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We are concerned here with the deflagration of reactants that are produced by
gasification at the surface of a solid or liquid. In particular, the influence of
pressure on the gasification rate is examined under various conditions. In contrast

to earlier treatments, the basic phenomena, including several unsuspected ones, are
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clearly uncovered by activation-energy asymptotics.
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SIGNIFICANCE AND EXPLANATION

The burning of a solid actually consists of two processes:
gasification, or pyrolysis, of the solid at its surface and rcaction
of the gases so produced to form a flame. The same two processes are
present when a liquid burns, the gasification now being evaporation.
Here we are concerned primarily with the effect of pressure on the
gasification rate, in particular conditions under which the flame is
extinguished (or ignited). Radiation from (and to) the surface is
important, as is heat exchange between the gases and their surroundings

(by radiation or conduction).

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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MATHEMATICAL THEORY OF LAMINAR COMBUSTION

IV. STEADY BURNING OF A LINEAR CONDENSATE

J.D. Buckmaster and G.S.S. Ludford

1. Responses.

In Secs. II.3,4 several methods of supplying a reactant at a station x = 0 were con-
sidered. In each case four relations between the three surface values (II.2L), M and D
are prescribed and then the flame eigenvalue determines them. For the switch-on reaction
the surface values themselves are prescribed along with D and then the eigenvalue gives M.
For the flameholder M, D, Ts and Js = 1 are prescribed and the eigenvalue gives T,
i.e. Ys + Tg. (The third example, namely the vaporizing liquid, is discussed at the end of
Sec. T.)

The switch-on reaction provides the simplest example of a response. With the surface
values (i.e. the switch-on temperature 'I‘s and the upstream state Y_Q,T_a) held fixed, the
flame speed (i.e. M) is determined as a function of pressure (i.e. D). The response curve
is a parabola DM'2 = const., where the constant is determined by TQ = Y_m * T_a and JS =Y
Lote that, while x, is fixed, the location of the flame varies along the parabola because
M is involved in the length unit.

For the flameholder, where Ts and Js are fixed, the flame temperature ‘I‘O becomes
a function of both M and D. Such a function can be described by its sections
MT;zexp(e/ZTm) = /2D/8 = const., which are parabolas flattened along the T_-exis near the
origin. However, not all of the curve represents the response: T~ must lie between TS
and '1‘s +41 if x, is to lie in the range (O,»). These limits correspond, respectively, to
all and none of the heat released at the flame being conducted back to the supply. When
s Ts the flame has reached the surface and the analysis of Sec. II.5 shows that M may
then be decreased indefinitely without changing T_. When T = T;ﬂ. the flame has become
remote and the same section shows that M may then be increased indefinitely. The resulting
response is similar to that in Fig. 1 with M,D replaced by T“,M. In practice the remote

flame signals an effective extinction (cf. Sec. 2).

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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Solid pyrolysis under adiabatic conditions: =---- basic M,D-curve;

s stable response.

A more complicated response, again of M to D, occurs when gasification at the surface
of a solid or liquid, lying in x < O, supplies the reactant. We still have Js =1 and
T.(=Y & + Ts) can be calculated from an overall enthalpy balance. Under adiabatic conditions,
To itself is determined but otherwise it is expressed in terms of Ts and M. A further
relation comes from specifying the nature of the gasif‘ <c¢ion: in pyrolysis, the surface
temperature 'I‘S determines the production rate M; in vaporization, it determines the partial
pressure represented by DY s The fourth relation is prescription of D, and then the flame
eigenvalue is an equation for M, the T_ in it being known (implicitly) as a function of
M. Our task is to determine how M varies with D when the remote temperature of the

condensate and the background temperature are held fixed.
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2. Experimental Results. Extinction.

If a solid or liquid contained in the left half of a long straight uniform tube gasifies
into a combustible mixture at its surface then a steady state may be attained ir which the
surface recedes and is followed at a fixed distance by a flame separating unburnt gas from
burnt. An observer moving with the surface sees a constant flux M of unburnt gas towards
the flame and an equal flux of burnt gas beyond. The problem of determining the combustion
field is of the type which arose in Sec. II.3 while resolving the cold-boundary difficulty,
if the combustible mixture can be treated a single reactant; in fact, the vaporizing liquid
treated there is one of the two main questions here, and it will have to be reconsidered.

