaxial ellipses, with their axes parallel
to the eigenvectors of the covariance matrix W. In particular, the

major axis of the ellipse will make an angle of

1 2 &Pk sl * 8
(6] @ = 5 * ARCTAN 82 : s2
1 2

with the x1 axis.

To simplify our derivation of the dimensions of the ellipse needed
to provide a given level of probability of containing the image of the
3-space point being projected, we will transform our coordinate axes in
the image plane so that they lie along the major and minor axes of the

coaxial constant probability ellipses,
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The resulting covariance matrix Q has the form:

(7] g =

where the qi (the new variances) are the eigenvalues of the covariance
matrix W. These eigenvalues are found by solving the following

equation:

(8] 0 =

The resulting solutions are:

£ 2
g (o it )

2
2 2 2 2 L 2 >
qi % 3 <k81 & 82) " \/(sl B sz) + é * Pk 8] * 8,

q

[9] and

Substituting q12 for q2 in either of the two homogeneous equations
ine
2 xl
[10] ’ Oa(w-q *I)
Ke

allows us to solve for the ratio of the x1 to x2 coefficient in the

ma jor eigenvector and determine its angle with the x1 axis to be:

2 .2
% W ‘1)
[11] TAN(2) = R )
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The above expression can be simplified using the identity
ARCTAN(A)=2%ARCTAN({SQRT[1+A€]-1}/A) to give the result in [6].

In terms of covariance matrix Q, the bivariate normal density

L2

funct ion has the form:

[12] P(2),2)) = 73w % q. * q
i~ 5
22 22
3 oo
where: R el o
9 9

The 1locus of G=c2, where ¢ 1is a constant 1is an equi-probability
ellipse with major radius of length c*q1 and minor radius of length
c*q2.

The area contained within this ellipse is 02'q1'q2‘PI and the
differential area is 2%c*q1#q2¥%Pl1#Ac.

Thus, the probability p'' that the image of the nominally projected
3-space point will fall into the elliptic ring formeg by the ellipses

with parameters c¢ and c+Ac is:

|
ag” J
[13] P”=C*92 *AC. f ;
Integrating p'' from 0 to c, we get: |
2
o2 |
2
(14] Pal=e
where P is the probability that the image of the nominally projected 3-
space point will fall into the ellipse with parameter ¢ (i.e., the
ellipse with major axis of length c*q1, minor radius of length c*q2, and
orientation of the major axis of B; see equations [6] and [9] for the
values of q1,q2, and « ), g
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Some typical values for P are:

P c
.50 1.177
£15] .90 2.146
.95 2.448
.99 3.035

We note that if si=s2=s, and =0, then ql=zq2=s; the resulting
contours are circles, and the parameter c corresponds to the radius of
the resulting error circle measured in standard deviations (s). For
this case, the radius which results in a 50% error probability is
1.177s, but the expected radial error is s*SQRT(PI/2)=1.253s, and the
expected value of the square of the radial error is E{x12}+E{x22} =
2%s2,

Finally, by invoking Bayes' theorem, we note that if an "error
ellipse" as determined above is centered on the true projection of a
given 3~space point, and has probability P of containing the actual
projection of that point, then the same ellipse centered on the actual

- projection would have the same probability P of containing the true
projection (assuming there 1is no difference in the way the true and

actual projected points are distributed over the image plane).
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Appendix B

RELATIVE UNCERTAINTY REGIONS

Let p and q be two three-dimensional feature points. Let [al
represent an estimate of the camera parameters. Let F represent the
perspective transformation, which is a function of the camera

parameters, that maps feature points into image points. Then
[1] P = F(al,p) and Q@ = FCal, gl

where P and ¢ are the two-dimensional image coordinates of the points p
and q. P and Q are the predicted image 1locations for the two features

based on the estimates a1l.

If an operator has correctly 1located the image of p at P', where
should the image of q be? Or, in which region should the image of q
appear? That 1is, what is the relative uncertainty region about g with

respect to p and P'?

