T AD=AD64 059 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 9/2

l PRELIMINARY DESIGN OF A UNIVERSAL NETWORK INTERFACE DEVICE,(U)
1 DEC 78 S C SLUZEVICH
| UNCLASSIFIED AFIT/GE/EE/T8=41 NL

| '3 lﬁ |
- l-

/

o L P

1.0
"mz S

li22

g

L

k2 Jis yee

—

S SRR Pk i

I T

AFIT/GE/EE/78-41

AMA064009

£

FILE COPY;

PRELIMINARY DESIGN OF A UNIVERSAL
NETWORK INTERFACE DEVICE

e, ot -

[. THESIS
=))
[s : |
AFIT/GE/EE/78-41 Sam C. Sluzevich , D D C
Capt USAF g i

Approved for public release; distribution unlimited.

(" iy /f Je 7 f

i —

e m e i iss g a0y

"ﬂfﬁ“d’!‘m e ” i ,.

AFIT/GE/EE/78~4177

gRaxnNe:

JUS T

PRELIMINARY DESIGN OF A UNIVERSAL "
2 = =

{TRRA

NETWORK INTERFACE DEVICE, T
& # x

g o ——

—— e

/}‘/'gjfe)/s THESIS |

o 3

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Training Command
in Partial Fulfillment of the
Requirements for the Degree of

~_Master of Science

by
<Z§Z)\ Sam C. Sluzevich/ B.S.E.E.

Capt

USAF

Graduate Electrical Engineering

T\ Jbes ,Z//pj

Approved for public release; distribution unlimited.

Preface

This report presents the preliminary design of a micro-
processor based universal network interface device. 1In
developing this preliminary design, many decisions were
made without recommendations from the possible users of
such a device. It is hoped that the universal network
interface device project will continue and the users become
more involved in the continued design of such a device.

In this manner, the =nd product should provide a cost-
effective interface for application throughout the Depart-
ment of Defense.

This thesis would not have been possible without the
assistance of several people and their help is gratefully
acknowledged. Dr. Lamont was an understanding and encour-
aging thesis advisor. Phyllis Reynolds' skillful typing
improved the looks of this paper immeasurably. Most of
all, I would like to thank my wife, Belinda, for her

encouragement and understanding.

e ey S MG o s T o
S 7

Contents

Page

i 4 Preface e ® e ® e e ® ® e o e e © ®© ®© © o e s ° e o o i i

.
i 4
1
1
8
i

BABE OF PRGN . v s 16 voin 5om wan o % e % R
List of Tables L] - L L] . Ll . . L] L] . . k2 L] x
“straCt . - Ll Ll . . o @ . . . L] L] . . - . - - . . L] . xi

I. INEROAUCEION '« & oo el e tebni i e e e %

Background 1 .« . e e o 8 s e e
Objective of this Investigation
Approach . '« o« o s o @ @ . . w
Design Procedure
Overview of the Thesis

.....
P e
e i e
i h A s
& o N-w e
SO
o e s
CONNN

1X. Requirements Definition . . ¢« ¢« . ¢« ¢ « « ¢« « « 11

’ Universal Network Interface Device 11
Structured Analysis Activity Model 13

Universal Network Interface (AO) 16
Process Local Information (Al) 17
Receive Local to-be-Transmitted

Information (ALl): « = « & o « s s » & » s 48

Store Information (Al1l13) . . . « « « « « « 20
Process to-be-transmitted
Information (Al2). o e
Transmit Information to Netw -k (Al3) % A
Process Network Information (A2) 23
Receive Information from Network (A2l1l) . . 24
Process Information from Network (A22) . . 26
Retransmit Network Information on

. NetWork (B23). v & & 9 @ & ® % % « & 5 % © &f
Retransmit Information to Local
Receiver (A24) = s &0

Process Control Informatlon (A243) & e RS
Transmit Information to Local
Racalver (R284). ¢« v o ¢ & o % o s o & = » 30 ,

Requirements Definition Summary . . . « « « . 31 w

iii

e e B D B R i

l Page

BIN: USEel DEBEGR . & o v » = ik 2Rk i w e e w9 f

Dasion DILaNOE . « « « o« s s 28 % -8 » « = I3
SYStEm BOURHE . . & v s v 5. % a mis 2w & 5 o= B |

S A, A e s

Local Signal Characteristics 35

I/0 Port Requirements . « « « « « o o.» =« 37 |
Network I/0 Port Requirements 38

Local I/0 Port Requirements 40 '

Link Control Proto@ol . . « « « o« s o o, s » o« &4 ?
Function Allocation . « « ¢« ¢ « « « ¢« « » « «» 46 '

Processor Requirements « «. « « 51

System Design Phase Observations 54

Iv. Hardware Selection and Design 55
Processor Selection . . « « ¢« ¢« ¢ ¢« « « « « « 55 %

:

Processor Board . . « ¢« » + & + 2 s« v v s 39 (
ZBO-MCB 60 { 1

InPUt CaBEE . 5 & s &« 5 & »'% s o » =« = « 5 « B

RS-232C Requirements
Functional Requirements
Peripheral I/O Port Design . . .
Input Board Processor Interface
Z80A Processor Interrupt Modes .
Z80A Interrupt Acknowledgement .
280 Daisy Chain . ¢« o « « « =
M8214 Priority Interrupt Device
I/O MSAressing . « ¢« ¢« « « « » &
Data Bus Buffering

e o o 8 s e e ° e o
« o o o s o o s o @
e o o o & o o s o o
e 2 ® o e e s & o
e o o 8 & s e & o o

~ [=))
> ~

WOtwork CBXA . « « « & & & 5 v » 2.5 o » & w 09

Network Transmission Speed 19

Word Storage Through DMA 80

Network Card WithbMA 81 {
Network Card Device Selection 82 ;
Network Cazd Design . . « ¢« ¢« ¢« « s« « « » 83

Data Bus Control Design 84

Network Interface Standard 85

Dual Processor Card « o ¢« o« o« o« s« o« o 88

" Z80A Memory Reference + « « « « . 89
Basis of Design . . ¢« ¢« ¢« ¢« ¢« ¢ ¢« ¢« ¢« ¢« « 89

iv |

R i i Ao S R A R 3 e S I s ¥

e

V.

Dual Processor Card Design
Hardware Design Summary

Software Besign . « o « & o s % w8 e s e

Software Design Constraint

FEREING. ol e o iy el ey et i i
BEOEACON wie & e R B e e

Software Functions« . «
Input Processor Operating System . . .

Initialization of Input Processor

Operating System
Device Initialization Phase
Operational Initialization

Operating System #1 Generalized
SUbroutine .« o + % 5 @ 0 oW oW oW ow s

Queue Addition/Deletions
Memory Table Addition/Deletion . . .

Interrupt Service Routines
Operating System #1 . « ¢« « « ¢ ¢« ¢ « &

Operating System #1 Receive
Interrupt Routine S e
Operating System #1 Transmlt
Interrupt Routine

Main Operating System #1
Network Processor Operating System . .

Initialization of Network Processor
Operating System . . « « + ¢« « « « &

Operating System #2 Generalized
Subroutines . . « « &« ¢ v v s 6 v e . e

Interrupt Service Routines
Operating System #2 . . . « ¢« ¢ « ¢ «

Operating System #2 Transmit Routine
Operating System #2 Receive Routine
Operating System #2 Special Receive
Interrupt Routine
Timer Interrupt Service Routine . .

Main Operating System #2

Page

91
. 102

. 104
. 104

. 105
. 106

. 106
. 107

. 110
. 110
. 114
. 116
. 116
. 123
. 124

. 127
. 128
. 134
. 135
. 141

. 142

. 142
. 143
. 145
. 145
. 145

-

Software Design Summary
VI. Results and Recommendations

Dasaign Results . .. ol o s s
Recommendations . . « « « o« o

Bibliagraphy . . o ii ' el e s v s
Appendix A: Structured Analysis Diagrams
Appendix B: Hardware Circuitry
Appendix C: Assembled Software

vita L] . . . ° L)

149
154

154
156

158
161
168
189
259

A

T

Fiqure

2-10
2-11
2-12
2-13

2-14
2-15

List of Figures

Munti-Ring Base Network
SA Activity Model Index
Universal Network Interface Device .

Universal Network Interface

Process Local Information

Receive Local To-Be-Transmitted Information

Store Information . « « = o & = o & &
Process To-Be-Transmitted Information .
Transmit Information to Network S
Process Network Information
Receive Information from Network . . .

Process Information from Network . . .

Retransmit Network Information on Network

Retransmit Network Information to Local
RECBIVEE, v % 5 vei e beie e a5 e s

Process Control Information
Transmit Information to Local Receiver
Centralized Network « « « ¢ .
Decentralized Network « « . .
Distributed Network . . « . « « ¢« « «
Processor Service Time . . . « ¢« « « .
Local Subscriber Interface

Input Card Priority Controller

vii

Page

4-10
4-11
4-12

5-10
5=-i1
5-12
5=-13
5-14
5-15

5~16

Interrupt Acknowledge Control« . .
Input Card Y/O Kddressing . « « « « o & s »
Input Card Data Bus Control
Network Card Data Bus Control
Dual Processor State Analysis
Dual Processor Card Input Design
Dual Processor Card Request Design
Dual Processor Card Refresh Control
280A Refresh Cycle Cog i e SR
Dual Processor Card Data Bus Design
The Initialization Process . . . « « « « « &
Subroutine ITUART Flowchart « . .

Processor Lockout Mechanism

Operating System Lockout « « . &
Queue Addition Flowchart « . &«
Remove Information from Head of Queue . . .
Memory Table Deletion Flowchart
Packet Sequence Control Word o s ht ey ekl e
Receive Interrupt Service Routine Flowchart
Transmit Interrupt Service Routine Flowchart
Multibuffer Status Word . . . « . ¢« « « « &
Local Transmit Queue Flowchart
Operating System #1 Flowchart
Network Transmit Flowchart . . . «
Special Receive Condition Flowchart

Timer FIOWERATE ¢ v ¢ &« v ¢ o s & & & & w

73
77 |
86
92
93
95
96
96
99
111
113
119
120
121
122
125
128
129
132
134
136
139

144 .
146
148

S A

Figure
5~17
5-18

B-10
B-11
B~12
B-13
B-14
B-15
B-16
B-17
B-18
B-19

NWEXO FlowchaXt « o « s & o .5 o & # s & &

NURXQ FlowcharE . . s o o o @& % o & & & ' o

Top-down View of an SA Model

AXrow Befintions . ¢ & = & & o+ 5 @ 5 e o e

Arrow Branches . . s o 5'e & te e e e

Arrows Showing Mutual Control

Input
Input
Input
Input
Input
Input

Input

Card
Card
Card

Card

Card

Card

Card

Address Circuitry « o < o « = =
Interrupt CircUitry . o « « o -
Interrupt Acknowledge Circuitry
Data Bus Circuitry . » « « <« « »
Data Bus Control Circuitry . . .
ZBOB=CTC B2 1 a0 v v v % w w e s

2651 - - . - .

Network Card Address Circuitry« .

Network Card Data Bus Circuitry

Network Card Data Bus Control Circuitry . .

Network Card Z80A~SIO . . . ¢« « o & o o o =«

Dual
Dual
Dual
Dual
Dual
Dual
Dual

Dual

Processor Card Al2-Al5 Circuitry . . .

Processor Card Address Circuitry . . .

Processor Card Read/Write Circuitry .

Processor Card Data Base Circuitry . .

Processor Card Data Bus Control Circuitry.

Processor Card Memory Request Circuitry

Processor Card Refresh Circuitry . . .

.

Processor Card Address Control Circuitry .

ix

Page
150
151
163
163
165
165
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
185
186
187
188

B g T P ——"

e e ek i iR

Table

EX

JIT

Iv

VI

VII

3 VIII

IX

XI

List of Tables

Protocol Characteristics
Input Card Fupetion. . ¢ o o o @« o o o &
Network Card Function . . « ¢ ¢ « ¢ o &
Software Function . . ¢ ¢ ¢ « ¢ o o o &

8 Bit Microprocessors Considered for the
Universal Network Interface Device . . .

Maximum Delay from Processor I/O Request
to Data Available from Input Card . . .

Maximum Delay from Processor Interrupt
Acknowledgement to Address Available
from Input Caxd« . ¢« & o & s @ =

Dual Processor Card Evaluation M1 T3/ M2
Processor Functional Segregation .

Input Processor Operating System
Functional Segregation . . . « . « . . .

Network Process Operating System
Functional Segregation . . .« . « <« « .« .

59

78

78

101

108

109

140

AFIT/GE/EE/78-41

Abstract

N

A preliminary design was developed for a special

microprocessor based interface called the universal net-
work interface device. The universal network interface
device accepts peripheral inputs, formats these inputs

into a message structure established by the link control
protocol, and transmits the messages over the communication
network. Conversely, it accepts messages from the network,

determines if the message is for a local subscriber and

transmits the message to the subscriber or back on the
network. The design of the universal network interface
device was modularized to allow the device to be configured
based upon the user local network requirements.g;

A digital system life cycle was used to serve as a
framework for the design project. Within the life cycle,
requirements definition, system design, hardware selection/
design and software design was completed. A technique
patterned after Structured Analysis was used to construct

a requirements definition model. The requirement model

was converted to a system design model by segregating hard-
ware and software functions. A 2ilog Z80A-MCB was selected
to perform the software functions and MSI circuits were

used to perform the hardware functions. Circuit design

of all the modular cards was developed. The software needed
for the dual processor board configuration was written

and assembled.

xi

SRS R s

PRELIMINARY DESIGN OF A
UNIVERSAL NETWORK INTERFACE DEVICE

I. Inctroduction

The purpose of this investigation was to designr and
develop a small special-purpose digital device which could
be used for interfacing general peripheral devices to a
communications network. The device was called a universal
network interface since the device must be flexible in
order to provide interfacing for a majority of peripherals
into a majority of contemporary networks. The need for a
universal network interface device was first proposed by
the 1842 Electronic Engineering Group (EEG) of the Air Force
Communication Service (AFCS) in an 1842 EEC/EEIC report,

TR 78-5, entitled An Engineering Assessment Towards Econo-

mic, Feasible and Responsive Base-Level Communications

Through the 1980's (Ref 1). The idea was expanded and

tasked to Rome Air Development Center (RADC) for incorpora-

tion into a postdoctoral study program. This investigation
represented the first phase of the study effort towards an
actual universal network interface device.

The following sections of this chapter provide back-

T ———

’ ground information for understanding the need for such a

P —

e SN iR e

R

B R

device, the objectives of this investigation, the general
design approach that was employed, and an overview of the

topics covered in this thesis.

Background

In the past, telecommunication requirements on a typi-
cal Air Force base were satisfied in a rather simple manner
by providing voice communication through telephone facili-
ties plus a few low-speed teletypewriter and data circuits
over the base cable system (Ref 1:2). However, with the
recent tendency toward use of digital processors to accom-
plish base-level functions, the base-level telecommunica-
tion facilities needed to be -reevaluated to insure they
could support the increased data communications needs
(Ref 1:2). This reevaluatiop was accomplished in the 1842
EEG/EEIC technical report TR 78-~5 mentioned previously.

One facet of the TR 78-5 technical report involved the
method of accomplishing the base-level message and data
switching and distribution functions. At the base level,
distribution of data and other traffic is a most important
consideration since it encompasses user terminals and the
communication paths connecting them into the local area
network. There are more user terminals than anything else
in the network and thus costs associated wizh them are
multiplied by a large factor. To satisfy to base-level

message and data switching and distribution functions, the

report postulated the need to connect any of the base

A e L A VRN e
: >

processors to any terminal on the base and also the need

to connect any base terminal to another terminal. To
accomplish this interconnection, the report first proposed
use of a star communication network with a centralized
digital switch. Each of the base's data devices would be
connected to the centralized switch through dedicated com-
munication lines. The centralized switch could then estab-
lish the necessary interconnectivity plus accomplish any
code, speed, and format conversion necessary between non-
compatible devices. The report noted this approach had dis-
advantages in that it was costly in terms of network flexi-
bility, switch implementation, and in the transmission
costs involved in connecting every terminal to a central
switch. An attempt was then made to develop alternative
schemes through the use of direct multiplexing (FDM or TDM)
or an ALOHA (Ref 2:362-387) technique for connecting the
devices to the centralized switch. Again, each of these
techniques, while reducing interconnection costs, injected
their own disadvantages into the central switch approach
(Ref 1:162-163).

The next approach the report considered was based
upon the concepts used in the Advanced Research Project
Agency (ARPA) network. In this network, each processor
or terminal is connected to the network by means of an
Interface Message Processor (IMP) or a Terminal Interface
Message Processor (TIP) respectively. The processors and

stand-alone terminals can operate in any format, code,

3

sk

TP

e e

e

A e B R AU SR N A s S i

protocol, or bit rate convenient to the subscribers. The
IMP or TIP has two interfaces--one to their subscribers

and one to the network. The network side is standard with
all others in the network; the subscriber's side is custom-
ized as required to convert the subscriber's traffic to and
from the network standard. The subscriber's side is
asynchronous (it accepts traffic from the subscriber on a
bit-by-bit basis at any rate, in any format, with any proto-
col). On the network side, all traffic is in the form of
fixed bit-size packets which are transmitted at high trans-
mission rate (Ref 1:164).

The last network concept the report considered was that
of the loop or ring network. In this concept, all proces-
sors and terminals are connected to a common communication
path which is configured into a closed ring. A terminal
desiring to transmit a message does so by transmitting the
message onto the ring. The message continues around the
ring and is repeated by each terminal until the addressee
recognizes its address, whereupon the message is removed
from the ring. Here again, there is no central switch;
however, an IMP/TIP concept must be used at each processor
and terminal to accomplish any necessary conversion (Ref 1:
164).

The configuration the report finally recommended for
the base-level data distribution network was a modification
to the ring concept called a multi-ring network. This net-

work consisted of a number of ring networks with a mode

e —————— e~ e N S T

providing interconnectivity between the rings. Each ring

was composed of a processor and terminals associated with a
given functional area. For example, a logistic terminal
was connected to the ring composed by a base processor
housing its data and programs and with other logistics
terminals. Figure 1-1, which was extracted from the tech-
nical report, illustrates the concepts of such a group of
interconnected rings on a typical base. This multi-ring
concept had many advantages for a base-level network. From
the Automated Data Processing (ADP) side, communication
control was simplified in that a communication front end

was no longer required for the processors. The processors

e

communicated to all terminals via a simple high~-speed multi- }
plex port. Since there was no central-control switch/pro-
cessors, the network costs were only incurred as the network
was expanded on an incremental basis (Ref 1:165). Trans- i
mission costs were minimized since subscribers on a given
ring utilize the same transmission cable.

