UNCL	ASSIFI	A M NOV	TR-	FOR CAL	CULATI	NG WAVE	PACKE	T TRAJE	CTORIE	S AND W	AVE HE	IGETC	(U)
	OF AD 84078	And and and a second and a second and a second and a second a seco	under Server Server Saurth	aniine A				editor Silitat	Linear and the second s	*	$\begin{array}{c} b = -b = -b \\ b = b = -b \\ \hline b = -b \\ \hline b = -b \\ \hline \\ \hline \\ b = -b \\ \hline \\ \hline \\ b = -b \\ \hline \\ \hline \\ \hline \\ c = -b \\ c = -b \\ \hline \\ c = -b \\ c =$		
	international de la constante	Land Land Land Land Land Land Land Land Land Land Land Land Land Land Land	And Alexandromy	A VENE		EURIEUMA EURIEEMA AUNTEMA AUNTEMA							
(Internet											END DATE FILMED 4 -79 DDC		
										4	-).		
											:		
								1			a talage		-

Sponsored by the Geography Programs, Earth Sciences Division, Office of Naval Research, under Contract No. NOOO14-77-C-0329

70 01 31 008

TECHNICAL REPORT NO. JEB -Department of Oceanography Florida State University D'Technical rept. A METHOD FOR CALCULATING WAVE PACKET TRAJECTORIES AND WAVE HEIGHTS. PART II .

by Ernest Breeding, Jr. J. Department of Oceanography Florida State University Tallahassee, Florida 32306

Novemb

This research was supported by the Geography Programs, Earth Sciences Division, Office of Naval Research under Contract No NØØØ14-77-C-Ø329 Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.

494465

AL-NR

ABSTRACT

In Part I a method for calculating wave packet trajectories and wave heights is based on the assumption that the water depth contours are locally parallel in the vicinity of each ray point. This method is extended in order to predict the modification to surface gravity water waves in shoaling water when the water depth contours are not parallel. The calculations are greatly simplified by choosing a coordinate system at each ray point in which one axis is aligned parallel with the direction of the gradient of the water depth. Example printouts and plots are presented to illustrate the wave prediction method. It is discovered that when waves initially approach sinuous water depth contours symmetrically with respect to the beach there can be more energy in the bays than at the headlands.

ACKNOWLEDGMENTS

I thank Shelley Horton for her assistance in preparing the computer program and figures in this report. The research was supported by the Geography Programs, Earth Sciences Division, Office of Naval Research under contract No. N00014-77-C-0329.

610	mana sadine
ORANI OGAZER	O
NUST IN THE FIRM	
	a service and a service and a service of the servic
11 10:00:00:00:00:00:00:00:00:00:00:00:00:0	RIGOLANLIN CONST
87 81578385710 8181	AVANA ANLINY CODES
BISTRIESTIG	ENANCEMENT CODER
er erstrocstad	STATULARD SPECIAL

TABLE OF CONTENTS

Ρ	a	g	e
		0	

Abstrac	t
Acknowle	edgments
Table of	f Contents
List of	Figures
Chapter	I INTRODUCTION
Chapter	II THEORY FOR NONPARALLEL WATER DEPTH CONTOURS
2.1	Spatial Derivatives of the Water Depth
2.2	Spatial Derivatives of the Wave Speeds
	a. Derivatives of v
	b. Derivatives of U
	c. Derivatives of G
2.3	Ray Curvature for Nonparallel Water Depth Contours
2.4	Ray Separation Equation for Nonparallel Water Depth Contours
Chapter	III SUBROUTINE SURFCE
3.1	Modifications to Subroutine SURFCE
3.2	Description of Subroutine SURFCE
3.3	Listing of Subroutine SURFCE
Chapter	IV WAVE PREDICTION EXAMPLES FOR NONPARALLEL WATER DEPTH CONTOURS
4.1	Sinusoidal to Parallel Water Depth Contours

iii

Provide and the second second

8.95

	4.2	Sinusoidal	Wate	er	Depth	Cor	ntour	s	•	•	•	•	•	•	•	•	.17
Dis	strib	oution List															.26

Page

LIST OF FIGURES

Page

Figure	(2-1).	RELATIONSHIPS BETWEEN THE COORDINATE SYSTEMS AND THE WATER DEPTH CONTOURS 3
Figure	(4-1).	PLOT FOR SINUSOIDAL TO PARALLEL WATER DEPTH CONTOURS
Figure	(4-2).	PRINTED OUTPUT FOR RAY NO. 4 IN FIGURE (4-1)
Figure	(4-3).	PRINTED OUTPUT FOR RAY NO. 8 IN FIGURE (4-1)
Figure	(4-4).	PRINTED OUTPUT FOR RAY NO. 16 IN FIGURE (4-1)
Figure	(4-5).	PLOT FOR SINUSOIDAL WATER DEPTH CONTOURS
Figure	(4-6).	PRINTED OUTPUT FOR RAY NO. 4 IN FIGURE (4-5)
Figure	(4-7).	PRINTED OUTPUT FOR RAY NO. 8 IN FIGURE (4-5)
Figure	(4-8).	PRINTED OUTPUT FOR RAY NO. 16 IN FIGURE (4-5)

v

CHAPTER I INTRODUCTION

This is a supplement to the report by Breeding, J. Ernest, Jr., K.C. Matson, and Nourollah Riahi, "A Method for Calculating Wave Packet Trajectories and Wave Heights," Department of Oceanography, Florida State University, Tallahassee, (Report No. JEB-1 (1978) hereafter referred to as Part I. The program for predicting the modification to waves in shoaling water described in Part I is developed on the assumption that the water depth contours are locally parallel in the vicinity of each ray point. This method results in accurate wave predictions for many examples of bottom topography. However, the wave height predictions are not accurate when the water depth contours are highly nonparallel in the region of a ray point.

The objective in this report is to extend Part I in order to make accurate wave predictions when the water depth contours are not parallel. The theory is developed in Chapter II. The calculations are greatly simplified by making them in a x'y'-coordinate system which is chosen so that at each ray point the positive x'-axis is in the direction of the gradient of the water depth. As a result, the first partial derivatives of the water depth and wave velocities with respect to y' vanish. Further, there is a simplification in the second partial derivatives involving y'. In Chapter III modifications to the computer program are described. To illustrate the wave prediction program two examples of nonparallel water depth contours are presented in Chapter IV. An interesting result is that when waves initially approach sinuous water depth contours symmetrically with respect to the beach (headon) it is possible for there to be more energy in the bays than at the headlands. This is in contrast to the result for monochromatic trajectories where under similar conditions there is always more energy predicted at the headlands than in the bays.

01 31 008

CHAPTER II THEORY FOR NONPARALLEL WATER DEPTH CONTOURS

2.1 Spatial Derivatives of the Water Depth. At each point of a wave packet trajectory the calculations are made in a x'y'-coordinate system where the x'-axis is taken in the direction of the gradient of the water depth. The particulars of a wave packet trajectory are tabulated in a xy-coordinate system which retains a fixed orientation with respect to the water depth grid. The relationships between these coordinate systems and a specific ray point for a set of nonparallel water depth contours are shown in Figure (2-1). Equations relating these coordinate systems are given by

$$X' = X \cos \alpha + y \sin \alpha$$
 (2-1)

$$y' = -x \operatorname{Aun} \alpha + y \cos \alpha$$
 (2-2)

$$\tan \alpha = \frac{\partial k}{\partial y} / \frac{\partial h}{\partial x}$$
(2-3)

where α is the angle by which the x'-axis is rotated with respect to the x-axis and h is the water depth.