Assume that the actual camera parameters are a2 .and the two

. features actually appear at P' and Q' in the image. Thus,
(2] P = F(a2,p) and Q' = F(a2;q).

The relative uncertainty region can be described by the difference
between (Q' - P') and (Q - P) as a function of al and a2.

Let
(3] a2 = a1l +Aa .

If we make the same assumption made in Appendix A that the

parameter space is locally linear about al and a2, then

(4] P' = F(al,p) + Mp ¥ Aa
and
(5] Q' = F(a1,q) + Mg * Aa

4y
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where Mp and Mq are the 2 x N matrices of partial derivatives that
describe the relative changes in the 1image plane as a function of the N

camera parameters. Then

(61 [(Q'" -P") - (Q - P)]

Mg * Aa - Mp * Aa
or

(71 [(Q'" -P'") = (Q - P)]

(Mq - Mp) * Aa,

If the Aa's are distributed according to a multivariate normal
distribution, Theorem 1 in Appendix A applies. If the mean of the
distribution is the vector U and the covariance matrix is S, the vectors
on the left side of linear equation [7] will be distributed with mean V
= (Mq-Mp)*U and covariance matrix W = (Mq-Mp)*S* (Mq-Mp)T.
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Appendix C

AN ITERATIVE METHCD TO REFINE CAMERA PARAMETERS

The standard calibration problem is:

Assume that the correspondence between world points
and image points is a perspective transformation, G,
that is a function of several camera parameters, such
as the X, Y, and Z position of the camera, the
heading, pitech, and roll of the camera, and the focal
length of the camera. Given an initial estimate of
the camera parameters and a set of world points
(Xi,Yi,2i) and their corresponding image locations
(Uui,Vi), determine the best (according to some error
metric) camera parameter values to map the world
points into the image points.

If G 1is a linear functicn of the camera parameters and the square

of the unresolved errors is used as the metric, there is a standard

solution to the problem. Let G be represented as a matrix M. Then for

each world and image point pair: ‘

(1]

% e M Yat il s
& %
b Myp Map Mp3 | | %4

A set of these equations can be combined into a single matrix:

Uy Xl Y1 Z1 0 0 O Mll
V1 g Q0 Xl Yl Z1 Mlz
u, & X2 Y2 22 Q 0 O M13
v2 0 0 O X2 Yz Z2 MZI
: : %2
. . M23

Let A be the vector of U's and V's, P be the matrix of X's, Y's,

and Z's, and B be the vector of M's., Then [2] can be restated as:

[3]

A=P*%*B

u7
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This equation can be directly solved for the best least-squares

solution for D, whose elements are the six elements of the matrix M1:

- T
[4] B = (pT * P) ! *x P * A

Unfortunately, G is generally not 1linear. FEowever, the least-
squares solution of the linear problem can be embedded in an iterative
solution to a nonlinear problem. The idea is to approximate the surface
about the estimated parameter values by a hyperplane, solve that linear
broblem, and iterate until the desired precision has been achieved. 1If
the hyperplane 1is determined by the partial derivatives of G with
respect to the camera parameters, this approach is similar to a
mult idimensional Newton-Raphson method. See [Genner‘y]2 or [Eolles]3 for

a more detailed description of this approach.

In our calibraticn method we consider G to be a function of the
following camera parameters:

Cx, Cy, Cz---the position of the camera

Ch, Cp, Cr---the heading, pitch, and roll of the camera

Cf---the focal length of the camera

Su, Sv---the image scale factors for the U and V directions

Ir---the image rotation about the piercing point

Pu, Dv---the U and V position of the piercing point

we group them into two categories: "internal" camera parameters and

"external" camera parameters. The idea is that the internal camera
parameters are functions of the camera itself and generally remain
constant from one picture to the next. They are the image scale
factors, the image rotation, the piercing point location, and the focal
length. The external camera parameters specify the position and

orientation of the camera and generally vary from one picture to the

! F.A. Graybill, fn Iantroduction to Linear Statistical Models, Vol. I,
(Mc Graw-Hill Book Company, 1961).