The implementation of such a network was dependent upon
the availability of the different interface devices speci-
fied in Figure 1-1. In this case, five different interface
devices were necessary to realize the network selected.
These devices would accomplish most of the functions such {
as buffering, packeting and a rate change function normally
accomplished by the IMP or TIP in the ARPA network. Since

each of the interface devices accomplished a basic set of

functions, it seemed conceivable that one device could be

Niomap eseg buiy-niny Lt °

xumw

TVYNIWY3L
b
NOILYZI

.9 e “NVOHO

A S o,
e e e AvNIwg3al
b b "
z#) wowvzi

e e e “NVOHO0
(29 v

) b gucmpﬂw.»owu
(z4) NOILYZS

q “NVOHO
3D1A30

s 39V4HILNI NIGOLNY

CamC aanC —

30%v JH3ANI HOSS3D0Hd

8 3VIA30

(e8] oz
ALINNWWOD H3sN 3IVIUILNI TYNIWLE3L

(29)
A e R
(29

e
L (+9

Q G
G«
- O o O O an O S Vo

C -

L& J

(=9

‘ .
s e ®E

built which would satisfy all of the different interfacing
applications. Thus, the need for different interface
devices generated the concept of a universal n¢ :work inter-
face device which would accomplish all of the interfacing

functions in the proposed base~level network environment.

Objective of this Investigation

The thesis topic as proposed by RADC enumerated the
need for a small economical interface/switching device to
perform the functions normally accomplished by the IMP in
the ARPA network. The purpose of this investigation was to
develop a flexible microcomputer~based interfacing device
which would, as a minimum, accomplish the IMP functions.
However, the device design was not restricted to the pro-
posed base-level network environment. Instead, an attempt
was made to expand the applicability to any network environ-
ment. In this manner, the flexibility and universality of

the device would be extended.

Approach

The investigation involved four major tasks. The
first task was to define the functional requirements of the
universal network interface device. Next, these functional
requirement specifications were translated into a system
design (hardware/software). The third task was to design
the universal network interface device's hardware. The

last task was to develop the computer programs necessary

to verify the proper operation of tne universal network

interface device.

Design Procedurec

One way to view the process of system design and
development was suggested by the phases of the software
life cycle (Ref 3:5). These phases are corception, require-
ment definition, design, coding and checkout, testing,
integration and operation. The progression of phases
demonstrates a top-down design approach which is considered
by many software designers to be the most efficient develop-
ment cycle (Ref 4:12-24). The software life cycle is
usually applied to the development of software but can be
generalizad and applied to most design efforts. Because of
its top-down structure and its generality, this development
cycle was selected for use in the design of the universal
network interface device.

One of the phases involved in the chosen design
approach was the requirements definition phase. 1In this
phase, the conceptual ideas about a new system are trans-
lated into specific functional requirements. These func-
tional requirements are then verified by the ultimate user
of the system to insure they accomplish alli functions that
were envisioned for the system. This phase thus involves
the system's designer conveying to the user the designer's

ideas on what functions the system should perform. Because

this is such an important phase and because any form of

English expression involves some ambiguity, a more definite

language can be used to support this phase of the design
effort. In this investigation, the methodology and docu-
mentation chosen to define requirements were patterned after
a Structured Analysis (SA) activity model. This Structured
Analysis Design Technique (SADT) was developed by the
SofTech Corporation as a precise, graphic method for identi-
fying functions and showing their interrelationship in a
system. Structured Analysis conventions are described in
several publications produced by SofTech (Refs 5; 6) and

Appendix A gives a short review of the major conventions.

Overview of the Thesis

This investigation involved the complete documenta-
tion of requirements definition using SADT, the translation
of the requirement definition into a system design, and the
implementation in hardware and software of the system
design. Circuit designs for all hardware are provided in
Appendix B. Assembled versions of the operating system
are included in Appendix C. However, in certain instances,
the action of the operating system was dependent upon the
network link control protocol in use. Since this would be
network-dependent, a dummy network link control protocol
was used to allow the program to be assembled. Sample

interrvpt service routines have also been developed to

facilitate easier user development of actual routines.

The thesis is arranged into chapters which correlate
to the design life cycle. This chapter serves as an intro-
duction with the background portion of the introduction cor-
relating to the conceptual phase of the design process.
Chapter II develops the functional requirements of the
universal network interface device while Chapter III
develops the system design. Chapter IV discusses hardware
selection and circuit design while Chapter V details soft-
ware design. The thesis concludes with results and recom-

mendations in Chapter VI.

10

- SRR, S ASEENEEY

II. Requirements Definition

The second phase of the design process involved the
definition of the functional requirements for the universal 'E
network interface device. To accomplish this phase, the

Structured Analysis Design Technique (SADT) was used to

build a requirements definition model. SADT was selected
after a review of a previous work (Ref 7) which utilized
this technique. This previous work demonstrated the modu- 4

lar simplicity which results from the application of the

SADT.

This chapter is divided into two major sections. The
first section develops the specific functions which the
universal network interface device must perform. The latter

section translates these functional tasks into a SADT model. l

Universal Network Interface Device

What is a universal network interface device? A review
of Figure 1-1 suggested certain functions which must be
accomplished by such a device. Nodes #1 and #2 were envi-
sioned as performing basically as concentrators for the sub-
scriber terminals connected to the nodes. Martin (Ref 8:
314) listed the following functions for a hold-and-forward
concentrator:

Buffering messages from the low-speed terminal

subscriber lines for transmission in modified form on
the high-speed line (or lines) and vice versa.

11

r S N T RN el

wldaiesns

B e et

et e,

o ety e N R 1550

Allocation of storage and control of queues.

Receipt and transmission of messages on the low-
speed lines, using the line control procedure appropri-
ate for the terminal.

Receipt and transmission of messages on the higher-
speed network lines, using the line control procedure
appropriate for the computer.

Polling the low-speed lines if they are multi-
dropped or controlled by a loop configuration.

Converting the code if necessary from that used by
the terminal to that used on the line to the computer.

Conversion of start-stop transmission on the low-
speed line to synchronous transmission on the high-
speed line.

Error detection and retransmission.

There was, however, one basic difference between the nodes
and the concentrator described above. The nodes must be
concerned with the routing information in the message. If
this additional function was added to the above list, then
the list became a good functional breakdown for nodes #1
and #z.

Nodes #3, #4, and #5 in the worst case situation would
accomplish a concentrator function identical to those
described above. In addition, each must accomplish a very
specialized function. For nodes #3 and #5, this specialized
function involved interfacing a computer or telephone sys-
tem (with their own input/output (I/0) port requirements)
into the network. So, the nodes required either a flexible
I/0 port of their own which could be adapted to most unique
interfacing situations or the nodes could be configured
with a standard I/0 port and the external device required
to adapt its I/O ports to the nodes similar to what was
done in the ARPA network (Ref 9:4-1). Node #4 must inter-

face an external communication network into the local

12

communication network. To do this, it must have the capa-

bility to deal with the different link control protocols ;
; utilized on the different networks and also to resolve any

information compatibility problems between the two networks.

This compatibility involved such factors as information

message structure and network code used.

From the above, three basic ideas evolved about the

universal network interface device. First, the device
should function similar to a store-and-forward concentrator
with a message routing function. Secondly, the universal
interface device might require a specialized I/O port to
handle unique interfacing requirements; and lestly, it
should possess the capability to handle two network link
control protocols. Given these attributes, the universal
network interface would satisfy the different interfacing

applications of the network diagrammed in Figure 1l-1.

Structured Analysis Activity Model

The previous paragraphs described some general con-
cepts about the universal network interface device. The
purpose of the SA activity model was to translate these con-

cepts into requirements for the universal network inter-

face device. An index to the model is provided in Figure

2-1 and can be used as an overview to the functions the

system must perform.
A SA activity model consists of a series of diagrams

which present in progressively more detail the activities

ke Rl SE

xi

Node Title

A-0 Universal Network Interface Device

A0 Universal Network Interface

Al Process Local Information

All Receive Local to-be-Transmitted Information
All3 Store Information

Al2 Process to-be-Transmitted Information

Al3 Transmit Informatcion to Network

A2 Process Network Information

A2l Receive Information from Network

A22 Process Information from Network

A23 Retransmit Network Information on Network
A24 Retransmit Network Information to Local Receiver
A243 Process Control Information

A244 Transmit Information to Local Subscriber

Fig. 2-1. SA Activity Model Index

necessary to perform some function. The SADT activity
model begins with node A-0. This node serves as a cover
sheet for the model; the node is simply a box showing inputs,
outputs, controls, and mechanisms for the function which the
model is to describe. The text describing node A-0 begins
on page 15. From that point on in this chapter, the text
for each node is on a separate page which faces the figure
showing the node.

In addition to an activity model, the SADT requires a
data model be developed. This model describes how the
data is changed after being acted upon by a given function.
During the design of the universal network interface device,
a data model was prepared. Because of the limited data
being acted upon, the data model did not reveal further
insight into the requirements of the universal network

interface device. Thus, it is not included in this paper.

14

SIS

e N i A i AR A i

T E————

NETWORK LOCAL
PROTOCOL PROTOCOL
INFO TO
LOCAL INFO NETWORK
UNIVERSAL 3
NETWORK
INTERFACE INFO TO LOCAL
NETWORK INFO} SUBSCRIBER N

Fig. 2-2. Universal Network Interface Device

Universal Network Interface (A-0). Node A-0, (Figure

2-2), is the cover node for the SA model for the universal
network interface. The purpose of the model is to define
the functional requirements for the universal network inter-
face device. The device receives data information bits
either from local subscribers (i.e., peripherals) or from
the network of which the interface is a component part.
These information data bits are then processed by the net-
work interface to determine the network addressee for the
information data bits and the response required to satisfy
the network's link control protocol or the peripheral's
link control protocol. The information data bits are then
transmitted either to a local subscriber or back onto the

network along with any protocol-demanded response.

Vo PSRRI o,

y -

L T D i ks SR

B R s o i

NETWORK LCCAL

————————— a |
PROTOCOL 'PROTOCOL |
I
INFO TC NETWORK !
@ —> |
) LOCAL INFO PROCESS
| > LOCAL ;
INFORMATION
1 |
|
|
;
NETWORK LOCAL
PROTOCOL PROTOCOL
\ \
————. |
PROCESS =
NETWORK INFOy NETMORE i
INFORMATION ‘
2 & B !
INFO TO LOCAL SUBSCRIBER 1

AO

Fig. 2~3. Universal Network Interface

Universal Network Interface (AO). Node A0 in Figure

2-3 segregates the operation of the network interface into
two functional processes: the local information process (1)
and the network information process (2). Again, in both
cases, data bits classified as local information or net-
work information are acted upon by their respective pro-
cesses and are then transmitted to the network and/or local
subscriber. In the local information process, the local
information is transmitted to the network and a response
dictated by the peripheral link control protocol sent back
to the peripheral. 1In the network information process, the
destination of the information is determined. The informa-
tion is then sent to a local subscriber or back to the net-
work as a result of its destination address. Network link
control protocol and peripheral link control protocol must

also be transmitted.

16

j
|
| |
|
H
; 2
, 2
RECEIVE |
LOCAL
—— LOCAL
INFO TO-BE-TX L‘
INFO __,
(o)
Q P
8 (o]
g &
& &
o Q v
& :
] a
| - |
=
3] Q
4 »-'l
PROCESS
| To-BE-TX [
INFO
1
2
i
TRANSMIT |
| mroro [0 Ty
NETWORK NETWORK
| 3 { .
3 i
&
t Al
Fig. 2-4. Process Local Information
|
|
|
1,»~;E¢M‘ B e T i - . s %

Process Local Information (Al). Process Local Informa-

tion, Node Al, is presented in Figure 2-4. The function

e vy

described in the diagram is the conversion of the local

f information bit stream into the format specified for the
network message bit stream. To insure this conversion is
transparent to the local subscriber, the local information
is temporarily stored (1) within the network interface.

The local information is then acted upon by the to-be-
transmitted information process which formats the local
information according to the network message format and | 4

the network link coiitrol message format. The local

information is then transmitted on the network (3). ' i
The function, receiver local to-be-transmitted informa- |
tion, also has a secondary usage of providing local storage
for consolidation of character bits into information mes-
sages. In certain cases, the peripherals connected to the

interface will not have enough local peripheral storage

to develop a complete information message prior to sending
the message to the network interface. The network inter-
face through the receive local to-be-transmitted function

should allocate storage space to the local peripheral to

accomplish this consolidation.

e M (B M ey e

194 4

mma<. NOT

LXIN

mmﬂtv aav |

LXIN

14
gassdaoodd
g4 Ol
AQVay
AJIINIAI

UoT3PWIOIUI Po33IWSueIl-og-0L [e00] 9AT909y ‘G-z “b1d
9
HOVSSTW
Joand e
OSH aNd 22 INDODTY
)
als
o
Q
(@]
=
z
OdNI
40 aNE
OdNI anx FZINDODTE | .
HIONAT " ® amurnom 315
OdNI AT 13S 318
HYOLS AVHO MMN 8l&
OlL LYFANOD]
ssaIaAay
. * T
=1
‘ 3% sonuvs il
o azINoodmy | 1Teo0T
o) &
Wl O
E

Receive Local to-be~Transmitted Information (All).

The function of receiving local to-be-transmitted informa-
tion is presented in Figure 2-5. The local peripheral com-
munication line is monitored to ascertain the beginning of
information. Once the beginning of information is detected,
the characters within the bit stream must be converted to
the standard network character set and then stored within
the interface. The conversion is necessary to insure
address information within the information bit stream can
be interpreted by the other network devices. In addition,
this conversion simplifies the interchange of information
between two noncharacter compatible peripherals since only
a local conversion between the network character set and
peripheral character set is required. Incorporated into
the store-information function is the need to break up

the information bit stream into a number of subsets whose
bit count is compatible with the storage medium size.
Storage and conversion continues upon the local bit stream
interrupted only by end-of-information characters. These
end-of -information characters are established by the
peripheral protocol to signal the interface to temporarily
stop storing the information bits being received from the
peripheral. This stopping and starting of information
storage is finally terminated by an end-of-message charac-
ter. The end-of-message should be a special character
established by the peripheral protocol which signifies the

message can now ke transmitted on the network. Once the

18

storage of the message has been completed, the memory
storage address and message length is provided to the
identify-as-ready~to-be-processed (4) function. This func-
tion manages a list of the message memory addresses and
message length of all local messages requiring processing.
Messages are added to the list by the store-information

function and removed from the list by the identify-as-ready-

to-be-transmitted function.

(yTT¥) ssTyaav

UOTJRWIOJUT SI03S *9-7 ° mﬂ.m
€TV
v (STTY)
04NI TYO0T
~ QgI¥IANOD
ayom
FIOLS
¥IINNOD
HIONIT
N dOVIOLS
w |w H LIST
H 1Z 2
> v H 3
D =
H |- H
Qa™oLS 2 = NOIIVYOO0T
ayom 213 # INYLS OL
<& HOVE ¥0d o l- | B WS INVHOIW
(yTIV) HIONTT YILNNOD _ > o gOVIO0LS
INIWITYONI ol dZITYILINI
= N
g
Lo AOVUOLS J0
. I¥VIS ¥0d
= NOIILV¥DOTI
i ANIWIALAA

K9T1IV)
OSKH
and

Store Information (All3). Figure 2~6 shows the func-

tions necessary to store information. The determine-
location~for-start~-of~storage (2) function determines what
memory is available. A memory block is reserved for this
use and the start address of the memory block is used to
initialize the storage mechanism. The store-word function
accomplishes the actual storage of the information word.
This storage will not take place unless a start of informa-
tion has been detected and the storage mechanism has been
properly initialized. As the local information data bits
are stored, an increment counter response is also accom-
plished to accumulate the total storage length. This
storage and increment process continues interrupted only
by end-of-information characters until an end-of-message
character is detected. At this time, the storage address
and storage length are provided to the identify-as-ready-to-
be-processed function. The store-information function is
then reinitialized in anticipation of the next start

storage character.

20

e S E oL i s s o

UOT3PWIOJUI Ppo3ITWSURIL~Dg-0) SS9001d °*L-Z °*bTd

(AN §

P
NETY) NOT X&
X1 g

OL AQvay¥
SVY XJ4ILNJAAI

e
NETY) aav XI

=
"~ (ZTV¥) XI 39 OL IXaN

_ (11¥) aassaooyd| O4INI LYWEOd

@ OL AQVAM IXAN

o

o

0

M

[2]
v |9
x 5]
g O
s
) o
nnn o)

z
M (11¥)
2 T000108d | “NOT IXEN
MHOMLAN
0L ONIQ¥0DDY
T
T000L0¥d OdNI TYD0T " -
‘ 40 NOILETIA e
NOMLAN ¥0d MOTHO

\

YVYHO dId713d

D e E———

T e —————————

Lk I

Process to-be-Transmitted Information (Al2). The func-

tions of the process to-be-transmitted information are dia-
grammed in Figure 2-7. The local information data words
are checked for special characters signifying deletion and
correction of previously provided data bits. These changes
are made by the function and the corrected information sent
to the format-message-according~to-network-protocol (2)
function. This function then formats the information
according to the network message structure in use, adds any
network link control protocol-specified data bits to the
local information and then identifies this total information
block as a ready-to-be-transmitted network message. The
memory address and memory length is then stored by the
identify-as~-ready-to~be-transmitted (3) function. This
function provides a central storage point for all messages
ready to be transmitted. Messages are added to the storage
point by the format-information-according-to-network-

protocol function and are removed from the list by the

transmit~-information-to-network function.

e i i

.

}IOM3IBN O3 UOTIPWIOIUT 3JTWSURIL °g-z °BTd
t1v
(zT¥) XI @g | INms sy
< 0dNI
OL IXAN | 4 TINTAT

[

e
™~

MYOMLIN OL OJNI

YIWIL
OSKH
LIS

|

O4dNI
LINSNYYL

HLATANOD XL

XL OL AQV¥ay

- (ZT¥)
NOT X
¥ALITWSNYYL
AZTTYILINI
I
AaLOFTIS (zT¥)
ONILNOY
ONILOOY | oNTiaLaa aav Xi

1

TOO0LO¥d TYO0T

Transmit Information to Network (Al3). Node Al3,

shown in Figure 2-8, accomplishes the actual transmission

of a network message. The transmit-information-to-network
function first provides the local memory storage address of
the next ready-to-be-transmitted message. The destination
address of the message is then used by the determine-routing
function (1) to ascertain which network link the message
must be transmitted over. The transmission device for that
link is then initialized with the memory address of the mes-
sage and the message length and the properly formatted mes-
sage transmitted. Unspecified but possibly necessary is

the need to calculate and then transmit at the end of the
message an error cdntrol word as specified by the link con-
trol protocol in usé. Once the message has been completely
transmitted, it is identified as such by the identify-
information-as-sent (4) function and is saved to await any
acknowledgement process. The function then requests the
next message address and message length from the identify-
as-ready-to-be-transmitted function. In addition, a timer
is set to insure an acknowledgement is received in a speci-
fied time period. If not, the message must be retransmitted

on the network.

