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second moment techniques. The effect of speckle on the

performance of the system is investigated.
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I
Abstrac t

When coherent light is incident on a surface which

is rough in comparison to optical wavelengths , a random

interference pattern called speckle is produced in the

reflected field. The effects of speckle on an imaging system

composed of a laser scanning a rough surface and a receiver

measuring the reflected field are examined. Three types of lasers

and two types of receivers are considered. The lasers are designated

by their bandwidths as monochromatic , quasimonochromatic , and

)roadband. The two receivers are the direct detection and j
the heterodyne .

The field reflected from the rough surface is “crudely”

modeled by multiplying the incident field by a reflectance term

and a random phase term which is indicative of speckle effects.

By second moment techniques , the imaging systems are modeled

in terms of their mean , covariance and system parameters . All

fields are propagated by the Huygens-Fresnel integral.

The system consisting of a broadband laser and a direct

detection receiver is shown to be independent of speckle effects.

All other systems are shown to have “noise”, due to speckle

effects , which is signal dependent . The signal to noise

— ratio , for the systems which include a direct detection receiver ,

is found to be greater than for systems which have a heterodyne

receiver. The systems with broadband lasers are shown to have

higher resolution than systems with the other laser sources. The

broadband laser-direct detection receiver system is found to

have the highest resolution .
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A system consisting of a quasimonochromatic laser-heterodyne

rece iver is used for rang ing. The range from the system to the

rough surface is found by measuring the phase delay in the

reflected laser field. It is found that the ranging performance
F 

of a heterodyne scanning system is not fundamentally degraded

by speckle effects.
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AN A N A L Y S I S  OF T I l E  EFFECTS OF

SP E CKLE ON LASER S C A N N I N G  SYSTEMS

I. I n t r o d u c t i o n

A laser line-scan ima ging system is a sy st e m  w h i c h  p roduces

the image of some desired object. Fundamentally, the system

is composed of a t ran smi tt er and a receiv er . The t ransmi tt er

is a laser which il luminates the desir ed obj ec t surface. The

laser field is reflec ted or backscattered from the surface and

par t ially colle cte d by the receiver . The backsca tt ered f iel d ,

which is a function of the  reflectivity of the object surface ,

is processed by the rece iver to form an ima ge of the objec t

surface. This image is the desired output of the receiver.

The receiver con tains op t ics , detectors , f i l ters , and other

componen ts which ~re need ed to produce the de si red image . A

drawback to this sys tem occur s becaus e most  s u r f ace s  are

rough when compared to the  wavelen gth of a laser field. The

rough surface in troduces noise into the image . For coherent

illumina tion this noise is commonly called speckle , and i t

dis torts the image obtained by the receiver. Speckle is discussed

in de tail in Chap ter II.

The purpose of this thesis is to determine the effects of

speckle on the performance of a laser l ine-scan imag ing sys tem.

Three laser sources: monochroma tic , quasimunochroma t ic , and

broadband ; and two receivers : heterodyne and direct detection

are inves tigated. In this thesis , the ef fec t of propaga tio n

on all fields is de termined from the Iluygens-Fresnel integral.

1
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The rough surface is represented by a well known statistical

model and the receiver output is a current which is based

H on a known receiver model. The output current is described

by a second moment mode_ which is a function of the laser beam

H spot size , the system scanning velocity, the surface area

of the receiver input , and the type of laser used.

The thesis is organized in the following manner. Chapter

II developes the background material necessary for examining

the line-scan imaging systems. In Chapter III , the second

moments models are determined for two systems : monochromatic

laser-direc t detection receiver and monochromatic laser-

heterodyne receiver. These systems are compared on the basis

of their signal to noise ratio and resolution ability. This

chapter establishes the method for determining the second

moment models of the other systems . In Chapter IV , linear

frequency modulation is used to produce a quasimonochromatic

and a broadband laser source. The results of Chapter III are

extended to produce four more second moments models , which

arise from the two modulated laser sources. The signal to

noise ratio and the resolution ability of each model is

discussed. In Chapter V, a quasimonochromatic laser source is

amplitude modulated. The modulated laser field is propagated

to the rough surface and back , and its change in phase is

measured by a heterodyne receiver. The phase change is used

to determine the distance from the surface to the system.

The effects of quantum noise are als~ included in this system .

2
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II. General Confi gura t ion

In this cha ter , several background areas are discussed .

These areas serve as a basis for examining the laser line-

scan imag ing system . The background areas are : a discussion

of speckle , the comp lex baseband represen tat ion for opt ical

fields , the opt ica l receiver models , the second momen t model , -

the Huygens-Fresne]. integral , and propagation and reflection

of a laser field.

Speckl e

When a coherent optical field is incident on a surface

which is rough in comparison to the optical wavelength , a

random interference pattern is produced in the reflected field.

This random interference pattern is called speckle. One

example of speckle is the sparkling pattern produced when the

light of a visible laser is reflected from a wall. The effect

of speckle is to degrade the image of the object surIace by

superimposing a “noiselike structure which masks the spatial

information present in the image” (Ref 1:1257). This results

in a pattern of constructive and destructive interference

being produced in the light reflected from the rough surface.

The randpm interference pattern is composed of bright spots

due to constructive interference , dark spots due to destructive

interference , and areas with intensities between these extremes.

Thus the pattern has a granular appearance.

Rough surfaces are not the only cause of speckle. The

term speckle has been generalized to include most spatial

3
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interference effects that result when any type of wave or

field is scattered from diffuse objects (Ref 2:16). Speckle

also occurs in atmospheric transmissions and holograp hy. It

was once thought to be a nuisance , but now it has many

applica t ions. For example , it is used in the measuremen t

of mo t ion of a rough body (Re f 1 :12 71 ) , photographic op t ical

processing (Ref 1:1275), and the remo te sensing of cro sswind

in the atmosph ere (Re f 3: 1).

The speckle phenomena has been known and investigated

since the time of Newton (Ref 4) .  Its early his tory is

briefly discussed in the introduction of a book edited by

Dainty (Ref 5:1-7). The invention of the first CW laser

in 1960 led to the first observations of laser speckle. They

were repor ted by Rigdcn and Gordon (Ref 6:2367-2368) and by

Oliver (Ref 7:220). Since the early 1960’s, much work h-as

been done in the speckle related field. The entire issue of

the November 1976 Journal of the Optical Society of America

(Ref 1) was devoted to the discussion of numerous speckle

phenomena and effects.

Complex Baseband Representation -

Consider the real scalar optical field

u(i,t) = A(i ,t) cos[2lT f0t 
- ~~F,t)] (1)

It is a function of time , t , and space , r , where ~F is a vec tor

with spatial coordinates (x, y , z). The complex baseband

represen tation of u(F,t) is 
-

_ _ _ _  

- 
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u(i~, t) = Re{A(~F,t) exp [j4(~F,t)1 exp [-j2-rr f0t)} 
F

~ Re(U(i ,t) exp [-j2rr f0tl } (2)

where Re(•} is the real operator and U(~ ,t) is the complex

envelope of u(i ,t).

Throughout this thesis , the field , u(r,t), is represented

by i ts  complex envelope.  The exponential  time funct ion is

suppressed. In addition , the field is often described at some

plane z, thus it varies in the x and y directions only.

Therefore , the real scalar optical field at a given plane z

is denoted U(x,y,t). The real field can always be obtained

from Eq. (2).

Optical Receivers

An optical receiver is a device which measures optical fields.

The receiver input is a field and its output is a signal

proportional to the input field. The receiver input for a line-

scan Imaging system is the laser field backscattered from the

object surface . The field entering the receiver is in general

limited by the receiver ’s optics , field-of-view , or detector

area. It is assumed in this thesis that the receiver -is designed

so that the field is limited only by the surface area of the

detector. This insures that the entire image of the object

surface and its spatial frequency content enters the receiver.

Two receivers , the heterodyne and the direct detection , are

investigated in this paper. With the exception of Chapter V ,

both receivers are assumed to be ideal. That is , all quantum

effects and noise terms are neglected. This allows the effects

5
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of speckle on the receiver output to be isolated. This does not

make the problem any less general. The quantum effects and

noise terms can be added to the final results if desired.

The Ue terodyne Receiver. The heterodyne system adds the

input field to a local oscillator field centered at the optical

frequency 
~0~~

jF• The ideal receiver output current is

(Ref 8:481-487)

i(t) = 
h~f0 I f JU 5 (x ,y,t) + ULQ (x ,y) exp[j2-lT f1p t]J

2dxdy

Ad

= 

~~ I .1’ [~u (x ,y,t)I + ItJ Lo (x ,yfl

A d

+ 2Re(US(x,y,t)ULO (x ,y) exp[-j2r f1~t]}]dxc~y (3)

where

q is the charge of an electron

rj is the detector quantum efficiency

h is Planck’ s constant

f0 is the optical frequency

Ad is the area of the detector surface

U5(x ,y) is the signal field incident on the detec tor

surface

The first and second terms in Eq. (3) are centered at zero

frequency . They can be electrically fil tered ut leaving

ih(t) 
= ~~~~~~!i f f Re{U

5(x ,y)U~0(x ,y) exp [-j2!Tf1~ t]}dxdy (4)
Ad 

-

6
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From Eq. (4) it is seen that the output current is related

to the actual input field U5(x ,y).

The Direct Detection Receiver. The direct detection

system is a square law device . The ideal receiver output

current is (Ref 9:91)

= 
i~~ Ad 

U5(x ,y,-tfl 2dxdy (5)

In Eq. (5) it is seen that the output current is proportional

to the intensity of the input field , 1U 5(x,y)1
2. Recall

that the output of the heterodyne receiver is proportional to

the input field itself. This is the major difference in the

mechanics of the two receivers .

Second Moment Model

The input field to the optical receiver may be unknown .

This is true for the case where speckle occurs since the

receiver input field contains a random interference pattern .

If the input field is unknown the receiver output current is

also unknown.

In statistics , one representation for an unknown is the

second moment model .  In this  model the unknown is thought  of

as a signal plus an additive noise. The “signal” is considered

to be thee mean of the unknown . For an unknown current , the mean

is denoted E[i(t)} where E[.] is the expected value operator.

The “noise” is considered to have a mean of zero and the same

covariance as the unknown . The covariance of an unknown

7
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i(t)

n(t)
E(n(t)] “ 0
R~(t~ t~) = C1(t ,t~)

Fig. 1 Second Moment Model for an Unknown Current

current is defined as (Ref 10:321)

C~(t ,t )  — E[(i(t) - E [i(t)fl(i(t ) - E[i(t~ ) ] ) ]

— E[i(t)i(t~)1 
- E [i(tflE [i(t )1

~ R~(t,t )  - E [i(t)JE [i(t )J (6)

where R1(t,t’) is the correlation function (Ref 11:337). The

period for which the correlation function is non-zero is called

the correlation interval. The second moment model for an

unknown current is illustrated in Fig. 1.

The Uuygcns-Fresnel Fntegra l

Consider the geometry of Fig. 2. The complex envelope of

the monochromatic field at a point (x,y) in the observation

plane due to complex envelope of the field in the object plane

is expressed by the Iluygens-Fresncl integral (Ref 12:58)

8
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r01 
- [z2+ (x-~)

2+ (y-B)2I~

Fig. 2 Diffraction Geometry (Ref 12:57)

U2(x,y) f J  h(x ,y , a,8) U1(a ,8) dad8 (7)

where

1 exp [jkr 01J
h(x,y,a,$) — — cos(n ,r01) (8)

JA  r01

and
Ic is the wave number ,

r01 is shown in Fig. 2

cos (ii,~F01) is the cosine of the angle between

and the normal to the ct-B plane .

Eq. (7) is valid for monochromatic fields only. The finite

extent of the field in the u,8 plane is included in the

9
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m a t h e m a t i c a l  desc r ip t ion  of ~~~~~~~ This restriction allows

the i n f i n i t e  l i m i t s  to be p laced  on the integral in Eq. (7).

Unless otherwise noted , a l l  i n t e g r a l s  in this paper have

infinite limi ts. For simplicity these limits are suppressed.

Eq. (7) is difficul t to use. It can be simplified through

several  a p p r o x i m a t i o n s .  If the angle  between ~T and

is less than  18° , then  cos(~~,i 01) = 1. Also , if the deviation

of the field from the z axis is much less than the d i s t a n c e

z , the q u a n t i t y  r 01 in the denomina tor  of E q. (8) is approximately

z .  Eq.  (8) now becomes

— 1h(x ,y,ct ,~3) = ~~

-

~~

-

~~

- exp [jkr0~ ] (9)

The r 01 in the exponent  can not be approxima ted by z

becau se it is mul tiplied b y a la rge  number , k. Thus even

small  changes in r 01 can r e su l t  in phase changes  much g rea te r

than 2n .

One commonly used exponen t i a l  a p p r o x i m a t i o n  is the Fresnel

approxima tion . From Fig. 2

r01 z[l + ( X- ct~~2 
+ ( ~~~~~~~ (10)

In the Fresnel approximation , the binomial expansion ,

[l+b]~ = 1 + b - 
~~

- b2 + •‘ .  
Ib N I  (11)

is used. Only the  f i r s t  two terms in the expans ion  are kep t .