The partial derivatives of h in the x'y'-coordinate system with respect to the partial derivatives of h in the xy-coordinate system are given by

$$\frac{\partial k}{\partial \chi^{1}} = \frac{\partial k}{\partial \chi} \cos \alpha + \frac{\partial k}{\partial \chi} \sin \alpha \qquad (2-4)$$

$$\frac{\partial k}{\partial \chi^{1}} = -\frac{\partial k}{\partial \chi} \sin \alpha + \frac{\partial k}{\partial \chi} \cos \alpha = 0 \qquad (2-5)$$

$$\frac{\partial^{2} k}{\partial \chi^{1}} = \frac{\partial^{2} k}{\partial \chi^{2}} \cos^{2} \alpha + 2 \frac{\partial^{2} k}{\partial \chi \partial \chi} \sin \alpha \cos \alpha + \frac{\partial^{2} k}{\partial \chi^{2}} \sin^{2} \alpha \qquad (2-6)$$

$$\frac{\partial^2 h}{\partial x' \partial y'} = \left(\frac{\partial^2 h}{\partial y^2} - \frac{\partial^2 h}{\partial x^2}\right) \sin \alpha \cos \alpha + \frac{\partial^2 h}{\partial x \partial y} \left(\cos^2 \alpha - \sin^2 \alpha\right) \quad (2-8)$$

In Equation (2-5), $\partial h/\partial y' = 0$ as a result of choosing the positive x'-axis in the direction of the gradient of the water depth. If the water depth contours are locally parallel, which was the case dealt with in Part I, then

$$\frac{\partial^2 h}{(\partial y')^2} = 0 \qquad (2-9)$$

$$\frac{\partial^2 \mathcal{L}}{\partial x' \partial y'} = 0 \qquad (2-10)$$

2.2 Spatial Derivatives of the Wave Speeds. In this section relations are presented for connecting the geometric group speed G, the collinear group speed U, the phase speed v, and h. The water depth contours are assumed to be non-parallel.

a. Derivatives of v

The phase speed of a surface gravity water wave is defined (Part I)

$$\mathbf{r} = \frac{\mathbf{I}}{\mathbf{a}} \tanh \frac{\mathbf{I}}{\mathbf{a}} \tag{2-11}$$

in which

$$a = \frac{2\pi}{9T}$$
(2-12)

$$\mathcal{L} = \frac{T}{4\pi}$$
(2-13)

$$I = \frac{k}{bv}$$
(2-14)

where T is the wave period and g is the acceleration due to gravity.

The first partial derivatives of v in the x'y'-coordinate system are given by

$$\frac{\partial v}{\partial x'} = W \frac{\partial k}{\partial x'}$$
 (2-15)

$$\frac{\partial \mathbf{v}}{\partial \mathbf{y}'} = \mathbf{W} \frac{\partial \mathbf{k}}{\partial \mathbf{y}'} = \mathbf{O} \qquad (2-16)$$

where

$$W = \frac{V(1 - a^{2}v^{2})}{[2abv^{2} + k(1 - a^{2}v^{2})]}$$
(2-17)

The second partial derivatives of v are defined by

1.

$$\frac{\partial^2 U}{(\partial X')^2} = W \left[\frac{\partial^2 R}{(\partial X')^2} + Y \left(\frac{\partial R}{\partial X'} \right)^2 \right] \qquad (2-18)$$

$$\frac{\partial^{2} v}{(\partial y')^{2}} = W \frac{\partial^{2} k}{(\partial y')^{2}} \qquad (2-19)$$

$$\frac{\partial^2 v}{\partial x' \partial y'} = W \frac{\partial^2 k}{\partial x' \partial y'}$$
(2-20)

where

$$Y = - \frac{4abv^{2}}{[aabv^{2} + k(1 - a^{2}v^{2})]^{2}}$$
(2-21)

b. Derivatives of U

The collinear group speed of a surface gravity water wave is defined (Part I)

$$U = \frac{1}{2} \left(1 + \frac{I}{\sinh I} \right) v \qquad (2-22)$$

The first partial derivatives of U in the x'y'-coordinate system are given by

$$\frac{\partial U}{\partial X'} = \frac{\operatorname{cach} I}{2} \left[(\operatorname{ainh} I + I) \frac{\partial U}{\partial X'} + U \frac{\partial I}{\partial X'} (I - I \operatorname{coth} I) \right] \quad (2-23)$$

$$\frac{\partial U}{\partial y'} = \frac{\operatorname{cach} I}{2} \left[(\sinh I + I) \frac{\partial U}{\partial y'} + V \frac{\partial I}{\partial y'} (1 - I \operatorname{coth} I) \right] = 0 \quad (2-24)$$

where

$$\frac{\partial \mathbf{I}}{\partial \mathbf{X}^{\mathbf{i}}} = \mathbf{I} \left(\frac{1}{\mathcal{R}} \frac{\partial \mathcal{R}}{\partial \mathbf{X}^{\mathbf{i}}} - \frac{1}{\mathcal{V}} \frac{\partial \mathcal{U}}{\partial \mathbf{X}^{\mathbf{i}}} \right)$$
(2-25)

$$\frac{\partial \mathbf{I}}{\partial \mathbf{y}'} = \mathbf{I} \left(\frac{1}{4k} \frac{\partial \mathbf{k}}{\partial \mathbf{y}'} - \frac{1}{\nabla} \frac{\partial \mathbf{v}}{\partial \mathbf{y}'} \right) = \mathbf{0}$$
(2-26)

A MADES

The second partial derivatives of U are given by

$$\frac{\partial^{2} U}{(\partial X')^{2}} = \frac{\operatorname{cach} I}{2} \left[(\sinh I + I) \frac{\partial^{2} U}{(\partial X')^{2}} + U \frac{\partial^{2} I}{(\partial X')^{2}} (I - I \operatorname{coth} I) \right] + \frac{\partial I}{\partial X'} \left\{ -\frac{\partial U}{\partial X} \operatorname{coth} I + \frac{\operatorname{cach} I}{2} \left[\frac{\partial U}{\partial X'} (2 + \operatorname{cosh} I - I \operatorname{coth} I) + U \frac{\partial I}{\partial X'} \operatorname{cach} I (I \operatorname{cach} I - \operatorname{cosh} I) \right] \right\}$$

$$(2-27)$$

7

$$\frac{\partial^2 U}{(\partial y')^2} = \frac{\operatorname{cach} I}{\partial z} \left[(\operatorname{ainh} I + I) \frac{\partial^2 U}{(\partial y')^2} + U \frac{\partial^2 I}{(\partial y')^2} (I - I \operatorname{cath} I) \right]$$
(2-28)

$$\frac{\partial^2 U}{\partial x' \partial y'} = \frac{\operatorname{Cach} I}{2} \left[(\sinh I + I) \frac{\partial^2 U}{\partial x' \partial y'} + U \frac{\partial^2 I}{\partial x' \partial y'} (I - I \operatorname{coth} I) \right]$$
(2-29)

where

$$\frac{\partial^{2} \mathbf{I}}{(\partial \mathbf{X}^{\prime})^{2}} = \frac{1}{\mathbf{I}} \left(\frac{\partial \mathbf{I}}{\partial \mathbf{X}^{\prime}} \right)^{2} + \mathbf{I} \left\{ \frac{1}{\mathcal{L}} \left[\frac{\partial^{2} \mathcal{L}}{(\partial \mathbf{X}^{\prime})^{2}} - \frac{1}{\mathcal{L}} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{X}^{\prime}} \right)^{2} \right] - \frac{1}{\mathcal{V}} \left[\frac{\partial^{2} \mathcal{V}}{(\partial \mathbf{X}^{\prime})^{2}} - \frac{1}{\mathcal{V}} \left(\frac{\partial \mathcal{V}}{\partial \mathbf{X}^{\prime}} \right)^{2} \right] \right\}$$

$$\frac{\partial^{2} \mathbf{I}}{(\partial \mathbf{U}^{\prime})^{2}} = \mathbf{I} \left(\frac{1}{\mathcal{L}} \frac{\partial^{2} \mathcal{L}}{(\partial \mathbf{U}^{\prime})^{2}} - \frac{1}{\mathcal{V}} \frac{\partial^{2} \mathcal{V}}{(\partial \mathbf{U}^{\prime})^{2}} \right)$$

$$\frac{\partial^{2} \mathbf{I}}{(\partial \mathbf{U}^{\prime})^{2}} = \mathbf{I} \left(\frac{1}{\mathcal{L}} \frac{\partial^{2} \mathcal{L}}{(\partial \mathbf{U}^{\prime})^{2}} - \frac{1}{\mathcal{V}} \frac{\partial^{2} \mathcal{V}}{(\partial \mathbf{U}^{\prime})^{2}} \right)$$

$$(2-31)$$

$$\frac{\partial^{2} \mathbf{I}}{\partial \mathbf{X}^{\prime} \partial \mathbf{y}^{\prime}} = \mathbf{I} \left(\frac{1}{\mathcal{L}} \frac{\partial^{2} \mathcal{L}}{\partial \mathbf{X}^{\prime} \partial \mathbf{y}^{\prime}} - \frac{1}{\mathcal{V}} \frac{\partial^{2} \mathcal{V}}{\partial \mathbf{X}^{\prime} \partial \mathbf{y}^{\prime}} \right)$$

$$(2-32)$$

$$(2-32)$$

c. Derivatives of G

The geometric group speed is defined by

$$G = U \cos \phi$$
 (2-33)

where

$$\phi = \theta' - \gamma' \tag{2-34}$$

in which θ' is the direction of the wave packet, γ' is the direction of the wavelets, and both directions are measured with respect to the positive x'-axis. The first spatial derivatives of G are

$$\frac{\partial G}{\partial X'} = \frac{\partial U}{\partial X'} \cos \phi - U \sin \phi \frac{\partial \phi}{\partial X'} \qquad (2-35)$$