22

UOTJRUWIOFUT XIOMION SS900ad ‘6~ °b1a
A
¥
_ ¥EgINDSHNS YAATIOTE
STvo0T o1 0anr| T¥O0T OL 1=
O4ANI MYOMLEAN
LINSNVILIY
/
700010¥d TY¥O0T 201 | s1iHL OMIAN
no¥d
NOTIVWIOJNI
] ssaooud
1
€ N
mmmwmwz 0JNI
YHOMIAN 1<
< SMOMIAN NO f— NOIIVWMOJANI YHOMLAN
OL O4NI | OJNI MYOMLEN IATEO
LINSNV LTI
N\
\ e it

0071 SIHL 4ON

TOD0LO¥d MYOMLEN

Process Network Information (A2). Process Network

————— e

Information, Node A2, is presented in Figure 2-9. This

node is the highest level in the second functional processes
as defined by node A0. The functions described in the dia-
gram include the reception of a network message and the
resultant retransmission of the network message either to a
local subscriber or back onto the network. The network
information bit stream is first detected and stored by the
receive~information-from-network (1) function. The received
information bit stream is then processed by the process-
information-from-network (2) function to ascertain the
addressee of the .message and whether the addressee corres- |
ponds to a local subscriber. The message is then sent to |
the retransmit network information on network (3) or retrans-

mit network information to local receiver (4) depending upon

the result of the addressee check.

JIOMION WOIJ UOTIRWIOIUT SATI09¥ *01-C

l@‘.ﬂh

Jovds
IDVHOLS
JLYO0T
-1vdada

]

d3dd Jo¥¥d ION

(Zz¥) NO1T

Amlllmwimwz,

e (zzZ¥) aav

Vi LS MMN
2 (z2v)

SEgud gouud

S

J394
Jyoydd
dTI
ANIN
~YdLIa

NOT

aav

OJ4NI
JJ0LS

JFOVIAOLS MMN QNI

OJdNI
TITIVIVd

OL OJdNI
TYIYIS IONVYHO

i

z
OANI MMN
40 aNd
AZ INDODTY
10507093 THOMLAN
1
ONI MMN OdNT

d0 IMVIS
AZINDODTY | XHOMLAN

dOWIOLS MMN IYVLS

B

TOO0LOY¥d XYOMLIN

> VR T SPE PRI e, [T 0 | N ey ®

ooyt AP A

v =t

e e | i . i

e e e

Receive Information from Network (A2l1). The function

of receive information from network is presented in Figure
2-10. Any valid network information bit stream is detected
by the recognize-start-of-information (1) function. This
recognition process is controlled by the link control
protocol. This protocol would stipulate the characters
which would delimit the start and end of the message. Upon
recognition of this special character, the change-serial-
information-to-parallel-information (3) function accom=
plishes serial-to-parallel conversion to facilitate more
efficient network interface storage of the network bit
stream. Storage and conversion of the bit streams continues
until an end of message is detected. This end of message
would be a special character dictated by the network's link
control protocol. This special character is detected by
the recognize-end-of-network-information (2) function which
in turn deactivates the conversion and storage functions.
The store-information (4) function is identical in opera-
tion to the previous store-information function (All3) and
will not be diagrammed at a lower level. The only differ-
ence between the two would be the information provided by
the store function. In the latter case, a network storage
address and network storage length are the outputs of

the store function. Once the message has been completely
received and stored, the message error word is checked by
the determine~if-error-free (5) function to determine if

the message was received correctly. If so, the network

24

sl

- e AP bt 3 A Sl sy Rt A A SR A AR 0 S s s .

storage address and length is sent to node A22 for further
network interface processing. If not, the deallocate-
storage-space (6) function is activated and the message

deleted from the network's interface memory.

25

TR ———— T g ¢ 3. e =

VNS W Soes

e A

JIOM3ON WOIJ UOTIeWIOFUI sSs9d0ad °“TTI-C *b1a
Y
€
(€2Y)
<3557 STHT IO e
< TOYSSHTNW
(EZY) NOT MOV IOAFTTMONN OV
< JLYIIANTD ,
(€2¥) dav dov FT

v/\
TOO0LO¥d

AIOMLAN

<

ZY¥) NOST MMN LX3N

“mw

ZV¥) dav YMN LX3IN

(7Z¥) O0T SIHL

wmwﬂv NDT MMN IXIN

J€

Z¢¥) adv MMN LX4dN

.~

(€

¢¥) D01 SIHIL ION|

NOILYO01

SIHL ¥0d
dOVSSHEW JdI
ANTWI I LI

NO9T YMMN IX3IN

OJANI MMN
agssdaoodd
dd OL AQVdd

aav MMN IXEN

(ezv)

MYOMLIN dISSHD

SY AJILNEAI

(TZ¥) NO9T IS MMN

<

_n \
odd

g9 OL AQVId IXAN

(Tz¥) aav¥ &S MMN

(Tz¥) TIJ Jodyd

e — = .

i e e e e

B WA

S

Process Information From Network (A22). The functions

of the process-information-from-network function are dia-
grammed in Figure 2-11. The identify-as-ready-to-be-
processed-network-information (1) function acts as a
centralized storage point for all correctly received net-
work messages. Messages are added tc the storage area if
they are received error-free. Messages are deleted from
the storage point by the retransmit-network-information-
on-network function. Upon deletion, the memory address of
a network message and its storage length are provided to
the determine-if-message-for-this-location (2) function.
This function determines if the message corresponds to the
network address of any of the local subscribers. If so,
the address and length is provided to node A24. If not,
the same information is provided to node A23.

In addition, an acknowledgement message is generated
to signify the correct reception of the message. The for-
mat for this acknowledgement would be dictated by the link

control protocol being used.

26

}IOM3ION UO UOTIBWIOIUI HIOM3ISN 3JTusuexidy “ZIl-z *b1d
€2v
ZZv) MIOMIAN
QALLINSNYYL
<28 0oL zowmmmwwwwH &
5 <]
Xavad IX3AN| :7rrnaar 2
Z o]
1 =
TR <
. Z |
QILITINOD XL S |m
o
OANI MHOMIAN g |
B MHOMIIN OL OdNI LIWSNVEL m Tm T ST
[(7]
€ < (zZ¥)
JILLIWSNYYL QILLIW aavy Mov
FZTTYILINI ~-SNVIL
QZ/N UZHBDON Nm O.H. ANN<~ ZO.H
XL OL AQVEY¥| gyrpyaraq AQVAY e it
,Iwﬂazmaa
YAWIL —
OSH {C2¥) dav,
pis MMN LX3EN
(22ZV)

dOVSSEW LXIN

O0T SIHIL JION

Retransmit Network Information on Network (A23). Node

A23, which is shown in Figure 2-12, accomplishes the actual
transmission of a network message. The identify-as-ready-
to-be-transmitted (1) function acts as a central storage
point for error-free network-received messages which must
be retransmitted on the network. The address and length
of those messages are stored under control of the not-~for-
this~location (A22) function. An address and length of a
message is deleted from this central storage point by the
transmit-information (4) function. Once the network
address TX and the network length TX are sent by the
identify-as-ready-to-be-transmitted function to the
determine-routing (3) function, the operation on the
address and length data is identical to that accomplished

in node Al3.

27

I9ATO9D9Y TEOOT O3 UOTIBWIOFUI HIOMISN ITWsSueIIdY “€1-7 B4

(74 -
< ¥FgIYOS4ans | ¥ z
T¥O0T OL OJNI HIONIT (zz¥) NO1
dIATIOTY NOIIVYWICINI <@ YMN IXEN
TVO0T OL SSauaav 7020010¥d
NOILVWHOJNI MYOMLAN
LIWNSNYYL TAOWTE
7000104 d
XL NIDJId MHOMIAN
€ T
e (z2¥) NOILVWMOJNI : sSTYaAay AOVSSEAW
“WHOMIAN AFSSIO0¥d TOYLNOD MYOMLAN d0 FdAL 1n. Y aav
g9 OL AQvay IX3AN SS3D00¥d AJdIINIAT ZZVY) aav MMN IX3IN
TOYINOD
MYOMLAN
T7000L0¥d Aﬂ
MHOMLAN (zz¥) D01 SIHI ¥Od

Retransmit Information to Local Receiver (A24). ,
Figure 2-13 shows the function retransmit information to [
local receiver. The identify-type-of-message (1) function

receives the storage address of an error-free local mes-

sage. It ascertains the type of message received. This

type of classification then determines if the message

address and length is sent to the process-control-information

function or to the remove-network-protocol (2) function or

both. 1In the control function, the control portion of the

message is interrupted by the network interface and appro-
priate responses accomplished. The number and types of
responses required would be dependent upon the link con-
trol protncol in use. In the remove-network-protocol-
information (2) functions, the different bits added to the
information stream to provide successful transmissions are
3 removed and the address and length provided to the transmit-
information-to-local-receiver (4) functicn. This function
transmits the information message to the local subscriber.
Upon completion of both the process-control-information

function and the local transmission function, a new message

i is requested from the identify-as-ready-to-be~processed-

network-information function.

28

AR 5705

UOT3PWIOFUT TOIJUOD Ssa¥doad ‘yI-z °BTd

13 24 4
9
dOVdS TFOVIOLS leev) NOT
— NOILVWMOANI ST
TOYINOD ¥IHIO
JI¥O0TIVIA
)
AaILATANOD D00dd | TOEINOD Z
: NOILYWIOJANT
7104 INOD
(Z2ZY) MYOMIIN mUMMW%%%M%Bm YAIHLO
aassdoodd Id
< — TMONMOY SsaO0Nd
O AQVIY IXHN NOILVWHOJNI
JI¥O0TTYEA |
MOV O4NI ION
(PZ¥) TOYINOD MUOMLAN MOV OJ4NI ATINO LR
INAWIOAT (v2¥)
S NO9T I9vd0LS | € -TMONYOY SSTVAAY
Jovds OJANI T¥DO0T % NOILVYWIOJNI THOMLAN
TOVYOLS MOV ONIZd dI ENTWYELIEQ
AOVSSAW NOILYWIQJNI
aay_FoVd0LS MOV OJNI
R o
JIVO0TIVIA 0dNI TeooT] TYHM ANIWHALAA
(p2V)
_ TOYINOD MYOMILAN
T0J00L0¥d MNYOMLAN

e ——

——— et a———_ e e —

Process Control Information (A243). Figure 2-14

further breaks down the process control information function.
The message address is used by the determine-if-information-
acknowledgement function (1) and the network link control
protocol message structure to determine if the message con-
tained a message acknowledgement. If so, the address is
sent to the determine-what-information-being-acknowledged
(3) function. Here, the particular message being acknowl-
edged is identified along with its storage address and
storage length. This latter information is used by the
deallocate-message-storage-space (5) function to return for
use by other messages the previous message's storage space.
If the received network message contained only an acknowl-
edgement, the message address 1is provided to the deallocate-
information-acknowledgement-storage-space (4) function which
deallocates the message acknowledgement storage space. If
the message did not contain an information acknowledgement,
the message address is provided the process-other-control-
information (2) function. This function determines the con-
trol information being sent and generates the appropriate

interface response. 1If the message contained only control

information, it is sent to the deallocate-other-control-

information-storage-space (6) function which deallocates

i
b |
1
{

e —

the storage space.

29

ISATS09Y TeOOT O3 UOT3PWIOJUI JTWSURIAL

‘61~z °*bra

1A XA

(2Z¥) MIOMJIAN | ¥

. SSE00¥d Ol AAVdd IXAN

ygdaIryosdns
P TYO0T

dO¥dS dOVYOLS

dOVSSHEW
JLYO0TIVEA

|

ALATdHWOD X&L

N 0L O4NI

S
SWaTg0odd
ALITIA
-IIVdWOD -
ANY
ONIATOSTY
NOILVWIOJINI

JILLIWSNYIL
HZITVILINI

LINSNYIL

i

AsNd LON

ASnd
TYNIWIEL
TYO0T 4AI
ANIWIILIA

H}5NIT 2Q¥Ed

SSEYAAY AdVad

TYO0T LIWNSNWII OL AQVIY IXIN

TYO0T
LINSNYIL
0oL AQVaEd
SY AJILNIAI HLONIT
SsIYaav
XL NIOEH

Transmit Information to Local Receiver (A244). Node

A244, Transmit Information to Local Receiver, which is
shown in Figure 2-15, is the last node of the universal
network interface. The identify-as-ready-to-~transmit-
local (1) function acts as a central storage point for all
messages to be transmitted to local subscribers. It accepts
message address and length information and provides a
ready address and reacdy length to the determine-if-local-
terminal-busy (2) function. This function determines if
the local subscriber terminal is busy. If so, the ready
address and length are returned to the central pool. If
not, the initialize~transmitter (3) function is activated.
This function sets up the transmitter for local message
transmission. The message is transmitted by the transmit-
information-resolving-any-compatibility-problems (5) func-
tion. This latter function is tasked to resolve any com-
patibility problems between the transmitted message peri-
pheral and the received message peripheral. After the
message has been transmitted to the local terminal, the
message storage space is deallocated by the reallocate-

message-storage-space (4) function.

L A o i s S A M2 o M

-

“"““"“"*»-.mw«..ru,' e AR i ?

Requirements Definition Summary

This concluded the requirements definition phase for
the universal network interface device. This phase began
with a concept of operation (Figure 1-1) for such a device.
This concept was translated into generalized tasks the
device must perform to satisfy the operational concept.
Structure Analysis Design Techniques were then used to
develop from the general tasks detailed functions for the
device. The next step was to translate the individual

functions into a design that would accomplish those functions.

31

i it et ML i o Sl i

o "

Al N s

III. System Design

The next phase of the design process involved the sys-
tem design. In this phase, the functions identified in
the requirements definition phase were allocated to hard-
ware or software. However, before this allocation was
accomplished, there were design uncertainties which had
to be resolved. These design uncertainties are discussed
in the first part of the chapter. Given these uncertain-

ties, a method was devised to minimize the impact of the

uncertainties on.the design. The method used and the appli-
cation of the method to certain requirement definition func-
tions are then discussed. The last sections of the chapter
discuss the hardware/software allocation and the processor

requirements.

Design Dilemma

At this point in the design, the universality of the
network interface device must be considered. 1In the normal
design process utilizing SADT, the requirements phase would
have consisted of specifying exactly what functions a sys-
tem must perform and what timing restrictions it must meet.
At this level of design, the specifications that are of
interest are system inputs, the processing of the inputs
and the system outputs. These would have, in turn, identi-

fied whether a given function's timing requirements or speed

32 i

of operation could have been satisfied in hardware, soft-

ware or a hardware/software combination. It would then ’
% be up to the system designer to make the appropriate choice

‘ for the given function and then proceed with the design

of the function. This, however, was not the case for the

universal network interface's SA diagrams. Although the

SA diagrams provided a general idea of the functions which

the universal network interface must accomplish, they lacked

the detailed specifications needed to proceed with the

design. In a normal design, these specifications would

be provided by the ultimate users of the completed device.]
In the universal network interface device case, the only

specifications provided were the facts that the device

should be universal and the general concepts of one possible
network application in which the universal network inter- ﬁ
face device could be used. There was not enough information
to proceed with the design. What was needed was system
input/output information about:

1. Number of peripheral connected to the universal
network interface device.

2. The speed of operation, the type of operation and

the frequency of operation for the peripherals.

3. The number of network lines connected to the uni-
versal network inferface devices.

!
i 4. The speed of operation, the type of operation and
|
|

the link control protocol in use on the network lines.

However, at this point, a conflict arose. As the specifica-
i tions for the universal network interface device became

more specific, the universality of the device decreased

since the device became tailored to those specifications.

If the requirements of the device were not defined more
specifically, the design process could not continue. What
was needed to resolve this, was some bounds on the require-
ments of the system I/O functions. This bounding would
allow the device some universality since it would operate
over a range and the bounds would provide the needed informa-

tion to proceed with the design.

System Bounds

The need for system bounds was based upon the need
for system input/output information and I/O requirements.
This needed information was generally specified on the SA
diagrams as the local information input/output and the net-
work information input/output. The network information
had been further classified by node A21 as being a serial
bit stream. This represented a logical bound if the cost
of the additional communication channels necessary for
reception of parallel data and the problems involved in
;1 synchronization of parallel transmissions are considered.
It also seemed reasonable to assume that the network
information was of a synchronous type. This would allow

L: more information to be transferred over a fixed capacity

communication channel since the start/stop bits associated

34

b eSS

!
|
}
1
!

with asynchronous communications would be eliminated. The

other important characteristic associated with network
information I/0 was the transmission bit rate. This would
be dependent upon the modem and the communication channel
being used. The network shown in Figure 1-1 is to be imple-~
mented using the base cable system as the communication
channel with a projected transmission rate of 1.5 mb/s

(Ref 1:165). Other limited distance (ten miles) private
wire lease lines have bit rates of approximation 1 mb/s

(Ref 10:25). Most of the commercial networks are imple-
mented over a switched (dial-up) or leased (dedicated) com-
munication channel using the facilities of the common cari-
riers. These carriers normally can provide voice channels
capable of operating at up to 9.6 kb/s, half groups or full
groups at 19.2 kb/s and 50 kb/s respectively, or even super
groups at 230.4 kb/s (Ref 10:25). The transmission rates
which could possibly be encountered in a network application
range from approximately 1.2 kb/s to 1.5 mb/s with the 1.5
mb/s establishing the upper bound. The design bounds for
the network information then became a synchronous, serial

data stream of 1.5 mb/s.

Local Signal Characteristics. The local information

characteristics were not further bounded by the SA diagrams.
To develop these signal characteristics, the peripherals
which were the source/recipient of the signals were

examined. Datapro (Ref 11:222-239) categorized the data

35

—

communication peripherals into six major categories:

(1) CRT terminals, (2) teleprinter terminals, (3) batch
terminals, (4) cluster terminals, (5) intelligent terminals,
and (6) special terminals, i.e., optical character readers.
A review using Datapro of the different characteristics

of these terminals revealed that approximately 90 percent
incorporated an RS-232C data terminal interface into the
terminal.

The RS-232C specification (Ref 12) establishes the
interface requirements between data terminal equipment (DTE)
and data communication equipment (DCE). This standard
encompasses data -interchange and control circuits, electri-
cal voltage levels, impedance, transmission speed, slew:
rate and distance between the DTE and the DCE. As such,
the RS-232C provides a good bound on the signal character-
istics of the local information.

There was, however, one technical drawback to using
the RS-232C interface in the universal network interface
device. Any device utilized within a military system must
meet the applicable military standards which, in this case,
were MIL-STD-188-114 (Ref 14). These standards required
a slightly modified RS-422 or RS-423 interface be employed
between DTE and DCE. In a very strict sense, these
standards should be utilized for the universal network
interface device. However, given the fact that the major-

ity of terminals utilized an RS-232C interface, it seemed

more efficient to utilize this specification for the

interface. As the RS-422/RS-423 specifications begin to
be employed in the design of new terminals, the universal
network interface can be modified to incorporate these
standards or the RS-XYZ interface (Ref 15) can be used to
allow an RS-422/RS-423 terminal to be interfaced into the
universal network interface device.

One additional aspect must be considered for the local
information bounds. Many of the terminals in use today
in the military environment employ a current loop configura-
tion for transmission/reception of information. A 20 ma
current loop interface would be a useful capability to
include in the universal network inferface device. This
would allow easy interfacing of those terminals which employ
a current loop arrangement. For this reason a 20 ma current

capability was established as a secondary bound.

I/0 Port Requirements. The previous paragraphs estab-

lished certain bounds on the I/0O signals for the universal
network interface device. Once the characteristics of these
signals had been developed, the next aspect which was con-
sidered was the I/O requirements. The I/O requirements
should specify the number of I/O ports the universal net-
work interface device must accommodate. The SA diagram
reflected a single local information input/output and a
single network information input/output. While these two
inputs/outputs were all that were required to develop the

functional aspects of the device, these two inputs/outputs

37

would in most cases not meet the interfacing requirements
of a given network. The two I/0 requirements must be
expanded and bounded to provide some universality and to

also provide design requirements.

