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and a receiver measuring the reflected field is used for the
purposes of imaging and ranging. The system is modeled by
second moment techniques. The effect of speckle on the
performance of the system is investigated.
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Abstract

When coherent light is incident on a surface which

is rough in comparison to optical wavelengths, a random !
interference pattern called speckle is produced in the
reflected field. The effects of speckle on an imaging system ,5

composed of a laser scanning a rough surface and a receiver

*
‘s

measuring the reflected field are examined. Three types of lasers

and two types of receivers are considered. The lasers are designated i

by their bandwidths as monochromatic, quasimonochromatic, and g
! broadband. The two receivers are the direct detection and ‘
the heterodyne.

The field reflected from the rough surface is '"crudely"

modeled by multiplying the incident field by a reflectance term ' "
and a random phase term which is indicative of speckle effects.
By second moment techniques, the imaging systems are modeled ﬂ
in terms of their mean, covariance and system parameters. All

i% fields are propagated by the Huygens-Fresnel integral.

| The system consisting of a broadband laser and a direct
detection receiver is shown to be independent of speckle effects.
All other systems are shown to have '"noise'", due to speckle
effects, which is signal dependent. The signal to noise

W ratio, f&r the systems which include a direct detection receiver,
Zk is found to be greater than for systems which have a heterodyne

:; receiver. The systems with broadband lasers are shown to have

‘ higher resolution than systems with the other laser sources. The

broadband laser-direct detection receiver system is found to

have the highest resolution. .

vi




A system consisting of a quasimonochromatic laser-heterodyne
receiver is used for ranging. The range from the system to the
rough surface is found by measuring the phase delay in the
reflected laser field. It is found that the ranging performance
of a heterodyne scanning system is not fundamentally degraded

by speckle effects.
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AN ANALYSIS OF THE EFFECTS OF

SPECKLE ON LASER SCANNING SYSTEMS ,

I. Introduction ]

A laser line-scan imaging system is a system which produces
the image of some desired object. Fundamentally, the systenm
is composed of a transmitter and a receiver. The transmitter
is a laser which illuminates the desired object surface. The
laser field is reflected or backscattered from the surface and
partially collected by the receiver. The backscattered field,
which is a function of the reflectivity of the object surface,
is processed by the receiver to form an image of the object
surface. This image is the desired output of the receiver.
The receiver contains optics, detectors, filters, and other
components which are needed to produce the desired image. A
drawback to this system occurs because most surfaces are
rough when compared to the wavelength of a laser field. The
rough surface introduces noise into the image. For coherent
illumination this noise is commonly called speckle, and it
distorts the image obtained by the receiver. Speckle is discussed
in detail in Chapter II.

The purpose of this thesis is to determine the effects of

speckle on the performance of a laser line-scan imaging system.
Three laser scurces: monochromatic, quasimonochromatic, and

broadband; and two receivers: heterodyne and direct detection ﬁ
are investigated. In this thesis, the effect of propagation

on all fields is determined from the Huygens-Fresnel integral.

st o




The rough surface is represented by a well known statistical

model and the receiver output is a current which is based

on a known receiver model. The output current is described

by a second moment mode. which is a function of the laser beam

B Sdmsia | ax

spot size, the system scanning velocity, the surface area
of the receiver input, and the type of laser used.

The thesis is organized in the following manner. Chapter
IT1 developes the background material necessary for examining
the line-scan imaging systems. In Chapter III, the second
moments models are determined for two systems: monochromatic
laser-direct detection receiver and monochromatic laser-
heterodyne receiver. These systems are compared on the basis
of their signal to noise ratio and resolution ability. This
chapter establishes the method for determining the second
moment models of the other systems. In Chapter IV, linear
frequency modulation is used to produce a quasimonochromatic
and a broadband laser source. The results of Chapter III are
extended to produce four more second moments models, which
arise from the two modulated laser sources. The signal to
noise ratio and the resolution ability of each model is
discussed. In Chapter V, a quasimonochromatic laser source is
amplitude modulated. The modulated laser field is propagated
to the rough surface and back, and its change in phase is
y measured by a heterodyne receiver. The phase change is used
to determine the distance from the surface to the system.

The effects of quantum noise are also included in this system.




II. General Configuration

In this cha.ter, several background areas are discussed.
These areas serve as a basis for examining the laser line-
scan imaging system. The background areas are: a discussion
of speckle, the complex baseband representation for optical
fields, the optical receiver models, the second moment model,
the Huygens-Fresnel integral, and propagation and reflection

of a laser field.

Speckle

When a coherent optical field is incident on a surface
which is rough in comparison to the optical wavelength, a
random interference pattern is produced in the reflected tfield.
This random interference pattern is called speckle. One
example of speckle is the sparkling pattern produced when the
light of a visible laser is reflected from a wall. The effect
of speckle is to degrade the image of the object surface by
superimposing a '"noiselike structure which masks the spatial
information present in the image" (Ref 1:1257). This results
in a pattern of constructive and destructive interference
being produced in the light reflected from the rough surface.
The random interference pattern is composed of bright spots
due to constructive interference, dark spots due to destructive
interference, and areas with intensities between these extremes.
Thus the pattern has a granular appearance.

Rough surfaces are not the only cause of speckle. The

term speckle has been generalized to include most spatial




interference effects that result when any type of wave or
field is scattered from diffuse objects (Ref 2:16). Speckle
also occurs in atmospheric transmissions and holography. It
was once thought to be a nuisance, but now it has many

applications. For example, it is used in the measurement

of motion of a rough body (Ref 1:1271), photographic optical
processing (Ref 1:1275), and the remote sensing of crosswind

in the atmosphere (Ref 3:1).

The speckle phenomena has been known and investigated
since the time of Newton (Ref 4). Its early history is
briefly discussed in the introduction of a book edited by
Dainty (Ref 5:1-7). The invention of the first CW laser
in 1960 led to the first observations of laser speckle. They
were reported by Rigden and Gordon (Ref 6:2367-2368) and by
Oliver (Ref 7:220). Since the early 1960's, much work has
been done in the speckle related field. The entire issue of

the November 1976 Journal of the Optical Society of America

(Ref 1) was devoted to the discussion of numerous speckle

phenomena and effects.

Complex Baseband Representation

Consider the real scalar optical field

u(r,t) = A(T,t) cos[anot - 6(7,t)] (D
It is a function of time, t, and space, r, where T is a vector

with spatial coordinates (x,y,z). The complex baseband

representation of u(T,t) is
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u(r,t) = Re{A(T,t) exp[jo(T,t)] exp[-janot]}

& Re(U(T,t) exp[-j2nf t]} (2)
where Re{+} is the real operator and U(T,t) is the complex
envelope of u(r,t).

Throughout this thesis, the field, u(r,t), is represented |

by its complex envelope. The exponential time function is

suppressed. In addition, the field is often described at some

plane z, thus it varies in the x and y directions only.

— e

Therefore, the real scalar optical field at a given plane :z l
is denoted U(x,y,t). The real field can always be obtained |

from Eq. (2).

Optical Receivers

An optical receiver is a device which measures optical fields.
The receiver input is a field and its output is a signal
proportional to the input field. The receiver input for a line-
scan imaging system is the laser field backscattered from the
object surface. The field entering the receiver is in general
limited by the receiver's optics, field-of-view, or detector
area. It is assumed in this thesis that the receiver is designed
so that the field is limited only by the surface area of the
detector. This insures that the entire image of the object
surface and its spatial frequency content enters the receiver.

Two receivers, the héterodyne and the direct detection, are
investigated in this paper. With the exception of Chapter V,
both receivers are assumed to be ideal. That is, all quantum

effects and noise terms are neglected. This allows the effects ‘



e, R " ki

of speckle on the receiver output to be isolated. This does not
make the problem any less general. The quantum effects and

noise terms can be added to the final results if desired.

The Heterodyne Receiver. The heterodyne system adds the

input field to a local oscillator field centered at the optical
frequency fo'fIF' The ideal receiver output current is

(Ref 8:481-487)

0 = 3 [ [ 10,6000 ¢ ueay explizne ) taxdy i

(o]
Ay
: 2 7
- 3L H [u GGyt |5+ Uy
o S
Ag

+ 2Re{U_(x,y,t)U; 5(x,y) exp[-j2rf pt]}]dxdy (3)

where
q is the charge of an electron
n is the detector quantum efficiency
h is Planck's constant
fo is the optical frequency

1 Ay is the area of the detector surface

Us(x,y) is the signal field incident on the detector
’ surface
The first and second terms in Eq. (3) are centered at zero

frequency. They can be electrically filtered osut leaving

‘f ih(t) = é%ﬂ f [ Re{Us(x,y)U:O(x,y) exp[-jZWfIFt]}dxdy (4)
A
d

(o)




From Eq. (4) it is seen that the output current is related

to the actual input field Us(x,y).

The Direct Detection Receiver. The direct detection

system is a square law device. The ideal receiver output

current is (Ref 9:91)

190 = ¥ [ [ lu,exy,0 Paxay (5
o |
A
d

In Eq. (5) it is seen that the output current is proportional
to the intensity of the input field, lUs(x,y)Iz. Recall
that the output of the heterodyne receiver is proportional to
the input field itself. This is the major difference in the

mechanics of the two receivers.

Second Moment Model

The input field to the optical receiver may be unknown.
This is true for the case where speckle occurs since the
receiver input field contains a random interference pattern.

If the input field is unknown the receiver output current is
also unknown.

In statistics, one representation for an unknown is the
second moment model. In this model the unknown is thought of
as a signal plus an additive noise. The '"signal" is considered
to be the mean of the unknown. For an unkﬁown current, the mean
is denoted E[i(t)] where E[+¢] is the expected value operator.
The "noise" is considered to have a mean of zero and the same

covariance as the unknown. The covariance of an unknown

e



e e TR o S A SO g

E[i(t)] /fif\» i(t)

n(t)
E[n(t)] =.0

R (t,t%) = C;(t,t”) j

Fig. 1 Second Moment Model for an Unknown Current
current is defined as (Ref 10:321)
C;(t,t7) = E[(i(t) - E[i()])(i(t") - E[i(t")])]
= E[i(t)i(t)] - E[L(L)]E[i(t7)]
€ R(t,t7) - ELL(OIE[i(t)] (6)

where Ri(t,t‘) is the correlation function (Ref 11:337). The
period for which the correlation function is non-zero is called
the correlation interval. The second moment model for an
unknown current is illustrated in Fig. 1.

The Huygens-Fresnel Integral

Consider the geometry of Fig.2, The complex envelope of
the monochromatic field at a point (x,y) in the observation

plane due to complex envelope of the field in the object plane

is expressed by the Huygens-Fresnel integral (Ref 12:58)

S ;L
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Aperture

2.
Top ® [zz+(x-u)2+(y-8) ]
Fig. 2 Diffraction Geometry (Ref 12:57)
U0 = [ [ hGxy,a,8) Uya,8) dads (7)
where
1 explikry,] Sy
h(x,y,a,B) = cos(n,The) (8)
i . 01
01
and
2n

k is the wave number, .
rgp 18 shown in Fig. 2

cos(ﬁ,?OI) is the cosine of the angle between ?01

and the normal to the a-B8 plane.

Eq. (7) is valid for monochromatic fields only. The finite

extent of the field in the «,8 plane is included in the

——
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mathematical description of U(a,B). This restriction allows
the infinite limits to be placed on the integral in Eq. (7).
Unless otherwise noted, all integrals in this paper have
infinite limits. For simplicity these limits are suppressed.
Eq. (7) is difficult to use. It can be simplified through
several approximations. If the angle between n and ?01
is less than 18°, then cos(ﬁ,?OI) = 1, Also, if the deviation
of the field from the z axis is much less than the distance
z, the quantity Toy in the denominator of Eq. (8) is approximately

z. Eq. (8) now becomes

~ 1 =
h(x,y,a,6) = 357 expljkr,] (9)

The T in the exponent can not be approximated by z

01
because it is multiplied by a large number, k. Thus even
small changes in rgp can result in phase changes much greater
than 2w.