 $\frac{\partial G}{\partial y_{1}^{\prime}} = \frac{\partial U}{\partial y_{1}^{\prime}} \cos \phi - U \sin \phi \frac{\partial \phi}{\partial y_{1}^{\prime}} = 0 \qquad (2-36)$

The ray curvature for a wave packet is given by (Part I)

$$\frac{\partial \theta'}{\partial A_G} = \cos \theta' \frac{\partial \theta'}{\partial X'} + \sin \theta' \frac{\partial \theta'}{\partial y'} = \frac{1}{G} \left(\sin \theta' \frac{\partial G}{\partial X'} - \cos \theta' \frac{\partial G}{\partial y'} \right) (2-37)$$

where ds_G is an element of arc length along the packet trajectory. Since the first derivatives in y' vanish it is found that

$$\frac{\partial \theta}{\partial x'} = \frac{\tan \theta}{G} \frac{\partial G}{\partial x'}$$
(2-38)

$$\frac{\partial \Theta'}{\partial y'} = \frac{-\cos t \Theta'}{G} \frac{\partial G}{\partial y'} = 0 \qquad (2-39)$$

In like manner, when considering the ray curvature of the wavelets it is found that

$$\frac{\partial Y'}{\partial X'} = \frac{\tan Y'}{v} \frac{\partial v}{\partial X'}$$
(2-40)

$$\frac{\partial Y'}{\partial y'} = -\frac{\cot Y'}{v} \frac{\partial v}{\partial y'} = 0 \qquad (2-41)$$

Therefore

$$\frac{\partial \Phi}{\partial X'} = \frac{\tan \theta}{G} \frac{\partial G}{\partial X'} - \frac{\tan Y'}{v} \frac{\partial v}{\partial X'} \qquad (2-42)$$

$$\frac{\partial \Phi}{\partial y'} = -\frac{\cot \theta}{G} \frac{\partial G}{\partial y'} + \frac{\cot Y'}{v} \frac{\partial v}{\partial y'} = 0 \qquad (2-43)$$

9

When Equation (2-42) is substituted into (2-35) and the result is simplified it is found that

$$\frac{\partial G}{\partial X^{i}} = \rho \left(\frac{\partial U}{\partial X^{i}} \cos \phi + \sigma \frac{\partial U}{\partial X^{i}} \right) \qquad (2-44)$$

where

$$P = (1 + \tan \phi \tan \theta')^{-1}$$
 (2-45)

$$\sigma = \frac{U}{V} \sin \phi \tan Y' \qquad (2-46)$$

The second partial derivative of G with respect to x' is given by

$$\frac{\partial^2 G}{(\partial X')^2} = \rho \left(\frac{\partial^2 U}{(\partial X')^2} \cos \phi + \nabla \frac{\partial^2 U}{(\partial X')^2} \right) + \left(\cos \phi \frac{\partial \rho}{\partial X'} - \rho \sin \phi \frac{\partial \phi}{\partial X'} \right) \frac{\partial U}{\partial X'} + \left(\rho \frac{\partial U}{\partial X'} + \nabla \frac{\partial \rho}{\partial X'} \right) \frac{\partial U}{\partial X'}$$
(2-47)

where

$$\frac{\partial P}{\partial X^{1}} = -P^{2}\left(\tan \theta' \sec^{2} \phi \frac{\partial \phi}{\partial X^{1}} + \tan \phi \sec^{2} \theta' \frac{\partial \theta'}{\partial X^{1}}\right) \qquad (2-48)$$

A REAL PROPERTY AND A REAL

$$\frac{\partial \sigma}{\partial x^{i}} = \sigma \left(\frac{1}{U} \frac{\partial U}{\partial x^{i}} - \frac{1}{U} \frac{\partial U}{\partial x^{i}} \right) + \frac{U}{U} \left(\cos \phi \tan Y' \frac{\partial \phi}{\partial x^{i}} + \sin \phi \sec^{2} Y' \frac{\partial Y'}{\partial x^{i}} \right)$$

$$(2-49)$$

The remaining second order spatial derivatives of G are obtained by differentiating Equation (2-36). Since the first derivatives in y' vanish it is found that

$$\frac{\partial^2 G}{(\partial y')^2} = \frac{\partial^2 U}{(\partial y')^2} \cos \phi - U \sin \phi \frac{\partial^2 \phi}{(\partial y')^2}$$
(2-50)

$$\frac{\partial^2 G}{\partial x' \partial y'} = \frac{\partial^2 U}{\partial x' \partial y'} \cos \phi - U \sin \phi \frac{\partial^2 \phi}{\partial x' \partial y'}$$
(2-51)

The second partial derivative of ϕ with respect to y' is found by differentiating Equation (2-43). The result is

$$\frac{\partial^2 \Phi}{(\partial \psi')^2} = -\frac{\cot \theta'}{G} \frac{\partial^2 G}{(\partial \psi')^2} + \frac{\cot Y'}{v} \frac{\partial^2 v}{(\partial \psi')^2} \qquad (2-52)$$

When Equation (2-52) is substituted into (2-50) and the terms rearranged it is found that

$$\frac{\partial^2 G}{(\partial u')^2} = \zeta \left(\frac{\partial^2 U}{(\partial u')^2} \cos \phi - \xi \frac{\partial^2 U}{(\partial u')^2} \right) \qquad (2-53)$$

where

$$C_{n} = (1 - \tan \phi \quad \text{ext} \quad \theta')^{-1} \qquad (2-54)$$

$$\mathbf{\xi} = \frac{\mathbf{U}}{\mathbf{v}} \sin \phi \cot \mathbf{Y}$$
 (2-55)

No. of the second se

After differentiating Equation (2-43) with respect to x' it is found that

$$\frac{\partial^2 \varphi}{\partial X' \partial Y'} = \frac{\tan \theta}{G} \frac{\partial^2 G}{\partial X' \partial Y'} - \frac{\tan Y'}{v} \frac{\partial^2 v}{\partial X' \partial Y'} \qquad (2-56)$$

When Equation (2-56) is substituted into (2-51) the simplified result becomes

$$\frac{\partial^2 G}{\partial x' \partial y'} = \rho \left(\frac{\partial^2 U}{\partial x' \partial y'} \cos \phi + \sigma \frac{\partial^2 v}{\partial x' \partial y'} \right) \qquad (2-57)$$

2.3 Ray Curvature for Nonparallel Water Depth Contours. The ray curvature $\kappa_{\rm G}$ depends only on derivatives of the first order. By making the calculations in the x'y'-coordinate system the first derivatives in y' vanish. This results in a simplified ray curvature expression which is formally the same as presented in Part I for locally parallel water depth contours.

$$G = \frac{Ain\theta'}{G} \frac{\partial G}{\partial X'}$$
 (2-58)

2.4 Ray Separation Equation for Nonparallel Water Depth Contours. The ray separation equation is defined (Part I)

$$\frac{\partial^2 \beta}{\partial t^2} + \frac{\partial^2 \beta}{\partial t} + \frac{\partial^2 \beta}{\partial t} = 0 \qquad (2-59)$$

where β is the ray separation factor, t is time, and

$$\mathbf{p} = -\partial \cos \theta' \frac{\partial G}{\partial \mathbf{X}'} \tag{2-60}$$

$$q = G\left(\sin^2\theta'\frac{\partial^2 G}{(\partial X')^2} - 2\sin^2\theta'\cos^2\theta'\frac{\partial^2 G}{\partial X'\partial Y'} + \cos^2\theta'\frac{\partial^2 G}{(\partial Y')^2}\right) \quad (2-61)$$

In the x'y'-coordinate system p is simplified as is κ_G . In q there is also a reduction in the expressions for the second order derivatives involving y'.