Network I/O Port Requirements. The first area con-

sidered was the network I/0 requirements. The different
topologies of a data network can be classified into three
types--centralized, decentralized and distributed (Ref 16).
The centralized network, (Figure 3-1), essentially a star
configuration (links radiating from a single node), is the
simplest arrangement. If the universal network device was
employed at the end of a dedicated link to accomplish the
concentrator functions, then the network I/O port require-
ment would be one full duplex port. A decentralized net-
work, (Figure 3-2), is an expanded centralized network
where the switching function, unlike the star arrangement,
may occur at more than one location. In this arrangement,
the universal network interface device would be employed
between the switching function and the peripherals, thus
again requiring one network I/O port. The distributed net-
work consists of a set of mesh subnetworks in which each
node of the subnetwork is connected to at least two other
nodes. The individual rings in Figure 1l-1 represent the
simplest case. If one universal network interface device
was employed as a concentrator for a subnet, the I/0 port

requirements would be dependent upon the number of subnets

38

-- PERIPHERAL

-- CONCENTRATOR/MULTIPLEXER

-— SWITCHING OR COMPUTER FUNCTION

@O -

Fig. 3-1. Centralized Network

Fig. 3-2. Decentralized Network

and the interconnection desired between subnets. Figure |
3-3 shows a simple distributed network where three I/0 ports
are required. One could continue to expand this arrange-

4 ment generating more and more subnets and thus more I/0

port requirements. Thus, there was no upper bound on the
network I/Q port requirement. The obvious thing to do at
this point was to pick an arbitrary number and utilize this
number in the design. However, the previous network evalu-
ation suggested an alternative approach. From the previous
information, the number of I/O ports varied; in one case

one I/0 port was required, in another case three ports were
required and in a third situation an unknown number were

:, required. This suggested the I/O port components of the

universal network interface device be isolated from the

other components. If the network I/O port was constructed

on an individual card segregated from the other components

of the device, the number of I/O ports could be expanded |

2 to meet the network topology requirements through incorpora-
tion of additional network I/O port cards. Thus, an upper
bound did not have to be established from a physical point |
of view. The upper bound for the design could be estab-

lished at a minimum figure of one network I/O full duplex

port.

Local I/0 Port Requirements. Now that the network

I/0 port requirements had been established, the local I/0

r ports were considered. Schwartz (Ref 17:136) listed two

40

T SR

=

—e

Fig. 3-3. Distributed Network

basic methods for entry of information into a concentrator-
type device. Entry may be carried out by a scanning process
(either sequentially or with priority) in which the various
ports are continually scanned following a predetermined
strategy to see if information is waiting to enter the sys-
tem, or an interrupt procedure may be used in which incoming
information notifies the system that it desires entry. In
both of these cases, the local I/C port requirements become
a function of the total amcunt of time dedicated to the
entry function and the amount of time required to input/
output the basic unit of information. For the polling
sequence case, the average input/output time was shown to

be (Ref 17:276) a func..on of the walk time (the time

41

Lo =

S ——

o

required to scan a port), the number of ports to be polled
and the effective traffic intensity. What was important |
about this was the fact that each of the ports have an
associated polling overhead time which increased the total
amount of time needed to input/output the basic unit of
information. Thus for a fixed amount of time, the polling
technique can service a lesser number of ports than the
interrupt technique. Incorporated into this assertion was
the assumption that the interrupt overhead time was less
than the polling time. The upper bound for the 1/0 port
regquirements was thus established by the interrupt entry
technique.

At this point, the number of I/0 ports could be calcu-
lated if the total amount of entry time and the time
required to service an interrupt for a given port were known.
However, a situation was encountered which was similar to
what occurred in the network I/0 case. The upper bound
could not be established since the service time and entry
time necessary to calculate the upper bound had not been
determined.

A complicating factor which affected this calculation
was that the number of ports the universal network inter-
face device can accommodate was a function of the character-~
istics of the terminals connected to the ports. The number
of I/0 ports established a situation which could be viewed
as a classic single server queue (Ref 8:421). At any given

point in time, a number of ports would be requesting

PRI o

LomEl damie il gl i e

universal network interface service. All these requests
formed the gueue to the universal network interface device
which acted on these requests one at a time. Thus, associ~-
ated with any port's request for service was a queueing
delay. Suppose one of the terminals was an unbuffered type
and this terminal generated a request for service to input
a character byte of information. If the queueing delay
was long enough, the character byte of information would
be changed prior to the previous character bit service
request reaching the server. This latter situation would
be unacceptable and the universal network interface device
should not be employed in such a situation.

Thus, even though at a certain stage in the design
process, an upper bound may be calculated on the number
of local I/O ports, there is no assurance given the gqueue-
ing delays and the service requirements of the individual
terminals that service could be provided to a percentage
of those terminals. This suggested an approach identical
to the network I/0 port requirements. The local I/O port
functions should be designed on a separate card with a mini-
mum number of ports per card. Since these ports must meet
the RS-232C interface standard, the card should contain
an "optimum" number of RS-232C interfaces. These cards
can then be used to configure the universal network inter-
face device with the number of local I/O ports that can

be provided service.

43

i

R

Link Control Protocol

Most of the functions specified in the SA diagrams
were now specific enough to proceed with implementation.
There was still one function, format-message-~according-to-
network prototol, which required expansion. A major part
of the usefulness of the universal network interface device
revolved around the device's ability to handle the different
link control protocols in use today. The major commercial
protocols are shown in Table I. These link control proto-
cols are the ones most typically discussed in the newer
communication books (Refs 17:328-338; 18:369~386) and repre-
sented a good lower bound for the link protocol require-
ments for the universal network interface device.

In the military environment, the most logical applica-
tion for the universal network interface device would be
as a terminal subscriber within the Automatic Digital Net-
work (AUTODIN). The particulars of the AUTODIN system can
be found in reference 19. Briefly, the AUTODIN network
link control procedures are a character-oriented control
procedure. These characters are used to frame a basic unit
of information transfer called the line block. The line
block consists of two link control characters, followed
by 80 text characters, followed by a link control character
and then the block parity character. The block parity
character may be either odd or even in parity and is formed
by the binary addition without carry (sum modulo 256) of

all bytes in the line block. Any message greater than 80

44

R

TABLE I

PROTOCOL CHARACTERISTICS (Ref 10:62)
Feature BISYNC SDLC ADCCP HDLC
Full Duplex No Yes Yes Yes
Half Duplex Yes Yes Yes Yes
Serial Yes Yes Yes Yes
Parallel No No No No
Data Character Bit Bit Bit
Transparency Stuffing Stuffing Stuffing Stuffing
Asynchronous
Operation No No No No
Synchronous
Operation Yes Yes Yes Yes
Point-to-Point Yes Yes Yes Yes
Multipoint Yes Yes Yes Yes
Error Detection CRC- CRC- CRC-
(CRC) CRC-16 CCITT CCITT cCI
Retransmit
Error Recovery Yes Yes Yes Yes
Bootstrapping
Capability No No No No
NOTES:

Binary Synchronous Communication (BISYNC)

Synchronous Data Link Control (SDLC)
Advanced Data Communication Control Procedure (ADCCP)
High Level Data Link Control (HDLC)

45

s s20n R

characters in length is broken into a number of line blocks
for transmission. There are five different modes of opera-
tion with mode I being the most efficient. Mode I is full
duplex, synchronous operation with automatic error and chan-
nel controls which allow independent and simultaneous two-
way operation. The line control characters utilized within
the AUTODIN system are identical to those of the BISYNC
protocol.

The basic protocol requirements for the universal net-
work interface device should thus include the popular com-
mercial protocols and the AUTODIN protocol. This is not
an exhaustive list of all the different link control proto-
cols in use. However, the universal network interface
device must at least accommodate the protocols identified.
This implied most of the protocol functions would be done
in software. To implement other unspecified link control

protocols would involve only'a software effort.

Function Allocation

The different functions identified in the SA diagrams
had now been expanded and bounded to allow continuation
of the design process. Once the requirements definition
model had been constructed, it was decided some type of
LSI processor was needed. This decision was based upon
the universality aspect of the universal network interface
device. While most of the functions could be implemented

in a specialized hardware design, this design would have to

P A s . <l

[—

be changed as the network environment changed. The LSI

processor approach allowed a more flexible universal net-

work interface device to be designed by allowing changes

to be made in software.

1,
é

Several processor implementations seemed possible;

among them, a single-board computer, a bit-slice micropro-

cessor, a microprocessor with special-purpose hardware or

a multiprocessor configuration. The problem was to deter-

mine which processor implementation would work and which

one was most efficient. 1In addition, since the universal

network interface device would incorporate a processor, ‘i
the different functions identified on the SA diagrams had]
to be allocated to a hardware or software implementation.

The software/hardware allocation task was completed

first. This involved the assignment of a given function

either to the processor for accomplishment or to the input

card or network card. These later two cards implemented

the expandability concept developed previously. They

incorporated those functions which were associated with

I/0 ports and which must be expanded to meet additional

I/0 port requirements. Tables II, III and IV provide the

different breakouts of the functions. Note that all of

the functions were not specified in one of the three tables. I
This was caused by the fact that if a higher level function

was specified in software. the lower functional breakouts

of the higher level function were not included in the

tables.

47 '

Lt R N e Al] AT e -

R

TABLE II

INPUT CARD FUNCTION

Node Title
All Recognize Start of Information
Al2 Recognize End of Information
Alé6 Recognize End of Message
A2443 Transmit Information
TABLE III

NETWORK CARD FUNCTION
Node Title
A211 Recognize Start of Network Information
A212 Recognize End of Network Information
A213 Change Serial Information to Parallel Information
A234 Transmit Information

48

i

TABLE IV

SOFTWARE FUNCTION

Node Title

All3 Store Information

All4 Convert to Network Character Set if Required
AllS5 Identify as Ready to be Processed
Al2 Process to-be-Transmitted Information
Al3l Determine Routing

Al32 Initialize Transmitter

Al34 Identify Information as Sent

A214 Store Information

A215 Determine if Error-Free

A216 Deallocate the Storage Space

A22 Process Information From Network

A231 Identify as Ready to be Transmitted
A232 Determine Routing

A233 Initialize Transmitter

A235 Identify Information as Sent

A241 Identify Type of Message

A242 Remove Network Protocol Information
A243 Process Control Information

A244* Transmit Information to Local Receiver
NOTE:

*All of the Transmit Information to Local Receiver was
not allocated to software. The Transmit Information portion
of A2445 was allocated to the Input Card Function.

L e —

The breakout between the different cards and processor

tended to be fairly easy. Both the input card and the net-

work card were allocated the functions associated with recog-

nizing the serial bit stream, converting this serial stream
into a composite word and then having the processor store
the word. What was envisioned here was for the different
cards to construct a word of the same size as the word used
by the processor and thus the processor would only have

to store this word. To have the processor do any tasks

on the serial bit stream would be inefficient. Likewise,
for the transmit function the cards should accept a computer
word and convert .this into a serial bit stream for trans-
mission. The only other function which might be allocated
to the network card was the determine-if-error-free func-
tion. This function involved an arithmetic computation

on the individual words within the message and the com-
parison of this calculated result to the error word at the
end of the message. From a universality point of view,
this function should be allocated to the processor since
it would be able to accomplish any type of arithmetic com-
putation specified by the error control techniques of the
different link control protocols. However, if the processor
does accomplish this, the effective storage speed per word
will be reduced if this calculation is done as the word

is received.

50

Processor Requirements. The functions in the require-

ment definition model which are allocated to software are
shown in Table IV. These functions establish the require-
ments for the type and number of processors required for
the universal network interface device. This section of
the paper determines the number required, while the type
of processor is discussed in the next chapter.

The number of processors required hinges upon the num-
ber of tasks which must be performed and the time limitation
established for the performance of these tasks. One can
again view this as a single server situation. In the uni-
versal network interface case, the peripherals connected
to the interface transmit serial information to the device
which is transformed into a word by the input or network
card. The ports on the cards then request the processor
to store the word. These storage requests plus the internal
tasks form the queue to the server (processor). The server
extracts the task from the queue and executes the given
task. There is, however, a time limitation imposed on the
server in the universal network interface case. The server
must execute the task (store the word) for a given I/0 port
prior to the next request from the same I/0 port. If this
is not done, the word is lost from the network unless there
is a technique in use to detect this condition.

Now that a concept had been developed on how the inter-
face would operate, the interface's ability to meet this

concept was examined. This examination was based upon a

51

e ——

. pr— .

PR TR R TTUTIRRER R SO NRRRARRNN wmamwm—w

worst case situation. It was assumed the universal network
interface's I/0 ports had the capability to store one word.
In addition, it was assumed that at a given instant during
the day all network ports and peripheral ports requested
service. This latter assumption only has a very small
probability for occurrence; however, the device must be
able to handle the worst case. Previously, the input I/0
ports were defined to be RS-232C interfaces. Thus, the
maximum transmission rate allowed on any one port would

be 19.2 kb/s (Ref 12:3). Using this figure and the assump-
tion there is 8 bits/word, the time between requests for
storage on any given active port is 416 usec. If the pro-
cessor requires 40 usec to service each port, then ten 19.2
kb/s devices can be connected with a reasonable assurance
all will receive proper service. If the network employed

a 50 kb/s transmission rate, only six 19.2 kb/s devices

as shown in Figure 3-4 can be accommodated. If the network
employed a 200 kb/s transmission rate, no 19.2 kb/s devices
could be serviced during reception or transmission of a
network message. Thus, in this situation, the universal
network device would not meet the RS-232C specification
design goal.

One could continue to calculate using different com-
binations of numbers the different configurations the uni-
versal network interface device could or could not service.
More important was the idea of how the device's universal-

ity could be extended. Given the conditions assumed, there

92

DWTJ, 9OTAIDS I0SSD001d ‘*p-£ *HTJ

£

S/9¥ 7 61 IV SNILVYIdO SI¥0d INdNI TIV WO¥d IDIAYAS ¥0d LSIAN0Id

X ¥IEgWNN I30d INdNI ¥0d4 IWIL FDIAYES

YYOM MHOMIAN FYOLS OL IWIL IDIAWAS

S/€M 0S IV SONIIVYIJO I¥0d MYOMIAN WOdd FDIAYIS ¥Od ILSInDIA

0dsn NI FWIL

GaunEss

(43 08¢ ove 00 091 02T 08

was a situation where one processor could not provide the

required service. However, there may or may not be an

actual network with these parameters. Could these calcula-

tions then be the basis for a decision on the need for

another processor? The ultimate decision should be made

by the user of the ﬁniversal network interface device based

upon his required application. A way to accomplish this

and extend the universality of the device was to revert

again to a building block concept with regard to processors.

The basic processing capability would be developed on one =
card and another card designed which would allow other pro-

cessors to be added if required.

System Design Phase Observations

The system design phase started out to be a simple
allocation task. However, the lack of specific functional
requirements dictated these be developed by the system
designer. What resulted was not only the specific require-
ments but a design philosophy. The result of this philoso-~
phy was a modular concept for the universal network inter-
face. This modularity of functions thus allowed the device
the degree of universality which had been hoped for at the

beginning of the design process.

54

prvem————

R T

IV. Hardware Selection and Design

Once the first facet of the system design had been
completed, the next phases involved the design of the hard-
ware and the software. This chapter is concerned with the
hardware aspects of the universal interface device. The
chapter is divided into sections which correspond to the
hardware component selection and design of the different
cards-~processor card, input card, network card, multi-

processor card--needed to implement the modularity concept.

Processor Selection

Two criteria were used to select a processor. The
first was the capability to perform all the functions
listed in Table IV. After functional capabilities, the
next consideration was the simplicity of the processor.
This latter factor becomes important, especially in a mili-
tary environment, because of its direct relationship to
life cycle cost. To minimize life cycle cost, the selec-
tion of the processor and associated hardware had to be
such as to minimize the skill level necessary to perform
hardware and software maintenance and modification. If
the device was not designed to be cost effective over its
life cycle, it would probably not be employgd in a military

environment.

55

There were two processing time considerations which

affected processor selection. First, there was the general
processing time of the processor. This impacted on three
critical areas--the storage requirements, the throughput
capability and the input/output design. As the instruction
execution speed of the processor decreased, the service
time to accept a completed message and transmit it increased.
Thus, the throughput of the device decreased causing the
local storage requirements to increase since, on the average,
more messages must be stored locally. From a strictly
throughput point of view, the processor chosen should have
the fastest instruction execution time available. However,
combined with this instruction time, an evaluation of the
instruction sets had to be accomplished to insure the power
of the instruction set did not offset an execution time
advantage.

Previously, it had been established that the entry
of information into the universal network interface device
could be either through a polling technique or an interrupt
technique. Once this serial data entered the interface
by either technique, the input and network cards temporarily
stored the serial bits to allow transformation into a paral-
lel word. After the parallel word was formed, the cards
requested the words to be stored. This request could be
to the processor in the form of an interrupt request or
it could be to a Direct Memory Access (DMA) device which

accomplished storage without processor intervention. The

56

bl S

ERENG T

first type of request became important in the selection

of a processor. The ability of the processor to handle

an interrupt request with both minimum overhead and maximum
efficiency was an important criterion used for processor
selection.

Now that the criteria had been established, the differ-
ent processors were considered. The criteria were applied
to two processor options: a pbit slice microprocessor and
a conventional microprocessor LSI chip.

The bit slice microprocessor represented the logical
choice if only execution speed was considered. A typical
bit slice microprocessor had microinstruction execution
times of from 100 to 200 nanoseconds (Ref 20:18-1) with
program instruction execution times a multiple of the macro-
instruction execution time. A bit slice microprocessor
system, however, was more complicated than a conventional
microprocessor. A microcontroller unit and a microprogram
read only memory were required to determine the location
of the next microinstruction and the microcode for that
instruction. Since the bit slice processor instruction
set was defined by the microcode which in turn had to be
developed, software development and maintenance cost were
greater than for a conventional microprocessor. This addi-
tional microcode software and added system complexity
increased life cycle cost. The bit slice microprocessor

approach was not selected based upon the life cycle

criterion.

A conventional microprocessor implementation was used

because it resulted in a good balance between execution
speed and life cycle cost. To select the proper micropro-
cessor, a benchmark code segment for the interrupt initiated
word storage process was developed. The following sequence
of instructions was considered the minimum necessary to

accomplish such a task:

Store the working registers of the interrupted program

Determine the storage location for the word to be
stored

Input the word into the processor

Store the word

Restore the working registers

Enable interrupts

Return to the main program

The benchmark was used to develop routines for the more 5

popular microprocessors with general execution speed of

2 usec. The results of this comparison are shown in Table
V. The instructions for the different microprocessors along
with the number of clock cycles per instruction and the

minimum clock cycle time was based upon information in refer-

ence 20.

From this evaluation, the three processors with the
fastest execution time were selected as candidates and 1
evaluated further. The RCA CDP 1802 was immediately elimi-

nated since all interrupts caused the processor to begin

executing instructions addressed by general purpose register

Rl. To differentiate between interrupts would require a

number of branch-on-condition instruction that test the
input flag (Ref 20:11-9), thus slowing interrupt processing.