Thus the exponential approximation for r01 is

r
~l 

z [1 + 
1( X- ct)2 + 

1 
~ 

~~~~) 2 } (12)

~ 10
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Goodman (Ref 12:59) states that this approximation is good when
t .

- 

~
- z > > -

~~~~~~

- [( x - c t ) 2 
+ (y-8)2J

2 (13)

Now Eq. (9) can be written as

h(x,y,ct,B) ex~ bkz1 exp [~~ [(x-~)
2 

+ (y-8)2]] (14)

Eq. (7) then becomes the Fresnel approximation written as

U (x ) = 
exp [jkz] I I

2 ,y jA z J J U~ (cz,8)

exp [4~ [(x-ct)2 + (y-B) 2J) dade (15)

or

U2(x,y) 
= 

exp [jkzj exp[j-~~--(x
2+y2)J f f U1(a ,~ )

exp[j-~ -- (ct2 + B2)]exp [-j_~-— (xa + yB)] dc~dB (16)

In many cases , f i e ld  propaga t ion  is adequately described by

the one dimensional form of Eq. (16). It is given by

(Ref 13:316)

exp [j(kz- T
~4)J kx2 ~U2(x) 

= ____________ exp[j 
~~~~~~ I j 

J 

U1(c~)X

exp[j!~~~} exp[-j~-~~~J dx (17)

In the latter case , the field at the z plane is variable in only

one lateral direction .

As shown in Appendix A , the Huygens-Fresnel integral can

be extended to include the propagation of broadband fields.

The one dimensional extended integral is

11
t
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2
U2(x,t) = ex p [j (kz - 4 )

~ exp [jk 
~~

-
~

-]

(X z ) ~

U1(ct ,t 
- —~i) exp [j~$fr.j exp [-j2:~~Jda (18)

where c is the speed of li ght and the quantity ~~~~ is due

to the propagation delay of the field. Eq. (18) is valid

for all time varying fields as long as

.-~L > > i  (19)

where B is the bandwidth of the complex envelope which is

centered at the frequency f0.

A special case of Eq. (18) is valid for the propagation

of quasimonochromatic fields. The bandwidth restriction on

these f i e lds  is tha t  (Re f 12:108)

1 > > l O ilmax (20)

This restriction implies that for a fixed ~~, U( c t , t )  cannot

change signif icantly in any time much less than ‘B seconds.

Eq. (18) is modified to represent the propagation of

quasimonochromatic fields through the following substitution

(Ref 12:55)

r
U 1(cx , t - 

_
~-i-) = U 1(ct , t )  (21)

Propagation and Reflection of a Laser Field

Siegman has shown (Ref 14:306) that when the output

of a monochromatic laser is propagated by use of the Huygens-

12 
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Fresnel Integral , the resulting laser field is a Gaussian spherical

wave of the form

k 2 2
U(cz,B) = Aexp [jkz1exp [j.~j~(ct

2 
+ B2)]exp[- ct B 

~ 
(22)

W (z)

where A is the amplitude of the field and W(z) is the radius

of the beam spot size at a distance z from the laser. The

radius is measured at the point where the field amplitude is

e~~ of it maximum value. The one dimensional form of Eq. (22)

is

U(ct) = -
~~~~~~~~~~ exp[j(kz-~ )J expJ-~~ )exp[j (23) 1::

When the above field is normally incident on a surface that

is smooth with respect to A , it is reflected by conjugating

the exponential terms and multiplying the resulting field by

the surface’s reflection coefficient . When exp[jkz} is conjugated ,

it implies that the field is progating in a direction which is

opposite to that of the incident field. Conjugating

exp[j-~~-- x
2] inverts the spherical wavefront of the field.

Some of the incident field may be absorbed by or transmitted

through the surface. To represent this loss , a surface reflection

coefficient is used. This coefficient has a value between

zero (no field reflected) and one (entire field reflected).

The reflected field is written

Ur(ct) 
= a(a)Uj

* (a) (24)

where a(ct) is the surface reflection coefficient and the

subscripts r and i indicate the reflected and incident fields ,

respectively.
13
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The development of the background material is now complete.

The ideas and theory discussed here are used to examine the

line scan imag ing system .
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III. The Sy s t e m  Mode l s  for  a Monochromatic

Laser Source

- 
The method for d e t e r m i n i n g  the sys tem models  is developed

in this chapter. First a representation for the mechanics of

the imaging system is discussed and the rough surface model is -

defined. These ideas are, combined with the background to -

determine the system models for a monochromatic laser-

heterodyne receiver system and a monochromatic laser-direct

detec t ion  receiver  s y s t e m .  For s i m p l i c i ty ,  the models  are

found for  one d imens ion . Two d imens ion  mode ls  are s t r a i g h tf o r w a r d  
—

but tedious.

The Line Scan Imaging System Model

In a line scan imaging system , the laser scans across some

object surface . The mechanics of the system keep the detector ’s

surface area aligned normal to the direction of the laser field.

As the object surface is scanned , the angle between the incident

laser field and the surface changes. The analysis of the system

is simplified if the system mechanics and change in incident

angle are ignored. These two conditions are satisfied under

the following two assumptions: (1) the laser f i e ld  is normal

to the object surface at all times , and (2) the propagation

of the l-as?er f i e ld  is normal to the de tec tor ’s su r f ace  at al l

times.

During typ ica l  use , the l ine scan imag ing  sys tem is mounted

in an airplane which flies over the object surface. To represent

the movement .of the system past the surface it is assumed that

the coordinate system of the laser and receiver is fixed in space ,

is

~~~—-— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ 
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Fi g. 3 Line Scan Imag ing System Model (Re f 16 :28)

while the coord inate system of the surface and its reflection

c o e f f ic i e n t , ’a ( x ) , is t r ave l ing  in t ime w i t h  ve loc i ty  v. The

model is a function of the velocity and the laser beam width ,

W(z), at the object surface. By varying these two parameters ,

it is possible to determine the effects of spreading beam

width and changes in surface velocity. The system model is

illustrated in Fig. 3.

• The Rough Surface Model

The field reflected from a rough surface is , in general ,

difficult to determine . It is dependent on variations in

surface height , the polarization of the incident field , and

the rcflcction coefficient o~ the surface. In order to avoid

a detailed study of the surface scattering problem , a simple

‘I I 
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model is developed to represent the rough surface (For a deeper

mathematical understanding of the properties of electromagnetic

f i e l d s  sca t te red  f rom a rough su r f ace  consult  Beckman and

Sp izz ichin o  (Ref 1 7 ) ) .  The model is developed under five

conditions.

Firs t , d e p o l a r i z a t i o n  e f f e c t s  are ignored becasue the

polarization of the incident field is not included in this

t hes i s .  Second , m u l t i p l e  s ca t t e r ing  at the surface is

in s ign i f i can t  since only the field reflected normal to the object

sur face  is incident  on the de tec tor .  These two condi t ions are

typically ignored (Ref 17: Chapters 1, 3, and 5; 18:1689)

since their effects are very small and difficult to describe

mathematically. Third , the surface is assumed to be rough

when compared to the optical wavelength so that speckle effects

occur . The fourth condition is that the rough surface is

thoug ht of as a random var ia t ion  in height  (Re f 17: Chapter  3 ) .

This allows the surface roughness to be described by statistics.

Also , a field incident on this surface undergoes a random variation

in phase. The reflected field is then equivalent to a field

reflected from a smooth surface and m u l t i p l i e d  by a random phase

term . Finally, the surface ’s reflection coefficient is assumed

to be a real function of space with a value, between zero and

one so that it a t t enua tes  the f i e l d .  The r e f lec t ion  coefficient ,
— 

a(c~) ,  is the quantity that is measured by the system. These

condi t ions are the  same as the ones used by Lyons in a s imi la r

heterodyne imag ing problem (Ref 16:21) .  The model is also

similar to the ones used by Miller , et. al. (Ref 19:779-785)

17
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and Beckman and Spizzichino (Ref 17: Chapter 5).

Recall that Eq. (24) describes a monochromatic field

reflected from a smooth surface. The field reflected from a

rough surface is determined by applying the five rough surface

model conditions to Eq. (24). The reflected field is

Ur(ct) = a(c&) exp[je (cz)J Uj
*(c~) (25)

where 8(~x )  is the random phase and is a function of space .

The relation between the random variations in surface height ,

H(x), and the random phase was previously shown to be

(Ref 20:36; 21:157)

4,re(a) = 
T~ 

H(a) (26)

The variation in surface height is modeled as a zero mean,

stationary , Gaussian random process. The zero mean implies the

point that the heights are measured from is chosen in a manner

such that E[H(i)] = 0. The rough surface is often described by

a Gaussian distribution (Ref 5:65; 1:1153 , 1195 , 1205 , 1212 ,

1224;  17 :80) .  Using these assumptions , it is possible to

determine the mean and variance of the phase. The mean is

E[O(ct)] = E[H(ct)] = 0 ‘ (27)

and the variance is

a~
2 

= (41t)2 E [L-12(a)} = (T)a H (28)

where is the variance- of the surface height. The RMS surface

roughness , aFt, can be compared to the optical wavelength , A ,

18
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by use of Eq. (28). If the surface roughness is small compared

- 

- 
to the optical wavelength , the RMS phase variation , cia, is

j also small. This means there is little problem with interference .

However , as the surface roughness approaches the optical wave-

length , the RMS phase variation approaches 2rr . Thus interference

is produced in the reflected field. This interference is 
-

called speckle.

The Direct Detection Current Model

The ideal detector output current for a direct detection

system can now be determined. Recall that this current is due

to the field input to the detector. The one dimensional

monochromatic la er field incident on the rough surface is

given by Eq. (23)

2 2
U . ( c t )  = 

A 
~~ exp[j (kz-~-)J exp [-- 

~ ] exp [~~2 I (29)
1 (Az) 2 W (z) Z

The field reflected from the rough surface is

U (cs) = a(ct + Vt) e30~~~vt)Ui *(a) (30)

The argument “ct~ Vt ” results becasue the surface and thus its

reflection coefficient and height variation is moving with

respect to the laser. Substituting Eqs. (29) and (30) into

Eq. (17) gives the field at the input to the detector. It is

I 19
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Ud (x) = ~~~~~~~ exp [-j2(kz-~4)Jexp [-jk ~~~~~]

J a(a+vt)exp[jO (ct+vt)J exp[- ~~
W (x)

exp[-ji~ --} exp[j21T~~]dcz (31)

The magnitude squared of this field is

tUd(x)I = (A )2 J f a(ct+vt)a(B+vt)exp[- 
~~~~~~~~~ ]

2 2
exp(-jk a -B exp[j2ii-~~— (cz-8)]

exp[j8 (ct+vt)-jO(B+vt)] dctdB (32)

Eq. (32) represents the intensity of the field at the detector

input . The ideal receiver output current for the direct detection

system is given in Eq. (5). Its one dimensional form is

id (t) 
= 

h~0 J PD(xfl U (x)l
2dx (33)

where P0(x) is the limiting aperture function which describes

the surface of the detector. Combining Eqs. (32) and (33)

yields the detector output current which is

id(t) 
= 

~T~~~~h~f f f  J PD(x)a(a+vt)a(B+vt)
exp[- a~+B

2 
]exp [-jk 8 ]exp[j~~~ (~ -B)]W (x) Z

exp [j(O(c*+vt)-8(8+vt))J dxdctdB (34)
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To simplify the notation let

A1 ~~~~~~~~ 
(35-a)

and

2
h(u) = exp [ - 

a 
I (35-b)

W (z)

where h (c*) is called the system function. It determines the

effect of the beam spot size on the system . Solving the x

integration in Eq. (31) yields the spatial Fourier transform

of PD(x) evaluated at = . The transform of PD(x)

will be denoted

Fx [PD(x)]l = PDF(a-B) (36)

Eq. (34) now reduces to

id(t) 
= A1 J J PDF (ct~ B) a ( ;+v t ) a (B +v t )

h(a)h(B) exp [-jk-~---~~

exp[j(O(a+vt)-0(8+vt))J dade (37)

The Mean Detector Current. Mow that t1~e detector current

has been determined , it is possible to find the mean or “signal”

component of the current . The only random term in Eq. (37)

is the phase deviation , thus the mean of the current is

21
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E [i d (t) 1 = A1 f f PDF ( c t - B ) a ( c & + v t ) a ( B + v t )

2 2
h(ct) h(8) exp [~jk

a B

E(exp(j(0(ct+vt) -0 (B+vt))] dcxdB (38)

The phase deviation , 0,. is a zero mean Gaussian random process-.

Therefore theterm , E [exp[j(0(a+vt) - -0(B+vt)J] can readily be

determined by use of the characteristic function. A form of

the characteristic function (Ref 10:419) is

= E[e~
’
~~] (39)

If x is a Gaussian random variable , then Eq. (39) becomes

2
= expfjVE [xl - 

v a
~ (40)

In Eq. (39) let V = 1 and x = 0(a+vt) -0(~+vt). Then

E[exp[j(0(c~+vt)-0(B+vt))] 
= exp (-½(l)2a1

2] (41)

where

a 2 E[(0(ct+vt) -0 (B+vt))2]

= E[02(ct+vt) + 02(~+vt) -20(a+vt)8(8+vt)
2 -

= 2 a 0 
- 2R0(a-8)

2 ~~ (l-p (a-8) (42)

where p (c*-B) is the normalized correlation function of the

phase 0. Eq. (41) now becomes

22
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E[exp [j(8(ci+vt) -0(B+vt))] = exp[-a0
2(1-p (c&-B))] (43)

This function has avalue of one when a-B 0, and decreases

to exp[-a0
2

J as a-8 approaches infinity.