CHAPTER III SUBROUTINE SURFCE

3.1 Modifications to Subroutine SURFCE. Modifications have been made to the program subroutine SURFCE in Part I in order to remove the restriction that the water depth contours be locally parallel about each ray point and to simplify some of the computations. When the program is run with these modifications minor changes will occur in the printed output for the sample input data presented in Part I.

Referring to the program listing for SURFCE on pages 52-54 of Part I the following modifications have been made. In place of SURFACE 58 an alternative expression is used to compute $\partial h/\partial x'$ (DHDX). Between SURFACE 87 and SURFACE 88 DI/Dx' (DIDX) is computed as are the hyperbolic sine, cosine, and tangent of I. Statements SURFACE 91 through SURFACE 93 for computing $\partial U/\partial x'$ (DUDX) have been replaced by a simplified expression. Between SURFACE 107 and SURFACE 108 $\partial^2 h/(\partial y')^2$ (DHDYY) and $\partial^2 h/\partial x'\partial y'$ (DHDXY) are computed. SURFACE 111 has been replaced by expressions to compute $\partial^2 v/(\partial y')^2$ (DVDYY) and $\partial^2 v/\partial x'\partial y'$ (DVDXY). Statements SURFACE 114 through SURFACE 120 have been replaced by expressions for calculating $\partial^2 I/(\partial y')^2$ (DIDYY) and $\partial^2 I/\partial x'\partial y'$ (DIDXY). A simplified expression has been substituted for $\partial^2 U/(\partial x')^2$ (DUDXX). Also, the values of $\partial^2 U/(\partial y')^2$ (DUDYY) and $\partial^2 U/\partial x'\partial y'$ (DUDXY) are computed. Between SURFACE 122 and SURFACE 123 & (ZETA), ξ (XI), $\partial^2 G/(\partial y')^2$ (DGDYY), and $\partial^2 G/\partial x'\partial y'$ (DGDXY) are determined. Simplified expressions are used to compute $\partial^2 G/(\partial y')^2$ and $\partial^2 G/\partial x' \partial y'$ when $|\tan \theta'| \leq \tan 5^\circ$ and $|\tan \gamma'| \leq \tan 5^\circ$. Statement SURFACE 124 has been replaced by the complete expression for computing q (QOT).

3.2 Description of Subroutine SURFCE. SURFCE is called by RAYN and MOVE to calculate h, α , γ , G, p, q, k_G, and other ray particulars. At the first ray point twelve values of h from CMAT are selected about the point as shown in Figure (2-2) of Part I. A quadratic surface is fit to the set of water depths. At successive ray points the quadratic surface is determined only if there is a change in the set of twelve water depths. The water depth and its partial derivatives in the fixed xy-system, $\partial h/\partial x$, $\partial h/\partial y$, $\partial^2 h/\partial x^2$, $\partial^2 h/\partial y^2$, and $\partial^2 h/\partial x \partial y$, are determined at the ray point by interpolating on the quadratic surface.

If $h \leq 0$, NDP = 2 and there is a RETURN. If h > 0 the ratio of the water depth to the deep water wavelength is computed. If $h/\lambda_d > 0.64$, which defines deep water, NFK = 1. If $h/\lambda_d \leq 0.64$, NFK = 2. VELCTY is called, and after the return if NFK = 1, W = 0. If NFK = 2, CONDER is called to

compute W. The values of $\partial v/\partial x$ and $\partial v/\partial y$ are calculated using W.

At each ray point calculations are made in a x'y'coordinate system which is chosen with the positive x'-axis in the direction of the gradient of the water depth. The value of $\partial h/\partial x'$ is computed, and if it exceeds 0.00001 the angle α by which the x'-axis is rotated with respect to the x-axis is computed. If $|\partial h/\partial x'| \leq 0.00001$ the water depth is assumed to be constant and α remains constant.

If FLAG1 = 0, γ' is computed, and if necessary it is placed within the range $|\gamma'| \leq 360^{\circ}$. A check is made to determine if there is total reflection. If there is, FLAG2 = 1 and there is a RETURN. Otherwise, FLAG2 = 0 and the new γ' is computed using Snell's law with phase velocity following a set of rules. Using the values of γ' , γ is computed. When FLAG 1 \neq 0 these steps for computing the new wavelet direction and the test for total reflection are omitted.

The values of ϕ , G, and $\partial v/\partial x'$ are calculated. If NFK = 2, $\partial U/\partial x'$ is determined using its unsimplified expression. If NFK \neq 2, the deep water formula is used to calculate $\partial U/\partial x'$. The value of $\partial U/\partial x'$ is used in computing $\partial G/\partial x'$.

If NFK $\neq 2$, the coefficients of the ray separation equation and the ray curvature are set equal to zero. Then there is a RETURN. If NFK = 2, p, $\partial^2 h/(\partial x')^2$, $\partial^2 h/(\partial y')^2$, $\partial^2 h/\partial x'\partial y'$, $\partial^2 v/(\partial x')^2$, $\partial^2 v/(\partial y')^2$, $\partial^2 v/\partial x'\partial y'$, $\partial^2 U/(\partial x')^2$, $\partial^2 U/(\partial y')^2$, $\partial^2 U/\partial x'\partial y'$, $\partial^2 G/(\partial x')^2$, $\partial^2 G/(\partial y')^2$, $\partial^2 G/(\partial x'\partial y')$, q, and κ_G are computed. This is followed by a return. THIS PAGE IS BEST QUALITY PRACTICABLE

۱

123456

3.3 Listing of Subroutine SURFCE

 SUBROUTINE
 SURFCE (X, Y, A, FK, NFK, NDP, AV)
 SURFACE

 DIMENSION
 S(6, f), EM(6, 12), C(12), YVW (6), E (6)
 SURFACE

 \$, CMAT (100, 100), AA (2000), AY (2000), CONTUR (9)
 SURFACE
 SURFACE

 \$KEAL
 KR, KF, KS, KP TOL, KFC
 SURFACE
 SURFACE

 INTEGER
 FLAG1, FLAG2
 SURFACE
 SURFACE

 COMMON
 S, EM, E, YVW, CMAT, C, AX, AY, CUNTUR, PROJCT, GRID, DCON, FAN, DATE1
 SURFACE

 COMMON S, EM, EL, YVW, CMAT, C, AX, AY, CUNTUR, PROJCT, GRID, DCON, FAN, DATE1 SURFACE \$, DATE2/CIN, DIX, ROP, TT, WBJOP, MOE, DY, DELTAT, SDLTAT, D, HGT, HGTZ, SVX \$URFACE \$, SUY, SDEP, W, LEF, NL, V, SAVV, PREV, SPPEV, U, SAVU, GZEGO, G, SG, SVG, DUD, KS SURFACE \$, DGDX, SVA, TPI, SAV, SVAV, PHL, ALFA, SVALFA, SSALFA, GNVRSA, DEL A, UHDX SURFACE \$, SUZ, RTOZ, SKR, CL, NUM, TINUM, IFLG, RCOUNT, AMM, ANN SURFACE \$, SUZ, RTOZ, SKR, FUC, NUM, TINUM, IFLG, RCOUNT, AMM, ANN SURFACE \$, SUZ, RTOZ, SKR, FUC, KK, POT, P1, P2, P3, P4, P5, OOT, Q1, Q2, Q3, Q4, Q5 SURFACE C IN THIS SUBROUTINE THE WATER DEPTH, POTATION ANGLE, WAVELET C DIRECTION, GEOMETQIC GKOUP VELOCITY, COEFFICIENTS OF THE RAY C SEPARATION EQJATION, AND THE PACKET RAY GURVATURE ARE COMPUTED. SURFACE SURFACE C SUBROUTINES VELCTY AND CONDER ARE CALLED. IF (MAXQ, LE. 1) GO TO 1 IF (ZI, EQ, FJ) GO TO 3 1 Z1=FI \$, ZJ=FJ C SELECT 12 WATER DEFTHS ABOUT RAY FOINT C (1) = CMAT(J+1, I) \$ C(2) = CMAT(J+2, I) \$ C(3) = CMAT(J, I+1) SURFACE C (1) = CMAT(J+1, I) \$ C(2) = CMAT(J+2, I) \$ C(4) = CMAT(J+2, I+3) SURFACE C (11) = CMAT(J+3, I+2) \$ C(11) = CMAT(J+1, I+3) \$ C(12) = CMAT(J+2, I+3) SURFACE T O 0316 L = 1, 12 YWW(II J=YVW WII "+C(L) *EM(II,L) SURFACE SURF CO 310 L=1,12 YVW(IIJ=VVW(II)+C(L)*EM(II,L) 318 CONTINUE DO 319 JJ=1,6 E(II)=0. DO 319 JJ=1,6 E(II)=C(II)+S(J,II)*YVW(JJ) 319 CONTINUE C COMPUTE INTERPOLATED WATER DEPTH 3 DEP=(E(1)+E(2)*XL+F(3)*YL+E(4)*XL**2+E(5)*XL*YL+E(6)*YL**2)*DCON HX=(E(2)+2.*E(4)*XL+E(4)*XL**2+E(5)*XL*YL+E(6)*YL**2)*DCON HY=(E(3)+E(5)*XL+E(5)*YL)*DCON HY=(E(3)+E(5)*XL+E(5)*VL)*DCON HX=2.*E(4)*DCCN \$ HYY=2.*E(6)*DCON \$ HXY=E(5)*DCON IF (DEP .GT. 0.) GO TO 324 NDP=2 GO TO 403 324 IF (DEP/WL .GT. .64) GO TO 322 NFK=2 GO TO 323 322 NFK=1 323 CALL VELCTY(V,TT.MAXC,DEP,NFK,U) IF INFK .EQ. 2) GO TO 402 W=0. CO TO 10 SURFACE SURFAC URFACE URFACE H=0. GO TO 10 402 CN=1. SURFACE SURFACE SURFACE SURFACE SURFACE CALL H=DN CONDER (DN , TT , V , MAXQ, NFK)