Of the two remaining, the Z80A was the better choice.

58

TABLE V

8 BIT MICROPROCESSORS CONSIDERED FOR THE
UNIVERSAL NETWORK INTERFACE DEVICE

Minimum Number of

Clock Cycle Clock Cycles Total
Microprocessor Time for Benchmark Time
Fairchild F8 500 nsec 44 22.0 usec
Intel 8085 320 nsec 120 38.4 usec
RCA CDP 1802 155 nsec 128 19.8 usec
Motorola 6800 1000 nsec 30 30.0 usec
TMS 9900 333 nsec 108 35.9 usec
Zilog Z80A 250 nsec 81 20.0 usec
Zilog 280 400 nsec 81 32.4 usec

It had a faster execution time and its instruction set was
more extensive than the F8's. As an example, the Z80A pro-
vided a single instruction to test an individual bit in

a word which is stored in the registers or memory. The

need for this bit testing tends to occur in most applica-
tions so a single instruction to test any bit becomes a

very powerful tool. There were also single instructions

to transfer blocks of data between two locations in memory
and also between I/0 ports and memory. This abiliity to
transfer blocks of data seemed very useful for message trans-

mission. The 280A contained two sets of main registers

thus allowing rapid processing of first-level interrupts.

In addition, it was supported by a variety of support chips.

Processor Board. With the Z80A selected as the uni-

versal network interface device processor, the next step

2 , was to identify a 280A microcomputer board which would meet

59

the interface requirements. The microcomputer board
approach was selected to minimize the amount of uncertainty
in the design. If the proper board could be identified,
then design problems associated with memory interfacing,
clock interfacing, etc. would be eliminated. The board
selected was a Z80A~-MCB developad by 2ilog, Inc. Unfor-
tunately, the board was still in development and would not
be available until January 1979. However, the company
manufactured a Z80-MCB which the Z80A-MCB was designed to
replace. The Z80-MCB employed a Z80 processor with a clock
of 403 usec. It was decided to utilize the 280-MCB as the
basis for the design. The design of the other cards was,

however, based upon the clock rate of the Z80A.

Z80-MCB. The Zilog Z80-MCB is a single-board micro-
computer card, the heart of which is the Z80 microproces-
sor. Associated logic includes 4K bytes of dynamic random
access memory (RAM), provisions for up to 4K bytes of pro-
grammable read only memory (PROM), read only memory (ROM)
or electronic programmable read only memory (EPROM), a
parallel and a serial I/O port, an I/O port decoder and
a crystal controlled clock. The parallel port is imple-
mented with the 280-PIO (parallel input output) chip. Also
included on the board are four programmable band rate
generators implemented through use of the Z80-CTC (counter
timer circuit) chip. One band rate generator is used for

the serial I/O port which is implemented with an Intel 8251

60

universal synchronous asynchronous receiver transmitter ’
(USART). All address, data and control lines are buffered !
and feed to the 122-pin edge connector (Ref 22). Addi-

tional information on the Z80A/Z80 processors and the

3: 280-MCB is provided in references 20 and 22.

Input Card

Previously, it was determined the input card accom-
plished the functions of message and word recognition,
serial to parallel conversion, and service request genera-

tion to the processor. The input card also met the RS-

232C interface. Given these characteristics, the next step

consisted of a design to meet them.

RS-232C Requirements. The RS-232C standard specified

the signal characteristics between data terminal equipment
and data communication equipment. To provide the universal
network interface device with an RS-232C interface, the
interface had to be classified with regard to these two
categories. Applications were postulated which required

the interface to satisfy both categories. As an example,

: it was conceived the universal network interface device

} could be collocated with a number of peripherals in which

i case the interface must function as a DCE. Correspondingly,

there could be applications where the interface would be
connected to the peripherals through modems and communica-

tion channels. 1In this latter case, the interface must

function as a DTE. With regard to the RS-232C standard,

61

o —_e .

the universal network interface device had to be able to

function as both a DTE and a DCE.

Functional Requirements. The most efficient solution

to satisfy the other functional requirements was to utilize
a USART. There was no reason to design special hardware

to perform the recognition and parallelization functions
when a low-cost device was readily available which would
accomplish these functions. The typical USART performed
start~of-message and end-of-message recognition functions
for synchronous data, start-of-information and end-of-
information recognition functions for asynchronous data

and performed the serial-to-parallel conversion (Ref 23:
282~290). Many USARTs were available, most with very
similar capabilities, thus making selection based upon tech-
nical criteria difficult. The USART finally selected was
Signetic's 2651 Programmable Communications Interface. The
2651's functional capabilities included band rate generation,
modem control and programmable operating modes. The USART
supported BISYNC protocol with synchronous and delete
character stripping and a transparent mode of operation.

An asynchronous auto-echo mode may be programmed to
accomplish reception and retransmission (echo back) of a
received message without processor intervention (Ref 10:
65). These latter two characteristics were important in
the selection of the 2651. This is not to say other USARTs

do not have similar capabilities, but the ones evaluated

for this iuvestigation did not.

:

Peripheral I/0 Port Design. Once the USART was deter-

mined, the design of the subscriber side of the USART was
completed. The completed design is shown in Figure 4-1.
The interface consisted of a 25~pin female connector, a
row of jumpers to allow the interface to be configured as
a DTE or DCE, line drivers and receivers to meet the RS-
232C characteristics, and the 2651 USART. The secondary
channel capability of the RS-232C specification was not
developed for each port for the universal network interface
device. To do this would have necessitated use of another
USART at each I/O port dedicated to the secondary channel.
Since the input board contained more than one I/O port and
thus more than one USART, this secondary channel, if used,
could be implemented using two I/O ports.

The design of the local subscriber interface was based
upon the 2651's control signals. The control inputs which
were significant were the DCD input which enabled the 2651's
receiver and the CTS input which enabled the 2651's trans-
mitter. For the case of the interface emulating a DTE,
these inputs were identical to the complement of the RS-
232 signals of the same name, thus all that was required
was a line receiver to convert the DCE signal character-
istics to DTE signal characteristics. The case of the inter-
face emulating a DCE was more complex since the previous
control signals must be outputs from the 2651. These con-
trol signals were developed from the RTS and DTR outputs

of the 2651, applied to line drivers and connected by

63

e L

RS-232C

SIGNALS
1 = GND
Jl-1 J2-1 |LINE
3 e KDy O——— pr1vEer TXD
| s J1=2 = _g32.2 frinE RXD .
E R O O RECEIVER s
J1~ & RFwLS
4 —rrs_ 5% o3 gfgﬁm RTS A
R
J1-4 J2-4 |LINE e
5 — CTs—O O———1 RECEIVER CES T
JL«5 J2-5 | LINE
6 — DSR——O O DRIVER i 2
Jl-6 J2-6 | LIN g e
7 —DIR—0Q O——{ 10 DTR 6
5
J2-7 | LINE -
§ — —0O O— RECEIVER Bee 1
J1-7
10 e s— (it TRE
) - (S ek
13 o= TXC o LINE |
O DRIVER O
LINE
B s FRE s O—Rrecerver [©
: 15 - —0
Z80-CTC
. CHANNEL O
1 USART AS DTE USP?RT AS DCE
| J1-1/32-1 J. 732-2
: J1-2/32-2 312 132=1
! J1-3/32-3 J1-3/32-7
J1-4/32-4 J1-4/32-6
J1-5/OPEN J1-5/J32-5
J1-6/J32-6 J1-6/J2-4
J1-7/32-7 J1-7/32-3
Fig. 4-1. Local Subscriber Interface
64

i s - Adse il

jumpers to the CTS and DCD lines of the RS-232C connector.

The RTS and DTR outputs of the 2651 are software controlled ’

outputs which can be set or reset under software control.
The RTS and DTR lines of the RS-232C signal connector were
then used in conjunction with line receivers to enable the
receiver (DCD input) and transmitter (CTS input) of the
2651 respectively.

Two other capabilities were incorporated into each
port. Jumpers were provided to allow selection of the trans-

mitter and receiver frequency source/sources for the 2651.

The source/sources could be external to the 2651 through
use of the RS-232C frequency lines. The frequency source/
sources could also be provided by one channel of the on-
board Z80A-CTC or by an internal source driven from the
5.0688 MHZ band rate input (BRCLK) to the 2651. These dif-
ferent frequency capabilities were provided in an attempt

to meet the complete frequency range of operation required
of the port. The other jumper capability allowed the selec-
tion of a 20 ma current loop input in lieu of the normal

input.

Input Board Processor Interface. Now that the sub-

scriber port was designed, the next step was to interface
1 the port to the processor card. In this task, it was
assumed the input card consisted of four I/0 ports identi-

cal to the one in Figure 4-1. Given these ports, certain

functions had to be accomplished to interface into the pro-

cessor card. They were:

--The signals to and from the processor had to be
buffered to maximize the number of cards which may use these
signals.

--The processor had to address the individual registers
of the 2651 and had to address the different 2651's.

~-If an interrupt entry scheme was used, the processor
needed to be provided the address of the 2651 service
routine.

~-If more than one interrupt occurred simultaneously,

a device was needed to prioritize the interrupts.

The first part of the task involved the determination
of the additional devices required to complete the func-
tional design of the input card. The use of four 2651s
had already been assumed. Each 2651 required an external
frequency source derived from a channel of a Z80A-CTC. The
Z80A~CTC was selected to achieve a measure of standardiza-
tion of comporents between the processor card and the input
card. This regquirement established the need for two Z80A-~
CTC per input card. The only other device required other

than buffering devices and an address decoder was a device

to handle the interrupt entry technique.

Z80A Processor Interrupt Modes. The Z80A processor

had three diferent modes of interrupt operation which are
selected by execution of one of three interrupt instruc-
tions. In the maskable interrupt mode 0, the interrupting
device is allowed to place one eight-byte instruction on
the data bus for execution by the Z80A-CPU. The byte is
normally a restart instruction which is an efficient one-
byte call to any of eight subroutines located in the first
64 bytes of memory. In the maskable interrupt mode 1, the

CPU does an automatic call to location 0038H and begins

66

executing the interrupt service routine at that point. 1In
the maskable interrupt mode 2, the Z80A-~CPU supports an
interrupt vectoring instruction that allows the interrupting
device to identify the starting location of the interrupt
service routine. Mode 2 is the most powerful of the three
maskable interrupt modes allowing an indirect call to any
memory location by a single 8-bit vector supplied from the
interrupting device. In this mode, the interrupting device
places the 8-bit vector on the data bus in response to an
interrupt acknowledge control signal. This vector then
becomes the least significant 8 bits of an indirect pointer
while the I register in the Z80A provides the most signifi-
cant 8 bits. This address in turn points to an address
in a vector table which is the memory starting address of
the interrupt routine. Interrupt processing can thus start
at any arbitrary 16-bit address of memory (Ref 24:7-8).
This latter mode of operation was selected for the
interrupt entry scheme for the universal network interface
device. The selection was based upon the memory flexibil-
ity of the technique and the fact that it allowed unique
identification of service routines for any number of I/O
ports. This technique required that the interrupt handling
device have the capability to provide eight (two per 2651)

unigue eight-bit addresses.

Z80A Interrupt Acknowledgement. The other character-

istics of the interrupt handling device for the input card

67

were dictated by the Z80A support chips and the Z80A inter-
rupt acknowledgement method. The acknowledgement method
for an interrupt consists of a special Z80A instruction
cycle. After an instruction has been executed, the next
instruction is normally fetched from memory. This normal
instruction fetch cycle is identified by the MI output

(pin 27) going low followed by the MREQ output (pin 19)
going low. This cycle is modified to acknowledge an inter-
rupt. For this latter case, the Ml pin goes low identical
to a normal cycle; however, slightly delayed, the IORQ
output (pin 20) goes low (Ref 20:7-11 to 7-21). These
simultaneously lows on the MI output and the IORQ output
signify to all external devices that an interrupt is being
acknowledged. It is now up to the devices to determine
which of them with an interrupt pending has the highest

priority.

Z80 Daisy Chain. The prioritization technique sup-

ported directly by the ZB80A processor and implemented

through its support chips is the daisy chain technique.

In this technique, priority is set by the location of the
support chip in a daisy chain configuration. Each support
chips' INT output is tied directly to the INT input of the
processor. Each support chip has one additional input,
Interrupt Enable In (IEI), and one additional output,
Interrupt Enable Out (IEDO), which effects interrupt process-

ing. To implement the daisy chain, the support chips's

68

e

(with the highest priority interrupt) IEI input is tied

to +5 volts to indicate it has the highest priority. The
IEO output of the highest priority support chip is con-
nected to the IEI input of the support chip with the second
highest priority. This chaining of IEIs and IEOs continues
until all support chips are included in the chain. Whenever
a support chip in the chain generates an interrupt request,
its IEO line goes low which in turn causes the IEOs and

IEIs of all support chips further down in the chain to go
low. When an interrupt acknowledgement occurs, any support
chip with its IEI input low is disabled and cannot respond
to the interrupt acknowledgement (Ref 24:8). This is an
efficient technique for establishing priority provided the
ripple time to change the IEIs and IEOs is not too long

and provided there is a method to change the IEIs and IEOs
after the interrupt has been serviced. In the Z80A processor
case, the support chip whose interrupt is being serviced,
determines by special hardware when the interrupt service
routine has been completely executed. The special hardware
detects the fetch from memory of a RETI (return from inter-
rupt) instruction. Upon detection and the execution of

this instruction, the hardware sets the IEO output high
which reenables the interrupts of all support chips down

the chain (Ref 24:17-22). 1If the priority controller on

the input card is to take advantage of this system, it
requires a daisy chain input/output and some method to deter-

mine the end of the service routine.

69

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO SCH=-=ETC F/6 9/2
PRELIMINARY DESIGN OF A UNIVERSAL NETWORK INTERFACE DEVICE,(U)

DEC 78 S C SLUZEVICH
UNCLASSIFIED AFIT/GE/EE/78-81

AD=AO64 059

|

| ”m |0 % N!Iliﬁ 22
=
.1

Y5
L

M8214 Priority Interrupt Device. The device select

for priority interrupt control was Intel's M8214 Priorit
Interrupt Control Unit (PICU) (Ref 25:6-183 to 6-185).
was the only PICU which was technically simple and thus
operated with any processor. Other PICUs were available
with additional capabilities; however, they required uni
processor-dependent control signals to function properly
The PICU selected had one deficiency. While it satisfie
most of the functions needed for the input card priority
control unit, it did not provide the 8-bit address neces
sary to implement the Z80A mode 2 interrupt structure.
accomplish this, .a SN74LS412 multi-mode buffer latch (Re
22:7-502 to 7-506) was used in combination with the PICU
A simplified version of the design is shown in Figure 4-
The 8214 PICU has the capability to prioritize amor
eight competing interrupts. Thus, the four 265ls RXRDY
output and TXRDY output could be used to generate the ir
rupts to the PICU. The PICU would prioritize among the
competing interrupts, generate its own interrupt (INT)
simultaneously output the interrupt's unique identifica
on A0 through A2. The complemented INT is used by the
74LS412 to latch the value of the eight bits which appe
on its input lines (DI0-DI7). This value must correspc
to the interrupting devices' low byte vector table add:
This will require correlation between where the address
appears in the table and the strapping used for the cai

After the 74LS412 latches the input, it generates its ¢

70

I3TT0x3Uu0) A3TaoTrag pae) ndur - z~y °b1d

0Id
1raf——0

z1a -0
£Ia —
—0
—0

48 4:-pi4 o _ p128
O-
O

vIa
SIda

gra—O

O
LId O O—

—
~

12

ooa

interrupt request to the processor. Upon receipt of a pro-
cessor acknowledgement (AINT), the latched input is placed
onto the data bus.

The interrupt acknowledgement detection circuit is
shown in Figure 4-3. The IORQ and Ml processor signals
are inverted and ANDed together to develop the interrupt
acknowledgement signal. However, this interrupt acknowl-
edgement signal cannot be applied directly to the 74LS412
due to the daisy chain arrangement. Two conditional events
are necessary: (1) the input card IEI (same as ETLG input
to PICU) input must be high, establishing the pending
interrupt as the highest priority within the chain, and
(2) there must be a pending interrupt from a 2651 on the
input card. These two conditional events are ANDed with
the interrupt acknowledgement signal to develop the AINT
signal to the DSI pin of the 74LS4l2.

Once the processor services the interrupt, the inter-
rupt request from the PICU must be removed. 'The operating
characteristics of the PICU are such that once the PICU
processes an interrupt it is inhibited until it receives
a low to high transition to its ECS (pin 23) input (Ref 20:
4-177). The simplest way to do this is through software
by rewriting the mask word to the PICU. The other way is
to use the AINT signal to provide the low to high transi-
tion. If this pulse is used, the mask word selected must

be hardwired to the mask word inputs (B0-BZ and SGS). A

72

1013u0) 2bpatmouoy 3dnazajzur ‘g-y b1a

LINIVY

|
!

LTLNI

Rnrct

73

|=

VINI

2
S

e T T N P <, <71 -

jumper option is included on the input card to allow this

hardware reset of the PICU.

I/0 Addressing. The input card functions associated ;

with the peripheral ports have now been completed. The
remaining tasks involved the I/O addressing requirement

and signal buffering. The I/O addressing design is shown

in Figure 4-4. Each input card required 25 unique addresses--
four for each 2651, four for each Z80A-CTC and one for each %
PICU. The A0 and Al lines were used to address the indi-~
vidual registers within each device. The A2, A3 and A4
lines established a block of 32 addresses for each input

card. The A5, A6 and A7 lines plus their complements were ;

terminated at jumpers to allow the user to select where

the block should be located within the 0 to 255 I/0 address

range. A 3 to 8-line decoder (74LS138) provided a chip) |
enable (CE) signal to the selected device based upon its

inputs. The CE signal provided was determined by the inputs |
to Gl of the 74LS138. When Gl was low, the outputs of the
74LS138 were all high. This cond.tion should exist as long
% as the IORQ output was high. The IORQ signal going low
signified one of two conditions. Either the processor was |
issuing a valid I/O request or the processor was acknowl- :ﬁ

1 edging an interrupt. In this latter case, the 74LS138's {

g Gl input had to be high. This was accomplished by ANDing

the complement of the IORQ signal with the MI signal.

74

e e e e e

furssoippy 0/I pIed 3ndur ‘p-y ‘b1a |
4
i
N
O¥O0I
Al Ve e
G YIAINA [D¥oI
— sng p————m— g |
91— 3 Iv LY
7 O _ 9V n 4
»2™1 yaaooaa _—3
A1 an1t
Zi—1 8 OL ¢
12—
02 O |
oY 94
P | waaruq| e
EV | sng | ol
; Y X3H (A4
TV | R | ;

=

e, a0 b W

e

Data Bus Buffering. The other bus which had to be

buffered was the data bus. Two Intel MB216s were selected
to accomplish the buffering function. The M8216 had two
inputs which determined the direction of data flow. For
data to flow from the processor bus to the input card, the
CS (pin 1) input had to go low while the DIEN (pin 15) input
went high. For data to flow from the input card to the
processor bus, the CS input had to go low while the DIEN
input went low. The processor's WR control signal was used
to determine the direction of data flow (DIEN input) accord-
ing to the equation DIEN = WR. The data flow (CS input)
enable depended upon the different situations which required
an interchange of data between the input card and the pro-
cessor. These situations were: (1) interrupt, (2) I/O read
and (3) I/O write. Internally, the input card developed

a control signal which signified a valid interrupt situa-
tion. This control signal (AINT) was used for part of the
CS input. The other two situations involved I/0 operations.
When the input card received a valid I/O request, one of

the CE outputs went low. These then provided the second
signai needed for bus control. The completed design is
shown in Figure 4-5.