The other main question is the pyrolysing solid.

Since the aim is to determine the response of M to D, it might be thought that
equation (II.22) has the answer: the response is parabolic. However, the condensate has two
important effects. First, it fixes the position of the flame, which must be somewhere between
its surface and infinity. The use of the formula (II.22) is thereby restricted and indeed when
the flame approaches the surface or recedes to infinity it must be replaced by the appropriate
formula from Sec. II.S5. Secondly, it can make T°° dependent on M or D and hence change
completely the response predicted by the original formula. These two effects are the subject
of the present chapter.

Experiments which approximate the situation described above have been done for solids
which gasify by surface pyrolysis (Johnson & Nachbar, 1962; Nir, 1973). Three basic phenomena
are found: (i) the burning rate increases with ambient pressure, but very little beyond a
certain pressure; (ii) there is a minimum pressure beyond which gaseous deflagration will
not take place (extinction); and (iii) preheating the solid lowers this minimum. All three
effects are exhibited by the theory, even when absorption or emission of radiant energy by
the surface and heat loss or gain through the wall of the tube are neglected. These depar-
tures from adiabatic deflagration will be considered later; here we just note the partial
analysis given by Johnson & Nachbar (1962) based on distributed hgat loss from the condensed
phase.

The analysis follows Buckmaster, Kapila & Ludford (1976€) and reveals that extinction,

by which is meant the disappearance of gaseous deflagration and not the cessation of pyrolysis,




can be of two kinds. In true extinction, the flame suddenly disappears as the pressure ic
lowered. However, the pyrolysis continues at a lower temperature, the products passing away
unburnt in what is known as flameless combustion. Effective extinction, followed by flame-
less combustion without sudden drop in surface temperature, occurs when the flame recedes

to infinity so that the products of continuing pyrolysis effectively pass away unburnt. The
disappearance of a flame is generally taken to be true extinction, although Nir comes close
to recognizing effective extinction in his experiments.

We shall find that extinction is always of the effective kind for adiabatic deflagration,
and may be so for radiative loss or gain (when a separate phenomenon of ignition is possible).
We shall also show that effective extinction is changed to true extinction by heat losses
through the tube wall (Kapila & Ludford, 1977).

Apparently no experiments have been reported on vaporizing liquids. A more realistic
treatment than that presented in Sec. II.4 reveals the striking effects detailed later, which
deserve experimental verification.

3. Solid Pyrolysis Under Adiabatic Conditionms.

The gas mixture will be treated as a single reactant with Lewis number 1. The object is
to determine the combustion field in genersl, and M in particular, given the remote tem-
perature T__ of the solid and the pressure level in the gas phase, i.e. D. For that

purpose (see Sec. II.L) we need only determine {in addition to M) the values L . N

and Y; = -T; which the solid in x < O presents to the gas phase in x > O.
In fact, to determine the eigenvalue A= M_QD it is only necessary to know the mass
flux fraction Js = Ys - Y; and the flame temperature T = Ts + Ys. If none of the products
of the gaseous resction is produced or absorbed at the surface of the solid, then JS =1
and
(1) 2D = 0%exp(6/1,) /21" ,

a relation determining M once T_ is known. The formula has a mixed character: 6 and Tm

have no dimensions while M and D;5 have those of mass flux. Several such equations will
appear in the sequel. Note that the presence of the solid (or whatever else is creating the

stream of reactant) is felt solely through T, , a fact first recognized by Williams (1073).
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P mi Ts can be obtained without calculating surface values. In the absence of
radiation to or from the surface and of losses elsewhere, the flux of enthalpy et x = + =
must equal that et x = -» (since the kinetic energy is negligible). Reverting tc dimensional

quantities, we may write
e
(2) (0% - @) * e (T, - 1) =0+ (T -1,

where ho - Q is the heat formation of the product of the deflagration and A

denotes values for the solid. Solving for T_ and writing the result in dimensionless form

yields

(3) T =kT_ + (1 -k)T° +q+1,
where

(%) K = EP/CP and q = &° = n)/q.