THIS PAGE IS BEST QUALITY PRACTICABLE FROM CORY FURNISHED TO DDC

COMPACE TO

S. Carlow L.

1	10	WX=W+HX & VY=H+HY & DHDX=HX+COS(ALFA) +HY+SIN(ALFA)	SURFACE	28
			SURFACE	60
C	COMP	UTE ROTATION A NGLE	SURFACE	61
-		ALFA=ATAN2(HY, HX)	SURFACE	62
C	COMP	UTE HAVELET DI FECTION IN ROTATED XY-SYSTEM USING SNELLS LAW	SURFACE	64
č	WITH	V AND TEST FOR TOTAL REFLECTION DUE TO THE WAVELETS	SURFACE	65
		GP=SAV-ALFA	SURFACE	66
-	14	IF (ABS(GP) . LE. 6.2831853) GO TO 13	SURFACE	68
	16	GP = GP + 6 + 28 - 31 + 85 - 3	SURFACE	69
		GO TO 14	SURFACE	70
	17	GP=GP-6, 28 31853	SURFACE	71
	13		SURFACE	22
		IF (ABS(ARG1) .LE. 1.) GO TO 18	SURFACE	74
		FLAG2=1.	SURFACE	. 75
			SURFACE	76
		TE (ABC(G)) = E (E - 1238AG) CO TO 20	SURFACE	78
		AVP=6-2831853+GPT	SURFACE	79
		GO TO 22	SURFACE	80
	20	IF (ABS(GP) LE. 1.5707963) GO TO 23	SURFACE	81
		AVF=3.141592/~GF1	SURFACE	82
	23	AVP = GPT	SURFACE	84
	22	AV=AVP+ALFA	SURFACE	85
1	12	PHI=A-AV \$ G=U+COS(PHI)	SURFACE	86
		DVD X=N DADX \$ EAR 3=12,5663708/TT \$ BAR4=BAR3+DEP/V	SURFACE	87
		$U_1 U_1 \rightarrow u_1 A_2 + U_1 U_1 U_1 = U_1 U_1 U_1 = U_$	SURFACE	89
		IF (NEW - FO. 2) 60 10 25	SIDEACE	90
			SURFACE	91
	-	60 10 27	SURFACE	92
ŝ	5	DUDX = (.5/SINHI)* ((SINHI+BAR4)*DVCX+V*DIDX*(1BAR4/TANHI))	SURFACE	93
•	~	RHU=1./(1.+IAN (PHI) TAN (A-ALFA) \$ SIGMA =UTSIN (PHI) TAN (AV-ALFA)/V	SURFACE	94
			SURFACE	36
		POT=0. \$ QOT=). \$ FK=0.	SURFACE	97
-		60 TO 403	SURFACE	98
ς,	CUMP	UTE P IN ROTATED XT-STSTEM	SURFACE	.99
	0	POID = T = T A (A - ALF A) + D G D X G + D P H D X = D A V D X = T A (A - ALF A) + D C X Y O A V A A A A A A A A A A A A A A A A A	SURFACE	100
		DRHODX =- (RHO*+2) + (TAN(A -ALFA) + DPHIDX/ (COS(PHI)++2)+	SURFACE	102
	\$	TAN (PHI) +0 ADX / (COS(A-ALFA) ++ 2))	SURFACE	103
		LSI GDX=SI GMA* (DUDX/U-DVDX/V) +U* (COS (PHI) +TAN (AV-ALFA) +DPHIDX+	SURFACE	104
		THORY = ICOS (ALFA) **2)*HXX+2,*SIN(ALFA)*COS(ALFA)*HXY+(SIN(ALFA)**	SURFACE	105
	\$	2)*HYY	SURFACE	107
		DHDYY= (SIN (ALF A) +2) +HXX-2.+ SIN (ALFA) +COS(ALFA) +HXY	SURFACE	108
	5		SURFACE	109
		U(OS(A) FA) + 2) - (STN(A) FA) + (ITT T T Z) - (HXX T Z) + (ITT T T Z) - (HXX T Z) + (ITT T T Z) - (HXX T Z) + (ITT T	SUPFACE	110
	•	SMA=6.28 318547 (32.2* IT) \$ SMAB=1.764.4	SURFACE	112
	-	DYDXX=#* (DHDXX+1DHDX+2)* (-4.* SMAB* (V**2)/((2.*SMAB* (V**2)+DEP*	SURFACE	113
	\$	(1 - (S + A + V) + + 2) + + 2)	SURFACE	114
		DVDTI=W-DHDTT & DVDXT=W-DHDXT	SURFACE	115

15

i

Ŧ

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

CIDXX = (DIDX **2) / BAR4 + BAR4 * ((CHDXX - (DHDX **2) / DEP) / DEP - (DVDXX SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE STANHI*(SINHI*BAR4) * DVDX*V* DIDX*(1. - BAR4/TANHI) * DTDX SURFACE S/TANHI*(SINHI*BAR4) * 0VDX*0V DYDIDX*(2. + COSHI-BAR4/TANHI) * DTDX SURFACE S/TANHI*(SINHI*BAR4) * 0VDX*0V DYDIDX*(2. + COSHI-BAR4/TANHI) * V*(CITXX SURFACE S/TANHI*(SINHI*BAR4) * 0VDX*0V DYDIDX*(2. + COSHI-BAR4/TANHI) * V*(CITXX SURFACE S/TANHI*(SINHI*BAR4) * 0VDX*0V DYDYT*(1. - BAR4/TANHI)) DUDY*=(.5/SINHI)*((SINHI*BAR4)*0VDXY+V*DIDY**(1. - BAR4/TANHI)) SURFACE DUDXY=(.5/SINHI)*((SINHI*BAR4)*0VDXY) * U*070X**(1. - BAR4/TANHI)) SURFACE DUDXY=(.5/SINHI)*((SINHI*BAR4)*0VDXY)*(0CYHI) + 0CHDDX-RHO*SIN SURFACE S(PHI)*0PHICX)*CUDX*(HHO*OSIGOX*SIGMA*0VDXY)*(DVDX IF (ABS(TAN(A-ALFA)) .GT. U.0 & 74 & 8006 .AND. ABS(TAN(AV-ALFA)) .GT. SURFACE **111110012234567890123456789**

CHAPTER IV WAVE PREDICTION EXAMPLES FOR

NONPARALLEL WATER DEPTH CONTOURS

Two examples of nonparallel water depth contours are used to illustrate the wave prediction program.

4.1 Sinusoidal to Parallel Water Depth Contours. Figure (4-1) shows a set of wave packet trajectories for a wave period of 7.0 seconds. The rays begin in deep water (initial water depth equal to or greater than one half the wavelength). The water depth contours are sinusoidal at the shoreline and gradually become parallel at a water depth of 38.6 meters. The amplitude of the water depth contour at the shoreline is 2.5 kilometers, and the contour wavelength is 10 kilometers. GRID, the distance between grid points, is 156.25 meters.