At this point, the design of the input card was com-
plete. The next step was to evaluate the delays associated
with the input card to determine if the input card met the
processor's timing requirements. The two data transfer

situations are shown in Table VI and Table VII with the

76

Tox3uo) sng ejeq pae) ndur

‘6-% °bra

9TZ8H

p-(oX g
NIId

9T1Z8NW

LSRR SRR

(Z6T1-9:5Z 39y¥) Aerap a1qeU® 9TZ8W Z6€
(97 3°¥) T10x3u0d snq ejep 8yl ybroayj Aersp ID LTE
(9Z 3°¥) INIV @3exauab o3 Aelap 4113
(LE-9:97 3I¥) VL9€STyL ubnoayy Aelsp JY¥OI 454
(6:97 3°¥) Xd0T1d Jo °bpa burires woxy Aersp JIOI 102
9704Ao> 3Tem po3eisuab I10ssa001d 3saTI JO 3IE3IS 0
20uUaxaINndoQ (su) 2wty

QIVD INdANI WO¥Yd JATIYIIVAV SSTIAAY OL
INGWIDAITMONADVY LANIYITINI JOSSTO0Yd WOHd AVTIIA WOWIXVW

IIA 3T9YL
[<
~
(z61-9:57 3°2¥) Ae(odp S1qeus 91Z8NW 00€
awN wwmv TO0aI3U0D sng ejep ous £@50H£» %MHmﬁ .mWnlv gzt
(9€T-L:9Z 3°¥) B8ETSIPL Ybnoays Aersp D 88T
(0T-9:97 3°2y) @23eb gNv ybnoayz Aelsp J¥OI 0sT
(z-9:9z 32¥) @3eb LON ybnoayi Aersp DJOI AN
(LE-9:9Z 3@¥) VL9€STyL ubnoayy Aelsp D¥OI L6 ;
(6:LZ 3°¥) 201D 3o @bp@ bursTi woxy Aelsp JHOI GL .
9104> peax i1o0ssadoxad e JO gz 21240 3}DOTO JO 3Ie3S 0 . :
CleliCh & dqtelele) (su) =wryg

@IVO LOANI WOYd JTEVIIVAY YIVA OL
I1SZN0aY O/I ¥OSSIO0Ud WOHd AVTIIA WAWIXVW

IA FTdYL

Qo Aot A A A Bl S . 75 i e

o s ARG ot R e o S

associated delays introduced by the input card. The basic
I/0 read cycle and basic interrupt cycle (Ref 20:7-17, 7-19)
for the Z80A were used to calculate the minimum time between
start of the T2 cycle and time when data was received.

These were determined to be 580 usec and 440 usec respec-
tively. Although in both cases. the maximum delay was less
than the minimum cycle time, in the latter situation, they
were about equal if the delays associated with the micro-
processor card were included. This could be an area of
coricern and should be evaluated further during the testing

phase.

Network Card

Table III allocated different functions to the network
card. These functions were similar to the functions of
the input card. There was one important difference--the
speed at which these functions must be accomplished. 1In
the input card case, the speed was limitad to 19.2 kb/s
while for the network card the speed was bounded at 1.5
mb/s. One of the first tasks was to determine what approach

would maximize network speed.

Network Transmission Speed. The limiting factor in

the network case was the ability of the server to satisfy
the different network I/0 port service requests. This
limitation was imposed since the processor was used to store
the individual words. For the Z80A case, this storage

utilizing an interrupt technique required approximately

79

i 1 DUIERIE v

20 usec per request. Assuming 8 bits/word, this translated

into a transmissic: bit rate of 400 kb/s. If the network
employed a half duplex communication link operating at

400 kb/s, the service requests could be satisfied. If the
link was upgraded to full duplex, the Z80A could provide
full service only if the transmission rate was reduced to
200 kb/s. If another full duplex link was added, the maxi-
mum transmission rate was reduced to 100 kb/s. The use

of the processor to store the word thus caused a reduction

in network speed as the number of links increased.

Word Storage Through DMA. To relieve the processor

of the word storage function required the network card con-
tain a device which would accomplish this without processor
intervention. These devices, called DMA (Direct Memory
Access) devices, were available. Their use presented two
problems. First, there was a functional requirement that
the processor perform the arithmetic calculations neces-
sary to develop the network protocol error control word.
Since the processor was storing the individual words, this
function could be accomplished as the words were received.
If a DMA device stored the word, the processor had to wait
until the complete message was received and then perform
this calculation. This after-message-receipt calculation
would slow the message acknowledgement process. The other
consideration was the incorporation of the DMA device into

a multiprocessor environment. To accomplish this required

LSRR

development of a bus controller which arbitrated all pro-

cessor and DMA device requests for access to the shared
memory. It was felt that this bus controller further com-
plicated what started out to be a simple design. Aan
alternative approach would be to limit the universal net-
work interface device to a single processor and use a DMA
device for reception/transmission of network data. This
represented a very viable alternative since it allowed
attainment of the upper bound for network transmission rate.
The counterpoint to this approach was network throughput.
The functions being performed by the other processors would
now have to be performed by a single processor. Since this
processor was required to do more, it seemed message
throughput would decrease. However, there may be instances
where throughput became less of a concern than network
transmission speed and the DMA approach would be required.
This suggested another card be designed which would incor-

porate a DMA function into the network card.

Network Card With DMA. The design of the network card

with a DMA device will not be accomplished as a part of

this investigation. It does represent another capability
which should be available for user selection. It is recom-
mended the DMA device used be a 280A DMA support chip. This
recommendation is based upon the comments in reference 20
which states:

This is one of the most remarkable support devices
described in this book. Although designea to work

81

| S———

[T

o ¢ ok i it -3

e D b Sy

with the 280 CPU, it can--and should~-be considered
in any microprocessor system that transfers data blocks
(Ref 20:7-78).
If this device is selected, the only design required to
incorporate it into the network card would be to bi-

directionalize the control signals and address bus between

the network card and processor card.

Network Card Device Selection. Once the basic functional

capabilities were estabished for the network card, the next
step was device selection. Since the design utilized the
Z80A processor, the 7280 support chips were evaluated first.
It was felt that if there were support chips which would
accomplish the network functions, the use of these chips
would minimize the number of total chips required. In the
final evaluation, the Z80A-SIO support chip not only mini-
mized the number of external chips required, but also repre-
sented the best choice among the different network protocol
devices. The 2Z280A-SIO was selected based upon the incor-
porated capability which allowed different modes of interrupt
generation to be software programmed. In addition, the
Z80A-SIO had the capability to generate eight different
interrupt vector table addresses based upon a programmable
vector address. Internally, the SIO identified the condi-
tion which required an interrupt to be generated, deter-
mined the vector table address of the interrupt service
routine, and generated a mode 2 interrupt to the processor

with this service routine address. Thus, no external

82

R e T

devices were needed to determine the cause of the interrupt.
Since the SIO was a member of the Z80 family, the prioritiza-
tion function was accomplished without additional support
chips. The Z80A-SIO also had the capability to utilize

the processor's block transfer instruction to provide half
duplex message transmissicn/reception at up to 880 kb/s.

This could be accomplished through a wait output which
synchronized the processor to the Z80A-SIO transmission

rate (Ref 28:1-27).

Network Card Design. Once the Z80A-SIO was selected,

the design of the network card proceeded in a fashion similar
to the input card. The input card I/O addressing design,
Figure 4-4, was used for I/0 addressing of the network card.
Only two CE signals were required--one for the Z80A-SIO

and one for the Z80A-CTC. A Z80A-CTC was included on the
network card to provide frequency sources for the Z80A-SIO's
two parts. A SN74LS90 (Ref 26:7-72) was used to provide
clock inputs into the zero and one channel of the Z80A-CTC.
The SN74LS90 outputs consisted of the processor clock

divided by five and the processor clock divided by two.

These additional inputs were provided to allow the Z80A-SIO
to operate at rates above 175 kb/s. The Intel M8216 bidirec-
tional data bus was used to provide data bus buffering;
however, the controlling signals changed from that of the

input card.

83

Data Bus Control Design. In the input card case, there

were three situations where data bus information was
exchanged: (1) interrupt, (2) I/O read and (3) I/0 write.
These same situations apply to the network card. However,
in the network card's case, another situation arose due

to the daisy chain interrupt technique. The Z80 support
chips do not use the interrupt acknowledgement signal to
set the IEO output high. Instead, the support chip whose
interrupt is being serviced monitors the data bus for an
RETI instruction. Once the RETI instruction is identified,
the IEO output is set high on the first memory fetch cycle
following execution of RETI (Ref 24:21-22). Since the net-
work card contained a support chip which will generate an
interrupt, the need to monitor the data bus during an inter-
rupt had to be incorporated into the control portion of

the network card's M8216.

When the Z80A-SIO generated an interrupt, there must
be two directions of data flow. When the interrupt is
acknowledged (M1 and IORQ low/IEI high and IEO low), the
direction of data flow is from the network card to the pro-
cessor (DIEN low and CE low). Immediately afterwards, the
data flow during any memory‘read must be from (DIEN high
and CE low) the processor card to the network card to allow
RETI detection. This data flow must continue until the
IEO output goes high. This suggested a flip flop be util-

ized using the interrupt acknowledgement signal and the

84

IEO signal to set and reset the flip flop. The completed

design for the bus controller is shown in Figure 4-6.

For the I/0 situations, the operation of the control-
ler is identical to the irput card case. Once one of the
chip-enable outputs (Y1 or Y2) goes low, it is inverted
and applied to the OR gate causing CE to go low. The
direction of data flow is controlled by WR. When WR goes
low, DIEN goes high allowing data to flow from the processor
card to the network card. For the interrupt situation,
the SIO requests an interrupt causing the IEO output to
go low. This low pulse removes the preset condition from
the D flip flop allowing it to duplicate the input upon
a low to high clock transition. This low to high transi-
tion is generated by the low to high transition at the end
of the acknowlegement signal. The transition set the Q
output to one thus setting the direction of data flow from
the processor to the network card. This one is also used
as a CE signal, however, it is conditioned upon the fact
that there is a memory read (MREQ low) in progress. This
situation continues until the SIO detects a RETI instruc-
tion. This instruction causes the IEO output to go high
which in turn applies a low to the preset input of the D

flip flop setting it to a one.

Network Interface Standard. Once the data bus con-

trol design was completed, the last consideration was the

interface standard for the network side of the Z80A-SIO.

85

SRS i

R

o < ol e A

—

10X3uU0) sng ejeq pIed YIoMmMiaN °9-y °BTd

N3Id

OINW

o

ATO

ad

86

el i u. @

e 75

o

B

N 1l ot S A RS ol il

In the input card case, the standard used was RS-232C. How-
ever, the RS-232C standard limits transmission speed to
20 kb/s. While it was conceivable the SIO will be employed
in a network environment which is limited to this transmis-
sion rate, the SIO also has the capability to operate at
higher transmission rates. To allow this later situation,
the output was required to meet RS~422 or RS-423 standards.
The RS-423 standard allows data rates of up to a 100 kilo-
band over unbalanced circuits (Ref 29:2) while the RS-422
standard allows rates of up to 10 mband over balanced cir-
cuits (Ref 30:3). These two standards were incorporated
into the design through use of MC3487 line driver (Ref 31:
82) and the 9637 line receiver (Ref 32:11-217). These line
drivers and receivers were used to configure the SIO net-
work output as a DTE. The DTE configuration was selected
since it was envisioned the network side would be trans-
mitting/receiving to either a modem or a cable system. If
a cable system is used with the universal network interface
device, the reader is encouraged to study reference 33.
This reference describes a tested interface which provides
proper bit synchronization over a cable system at up to
1 mb/s.

This concluded the design of the network card. A cir-
cuit diagram of the complete card is provided in Appendix B.
A detailed evaluation was not accomplished on the network
card since it was basically identical in operation to the

input card. The most time-critical operation occurred

87

during an interrupt acknowledge processor cycle. Since
the important signals in this cperation traverse an almost
identical path for both cards, the network card should meet

the processor's timing restrictions.

Dual Processor Card

The last card required for the hardware portion of
the interfacewas a card to allow multiprocessor operation.
The original concept was to develop a card to allow any
number of processors to be employed in the universal net-
work interface device. As the different functions to be
performed were analyzed, the optimum number of processors
seemed to be two. With two processors, the functional tasks
could be segregated into two distinct groups--one, con-
cerned with peripheral functions, and the other concerned
with network functions. Since there was a distinct break
between the two, interprocessor communications would be
minimal. If more than two processors were employed, the
allocation of fucntions would not be as distinct requiring
more communications between processors. As the number of
processors increased, the lock-out of individual processors
as global data was being changed by one processor became
more complex. The bus controller required as the number
of processors increased would increase in complexity causing
the life cycle cost to change accordingly. At this point

in the design, it was decided to provide only the option

of a two-processor universal network interface device.

280A Memory Reference. In a two-processor environment,

the basic problem was to allow both processors access to
the same data, at the same point in time, in the least
amount of time. There had to be some way to delay one pro-

cessor's memory request until the other processor's request

was completed. In the Z80A case, there are two basic instruc-

tion cycles which effect memory. The first is an instruc-

tion fetch cycle (Ml) which normally requires 4 clock cycles.

During this machine fetch cycle, the first half reads the
memory word addressed by the program counter while the
second half generates a refresh address for any dynamic
memory being used. The other machine cycle (M2), data read
or write to memory, requires 3 clock cycles. Each of these
machine cycles can be extended through use of the Z80A wait
(pin 24) input. During the second clock cycle of the dif-
ferent machine cycles, the Z80A checks its wait input to
determine if a wait state is requested. If so, an addi-
tional clock cycle is added to the executing machine cycle
and the wait input again checked during the middle of this
clock cycle. This checking and wait generation continues

until the wait request is removed (Ref 20:7-15 to 7-16).

Basis of Design. The two basic machine cycles and

the wait input capability provided a method to arbitrate
dual processor memory references. At any given point in
time, one processor could be in seven different states with

regard to a memory reference. These seven states equate

89

e S

to the different cycles involved in the two basic memory

reference cycles. For the second processor to access this

same memory requires it to be in cycle one of a machine
fetch cycle or cycle one of a machine memory read/write
cycle. It has been shown (Ref 34) that if one processor's
clock is 180° cut of phase with the other processor's clock
the processors could operate in parallel with minimum reduc-

tion of processor speeds. This required that the memory

being used be static and have a memory cycle time less than

the processor's clock period.

these two factors equated to increased life cycle cost.

i

f

F For the universal network interface case, however,

|

[Since there was a requirement to locally store the differ-

ent information received, the characteristics of the memory

to be used impacted significantly on the cost of the inter-
face. To minimize this, the memory used for message
storage should be the slowest, cheapest memory available
which was consistent with processor speed requirements.

To try to minimize cost, the different processor states
for the two basic machine cycles were analyzed. The
analysis revealed that the instruction fetch machine cycle
established the memory cycle speed. In the universal net-
work application, the functions performed by the two pro-
cessors tended to be different. This suggested that common
instruction code between the two processors would be minimal.
If common instruction routines could not be shared between

‘ the two processors and dynamic refreshing of memory was

90

required, then the number of allowable states changed to
five. These allowable states were then analyzed (Figure
4-7) and the minimum access time determined to be one and
one-half times the processor clock cycle. For the Z80A
case, this equated to memory with access times of around
370 usec. Since these were available utilizing dynamic
memory, the stipulation that the processors could not share

instruction routines seemed very cost effective.

Dual Processor Card Design. The desigr proceeded based

upon the need for a memory refresh signal and the ideas
presented in reference 34. The first decision involved
what portion of memory would be shared. Since the Z80-MCB
card provided 8K of on-board memory, this 8K was allocated
to the individual processors for instruction storage and
local data storage. The rest of the memory was assumed
to be available to both processors. The option to allocate
more local memory was provided in the design as shown in
Figure 4-8.

Each of the two processors' address lines (A0--AlS)
were terminated at 2 to 1 line data selectors (Ref 26-
7-181) . For the A0-All line case, the NOT and AND gates
shown in Figure 4-8 were not required. For the other
address lines they were required to identify the addresses
which were shared. The jumpers allow the user to select
what address space above 8K could be shared. Any time one

cf the processors attempts to gain access to this shared

91

sTsATeuy @3e3g I0Ssadoag Tenq ‘L-p °bT4g
TL ZW / €L W |

III_. i

1]
GWIL FONTYIITY AYOWAW --p——r ' ,
_ 4

JLIYM ¥0 A¥dd XYOWIW -- CW

1

JTOXD HOLIA NOILONILSNI -- IW

92

TL TW / €L TW TL ZW / 2L ZTH TL ZH / TL ZW

g

P A

- OHdW X

OFIN_ X

|_ t_ MD0TD

ubtsoag 3ndul pae) I0ss9201d 1end

=y

*b1d

o— LJUA
0
——0 O,IOA_F
O.'OA
AN\ o
STVY
P PIvY
€TV
VIvY JOLOITIS (AN
Yiva Tie
ANIT
€TvY 101 2 ~
(AN 4 €TV
(A4 4
A ——AM————0 ”__
—0 H__
|I||I.o
—0
O

AL

X
JOssaOodd

X
¥0ssaoodd

93

TREW

-memory, the appropriate request line (XREQ or YREQ) is

driven low.

This request is processed as shown in Figure 4-9.
When a request is generated, it is not processed until the
processor generates the low MREQ signal. When this occurs,
the request is passed through the tri~-state buffer (74125)
to generate the SELECT signal. As the signal is passed
through the SN74125 (Ref 26:6-33) it biases the second pro-
cessor's tri-state buffer to the off-state. It also pro-
vides one-true input to the second processor's WAIT NAND
gate. If at a later point in time, the second processor
attempts to reference the same shared memory, the SN74125
off state will prevent the SELECT signal from being
generated. In addition, it will also provide the second
true input to the WAIT NAND gate generating a WAIT request
back to the second processor. This WAIT condition will
continue until the first processor completes the memory
action. When this occurs, one input to the WAIT NAND gate
becomes false removing the wait request back to the second
processor. It is then allowed to continue with its memory
action.

The SN74125s are also controlled by the other pro-
cessor's memory refresh signal. This control signal is
developed by the circuit shown in Figure 4-10. The opera-
tion of this circuit is dependent upon the relationship
between processor signals (Ref 22:8-10) as shown in

Figure 4-11. During the first part of the memory fetch

94

oo it

ubtsag 3soanbay paep) zosseooxag T1end

LIYM X

e

LOdTdIsS A

HSJY A

LOdTIS X

LIVM X

HSJY X

gl

?

(o T .

95

AR

ek L

A SELECT

RITT TR

kAN S

3 B REQ

i B MREQ j !