One commonly used exponential approximation is the Fresnel

approximation. From Fig. 2

ry ® 21+ (5B2 4 ( Lh) ao)

In the Fresnel approximation, the binomial expansion,

[14b)% = 1 + 2 b - £ b% + «ov |b]<| (11)

is used. Only the first two terms in the expansion are kept.

Thus the exponential approximation for Ty is

e et
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Goodman (Ref 12:59) states that this approximation is good when

3

A R (CEVLN T ) L (13)
Now Eq. (9) can be written as
hx,y,a,8) = SPUKEL expdkiix-a)? « (y-p)%)) (1)

Eq. (7) then becomes the Fresnel approximation written as

exp[jkz J J
jAz Uy (a,8)

exp[X [(x-a)? + (y-8)%]] dads (15)

U, (x,y)

or

U, Gy) = SR exp 5Py D)1 [ [ 0 case)

expljg5 (o° + 8%)Jexp[-j——(xa + yB)] dadg (16)

In many cases, field propagation is adequately described by

the one dimensional form of Eq. (16). It is given by

(Ref 13:316)

exp [ (kz-})] . |
U,(x) = ; explj 55 ] U, (o)
2 G 22 I I 1
2
exp (5] exp[3552%) dx (17)

In the latter case, the field at the z plane is variable in only

one lateral direction.

As shown in Appendix A, the Huygens-Fresnel integral can
be extended to include the propagation of broadband fields.

The one dimensional extended integral is

11
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n 2
Uy(x,t) = explj(kz - T )] explik 33

(Az)?
r 2
1 .k "
J [ U, (a,t - —%~) exp[Jjér] exp[-JZH%glda (18)
To1
where ¢ is the speed of light and the quantity /C is due

to the propagation delay of the field. Eq. (18) is valid

for all time varying fields as long as

> > 1 (19)

where B is the bandwidth of the complex envelope which is
centered at the frequency fo'

A special case of Eq. (18) is valid for the propagation
of quasimonochromatic fields. The bandwidth restriction on

these fields is that (Ref 12:108)

T
% 5 5 | 01|max (20

c

This restriction implies that for a fixed a, U(a,t) cannot
change significantly in any time much less than 1/B seconds.
Eq. (18) is modified to represent the propagation of
quasimonochromatic fields through the following substitution

(Ref 12:55)

To1
Ul(a,t i “c o Ul(a,t) (21)

Propagation and Reflection of a Laser Field

Siegman has shown (Ref 14:306) that when the output

of a monochromatic laser is propagated by use of the Huygens-

12

P ——




)
N A A A S it S AR

Fresnel Integral, the resulting laser field is a Gaussian spherical
wave of the form

2 2
UCa,8) = Aexplikz]explizs(a® + 8%)]exp(- 9—;}(—8)—] (22)
Z

where A is the amplitude of the field and W(z) is the radius
of the beam spot size at a distance z from the laser. The

radius is measured at the point where the field amplitude is
e'1 of it maximum value. The one dimensional form of Eq. (22)

is

2
A - bl o .k .2
U(a) = -—- kz-7) = = 23
a s exp[j(kz-z)]exp] ;7{;; Jexp[j 5 a”] (23)

When the above field is normally incident on a surface that
is smooth with respect to A, it is reflected by conjugating
the exponential terms and multiplying the resulting field by
the surface's reflection coefficient. When exp[jkz] is conjugated,
it implies that the field is progating in a direction which is
opposite to that of the incident field. Conjugating
exp[jig— xz] inverts the spherical wavefront of the field.
Some of the incident field may be absorbed by or transmitted
through the surface. Torepresent this loss, a surface reflection
coefficient is used. This coefficient has a value between
zero (no field reflected) and one (entire field reflected).

The reflected field is written
®
U (a) = a(a)U; (o) (24)

where a(a) is the surface reflection coefficient and the
subscripts r and i indicate the reflected and incident fields,

respectively.
13
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The development of the background material is now complete.
The ideas and theory discussed here are used to examine the

line scan imaging system.

14




III. The System Models for a Monochromatic

Laser Source

The method for determining the system models is developed
in this chapter. First a representation for the mechanics of
the imaging system is discussed and the rough surface model is
defined. These ideas are combined with the background to
determine the system models for a monochromatic laser-
heterodyne receiver system and a monochromatic laser-direct
detection receiver system. For simplicity, the models are i
found for one dimension. Two dimension models are straightforward
but tedious.

The Line Scan Imaging System Model

In a line scan imaging system, the laser scans across some
object surface. The mechanics of the system keep the detector's
surface area aligned normal to the direction cof the laser field.
As the object surface is scanned, the angle between the incident
laser field and the surface changes. The analysis of the system
is simplified if the system mechanics and change in incident
angle are ignored. These two conditions are satisfied under
the following two assumptions: (1) the laser field is normal
to the object surface at all times, and (2) the propagation
of the laser field is normal to the detector's surface at all
times.

During typical use, the line scan imaging system is mounted
in an airplane which flies over the object surface. To represent
the movement of the system past the surface it is assumed that

the coordinate system of the laser and receiver is fixed in space,

15
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Fig. 3 Line Scan Imaging System Model (Ref 16:28)
“

while the coordinate system of the surface and its reflection

coefficient, a(x), is traveling in time with velocity v. The

model is a function of the velocity and the laser beam width,

W(z), at the object surface. By varying these two parameters,
it is possible to determine the effects of spreading beam

width and changes in surface velocity. The system model is

illustrated in Fig. 3.

The Roggﬁ Surface Model

The field reflected from a rough surface is, in general,
difficult to determine. It is dependent on variations in
surface height, the polarization of the incident field, and
the reflection coefficient of the surface. In order to avoid

a detailed study of the surface scattering problem, a simple




model is developed to represent the rough surface (For a deeper
mathematical understanding of the properties of electromagnetic i
fields scattered from a rough surface consult Beckman and f
Spizzichino (Ref 17)). The model is developed under five
conditions.

First, depolarization effects are ignored becasue the
polarization of the incident field is not included in this
thesis. Second, multiple scatteriﬂg at the surface is
insignificant since only the field reflected normal to the object
surface is incident on the detector. These two conditions are
typically ignored (Ref 17: Chapters 1, 3, and 5; 18:1689)
since their effects are very small and difficult to describe
mathematically. Third, the surface is assumed to be rough
when compared to the optical wavelength so that speckle effects
occur. The fourth condition is that the rough surface is
thought of as a random variation in height (Ref 17: Chapter 3).
This allows the surface roughness to be described by statistics.
Also, a field incident on this surface undergoes a random variation
in phase. The reflected field is then equivalent to a field
reflected from a smooth surface and multiplied by a random phase
term. Finally, the surface's reflection coefficient is assumed
to be a ?eal function of space with a value between zero and
one so that it attenuates the field. The reflection coefficient,
a(a), is the quantity that is measured by the system. These
conditions are the same as the ones used by Lyons in a similar
heterodyne imaging problem (Ref 16:21). The model is also

similar to the ones used by Miller, et. al. (Ref 19:779-785)
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and Beckman and Spizzichino (Ref 17: Chapter 5).

Recall that Eq. (24) describes a monochromatic field

i reflected from a smooth surface. The field reflected from a
rough surface is determined by applying the five rough surface
4 model conditions to Eq. (24). The reflected field is
*
U (a) = ala) expljo(a)] U; (a) (25)

where 6(a) is the random phase and is a function of space.

The relation between the random variations in surface height,
H(x), and the random phase was previously shown to be

(Ref 20:36; 21:157) :
0(a) = 2L H(a) (26)

The variation in surface height is modeled as a zero mean,
stationary, Gaussian random process. The zero mean implies the
point that the heights are measured from is chosen in a manner

such that E[H(a)] = 0. The rough surface is often described by ;

e

a Gaussian distribution (Ref 5:65; 1:1153, 1195, 1205, 1212,
1224; 17:80). Using these assumptions, it is possible to

determine the mean and variance of the phase. The mean is
_ 4 > . ' 3
E[6(a)] = FL E[H(a)] = 0 (27)

and the variance is

- 2 4
1 0,0 = (D2 EW’ @] = AD%} (28) :
where o 4 is the variance of the surface height. The RMS surface

1 H
; roughness, oy can be compared to the optical wavelength, 1, ' L




by use of Eq. (28). If the surface roughness is small compared

to the optical wavelength, the RMS phase variation, Og s is
also small. This means there is little problem with interference.
However, as the surface roughness approaches the optical wave-
length, the RMS phase variation approaches 2w. Thus interference
is produced in the reflected field. This interference is

called speckle.

The Direct Detection Current Model

The ideal detector output current for a direct detection
system can now be determined. Recall that this current is due
to the field input to the detector. The one dimensional

monochromatic laser field incident on the rough surface is

given by Eq. (23)

2

2
SR ; .
Dl exp[;(kz-%)]exp[--ﬁ(—z;l expliz- 1 (29)

The field reflected from the rough surface is
4 5 _
U (a) = ala + vt) e®(@*Vty " (a) (30)

The argument "a+vt'" results becasue the surface and thus its

reflection coefficient and height variation is moving with

respect to the laser. Substituting Eqs. (29) and (30) into

Eq. (17) gives the field at the input to the detector. It is




i A AR

A SR

2
Ug(x) = 5 exp[-j2(kz-")]exp[-jk 3]
2
I a(a+vt)exp[jo(a+vt)] exp[- —75——]
W (x)
o2
exp|[- J———] exp[JZn ]da (31)
The magnitude squared of this field is
2 A 2 a2+82 {
|Ud(x)| - GX;-) I f a(atvt)a(B+vt)exp|[- ﬁzf_f—] |
z
2 2
exp[-jk 2B exp[jznrX- (a-8)]
z
exp[jO(atvt)-i6(B+vt)] dadR (32)

Eq. (32) represents the intensity of the field at the detector
input. The ideal receiver output current for the direct detection

system is given in Eq. (5). Its one dimensional form is
p _ n 2
MORE - S ENOIRGIRE (33)

where PD(x) is the limiting aperture function which describes
the surface of the detector. Combining Eqs. (32) and (33)

yields the detector output current which is

g0 = PR [ [ [ pmaevnacn

2 2

Z
exp[- —ZE—;—]CXP[ jk2 21X

a2
]exp[J—(a 8)]

exp[j(0(a+vt)-0(B+vt))] dxdadB (34)
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To simplify the notation let

; A = (léz*)zhﬂfri (35-a)
and
h(a) [ —2—“2 ] (35-b)
= ex - -
2 3 - Wr(z)

where h(a) is called the system function. It determines the

effect of the beam spot size on the system. Solving the x

integration in Eq. (31) yields the spatial Fourier transform
= o8

of PD(x) evaluated at fx Tz - The transform of PD(x)

will be denoted

FX[PD(X)]If 2 PDF(a-B) (36)
%X

a-8
Az
Eq. (34) now reduces to

id(t) = A1 I [ PDF(a-B) a(atvt)a(B+vt)
o‘2 82
h(a)h(8) exp[-jkE—E ]

exp[j(6(a+vt)-06(B+vt))] dadB (37)

‘{ The Mean Detector Current. Now that the detector current

‘{ has been determined, it is possible to find the mean or '"signal"
component of the current. The only random term in Eq. (37)

is the phase deviation, thus the mean of the current is




ST e

E[id(tn = A1 J f PDF(a-B)a(u+vt)a(B+vt)

2 .2
h(a) h(8) exp[-jkE—E—]

E[exp(j (68 (a+vt) -6(B+vt))] dadB (38)

The phase deviation, 6,.is a zero mean Gaussian random process.
Therefore theterm, E[exp[j (06 (a+vt) -8(B+vt)]] can readily be
determined by use of the characteristic function. A form of

the characteristic function (Ref 10:419) is
6, (V) = E[e]VX] (39)

If x is a Gaussian random variable, then Eq. (39) becomes

~
Y
ler

2
v'o

6, (V) = exp[JVE(x] - —5— ] (40)
In Eq. (39) let V=1 and x = 8(at+tvt) -6(B+vt). Then {

2

E[exp[j (8 (a+vt) -8 (8+vt))] = exp[-%(1)%0,%) (41)
where
0,2 = E[(8(a+vt) -8 (8+vt)) ]

= E[6%(a+vt) + 8% (B+vt) -28(a+vt)8(B+vt)

=20 5 ZRe(a-B)

0
&, oez (1-p(x-8) (42)

where p(a-B) is the normalized correlation function of the

phase 6. Eq. (41) now becomes
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Efexp[j (0(atvt) -6(B+vt))] = exp[-o,7(1-p(a-8))]  (43)

This function has a value of one when a-B= 0, and decreases
to exp[-cez] as a-B approaches infinity.