Beckman and Spizzichino (Ref 17:81) suggest that the

phase correlation function can be represented by a Gaussian

function of the form

p (a-8) = exp [ ~~~~~~~ (44)

where r~ is the correlation distance of the rough surface

when p (a-~) drops to the value 
~~~~~~~~ Goodman (Ref 18:1698)

- I states that r
~ 

is generally less than 0.1mm for optically

- l rough surfaces.

It has been assumed that the deviation of the surface

roughness is greater that the optical wavelength or ah > A .

Eq. (28) can be rewritten as

a0 ;j!L aFt > A = (45)

When a~ > 5, the correlation distance of the reflected field

is less than the correlation distance of the rough surface

by a factor of 1’a (Ref 22:984). Therefore, the field
0

correlation distance , L , is

r
£ < 

C
1 = 

.1mm 
= .01mm (46)

0

This field correlation distance was previously derived by

Lyons (Ref l6:33). Its sigrificance is that it is the maximum

I 23 I-



distance that any two points in the reflected field (at the

surface) can be separated by and still be correlated. Eq. (43)

is now called the field correlation function and is denoted

P L (ct -8 ) . That is

P
~
(a-

~
) = exp [-a0

2 (l-p (a-8))J (47)

where 2~. indicates the field correlation distance. Fig. 4 -

is a plot of P~jc~-B) as a function of ~~~~~~ for several values

of a
~
.

Another s impl ic ia t ion  to E q. (38) is the approx imation

exp[-j~~(a
2-6 2)] = 1 (48)

which is valid for the condition of

< < 1 (49)

I c i 2 -8 2
~ 

occurs when a takes on its maximum value and 6

is at its minimum , or vice versa. The maximum value of a

and B is the radius of the beam spot size , W (z), on the rough

surface . The maximum value that a and 6 can be separated

and still be correlated (i.e. nonzero) is 9 , the field

correlation distance. Thus

= kW(z))2 - (W(z)-~)
2

l

= 2W(z)Z (50)

Eq. (49) becomes

~ 2W (z)t < < 1 (51)
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Fig. 4 Plot of PL (ct-6) Ref (16:34)

which can be rewritten as

W( z) < < A (52)

where W (z) is the beam divergence of the laser. The laser

can be designed to meet the condition of Eq. (52). For example

the beam divergence of a 1.06~m laser must be less than 8

milliradians. Beam divergences are typically less than 1

milliradian , thus the approximation of Eq. (48) holds. Now
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the mean of the current becomes

E ( i
d

( t )I  = A1 f f P DF ( c t - B ) a ( c t + v t ) a ( B + v t )

h (a) h ( B ) P
~
(ct-B)dadB (53)

Due to the approximation in Eq. (48), the mean of the current

is no longer dependent on the quadratic terms in the exponential.

Thus, the resulting mean is identical to that obtained in the far

field case.

In Eq. (53), only the field correlation function , P
~
(a-8)

and the spatial Fourier transform of the detector surface ,

are dependent on the argument “a-B” . Recall that

PL (ct-B) was plotted in Fig. 4. For the case of aFt A , P~,(a-8)

is plotted once more in Fig. Sa. Note that the width of P~ (a-8)

is only a few micrometers . Generally, the width PDF (a-B) is
much wider. For example , assume that the detector surface is of

the form in Fig. Sb. It has a width D, and a uniform

transmittance of one. Then
sin(21r9

~~
. D)

PDF(~~6) 
= Fx [PD(x)} - a-B  = 

ct-s (54)
x Az A z

PDF (c&-B) is plotted in Fig. Sc. The width of P0~(a-B) (ignoring

the side lobes) is Az,,2 For typical values of A = l.O6pm ,

z meters , and D 10 centimeters , the width of PDF (ct
~ B) is

approximately 20 millimeters. Because PDF (cl- B ) is much wider than

P& (ct
~ 8) ,  it is constant over the region where P

~
(ct-B) is non-zero .

Thus their effective product is

= PDF(O)PL (ct-B) (55)
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Fig. 5a Field Correlation Function for

1

x

2 2
Fig. Sb Detector Aperture Function

PDF (a B)

_ H

_______________  

a -

2A z-5-
Fig. Sc Fourier Transform of PD(x)

Pig. 5 Illustration of Function Widths
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Eq. (53) now becomes

E[id (t)] 
= A1PDF(O) J f a(cz+vt)a(8+vt)

h (ct)h(B) P
~
(a-8)dc&d6 (56)

Using the change of variables , x = a + vt and y = B+vt ,

the mean is -

E [id (t)] 
= A1PDF (O)  J f a(x)a(y) P (x-y)
h(x-vt)h(y-vt) dxdy (57)

Eq. (57) is the “signal” component in the second moment

model for a direct detection receiver. The model will be

presented after the covariance of the receiver current ,

Eq. (37), is found. Eq. (57) is valid for the following

conditions : (1) the field incident on the detector is due to

the r e f l ec t i on  of a monochromat ic  laser  f i e ld  from a rough surface ,

(2) the RMS sur face  roughness is greater than the laser wavelength ,

(3) the laser is design so that its beam divergence is less

than ~~~~~~~~ , and (4) PDF(a-6) is much wider than PL(a-$). Now

the covariance will be found .

The Covariance of the Current. In the second moment model ,

the covariance describes the “noise” or the
’ fluctuation of the

current from its mean . It is found by first determining the

correlation of the current. From Eqs. (6) and (37)

28 
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R. (t,t~) = E[i (t)i Ct’)]

= A~ f f
- 

a ( 8-e ’v t )a ( a ’ +vt ) a ( + v t ’) h ( c ~) h ( 8 ) h ( c i . ’) h ( B ’)

E[exp [j(e(cx+vt) + O (c~- +vt ) - e ( B + v t ) - e ( 6 +vt ) ) ] ]

dcid6da ’d6 ” - (59)

The approximation of Eq. (48) was used in Eq. (59).

The expected value of the phase devia t ion  term in Eq. (59)

is determined through the appl ica t ion  of the moment f ac to r ing

theorem. Reed (Ref 23: 194-195) has shown that if Z1, Z 2 ,  Z 3,

and are zero mean , complex jointly Gaussian random processes ,

then -

E [ Z 1Z 2 Z 3
*Z 4 J = E [ Z 1Z 3

*) E [Z 2 Z 4
*)

+ E [ Z 1Z 4 ] E [Z 2 Z 3 ] (60)

One problem results when the moment theorem is applied.

The Z
n 

term in the moment theorem corresponds to a exp [ja]

term in Eq. (59). It was argued in the section on the rough

surface model , that 0 is described by a Gaussian distribution.

Therefore , the distribution of exp [jel is not Gaussian . However ,

the reflected field is just a complex sum of the fields reflected

from each point on the rough surface. It can be shown by the

Central Limit Theorem (Ref 17:191) that the reflected field

incident on the receiver has a Gaussian distribution . Thus ,

it is assumed that exp[je] takes on a Guassian distribution

as it propagates through the atmosphere.
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Therefore , the expected value term in Eq. (59) becomes

= E [ e x p [ j ( 0 ( a + v t )  + O ( a +vt ) - 0 ( 6 + v t ) - 0 ( ~~~+vt~~) ) 1 ]

= E[exp[j0(:t+vt)-je (6+vt)]]E[exptjo ( +vt )-j0(6 +vt )]]

• 
+ E [exp[j0(a+vt)-j0(8’+vt )]]E[exp[j0(ct~+vt )-j0(6+vt)JJ (61)

The characteristic function can be used to show that

H ~~(l) = exp [-a9
2(l-p (a-6))]exp[-a 0

2(l-p (a -6 ))1

+ exp[-a0
2(l-p (a-8 + vat))] exp[-a 0

2 (l-p (ct -6-v~t))] (62)

Recall that  the f i e ld  cor re la t ion  func t ion  was def ined  in

Eq. (47) as

P2,(a) = exp [-a0
2(l-I~(a))] (63)

thus

= P~~( a - B ) P ~~( c t - $ )  + P~, ( a -6 +v~ t) P 1(ct ’- 8- vt ~t)  (64)

Recall further from Eq. (5) that

R- (t ,t )  = E[i (t)JE[i (t )} + C. (t,t )  (65)

The first term , PL(a-6)P~
(a ’-6 ), in the summation of Eq. (64)

corresponds to E[id(t)]E[id(t )]. Thus the covariance of the

current is
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C~~(t,t’) = A~ J f f f a ( a +v t ) a ( a +vt ) a ( 6 + v t ) a ( ~~~+v t )

- h ( c i ) h ( 6 ) h ( c z ) h ( ~~~) PDF (a - 6 )  PDF (a -6 )

P~ (a-B +v~t) P~ (ci~ -6-vAt) dad6 (66)

Eq. (66) is d i f f i c u l t  to , i n te rpre t  because the  Four ier  t r ans fo rm

of the aperture is dependent on “a - B ” and ‘ c~~-~~~” but  the f i e l d

correlation function is dependent on ‘
~~~~~~

-
~~~~~~~~

“ and “a -8” . Thus in

Eq. (66) the following simplification is made :

PDF(a-B) ~ ~DF~
0
~ 

(67)

and

PDF(a ”- B )  
-
~~ ~DF~

0
~ 

(68)

This simplification produces an upper bound on the covaria.’ice.

It is writtèrt- - .as

f f f f
h ( a ) h ( B ) h ( a ) h ( 6 ~~) ~DF~~~

0
~

P~~(a-8 +v~ t) P~~(a~~-6-vL~t )  dad8da d8 ” (69)

which is rewritten

C1 (t,t )  < EA 1P DF (O) I J a ( a +v t ) a ( 8 +vt ) h ( a )

h (B ’)  P~~( a -B +v~ t )  dad6 ] 2 (70)

The correlation distance of the current is difficult to

determine since the  covariance , Eq. (70) , is n o n s t a t i o n a r y .

ilimit 
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[h(a)a(a+v t~ )*P~ (a+vL,~t)] a=0

h(ct)a(ct+vt )

~~~2~~~~~~~~~~~~~~~~~~~~~~~~~~2 

)

~~~P~(a:v~t)

Fig. 6 Graphical Representat ion of Current Corre la t ion Distance

An idea of the corre la t ion dis tance can be obtained by wr i t t i ng

Eq. (70) as

Cj
d(t,t~) < [A 1P~~~(O) f a (a+vt )h(a)

[a(a+vt )h(ct) * P~ (c*+v~t) ] da ] 2 (71)

where * denotes the convoltuion process. The convolution is

graphically represented in Fig. 6. The maximum width of

is £ , the field correlation distance. The maximum

width of a(a+vt)h(a) and a(c*+vt ’)h(cz) is determined by the beam

spot size. This distance is denoted as L. L is much greater

then 2. . When vt~t is greater than 
L, the convolution of

a(a+vt~)h(a) with P2.(x+v~t) is equal to zero . Therefore , the

maximum correlation distance of the current is

32



--

~
-=:- 

~~~~~~~ - -~~~~~~~~~~ -~~~-~~~~~~~~~~- -~~~~~~

- - - - —S- - -  -

L = 2 v~t (72)

and the correlation time of the current is

= -~~~~~ - (73)

From Eqs. (72 )  and (73) it is seen that  the co r r e l a t i on

distance increases with increasing correlation time . It

should be noted , that if the reflectance , a(a+vt ’),

fluctuates very much within the distance L , then the correlation

distance and time of Eqs. (72 )  and (73) will become less.

The Direct Detection Model. The direct detection current

is modeled using the second moment method. The model is

described by the mean and covariance of the cu r r en t .  The mean

was given in Eq. (57) as

E [id (t)1 A1 ~DF~°~ I f a(a)a(6)h(a-vt)h(B-vt)

dctdB (57)

It was previously noted that P2.(cz-6) is very narrow with

respect to the other terms in the integral in Eq. (57).

Due to its narrowness , P2.(a-B) is approximated 
by the Dirac

Delta function ,

P2.(a-6) 
= A26(a-8) 

(74)

where A2 is the area of P2.(a-6) 
and is give by

A2 
= J P 2. ( a - B ) d ( c t - 6 )  

- 

(p 5)

Eq. (57) becomes

- 

33



I ~~~~~~
“ “

~~~~—~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - “‘~~~~~~~~~~~ I -- “ -— ‘ ~~ - —
~~~.‘ ,, — ---

~~- ._ -- ~~~~~~~~~~~~ ~~~~~~~~
_,_ —, —----- -

E[id(t)I 
= A1 A 2 PDF (O ) I I a(a)a(6)h (a-vt)
h(8-vt)~S (a-B)dadt3

= A1A2PDF(O) f a 2 ( c z ) h 2 ( c z - v t ) d a  (76)

Recall from Eq. (35) that h(a) is an even function ,

thus ,

E [id (t)] 
= A1A2PDF (O) J a2(cz)h 2 (v t-a )dcz

AJA2PDF(O) [a~ (x)*h
2(x)] (77)

Eq. (77)  impl ies  tha t  the “ si gnal”  component of the second

moment model is p ropor t iona l  to the  convolu t ion  of the sur fac e

reflection coefficient squared , a2(x), wi th the system function

squared , h2(x).

To complete the second momen t model for  the direc t

— detection current , the “noise” component is found . Eq. (70)

gave the  upper  bound on the covariance as

C1 (t ,t’) < [A 1Prn.(0) f J a (a)a(6)h (c~-vt)h(8-vt )

P
~
(a-B )dadB1 2 

(78)
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This equation describes the “noise” term in the second moment

model. The double integral in the above equation is equivalent

to the correlation function at the output of a linear filter

whose input  was a zero mean noise .  To see th i s  consider a

H zero mean noise , n (x ) ,  input to a l inear  f i l t e r , h (x ) . The

filter output is -

n1(x) = n( x)*h(x) 
-

= I n(cz)h(x-cz)d (79)

The correlation of the filter output is

Rn (x ,x )  = E[n1(x) n1(x)]

I I
J f R (aB)h(x-a)h(x -$)dad8 (80)

Comparing Eq. (80) with the double integral in Eq. (78) it is

seen the correlation function of the noise is

R ( x ,x~ ) = a(x)a(x )P2.(x-x ) (81)

The square of the in tegra l  in Eq. (78 )  implies that the covariance

of the current is equivalent the multiplication of two noise

sources. These sources are identically distributed , statistically

independent , and have a correlation function given by Eq. (81).