2 Donald E. Gennery, "Least-Squares Stereo-Camera Calibration," Stanford
Artificial Intelligence Project internal memo (1975).

3 Robert C. Bolles, "Verification Vision within a Programmable Assembly
System," Stanford University Ph.D. Dissertation (December 1976).
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next. Since the focal 1length may change in a camera that has a zoom
lens, it is sometimes treated specially. It is separated out of the
list of internal camera parameters and treated 1like an external camera

parameter to be computed.

We use homogeneous matrices to represent the transformations that
are functions of the parameters listed above. The internal or

"digitization" matrix is defined to be:

84 O 0 0 cos(IR) sin(IR) 0 0 ) [ ) —Du
) i 0 Sv 0 0 -sin(IR) cos(IR) 0 0 0 1 0 —Dv

0 0 1 0 0 0 1 0 0 o 1 0

0 0 o0 1 0 0 OF 1 0 0 0 1

We assume that D is constant and given as a priori information.

G is defined as follows:

(6] G = D¥F*R¥peH*T
where
1@ 0 0 L 0 0 —Cx
(0 R TR o S .1 .0 -Cy
(71 B : s
0 0 1 0 00 1 -Cz
o S0 S R, 0 0 O 1
Cp
cns(ch) sin(Ch) 0,0 1 0 0 0
Sadl 0 0
e hln\Ch) cos(Ch) 0 b 0 cos(Cp) sin(Cp)
0 1. 0 -sin(C s(C 0
0 sn(p) c0(p)
0 0 (0 )80 | 0 0 0 1
cos(Cr) 0 sin(Cr) 0
0 1 0 0
R =
-sin(Cr) 0 cos(Cr) 0




F is the perspective part of the camera transformation. T is the

translation part. H, P, and kK are the heading, pitch, and roll parts,
respectively.

The transformation of world point (Xi,Yi,Zi) into an image point

(Ui,Vi) is defined to be the following two-step computation:

U1 xi
' Y
i = D* F*R*P*x}H * i
W, z
(8] i !
si’ 1
’ = ’
B om e Z&
¥ i,
In homogeneous coordinates S{ is a scale factor for the vector and

has to be divided out in order to obtain the image coordinates (Ui,Vi).
Notice that Ui and Vi are not 1linear combinations of the camera

parameters.

Given this representation of G, the partial derivative linear
approximation to the surface in parameter space (about the initial

estimates of the camera parameters) is:

AT o T §ir e i o s W e
Av, 5¢C, "o"c; ¢, &c, acp Scr 5C, Acy
Auz Acz
[9] Av, ol B T i s i s 4 1
- 5Cx 5Cy 5Cz 8Ch b) p 8Cr SCf Ac
Acp
Buy Buy 8t ey Buy By Buy [} e
8¢, 5¢c, 8¢, 5C, Sc_p 5c_ 8¢, £ .
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which depends on the partial derivatives

’ ’
8Yy ana %5

[12] "
5C, 8¢C,

These partial derivatives can be computed as follows:

X
’
[13) 8“4 5 DxFAR*prHxTx |y
5, &, 2,
1

And since most of the matrices are constants with respect to the
variables being differentiated, these expressions can be greatly
simplified. For example:

Suj -
u
L L paparspanrdlox Yy
[14] 5 oc
X X Z
1
1

In summary, the iterative method to refine camera parameters is to

compute the partial derivatives shown above, form the linear

-1




approximation shown in [9] for the error surface, use the method
discussed for equation [2] to solve this linear problem for corrections
to be added to the current estimate of the camera parameters, use the
corrections to form new estimates of the camera parameters, and iterate

this process until the unresolved errors are sufficiently small.