' D
' ; B RFSH

A RFSH 2 {
— CLK 2 RFSH

A M1

Lp e

©l

1
A MREQ e

Fig. 4-10. Dual Processor Card Refresh Control

M1l T3 M1 T4
CLOCK

A MREQ

A RFSH

" Fig. 4-11. Z80A Refresh Cycle

{ 2 -

[P —

machine cycle (M1) the A Ml signal goes low setting flip
flop 1. At a point in the Ml T3 cycle, the A RFSH goes

low which, because of the NOT gate, sets flip flop 2 to

the other processor's memory reference state. If the other
processcr is using the shared memory, flip flop 2 is set
which causes A RFSH to be false. If not, A RFSH becomes
true. The states of the flip flop do not change until the
end of the Ml T4 cycle. As A MREQ goes high, the low to
high transition causes flip flop 1 to be reset which in
turn sets flip flop 2. This condition will continue to
exist until the next M1 cycle sets flip flop 1 allowing

the next refresh signal to change flip flop 2. This circuit
thus provides a RFSH signal for the shared memory provided
the other processor is not using the shared memory. If

at some point in the RFSH cycle, the other processor
attempts to use the shared memory, the lock-out process
described previously will occur until the RFSH cycle is
completed.

Since the RFSH signal does not have priority over
another processor's memory actions, there is a possibility
a row would not be refreshed within the allocated time
(typically 2 ms). This was minimized by having two pro-
cessors provide the RFSH signal. This possibility can be
further reduced since the refresh register within the Z80A
can be programmed to any value. If one processor's refresh

register is set to zero and the other to 64, the total time

97

between processor~generated refreshes for any given row
would be reduced by one-half.

This completed the arbitrator portion of the design.
The next step was to use the arbitrator's signals to con-
trol the 2 to 1 line data selectors. The data selector

is controlled by two inputs called STROBE and SELECT. The

SELECT input determines which of the two inputs are selected

while STROBE (active low) determines when this input is
applied to the output. The STROBE input was developed by
NORing the X SELECT, Y SELECT, X RFSH, and Y RFSH signals.
X SELECT and X RFSH were NORed together to generate the
SELECT signal.

Once the address was provided to the shared memory,

the next step was to route the data back to the proper pro-

cessor. This was accomplished through use of SN74365A
(Ref 26:6-36) and SN74367A (Ref 26:6-36) hex bus drivers

(Figure 4-12). The use of these bus drivers dictated

development of control signals to determine which processor

the data was to/from. The SN74365A are controlled by two

inputs GI and G2 according to the formula input = output

when Gl G2 = 1. The WR and RD signal from each processor
plus the complemented arbitrator-generated SELECT signals
were used directly to control the SN74365A. 1In the case

of the SN74367A, four of the drivers are controlled by Gl
according to the formula input = output when Gl = 0. The
other two drivers are controlled by G2 using the same

condition. To develop the control signal needed, the

98

I T e o

o Al

e

———]

DATA BUS
D0-D5 74365A MEMORY
Gl G2
|
A SELECT
DATA BUS
D0-D5 74365A MEMORY
N
Gl (7]
— A
A SELECT
DATA BUS h
g |) MEMORY
74367A
DATA BUS —
D6-D7 MEMORY
e
A WR
- ::] A SELECT
| —

Fig. 4-12. Dual Processor Card Data Bus Design

99

e Sep——

complemented arbitrator SELECT signals were ORed with the
processors RD and WR signals. ,
This almost completed the design for the dual pro-

cessor card. One very important function, generation of

ERNGG Selhaisizy | a dorvai

a 180° out-of-phase clock remained. This was very impor-
] tant since the whole design rested on the fact that the
‘ two processor clocks are 180° out-of-phase. To accomplish
this required modification to the clock input of one of
the MCB to allow it to be driven from the inverted clock
output of the dual processor card.

Once the design was completed, it was evaluated. This £
was necessary to determine how the memory speed require- 1
ments had changed as a result of the additional arbitrator |
components. From the previous analysis, the memory speed
requirements were set by the M1 T3/M2 Tl combination. This

combination was used along with the maximum component delay

from reference 26 and reference 27 to develop Table VIII. 3
The table showed that the delays associated with the arbi-

trator card and the 280A minimum WAIT set-up time of 70

usec (Ref 27:9) caused a wait cycle to be added to the

machine cycle for the second processor. This extended the

1 memory access time to approximately 600 usec. The same cal-

culations were repeated for the M2 T2/M2 Tl situation and

the identical situations occurred. i

In the analysis, the worst case; i.e., maximum compo-

nent delay was assumed. This resulted in the best situa-

b tion, the addition of a wait machine cycle. If this wait

100

H*—'—-——mﬁ.__._ —S e

andut 000T

€L ZTW X=93Uua GLS

3Tem ZRW A=23uUs GZ9

pTieAa 3TEM UybTy €€S

andut 3TEM S)O9Yyo Iossdooad bl TW 3O pueo 00S

2TgelTeae Ss3Ippe 1 2:3 2

ybty se0b6 103aTIAS X SS¥

ybty ss06 LIVM X £SH

M07 sa0b DMIN X SO¥

ZL TW JO 3j3xe3S SLE

I10ss200ad je pTIRA 3ITEM e9¢

MOl s9205 IIVM X 862

MOT s°0b DIUW X €82

L TW 3O 3xE3]S 0sc¢

oTqeITeAR SSa2Ippe Ysaijax LT

peIgestp LOdTdS A 291

mOT s20b HSJIUX 0€T

IL ZW 3O 3xe3s szl

Axowsu paaeys Hurousaxszsx 30U €L TW 3O 3xe3s 0

JUSAT X JI0SS©004d JUoAg X X0SSe001d (SU) swtgy

TL TW/EL THW

NOILVATVAT QYD ¥OSSIO0dd TYNd

IIIA FTdYL

101

"

cycle was not generated, then a memory access time of about
325 usec would be required. To insure this wait cycle
could be added if desired, the dual processor card was
designed with strappable delays in the wait circuitry.

Given the fact that a wait cycle could be added for
any dual processor access to shared memory, the memory
speed requirement would be established by a single pro-
cessor access to memory. For the worst case situation,
this was calculated to be about 375 usec from the time
the address was available at the memory until data must
be available on the output of memory.

A review of Table VIII revealed that the MREQ signal
was generated prior to the address being selected from
the 2 to 1 line decoders. To allow the MREQ signal to
be delayed to meet memory timing requirements, strappable

delays were included on the dual processor card for the

MREQ and RFSH signals.

Hardware Design Summary. The design of separate cards

now allowed the modularity concept to be implemented. In

any network application, the user of the universal network

interface device could select the cards necessary for his

application and interconnect these cards to form his unique

configuration of the universal network interface device.
The operation of the dual processor card was such

that the memory required was determined by the single pro-

cessor's memory access time. Should a dual reference to

102

memory occur, the dual processor card added a wait cycle
thus insuring the memory access time would not be less
than in a single processor case.

The design of the dual processor card also seems to
permit inclusion of a DMA network card into a dual pro-
cessor configuration. This would require use of the Z80A-
DMA support chip as the DMA controller. Since this chip
does respond to wait requests, the chip can be controlled
by the same output signals developed by the dual processor
card. This requires further study; however, it seems very
promising. If this can be accomplished, it further extends
the possible applications of the universal network inter-
face device.

The complete design of the entire system is shown

in Appendix B.

103

V. Software Design

The last phase of the design process involved the
software design. In this phase, the requirements defini-
tion functions selected for software implementation were
translated into code which accomplished those functions.
The first part of this chapter discusses the different
constraints associated with the software design effort.
This is followed by the segregation of the software func-
tions by processors and a discussion of the design of the
individual functions. An assembled version of the soft-
ware is provided in Appendix C. This assembled version
contains detailed documentation necessary to completely
understand the software. This detailed documentation will
not be repeated within this chapter. Instead, this chapter
will provide a general overview of the structure of the
software, the different subroutines developed and the data

structures used.

Software Design Constraint

The software necessary to operate the universal net-
work interface device was dependent upon the network environ-
ment in which the device was employed. The particulars
of the network protccol used along with other factors such
as the number of communication links and the types of

peripherals interfaced influenced the software that was

104

required. The number of variations in peripheral types
along with the different network protocols which could

be encountered did not allow development of universal
routines for those functions which were network-dependent.
For those functions, there was a need, however, for soft-
ware to demonstrate the capabilities of the universal net-
work interface device's hardware and software design. This
software could then be modified by the user and incorporated
into his programs. This approach was used in the design

of those functions which were network-dependent.

Testing. An important factor which influenced the
software design effort was the need for simplified software
to test the prcper operation of the universal network inter-
face hardware/software design. To test the complete fea-
tures of the universal network interface hardware design
dictated that ail the different cards (network card, input
card and dual processor card) be included in the software
effort. This reguired an operating system be developed
for each of the two processors. Within the different
operating systems, certain techniques were vsed to accom-
plish a given task. For the most part, the techniques
selected were the simplest to accomplish that task. This
was done to allow easier hardware/software isolation of
any problems ercountered during the testing phase. While
these techniques were adequate for testing, user application
programs may require more sophisticated techniques be

employed.

105

Protocol. One simple method to test the complete

operation of the universal network interface device would

be to connect two terminals to the device and connect the

transmit output to the receive input of the Z80A-SIO. This

would allow the terminals to exchange messages and thus

test the design of the network interface device. However,

to implement this testing approach required a structure

be developed for the message. The message structure used

for the operating systems in Appendix C was based upon

the SDLC message structure (Ref 35:1-1) and was as follows:

Flag (01111110)

Destination Address

Message Identification

Sender Address

Text

Error Check--CRC-16 Preset to One

Flag (01111110)
Where this message structure had an affect on the design
of the operating system, the software was so noted. If
the suggested testing approach is not used, then those
parts of the operating- systems can be changed to support

the new message structure.

Software Functions

LI

The different functions which were selected to be
accomplished in software are shown in Table IV. To these
functions must be added an additional function, device
initialization. This additional function was required
as most of the hardware chips selected had different

operating modes which were established through software.

106

If the testing approach previously discussed is used,
the different software functions had to be segregated into
those to be performed by processor #1 (operating system #1)
or the processor #2 (operating system #2) or by both pro-
cessors. The segregation used is shown in Table IX. This
criteria used for this segregation was to isolate the input
functions of the interface from the network functions of
the interface. This minimized interprocessor communica-
tions since each processor was performing mostly independent
tasks. This segregation also allowed easier isolation
of any software problems.

The table also demonstrates the effectiveness of SADT.
The SADT has modularized the different functions, each
of which can now be implemented through a short block of

code or a subroutine.

Input Processor Operating System

The functions to be performed by the input processor's
operating system are listed under the input processor in
Table IX. These functions can be further segregated into
those functions performed by the main operating system
or those functions performed by the entry routines. The
word entry technique for the program in Appendix C util-
ized the interrupt method; however, the interrupt service
routine developed could be converted to a subroutine and
used for a polling entry method. The segregation of the

different functions is shown in Table X. This segregation

107

obessop Jo pug 2zTubodoy
UOT3RWIOIJUT TOIJUOD SSD01d

abessop jo odAg AFT3uepl
peo33Twsuex] aq 03 Apeay se AJTjuspl
3{IOM3ION WOIXJ UOTIPWIOIJUT SSB001d
soeds obHrvi03s oYz a3ed07TEAA

991 J-I1011g JT DuUTWIS31SQ

UOT3PWIOJUI DI03S

JUSS Se UOT3RWIOIUT AJT3uSpIl
I933TWSURIY 92T[RTITUI

putanoy sutwaslag

3IOM3ISBN O3 UOTIRWIOIFUI 3JTWSURI]
10003031d }IOM3SN 03 DBUTPIOOOY Fewiod
UOT3PWIOJUI DI03S

S30TASQ JO UOT3BZTIRIJTUI

obessay 3O pug azT1uboddY

IDATSO09Y TeDO0T O3 UOTIPWIOFUI JTWSUBRIY
UOTJRWIOJUT TOO030Id HIOMIDN SDA0WDY
I233TWsSURI] DZTTeTITUT

pe3jTusuex], 2q 03 Apeay se AFT3usapIl

UOT3PWIOIUI TEDO0T JO UOT3IBT[ag A0F HO3YD

possa00a1g 2q 03 Apeay se Ayr3juapr
UOT3RWIOJUT DI03S

39S JI930vIRYD YIOMISN O3 JISAUOD
S90TAS9Q JO UCT3IRZTTeT3TUl

Z# I0SS900xg--{IO0MISON

[# x0ssaooag--3ndul

NOILYDIYOIS TYNOILONNL ¥OSSIDOUd

XI dT19YL

108

...;»%au-mw v

UOTJIPWIOJUI JTWSUBRIL],

ooeds obevio3g obesssap 23vO0TTR2Q
po33Twsuex] 9q 03 Apesay se AFrjuepI
passao0ad 99 03 Apeay se AJT3uspIl
abesss JOo pug D2z2TUbOODY

UOT3PWIOJUI [EBOOT JO UOT3ISTa@ IO0F YO9YD
UOT3PWIOIUI SI03S

399 I930BIRYD YIOMISN O3 IIADAUOD

I933TWSURI] 92ZTTeT3ITUI
Asng Teutwas] Teoo0T JT SuTuwaailag
S90TADQ JO UOT3IRZTTRTI3ITUI

S9UT3INOY IOTAIDS

wa3sAgs burjeaadQ uten

NOILYDIYOIS TUYNOILONNA
WHLSAS ONIIVYIJO ¥YOSSIOO¥d LNdNI

X dTdYL

. egraAn— -

B . T e S B e e

assumed the processor stored the word, thus it was more
efficient to perform certain functions upon word entry as
opposed to later fetching the word from memory to perform

these functions.

Initialization of Input Processor Operating System.

The first part of the software design effort was involved
with initialization. A composite SA diagram was used to
functionalize the initialization process. This composite
SA diagram is shown in Figure 5-1. The initialization con-
sisted of two phases, a device phase and an operational
phase. In the device phase, the different components on
the processor card and the input card were programmed to
their desired operational configuration. In the opera-
tional phase, the queues and tables needed for the proper
operation of the universal network interface device were

initialized.

Device Initialization Phase. The method used to

initialize the I/O ports was based upon the idea of a linked
list (Ref 36:71). Each of the 2651ls and the processor
board USART were required to have an associated parameter
list. The content of the parameter list was dependent upon
whether the I/O port was used in the synchronous mode of
operation or the asynchronous mode of operation. For the
asynchronous case, the parameter list consisted of the fol-

lowing:

110

SS9001d UOT3IEZTTRTITUI 3Yy °T-S °Hb1a
SYELOVIVHD
acmemm
TANNVHO TANNVHD
_ HSTUI T
TAOW AAOW _
ONILYIIdO ONILIVH¥EIO0 NOILVDO1
: ! TTIVL
SNONOMHONAS SNONOYHONASY m04um>
L NOILYDOT
TEANNVHD SSTHAAY ¥AINIOL
D1D-Y08% moqum> MOVIS
mwmm AAOW TAOW TAOW
SATEVL | ONIIVIZJO ONIIVIEO LdNYYIINI
_ | | |
sINaND
| no1d STS92 INYSA 0Id-08Z ¥0SSTD0Ud
AHYOWINW — _ al \—1 M
_ _ T
NOIIWZITVILINI NOIIVZITVILLINT NOILYZITYILINI
TYNOI IVYIdO a¥¥d INANI Q¥¥D ¥OSSID0¥d
L I

NOIIVZITVILINI

S

——

111

list identifier I/0 address of the hold register

Address of the location used to store the
memory block address for a local mes-
sage

Word to be transmitted to the command
register

Word to be transmitted to mode register
#1

Word to be transmitted to mode register
#2

I/0 channel address for the Z80A-CTC
which supplied the frequency to the
2651

Word to be transmitted to the Z80A-CTC
mode register

Word to be transmitted to the Z80A-CTC
prescaler register

Address of the next asynchronous 2651
parameter list

All of the asynchronous parameter lists were thus linked
together and could be initialized with a looping section
of code. A subroutine called ITUART within the loop
actually accomplished the initialization. The flowchart
for ITUART is shown in Figure 5-2.

The 2651s used in a synchronous mode of operation were
initialized in a similar manner. Each of the synchronous
2651s had parameter lists which were linked together. The
parameter list consisted of the information contained in
the asynchronous parameter list plus three additional
entries. These entries were the first synchronous charac-
ter, the second synchronous character and the delete char-
acter. A looping section of code was used to initialize
all of the synchronous 2651s within the linked list. The

subroutine ITUART was used to output the first section of

112

= . -

< ITUART)

OBTAIN HOLDING
REGISTER I/0 ADDRESS

|

COMMAND REG. I/O ADD.
EQUALS HOLDING REG.
I/0 ADDRESS PLUS THREE

|

OUTPUT COMMAND
REGISTER WORD

1

OBTAIN MODE REG. I/O
ADDRESS BY DECREMENTING
I/0 ADDRESS COMMAND REG.

r

OUTPUT BOTH MODE
REGISTER WORDS

OBTAIN Z80A-CTC
I/0 ADDRESS

OUTPUT MODE WORD
AND PRESCALER WORD

T

STORE ADDRESS OF
NEXT PARAMETER LIST
INTO BC REGISTERS

C RETURN)

’ Fig. 5-2. Subroutine ITUART Flowchart

113

information with the latter three entries outputed after

the return from subroutine ITUART.

The next group of chips which required initialization
were the priority interrupt controllers. These were again
organized into a parameter linked list structure. The
parameter list contained the following:

list identifier I/0 address of PICU
The mask word to be outputed
Address of next parameter list

The two chips still requiring initialization were the pro-
cessor chip and port A and B of the Z80-PIO. Each of these

were initialized with an individual section of code.

Operational Initialization. The operational initiali-

zation phase involved the initialization of the different
queues and tables required for operation of the universal
network interface device. From Table X, it was established
that three queues would be required for use by processor
#1. A network transmit queue (NWTXQ) was needed to trans-
}er from processor #l1 to processor #2 the storage address
of those messages to be transmitted on the network. Con-
versely, a local transmit queue (LOTXQ) was needed to trans-
fer from processor #2 to processor #1 éhe storage address
of those messages to be transmitted to peripherals con-
nected to the inferface. A third queus (LBTXQ) was needed
by processor #1 to store the memory address of messages
which could not be transmitted to local peripherals because

the peripheral was still receiving a previous message.

114

A A

Each of the queues were designed to be circular in nature
with two 16-bit locations used to control gqueue operation.
These 16-bit locations contained the address of the current
head of the queue and the address of the current tail of
the queue. The queue initialization consisted of setting
the head and tail of the queue to the address of the start
of the queue.

The other operational initialization requirement was
established by the store information function. Within the
furction was a requirement to determine where an incoming
message would be stored. This suvggested a table be con-
structed which consisted of the memory addresses of all
unused memory. As the memory was used, it would be removed
from the table. It would be put back into the table by
the deallocate storage space function. To allow this table
to be generated internally required certain information
and assumptions be made about the memory structure. First,
it was assumed a large contiguous section of memory would
be dedicated to message storage. This section would then
be broken up into a number of fixed sized memory blocks
which would be allocated through the memory table. The
initialization routine generated the memory table based
upon the value associated with certain variables. The
values required were the address of the start of the memory
table (LOMNTB), the address of the start cf the contiguous
section of memory (MENST), the number of memory blocks

(BLKNUM) and the size of each memory block (BLKSIZ). The

A

AW s

maximum block size was limited to 256 to simplify the

operations associated with this value.