— 
The second moment model of the direct detection current is now

complete. The model is diagrained in Fig. 7.

I 
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a2(x) 2 1
A1A2PDF (0)h (x)

id(t~
)

1
- A1PDF (O)h(x) I

n (x) 1 T Efn l(x)] = E [n 2 (x ) ]  = 0

• A1PDF(O)h(x) Rn (x,x
~
) = R

n
(X
~
X
~
’)

< a(x)a (x )P
2.
(x-x ’)

- I Fig. 7 Direct Detection Current Model

Recall that all noise terms , other than speckle , were

neglected. Thus the noise in this model represents speckle

noise. The model presented above can easily be modified to

include the quantum noise effects that were neglected in the

receiver output current.

A parameter that  is typ ically used to measure performance

is the signal to noise ratio , denoted SNR. The SNR is defined

to be the ratio of signal power to noise power in a system.

In statistical terms , the SNR is the mean squared divided by

the variance (Ref 2 4 : 2 6 4 ) .  For the direct detection current

model , the SNR is -

36
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SNR. = E2[i(t)]

S

E2[i(t)]
C. (t,t =t) (82)

Substituting Eq. (57) and (70) into Eq. (82) gives the -

result

SNR. > 1 (83)

The “greater than or equal to ” sign occurs because of the upper

boun d on the covariance.

Several points can be noted about the direct detection current

model. The spatial filtering effects of h2(x) are seen by taking

the spatial Fourier transform of E[id(t)] as given in Eq. (77).

Fx[E[id(t)}] 
= AiA2Pnp (O)A (f~

) [ H (f
~)*H (f~)] (84)

where A( f
~
) = F

~
[a2(x)] and H”(f

~
) = F

~
[h(x)].

The Fourier transform has an inverse effect on the width of a

function. That is , as h(x) gets wider H’(f
~
) and thus the

convolution of H’ (f
~
) with itself gets narrower. The results is

that as the system function gets wider in space , it blocks out

the high spatial frequency content of a2(x).

The model for E [ id (t)] is identical to the result discussed

by Goodman for an incoherent imag ing system (Ref 13:109).
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Thus the direct detection current model can be thought of as an

incoherent imag ing system with an additive noise term .

Last of all , it can be seen from either Eq. (78) or Fig. 7

that the noise is signal dependent. Thus as the signal , a2(x),

increases or decreases , the noise also increases or decreases by

a proportional amount. Thus the SNR can not be improved by

increasing the signal power. This is in contrast to many other

noise models which are signal independent.

This concludes the discussion of the direct detection current

model. The current model for the heterodyne receiver is

determined in the following section .

The Heterodyne Receiver Current Model

A second moment model for the receiver current of a

monochromatic laser-heterod yne receiver system has been

determined by Lyons (Ref 16:46). The procedure used to establish

the heterodyne current model is very similar to that used to find

the direct detection current model of this thesis. Lyons ’

results are presented below .

The heterodyne receiver current is (Ref 16:31)

k 2
ih (t )  = A3 f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (85)

where A3 
= and a(a), h(ct), 0(a), and PDF (c&) are the

same as defined for the direct detection current . Due to the

defining equation (Ref Eq. (4)) for the heterodyne receiver

current , the current  of Eq.  (86) is centered at the optical

frequency 
~ 0~~~ j F •  Also , this current is complex in contrast
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to the direct detection current which is real (Ref Eq. (34)).

The expected value of the heterodyne current is (Ref 16:31)

- E(ih(t)J = 0 (86)

and its covariance is (Ref 16:36)

C1 (t,t )  = A~ J J PDF(ct) PDF(a )a(a+vt)a(a +vt )h(a)h(a
~
)’

P2.(cx +vt~t) dada (87)

where P2.(~ ct) is given by Eq. (47) and tict=ct-a .

The heterodyne current is centered at the frequency 
~0~~ IF

Thus even though its mean is equal to zero , this does not imply

that the - mean of the amplitude of the current is zero . The

current amplitude , denoted ACt) , is found by writing the

• current as the sum of its real and imaginary parts. It is

ih ( t)  = 

~r 
+ 

~~

= A ( t )  cos y(t) + j A ( t )  s in Y(t)  (88)

In polar form this becomes

ih(t) 
= A (t) eJY (t) - (89)

The current is physically broken into its real and imaginary

parts  by the well known quadrature model (Re f 2 4 : 2 3 8 )  as shown

in Fig. 8a. Note that the quadrature outputs are the real and

imaginary parts of the currents. If the quadrature outputs are

squared and then added together , the resulting output is the

current amplitude squared , A2(t), as shown in Fig. 8b.
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A(t) cosy(t)

~~~
(t)cos(2

~
fIF+1(t)) cos2

~
fIFt

J 
sin2IT fJFt

Low A(t) sinY(t)
X Pass

Filter

Fig. 8a The Quadrature Model (Ref 16:40)

Fig. Sb Determination of A2(t) from the
Quadrature Outputs (Ref 16:43)

• . 2Fig. 8 Determination of A ( t ) .
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The mean (Re f 16:43) and the covariance (Re f 16:45) of

A2 (t) are

E[ A 2 ( t )]  = C~ (t ,t ’= t) (90)

and

C 2 (t ,t )  = [C . ( t , t ) ] 2 (91)
A 1

By subs t i tu t ing  Eq. (87) into Eq . (90), the mean of A2(t) is

expressed in terms of the reflectance , a(ct), and the system

function , h(ci) as follows :

E[A2(t)] = A~ f f h(c&
~

h(a )P DF (a)PDF (a )a(cz+vt)a (cz +vt)

(92)

As in Eq. (74 ) ,  P2.(~ct) can be approximated by the Dirac Delta

function

P
2.(~ c*) = A46(~ ct) (93)

where A4 is the area of P2.(~ ct) which is given by

A4 P2.(~a) dt~ct (94)

Eq. (92) then becomes

E[A2(t)] = A~A4 J h 2 (ct) P~~~(ct) a 2 (v t -c t)  dct (95)

which by a change of variables is written

:: 
E[A2(t)] = A~A4 J a(x 2 )h 2 (v t- x ) P~~ (vt~ x)dx  - (96)
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Thus the mean of A2(t) can be represented by a linear system

mode l of a2 (x) convolved wi th h 2 ( x ) P
~ F

( x ) .

The covariance of A2(t) is found by substituting Eq. (87)

into Eq. (91). It is

C 2 (t,t
’) = [A~ f J h(vt-x)h(vt -x)a(x)a(x )

P
t
(x-x

~
)PDI;(vt~

x)PDp (vt -x )dxdx ]2 (97)

Thus as in the direct detection case , the double integral in

the above equation is identical to the output correlation of

a filter , h(x), whose input is a zero mean noise process with

the correlation function

R~ (x,x’) = a(x)a(x )P2.(x-x ) (98)

Once again the square of the integral simply means that the

noise can be represented by the product of two identically

distributed , statistically independent noise processes. The

second moment model for  the ampl i t uded  squared of the  he te rodyne

receiver current is shown in Fig. 9. As with the direct

detection current model , this mode l can easily be modified to

include quantum noise effects. These noise terms are ii~cluded

by simply adding them to the speckle noise term described by

Eq. (97).

The SNR for the heterodyne current model is found by

subs t i tu t ing  Eqs . (92 )  and (97) in to  Eq. (82). The Resulting

SNR is

SNR. = 1 (99)
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a2 ( ) 2 2 2 A (x)x A4A3h (x)PDF(x)

n~ (x) -

A3h(x)PDF(x)

x
n (x) E[n 1( x ) } = E [ n 2 (x) ] = 0
2 A

~
h ( x ) P DF (x)

______________  

Rn 1(x ,x~ ) = Rn 2 (x ,x )

(x) a (x ) P2. (x-x

Fig .9  The Model for  the Ampl i tude  Squared of the
Heterodyne Receiver Current (Ref 16:46)

The model for the amplitude squared of the heterodyne

current and the direct detection current model are very similar.

The only differences are : (1) the covariance of the heterodyne

current model has a specific value rather than a bound , (2)

the system function of the heterodyne current model is dependent

on both h(x) and PDF (x), and (3) the two models differ depending

on the constants A1, A2, A3, arid A4 . Since there are no

major  d i f f e r e n c e s  in the two models , the comments made about

the direct detection model are valid for the heterodyne model.

Thus , as the heterod yne system function , h (x) = h(x)PDF(x),

becomes wider in space , th e hi ghe r spatial frequency content
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of a2(x) is lost and the worse the resolution ability of the
2 .system becomes. The model of E[A ( t ) ]  is also identical to the

result discussed by Goodman (Re f 13:107) for  an incoherent

imaging system. Thus , square law de tec t ion  can also be thought

of as an incoherent imag ing system with an additive noise term.

Finally, the noise ii the heterodyne model is also signal

dependen t . Thus the SNR can no t be improved by increasing the

signal power.

One impor tan t resul t in th e comparison the two models is

that the SNR for the direct  de tec t ion  model is always equal

to or larger than the SNR of the heterodyne model. Tnerefore

at its worst , the direc t de tec tion model pe r forms as well

as the heterodyne model. Thus on the basis of the SNR , the

direct detection receiver produces the better results for the

laser line-scan imaging system . However , the SNR is only one

of many parameters used to evaluate system performance and

should be considered as only a part of the whole picture.
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IV. The System Models for Quasimonochromatic

and Broadband Laser Source-s

In Chap ter I I I , the sys tem mode ls for  a monochroma t ic las e r

were determined. These models are now extended to f ind  the

resulting models for broadband and quasimonochromatic sources.

Firs t , the monochromatic laser field is extended to broader

bandwid ths. Then , by us in g the new laser  sources and f ol lowing

the procedure used to de term ine the p rev ious  models , the curren t

models for  ex tended laser sources are found .

Quasimonochroma tic and Broadband Fields

The laser f i e l d  g iven  in Eq.  (23)  is v a l i d  for  monochromat ic

lasers on ly .  This f ie ld can be modif ied , so that it is valid

for both quasimonochromatic and broadband lasers , by a method

known as linear frequency modula tion or chirp ing.  The th eory

of chirping is discussed in a paper by Klauder , et. al.

(Ref 25). The following paragraph is a brief summary of the

results of chirp ing.

Consider a rectangular time pulse with width T seconds and

denoted rect [t/T]. The bandwidth of this pulse is f.~und , by

Fourier analysis , to be approximately ~H z .  I f  this pulse  is

chirped , its resulting waveform , denoted U0(t), is (Ref 25:754)

U0(t) 
= rect[t/TJ exp [ j i r i~f t 2 ] (100)

where exp[j-ir~ f t
2
] is the chirp waveform and ~f, whose value

is chosen by the system design , has units of inverse seconds

squared. I t  is shown (Ref 25: 755-758) by Fourier analysis

45

-i ~~~~~~~~~~ —==- .ra ; ——— —‘ s. ~~~~~~~~_ - -. , -



and r e :.ne I i i t t  e t~ i a  I t ccliii i quo , t 11;t ( I F t I to  p r o t l i i c  t •\ I T

is g rca t c r t han 01- c q u a  I to t en , he b a u ~I i ~ l il t it of II ( t ) i

A l  1. The t gu i i i  c a u c o  o f . th i r c  ~ u It t ~;eon  in t he lot owing

C X~tnIp Ic . Stippo -; o .t roe t :lngu I a r pu I - o li .i ‘ . a w t i l t  h of  I (liii ; (‘1

ari d t hti - :t h a n i l w  j i l t  ii of  I 0 0 H z .  A ; , ~t i rne  t ha I A I - IO~ (sec)

by svs  t e r n  des i ~n .  l’hc rt’ foi-c A IT~ 10 wh i cli i m p  I i es t h i t

11 (t) has a h a n d w  j i l t  It of Aft ’ - I Ml:. Thus t h e  b a u i l w  l il t Ii

of a s i ~:na 1 h a - ;  been e ~ t ended by :iit o r d e r  o F ma~~ii it ude by

chi rp in~~. I f Al were c.ho-;en to be I 0~ ( s e e )  , th e l iitdwidt h

won 1 il h a v e  i n c r e a — ; e d  b y  wo o r i l e r 5  o1 ina ~:n it tide . 1’lie po j i l t

he i’e I t hat .i wave of an y  de’~ i r ed b a n i l w  j i l t  h ~an be p r o i l i t e c i l

by cli i rp i n~
‘I’his p oi n t a i s t )  h~~I d s  b r  th e monoL - l i r o m a t  ic I ; I s e I  1 i e l d

in l;q . (:3). I~q. (.~3) i S 5~~ i t  ia ii Y ~I epe1hICil t O n l Y . T h u s

witeti P 1 C Ut i d  Iii t i I1’t(’ . i t  h as a COIl S I . i t t t a 1tl I ~ 1 i t  t i d e  I i i d  0 ( t end

for a I I t line . Idea l Iv it con Id be t hion ’~ht of as :t i c c  t an-~ti I a r

t into pu t so wi t h  in ( i n  i te w j il t h . Iloweve i . I i t  tea l it t he

wi il t h i - . ot t  I v t t i c  ( i me h i t  e r v a  I b r  1% I i i  ch I l i e Ia so r i s I n r u e d  on

III the 1 a- .e r I I no — scan  t rna i~ tu g cv ’. t em • t It i t n t  e r va  1 C on Id be

t houglit of ,t s  the t lin e needed to make a ‘~ i it .t~ Ic scan of the

object s i t  r lace . In a I I V  c . ise • mu I t  i p1 v j ii~~~ ~~ . ( .‘ 3) b~ t he

chirp w a v e f o r m  result s i i i  .1 f i e l d  whi ch i -; not i n o n o c h r o m a t  I C

tnit i’at he i i t  ha~ S OUt( ’ b a n d w  l i l t h . Fh i s  b a n d t ~ j i l t  h 1 •; dot e tm I ned

b y ~\f a~ d the time tu te r v a l for w hi c h the la- - et is oil . It

i s reasonab 1 e I o as sume t h a t  t he cli i iped I a ‘;e t I i c Id i l l  he

des i ~:t ied C o  he e i t h e r  q i i ; i s  i i n o n o ( h r o m a t  I C 0 )  b i o . i . d~ .i i i d  . I n

c i I her C ; t- ;e  , I l ie  o e n e  i-a 1 f o  nit of  t he cli i i p o d  I a c i  11 0 i t I  i s

4t

- ~~~—- -• ~~- -



_ _ _ _ _  

-

A . k  2
U(ct,t) = - -j— e x p [ j ( k z - ~- ) ] e x p [j - ~j --a I

(Az) 2

2
exp [ - 

2
a 

~ e x p [ j i r ~tf  t 2 } (101)
• W ( z )

With the use of this chirped field , i t is p o s s i b l e  to de termine

the sys tem models  for  the extended bandwidth sources.