Beckman and Spizzichino (Ref 17:81) suggest that the
phase correlation function can be represented by a Gaussian

function of the form

p(a-8) = expl - (%57 (44)
C

where r. is the correlation distance of the rough surface
1

when p(a-8) drops to the value € ~. Goodman (Ref 18:1698)
states that r. is generally less than 0.1lmm for optically
rough surfaces.

It has been assumed that the deviation of the surface

roughness is greater that the optical wavelength or op > A.

Eq. (28) can be rewritten as

< 4m 4m -
O < O > 1r-x = 47 ‘ (45)

When o, > 5, the correlation distance of the reflected field

0
is less than the correlation distance of the rough surface
by a factor of 1/c (Ref 22:984). Therefore, the field

: 0
correlation distance, %, is

. 1lmm

= = .0lmm (46)

Cc
R« /°e

This field correlation distance was previously derived by

Lyons (Ref 16:33). Its significance is that it is the maximum

——




distance that any two points in the reflected field (at the

surface) can be separated by and still be correlated. Eq. (43)

is now called the field correlation function and is denoted

Pﬁ(a~B). That is
Py (a-8) = exp[-05°(1-p(a-8))] (47)
where & indicates the field correlation distance. Fig. 4

a-8

C

is a plot of Pz(a-B) as a function of for several values

of Oy-

Another simpliciation to Eq. (38) is the approximation

exp[-j%(az-ﬂz)] =1 (48)

which is valid for the condition of

k22,2
Ela B lpax < <1 (49)

laz-lemax occurs when o takes on its maximum value and B

is at its minimum, or vice versa. The maximum value of o

and B is the radius of the beam spot size, W(z), on the rough
surface. The maximum value that a and B can be separated

and still be correlated (i.e. nonzero) is &, the field

correlation distance. Thus

la2-82 | g = 10V - (H(2) -0
= 2W(z)2e (50)
Eq. (49) becomes
% W(z)L < < 1 : (51)
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Fig. 4 Plot of P (a-B) Ref (16:34)

which can be rewritten as

Mz) o o A (52)
z

Qhere ngl is the beam divergence 6f the laser. The laser

can be designed to meet the condition of Eq. (52). For example
the beam divergence of a 1.06um laser must be less than 8
milliradians. Beam divergences are typically less than 1

milliradian, thus the approximation of Eq. (48) holds. Now
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the mean of the current becomes

E[ig(t)] = A [ [ Pyp(a-8)a(atvt)a(B+vt)

h(a)h(B)Pl(a-B)dadB (53)

Due to the approximation in Eq. (48), the mean of the current
is no longer dependent on the quadratic terms in the exponential.
Thus, the resulting mean is identical to that obtained in the far
field case.

In Eq. (53), only the field correlation function, Pl(a-B)
and the spatial Fourier transform of the detector surface,
PDF(a-B), are dependent on the argument "a-B'". Recall that
Pz(a~8) was plotted in Fig. 4. For the case of oy = X, Pz(a-B)
is plotted once more in Fig. 5a. Note that the width of Pl(a~8)
is only a few micrometers. Generally, the width PDF(a-B) is
much wider. For example, assume that the detector surface is of
the form in Fig. Sb. It has a width D, and a uniform

transmittance of one. Then

sin(Zw—x—a- 8 D)
Ppp(a-8) = B[Pyl . g (54)
X

- %8 a-8
Az Az
Ppp(a-8) is plotted in Fig. Sc. The width of PDFIa-B)(ignoring
the side lobes) is AZ/D/Z. For typical values of A = 1.06um,
z = 103 meters;, and D = 10 centimeters, the width of PDF(a-B) is
approximately 20 millimeters. Because PDF(a-B ) is much wider than

Pz(a-B), it is constant over the region where Pz(a-B) is non-zero.

Thus their effective product is

Pp(a-B)Py(a-8) = Ppe(0)Py(a-8) (55)
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Pz(a-B)

.4rC = ,02mm |
e a-B
Fig. Sa Field Correlation Function for 0H=A
[
p 2
p(X)
1
X
-D D
¥a Iy
Fig. 5b Detector Aperture Function
— < a-8
J 2 Az
D

{ Fig. S5c¢ Fourier Transform of PD(x)

Fig. 5 1Illustration of Function Widths
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Eq. (53) now becomes

E[i (t)] = A;Ppp(0) [I a(a+vt)a(B+vt) |

h(a)h(B) Pz(a-B)dadB (56)

Using the change of variables, x = a + vt and y = B+vt,

the mean is
Blig(8)] = APpe(0) [ [ amiatn P (xoy)

h(x-vt)h(y-vt) dxdy (57)

Eq. (57) is the '"signal" component in the second moment
model for a direct detection receiver. The model will be
presented after the covariance of the receiver current,
Eq. (37), is found. Eq. (57) is valid for the following
conditions: (1) the field incident on the detector is due to
the reflection of a monochromatic laser field from a rough surface,
(2) the RMS surface roughness is greater than the laser wavelength,
(3) the laser is design so that its beam divergence is less
than I%" , and (4) PDF(a-B) is much wider thah Pl(a-B). Now

the covariance will be found.

The Covariance of the Current. In the second moment model,

the covariance describes the '"noise" or the fluctuation of the
current from its mean. It is found by first determining the

correlation of the current. From Eqs. (6) and (37)
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Ry (8287) = Elig(6)ig(e)]

= a2 I f [ JPDF(a-B)PDF(u’-B’)a(a*vt)

a(g+vt)a(a“+vt-)a(g +vt-)h(a)h(8)h(a")h(8")

Elexp[j(8(a+vt) + 8(a+vt”) -0(B+vt)-8(B +vt~-))]]

dadBda“dg” - (59)

The approximation of Eq. (48) was used in Eq. (59).

The expected value of the phase deviation term in Eq. (59)
is determined through the application of the moment factoring
theorem. Reed (Ref 23: 194-195) has shown that if Zl’ ZZ’ Z3,
and 24 are zero mean, complex jointly Gaussian random processes,

then
% x . * *
E[ZIZZZS Z4 ] = E[2123 ]E[ZZZ4 ]
* *
+ E[ZIZ4 ] E[ZZZ3 ] (60)

One problem results when the moment theorem is applied.
The z, term in the moment theorem corresponds to a exp[ja]
term in Eq. (59). It was argued in the section on the rough
surface model, that 8 is described by a Gaussian distribution.
Therefore, the distribution of exp[je] is not Gaussian. However,
the reflected field is just a complex sum of the fields reflected
from each point on the rough surface. It can be shown by the
Central Limit Theorem (Ref 17:191) that the reflected field
incident on the receiver has a Gaussian distribution. Thus,

it is assumed that exp[je] takes on a Guassian distribution

as it propagates through the atmosphere.
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Therefore, the expected value term in Eq. (59) becomes

¢e(l) = E[exp[j(6(a*tvt) +8(a”+vt”)-6(B+Vvt)-0(B +vt~))]]

&
/

= E[exp[j0(a+vt)-jO(E+vt)]]E[exp[jO(a”+vt )-jB (B +vt~)]]

s A

+ Elexp[je(atvt)-jo(B87+vt )] ]E[exp[je(a”+vt ) -jo(B+vt)]] (61)

The characteristic function can be used to show that

¢g(1) = eXp[-cez(l-o(a-B))]eXP[-oez(l-p(a’-B’))]

+ exv[-oez(l-o(a-6‘+ vat))] eXP[-oez(l-o(a’-B-vAt))] (62)

Recall that the field correlation function was defined in

Eq. (47) as

P,(a) = exp[-0,”(1-0(a))] (63)

¢e(1) = Pz(a-B)Pz(a’re') + Pz(a-8’+vAt) Pz(a’-e-vAt) (64)
Recall further from Eq. (5) that
Ry (6:£7) = Elig()IELL4(eN] + € () (65)

The first term, Pz(a-B)Pg(a'-B‘), in the summation of Eq. (64)
E 4 corresponds to E[id(t)]E[id(t’)]. Thus the covariance of the

current is

30




Cid(t,t‘) = Ai f I J f a(atvt)a(a“+vt )a(B+vt)a(B +vt”)

h(a)h(8)h(a")h(8") Ppr(a-g) Ppr(a”-8")
P, (a-8°+vAt) P, (a”-8-vAt) dadg (66)

Eq. (66) is difficult to. interpret because the Fourier transform
of the aperture is dependent on "o -8'" and "o -f°" but the field
correlation function is dependent on "a-g8”'" and '"a«“-g'". Thus in

Eq. (66) the following simplification is made:
PDF(a-B) < PDF(O) (67)

and

Ppp(a”-87) < Pyc(0) (68)

This simplification produces an upper bound on the covariance.

It is writténmag
Cid(t,t‘) g_Ai A[ I f f a(atvt)a(B+vt)a(a“+vt )a(B +vt”’)
h(a)h(B)h(a")h(8) Pp2(0)

P, (a-8°+vAt) P, (a”-B-vAt) dadBda’dB” (69)
which is rewritten
cid(t,t') < [A[PpR(0) f f a(a*+vt)a (B8 +vt ) h(a)
h(8") P,(a-8"+vAt) dadg”]? (70)

The correlation distance of the current is difficult to

determine since the covariance, Eq. (70), is nonstationary.
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[h(a)a(a+vt‘)*Pz(u+vAt)]la=0

h(a)a(a+vt”)

Pg(a+vAt)

vat

Fig. 6 Graphical Representation of Current Correlation Distance

An idea of the correlation distance can be obtained by writting

Eq. (70) as

Y8080 < APy f a(a+vt)h(a)
[a(a*+vt“)h(a) * P, (a+vAt)]da]? (71)

where * denotes the convoltuion process. The convolution is
graphically represented in Fig. 6. The maximum width of
P,(a+vAt] is 2 , the field correlation distance. The maximum
width of a(a+vt)h(a) and a(a*+vt”)h(a) is determined by the beam
spot size. This distance is denoted as L. L is much greater
then 2 . When vAt is greater than L/Z’ the convolution of
a(oa+tvt’)h(a) with Pz(x+vAt) is equal to zero. Thercforé, the

maximum correlation distance of the current is

32




o

L = 2 vAt (72)

and the correlation time of the current is

At = 7%7 (73)

From Eqs. (72) and (73) it is seen that the correlation
distance increases with increasing correlation time. It

should be noted, that if the reflectance,'a(a+vt’),

fluctuates very much within the distance L, then the correlation

distance and time of Eqs. (72) and (73) will become less.

The Direct Detection Model. The direct detection current

is modeled using the second moment method. The model is

described by the mean and covariance of the current. The mean

was given in Eq. (57) as
E[id(t)]= Al PDF(O) I J a(a)a(B)h(a-vt)h(B-vt)

Pz(a-B) dadg (57)

It was previously noted that Pz(a~8) is very narrow with
respect to the other terms in the integral in Eq. (57).