Here ¢, the heat of pyrolysis, is the difference between the heat of formation of the solid
and that of the gaseous reactant, both at the standard temperature To, expressed in units of
the heat of combustion Q. Equation (3) shows that T (which we shall suppose to be positive)
is independent of M and is a linear function of the remote temperature T of the solid.
Fig. 1 sketches the curves (1) for two values of T .

A third condition must be added to Js =1 and Ts +* Ys =T, in order to determine
all the surface values; that takes the form of a pyrolysis law. The rate of gasification is
supposed to depend only on the surface temperature and not, for example, the pressure. We

shall take

(5) M = kT exp(-é/Ts),

where k and 5 are constants. Note that the pyrolysis occurs at any surface temperature,
so that the term extinction (or ignition) must refer to the gaseous deflagration, as we have
supposed. The law should be viewed as determining the surface temperature Ts which produces
the required flux M into the gase phase. Various modifications have been suggested, all of
which lead to similar results. The only essential feature is that M should be a steadily
increasing function of Ts. Apart from its simplicity, the law adopted here has the advan-

tage of firm theoretical foundations in gas kinetics and reactive solids. Its role in
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Fig. 1 is Just to make Ts a parameter on the curves.

The gas phase is now completely determined, without reference to the conductivitiy of
the solid. Only the enthalpy of the solid enters into the result (1); and the remaining
details of the gas phase come from adding the pyrolysis law. The role of the conductivity

is to fix the distribution of temperature between T s and Ts so that the total heat flux

at each point of the moving solid is constant.

Whatever the value of 6 , the surface temperature must lie within certain bounds:

T = YS + Ts and O < YS < 1 imply
(6) T -1<T <T.
@ s ©

For finite 6, it is not immediately clear that a solution is then guaranteed; but in the

1limit 6+« such is the case. Only the location (II.14) of the flame need be checked. If we

note that

1 v
(1) (FE AR ST R NP R AL

a result expressing heat-flux balance in the gas phase, then

(8) X = -l + T, - TJ)
and the inequalities (6) ensure O < x,< ® ,as supposed. It is a characteristic festure of

activation-energy asymptotics that such questions can be settled simply.

Fig. 1 shows the corresponding end points Ps and P_ , so designated because at

Ps the flame has moved back to the surface and at P has receded to infinity. These

two possibilities were dealt with before (Sec. II.5), requiring reconsiderations of the

structure. It was found that, with conditions at the surface fixed, the remote flame allows

D to be decreased to zero while the surface flame allows it to be increased indefinitely,

both without change in M; that is just what the pyrolysis law demands. Thus the M,D-curve

is completed by horizontal lines, one stretching from Ps to D = » and the other from P°°
to D =0. Of course, if T_ is less than 1, the left inequality (6) is ineffective, i.e.

P, does not exist and the curve extends to the origin. The following remarks will apply

when T_ > 1 and must be slighly modified otherwise.

-6-




The response curve now shows that (i) M increases with D, but not beyond PS; and
i that (ii) there is a minimum D, corresponding to P_, before which there is effective

extinction. The third phenomenon (iii) listed in Sec. 2 concerns the change in D, for

4 T.=T -1, as T increases linearly with T . We find
3 S L @ -
2 4aT
e =
: (9) i = = 7 exp(-0/T ) zx—< 0
A -0 2T -
A «©

with relative error 0(6-1), since aM/aT_ = dM/dTs is 0(1). The effect (iii) is clearly

present and is caused by the exponential factor, which decreases as i increases irrespec-

tive of how M changes.

4. Radiation from the Surface.

It is of interest to see how the picture is modified by radiation between the surface of
the solid and the surroundings. Distributed exchange will be treated later. If the background

temperature is Tb’ there is a heat loss (or gain if negative)
(10) r =o(T -

where o is a positive constant which is not always small in practice. Only Spalding (1960)
has treated radiative exchange with surroundings at nonzero temperature (Tb # 0), and then

in an approximate fashion which precluded heat gain (Tb > Ts). As a consequence

he missed the most striking results. Experiments on such loss have been reported by Levy
& Friedman (1962).