The Quasimonochr omatic System Models

A quasimonochromatic laser source is used w i t h  both  a

direct detection and a heterodyne receiver. The second moment

models  for  the two sys tems are de te rmined .  F i r s t , the reflected

laser field that is incident on the detector surface is found.

The Quasimonochromatic Field Incident on the Detec to r .

Quasimonochroma tic fields are defined in Appendix A as those

which su f f e r ed  a neg l i g ib le  time delay dur ing  propaga t in g .

Thus quasimonochromatic fields are similar to monochromatic

ones in that they both propagate independent of time . For

the quasimonochromatic case the field at the detector is

given by Eqs. (18) and (21):

Ud(x ,t) = 
(A z ) ½ 

P [ J (  4fl~~~~i 21 1 f U~~~~(~~~t)

exp [-~~-~’ a ] e xp {) 2 ~
r r 1-I da  (102)

where
2

U ~(a ,t) = a(ct+vt)cxp (jO (ct+vt)] A 
~ exp[- ~ ]r,~.< ( A z )  2 W~ (z )

— 

e x p [ j ( k z -  ~)]exp [-j~~a
2]exp[- j-iiA f t21 (103)
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• Sub s t i t u t i n g  Eq. (103) into Eq. (102), the f i e l d  at the

detector is

2
ud(x ,t)  = exp[-j2(kz- ~)Jexp [-jk~~1exp[-j i~~f t

2
J

-
‘ J a(ci+vt)exp[jO (a+vt) ]h(a)exp[-j~ a

2]

exp[j2 ~~]da (104)

No te tha t excep t for the chirp term , Eq. (104) is identical

to the f i e l d  incident  on the detector for the monochromatic

case (Ref Eq.  ( 2 8 ) ) .  Eq. (104) is now used to determine the

direct detection model.

The Quasimonochromatic-Direct Detection Current Model.

The ideal direct detection receiver current is given by

Eq. (5) as

ia (t )  = 

~~~ 
f J IU d (x ,y)1

2 dxdy (5)

In Eq. (5), the current is proportional to the magnitude

of the f i e l d  inc iden t  on the  de tec tor  su r face .  Taking the

magnitude of Eq. (104) cancells the chirp term with its

conjugate .  Thus the magni tude of the f i e ld  incident  on the

detector is the same for both the monochromatic and quasimonochromatic

laser sources. The resul t is that the second moment models

for the direct detection current are identical in both cases.

This finding in not a complete surprise. From Eq. (20)

and for a typical value of Ir Ol i fliax 
= ~~ meters , the quasi-

monochromatic field must have a bandwidth much less than

3x10 51-Jz. Thus w i t h  respect to the  laser frequency, the
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quasimonochromatic field is almost monochromatic and the two

direct detection current models should be similar. In this 4

thesis it has been assumed that lasers can be monochromatic ,

when in reality those lasers referred to as monochromatic

actually have some narrow bandwidth. The above results shows

that assumption of modeling a narrowband source as monochromatic

is valid. Finally, since both direct detection current models -

are identical , they have the same SNR and resolution characteristics.

The heterodyne current model is now investigated.

The Quasimonochromatic-Heterodyne Current Model. The

ideal current of the heterodyne receiver is given by Eq. (4)

as

ih(t) 
= ~~~~~~~ J J ReCU~ (x ,y) U~0(x ,y)exp[-j21rf1~ tJ}dxdy (4)

Ad

Substituting Eq. (104) into Eq. (4), the current is

ih Q (.t) = A3Re{exp [-j2 (kz- ~
.)]exp[-j-tr i~f t

2}exp[-j2’rr f1~ t]

f f  PD(x)a(a+vt)h(a)exp [jO (a+vt)]exp[-j
~
a2}

k 2  *

e x p [- j~~~x ]U~ 0 (x , t ) e x p [j 2 7 r ~~~] dadx } (105)

In the above equation , the exp [-ji~~f t
2] and e x p [-j ~~ - x 2 ] terms

can be cancelled by indentical phase terms in the local

oscillator. The x integral is now the spatial Fourier transform

of the aperture function denoted

F
~
[Po(x)J

~ 
= 

PDF(ct) (106)

x
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Only the amplitude of the current is of interest , thus the

phase terms in front of the integral are neglected. Also ,
• 2

- - exp[-j —.
~~---] 1 as shown in the approximation of Eq. (48).

The current is now written as

ih,Q(t) 
= A3 f PDF(a)a(a+vt)h(c*)exp[j0(a+vt))da (107)

• This result is identical to the complex current of Eq. (85).

Thus as resulted for direct detection current models , the

heterodyne current models are identical for the monochromatic

and quasimonochromatic laser sources. The comments made at

the end of the previous section for the direct detection

current models could also be stated for the heterodyne current

• models.

The Broadband System Models

The second moment models are found for two systems : a

broadband laser-heterodyne receiver and a broadband laser-

direct detection receiver system. The laser f i e ld  is assumed

to be broadband due to an appropriate chirp term . First , the

field incident on the detector is determined.

The Broadband Field Incident on the Detector. A broadband

field was defined in Appendix A as one which s u f f e r s  a time

delay during propagation . Because of this delay , the mathematics

involved in propagating a broadband field are somewhat more

d i f f i c u l t  than for  a monochromat ic  or quas imonochroma t i c  f i e l d.

The configuration for determining the broadband field is illustrated

in Fig. 10. 
-
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Laser Detector

• 

~~~~~~~U L B (B) 

~~~~~~~ B(X)

UIB (a) U~~~ (~) 

•

Surface

Fig. 10 Notation for the Broadband System

Consider the setup of Fig. 10. The monochromatic field

at the laser output is given by Siegman as (Ref 15:307)

UL($) 
= A exp [-~

2/W0
2] 

. 
(108)

- 
- 

where W0 is the spot size of the laser beam at the laser output .

The broadband laser field at the laser output , denoted UL B (8)

is

2 2 2
UL B (~

) A exp[-~ 1W0 1 exp[jtr~f t ] (109)
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The broadband field incident on the rough surface , denoted

is found by propagating t he laser  f i e l d  by the extended

Huygens-Fresnel integral given in Eq. (18). The incident

fiel d is

U I B (a) 
(AZ) ~ 

:

~~~~~~

i ~~
]e [j j f exp [-

exp [j~~ f(t 
- ~~~~~~~~~~~~ ]exp [-j 2~~~ }da (110)

r
where 01 is the propagat ion t ime delay f r om the lase r

C

to the surface. The field reflected from a rough surface

was given in Eq.  (25). The reflected broadband field is

*
Ur B (a,t) a (a+vt)exp(jO (ct+vt)}U~~~ (a ,t)

The field incident on the detector is determined once again

using the extended Uuygens-Fresnel integral. It is

ud B (x ,t) = 
½ 

]exp[j (kz-~ )]exp[-j~~—] j Ur(a,t-P)

exp[-j~~~]exp [j~~~~Jd (112)

- - 
where r01~ is the progation time delay from the surface to

the detector. Substituting Eqs . (110) and (111) into Eq. (112)

yields
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Ud g  = ~ exp[j (kz-~ )]exp (-jk~~] f J a (a+vt)exp [jO (a+vt)]
exp[-j!~f]exp ~~~~~~~~~~~~~~~~~~~~~~~~~~

exp[-jir~f(t - ~~~~~~~~ - _~~! 

~~ dade (113)

From Fig. 2 and the approximation of Eq. (11) it is seen that

[z2 + (a~$)
2
]½ z + ~~~ (a-$)

2 (114)

and

r01 = [z 2 + (x-a)2J z + ~~ (x-a)
2 (115)

By use of the last two equations , it can be shown that the exponent

in the chirp term is

j~rAf(t- .91 - r~ )2 = jir~ f[d1(t) 
+ d2(t)f (a-~ )

2 + (x - c r ) 2 }

+ —. 

2 2  (a-8)2(x-a)2] (116)
2z c

where

d1(t) 
= t 2 + ~~~~~~~~ 

- ~~~~~~~~ (117)

and

d2(t) = — - -  - ._.!__ (118)
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The last term in Eq. (116) corresponds to the third term in the

binomial expansion given in Eq. (11). Thus it can be neglected.

• After combining Eq. (116) with Eq. (113), the f i eld at the

detector is

ud B (x,t) = ~~~ exp [-j2(kz-~ )]exp[-jk~~]exp [-i~~fd1(t)]

J J a(a+vt)exp [jO (c~+vt)]expE-i~~-- ]exp [-j~~ --

exp[-L 2 ]e xp [j ~~~(ct~ + x a ) j  
- 

1

ex p [ -j ~ f~rd 2 (t) f ( c t - B ) 2 + ( x-ct ) 2 fl dade (119)

The double integral in the above equation , denoted Q,

can be written

Q = J J g1(3 ,8)exP [i~~1c g 2 (a ,~~) J d a d 8 (120)

where -

L g1(a,B) 
= a ( a + v t ) e x p (j e ( a + v t ) ] e x p [- j ~~~~ ]

k 2 2
exp [~

j_ _]exp[-L2]exp [j~~ (a~+xa)] (121)
0

I I and

g2(~ ,~~ = -it d 2 (t) [(ct-8) 2-+ (x ct)21 (122)
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Eq. (120) has the form of an integral  which can be solved by

the method of stationary phase. This method is discussed

in Appendix B and can be used to show that as the quantity 1~f

becomes large , Q can be approximated by

Q ~ [-j~ fd 2(t)1~~ a(x+vt)exp[je (x+vt)]exp fj~~—]

exp[- ~~ 1 (123)
W0

2

It is emphasized that Eq. (.123) Is only an approximation which

becomes more exact as ~f becomes larger. No attempt is made

in this paper to determine the relationship between 1~f and

the variation of Q from its actual value . However, this

relationship has been analyzed by Cook and Bernfeld (Ref 27:

Chapter 3) and by Fowle (Ref 28: 61-67) for integrals similar

to Eq. (.120). Thus it seems feasible that Eq. (123) can be

quantified by an analysis similar to the methods of above two

references -

Substituting Eq. (123) into Eq. (119) yields the field

incident on the detector which is

f 2
Ud B (x ,t) = 

~~~~2~~~tC) exp[-j2kz]exp {-j-rr~fd1(t ) )

a(x+vt) exp [jQ (x+vt)]exp[-~
-_2 ] (124)
W

H

Thj s equation is now used to determine the receive r currents.

The Broadband Direct Detection Current Model. The ideal

direct detection receiver current is given by Eq. (5). Combining

Eq. (5) with Eq. (124) produces a broadband current of 

_
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id B (t) A4 J a2(x) h0(.vt - x) dx (125)

where

A4 = 

~~~ 
[
~~~~z-tc) 

2 (126)

and -

h ( x ) = exp[- IPD(x) 
(127)

h0 (x) , like h (x )  , is also call ed t he sys tem function .

Note that the broadband current of Eq. (125) contains

no random terms . This is an amazing fact beca use it implies

tha t  the r e is n o speckle noise present in the current. Most laser

line-scan imaging systems are limited by speckle noise. In

fact, the four systems previously investigated in this paper

had signal dependent noise. This is obviously not the case

for this system since it has no speckle noise. Thus from the

above resul ts , it appears that a laser line-scan imaging system

which is not speckle noise limited can be designed.

Eq. (125) has the form of a convolution process  of a 2 (x)

with  h0 (x) . F ig .  11 is a diagram of this model. The quantum

noise effects , which were neglected , can be included by addi ng

the appropriate noise terms to the broadband current , i~ ~(t ) .

The new system function , h0(x), is dependent on the size of

the detector surface and the beam spot size at the laser output ,

W0. It serves the same purpose as the previous system function ,
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a2 (x) 
~
—1 id,B (t)

• 
A4h0(x)

Fig. 11 Broadband-Direct Detection Current Model

h(x). It was shown in Eq.  (84)  that as h(x) becomes wider ,

the system ’s resolution ability becomes worse. This comment

is true for h0(x) also.

The Broadba n d -He te rod y ne  Curren t  Model. The broadband

heterodyne current  is found by s u b s t i t u t i n g  Eq.  (124 ) in to

Eq. (4). The latter equation gives the heterodyne receiver

output current which becomes

ih ,B(t) 
= A 5 R e [ e x p ( - j 2 k z ] e x p [ - j 1 T~ fd 1( t ) ]

exp [~ j 2 ~Tf 1~ t ]  I a (x+vt)exp[jO (x+vt)]
2 

* 
•

PD(x)exp[-~
—2]ULO (x,t)dx (128)

w

where

= E~~ ~~(2z- tc )  
- 

(129)
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In Eq. (128), the exp[-j~u~f d1(t)J 
can be cancelled by an identical

term in the local oscillator field. Only the current amplitude

-
~ is of interest , thus the phase terms in front of the integral

can be neg lected. The complex current is now written as

ih B (t) = A 5 J PD(x) a(x+vt) exp[jO(x+vt)]
2

exp [-~---2 ] dx (130)
w
0

The rough surface phase term is the only random term in

Eq. (130). Thus the mean of the current is given by

a 2

E[ih B (t)I = A 5 exp[-  —~-— 2] IP D (x)

x 2
a (x+vt )  exp[-~~~2 ] d x (131)

2a8where exp [- —
~~
--- 

~ 
is the value of the characteristic function

from Eq. (41). For a surface with °h > ~ in Eq. (28), the

value of the characteristic function is approximately zero

(Ref. 16:31). Thus the mean of the current is effectively

equal to zero; -

E[ih a (t )]  = 0 (132)

The covariance of the current is

E[ i h B (t) ih B (t
~
)I = A5

2 J J P D (x) P D (x ) a ( x +v t )

a(x~ +vt ) h 1(x) h 1( x )

PL(t~
x÷v

~
t) dxdx (133)
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2
wher e h1 (x) = exp[- 

~~~~ 
Because of the zero mean , the

wo
correlation of the current is equal to the covariance.