Due to its narrowness, Pg(a-s) is approximated by the Dirac

Delta function,

Pp(a-8) = A,8(a-B) (74)
where A2 is the area of Pz(a-e) and is give by
W ACRORICNS ‘ 17)

Eq. (57) becomes
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E[id(t)] = Al AZPDF(O) I I a(a)a(B)h(a-vt)

s ol

h(B-vt)s§(a-8)dads

i R i 3.

= AjA,P,(0) J 22 (a)h? (a-vt) da (76)

Recall from Eq. (35) that h(e) is an even function,

thus,

E[ig(t)] = AyA,Ppc(0) I a®(a)h?(vt-a)da
2 2
= AA,P,-(0) [a% (x) *h% ()] (77)

17°2°D

Eq. (77) implies that the '"signal" component of the second

moment model is proportional to the convolution of the surface
reflection coefficient squared, az(x), with the system function

squared, hz(x).

To complete the second moment model for the direct
detection current, the 'noise'" component is found. Eq. (70)

gave the upper bound on the covariance as

Cid(t,t‘) < [A1PDF(0) I I a(a)a(B8)h(a-vt)h(s-vt”)

Pz(o-B)dadB]2 (78)
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P = SIS

This equation describes the 'noise" term in the second moment
model. The double integral in the above equation is equivalent
to the correlation function at the output of a linear filter
whose input was a zero mean noise. To see this consider a

zero mean noise, n(x), input to a linear filter, h(x). The

filter output is

n (x) = n(x)*h(x)

f n(e)h(x-a)d (79)

The correlation of the filter output is

Rnl(x,X’) E[n; (x)n; (x7)]

JJE[n(a)n(s)]h(x-a)h(x'-e)dads

i

I I Rn(aB)h(x-a)h(x'-B)dadB (80)

Comparing Eq. (80) with the double integral in Eq. (78) it is

seen the correlation function of the noise is
Rh(x,x‘) = a(x)a(x’)Pz(x~x‘) (81)

The square of the integral in Eq. (78) imp;ies that the covariance
of the chrrent is equivalent the multiplication of two noise
sources. These sources are identically distributed, statistically
independent, and have a correlation function given by Eq. (81).
The second moment model of the direct detection current is now

complete. The model is diagramed in Fig. 7.

35




SRS AESA,

FECT—

az (x) 2

AlAZPDF(O)h (x)

id(n)
n, (x)
» AlPDF(O)h(x)
i

nz(x) E[nl(x)] = E[nzgx)] = 0

AlpDF(O)h(x) Rnl(x,x’) = an(x,x’)

:‘a(x)a(x’)Pl(x—x’)

Fig. 7 Direct Detection Current Model

Recall that all noise terms, other than speckle, were
neglected. Thus the noise in this model represents speckle
noise. The model presented above can easily be modified to
include the quantum noise effects that were neglected in the
receiver output current.

A parameter that is typically used to measure performance
is the signal to noise ratio, denoted SNR. The SNR is defined
to be the ratio of signal power to noise power in a system.

In statistical terms, thé SNR is the mean squared divided by

the variance (Ref 24:264). For the direct detection current

model, the SNR is
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C. (t,t*=t) (82)
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B Mt cacs o

Substituting Eq. (57) and (70) into Eq. (82) gives the . ,

result

SNR. > 1 (83) f

The "greater than or equal to" sign occurs because of the upper
bound on the covariance.

Several points can be noted about the direct detection current
model. The spatial filtering effects of hz(x) are seen by taking

the spatial Fourier transform of E[id(t)] as given in Eq. (77). E

F IE[ig(t)]] = AJA P (0)A(£,) [H" (£, )*H" (£ )] (84) 4

where A”(f) = Fx[az(x)] and H*(£) = F_[h(x)].

The Fourier transform has an inverse effect on the width of a
function: That is, as h(x) gets wider H’(f*) and thus the
| convolution of H‘(fx) with itself gets narrower. The results is
that as the system function gets wider in space, it blocks out
the high spatial frequency content of az(x).

The model for E[id(t)] i§ identical to the result discussed

by Goodman for an incoherent imaging system (Ref 13:109).

37




Thus the direct detection current model can be thought of as an
incoherent imaging system with an additive noise term.

Last of all, it can be seen from either Eq. (78) or Fig. 7
that the noise is signal dependent. Thus as the signal, az(x),
increases or decreases, the noise also increases or decreases by
a proportional amount. Thus the SNR can not be improved by
increasing the signal power. This is in contrast to many other
noise models which are signal independent.

This concludes the discussion of the direct detection current
model. The current model for the heterodyne receiver is

determined in the following section.

The Heterodyne Receiver Current Model

A second moment model for the receiver current of a
monochromatic laser-heterodyne receiver system has been
determined by Lyons (Ref 16:46). The procedure used to establish
the heterodyne current model is very similar to that used to find
the direct detection current model of this thesis. Lyons'
results are presented below.

The heterodyne receiver current is (Ref 16:31)

2
ih(tl = A3 f a(a+vt)h(u)exp[je(a+vt)]exp[-j5%~]PDF(a)da (85)

2qnA
where A, = H%STZ and a(a), h(a), 6(a), and Py (a) are the

same as defined for the direct detection current. Due to the
defining equation (Ref Eq. (4)) for the heterodyne receiver
current, the current of Eq. (86) is centered at the optical

frequency fo'fIF' Also, this current is complex in contrast
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to the direct detection current which is real (Ref Eq. (34)).

The expected value of the heterodyne current is (Ref 16:31)
E[if(t)] =0 (86)

and its covariance is (Ref 16:36)

Cih(t,t') = Ag I I PDF(G) PDF(G')a(oHVt)a(a'+vt’)h(a)h(a')'

Pz(a‘+vAt) dada” (87)
where Pl(Au) is given by Eq. (47) and Aa=a-o”.

The heterodyne current is centered at the frequency fo-fIF'
Thus even though its mean is equal to zero, this does not imply
that the mean of the amplitude of the current is zero. The
current amplitude, denoted A(t), is found by writing the

current as the sum of its real and imaginary parts. It is

1,080 = T, % § 1,

T 1

A(t) cosY(t) + j A(t) sinY(t) (88)

In polar form this becomes

i (t) = A(t) eJY(t) , (89)

The current is physically broken into its real and imaginary
parts by ;he well known quadrature model (Ref 24:238) as shown
in Fig. 8a. Note that the quadrature outputs are the real and
imaginary parts of the currents. If the quadrature outputs are
squared and then added together, the resulting output is the

current amplitude squared, Az(t), as shown in Fig. 8b.

39




| Low A(t) cosy(t)

Pass ——
Filter

\\A(t)cos(zwf1F+Y(t)) cosanIFt

// 51n2ﬂfIFt

Low |A(t) sinY(t)
' Pass
Filter

Fig. 8a The Quadrature Model (Ref 16:40)

A(t)cosY(t)

()

A (t)

A(t)siny(t)
2

=)

Fig. 8b Determination of A’(t) from the
Quadrature Outputs (Ref 16:43)

Fig. 8 Determination of A%(t).
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The mean (Ref 16:43) and the covariance (Ref 16:45) of

Az(t) are

EA%(0)] = cj(t,t0= ) (90)
and

€z (£t = [Ci(e,eN))” (91)

By substituting Eq. (87) into Eq. (90), the mean of Az(t) is
expressed in terms of the reflectance, a(a), and the system

function, h(a) as follows:

2

E[Az(t)] = A3 f [ h(a}h(u')PDF(a)PDF(u')a(a+Vt)a(a'+vt)

P, (Aa)dada” (92)

As in Eq. (74), Pﬁ(Aa) can be approximated by the Dirac Delta

function

Pz(Aa) = A46(Aa) (93)
where A4 is the area of Pz(Aa) which 1s given by

A4 = I Pl(Aa) dAa \ (94)

Eq. (92) then becomes
2
E[A% ()] = AlA, I h? () P2 (a)a® (vt-a) da (95)
which by a change of variables is written

E[AZ(t)] = A§A4 I a(xz)hz(vt-x)ng(vt—x)dx‘ (96)
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Thus the mean of Az(t) can be represented by a linear system
model of az(x) convolved with hz(x)PéF(x).

The covariance of Az(t) is found by substituting Eq. (87)
into Eq. (81). It is

CAZ'(t,t') - [A§ f I h(vt-x)h(vt“-x)a(x)a(x")

Pz(x-x‘)PDF(vt~x)PDF(vt’~x')dxdx‘]2 (97)

Thus as in the direct detection case, the double integral in
the above equation is identical to the output correlation of
a filter, h(x), whose input is a zero mean noise process with

the correlation function

R, (x,x7) = a(x)a(x")P (x-x7) (98)

Once again the square of the integral simply means that the
noise can be represented by the product of two identically
distributed, statistically independent noise processes. The
second moment model for the amplituded squared of the heterodyne
receiver current is shown in Fig. 9. As with the direct
detection current model, this model can easily be modified to
include quantum noise effects. These noise terms are included
by simply adding them to the speckle noise term described by
Eq. (97).

The SNR for the heterodyne current model is found by
substituting Eqs. (92) and (97) into Eq. (82). The Resulting
SNR is

SNR. = 1 (99)
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A (x)

2
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a(x) | AAShE ()P (x)

n, (x)
Ash(x)PDF(x)
n, (x) E(n; (x)]=E[n,(x)] = 0
-——————-Ash(x)PDF(x)
Rn, (x,x7) = Rn,(x,x7)

=a(x)a(x‘)Pz(x-x’)

Fig.9 The Model for the Amplitude Squared of the
Heterodyne Receiver Current (Ref 16:46)

The model for the amplitude squared of the heterodyne
current and the direct detection current model are very similar.
The only differences are: (1) the covariance of the heterodyne
current model has a specific value rather than a bound, (2)
the system function of the heterodyne current model is dependent
on both h(x) and PDF(x), and (3) the two models differ depending
on the constants Al, AZ, AS’ and A4. Since there are no
major differences in the two models, the comments made about
the direct detection model are valid for the heterodyne model.
Thus, as the heterodyne system function, h”(x) = h(x)PDF(x),

becomes wider in space, the higher spatial frequency content
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of az(x) is lost and the worse the resolution ability of the
system becomes. The model of E[Az(t)] is also identical to the
result discussed by Goodman (Ref 13:107) for an incoherent
imaging system. Thus, square law detection can also be thought
of as an incoherent imaging system with an additive noise term.
Finally, the noise in the heterodyne model is also signal
dependent. Thus the SNR can not be improved by increasing the
signal power.

One important result in the comparison the two models is
that the SNR for the direct detection model is always equal
to or larger than the SNR of the heterodyne model. Tnerefore
at its worst, the direct detection model performs as well
as the heterodyne model. Thus on the basis of the SNR, the
direct detection receiver produces the better results for the
laser line-scan imaging system. However, the SNR is only one
of many parameters used to evaluate system performance and

should be considered as only a part of the whole picture.
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IV. The System Models for Quasimonochromatic

and Broadband Laser Sources

In Chapter III, the system models for a monochromatic laser
were determined. These models are now extended to find the
resulting models for broadband and quasimonochromatic sources.
First, the monochromatic laser field is extended to broader
bandwidths. Then, by using the new laser sources and following
the procedure used to determine the previous models, the current

models for extended laser sources are found.

Quasimonochromatic and Broadband Fields

The laser field given in Eq. (23) is valid for monochromatic
lasers only. This field can be modified, so that it is valid
for both quasimonochromatic and broadband lasers, by a method
known as linear frequency modulation or chirping. The theory
of chirping is discussed in a paper by Klauder, et. al.

(Ref 25). The following paragraph is a brief summary of the
results of chirping.