Operating System #1 Generalized Subroutine

This concluded the initialization portion of processor
#1. The initialization generated a requirement to add/
delete memory addresses from different queues and from the
memory table. The next section discusses the generalized

design of such routines.

Queue Addition/Deletions. The operations associated

with a given queue were limited to the addition of a mem-
ory block address at the tail of the gueue and the removal
of the memory block address from the head of the queue.
In a network application, there may be a method to identify
an important message which would allow it to be added to
the head of the different queues. A routine to do this
was not included in the operating system. If required,
this routine could be easily developed as it would be a
slight variation of the other routines. The lock-out method
developed for jointly shared queues would support this other
routine.

When the need for the different queues was discussed,
the information within the queues was shared and changed
in two instances by both processors. There could arise
a situation where one processor was changing information
while the second processor was reading this same informa-

tion. Thus, entry to the information in the shared queues

116

had to be controlled to insure only one processor had

access to the queue at a given point in time.

The method chosen for control of the gueues was
through the use of a queue access word. The processor
desiring access to the queue would test a bit to determine
if the other processor was using the queue. If not, it
would set a bit in the access word to reflect it was using
the queue. While this approach was feasible, it could not
be directly implemented. A problem resulted because of
the instruction execution relationship between the two pro-
cessors. When one processor attempted to gain access to
information in a queue, the other processor could be from
one-half clock cycle to any multiple thereof of also attempt-
ing to gain access. If the two processors were within a
half clock cycle of each other, both would test for the
other, determine the queue was free, set if queue status
to using, and begin changing information contained within
the queue. This clock relationship dictated a more sophisti-
cated access technique be designed.

Since the processors could be so close in synchroniza-
tion, a delay had to be introduced into the entry routine
of one of the processors. Processor #2 was designated as
having priority over processor #l1 in the use of any of the
queues. On attempting to gain entry to any of the shared
queues, each of the processors would set unique bits to
indicate it was waiting for the queue. They would then

test to determine if the other processor was waiting. If

117

k] e i it

e

so, processor #1 would jump intc a loop, while processor

#2 would determine processor #l's status concerning use

of the queue. This was accomplished by testing another

bit to determine if the gueue was in use. If not, pro-
cessor #2 would set the bit indicating it was using the
queue and proceed with its action. If processor #1 was
using the queue, processor #2 would be put into a wait loop
until processor #l was through with the queue. The actual
code for this is shown in Figure 5-~3 with an execution
timning diagram shown in Figure 5-4. The timing diagram
(case 1) shows that for the case of 0.5. #2 attempting to
gain access to the queue ahead of 0.S. #1 the lock-out code
would function properly. Case #2 illustrates the worst
case for the situation when 0.S. #] is ahead of 0.S. #2

in terms of queue access actions. In this case, 0.S. #1
tests the waiting status of O0.S. #2 one-half clock cycle
before it is changed. Again the lock-out code functions
properly as the bit 0 instruction would cause 0.S. #2 to
be put into a wait loop.

Once the lock-out mechanism was designed, the flowchart
for the queue addition and deletion tasks were developed.
These are illustrated in Figures 5-5and 5-6. To insure
these algorithms work properly, the queue must consist of

an even number of locations with the following structure:

118

R

R

WSTURYODIW 3INOYD0T IOSS800xd ‘€-§

butsn z# Iossoooxd 03 pIoOM sSn3els 39S
putsn T4 xossoooad 3T dool

putsn T4 aossoooad JT o8Yd

put3item jou 1§ Jossadoxd 3T dun(
PbutyTem T4 xossdooad JT Yo9Yd

putitem z§ xossocoad o3 pIom sniels 39S

CLSE T TR T TR TN

omj.ﬂpm

(TH)

dO01

(IH)

qJI3II0

(IH)
("IH)

pIiom sniels snsnb jo ssaappe

9poD C# °S°O

putsn T# °S°QO O3 PIOM Sniels 39S
putytem z $ xossadoad 3T doot

putgtem gz 4 xosseoo0ad JT HO9YD

butytem T4 Iossoo0ad 03 paIoM snieis 39S

n en e e

(IH)
doo1
("IH)
("IH)

paiom snje3s snanb Jo ssaappe

9poD T# °S°O

but3Tem z# aossadoad

but3item 14 xossoooad
asn ut wswswllllg _

Q¥OM SNIVIS INAND

‘0 L3S
‘g dr
‘0 119
‘g dr
b i
‘T Lds
‘a0 a1

‘0 L3S
‘ZN 4r
‘T 119
‘T 13s
‘TH Q1

cct: & (o)

dooT

doo

119

thibeis, o

INO}D0T welshs burtjeasado *p-§ *HTJI

INNTIINOD T#

ANNIINOD T#

| 0 LId | ar I
0 1as
| _
1 119 z 1ds | TH a1 |
[_ _
| ar z 119 | 1 13s 1
Z @S5VD
[| |
_ T 114 | ¢ 1ds _ TH a1 B
[| | |
| z 119 | 1 13s | TH a1]

T dSv¥O

Z#

T#

#

T#

SO

SO

SO

120

SO

sO

SO

QUEUE
ADDITION

| ACCOMPLISH
i LOCKOUT TASKS

l |

OBTAIN ADDRESS
TAIL OF QUEUE

]

STORE LOW BYTE)
MEMORY BLOCK ADD .

1

INCREMENT TAIL
OF QUEUE ADD.

[

STORE HIGH BYTH
MORY BLOCK ADN

|

INCREMENT TAIL
OF QUEUE ADD.

YES END NO
OF
QUEUE ;
! f
“ |
! ,
| SET TAIL OF ACCOMPLISH .
1 |[QUEUE TO START LOCKOUT TASKS ﬁ
| OF QUEUE
! ADDRESS 1
(RETURN j

{ Fig. 5-5. Queue Addition Flowchart

121

YES

QUEUE
DELETION

|

ACCOMPLISH
LOCKOUT TASKS

OBTAIN ADDRESS
HEAD OF QUEUE

=

LOW BYTE MEMORY
BLOCK ADD INTO
C REG.

|

INCREMENT
HEAD OF QUEUE
ADDRESS

!

[HIGH BYTE MEMORY]
BLOCK ADD INTO
B REG.

]

INCREMENT
HEAD OF QUEUE
ADDRESS

END

1. . SET HEAD OF
QUEUE TO START

OF

QUEUE

OF QUEUE
ADDRESS

ACCOMPLISH
LOCKOUT TASK

(:» RETLRN ij)

122

Fig. 5-6. Remove Information from Head of Queue

Start of gqueue address XXXXXX
XXXXXX
XXXXXX
End of queue address XXXXXX

This structure was chosen to reduce processing time
associated with the end of queue check. The sixteen-bit
subtract instruction which must be used to make this check
includes a carry flag subtraction. With this structure,
the proper result is obtained irrespective of the value

of the carry flag.

Memory Table Addition/Deletion. The actions required

to be accomplished on the memory table were similar to the
shared queue actions. Since the memory table would be used
by both processors, the lock-out code would be required for
both actions. The memory table was set up with only a head
pointer. This was done to eliminate an end of table check
for the addition action. The required acticns consisted

of addition to the head of the table and deletion from the
head of the table. The addition algorithm was very simple
and is not presented in this paper. The deletion action
was similar to the remove information from head of queue
algorithm except that after the lock-out tasks were accom-
plished, a check had to be made to determine if memory was
available. If memory was not available, a wait loop was

entered, until a block was freed. This approach was used

since memory was allocated upon receipt from the user peri-

gl n o)~

pheral of the first character. 1In an actual application, ’
a more formalized local protocol procedure could be used
which required the peripheral to obtain access to the uni-
versal network interface device before sending a message.
The right to access would then be conditioned upon whther
memory was available or not. The deletion flowchart is
shown in Figure 5-7.

Interrupt Service Routines
Operating System #1

The next routines developed were those routines which
would normally be used to service a teletype or CRT terminal
connected to the universal network interface device. Within
the routines, certain simplifying limitations were imposed
to reduce the complexity of the code. The address informa-
tion provided to the universal network interface device
was limited to two characters. The first character was
the destination address while the second character was the
sender address. Thus terminal identifications were limited

to zero through none or A through 2. This was done to mini-

mize the development of a local protocol for the testing

of the universal network interface device. By limiting

the address, conversion and packing of multi-character

address was not required. To send a message, all the

terminal had to do was to begin typing the desltination

address of the message.

L S SRR RSP S SR TS SRS

YES

MEMORY TABLE
DELETION

Je

ACCOMPLISH
LOCKOUT TASK

_

OBTAIN ADDRESS
OF END OF TABLE

1

OBTAIN ADDRESS
OF HEAD OF TABLE

5

HEAD-END

ACCOMPLISH
LOCKOUT TASK

NO

|

STORE LOWER BYTE
IN C REGISTER

¥ §

SAVE
REGISTER INCREMENT HEAD
ENABLE STORE HIGHER BYTE
INTERRUPT IN B REGISTER
[2| |3|
Fig. 5-7. Memory Table Deletion Flowchart

125

T

%

OBTAIN ADDRESS
HEAD OF TABLE

B

HEAD-END

NO

DISABLE
INTERRUPTS

r

RESTORE
REGISTERS

INCREMENT
HEAD

|

ACCOMPLISH
LOCKOUT TASK

(::¥RETURNAﬁj)

Fig. 5-7--Continued

126

Operating System #1 Receive Interrupt Routine. This

subroutine implemented for a TTY or CRT terminal the
receive functions under the service routine breakout in
Table IX. The routine would normally be entered upon
generation of a character bit stream by the terminal. The
character bit streams would continue to be stored until

an end of message character was received. Upon receipt

of this character, the memory block storage address would
be added to the tail of the network transmit queue for
further processing by processor #2.

In development of the algorithm for this routine, the
situation where a message length exceeded the memory block
size was considered. One approach was to link the memory
blocks and then transmit the complete message after it was
received. However, the message packet transmission concept
is gaining increasing support as an efficient method of
message transmission. If the memory block size was defined
to equal the maximum packet size, then a packeting concept
could be implemented. Counter to other decisions which
simplified the code, the latter concept was selected as
the method to handle message block storage overflow. To
implement this method required a control word be sent with
each message. The control word was organized as shown in
Figure 5-8. A one in bit position four signified the mes-
sage was one packet in a sequence of packets. A one in
bit position five signified the message was the end packet

of the sequence.

127

pers

end of sequence SRS J
signified message part packet sequence
of a sequence number

Fig. 5-8. Packet Sequence Control Word [

The flowchart for the receive service routine is shown
in Figure 5-9. To support this routine required five eight-
bit words be allocated for use by the service routine.

These words were used to store the address of the memory
block allocated to the routine, the current number of words

stored in the memory block, and the message control word.

Operating System #1 Transmit Interrupt Routine. The

transmit interrupt service routine implemented the transmit
functions under the service routine in Table X. It trans-
mitted a word of information in response to a transmit
buffer empty interrupt. The flowchart for the routine is
shown in Figure 5-10. To implement this routine required
eight eight-bit words be allocated for use by the routine.

These words were used as follows:

Words 1 and 2 Address of memory block being transmitted
Words 3 and 4 Multibuffer address of next memory block
Words 5 and 6 Address of multibuffer status word

Words 7 and 8 Number of words transferred

The multibuffer address is the address of a portion
of memory used to assemble the packet sequences of a mes-
sage. There can be any number of these multibuffer storage

areas in memory. They require 19 contiguous storage spaces

128

é (_‘ TTY RECEIVE)

SAVE INTERRUPTED
PROGRAM REGISTER

NO MEMORY

‘\\\\\ffiiCATED

g

OBTAIN MEMORY
BLOCK
INPUT WORD
YES DELETE
r* CHAR

DECREMENT BLOCK
STORAGE ADDRESS

STORAGE
EXCEEDS BLOCK

Fig. 5-9. Receive Interrupt Service Routine Flowchart

129

SET PART OF
PACKET BIT

SET END OF
SEQUENCE BIT

[

|

INCREMENT PACKET
SEQUENCE NUMBER

STORE CONTROL
WORD

I

B

STORE CONTROL
WORD

PUT MEMORY BLOCK
ADDRESS ON NWTXQ

|

i

PUT MEMORY BLOCK
ADDRESS ON NWTXQ

SET MEMORY BLOCK
ADDRESS TO ZERO

[.

|

GET ANOTHER
MEMORY BLOCK

SET CONTROL WORD
TO ZERO

L

1

DUPLICATE ADDRESS
INFORMATION

SET MESSAGE LENGTH
EQUAL 0

|

STORE THE WORD

&

NV

Fig. 5-9--Continued

STORE WORD

j -

i RESET PIC
|)
RESTORE REGISTERS

|

ENABLE INTERRUPT

C RETURND

Fig. 5-9--Continued

131

TTY
TRANSMIT

SAVE INTER-
RUPTED PROGRAM |
REGISTERS :

I

OUTPUT
NEXT WORD

NO

NO

CHANGE
MULTIBUFFER
TO NOT IN USE

PUT NEW BLOCK
ADD INTO TRANS-
MIT LOCATION

RETURN PREVIOUS
MEMORY BLOCK

Fig. 5-10. Transmit Interrupt Service Routine Flowchart

132

DISABLE
TRANSMITTER

B

RETURN THE
MEMORY BLOCK

RESTORE THE
REGISTERS

RESET PICU

[

ENABLE INTERRUPT

(:7 RETURNA_:)

Fig. 5-10--Continued

133

which are used as follows:

Word
Word
Word

Word
Word

The assembly area status word is organized as shown in
Figure 5-11.

plish the service routine functions.

1 Status word for the assembly area
2 I/0 address of the holding register
3

and 4 Address of location used to store the
memory block address of message being

transmitted
5 Sender's address of the message

6 thru 19 Addresses of the different blocks where

the packet sequences are stored

This completed the design necessary to accom-

all packets received

C e 5 e J
number of number of
packets packets
in sequence received

multibuffer storage area in use

Fig. 5=L1.

Main Operating System #1

tion.
transmit queue and the local busy transmit queue and took
action based upon certain conditions.
mally involved enabling of the transmit portion of a 2651
and the loading of the message memory block into the 2651
transmit address location.
those shown in Table X for the main operating system.

would have been the only functions of the main operating

It monitored the multibuffer storage areas, the local

134

Multibuffer Status Word

The main operating system performed a monitoring func-

These functions correlated to

These actions nor-

o Ml

system had the packet concept not been implemented. The

packeting concept increased the complexity of the operating
system because of the tasks associated with arranging the
packets into the proper sequence. Once processor #2 put
information into the local transmit queue, operating system
#2 had to perform the tasks shown in Figure 5-12.

The network address is correlated to the local address
through use of two tables. The first called the network
address table (NWADTB) contains the network address of all
peripherals connected to the universal network interface
device. For each entry in the network table, there must
be a corresponding entry in the local address table (LOADTB).
The entries required in the local address table are the
local I/0 address which corresponds to the network address
and the address of the location used by the service routine
to store the memory block address of the message being trans-
mitted.

The overall flowchart of operating system #1 is shown
in Figure 5-13. This then completed the design cf operating

system #1.

Network Processor Operating System

The functions which are performed by processor #2 and
operating system #2 are shown in Table IX. In a similar
manner, these functions can be segregated into those func-
tions performed by service routines and those performed by

the main operating system. This segregation is accomplished

in Table XI.

e el i s

e o

g L N e Y s

e ettt .

‘‘‘‘‘‘‘‘‘

INFORMATION
ON LOCAL
TRANSMIT QUEUE

REMOVE INFORMATION
FROM QUEUE

|

CORRELATE NETWORK
ADD TO LOCAL I1/0
PORT ADD.

PACKET
OF
SEQUENCE

YES

See Figure
5=13

TRANSMITTER
BUSY

LOCAL TABLE ADD.
AND MEMORY BLOCK
ADD. ON LBTXQ

ENABLE
TRANSMITTER

5 [
CJUMP) C JUMP j

Fig. 5-12. Local Transmit Queue Flowchart

136

it e

MULTIBUFFER

NO

ASSIGNED/

STORE MEMORY BLOCK ADD.

OF MULTIBUFFER AREA

AT APPROPRIATE LOCATION

T

INCREMENT NUMBER OF
PACKETS RECEIVED

END OF
PACKET

SEQUENCE

NO

CHANGE BITS 3-5
OF STATUS WORD
TO THIS VALUE

ELS: 3=5
EQUAL

BITS 0-2

1

TO ONE

SET BIT 7 OF
STATUS WORD

o

3

Fig. 5-12--Continued

137

Sggee ko i R

<l e 5
mﬁaw 2730 e

L e

e A e —

T ——

YES

SET BIT 6 CF
STATUS WORD
TO ONE

STORE I/O ADDRESS

STORE MEMORY
BLOCK ADDRESS

STORE MESSAGE
FROM ADDRESS

N

MULTIBUFFER
AVAILABLE

PUT MESSAGE AT
TAIL OF LOTXQ

Con)

T T Ny —

Fig. 5=-12--Continued

(:; 0s #1 4:)

MULTIBUFFER
#1 BIT 7
ZERO

YES

ULTIBUFFE
#2 BIT 7
ZERO

YES

LOAD MULTIBUFFER
INFORMATION
IN SERVICE
ROUTINE AREA

1

ENABLE TRANSMITTER

FIG. 5-~12

NO

REMOVE
INFORMATION
FROM QUEUE

r

13

v

Fig. 5-13. Operating System #1 Flowchart

139

-

T

sbesso 30 pumg 9zTubooOoy

aauty Sbessay 398

JUSS Se uoTjewIoul AJTIUapI

YIOM3IOBN O3 UOTFPWIOIUI JTWSURIY
UOTJIRWIOJUT MIOMISN

pessaooad aq o3 Apesay se AJr3uspl

991J-~I0I1F JT SuTWIS3SQ

UOT}eWIOIUI 31035

2oeds obevi03S B9Y3z S3EO0TTR=3Q
UOT3RWIOFUT TOD030Id YIOMISN SA0WDY
UOT3RWIOJUI [OIJUOD 5590014

abessap jo adAy AjT3uspr

I933TWSURI] SZTTETI3TUI

but3znoy sutuwrslsd

pe3l3Tusuel] 8q o3 Apesy se AFT3juspIl
2bessop MOV @23raI=2U8H

UOT3eO0T STYJ XIOJF 9besssy JT suTwIaledg

UOT3eZTTRTITUI

S2UT3INOY OOTAISS

wo3sAs burjzeaxadp uUTen

NOILVDIYOIS TYNOILONNA

WILSAS ONILWIIdO SSTO0Yd MYOMLAN

IX JTEVL

140

Initialization of Network Processor Operating System.

The initialization of processor #2 required devices be
initialized. Device initialization was required for the
processor, the processor board USART and associated chips,
and the network card's Z80A-SIO and Z80A-CTC. Each of these
initializations were done in an individual section of code.
The Z80A-SIO and Z80A-CTC initialization did employ a param-
eter list and the capability to link the parameter lists j {
together. For the Z80-SIO, the parameter list consiste<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>