Comparing Eqs. (131) and (132)  to Eqs. (86) and (87) reveals that

the broadband heterodyne current model is almost identical to

the monochromat ic  model .  The only differences in the two are their

amplitudes and their system functions. These are rnin~r differences.

Both system functions serve the same purpose; they determine

the system reso lu t ion  a b i l i t y .  The broadband system function ,

h 1(x ) ,  has a wid th  dependent  on the beam size of the laser output ,

but the monochromatic system f u n c t i o n , h( x ) ,  has a w i d t h  dependent

on the beam si z e at some distance z from the laser. Because the

beam size widens as the field propagates further from the laser ,

h(x) is wider in space than h1(x). Thus the broadband heterodyne

system will have bet t e r  r es olu t io n ch ar a c t e r i s tics t h an e i the r

the monochromatic  or quas imonochrom at f t  he te rodyne  systems .

All three systems have the same SNR’s. Comparing h1(x) to

h0 (x ) ,  th e b roadba nd di r ect detection system function , shows

that h0(x) 
= h~(x). It can be shown by Fourier analysis that

h0(x) is n rrower in space than h1(~). Thus the broadband-

direct detection system has the best resolution ability of

all the systems .

In this chapter , four system models were found . The

quasimonochromatic-direct detection and quasimonochromatic-

heterodyne current models were shown to be identical to their

respective monochromatic models. The broadband systems were

found to have better resolution ability than the narrowband

systems . The ma jor discovery,  however , is that the broadband-
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direct detection system does not s tffcr from speckle effects

and it has the best resolution ability of all six systems

investigated.

i i

I
I
H
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V. The App l ica t ion of the Laser Lin e -Scan

Imag ing Sy stem to the Ran g in g Problem

rn this thesis , rang ing is considered to be the process

of determining the height of some point on the rough surface

relativ.e to other points on the surface. This process measures

macroscop ic variations in the surface (on the order of centimeters)

as opposed to the microscopic variations in the surface (on

the order of the optical wavelength). The laser l ine-scan

3 imag ing system is used to perform the process of ranging .

In this chap ter , the method and sys tem used in ranging

is discussed f i r s t .  The select ion of the in termedia te  and

carrier frequencies in design considerations is presented.

Then the second moment model due to speckle effects is found

and quantum noise effects are added to the model. This model

is then used to evaluate the sys tem performance for rangin g .

The Rang ing Method and System

One method of ranging is to modulate the laser field

with a modulation field denoted by

m(t) = (1 + cos 21rf~t)
½ (134)

where is the modula t ion frequency. During the propaga t ion

- I from the laser to the rough surface and back , the modulation

field suffers a time delay of 2_-.~!. r01 is shown in Fig. 2 and

given by Eq. (12) . The laser can be design ed wi th a bandwid th

that is narrow enough so that r01 z. This means that any

changes in the laser field away from z are small enough to

be ignored. The bandwid th requirement is
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2
> > max (135)

R 2zc

4 The time delay is now Z ~~
- - The modulation field that is

incident on the detector surface is

md(t) 
= [1 + cos 2-Trf

~
(t - ~~~~~ - ) ] ½ (136)

This result is equivalent to the quasimonochromatic case of

the previous chapter in that the modulation term is independent

of spatial variations.

If the time delay term of E q. (136) can be isola ted ,

then the distance from individual points on the rough surface

to the scanning system can be determine. The system used

in determining this distance is a quasiinonochromatic laser-

heterodyne receiver system . The quasimonochromatic laser

is chosen because like an actual laser it has a bandwid th ,

but it can be modeled by the monochromatic results. The

ranging model for this system is developed in the following

sect jon.

The Ranging Model

As with the other models , the field incident on the

detector is found first. The mean and cova-riance of the current

are then found. Quantum noise effects are added to the current.

The resulting current is processed , as shown in Fig. 8, to

determine its amplitude squared. A process is then developed

to isolate the time delay term and thus allow the system to

be evaluated.
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The Modulated Quasimonochromatic Field Inc ident  on the

Detector. The modulation term is dependent on time and the

propagation distance z. Thus, this term is not effected by the

Huygens-Fresnel integral equation which integrates over spatial

coordinates. It can be thought of as a constant during the

propagation process. Therefore , the field incident on the

detector is the same as for the monochromatic case (Ref Eq. (31))

but now it is multiplied by the time del ayed modula t ion  term

of Eq. (136). The incident modula ted f ie ld , deno ted Ud m (X
~
t)

is

Ud m (X
~
t) = md(t) Ud(x)

[1 + cos 2~ fc(t-~~ )]
½ 

~~ exp[-j2(kz- ~~~ 
2

exp[-jk~~-] 3’ a(a+vt)exp{iO (c~4-vt)1exp [- 2~ I

• exp[-j— —}exp [j2ir~~ Jdct (137)

By algebraic manipulation it can be shown that

[1 + cos2
~
f
~
(t- ~~~) J ½ (2)½ cos[2~~~ ( t -~~~) }  (138)

Therefore , the complex envelope of the field in Eq. (137) is

centered about the frequency 
~~
‘2 (recall  that the optical

frequency, 
~~ 

is suppressed) and has bandwidth BR which is

restricted by Eq. (135) . A represen tat ion of the temporal

frequency spectrum of Eq. (137) is shown in Fig. 12a.

The mechanics of the heterodyne system add a local oscillator

- 
I field to the incident field. The complex envelope of the local

H 
- 
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~~~~~ 
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A 
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Fi g. 12a Temporal Freq uency Spectrum of the De tector
Field

F
~
[cos 2 TT f IF tU LO (x)]

B0 B0

~IF
Fig. 12b Temporal Frequency Spectrum of the Local

Oscillator Field

F
~

[Jm d (t)Ud(x) 
+ cos2

~
fIF tULo(xfl

2
]

BR 2B~ BO
+B

R BO
+B

R 28o

f £ -~ c f +f~ 2fc IF -2— IF— IF

Fig. 12c Temporal Frequency Spectrum of LU d 
(x ,t) +

U ~ t~~
2 ,m

L0’’~~
Fi g. 12 Temporal Frequency Spec t rums for  the He terodyne

Receiver Fields 
-
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o s c i l l a t o r  f i e l d , deno ted U LO (a) ,  is centered at the intermediate

f requency ,  
~~~ 

and it can be thought of as having some narrow

b an dwid th , B 0 . As shown in Chap te r rr , the he te rodyne  curren t

is propor tional to the magnitude squared of the sum of the

two f i e lds  which  is

l m d ( t ) U d (x) + c o s l 2 n E IF t I U LO ( x ) 1 2 
= m

~
(t)lU d (x)l

2 
-

+ (cos 2 IF t ) 2
~ U LO ( x ) l 2

*

+ md(t) cos(2Tr fIF t ) 2Re (U
d ( x ) U LO (x) )

= 2[l + CoSC2lTf (t - 
~~~- ) } ]  Ud (x) 1

2

+ [1 + cos (2lr2fIF t)] IU LO (x)

f f
+ (2) ½ [cos(2 1T(f f f  + -~c~) (t - 

~-~-) } + cos
~

2Tr
~
fIF 

- -
~~~~~~ ~~~~~~~~~~~~~~~ 1]

Re(Ud(x)ULO (x)
) (139)

Fi g. l2c is a represen tation of the one sided temporal

f requency spect rum of Eq.  ( 139) .  Recal l  tha t the het erodyne

system has a bandpass filter centered near the frequency 
~lF

Thus the heterodyne current is dependent on only the last term in

Eq. (139). However , the last term contains two signals; one is
f -

centered about the frequency 
~IF 

- —
~~ and the other is centered

£ 2
abou t 

~IF + - Only One signal is needed. Thus it is arbitrarily
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chosen that the signal centered about 
~~~~~~~~~ 

~~ is f i l t e r ed

out. This can be done with the sue of a bandpass f i l t e r

with a bandwidth of BR + B0 cente red at 
~IF  

+ —
~~~~ . The

remaining signal is used to determine the heterodyne current .

- The signals illustrated in Fig. 12c may overlap with

each other  dependi n g on the values of 
~c’ ~IF ’ BR, and B0.

This overlapping is called aliasing. To prevent aliasing
£

between the signal centered at 2IF + —~L and the other signals ,

- the following three conditions must be met:

~IF 
+ + 

~~
- (B R + B0) < 2

~ IF - B0 (140)

~IF 
+ 

~~~~~~~ 
(B R + B0) > 

~c 
+ BR (141)

and

~IF 
+ - 

~ 
(B R + B0) > 

~IF 
- + 

~~ 
(B R + B0) ( 14 2 )

These three conditions reduce to two restrictions :

4 

~~~~~ 
BR

+ B0 (143)

I 
and 

•

~IF 
> + 

~~
- B R + ~ B0 (144)

Fig. 13 is a graph of the possible values of f and 
~IF

• which avoid aliasing between the signal about 
~IF 

+ and
- the other signals . The frequency locations in Fig. l2c I -

- 

and the restrictions of Fig. 13 have assumed that 
~IF 

<

Very similar results would have been obtained if it were

assumed that > 

~IF 
- 

-
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~~ values which. 

~~~~~~~~~~~~~~~ 
,— prevent aliasing

2B R +B O - f1~ = fc+3B R~~o
)

3 1 -“
~-B R +~ B O 

- I~”~ 
- 

~c 
= BR + B0

BR
.
~
BO 

c

Fig. 13. Values of 
~IF and which Prevent Allasing

For the restrictions of Eqs. (143) and (144) and for the
f

ba ndpass f i l t e r  centered at 
~Ip + ~~~~~ , the resulting field is

2 *UBP(x,t) = (2)’ cos[27r(f1~ + -
~
)(t_ _

~~
)JRefU d (x)ULO (x)} (145)

£
This field is centered about + —

~~~~ and has bandwidth BR + B0.
In th i s  case the value of intermediate frequency is unimportant.

Thus by appropriate  modulat ion and f i l te r i n g  techniques , the
f

center frequency of the field can be changed to -~~~~~ -
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The resulting field still has bandwidth BR 
+ B0, and is

- 

UBP (x,t) = (2)½ cos[2~~~ (t- 
~~
)]Re(Ud(x)U~O

(x)}

= Re{IJd m (x,t)U
~O
(x)) (146)

where Ud m (t) was given .in Eq. (137). This field is

now used to determine the heterodyne receiver current.

The Ranging Current Model. The heterodyne current is found

by substituting the bandpassed field of Eq. (146) into Eq. (4).

The result is

lh m (t)  = nfl- -

~~~~~

-- [1 + cos2ir f
~
(t
~ ~J)] ½ Re{

.exp [-j2(kz- ~
)) J J e xp [- ik ~~ ] a ( a + v t ) e xp [-  ~2

Z W ( z )

a2 xa *

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (147)

2
As with previous heterodyne models , the exp [-jk~~ 1 term can be

cancelled by an identical phase term in the local oscillator

field. Then the x integral is just the Fourier transform of

the aperture function denoted

Fx [PD(x)] f a = PDF (a) (148)
x T i

Also , only the amplitude of the current is of importance here ,

so the exp[-j2(kz4)]phasc term can be neglected. The current
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Eq. (5) with Eq. (124) produces a broadband current of
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is the n wr i t t e n  as

lh m (t )  = A3 [1 + C0S2~ fc
(t~~~ ) ] ½ J P~~~(a)

2
a ( a + v t ) h ( c*) e x p [j O ( c z + v t ) ] e x p [ - j k ~___J da (149)

Comparing Eq. (149) to Eq. (85), it is seen that the modulation

heterodyne current , except for the time delayed modulation term ,

is identical to the monochromatic case and thus the quasimonochromatic

case. This term is not random and its amplitude varies between

zero and (2)½ , thus it does not effect the mean and covariance

of the current .  They are the same as before :