The loss changes the overall enthalpy balance to

(11) T = T8 - r/M,

o

where T: is the flame temperature under adiabatic conditions, given by the formula (3);

but nothing else changes. T°° is now a function of M, both directly and through Ts in J
r; inserted in the response formula (1), it provides a D which is no longer proportional |

to M2. Note that the pyrolysis law now affects the shape of the M,D-curve.

ﬁ Consider first Tb = 0. To determine the new response curve it is helpful to sketch

the graph of Tm versus Ts for fixed T__, and that has been done in Fig. 2. There is a

maeximum at E, corresponding to TS = 0/3, from which the descent is monotonic to -» as

-
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radiation with Tb = 0.

'I'S,Tm-curves for solid pyrolisis: ---adiabatic;

Ts + 0 or ». The shape of the M,D-curve is obtained by rotation through 90° since the

asymptotically correct result
(12) p~lap/aM = -(eaTr_/TaM)AT_/aT
s' ™ o' T's

shows that all slopes have their signs changed. Fig. 3 gives sketches of the resulting
C-shaped curve, the leftmost point corresponding to E.

As in the absence of radiation, not all of the curve is acceptable. In Fig. 2 only the
portions lying between the lines T_ = ZS and T = Ts + 1 satisfy the inequalities (6),
and these depend on T__. (An increase in T_, merely translates the curve upwards.) If
auil e is too small, there is no such portions; otherwise five possibilities arise depending
on whether the curve intersects one or both of the lines with E between them or not. These
lead to the five parts of Fig. 3, where progress is from (a) to (bor b') to (c) to (d) as

4 increases. In each case the end points of the portion are marked to correspond with

the position of the flame, and horizontal completions are included. The complete

responses are shown by unbroken lines.




; It 1s widely believed that if M decreases as D increases the comtustion is unsteble
(Fmmons, 1971) and, since there is some analytical evidence to support the idea, we shall
adopt it here. (Surface burning corresponding to a horizontal extension from such & point
will also be assumed unstable). The whole of Figs. 3a and b' are then discerded, the pre-
heating being too weak for stable combustion. The surviving parts of Figs. 3b, ¢ and d
are drawn heavily, as the responses to be expected in an experiment. Clearly they exhibit
i the phenomena (i) and (ii) mentioned in Sec. 2.

The minimum v for stable burning can be found by setting Tm = Ts = 5/3 in (11)
and solving for T__. As the preheating increases, the true extinction of Figs. 3b and ¢
will occur until T__ reaches the value given by (11) for T -1-= Ts = 8/3. For all

larger values of T_m the effective extinction of Fig. 3d will occur, as under adiabatic

conditions. The extinction value of D is given explicitly by the formula (! ', where M

and T are to be calculated from (5) and (11) by setting e 8/3 for true extinction

and Ts = T°° - 1 for effective extinction. The third effect, that the extinction value
of D decreases as T__ increases, then follows from the derivative (9) since T_ still

increases with T "

e Background Radiation.

If Tb # 0 in the radiation term (10) several new responses can occur. These are not
associated with T_ large (where the results of Sec. L4 apply) but with T, small, which
not only allows Tb to change the sign of r but also enhances the latter's effect in (11)
through the smallness of M. The left-hand side of the curve in Fig. 2 is thereby bent
upwards to give Fig. 4. Whether the result is a monotonic curve (Fig. L4a) or one with a
minimum El and a maximum E2 (Fig. 4b) depends on the size of Tb: the polynomial
factor 3T2 - br! + m'r_ + éT§

b in dTw/de has just two positive zeros (both lying between
is less than 0.1688 (<8/3) and no positive zero otherwise. Since the

T, and 8/3) if T,
curve must cross the strip (6) there is always deflagration (albeit unstable) for some
range of D, in contrast to Sec. U4 where T_°° had to be large enough.

The monotonic curve for Tb > 0.1686 leads to a response which is qualitatively
the same as for adiabatic conditions (Fig. 1). The strong background radiation tends to

compensate for losses from the surface.