From the figure it is seen that the energy is fairly evenly distributed along the coastline with slightly more energy at the headland than in the bay. Figures (4-2) through (4-4) show the printed output for rays number 4, 8, and 16, respectively, of Figure (4-1). The computed refraction coefficients are in good agreement with values estimated from the plot.

4.2 Sinusoidal Water Depth Contours. In Figure (4-5) the period of the wave packet trajectories is 14.0 seconds and they begin in deep water. The water depth contours are sinusoidal with an amplitude of 5 kilometers and a wavelength of 20 kilometers. GRID has a value of 312.5 meters.

This example is quite interesting since there is decidedly more energy in the bay than at the headland. The opposite result would be expected for monochromatic trajectories. The refraction of wave packets could explain why there is more erosion in bays than at headlands for some coastlines. Figures (4-6) through (4-8) show the printed output for rays number 4, 8, and 16, respectively, of Figure (4-5). The computed refraction coefficients agree favorably with values estimated from the plot.

Figure (4-1). Plot for sinusoidal to parallel water depth contours.

	CTCLF	04400000000000000000000000000000000000	THIS PE
-11	•	444444 4444444444444444444444444444444	1550.
	XX	0 26\$8'00 00++ 888 06\$8'00 00++	to to to
	ž		D THE
- 10/			Deed of
D(BETA)	¥		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
5	ŝ		
	+		1.371(4-1)
	SH		2.08 lre (
	>	4,44444 4,4444444444444444444444444444	2.06 Figu
	5	NNNNNN NNN 98486	1 in +
A M		ด้เด็ดดังข้อออออออออดกักกัดกัดกัดกัดได้ที่สา	∾ - 0
ND1.		00000100000000000000000000000000000000	36.57 ay N
	ALF		L C
ME TER		Уликана и оказана и оказ Оказана и оказана и оказ И оказана и	• 865-80 ut for
	¥	00000000000000000000000000000000000000	tp
		00000000000000000000000000000000000000	31E-41
2	3	ממממנ ב ב ב ב ב ממממממממממממממממממ מממממנים ב ב ב ב מממממממממממממממ	1. nte
ET CHET	VE D	10000000000000000000000000000000000000	7ri
	AH		. (2).
2	ACK	444444 4444444444444444444444444444444	140.
NIT OF		\$\$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	et.
IN MET	T	0000000 000000000000000000000000000000	F1.
SI Ind	*		
100	×	NNNNNNMMMM + + + + 100000000000000000000000000	N

1

Service Service

4	7				
Facult	/		CTDIF	60000000000000000000000000000000000000	00 •666
TOULTTY DO	01000	-11	£		.8064
S. F. F.		8346	KR	** **	*
134	RTOL	7	N		
18 P	× • 00	- 10			1.00
a E	00000	ETAN.	X F		86
	.0==	0131		๏๙๙๛๚๏ฃ๛๙๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	4.27
i i i i i i i i i i i i i i i i i i i	0. CI		KS	IJ IJ סנק גד שגליטיים לייסטיט מורד שפיט קשרט גרסטיס מאג א שיט פטיט אומי מייסם סנק גרט גרט גרטיסט אייסט אייסט גרטיסט אייט אייט פטיט אייט אייט אייט אייט איי	1+1
	10.0		-	ឨ៶៷៰ໞຨຉຓຬ຺ຒຎຐຎຬໞຬໞຬຎຑຑຌຬຬຆຆຆຨຉຆ຺ຠ຺ຠ຺ຆຆຆຆຎ຺ຎຎຬຑຬຑຆຎຎຎ ຎຎຆຑໞ຺ຬຉຬຑຎຬຑຎຬຑຎຎຎຎຎຬຎຬຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ ຉຎຬຬຬຬຬຬ	54.0
	AT =		HG	ຌ ຌ ຉ຺ຉຌຌຉຑຑຑຉຬຬຉຑຬຑຑຌຬຌຬຬຬຬຬຎຌຎຌຬຬ຺ຌຬຎຬຎຎຎຬຬຌຬຬ຺ ຉຎຬຌຑໞຬຉຬຑຬຬຉຑຎຉຑຌຌຬຬຑຌຬຬ຺ຑຌຬຌຎຎຎຌ຺ຌ຺຺ຉຬຎຬຎຬຬຬຬຬຬຬຎ	304
	DB. T		>		¥.
				ຬ຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺	. 30
	.04		Э	ຆຆຎຎຏຎຏຎຏຎຏຎຏຌຎຎຎຎຎຏຎຏຎຏຌຏຎຎຎຏຌຏຏຏຏຏຏຏຏຏ	36
	RAY		9	๛๛๚๚๛๛๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	·
				00000000000000000000000000000000000000	. 65
,	. 056	CONC	ILFA	······	7
		R/ SE	-	NGMAFFFFFMUNUNDGADGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	10-1
. 1	RIOD	I HE TE			5. 2 uE
	I. P	· n · n	¥		- 20
				Contract (Contract (C	- 32E -
	DT N	TER)	0	ммммммммммммммммммммммммаззззззззятиммммммммммммммммммммммммммммм	:
1	PL	TCHE	w		ú . 38
		н, н6	HAV	907000200000000000000000000000000000000	0 18
			×		40.7
	1/13	LIND	PA		61 1
	78/1	RIC		\$ 4 5 4 3 4 MMMMMMMMMMMMMMMMMMMMMMMMMMMMM	•
	•2	NET WET	I	9370334042 03902 033 9403 3 149026 6 00 37.666 7.7630 997036 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.
-	ais	I SI			32
!	.cx	111	-	00000000000000000000000000000000000000	16.5
	ECT.	OUTE	*		~
	PP.0	THE	MAX		21

Figure (4-3). Printed Output for Ray No. 8 in Figure (4-1).

1.18

Can della

.001000 -1. 81 3E-11 KRTOL= -CF=0.000000. D (BET AI/DT 10.00. TAT= 3 16. .0N RAY 7. 0SEC .. G .U. VI ME TERI SEC OND PERI 00= ; No. 2 PLOT H ¥ H, HGT • UNITS 78/11/13 RIC HET. ~ NI SIP IS ŝ DU TP UT PROJECT H

00.666 PCTOIF 44444444 2086. à 1 1 *** N -N * 2 2 0000 κF 2.7504 S HGT AM > 5 0 ALFA FX 66E-02 • 0 80.17 5 MA -0.16 PACK I 333333333333333333333333333333333333 19 > 03 36. × HAX

THIS PACE IS BEST QUALTRY PRACTICARIA

Figure (4-4). Printed ouput for Ray No. 16 in Figure (4-1)

Figure (4-5). Plot for sinusoidal water depth contours.

Ford the

Conserved and

1

		PCTOIF	линнин нассаёссерсерсерсерсерсерсерсерсерииник. • • • • • • • • • • • • • • • • • • •	6.7	THIS PA
00100			44444444444444444444444444444444444444	.7321	OFY FURN
		X X	8*8488 0*55000	•9	TSH
TOL		0N		-	E
000, KR	1/01 =	L	44444444444444444444444444444444444444	1.0000	Turt of the t
F=0.000	DUBETA	¥	######################################	2.3369	1210AB
•		¥S	00000000000000000000000000000000000000	-	
. 10.00		ter		1.710	4-5)
ELTAT=		-		2.01	ure (
;			910191919191919191919191919191919191919	2.01	I Fig
LAW NO.		."	80888889988888888888888888888888888888	2.00	4. ir
:		•	めいオイイト かゆめトイナ ナウライ ナトド ダイト ナワかい トト のゆト ゆゆぎいいのか は よいいっしかいのかい ようチュア いかいてん サワかい トラ のトの つのイナタ	66	.01
. O SEC.	COND).	LFA	20000000000000000000000000000000000000	22.6	Ray M
1 = 14	TERISE			00+35S	for
PER	VCME	×	03000000000000000000000000000000000000		out
:	·n.	•		20-	utl
.0N			ໟຏໟຏຏຆຉຏຌຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬ	6.41E	ed 0
101	1ET B	•		23	int
-	. HGT (MAVE	44444444444444444444444444444444444444	128.	Pr
•		×	60,000,000,000,000,000,000,000,000,0	3 3.04	-6).
8/08/31	LINN DE	P.	00040000000000000000000000000000000000	.41	ure (4
	1ET	I	00 3200 3000000 MM 000000 MM 0000 V 000 4 V 000 4 V 000 4 V 000 4		50
n z	NI		00000000000000000000000000000000000000	4.6	P4
SI	IS	*		-	1
. NO.	PUT		C 2000 20 20 20 20 20 20 20 20 20 20 20 2	12.4	!
	DUT	×	©~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	
PR0.	THE	MAX	44444444444444444444444444444444444444	166	1

PCTUIF .001000 ¥ KRTOL= 2 -. 3F =0.060000. D(BETA) / DT ¥ S 10.00. HGT CELTAT= > • 2 NO. RAY 9 14.0 SEC ... G.U.V (METER/SECOND ALFA PERI 00 = ¥ : ŝ (METER) . PLOT 0 HAVE H. HGT × PAC UNITS 78/08/31 HE TR IC I -Z SIN IS -ż TUATUO FROJECT × ¥ XAM

1.2802 ----* 1.0300 1.0110 1.1299 1.3981 2.4127 3.2380 및 AY +0 10 --.28 186.24 100.19 .11 32.00 .0.