E[ I h m (t)] = 0 (150)

and

C. (t) = md (t)m d (t ) C~ (t,t~)

[1 + cos (2~ fc(t~~~)}]
½ [1 +cos~ 2~ f (t- 

2z)}]½

f J PDF(a)PDF (a )a(a+vt)a(a ÷vt ) P~(~ a+v~t)

h(ct)h(c~ )dada (151)

-• To make the ranging problem more general , quantum noise

effects are now included. Quantum noise is denoted nTH (t). It

is included by s imply adding it to the modulated current of
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Eq. (149). This sum , denoted iT(t) for total current , is

= md ( t ) i h ( t )  + 
~TH ( t ) (152)

The fir6t two moments of the quantum noise due to heterodyne

quan tum e f f e c ts are (Re f 26 : 176)

E [n TH (t)] = 0 (153)

q2riA
C (t,t )  = d I5 (t-t~ ) (154)nil_I hf

0

Therefo re , the mean and cova riance of the total cu rrent are

E[iT(t)] = E [i h m ( t ) ]  + E[n TH(t)i

- 

• 
= 0 (155)

and

C. (t,t )  = md(t)m d(t )c. (t,t )  + C (t,t ) (156)
‘Ii ~TH

It can be seen from Eq. (154), that quantum noise is white

noise. That is , its power spectral density has a constant

amplitude and exists for all frequencies. One way to decrease

the power in the noise is to pass the noise through a bandpass

filter. The total current can be passed through a bandpass filter
f

w i th  b a n d w i d t h  B R + B0 centered about —s- . This does not
2

• effect the modulated heterodyne current but it does decrease the

quan tum noise. The bandpasscd quan tum no ise is deno ted n TIl BP ( t ) .
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1

If  > > BR 
+ B0 

(poss ible  by system desi gn) , the quantum

noise can be represented in terms of i t s  quadra tu re  components

(Ref 24:237). The quantum noise becomes

nTH ,BP (t ) nc(t)coS (2~~~ t) -n5(t)s i~~2ff~~ t)

£
= r ( t )  cos(2 ir-2~ t + 4

~TI~I (tfl 
( 157)

where -

r ( t )  = [n~ (t) +n
Z(tfl 2 (158)

and

1 n ( t)
~TH (t) = tan [n~ (t)~ 

(159)

The quantum noise still has zero mean .

By definition the covariance of the bandpassed quantum

A -Ji se , now denoted CTH (t,t ), is

CTH(t,t )  ~ E [nTH ,Bp (t) NTH BP (t )I

= E [cosf2~~~ t + 
~TU (t  co 2~~~ t +~ TH (t ) }

r(t)r(t )] (160)

The covariance of the total current including bandpassed quantum

noise  is

C. (t ,t )  = md (t)m (t~ )C. (t,t )  + C (t,t~ ) (161)iT d ‘h TH
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P~ (~ x+v~ t )  dx dx (133)
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- n ( t)

md(t)

r t  —(
~~~~~

——-———-—.-

~ 

~~~~~~~~~~~~~~~~~~

c o s ( 2~~~ t +~ TFl ( t ) )  RTH (t , t~ ) = C TH (t , t )

Fig. 14 Model of the Total Current

The noise terms represented by the total current covariance

are shown in Fig. 14.

In Eq. (163), the covariance term , C. (t ,t), is not

stationary (Ref Eq. (98)). For simplification it i s  assumed

that the surface r e f l e c t i o n  c o e f f i c i e n t , a ( x ) , is a constant .

This implies that C. (t,t )  is stationary and thus Fourier

techniques can be used to examine this term . Note that since

the quantum noise is stationary , then CTH (t,t )  is stationary

also. Eqs . (162) and (163) are used to determine the second

moment model for  rang ing .  
-

The ampl i tude  squared of the to ta l  current  is found by the

process shown in Fig. 3. The first two moments of the amplitude

squared ar e g iven by Eqs. (90) and (91). They are

E [A 2
(t)-] = C. (t,t =  t)T
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systems . The major discovery, however , is that the broadband-
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= [1 + cos C 2~ f~ Ct-~~
) } ]  C~~ (t , t =t) + CTU (t,t = t) (162)

and

C 2 Lt,t )  = [C. (t,t )]
2

AT 
iT

= [1 +cosC2~ f (t -~~ )}J [l+c os(2~ f (t -~~) ]  [C~ (t,t) ]
2

c &. c c h

+ 2 [ l + c o s f 2 r f ~ (t-  ~~) } ] ½ [1+cos~ 2~ f c (t - ~~)JJ ½C. (t,t )

CTU (t,t )

+ [C TH (t ,t)}
2 (163)

Eq. (162) is the “signal” component of the model. The

first term in this equation is composed of two signals:

one is centered about zero frequency and the other about

The amplitude of these two signals is C. (t,t t )  or (t).

The last term in Eq. (162) is the variance of the bandpassed

quantum noise. This term is centered about zero frequency

also (Re f 2 4 : 2 3 9 ) .  If the “si gnal” terms are A.C. coupled ,

the terms at zero-frequency are filtered out. This leaves

E [ A 2
T ,Ac ( t ) I  = costZll fc(t 

- 

~ ) ]  a1
2(t ) (164)

Eq. (163) describes the “noise” components of the model.

Let the first term in this equation be denoted n11 (t). It

describes a noise process , call it n5~~(t)~ wh ich is zero mean ,
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•1

has a covar i ani c ol IC. (St , t. ‘) 1 , .u~d is nui l t i p i  led by

[1 cos ( .~~1 . ( t - 

~~)) 1. Mul l i p I i~~~it ion of n •~ ( t ) b I y ie hIs

- i  
~~~~

• ~~ f r equen ~~v t e rm wh I cli c an  a I so be I i  I t o  r ed by A.  C

coup Ii n~ . I I  g. 1 ~ a I a rep r e s e nt  at  i on of  n~~ ( S t  )

• The ce~~~n I  to rm in 1~~ . ( 1  u 3) desc r i be s t wo stat i st i call V

I n ¼ l e p e n d e n  t no i se roe ~~~~~~~ , (S t ) and  u 1) , t~li  i e h are

mu It  i t i l l ed t o~ e t her  . n • (S t ) ha s  ze ~~ m o an , a covar i ance of

C~~~( t , t ) ,  and is m u l t i p l i e d  by [1 4 C ~f~ (t- ~~ )1 1 .  n 1 3 ( t )

iris c ~~ mc iii , a cov a  r I :inec of C - ( t • t ) , and e an he rep resented
ii f

by t h e  m u l  tip Ii eat i on  o f  r ~t ) by cos ( S u  ~~ t 4 

~~~ 
(S t)) (Re f Fq. (S i to

Thu—~- t lie mu It ip ii  e a t  i on  0 c U~ 2 ( t )  a n d  (St de n o t e d  n t 1

“14 (So ~‘n 1~~(St)n 1 (t)

f .
[1 + cos ( .~~ii I (t - --) ) ~cos  ( it -~~~~

- 

~~~ 
( t) )n , ( S t  ~ r t )

-- 
C 0 S[ 71 f ( S t  ~

) +

+ c o s [ vf  L ~ ~.rii ( S t )  Il 1 ç (t) (it)5)

whore n 15 (tl = (~~1~ u 1, (S t ) r ( t ) .  The l a s t  term in Eq. (I~~~) i s

a t  ~e ro I r o q u e n e v  s i Ui e c-os (~ I . ~ ~ (St 1) i s Just some p h a s e

sit f t . T h u s  as be t o r o  . t h i : ;  t erm can be fil ter ed out . The

rem ;i in  i n~ to m i  i s r e p r e s e n t  ed in F i ~ . 1 Sb

Ih c I as t t e r m  i n  E q .  ( h  3) , ca n be r e p r e s e n t e d  by 0

st a t  i s t i e a I t v  i n d i -p t ’ n d c n  t no  i se P~ 0i s s i .  , n~ (St 1 and n 1 -. (St 1
Each of  these i -; e ro iiie in , has a coy am i auc e o I ~~~ (St • 0 1 , and

I I I  f
can  be i.op rese nt oil bY t he p mod uct o I r (St and i 0 S  .‘ii ~ 

+ ( t  1
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n~~~(t)  
_____________

n 11(t )

cos2r f ~~(t  -

Fig. l5a Speckle Noise Representation

n 15 (t) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

n14 (t)

cos [2 1T f c (t
~ ~~ +

Fig.  lSb Speckle-Quantum Noise Representation

I

n TH (t )  n 18 ( t )  
-

- cos [2-iT f
~
t + 41

(t) + 4~2(t)]

Fig. lSc Quantum Noise Representation

Fi g. 15 N o i s e  R e p r e s e n t a t i o n

- 
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The produc t of n 16 ( t) and n 17(t) is

= n 15 ( t ) n 17 (t )

£ f
= r

1
(t)r

2
(t)cos(2ir -~ - t + ~1( t ) )  co s(2 -u —~ - t +

= [cosf21r f
~
t + ~1

(t) +

+ cos{~~1( t )  - 
~2
(t)}] nTH (t) (166)

where n TEI ( t)  = ~r1 ( t) r 2(t). Once again the last term in Eq. (166)

is centered about zero frequency since cos(41(t) - 4 7 ( t ) )  is

only a phase shif t . Thus this term is f iltered ou t . The

remaining term is shown in Fig. l5c.

A representa tion of the “si gnal” and “noi se” terms described

by Eqs.  (162)  and (163) has now been suggested. Thus from

a second moment model standpoint , it can be said tha t the

ampl i t udcd  squared of the total A.C. coupled current is

= cos21r fc(t~ ~~~
.) a~~~(t)

+ cos2ir f
~~
(t - .

~
.) n~~~( t )

+ cos[2~T f ( t  
~2 + 

~TFI (tfl n15 (t)

+ cos [2 i r f t + 
~
,
1(t) 

+ 4 2 ( t ) ]  ~~~ ( t )  ( 167)

Eq. (167) is now re ferred to as the rang in g curren t . Fi g. 16

is a dia g ram of the second momen t model of the rang ing c u r r e n t .

_ 
__  
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a.2 Ct)
h x

cos2rr f
~~
(t -

“
~ 

( t )p

cos27rf (t - 4-. A 2 ( t )

x

cos[2 .rr f~~(t~~~
) +  TH (t ) j

I
~TH (t)

x

cos[27rf
~
t+ ~1(t) +4i2

( t)]

Fig. 16 The Current Model for Rang ing

W i t h  the help of Eq.  (167) and the curren t model , i t  is poss ib le

to detect the t ime de l ay , . This  is done in the f o l l o w i n g

section .

Detect ion of the Time Delay. It is desired to measure the

time delay so that the distance from the rough surface  to the

• ilnageing system can be obtained. What is actually measured

though is the phase delay that results in the field as it

propaga tes down and back up. Measuring the phase delay , which
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is 2-nf
~ ~~ , is good enoug h since and c are kn own . Thus ,

z, the dis tance tha t is desired to be known , is the only

unknown and can be easily determined from the phase delay .

However , because quan tum and speckle noise are presen t ,

the p has e delay tha t is measured includes the phase delay of

the noises as well as the laser f i e ld’ s phase delay . Therefore

there in an error in the value of z that is measured. The

phase • elay error can be seen from a phase d iagram of the

ranging current in Eq. (167). First , this curren t must be

rearranged.

Consider the third term in Eq. (167). It can be rewritten

as

cos [2irf (t_!.) + 
~TH(tflhh15(t) = c o s [2 J T f~~

(t.-
~~

.) + (2irf

+ 

~TH (t~ ln lS (t)

= cos2rr f~~
( t-

~~ -) cos[2 1T f _+4I TH ( t ) ] n lS ( t )

+ sin[ 2 -1r f
~~

(t - ~-~)]sin[ 2~if 
~~

-+ 

~TH (t f l~~lS (t )  ( 168)

The last term in Eq.  (167) , can be r ewr i t t en  
-

cOs[2nf~ t + 4 1(t) 
+ ~2

(t) ] n ~j~~(t)

= cos[2
~~f~~

( t-
~~~

) - + 2r f ~~~ + ~ 3 ( t ) J  n~~~( t )

= cos[2~f (t ~~)}cos[2rf~~~ + ~3
( t ) ] n

~H
(t)

+ s in [2 ~~f (t -i~) ] s i n [ 2 r f ~~~ + ~3 ( t ) }  fl~ H ( t )  (169)
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where ~ 3 ( t )  ~2 ( t )  + 4~1(t). Now the rang ing curr ent becomes

• A 2 ( t )  = fa~
2 (t )  + n 5~~( t)  + cos-(2-irf . + 

~TU (t
~~ 

n 15 (t)

+ cos-C 2irf
~ ~~

. + ~~ ( t ) }  n TH ( t ) ]  cos2 7r f
~~

(t -

+ [sin{2-ii f~~ + ~Tu
(t
~~ 

n15(t) + sinC2-Tr f
~~E~

. + 4~3
(t)}n

~u
(t)}

sin2-n f
~
(t - 

~~
-) (170)

A phase diagram of E q. (170) is p lo t ted  in Fig.  17.

In Pig. 17 the desired phase to be measured in 27rfc~~~
Due to noise , the phase that is actually measured is 27rf

~ 4~- +

where 
~e 

is the phase error or deviation due to noise.