-9~
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FIG. 4

(b)
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Ts,Tm-curves for solid pyrolysis: --- adiabatic;
(a) T, >0.1680; (b) T < 0.1686.

radiation with Tb # 0.
b
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The minimum-maximum curve for Tb <0.1686 is cut by LSO—linef in at most three
points. Such curves present 30 possibilities depending on how the lines N SR
are cut(times and order) and on whether El’ E2 lie above, between or below them. Three
of these can be ruled out because the present curve has only one inflexion point; others
lead either to unacceptable responses or to responses which have already appeared for Ty = O
The remainder fall into five groups, according to similarity of response, and one member
(the simplest) from each of the five will be presented here. Fig. 5 shows these responsec,
i.e. the M, D-curves with parts deleted by the limitations (6) and the stability require-
ment of positive slope but completed by horizontal lines. The first four of these responses
have two branches, each ending on the left with either true or effective extinction. In
(a) and (b) both branches have a plateau to the right and we shall see that the plateau on
the upper branch in each of (c) and (d) is reached for D large enough. The three phenomena
in Sec. 2 are therefore exhibited once more. The sole exception is (e), which has no upper
branch.

We shall now construct the probable sequence of events first as D increases from O
to ® and then as D decreases from « to O. When there is only one effective extinction
on the left, as in (a), (c) and (e), the lower branch is followed as D increases. The
same is true for (b) and (d) if, as we shall assume, weaker burning is preferable to strong
when the latter is not already established. In (a) and (b) the lower branch will be followed
all the way through surface burning to infinity but in (c) and (d) there will te a jump to
the upper branch, i.e. ignition, as the rightmost point is approached on the lower. As D
decreases in (c) and (d) the upper branch will be followed, for (d) all the way to effective
extinction but for (c) with a Jump to the lower branch as true extinction is approached ou the
upper. In (a) and (b) we invoke the weaker burning assuaption to see that the lower branch
will be followed all the way to effective extinction. In (e) there is true extinction as
D increases and ignition as it decreases. Aftervextinction and before ignition there is
no steady burning if we persist in believing that the surface burning which emanates from
the unstable branch is itself unstable.

The above description is based on several unproved p. ‘nciples: no part of an

M,D-curve with negative slope can be attained physically because the combustion is unstable;

-12-
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a branch will be followed as far as it can be as D increases or decreases; and when a
choice remains weaker burning will occur. Whether the other branches in (a) and (b) can
ever be attained is an interested open question but, supposing they cannot, (c), (d) and
(e) are the only really new responses. Even then, only (e) fails to exhibit the three
basic phenomena.

However, data of Johnson & Nachbar (1962) and Guirao & Williams (1971) for ammonium
perchlorate can be interpreted as lying on the strong burning branch of Fig. 5(a), see
Buckmaster, Kapila & Ludford (1976), suggesting that the weak burning branch is not

applicable. That would be the case if pyrolysis ceased below a certain temperature, so

that the law (5) only applied above and M was zero below. The whole lower branch could

{hen be eliminated, leaving only the upper branch for the combustion to follow.

It should be noted that the bending back of the M, D-curve from a C-shepe into an

§ occurs for any non-zero T, < 0.1688. For Ty > 0.1688, the S is pulled cut even

|5 further into a monotonic curve. Even weak background radiation can therefore result in
quite different responses. Far from being negligible, it can be the dominant effect under
suitable conditions. The apparent contradiction as ‘1‘b + 0 is due to the nonuniformity

of the limit. However small Tb is, there are smaller values of Ts’ for which background

radiation changes the heat loss into a heat gain. Moreover, the effect of the gain on the
enthalpy of the reactant is magnified by the smallness of the mass flux at such surface

temperatures. However, it is unlikely that such a limiting behavior could be observed,

because of the pyrolysis cut-off at low temperatures mentioned above.
In practice, the most important features of the response are the ignition and extinction

values of D. In any particular case, these are easily determined by finding the points

E,, E, or the appropriate intersection of the Ts’ To-curve with T’ = 'I‘s * 1.