32

4.03

216

A STATE OF STATE

00000 0000 0000

999.00

6666

(4-5) Figure in 8 No Rav for output Printed (1-4) Figure

	PCTOIF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		414 414 414 414 414 414 414 414 414 414
:	NO KR	
1		0 0 00000000000000000000000000000000000
TALFD	ΚŁ	
0(86		444-24 2444-2400000000000000000000000000000000
	×	
	HGT	
	>	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	_	00000000000000000000000000000000000000
	-	MMBHJYHYJHHHHHHHHHHHHHHH 66600044NMJYYYYYYYYY 80600044NMJYYYYYYYY 800744444444440000000000000000000000000
:	U	40000000443346404334040 3 NNNNNON4NN4N3N48060NM6040 N
ECOND	ALFA	
TER/S		R380837600004804804000000000000000000000000000
JHI V.	FK	00000000000000000000000000000000000000
6.0		
TERD.		WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
IGT CHE	ÅE	
н.н	MA	00000030030003000000000000000000000000
. SIIN	PACK	00/00/01/00/00/02/02/01/01/01/01/01/01/01/01/01/01/01/01/01/
RIC U		00 40 40 0 7 40 40 00000 00 4 1 40 40 00 00 40 40 0 7 40 40 00000 00 4 1 40 40 00 40 40 0 7 40 40 40 40 40 40 40 40 40 40 40 40 40
I N NET	I	
I SI	*	22222222222222222222222222222222222222
TPUT		0 010011000000000000000000000000000000
5	AX X	* ONENGNONONE NONENENGNONONON N NEE 20000 112000 **************************

25

L

THE STARS IS HAS A GUILT A RANCA CALLER TO HOC THE AND THE STARS AND THE AND T in Figure (4-5). Printed output for Ray No. 16 Figure (4-8).

THE SALE OF THE PARTY

Mar March

DISTRIBUTION LIST

Office of Naval Research 2 Geography Programs Code 462 Arlington, VA 22217

Defense Documentation Center 12 Cameron Station Alexandria, VA 22314

Director, Naval Research Lab 6 Attention Technical Information Officer Washington, DC 20375

Director Office of Naval Research Branch Office 536 South Clark St. Chicago, Illinois 60605

Director Office of Naval Research Branch Office 495 Summer St. Boston, MA 02210

Commanding Officer Office of Naval Research Branch Office Box 39 FPO New York 09510

Chief of Naval Research Asst. for Marine Corps Matters Code 100M Office of Naval Research Arlington, VA 22217

Office of Naval Research Code 480 National Space Technology Laboratories Bay St. Louis, MS 39520

Office of Naval Research Operational Applications Division Support Center Code 200 Arlington, VA 22217

Office of Naval Research Scientific Liaison Officer Scripps Institution of Oceanography La Jolla, CA 92093

Director, Naval Research Laboratory Attn: Library, Code 2628 Washington, DC 20375

ONR Scientific Liaison Group American Embassy, Room A-407 APO San Francisco, CA 96503

Commander Naval Oceanographic Office Attn: Library, Code 1600 Washington, DC 20374

Naval Oceanographic Office Code 3001 . Washington, DC 20374

Chief of Naval Operations OP 987P1 Department of the Navy Washington, DC 20350

Oceanographer of the Navy Hoffman II Building 200 Stovall St. Alexandria, VA 22322

Naval Academy Library US Naval Academy Annapolis, MD 21402

Commanding Officer Naval Coastal Systems Center Panama City, FL 32407

Librarian Naval Intelligence 4301 Suitland Rd. Washington, DC 20390 Dr. William T. Fox Dept. of Geology Williams College Williamstown, MA 01267

Dr. Hsiang Wang Dept. of Civil Engineering Dupont Hall University of Delaware Newark, DE 19711

Dr. John T. Kuo Henry Krumb School of Mines Seely W. Mudd Building Columbia University New York, NY 10027

Dr. Edward B. Thornton Dept. of Oceanography Naval Postgraduate School Monterey, CA 93940

Prof. C.A.M. King Dept. of Geography University of Nottingham Nottingham, England NG7 2RD

Dr. Douglas L. Inman University of California A-009 Shore Processes Laboratory La Jolla, CA 92093

Dr. Omar Shemdin Jet Propulsion Laboratory 183-501 4800 Oak Grove Dr. Pasadena, CA 91103

Dr. William L. Wood Department of Geosciences Purdue University Lafayette, IN 47907

Dr. Alan W. Niedoroda Director, Coastal Research Center University of Massachusetts Amherst, MA 01002 Dr. John B. Southard Dept. of Earth and Planetary Sciences MIT Cambridge, MA 02139

Dr. J. Ernest Breeding, Jr. Dept. of Oceanography FSU Tallahassee, FL 32306

Dr. John C. Kraft Dept. of Geology University of Delaware Newark, DE 19711

Dr. Dag Nummedal Dept. of Geology University of South Carolina Columbia, SC 29208

Mr. Fred Thomson Environmental Research Institute P.O. Box 618 Ann Arbor, MI 48107

Dr. Thomas K. Peucker Simon Fraser University Dept. of Geography Burnaby 2, B.C., Canada

Dr. Robert Dolan Department of Environmental Sciences University of Virginia Charlottesville, VA 22903

Dr. Lester A. Gerhardt Rennsselaer Polytechnic Institute Troy, New York 12181

Director Office of Naval Research Branch Office 1030 East Green Street Pasadena, California 91101

Dr. Yoshimi Goda, Director Wave Research Division Port and Harbor Research Instit. Ministry of Transportation 1-1 Nagase, 3 Chome Yokosuka, 239 Japan

Prof. Dr. Rer. Nat. H.G. Gierloff-Emden Institut F. Geographie Universitaet Muenchen Luisenstrasse 37/III D-800 Muenchen 2, West Germany

Dr. R. Koester Geol-Palaeontolog. Institut Universitaet Kiel Olshausenstrasse 40-60 D-2300 Kiel, West Germany

Prof. Dr. Fuehrboeter Lehrstuhl F. Hydromechanik U. Kuestenw Technische Hochschule Braunschweig Civil Engineering Dept. Beethovenstrasse 51A D-3300 Braunschweig, West Germany

Prof. Dr. Walter Hansen Direktor D. Instituts F. Meereskunde Universitaet Hamburg Heimhuderstrasse 71 D-2000 Hamburg 13, West Germany

Prof. Dr. Klaus Hasselmann Institute F. Geophysik Universitaet Hamburg Schlueterstrasse 22 D-2000 Hamburg 13, West Germany

Prof. Dr. Nils Jerlov Institute for Physical Oceanography Kobenhavns Universitet Haraldsgade 6 DK-2200 Kobenhavn, Denmark

Prof. Kiyoshi Horikawa Dept. of Civil Engineering University of Tokyo 7-3-1, Hongo, Bunkyo-Ku Tokyo 113, Japan

Prof. Dr. Eugen Seibold Geol-Paloeontolog. Institut Universitaet Kiel Olshausenstrasse 40-60 D-2300 Kiel, West Germany

Prof. Yuji Iwagaki Civil Engineering Dept. Kyoto University 9 Shimogamo Zenbucho, Sakyo-Ku Kyoto, Japan

Dr. H.J. Schoemaker Waterloopkundig Laboratorium Te Delft 61 Raam, Delft, Netherlands

Ir. M.W. Van Batenberg Physisch Laboratorium TNO Oude Waalsdorper Weg 63, Den Haag, Netherlands