Consider a rectangular time pulse with width T seconds and
denoted rect[t/T]. The bandwidth of this pulse is fzund, by
Fourier analysis, to be approximately %Hz. If this pﬁlse is

chirped, its resulting waveform, denoted Uo(t), is (Ref 25:754)

U (t) = rect[t/T] exp[jnaf t’] (100)
where exp[jnaf tz] is the chirp waveform and Af, whose value

is chosen by the system design, has units of inverse seconds

squared. It is shown (Ref 25: 755-758) by Fourier analysis




T

and Fresnel integral techniques, that if the product Asz
is greater than or cqual to ten, the bandwidth of Uo(t) is
AfT. The significance of this result is scen in the following
example. Suppose a rectangular pulse has a width of IOmsec
and thu; a bandwidth of 100Hz. Assume that Af = 10S (soc)_z
by system design. Therefore Asz = 10 which implies that
Uo(t) has a bandwidth of AfT = 1 KHz. Thus the bandwidth
of a signal has been extended by an order of magnitude by
chirping. If Afwere chosen to be 10° (scc)-z, the bandwidth
would have increased by two orders of magnitude. The point
here is that a wave of any desired bandwidth can be produced
by chirping.

This point also holds for the monochromatic laser field
in Eq. (23). ©Lq. (23) is spatially dependent only. Thus
when pictured in time, it has a constant amplitude and extends
for all time. ITdeally it could be thought of as a rectangular
time pulse with infinite width, However, in reality the
width is only the time interval for which the laser is turned on.
In the laser line-scan imaging system, this interval could be
thought of as the time needed to make a single scan of the
object surface. In any case, multiplying Eg. (23) by the
chirp waveform results in a field which is not monochromatic,
but rather it has some bandwidth., This bandwidth is determined
by Af and the time interval for which the laser is on. It
is recasonable to assume that the chirped laser field can be
designed to be cither quasimonochromatic or broadband. In

cither case, the general form of the chirped laser field is
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A . T ik 2
U(x,t) = exp[j(kz-7)]lexp[j—«
S (Az)% 4 2z ]
2 |
g1 exp[ - -79——] exp[jmAf tz] (101)
4 : W (z2)

With the use of this chirped field, it is possible to determine

the system models for the extended bandwidth sources.

The Quasimonochromatic System Models

=¥ A quasimonochromatic laser source is used with both a i
H

i - , :

i direct detection and a heterodyne receiver. The second moment

models for the two systems are determined. First, the reflected

e M

laser field that is incident on the detector surface is found.

The Quasimonochromatic Field Incident on the Detector.

Quasimonochromatic fields are defined in Appendix A as those
which suffered a negligible time delay during propagating.
Thus quasimonochromatic fields are similar to monochromatic
ones in that they both propagate independent of time. For
the quasimonochromatic case the field at the detector is
given by Eqs. (18) and (21):

2
U rrt) = Tl exp (- (ke lexp [-5K55) [0 qlest

k S
exp(-jyy az]exp[j2w§§1da (102)
| where
2
- + ; A .
UT’Q(a,t) = a(a+vt)exp[jO(a+vt)] z;;;g exp [ azz;;]
PTIPCLE, afles- Gt da. S 2
exp[j(kz- E)]exp[~372a lJexp[-jnAf t7] (103)




Substituting Eq. (103) into Eq. (102), the field at the

detector 1is

2
> : : 2
Ug(x,t) = & exp[-j2(kz- ) lexp[-jkgzlexp[-jmaf ]

—_—

a(a+vt)exp[j9(a+vt)]h(a)exp[-j%uzl

exp[j2 %%]da (104)

Note that except for the chirp term, Eq. (104) is identical
to the field incident on the detector for the monochromatic
case (Ref Eq. (28)). Eq. (104) is now used to determine the

direct detection model.

The Quasimonochromatic-Direct Detection Current Model.

The ideal direct detection receiver current is given by
Eq. (5) as
i = = [ [ 1uyen1? axay ()
In Eq. (5), the current is proportional to the magnitude
of the field incident on the detector surface. Taking the
magnitude of Eq. (104) cancells the chirp term with its
conjugate. Thus the magnitude of the field incident on the
detector is the same for both the monochromatic and quasimonochromatic
laser sources. The result is that the second moment models
for the direct detection current are identical in both cases.
This finding in not a complete surprise. From Eq. (20)

and for a typical value of |r = 103 meters, the quasi-

Ollmax
monochromatic field must have a bandwidth much less than

3x105Hz. Thus with respect to the laser frequency, the




quasimonochromatic field is almost monochromatic and the two
direct detection current models should be similar. In this

thesis it has been assumed that lasers can be monochromatic,

when in reality those lasers referred to as monochromatic
actually have some narrow bandwidth. The above results shows

that assumption of modeling a narrowband source as monochromatic

is valid. Finally, since both direct detection current models

are identical, they have the same SNR and resolution characteristics.

o

The heterodyne current model is now investigated.

The Quasimonochromatic-Heterodyne Current Model. The

ideal current of the heterodyne receiver is given by Eq. (4)

as
ih(t) = %%f [ j Re{Ud(x,y)U:O(x,y)exp[-jZWfIFt]}dxdy (4)
Ag

Substituting Eq. (104) into Eq. (4), the current is

3 ’ . 2 &
lh,Q(t) = A3Re{exp[-32(kz- %)]exp[-JwAf (= ]exp[-JZHfIFt]

I I PD(X)a(a+Vt)h(a)exp[je(a+vt)]exp[-j§a2]

s 2 * ”
exp[~3%%x ]ULO(x,t)exp[32n§%]dadx} (105)

In the above equation, the exp[-jmAf tz] and exp[-j%% xz] terms
can be cancelled by indentical phase terms in the local
oscillator. The x integral is now the spatial Fourier transform

of the aperture function denoted
Fx[PD(X)] 3 = PDF(G) (106)
fx — 7\-27 )
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Only the amplitude of the current is of interest, thus the

phase terms in front of the integral are neglected. Also,

2
exp[-j 5%— = 1 as shown in the approximation of Eq. (48).

The current is now written as

ih,Q(t) = A3 I PDF(a)a(a+vt)h(a)exp[j8(a+vt)]da (107)

This result is identical to the complex current of Eq. (85).
Thus as resulted for direct detection current models, the
heterodyne current models are identical for the monochromatic
and quasimonochromatic laser sources. The comments made at
the end of the previous section for the direct detection
current models could also be stated for the heterodyne current

models.

The Broadband System Models

The second moment models are found for two systems: a
broadband laser-heterodyne receiver and a broadband laser-
direct detection receiver system. The laser field is assumed
to be broadband due to an appropriate chirp term. First, the
field incident on the detector is determined.

The Broadband Field Incident on the Detector. A broadband

field was defined in Appendix A as one which suffers a time

delay during propagation. Because of this delay, the mathematics
involved in propagating a broadband field are somewhat more
difficult than for a monochromatic or quasimonochromatic field.

The configuration for determining the broadband field is illustrated

in Fig. 10.

——
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Fig. 10 Notation for the Broadband System

Consider the setup of Fig. 10. The monochromatic field

at the laser output is given by Siegman as (Ref 15:307)

U (8) = A exp[-sz/wozl _ (108)

S S

The broadband laser field at the laser output, denoted U B(6)
’

A s

is

* . 2
Uy 5(8) = A exp[-82/W %] expljmaf t'] (109)
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where Wo is the spot size of the laser beam at the laser output.




The broadband field incident on the rough surface, denoted

Ui B(a), is found by propagating the laser field by the extended
’
Huygens-Fresnel integral given in Eq. (18). The incident

field is

= A i (k m .kaz I BZ
UisB(a) s exp [j (kz~7) Jexp [jky7] exp[- ;_2 ]

(Az) A
& 8 2wa8
exp[jmaf(t - ) lexp[jz7 lexp[-] lda (110)
To1
where is the propagation time delay from the laser
[S

to the surface. The field reflected from a rough surface

was given in Eq. (25). The reflected broadband field is
. *
Ur,B(a’t) = a(a+vt)exp[36(a+vt)]Ui’B (a,t) (111)

The field incident on the detector is determined once again

using the extended Huygens-Fresnel integral. It is

-

2
d B(X t) = —-——g Jexp[j (kz--)]exp[ JZE—]f UNCP t--gl

2wax]d

exp|- 37——]exp[3 (112)

where rol‘ is the progation time delay from the surface to

the detector. Substituting Eqs. (110) and (111) into Eq. (112)

yields




i

|

2
'ud,B = {% exp[j(kz-})]exp[-jk%; I I a(a+vt)exp[jo (a+vt)]

a2
exp[-jXe- ]exp Pw lexp(- J ]exp[J Z(aB+xa)]
o}

T

r -
exp[-jmAf(t - -gl » _gl )21 dadB (113)

From Fig. 2 and the approximation of Eq. (11) it is seen that

rop = 2+ @e)?® o= 2 e L (e-e)? (114)

and

rd

r = 22+ ] B oz L o(xee)? (115)

By use of the last two equations, it can be shown that the exponent

in the chirp term is

T

jraf(e- -01. 8Ll,Z, JnaE(d; (1) + 4, (t)((a-8)% + (x-a)%}
+ ‘“7——— (a- 8) (x-a) ] (116)
22°¢
where
2
o 2 4z 4tz
dl(t) t + ._c.z. - ===
and
d (t) = 2 - —t-.
2 :;f cz
53

ar ""%?"v & l‘ rye




The last term in Eq. (116) corresponds to the third term in the

binomial expansion given in Eq. (11). Thus it can be neglected.

After combining Eq. (116) with Eq. (113), the field at the

detector 1is
A s T .xz -
Ud’B(x,t) - exp[-j2(kz-7)lexp[-jk7lexp[-jmafd, (t)]
2

2
I I a(a+vt)exp{je(d+vt)]exp[-j5%— ]exp[-j%%r ]

32. . &%
exP[‘ﬁ-Z]eXP[Jy;(UB+XG)]

(o]
exp[-jafnd, (£){(a-8)% + (x-a)’}] dads (119)

The double integral in the above equation, denoted Q,

can be written
Q= J I gy (a,B)exp[jAf g,(a,B)]dadB (120)

where

; ka?
g (0,8) = a(a+vt)exp[jo(a+vt)]exp[-j—-]

Z Z
expl-3 5 Jexp-E-, Jexp [ 2L (aB+x0)] (121)

o

and

g,(0,8) = -1d, () [(a-8) %+ (x-a)?] a2

——




Eq. (120) has the form of an integral which can be solved by
the method of stationary phase. This method is discussed
in Appendix B and can be used to show that as the quantity Af

becomes large, Q can be approximated by
~ ? -1 : .kx2
Q = [-jafd,(t)] a(x+vt)exp[jo (x+vt)]exp[j;—]

2
exp[- X ] {123}

w2

It is emphasized that Eq. (123) is only an approximation which
becomes more exact as Af becomes larger. No attempt is made
in this paper to determine the relationship between Af and
the variation of Q from its actual value. However, this
relationship has been analyzed by Cook and Bernfeld (Ref 27:
Chapter 3) and by Fowle (Ref 28: 61-67) for integrals similar
to Eq. (120). Thus it seems feasible that Eq. (123) can be
quantified by an analysis similar to the methods of above two
references. 4

Substituting Eq. (123) into Eq. (119) yields the field
incident on the detector which is

2
AN . .
Ud,B(x’t) o A g-tc exp[-JZkz]exp[-JwAfdl(t)]

2
a(x+vt) gxp[je(x+vt)]exp[-3—2 ] (124)

(o}

This equation is now used to determine the receiver currents.