The phase deviation is written as

-l ~TH Ct ) 5 i ~10 l 
+ n5 (t) s in O2

2 1 (171)
i s p TH cos0 1+n 15 ( t )  cos0 2

where
f

= 27r-~ ~~- + 4 3(t) (172)

and

02 
= 2

~~T E + 

~TH (t )  (173)

Eq. (171) is not very en l igh t en ing .  I t  becomes somewhat c learer

if looked at in it two limiting cases: (1) speckle noise dominan t

and (2) quantum noise dominant. Each of these cases is discussed

below . -
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If speckle noise is dominan t over quantum noise , then all

quan tum noise terms can be neglected and the phase devia tion is

due to speckle noise.

In Eq. (171) , the n.~11( t )  and n 15 ( t )  terms are due , at

- - least in part , to quantum noise. If they are neglected , the

phase deviation due to speckle noise is

0
= tan ’ [ 2 

= 0 (174)
n ( t )  + 

~~~~. (t)sp

From the las t equa t ion it appears that the phase of the laser

field can be measured exactly for speckle noise limited systems .

This seems in tu i t ive  because the speckle noise , like the laser

field , is propagated from the surface to the imaging system.

- 
- Since both take the same path , they should suffer the same delay .

Most imaging systems are speckle noise limited therefore , it

appears they should work well for ranging.

On the other hand , if quan tum noise is dominan t , the n 5~~(t)

and n 15 (t) terms are neglec ted (n 15 (t) resul ts from the cross

correlation of the speckle and quan tum noise , thus it -is

neglected for both cases ) .  The phase devia t ion  due to quan tum

noise is

nTH (t) Sm O l
4

~TU 
tan 1 [ ] (175)

a. (t)+n.
~H

cos 0
1U
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This result is very similar to the result obtained by Ziemer

and Tranter  (Ref 2 4 : 2 7 7 - 2 7 8 )  for  the case of angle demodulat ion

in the presence of noise. (Eq. 175) does not indicate the

magni tude  of the phase error , but it do es imply tha t some

deviation occurs . It can be seen tha t  for  a .  ( t)  > > n~~‘TH
the phase dev ia t ion  is small .  If the me an and covariance of

Eq. (175) are found , then the deviation can be better understood.

However , that  is beyond the scope of this .thes is .

One practical consideration which should be taken into

considerat ion fo r  both cases is tha t phase de tectors are ampli tude

dependent. All the components which make up the phase devia t ion

term (Ref Eq. (171))have random amplitudes. Therefore , the resul ts

of bo th cases are true only for a careful l y designed phase de tector

which is insensitive to amplitude variations of the s igna l .

The important  resul t  of th is  chapter  is that  it appears tha t

laser line-scan imaging systems can be effectively used for

ranging. The only assump t ions used in showing this were :

(1) the bandwidth of the laser source is narrow enough that laser

field , at any poin in space , is constan t across its wid th and

(2) the imaging system is speckle noise limited. Neither

one of these are severe restrictions. Also importan t is Fig. 13.

It gives the values of and that can be used to avoid aliasing .

This insures tha t the correc t image is processed by the sys tem .
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V I .  Conclusion

Sumur’

• i- ~ cts of speckle on the ou tpu t curren t of an imag ing

sy o examined . The imaging system was composed on a laser

~~~~~~~ a rough surface (compared to the laser wavelength)

and a receiver measuring the field reflected from the surface. 
-

Three types of lasers and two types of receivers were examined.

The lasers were designated by their bandwidths as monochromatic ,

quasim onochroma t ic , and broadband.  The two receivers were the

direct detection and heterodyne .

The f ield ref lec ted from the rough surface was “crudely”

modeled by multiplying the inciden t laser f i e ld  by a re f lec tance

term and a random phase term . The reflectance term was the

desired q u a n t i t y  or “signal” to be measured.  The phase term

simulated the e f f e c t s  of speckle .  All f i e lds  were propaga ted

by the Huygens-Fresne l  in tegral .

The system composed of a monochromatic laser and a direct

detect ion receiver  was examined first. A system function dependent

on the laser beam spot size at the surface was defined. It

was shown that  the r e so lu t ion  a b i l i t y  of the system was determined

by the width of the sys tem func t ion . By second momen t techniques ,

the “noise ” (due to speckle e f fec ts) mea sured by the sys tem

was found to be signal dependent. The s i g n i f i c a n c e  of t h i s

result was that the signal to noise ratio (SNR) could not be

improved by increasing the signal power. The va lue  of the SNR

was shown to be greater than ~or equal to one.  The f a r  f i e l d

and near field cases were found to he identical. The H

monochromatic laser was then replaced by a quasimonochromatic one.
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The resul ts for this new system were shown to he identical to

the monochromatic results.

For the imag ing sys tem consis t ing of a he terod yne receiver

and a monochroma t ic laser , the measured”noise ” due to the effects

of speckle was also found to be signal dependent . Thus the

SNR , wh ich was equal to one , could no t be improved by increas in g

the si gnal power. The resolu tion of the system was shown to

vary w i t h  the beam spot s i ze  at the surface and the spatial

fourier transform of the receiver ’s de tect ion area.  The far

and near f i e ld  cases were identical. The heterodyne resul ts

were unchanged when the monochroma tic laser was replaced by a

quasimonochrom atic one . When a broadband laser was used , the

only result which changed was that the resolution ability

of the heterodvne system improved.

The most significant results occurred when the imaging

system was composed of a direct detection receiver and a broadband

laser. It was shown that this system is not effected by

speckle noise. This was differen t from all other systems .

They were limited by speckle effects. This system was found to

have the bes t resolu t ion charac teris tics of all the sys tems

investigated. From these results , i t was de termined t~~~t~ th i s

system is the optimum system to use for laser line-scan imaging.

As an applica tion , th e sys tem cons ist ing of a quasimonochroma t ic

laser and he terodyne  receiver  was used for  r a n g i n g .  In addi t ion

to the e f f e c t s  of speckle , quantum effects were included. The

laser f i e ld  was ampl i tude  modula ted .  The p hase delay in the

modula t ion  term of the r e f l ec ted f i e l d  was measured and
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used to determine the distance from the surface to the system .

However , the measured phase delay included a phase error due to

quan tum and speckle e f fec ts. I t was sh own tha t for  the case of

speckle noise domina te over quan tum noise , the phase delay could

be accura tely measured.  For the case of quan tum noi se domina te ,

i t was found tha t an error wou ld resul t in the measured phase -

delay . No a t tempt  was made to quan t i f y this error. It was

no ted tha t the ob tained resul ts were on ly v ali d for  a phase

- 
I detector which is insensitive to amplitude variations. It

was concluded that ranging could be effectively per formed . A

method for se lec t ing  the in termed iate and ca r r i e r  f r equencies

used in the ranging problem was al so presen ted.

Recommenda t ion s

In this thesis , a laser line-scan imaging system was modeled

for different combinations of laser sources and receivers. These

models were based on theoretical analysis. It is recommended

that these models be compared to experimental data to test their

validity.

One calculation used to determine the effects of speckle

on broadband imag ing sys tems (Ref Eq. (123)) was only an

approximation . It seems feasible that this calculation can be

quantified by comparison to the analysis of similar calculations.

This would add to the understanding of the broadband results in

this paper.

rn  the rang ing p rob lem , the phase error was presented but

not analyzed. A statistical analysis of the phase error would

result in a better understanding in the magnitude of the error

and the variations in its amplitude. As previously stated ,

85
IL~~’L -- 

~~~
-
-;--; - 

- 

- •--.-- -.—-~1—-~~~ ------ ‘ - -  - - •s___ •



~~~~~~~
_

~

.5,-.

-
~~~~~~~~~~~~~~~~ -~~~~~-- -

~~~ 
_ _ _  

_ _  

~ T_ii~~~~~ i~~

phase detectors are amplitude dependent. A statistical analysis

would indicate the effect of amplitude variations on phase

de tectors.  Also , the r ang ing  problem was examined for the case

of a constant surface reflection coefficient. If the problem

were solved for a spatially varying coefficient , a more general

solution would be obtained.
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Appendix A

Extended Huygens-Fresnel Integral

Recall from the section on complex representation that the

real scalar optical field is

u(
~
,t) = Aci~,t) cos(2irf~t-+ (~ ,t)] (A-i)

and its complex envelope (with exp [-j2irf0t] time dependence)

is

U(i ,t )  A (~ ,t) exp [j ~pCf , t ) ]  (A- 2)

where i is a vector with. spatial coordinates (x,y). Let

the temporal Fourier transform of Eqs. (A-l) and (A-2) be

denoted

Ft[u(r ,t)] 
= V(i~,f) (A- 3)

and

Ft (U(i ,t)] = VLP(i ,f) (A- 4)

By Fourier analysis techniques it can be shown that Eq. (A-3) can

be written in terms of Eq. (A-4) as

V(i~,f) = 
~Ft (U*(~,t) exp(j2n f0t)]

+ ~ Ft (U( i~,
t )  e x p ( - j 2 ~rf 0t ) ]  (A-5)
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For the case where the complex envelope , U(i,t), is mt~nochrom at ic ,

the Fourier transform of the optic field can be written

V (~ ,f) V(i,f0)~S(f-f0) + V(i ,-f0)~$(f+f ) (A-6)

The amplitude of the last term in Eq. (A-6) is

V(Y,-f0) 
= ~~ - F~ (U(i~,t)exp(-j2nf0t)J

~ VLP (r , f+ f O ) (A-i)

The two dimensional form of the Huygens-Fresnel integral

is

U1(i~1) = 
e~~~~1a} ff U(i)exp[j~~ (i 1-~FI 2 ]d~ (A-8)

where X= C/f . On comparing Eqs. (A-5) and (A-7) it is seen

that Eq. (A-8) can be written as

= 
ex~~~kz] J f V(i~,-f0)exp[j~~~(i 1-i9

2]di (A- 9)

After completing a change of variables f=-f0, Eq. (A-9) becomes
fexp[-j2Trz— r — k 2V1(i~1,f) = c 

~ ~ 
V(r,f)cxp[-j~-~[~j-i9 ]di (A-b )

This equation is valid for propagation of any field component

at frequency f .  To express the results in terms of complex

envelopes , note that for all frequencies I near -f0

V(i ,f) = 
2~
VLp (r ,f + f 0) (A - i l )
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Substituting Eq. (A- il) into Eq. (A-b ) yields

f exp [-j2ir z~~J
vi,Lp (Yl)

f + 1
O~ -jcz J J VLP (r , f 

~~~

exp (-j~~ Iir 1~ i9 Z Jdi (A-12)

The temporal inverse fourier transform of Eq. (A-l2) is

-j2rr f t r -r 2

° - 

~~~ J J ~~~~~~ {U(i ,t-~ 
- _____

1F1-?1 2
exp[-j2Tt f0(t-~ - 

~~~~~~~ 
)])dr (A-13)

By use of the chain rule, Eq. (A-13) becomes

2 lTzc exp[jkz] J J exp[j~~~r1-r~2]
— F~~-~ l — Ir -r i

- --

~~~~~~~~ 

)-j2~~0
tJ(r ,tf 2zc )

)di (A-14)

Eq. (A-14) can be simplified somewhat . If it is assumed

that the bandwidth of U(F,t) is much less than the optical

frequency f0, then the f in the numeration 
of Eq. (A-12)

can be approx imated by 
~~~~~~~ 

The resulting temporal inverse

Fourier transform of Eq. (A-12) is then

U1(~ ,t) cx~ [jkz1 J J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(A- is)
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This assumption implies that the field does not change

significantly in time relative to the variation at f0.

Eq. (A-iS) would also result is the derivative term in Eq. (A-14)

was assumed to be insignificant in comparison to the other term

in that equation .

Another simplification can be made to Eq. (A-14) when the

bandwidth of U(r,t) is restricted by

> > 
1 Ol 1 max (A-l6)

where r01 is defined by Eq. (10). This is the quasimonochromatic

restriction (Ref 12:108). The resulting Huygens-Fresnel

integral , which is valid for quasimonochromatic fields ,

is

exy [ikz] J J U(i,t)exp[j~~ I~1-~ I 2
]d~ (A-17)

The Huygens-Fresnel integral , which is valid for monochromatic

fields, has been extended so that it is valid for fields of

any bandwidth (Ref Eq. (A-14)). Two special cases, the broad-

band and quasimonochromatic, were presented. The propagation

of broadband fields is given by Eq. (A-iS) and the propagation o~

quasimonochromatic fields is given by Eq. (A-li).

K
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Appendix B

The Method of Stationary Phase
4 —

The method of stationary phase is an asymptotical approximation

to the solution of an integral. It is discussed by Papoulis

in two of his books (Ref 13: 234-250 , 15:139-143). The method

is summarized below.

Consider the integral

g1 , ~~~~1~~
j
~~ 

g2Cc~,~~ .~d~d8 (B- i)

where R is a region in the ct ,B plane . g2(cs ,~) must be

twice differentiable in R. The extreme value of g2(ct ,~)

at a sing le point (ct0,B0) in R is found by the first partial

derivatives of g 2 (c& ,B) :

9g 2 (a , 8)
________ = 0 = g2 ,~~(~ 0 ,B 0) (B-2)

2~~ ’~~________  — 0 g2 ,8 (a0 ,80) (B-3)

If g1(.a,8) is 
continuous at and if

g2,~~g2,~~ 
-(~ 2~~~

) 2 
~ 0 (B-4)

and

J~ 0 (B-5)
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where g 2 , g 2 , and g2 are the partial derivatives
.a8

evalua ted at (ci
0,

8
0), then as ~f approaches in fin i ty

j2 irg1(ct ,~~ 
)

Q(~f) = ° ° exp [j & f g (a ,B )] (B-6)

~~~~~~~~~ ~~~~
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