Prof. Toshiyuki Shigemura National Defense Academy 1-10-20 Hashirimizu Yokosuka 239, Japan

Mr. William T. Whelan Telecommunication Enterprises, Inc. Box 88 Burtonsville, MD 20730

Dr. Benno M. Brenninkmeyer, SJ Dept. of Geology and Geophysics Boston College Chestnut Hill, MA 02167

Coastal Studies Institute Louisiana State University Baton Rouge, LA 70803

Dr. Choule J. Sonu Tetra Tech, Inc. 630 N. Rosemead Blvd. Pasadena, CA 91107

Dr. Richard A. Davis, Jr. Dept. of Geology University of South Florida Tampa, FL 33620

Commanding Officer Naval Civil Engineering Laboratory Port Hueneme, CA 93041

Officer in Charge Environmental Research Production Facility Naval Postgraduate School Monterey, CA 93940

Director Amphibious Warfare Board US Atlantic Fleet Naval Amphibious Base Norfolk, Little Creek, VA 23520 Washington, DC 20235

Commander, Amphibious Force US Pacific Fleet Force Meteorologist Comphibpac Code 25 5 San Diego, CA 92155

Commanding General Marine Corps Development and Educational Command Quantico, VA 22134

Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code Mc-Rd-1 Washington, DC 20380

Defense Intelligence Agency Central Reference Division Code RDS-3 Washington, DC 20301

Director Coastal Engineering Research Center US Army Corps of Engineers Kingman Building Fort Belvoir, VA 22060

Chief, Wave Dynamics Division USAE-WES PO Box 631 Vicksburg, MS 39180

Commandant US Coast Guard ATTN: GECV/61 Washington, DC 20591

Office of Research and Development DS/62 US Coast Guard Washington, DC 20591

National Oceanographic Data Center D764 Environmental Data Services NOAA

Central Intelligence Agency Attn: OCR/DD-Publications Washington, DC 20505

Dr. Donald Swift Marine Geology and Geophysics Laboratory 15 Rickenbacker Causeway AOML-NOAA Miami, FL 33149

MinisterialDirektor Dr. F. Wever RUE/FO Bundesministerium der Verteidigung Hardthoehe D-5300 Bonn, West Germany

Oberregierungsrat Dr. Ullrich RUE/FO Bundesministerium der Verteidigung Hardthoehe D-5300 Bonn, West Germany

Mr. Tage Strarup Defense Research Establishment Osterbrogades Kaserne DK-2100 Kobenhavn 0, Denmark

Dr. Warren C. Thompson Dept. of Meteorology & Oceanography Naval Postgraduate School Monterey, California 93940

REPORT DOCUMENTATIO	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
JEB-4		
TITLE (and Sublitle)		5. TYPE OF REPORT & PERIOD COVERE
Method for Calculating Wa	ive Packet	Technical
Trajectories and Wave Heigh	nts: Part II	
,		6. PERFORMING ONG. REPORT NUMBER
AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
. Ennest Breeding .In		N00014-77-C-0329 Mer
in hinder breeding, or.		
PERFORMING ORGANIZATION NAME AND ADDR	ESS	10. PROGRAM ELEMENT, PROJECT, TASH
Department of Oceanography		ND200 120
The Florida State Universit	ty	NR388-138
Tallahassee, FL 32306		
CONTROLLING OFFICE NAME AND ADDRESS	nont of the Navy	November 1978
of Naval Research	lent of the Navy	13. NUMBER OF PAGES
Arlington, VA		
4. MONITORING AGENCY NAME & ADDRESS(II dif	terent from Controlling Office)	15. SECURITY CLASS. (of this report)
		154. DECLASSIFICATION DOWNGRADING
		SCHEDULE
Approved for Public Release	e; Distribution	Unlimited.
Approved for Public Release	e; Distribution	Unlimited.
Approved for Public Release	e; Distribution	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the ebetrect entry B. SUPPLEMENTARY NOTES	e; Distribution	Unlimited.
Approved for Public Release 7. DISTRIBUTION STATEMENT (of the abetract onto 8. SUPPLEMENTARY NOTES	e; Distribution	Unlimited.
Approved for Public Release Distribution Statement (of the abetract entry B. SUPPLEMENTARY NOTES	e; Distribution	Unlimited.
Approved for Public Release 7. DISTRIBUTION STATEMENT (of the abetract onto 8. SUPPLEMENTARY NOTES	e; Distribution	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the abatract entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse side if necesse	e; Distribution ered in Block 20, 11 different fro	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the ebetrect entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse eide II necesser Nave packets	e; Distribution ered in Block 20, 11 different fro ry end identify by block number Wave height	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the ebetrect entry S. SUPPLEMENTARY NOTES NAVE Packets Wave packets Wave refraction	e; Distribution ered in Block 20, 11 different fro ry and identify by block number Wave height refraction	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the ebetrect entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse elde II necesse Wave packets wave refraction backet ray curvature	e; Distribution ered in Block 20, 11 different fro my and identify by block number Wave height refraction geometric g	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the abetract entry B. SUPPLEMENTARY NOTES Nave packets wave refraction packet ray curvature	e; Distribution ered in Block 20, if different fro y and identify by block number Wave height refraction geometric g	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the ebetrect entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse eide if necesser vave packets vave refraction packet ray curvature D. ABSTRACT (Continue on reverse eide if necesser	e; Distribution ered in Block 20, 11 different fro ry end identify by block number, Wave height refraction geometric g y end identify by block number)	Unlimited.
Approved for Public Release Approved for Public Release D. DISTRIBUTION STATEMENT (of the abstract entry Supplementary notes Nave packets wave packets wave refraction packet ray curvature D. ABSTRACT (Continue on reverse elde II necessary See Reverse Side	e; Distribution ered in Block 20, 11 different fro wave height refraction geometric g	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the abetract entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse elde if necessar Nave packets Nave refraction Dacket ray curvature D. ABSTRACT (Continue on reverse elde if necessar See Reverse Side	e; Distribution ered in Block 20, 11 different fro y and identify by block number, Wave height refraction geometric g	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the ebetrect entry B. SUPPLEMENTARY NOTES WAVE PACKETS WAVE PACKETS WAVE refraction Dacket ray curvature D. ABSTRACT (Continue on reverse elde if necessary See Reverse Side	e; Distribution ered in Block 20, 11 different fro ry end identify by block number Wave height refraction geometric g y end identify by block number)	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the abatract entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse elde if necessar Wave packets Wave refraction Dacket ray curvature D. ABSTRACT (Continue on reverse elde if necessar See Reverse Side	e; Distribution ered in Block 20, 11 different in ry end identify by block number, Wave height refraction geometric g y end identify by block number)	Unlimited.
Approved for Public Release A DISTRIBUTION STATEMENT (of the ebetrect entry Supplementary notes A SUPPLEMENTARY NOTES A SUPPLEMENTARY NOTES A BSTRACT (Continue on reverse elde II necessar See Reverse Side	e; Distribution ered in Block 20, 11 different fro wave height refraction geometric g	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the abetract entry B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse elde if necessar Nave packets wave refraction Dacket ray curvature D. ABSTRACT (Continue on reverse elde if necessar See Reverse Side	e; Distribution ered in Block 20, if different from ry and identify by block number, Wave height refraction geometric g y and identify by block number)	Unlimited.
Approved for Public Release D. DISTRIBUTION STATEMENT (of the obstract entry B. SUPPLEMENTARY NOTES AVE PACKETS Nave packets Nave refraction Dacket ray curvature D. ABSTRACT (Continue on reverse side if necessary See Reverse Side	e; Distribution ered in Block 20, 11 different fro ry end identify by block number, Wave height refraction geometric g y end identify by block number)	Unlimited.

LURITY CLASSIFICATION OF THIS PAGE/When Data Entered)

Block 20'. ABSTRACT

In Part I a method for calculating wave packet trajectories and wave heights is based on the assumption that the water depth contours are locally parallel in the vicinity of each ray point. This method is extended in order to predict the modification to surface gravity water waves in shoaling water when the water depth contours are . not parallel. The calculations are greatly simplified by choosing a coordinate system at each ray point in which one axis is aligned parallel with the direction of the gradient of the water depth. Example printouts and plots are presented to illustrate the wave prediction method. It is discovered that when waves initially approach sinuous water depth contours symmetrically with respect to the beach there can be more energy in the bays than at the headlands.