The Broadband Direct Detection Current Model. The ideal

direct detection receiver current is given by Eq. (5). Combining

Eq. (5) with Eq. (124) produces a broadband current of
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iy g(t) = A, [ a® (x) h (vt - x) dx (125)

where
2
_ qn Axfo 2

bt B e aze
and

h() = expl-ZXo1p (127)

o(x exp E—T D X) i

o

ho(x), like h(x), is also called the system function.
Note that the broadband current of Eq. (125) contains
no random terms. This is an amazing fact because it implies

that there is no speckle noise present in the current. Most laser ‘

line-scan imaging systems are limited by speckle noise. In
fact, the four.systems previously investigated in this paper
had signal dependent noise. This is obviously not the case

for this system since it has no speckle noise. Thus from the
above results, it appears that a laser line-scan imaging system
which is not speckle noise limited can be designed.

Eq. (125) has the form of a convolution process of az(x)
with ho(x). Fig. 11 is a diagram of this model. The quantum
noise eféects, which were neglected, can be included by adding
the appropriate noise terms to the broadband current, id,B(t)'

The new system function, ho(x), is dependent on the size of

the detector surface and the beam spot size at the laser output,

Wo. It serves the same purpose as the previous system function,
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Fig. 11 Broadband-Direct Detection Current Model

h(x). It was shown in Eq. (84) that as h(x) becomes wider,

the system's resolution ability becomes worse. This comment

is true for ho(x) also.

The Broadband-Heterodyne Current Model. The broadband

heterodyne current is found by substituting Eq. (124) into
Eq. (4). The latter equation gives the heterodyne receiver

output current which becomes

ih,B(t) = AS Re{exp[-jZkz]exp[-ijfdl(t)]

exp[—janIFt] I a(x+vt)exp[jo(x+vt)]

2 .
PD(x)exp[-ﬁ—Z]UZO (x,t)dx (128)
o

(129)

P
- 29 Arfo
Ag ET% T(2z-tc)
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In Eq. (128), the exp[-jraf dl(t)] can be cancelled by an identical
term in the local oscillator field. Only the current amplitude
js of interest, thus the phase terms in front of the integral

can be neglected. The complex current is now written as
1h,B(t) = As J PD(x) a(x+vt) exp[jo(x+vt)]

2 -
exp[-X-, 1 dx (130)
W
)
The rough surface phase term is the only random term in
Eq. (130). Thus the mean of the current is given by
cez
B[ih,B(t)] = As exp[- -—2—'2] I‘PD(X)

x2

a(x+vt) exp[~W—2]dx (131)
o

2
o

where exp|[- —%— ] is the value of the characteristic function
from Eq. (41). For a surface with oy 2 % im Eq. (28), the
value of the characteristic function is approximately zerd
(Ref. 16:31). Thus the mean of the current is effectively

equal to zero;

E[ip g(t)] =0 (132)
The covariance of the current is
E[ih,B(t) ih,B(t’)] = A52 I J PD(X) PD(X')a(X+Vt)

a(x’+vt”) hl(x) hy (x7)
P, (ax+vAt) dxdx” ‘ (133)
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where hl(x) = exp|[- 5—2]. Because of the zero mean, the

0
correlation of the current is equal to the covariance.

Comparing Eqs. (131) and (132) to Eqs. (86) and (87) reveals that

the broadband heterodyne current model is almost identical to

the monochromatic model. The only differences in the two are their

amplitudes and their system functions. These are minor differences.
Both system functions serve the same purpose; they determine

the system resolution ability. The broadband system function,

hl(x), has a width dependent on the beam size of the laser output, i

but the monochromatic system function, h(x), has a width dependent

on the beam size at some distance z from the laser. Because the

beam size widens as the field propagates further from the laser,

h(x) is wider in space than hl(x). Thus the broadband heterodyne

system will have better resolution characteristics than either

the monochromatic or quasimonochromatic heterodyne systems.

All three systems have the same SNR's. Comparing hl(x) to

ho(x), the broadband direct detection system function, shows

that ho(x) = hi(x). It can be shown by Fourier analysis that

ho(x) is n-rrower in space than hl(x). Thus the broadband-

direct detection system has the best resolution ability of

all the systems.

In this chapter, four system models were found. The
quasimonochromatic-direct detection and quasimonochromatic-
heterodyne current models were shown to be identical to their
respective monochromatic models. The broadband systems were
found to have better resolution ability than the narrowband

systems. The major discovery, however, is that the broadband-
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direct detection system does not suffer from speckle effects

and it has the best resolution ability of all six systems

investigated.




V. The Application of the Laser Line-Scan

Imaging System to the Ranging Problem

In this thesis, ranging is considered to be the process
of determining the height of some point on the rough surface

relative to other points on the surface. This process measures

macroscopic variations in the surface (on the order of centimeters)

as opposed to the microscopic variations in the'surface (on
the order of the optical wavelength). The laser line-scan
imaging system is used to perform the process of ranging.

In this chapter, the method and system used in ranging
is discussed first. The selection of the intermediate and
carrier frequencies in design considerations is presented.
Then the second moment model due to speckle effects is found
and quantum noise effects are added to the model. This model

is then used to evaluate the system performance for ranging.

The Ranging Method and System

One method of ranging is to modulate the laser field

with a modulation field denoted by

m(t) = (1 + cos anct)% (134)

where fC is the modulation frequency. During the propagation

from the laser to the rough surface and back, the modulation
T
01

field suffers a time delay of Z-E— T

ol is shown in Fig. 2 and

given by Eq. (12). The laser can b§ designed with a bandwidth
that is narrow enough so that Ty 2 z. This means that any
changes in the laser field away from z are small enough to

be ignored. The bandwidth requirement is
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1%_ > » lo-x|pax (135)
R 22C
The time delay is now 2 % . The modulation field that is

incident on the detector surface is
m,(t) = [1 + cos 2nf_(t - 22 )% (136)
d e c )

This result is equivalent to the quasimonochromatic case of
the previous chapter in that the modulation term is independent
of spatial variations.

If the time delay term of Eq. (136) can be isolated,
then the distance from individual points on the rough surface
to the scanning system can be determine. The system used
in determining this distance is a quasimonochromatic laser-
heterodyne receiver system. The quasimonochromatic laser
is chosen because like an actual laser it has a bandwidth,
but it can be modeled by the monochromatic results. The
ranging model for this system is developed in the following

section.

The Ranging Model

As with the other models, the field incident on the
detector is found first. The mean and covariance of the current
are then found. Quantum noise effects are added to the current.
The resulting current is processed, as shown in Fig. 8, to
determine its amplitude squared. A process is then developed
to isolate the time delay term and thus allow the system to

be evaluated.
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The Modulated Quasimonochromatic Field Incident on the

Detector. The modulation term is dependent on time and the
propagation distance z. Thus, this term is not effected by the
Huygens-Fresnel integral equation which integrates over spatial
coordinates. It can be thought of as a constant during the
propagation process. Therefore, the field incident on the
detector is the same as for the monochromatic case (Ref Eq. (31))
but now it is multiplied by the time delayed modulation term

of Eq. (136). The incident modulated field, denoted Ud m(x,t)
s

-

1s

ud,m(x,t) = my(t) Uy(x)

5 .
[1 + cos anc(t—%g)]z 7%Texp[-32(kz- %)]

2 2
exp[-jk%;] [ a(a+Vt)eXp[j9(a+Vt)]exp[-az%—;-]
z

2
.k .
exp[-j=—lexp[j2r3; lda (137)
By algebraic manipulation it can be shown that

£
[1 + cos2mf_(t- 2T:Z-)]Lz = (2)% cos[2n1-£ (t-Zci)] (138)

Therefore, the complex envelope of the field in Eq. (137) is
centered about the frequency fc/z (recall that the optical
frequency, fo’ is suppressed) and has bandwidth BR which is
restricted by Eq. (135). A representation of the temporal
frequency spectrum of Eq. (137) is shown in Fig. 12a.

The mechanics of the heterodyne system add a local oscillator

field to the incident field. The complex envelope of the local
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oscillator field, denoted ULO(a), is centered at the intermediate
frequency, fIF’ and it can be thought of as having some narrow

bandwidth, Bo. As shown in Chapter II, the heterodyne current |
is proportional to the magnitude squared of the sum of the

two fields which 1is

Img(£)U4(x) + cos[2nfype]U ()| % = mice)| U 0l 2

+(cos 2nf pt) U o(x) |2

+ my(t) cos(anIFt)ZRe{Ud(x)Uzo(x)}

201 + cosl2nf_(t - £ | v, (x) |2

+ [1 + cos(ZanIFt)]lULo(x)l2

5 fc ZZ a fc ')z
+ (2)2[cos{2w(fIF + TT) [ ??)} + cos{Zvr(ﬁIF - 77) (t‘%T)}]

Re{Ud(X)UZO(x)} (139)

Fig. 12c is a representation of the one sided temporal
frequency spectrum of Eq. (139). Recall that the heterodyne

system has a bandpass filter centered near the frequency fIF‘

Thus the heterodyne current is dependent on only the last term in

f Eq. (139). However, the last term contains two signals; one is
: £ '

E centered Eboug the frequency fIF - and the other is centered

L I(}

; about fIF + 7; . Only onc signal is needed. Thus it is arbitrarily

|

|
|
) |
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chosen that the signal centered about fIF- %? is filtered
out. This can be done with the sue of a bandpass filter

c
0 centered at fIF W g The
remaining signal is used to determine the heterodyne current.

with a bandwidth of BR + B

The signals illustrated in Fig. 12Zc may overlap with
each other depending on the values of fc’ fIF’ BR’ and BO‘
This overlapping is called aliasing. To prevent aliasing
£
between the signal centered at fIF + 1; and the other signals,
the following three conditions must be met:

f

c 1
fip* o * 3 (Bg + By) < 2f - By (140)
fc 1
fIF+T'7(BR+B0)>£c+BR (141)
and
PEOT., < &+ B> £ -f°+1(s+s) (142)
IF Z 2 R 0 IF 2 2 R (0]

These three conditions reduce to two restrictions:

£.> B+ By (143)

and

f1r > 7 *%BR*%‘BO (144)
Fig. 13 is a graph of the possible values of fc and glF
which avoid aliasing between the signal about fIF * 1? and
the other signals. The frequency locations in Fig. 12c
and the restrictions of Fig. 13 have assumed that £, < f_.
Very similar results would have been obtained if it were

assumed that fc > fIF‘
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Fig. 13. Values of fIF and fC which Prevent Aliasing

For the restrictions of Eqs. (143) and (144) and for the
£

bandpass filter centered at fIF + 7? , the resulting field is

~ 5 fc 27 *
UBp(x,t) = (2) cos[ZTr(fIF +~—TJ(t-??)]Re{Ud(x)ULo(x)} (145)

f
This field is centered about £15 * 7; and has bandwidth By + B.

In this case the value of intermediate frequency is unimportant.

Thus by appropriate modulation and filtering techniques, the
' f

center frequency of the field can be changed to 7? .




The resulting field still has bandwidth BR * Bo, and is

8 £ y N i
(2) cos[2w1§ (- ??)]Re(Ud(x)ULo(x)}

UBp (x,t)

*
Re{Ud’m(x,t)ULo(x)} (146)

where Ud m(t) was given in Eq. (137). This field is

’
now used to determine the heterodyne receiver current.

The Ranging Current Model. The heterodyne current is found

by substituting the bandpassed field of Eq. (146) into Eq. (4).