3k

6. True Nature of Effective Extinction.

The object of the present section is to determine how the previous results are
modified when O0(1/6) heat is lost or gained (by radiation or lateral conduction) through-
out the gas phase. For simplicity we shall start by supposing that the solid phase is

perfectly insulated. The main conclusion is that all effective extinctions are changed

-14-




into true extinctions by heat loss, the explosive regime only being maipntainable as the
limit for vanishingly small heat gain.

For each point of the relevant response curve determined above, we calculere the new
D (due to heat exchange) for the same value of M. The general effect of heat loss can
be seen from the formula (1). If the flame temperature is reduced, M can only be main-
tained by increasing D: in order to maintain the rate of reaction at a lower temperature
the concentration of reactant must be increased, i.e. the pressure raised. The pyrolysis
law (5) ensures that TS is unaffected, from which it follows that the temperature distribu-
tion in the solid and Té are also. Ys and Yé do change, though keeping Ys - Y;
equal to 1.

The problem then is to calculate the perturbation of the flame temperature, which Kapila
& Ludford (1977) did by straightforward matching. However, we shall follow Sec. III.3 in
calculating it directly from the change in enthalpy from the surface up to (and including)
the flame sheet. Rather than modifying equation (III.28), we shall derive the result
ab_initio for the present circumstances.

The governing equations are

(13) Q(Y,1) = - Q(T,1) + 8M24(T) = AY exp(-8/T),

where ¢ 1is the function (III.30) with T_, replaced by Tb' Integration of the first

equality between O and x4 + O immediately yields the flame-temperature perturbation

X,
1 ar =2 "
(14) t = - M8 [ Te(m)ax,
®  § dx|xy,+C 0

since the surface values Ts, T; and Ys - Yé are not perturbed. Both terms on the
right-hand side are to be evaluated to leading order and, for that purpose, the approximations
Ts + T;(ex-l) for O € X < X
(15) T =
T+t + M2 (T ) (x - x)] for x>x
w© o . o * *

are used, to obtain

Xa
(16) t, == QM-Q where & =¢(T_) +f ¢(TS + T;(ex-l))dX,
0

=15«




a result that should be compared with the formula (III.35). The two terms in ¢ represer
heat exchanges of the unburnt mixture (between the surface and the flame) with the bturnt
mixture and surroundings, respectively. (The burnt mixture later exchanges the same heat

with its surroundings). It follows that
(1) D = D (m)e™

where DO(M) is given by the eigenvalue (1).

The last three sections have been an investigation of DO(M), which involves the
dependence (11) of T, on M both directly and through the pyrolysis law. The exponent
OM_Z also depends directly and indirectly on M, with the additional involvement of the
function ¢ . It is therefore a complicated matter to describe the dependence of D on M
in detail, especially when ¢ 1is left arbitrary. However, if ¢ is not too large, the
general shape of the response will be maintained except near Po where x, + « in 9.
What happens there depends on whether the surface is hotter or cooler than the background.

When, as is usually the case,
(18) T (M) > T,

the temperature in the gas phase for M above L is everywhere higher than Tb’
so that ¢ is positive. Consequently ¢ is positive and tends to +~ as M > M_

because x, does. The response lies to the right of that in Fig. 1, 3 or 5 and bends
round as M » Mm to form a C. We conclude that heat loss in the gas phase changes an

effective extinction into a true extinction.

In the less likely event that

(19) T (M) < T,

the temperature in the gas phase near the surface is lower than Tb for at least a stretch
of values above MQ . It is easily seen that, as M + M_, the resulting heat gain
eventually overwhelms any heat losses further away, so that & becomes negative [if it is

not already so) and tends to —». The response therefore lies ultimately to the left of
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that in Fig. 1, 3 or 5 and ends at D = 0. Even then the effective extinction may te prece
by a true extinction: if TS(Mm) is sufficiently close to T,, the function ¢ will onl
become negative vary close to Mm and before that will be increasing rapidly (because of
Xu)s SO that an S is formed. For smaller values of T (M) the £ straightens out into
a monotonic respcase. Thus the explosive regime, corresponding to the horizontal line
through P_, is seen to be a limit for vanishingly small heat gain.