For point-on-a-line matches, instead of two constraints per match
(i.e., Ui error and Vi error), only one constraint is added to the list
of constraints accumulated in the matrix shown in {[9]. That one
constraint is based on the perpendicular distance between the point in
the image that is supposed to be on the line and the predicted image of

the line.

The distance between a point in the image, (Ui,Vi) and a line that
passes through the pcint (u0,v0)and at angle @with respect to the U axis

is:

[15] d= (U, ~0,) sin @~ (V, - vo) cos 6.

Therefore, the constraint for a point-on-a-line match adds one line to

the partial derivative linear approximation:

Ras 5d, &d, §d, &d, §d, 6d, 4d
r16] Adi_ L < i i i i i i >

.
= e = = 5— x=— x—) * (Ac,Ac_Ac_Ac Ac_Ac_Ac
8Cx SCy 8¢, oc 8Cp 8Cr 80f>‘ < x "y e Hiesip 5 é)

h

where each entry has the form:

&d Su ov
551 - i sind - o cos@
x

[17] ga; 8Cx

Each of these entries is a simple combination of the two partial

derivatives used in the point-to-point case.

Notice that point-on-a-line matches and their constraints can be
freely mixed with the normal point-to-point matches.
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SYNTHESIS OF CLOUDS IN DATA BASE IMAGERY
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Appendix D

SYNTHESIS OF CLOUDS IN DATA BASE IMAGERY

In order to test the Road Expert under adverse viewing conditions,
we considered it necessary to acquire images containing various degrees
of cloud cover. Our primary source of imagery, CALTRANS (California
Department of Transportation), does not photograph roads during cloudy
weather conditions and therefore we had to synthesize the clouds

appearing in our road images.

In order to generate realistic clouds in our test imagery, the

following criteria were established:

(1) Clouds should cast shadows.

(2) Edges of clouds should be controllably wispy--no hard
edpges. The same should be true of cloud shadows.

(3) Interior of clouds should be controllably:transparent.

Prototypical clouds were extracted from digitized 70 mm U-2
photographs by subtracting from each pixel a constant level CTHRESH

which removed virtually all of the background while leaving the clouds
intact.

The cloud prototype image was:
CLoUD(i,j] = MAX [ (u2imagel[i,j] - CTHKESH), 0 ]

The following ramp function was introduced to satisfy b):
RAMP(i,j] = MIN [ (CLOUD([i,j]/RAMPLEVEL), 1]

The ramp function assumes that cloud edges and partially
transparent interiors of clouds have photometric levels close to zero
(CTHRESH in the U-2 image). The "width" of the ramp is set indirectly
by the selection of the intensity level "RAMPLEVEL."
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Shadows are introduced by: 1

SHADOWIMAGE[i, j] = ROADIMAGE[i,j] 4
& (1 - (1 - GROUND.ATTEN) % RAMP[i+di,j+dj])

where di,dj define to offset of the c¢loud shadow with respect to the

clecud. Clouds are assumed to be at a constant height above .the
underlying terrain. It is easily seen that when RAMP[i,j]=0, the image

is unaffected, and when RAMP[i,jl=1, the image is attenuated by factor
GROUND.ATTEN. Clouds are introduced to the shadow image by:

CLOUDIMAGE[i,j] = SHADOWIMAGE[i,j] * (1 - RAMP[i,jl)
+ KAMP[i,j] * (cLouD[i,j] * CLOUD.CONTRAST.FACTOR
+ CLOUD.INTENSITY.OFFSET)

This function smoothly blends the clouds with the shadowed road image

b e  aa . . e .

according to the same ramp functicn.
The above procedure for synthesizing clouds has a total of seven
parameters which control the attenuation of the ground intensity due to
the cloud shadows and the clouds; control the blending at the cloud
edges; control the relative contrasts of the clouds with respect to the ]
ground; and finally, set the spatially offset of the cloud shadows with
respect to the clouds.
4
. A
{

55

—— — s

s |