The result is

. L Zaqu A 2z q%
lh,m(t) = Hf-o— = [1 + COSZTTfC(t‘ ?)]2 Re{

2 2
exp[-j2(kz- %)] I Jexp[-jk%;]a(a+vt)exp[-G%E;; ]

2 *
pD(x)exp[-jk%r]exp[+j2n§%]uL0(x)dxda (147)

As with previous heterodyne models, the exp[-jk%;] term can be
cancelled by an identical phase term in the local oscillator
field. Then the x integral is just the Fourier transform of

the aperfure function denoted

FPpOl | 0 = Ppp(® (148)
X Az

Also, only the amplitude of the current is of importance here,

so the exp[-jZ(kz-%)]phasc term can be neglected. The current
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Eq. (5) with Eq. (124) produces a broadband current of

is then written as

ip m(t) = Agll + .:osznfc(t:-ici)]’i [ Ppg (@)

2
a(a+vt)h(a)exp[je(a+vt)]exp[-jkgf—]da (149)

Comparing Eq. (149) to Eq. (85), it is seen that the modulation

heterodyne current, except for the time delayed modulation term,

is identical to the monochromatic case and thus the quasimonochromatic

case. This term is not random and its amplitude varies between
zero and (2)%, thus it does not effect the mean and covariance
of the current. They are the same as before:

E[lh,m(t)] =0 (150)

and

[ (e = maGtima(t=) €. (t,t7)
lh,m d d iy

= A [+ costemf (t-22))1% (1 +cos{znf (7~ LEy))*

I J PDF(a)PDF(a‘)a(a+vt)a(a’+vt’) Pz(Aa+vAt)

h(a)h(a")dada” (LSL)

To make the ranging problem more general, quantum noise
effects are now included. Quantum noise is denoted nTH(t). It

is included by simply adding it to the modulated current of
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Eq. (149). This sum, denoted iT(t) for total current, is

iT(t) = md(t)ih(t) + nTH(t] (152)

The first two moments of the quantum noise due to heterodyne

quantum effects are (Ref 26:176)

Elng,(t)] = 0 (153)

A

C (EsE ) =

§(t-t7) 154)
- ( (

Therefore, the mean and covariance of the total current are

E[ip(t)] = E[iy ()] + Elng(0)]

=0 (155)
and

Cih(t,t‘) = md(t)md(t')cih(t,t‘) + CnTH(t,t‘) (156)

It can be seen from Eq. (154), that quantum noise is white
noise. That is, its power spectral density has a constant
amplitude and exists for all frequencies. One way to decrease
the power in the noise is to pass the noise through a bandpass
filter. The total current can be péssed through a bandpass filter
with bandwidth BR ¥ Bo centered about éf . This does not

effect the modulated heterodyne current but it does decrease the

quantum noise. The bandpassed quantum noise is denoted Moy gp (8) -
’
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183 fC > > BR & B0 (possible by system design), the quantum

noise can be represented in terms of its quadrature components

(Ref 24:237). The quantum noise becomes

£ £
Moy Bp(t) = nc(t)cos(Zn—E t) -ns(t)sim2n7§ £}
: 2
£
= r(t) cos(2m— t + g (1)) (157)
where
2 T i
r(t) = [ (t) +ni(t)]? (158)
and
=1 ns(t)
$py(t) = tan [EZTfT] (159)

The quantum noise still has zero mean.
By definition the covariance of the bandpassed quantum

noise, now denoted CTH(t,t’), T

5 b ;
Cru(tst?) % B [ngy gp(t) Ney gp(t7)]

£ f .
E[cos{2w7§t + ¢TH(t)}cos{2n7§t‘ +opy(t7)}

r(t)r(t?)] (160)

The covariance of the total current including bandpassed quantum

noise is

CiT(t,t') = md(t)md(t‘)Cih(t,t’) + CTH(t,t') (161)
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’ ' P, (Ax+vAt) dxdx’ ' (133)

'l §

&

[ nsp(t)

ip(t)

r(t) —J/;Z\ Elng,(6)] =E[r(t)]=0
\!/ » Rsp(t,t‘)=cih(t,t‘)

R’I‘H(t’t‘)-—-CTH(t’t‘)

£
cos(2n7§t+¢TH(t))

Fig. 14 Model of the Total Current

The noise terms represented by the total current covariance
are shown in Fig. 14.

In Eq. (163), the covariance term, Cih(t,t’), is not
stationary (Ref Eq. (98)). For simplification it is assumed
that the surface reflection coefficient, a(x), is a constant.

This implies that Ci (t,t”) is stationary and thus Fourier
h

1
techniques can be used to examine this term. Note that since |
the quantum noise is stationary, then CTH(t,t‘) is stationary ,
| also. Eqs. (162) and (163) are used to determine the second
moment model for ranging.

The émplitude squared of the total current is found by the

process shown in Fig. 8. The first two moments of the amplitude

squared are given by Eqs. (90) and (91). They are

BIAT(D] = ¢ (1,87 ©) -




systems. The major discovery, however, is that the broadband-

59

= [1 + cos{znf_(t-2H)1] C; (6,87 =t) + Cry(t,t” = ) (162)
and

€ 3lEt7) = [CiT(t.t‘)lz

n

[1 +cos{znf_(t-22)}] [1+cos{2nf_(t” -%})][cih(t,t')]z

¢ 2[lvcos{2nf_(t- 2531 % [1+cos(2znf_(t” - %})}]%ci (t,t7)
h
Cpyy(£27)
g [CTH(t,t’)]2 (163)

Eq. (162) is the '"signal” component of the model. The
first term in this equation is composed of two signals:
one is centered about zero frequency and the other about fc'

The amplitude of these two signals is Ci (t,t0 =) of o? (t) .
h

1

h
The last term in Eq. (162) is the variance of the bandpassed
quantum noise. This term is centered about zero frequency
also (Ref 24:239). If the "signal” terms are A.C. coupled,

the terms at zero-frequency are filtered out. This leaves

E[AZ

1,ac(t)] = cos[amf (¢ - %})1 oiz(t) (164)

Eq. (163) describes the '"noise'" components of the model.
Let the first term in this equation be denoted nll(t). It

describes a noise process, call it nsp(t), which is zero mean,

13




B St -
5
' has a covariance of [Ci (t,t*)]", and is multiplied by
: {1 + cos(lnfC(t - %E))]j Multiplication of "sp(t) by 1 yields
A a zero frequency term which can also be filtered by A.C.
fJ coupling. Fig. 15a is a representation of nll(t].
2 The sccond term in Eq. (163) describes two statistically

independent noise processes, nl,(t) and “13(t)' which are

multiplied together. nlg(t) has zero mean, a covariance of

T l_‘
i: Cih(t,t ), and is multiplied by [1 ¢+ cos(Jnfc(t-]f)}]'. nlS(t)

has zero mean, a covariance of Ci (t,t°), and can be represented
h {

by the multiplication of r(t) by cos(2m—== t + ¢T”(t)) (Ref Eq. (lol

Thus the multiplication of ny,(t) and “1§(t)’ denoted "ld(t)’

Ny () = nlz(t)nls(t)

: 5. £
E | = []1 + COS{anC(t-i;)}]%COS(angr+ ¢T“(t))n1:(t)r(t\

cos[lnfc(t-:) + ¢T”(t)]n15[t)

C

+ cos(amf, : + (O I () (165)

NI R———
—

1
where nls(t) = (x)* nl,(t)r(t). The last term in Eq. (165) is

s

+ ¢T“(t)) is just some phase

il

at zero frequency since cos(lnfu
shift. Thus as before, this term can be filtered out. The
, rcmaining.tcrm is represented in Fig. 15b.
The last term in Eq. (163), can be represented by two
statistically independent noise processes, nlb(t) and n17(t).
Each of these is zero mean, has a covariance of CTH

can be represented by the prolluct of r(t) and cos (== t + d\.r“(tﬂ

(t,t"), snd
&
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3? ngp(t) /SZ\L ny, () 1

2z
cosZ“fC(t = et

Fig. 15a Speckle Noise Representation

n, g (t) _j’;Z\ ny, ()

cos[amf_(t- %) + ooy (t)]

Fig. 15b Speckle-Quantum Noise Representation

nyg(t)

niy(t) /SZ\’

cos[2mf t + ¢,(t) + ¢,(t)]

Fig. 15¢ Quantum Noise Representation

i

Fig. 15 Noise Representation




The product of n16(t) and n17(t) is

S ——

nls(t) = n16(t)nl7(t)

£
r,(t)r,(t)cos(2r t + ¢, (1)) cos(Zn—F t + ¢,(t))

[cos{2nf_t + ¢, (t) + ¢, (1)}
+ cos{¢;(t) - ¢,(t)}] n;H(t) (166)

where nTH(t) = %rl(t)rz(t). Once again the last term in Eq. (166)
is centered about zero frequency since cos(¢1(t) - ¢2(t)) is

only a phase shift. Thus this term is filtered out. The
remaining term is shown in Fig. 15c.

A representation of the '"signal" and "noise" terms described

by Eqs. (162) and (163) has now been suggested. Tnus from

a second moment model standpoint, it can be said that the

amplituded squared of the total A.C. coupled current is

2 2 2
AT’AC(t) = cos2mf_(t- ?g) 634 (t)

+

z
cosanc(t - E) nsp(t)

z
cos[anC(t - E) + ¢TH(t)] nls(t) i

+

+

cos[2mf _t + ¢,(t) + ¢,(t)] n;“ (t) (167)

Eq. (167) is now referred to as the ranging current. Fig. 16

=~

is a diagram of the second moment model of the ranging current.




cos2nf _(t -
c

nsp(t)

s 2
costfc(t A“(t)

cos[2mf _t+ ¢, (t) +¢,(t)]

Fig. 16 The Current Model for Ranging

With the help of Eq. (167) and the current model, it is possible

to detect the time delay, %? . This is done in the following

section.

Detection of the Time Delay. It is desired to measure the

time delay so that the distance from the rough surface to the
imageing system can be obtained. What is actually measured
though is the phase delay that results in the field as it

propagates down and back up. Measuring the phase delay, which
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is anc %? , is good enough since fC and c are known. Thus,
z, the distance that is desired to be known, is the only s
unknown and can be easily determined from the phase delay.
However, because quantum and speckle noise are present,

the phase delay that is measured includes the phase delay of
the noises as well as the laser field's phase delay. Therefore
thefe in an error in the value of z that is measured. The
phase delay error can be seen from a phase diagram of the

ranging current in Eq. (167). First, this current must be

rearranged.

Consider the third term in Eq. (167). It can be rewritten

as

cos[2nf_(t-2) + ¢pu(t)In (1) = cos[2nfc(t-%§) + (anf_ L

+ ¢TH(tD]n15(t)

& 2z &
= costfc(t = )cos[waC E+¢TH(t)]n15(t)

s 2z . z =
+ s:n[anC(t - ?r)kln[anCE+ ¢TH(t)]n15(t) (168)
The last term in Eq. (167), can be rewritten

COS[Z’H’fCt + ¢l(t) s ¢Z(t)]n';H(t)

22

- cos[anC(t-%§)'+ 2nf 22 + 9, ()] ngy(t)

- . 2z 2z .
cos[anc(t = )]cos[anC7;+ ¢3(t)]nTH(t)

v sinf2nf_(t-22)]sin(2rf 22 + 05(t)] ngy(t) (169)
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where ¢3(t) = ¢2(t) + ¢1(t). Now the rahging current becomes
2 ” 2 2
A"(t) = [oih(t) + nsp(t) + cos{2nf = + by ()} myc(t)

2z
(o

+ ¢5(t)} ngy(t)] cos2nf_(t - 22

+ COS{ZﬂfC
+ [sin{anc%+ ¢TH(t)} nls(t) + sin{wac%é + ¢3(t)}n{H(t)]

. 2z
51n2wfc(t ~ g (170)

A phase diagram of Eq. (170) is plotted in Fig. 17.

In Fig. 17 the desired phase to be measured in wacéé.
Due to noise, the phase that is actually measured is wac %% % ¢e’
where ¢e is the phase error or deviation due to noise.
The phase deviation is written as

. n.,(t)sind, + n_(t)sins
o = tan . [ Tg L = 3 2 ] (171)
ciTH+nsp(t)+nTH(t)cosel+n15(t)cose2

where

6, = 2nf° LY (172)

1 i T 3
and

fc z
62 = 27 s * ¢TH(t) (173)

Eq. (171) is not very enlightening. It becomes somewhat clearer
if looked at in it two limiting cases: (1) speckle noise dominant
and (2) quantum noise dominant. Each of these cases is discussed

below.
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If speckle noise is dominant over quantum noise, then all
quantum noise terms can be neglected and the phase deviation is
due to speckle noise.