Kapila & Ludford (1977) have given details of the above picture for the linear law
(I11.30a) when the ambient is at the same temperature as the remote solid ('I‘b = T_Q) and
there is no radiative exchange between it and the surface. The conditions (18) and (19)
then hold for exothermic and endothermic pyrolysis, respectively. They also consider less
than perfect insulation of the solid and find the termination points are unaltered though
the curves are somewhat distorted. (Tb is necessarily the same as T_’ now, since other-
wise the solid exchanges an infinite amount of heat.) The reason is that heat exchange in
the 3clid, which adds a term to ¢ , is bounded as M = M“ and therefore cannot affect the
unboundedness of ¢ .

Distributed heat loss from the solid phase alone was considered by Johnson & Nachbar
(1962) as a way of modifying the C-shaped responses they obtained analytically when there is

radiative loss from the surface. Under their assumptions effective extinction cannot occur.

7. The Vaporizing Liquid Under Adiabatic Conditionms.

With one important exception, the analysis follows that in Sec. 3, the superscript -
now referring to the liquid. (It applies equally well to a sublimating solid.) However,
since

(10) L=-q+ (1)1, -1°

is the latent heat of vaporization, which must be increasingly positive at all temperatures
Ts of interest, the heat q must be negative and the ratiok <1l. We are dealing with a
strictly endothermic process in contrast to pyrolysis, which is usually exothermic. The
exception just mentioned is the use of the pyrolysis law (5), which must be replaced by the

Clausius-Clapeyron relation

=17«
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(21) Y.p

sPe

8 ~
= KT, exp(-8/T) (8 >0)

in calculating boundary values. Here 8 =Y(1 -x)/fr- 1), where « has the definition (La)

and Y is the ratio of specific heats in the gas. The new law relates the partial pressure

of the vapor at the surface to the temperature there and is applicable below the critical point
whenever the vaporization is rapid enough for thermodynamic equilibrium to be achieved. The
critical pressure is invariably very large so that we shall allow S; to become indefinitely
large, as is needed for the DamkOhler numbers involved in the asymptotic theory. Equation

(21) should be viewed as determining T, for given D (1. E;) so that once more the

surface temperature is a parameter on the parabola (1), see Fig. 6. For the pyrolyzing solid
the surface values depended on M; here they depend on D.

Suppose T_ >1 (otherwise the discussion is modified in an obvious way). The point P_
corresponding to the left end of the range (6) then exists and is marked in Fig. 6; the point
Ps. corresponding to the right end, lies at infianity (according to equation (21)) because Ys
vanishes when TS = T’. So long as T8 is away from the ends of its range the response is
identical to that for a pyrolyzing solid. Near the ends, however, the two responses differ
markedly, due entirely to the difference between the two laws (5) and (21).

As Ts + T_ - 1, the flame sheet recedes to infinity and, since YB + 1, the pressure
E; (and hence D) tends to a finite non-zero value. The analysis of remote flames, given
in Sec. II.5, shows that M can then increase indefinitely, with conditions at the surface
fixed, without change in D; and that is just what the Clausius-Clapeyron law demands.

The liquid, which is at its saturation temperature for the ambient pressure, must evaporate
completely before the pressure can be lowered. Combustion plays no role because heat
transfer from the gas phase to the liquid has ceased; the entire heat needed for evaporation
is surplied from the remote end of the liquid which, since the evaporation is endothermic

(L » 0), is now hotter than the surface (cf. equations (3), with T, = Ts + 1, and (20)).
The process is represented in Fig. 6 by the vertical line through P”; before it occurs
there will, of course, be effective extinction.

As

-3

+ T_ the flame moves to the surface and, since Y  tends to zero like (2. =P.0,

s
the pressure 5; (and hence D) tends to infinity like (TD - Ts)-l. When the temperature

-
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T_» increasing

Vaporizing liquid under adiabatic conditions:
response; wsms» stable response.

FIG.6
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iifference becomes of order & the eigenvalue (1) has to be replaced, the surface-flame r
- g =
(I1.27) showing that M “D now behaves like (Tw - TS) . Hence M behaves like (T - T )
P :

1

or F_}, and we conclude that the M,D-curve bends down from the parabola to asymptote the
D-axis. However, the later portion of the curve does not provide an acceptable response since
its slope is negative.