In Eq. (171), the n%H(t) and nls(t) terms are due, at
least in part, to quantum noise. If they are neglected, the
phase deviation due to speckle noise is

0

$__ = ta ‘ = 0 (174
SP Bl : < :
h

Sp

From the last equation it appears that the phase of the laser
field can be measured exactly for speckle noise limited systems.
This seems intuitive because the speckle noise, like the laser
field, is propagated from the surface to the imaging system.

Since both take the same path, they should suffer the same delay.

Most imaging systems are speckle noise limited therefore, it
appears they should work well for ranging.

On the other hand, if quantum noise is dominant, the nsp(t)
and nls(t) terms are neglected (nls(t) results from the cross
correlation of the speckle and quantum noise, thus it ‘is

neglected for both cases). The phase deviation due to quantum

noise is
% nTH(t)shﬁl
¢y, = tan [ ] (175)
TH » :
ag. (t)+n ,.cos6
11y TH 1
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This result is very similar to the result obtained by Ziemer

and Tranter (Ref 24:277-278) for the case of angle demodulation {
in the presence of noise. (Eq. 175) does not indicate the

magnitude of the phase error, but it does imply that some

deviation occurs. It can be seen that for o (t) > > an s

TH
the phase deviation is small. If the mean and covariance of

TR e ————r

i Eq. (175) are found, then the deviation can be better understood.
However, that is beyond the scope of this thesis.

One practical consideration which should be taken into
consideration for both cases is that phase detectors are amplitude
dependent. All the components which make up the phase deviation

term (Ref Eq. (171)) have random amplitudes. Therefore, the results

of both cases are true only for a carefully designed phase detector
which is insensitive to amplitude variations of the signal.

The important result of this chapter is that it appears that

laser line-scan imaging systems can be effectively used for

ranging. The only assumptions used in showing this were:

(1) the bandwidth of the laser source is narrow enough that laser

field, at any point in space, is constant across its width and
(2) the imaging system is speckle noise limited. Neither

| one of these are severe restrictions. Also important is Fig. 13.

| It gives the values of fIF and fc that can be used to avoid aliasing.

3 This insures that the correct image is processed by the system.
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VI. Conclusion

Summa
T cts of speckle on the output current of an imaging

sy = ¢ examined. The imaging system was composed on a laser

scait i, a rough surface (compared to the laser wavelength)

and a receiver measuring the field reflected from the surface.

Three types of lasers and two types of receivers were examined.

The lasers were designated by their bandwidths as monochromatic,

quasimonochromatic, and broadband. The two receivers were the

direct detection and heterodyne.

The field reflected from the rough surface was "crudely"
modeled by multiplying the incident laser field by a reflectance
term and a random phase term. The reflectance term was the
desired quantity or 'signal'" to be measured. The phase term
simulated the effects of speckle. All fields were propagated
by the Huygens-Fresnel integral.

The system composed of a monochromatic laser and a direct
detection receiver was examined first. A system function dependent
on the laser beam spot size at the surface was defined. It
was shown that the resolution ability of the system was determined
by the width of the system function. By second moment techniques,
the '"noise'" (due to speckle effects) measuréd by the system
was found to be signal dependent. The significance of this

result was that the signal to noise ratio (SNR) could not be

improved by increasing the signal power. The value of the SNR
was shown to be greater than ‘or equal to one. The far field
and near field cases were found to be identical. The

monochromatic laser was then replaced by a quasimonochromatic one.




The results for this new system were shown to be identical to

the monochromatic results. |
For the imaging system consisting of a heterodyne receiver
and a monochromatic laser, the measured''noise'" due to the effects
of speckle was also found to be signal dependent. Thus the
SNR, which was equal to one, could not be improved by increasing
the signal power. The resolution of the system was shown to
vary with the beam spot size at the surface and the spatial
fourier transform of the receiver's detection area. The far {
and near field cases were identical. The heterodyne results
were unchanged when the monochromatic laser was replaced by a
quasimonochromatic one. When a broadband laser was used, the
only result which changed was that the resolution ability
of the heterodyne system improved.
The most significant results occurred when the imaging
system was composed of a direct detection receiver and a broadband
laser. It was shown that this system is not effected by
speckle noise. This was different from all other systems.
They were limited by speckle effects. This system was found to
have the best resolution characteristics of all the systems
investigated. From these results, it was determined tiat this
system is the optimum system to use for laser line-scan imaging.
As an application, the system consisting of a quasimonochromatic
laser and heterodyne receiver was used for ranging. In addition
to the effects of speckle, quantum effects were included. The
laser field was amplitude modulated. The phase delay in the

modulation term of the reflected field was measured and
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used to determine the distance from the surface to the system.
However, the measured phase delay included a phase error due to
quantum and speckle effects. It was shown that for the case of
speckle noise dominate over quantum noise, the phase delay could
be accurately measured. For the case of quantum noise dominate,
it was found that an error would result in the measured phase
delay. No attempt was made to quantify this error. It was
noted that the obtained results were only valid for a phase
detector which is insensitive to amplitude variations. It

was concluded that ranging could be effectively performed. A
method for selecting the intermediate and carrier frequencies

used in the ranging problem was also presented.

Recommendations

In this thesis, a laser line-scan imaging system was modeled
for different combinations of laser sources and receivers. These
models were based on theoretical analysis. It is recommended
that these models be compared to experimental data to test their
validity.

One calculation used to determine the effects of speckle
on broadband imaging systems (Ref Eq. (123)) was only an
approximation. It seems feasible that this .calculation can be
quantifiea by comparison to the analysis of similar calculations.
This would add to the understanding of the broadband results in
this paper.

In the ranging problem, the phase error was presented but
not analyzed. A statistical ;nalysis of the phase error would
result in a better understanding in the magnitude of the error

and the variations in its amplitude. As previously stated,

i
!
{
|
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phase detectors are amplitude dependent. A statistical analysis
would indicate the effect of amplitude variations on phase
detectors. Also, the ranging problem was examined for the case
of a constant surface reflection coefficient. If the problem

were solved for a spatially varying coefficient, a more general

solution would be obtained.
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Appendix A

Extended Huygens-Fresnel Integral

Recall from the section on complex representation that the

real scalar optical field is
“u(T,t) = A(T,t) cos[2nf t-¢(T,t)] (A-1)

and its complex envelope (with ekp[—ijfot] time dependence)

is
U(r,t) = A(r,t) exp[jo(T,t)] (A-2)

where T is a vector with spatial coordinates (x,y). Let

the temporal Fourier transform of Eqs. (A-1) and (A-2) be

denoted

F [u(r,t)] = V(r,f) (A-3)
and

F [UGT,t)] = Vp(T,6) L a8

By Fourier analysis techniques it can be shown that Eq. (A-3) can

be written in terms of Eq. (A-4) as

V(T,f) = %—Ft[U*(?,t) exp(j2nf t)]

'z F.t[U(i'_,t) exp(-j2nf t)] - (A-5)
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For the case where the complex envelope, U(T,t), is monochromatic,

the Fourier transform of the optic field can be written

v(r,f) = V(?,fo)s(f-fo) + V(?,-fo)é(f+fo) (A-€)

The amplitude of the last term in Eq. (A-6) is
1 i .
V(f,-fo) . Ft[U(r,t)exp(-JZﬂfot)]

(r,f+f ) (A-7)

2’LP

The two dimensional form of the Huygens-Fresnel integral

is

= j k - k= =2, =
0,y = ZRLEEL [[u@exp (5 I7,-71%)47 (A-8)
where X=C/f . On comparing Eqs. (A-5) and (A-7) it is seen

o
that Eq. (A-8) can be written as

V(£ = SRUKEL [ [ v(F,op Yexp 3 5IF) -1 214F  (A-9)

After completing a change of variables f=-f°, Eq. (A-9) becomes

i exp[-ijz%
V1(r11f) = -j%z I I V(r flexp[- 3 |T1'Tl 1dr (A-10)

This equation is valid for propagation of any field component
at frequency f. To express the results in terms of complex

envelopes, note that for all frequencies f near -fo

V(F,f) = %—VLP(?,f ¢ £) (A-11)
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Substituting Eq. (A-11) into Eq. (A-10) yields
f'exp[-jané] i
Vi Tyt 2 A0 0 sem I I Vip(rofefy)
jcz
exp[-jz£ T -?Iz]d? (A-12)
zC 1
The temporal inverse fourier transform of Eq. (A-12) is
il ijnfot 1 d P ry-T $
Bglratae " Tvic [ f & G - e )
j2mf (t-Z IFl-Flz }dT 3
exp(-] o(t"c" w5 g )]}dr (A-13)
By use of the chain rule, Eq. (A-13) becomes
U, (F,t) = 5—— exp[jkz] expliir, -7 %)
171 Inze Pl PUZZIN
- 2 o ey §

H?U(r,t-z e 7 )-JZu’fo (r,t-E-— T )JHdr (A-14)

Eq. (A-14) can be simplified somewhat. If it is assumed
that the bandwidth of U(T,t) is much less than the optical
frequency fo’ then the f in the numeration of Eq. (A-12)
can be approximated by fo. The resulting temporal inverse
Fourier transform of Eq. (A-12) is then

= =2
- k - |7, -T] B TORRpe g
o, - UKL [ [y e ) expliggI Ty FIN 1T

(A-15)
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This assumption implies that the field does not change
significantly in time relative to the variation at fo.
Eq. (A-iS) would also result is the derivative term in Eq. (A-14)
was assumed to be insignificant in comparison to the other term
in that equation.

Another simplification can be made to Eq. (A-14) when the

bandwidth of U(r,t) is restricted by

| lfOIImax
F - S -—-C—— (A“16)

where Ty is defined by Eq. (10). This is the quasimonochromatic
restriction (Ref 12:108). The resulting Huygens-Fresnel
integral, which is valid for quasimonochromatic fields,

is

INGYDIEE: Jkz II U(F,Oexpliss |T;-FI%14F (A-17)

The Huygens-Fresnel integral, which is valid for monochromatic
fields, has been extended so that it is valid for fields of
any bandwidth (Ref Eq. (A-14)). Two special cases, the broad-
band and quasimonochromatic, were presented. The propagation
of broadband fields is given by Eq. (A-15) and the propagation of

quasimonochromatic fields is given by Eq. (A-17).

RS




Appendix B

The Method of Stationary Phase

The method of stationary phase is an asymptotical approximation

to the solution of an integral. It is discussed by Papoulis

in two of his books (Ref 13: 234-250, 15:139-143). The method

is summarized below.

Consider the integral

Q(af) = J J gl(a,s)exp[jAf gz(a,s)]duds (B-1)
R

where R is a region in the «,8 plane. g,(a,B) must be

twice differentiable in R. The extreme value of gz(a,B)

at a single point (ao,Bo) in R is found by the first partial

derivatives of gz(a,B):

g, (a,B)
'3%_____' - of 82’u(°o’so) (B-2)
382(0:3)
—f——= 0 & 85,5 (0008,) (B-3)

1f gICa,B) is continuous at (ao,Bo) and if

and

2
82,00%2,88 (82,087 7 O (8-4)

8,887 0 | (B-5)
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where gZ.aa’ gZ.BB' and 82.08 are the partial derivatives

evaluated at (ao,Bo), then as Af approaches infinity

jamg (o ,8,) %M |

& —Z.% exP[jAfgz(qohgo)]
Af[gz,uugZ,BB 82,08 )

Qeaf) =
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