As for the pyrolyzing solid, preheating the liquid (and therefore increasing T )

@

lowers the rressure needed to sustain a given burning rate. The effect of preheating on

P_ follows from the relation (21) on setting Ys =1 and TS = Tm - 1 and is the opposite

m

of that for solid pyrolysis: the pressure ﬁc (and hence D) increases with T, and hence
Tq”. A hotter liquid requires a higher pressure to produce the sudden complete vaporization.
The vaporizing liquid was used as an example in Sec. II.3 and the treatment there can
now be seen as an incomplete answer to a somewhat different question. There the temperature
was supposed to be uniform throughout the liquid phase, i.e. the remote temperature was
maintained at the surface value. As a consequence T“, instead of remaining constant, varied
with the surface temperature( L T, 1in the determination (3)). The M,D-relation (1),
which was not treated thoroughly there, is no longer parabolic since T, now depends on
D through the Clausius-Clapeyron relation. (We shall not go into details since they are of

limited interest.) Finally, the formula (20) shows that the requirement (6) is simply

0< L< 1, as found before.

8. Radiative Exchange at Surface. Distributed Heat Exchange.

In considering radiative exchange at the surface it is convenient, as in Secs.k and 5,

to sketch the graph of T versus Ts for fixed T__ which now results from eliminating
o

M from the overall heat balance by means of the M,D-relation (1) after having eliminated D
from that relation by use of the equilibrium condition (21).

Fig. 7 shows the T_,T -curve for the three possibilities. (In Figs. T(a) and (b) we
have assumed T: x 1 but the curves are similar for T: > 1.) In all cases the curve
originates at (?: : T:) and asymptotes the q--axis, passing through (Tb,?: ) when that
point lies above the line T, = T.. In case (b) there is always an extremum E in the

strip (6), but in the other two cases it may lie outside.
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The asymptotic formula (12) still shows that the sign of the slope is changed on
passing to the M,D-plane. All parts of Fig. T therefore yield a curve of the general shape
of that in Fig. 6 again, the extremum E corresponding to the maximum. As there the portion
beyond the crest presumably corresponds to unstable deflagration and therefore is not part of the
response. When there is no extremum in the strip (6), the end point P lies beyond the
crest and there is no acceptable response at all. We conclude that no dramatic change in
response from that for adiabatic conditions takes place, in contrast to the pyrolyzing solid.
Finally, we come to the effect of distributed heat exchange on the response. The analysis
in Sec. 6 makes no use of the pyrolysis law, which only serves to locate Ts on the response
curve. It is therefore equally valid for the vaporizing liquid, the Clausius-Clapeyron law
serving only the same purpose. 1In fact complete analogy obtains when there is no radiative
exchange at the surface: Ts becomes a function of D alone and the response may be written

=2
e-@M /2 2

(22) M = M. (D) where M, =

b e—lexp(—e/ZTu)ﬁES

®
since T is a constant. (Otherwise Ts end T = are functions of both M and D.)
Arguments similar to those in Sec. 6 determine the shape of the response as D » Dm,
showing that it depends on whether Ts(Dw) is greater or less than Tb' When it is less
the curve eventually goes above that in Fig. 6 and asymptotes D = Dw. The sudden complete
evaporation is therefore replaced by an increasing rapid one as the flame recedes to infinity.
That was the behavior reported by Kapila and Ludford (1977) who, by taking T_m= Tb ensured
TS(DQ) < T, Decause of the endothermic vaporization. However, for Ts(Dm) > T., the curve
continues to dip down until the D-axis is approached when it bends back to the right (because

of the M-'2

in the exponential) to provide a C, exhibiting true extinction. It does not
take much imagination to foresee that an oval will be formed, the part beyond the crest
closing with the lower part of the C. Such ovals are reported by Spalding (1960) and are
sketched by Williams (1965); they were supposedly valid for heat loss by surface radiation
alone, whereas we see that they can only occur when there is distributed heat loss (at
least when § » =),

The picture near Pw is unaffected by radiative exchange at the surface because,

locally, T_  in the formula (22) can be replaced by its value at P . Hence the behavior for

¢ small is the same, at least in the neighborhood of effective extinction.
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