AD-AOE4 037 WISCONSIN UNIV=-MADISON MATHEMATICS RESEARCH CENTER F/6 T7/4
THE INFLUENCE OF THE LEWIS NUMBER ON THE DYNAMICS OF CHEMICALLY==ETC(U)
OCT 78 W H RAY: S P HASTINGS DAAG29=T5=C=0024
UNCLASSIFIED MRC-TSR-1887




.0 & ke s
=iy

[l 36
===

pu -
=

| 2
22 W e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-7




MRC Technical Summary Report 1887

i THE INFLUENCE OF THE LEWIS NUMBER ON THE
DYNAMICS OF CHEMICALLY REACTING SYSTEMS

W. Harmon Ray and Stuart P. Hasti

ADAO64037

Mathematics Research Center F o
University of Wisconsin—Madison § '
610 Walnut Street ‘

Madison, Wisconsin 53706

LY

October 1978

DOC FiLE copy

(Received September 1, 1978)

Approved for public release
Distribution unlimited

| Sponsored by

‘ U.S. Army Research Office National Science Foundation

‘ P.O. Box 12211 Washington, D.C. 20550
| Research Triangle Park

North Carolina 27709

|
|




=TT

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

THE INFLUENCE OF THE LEWIS NUMBER ON THE
DYNAMICS OF CHEMICALLY REACTING SYSTEMS

W. Harmon RayT énd Stuart P. Hastingsi

Technical Summary Report 1887
October 1978

ABSTRACT
The influence of Lewis number on stability and oscillations
for stirred tanks, catalytic wires and gauzes, and catalyst par-
ticles is determined quantitatively. The mathematical structure
is discussed and illustrated by example. Relaxation oscillations
are found to be the natural asymptote to the bifurcating limit

cycles as the Lewis number vanishes.
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SIGNIFICANCE AND EXPLANATION
This paper shows explicitly the effect of the Lewis number

(a measure of the relative importance of the thermal and material
time scales) on the dynamic behaviour of a wide variety of chemi-
cally reacting systems. The mathematical structure, which is

the same for all the diverse physical systems treated (which
include stirred tanks, and porous and nonporous catalysts), shows
that the dynamic state tends to one of relaxation oscillations as
the Lewis number vanishes. The results will aid the understanding

of experimental observations in many chemical systems.

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the authors of
this report.




THE INFLUENCE OF THE LEWIS NUMBER ON THE
DYNAMICS OF CHEMICALLY REACTING SYSTEMS

f

W. Harmon Ray' and Stuart P. Hastings1

INTRODUCTION

Chemically reacting systems show very interesting dynamics
for a wide range of applications ([1-4]. The influence of various
parameters on this behavior has been studied for catalyst parti-
cles, continuous stirred tank reactors (CSTR's), etc. A particu-
larly important parameter is the ratio of intrinsic thermal time
constant to intrinsic material time constant (generically referred
to as the "Lewis" number) for these reacting systems. It is well
known that this parameter has a very striking effect on the system
dynamics, but the quantitative effects have not been completely
understood. Previous numerical results by Hlavacek et al. [5-7],
Luss and Lee [8,9], and others [10-16], showed that catalyst par-
ticles and their lumped models demonstrate oscillations for suffi-
ciently small values of the Lewis number in some cases. Although
these results have been particularly well treated in the fine sur-
veys by Aris [15] and Sheintuch and Schmitz [4], the form of the
bifurcation phenomena, the asymptotic behavior as Le =+ O, and
the quantitative dependence on parameters have not yet been dealt
with.

In this paper we endeavor to demonstrate rather explicitly

the influence of the Lewis number for several major classes of
reacting systems and attempt to show the‘underlying mathematical
structure which transcends a wide range of specific problems.
First we develop the key results for CSTR's and then extend these

to porous and nonporous catalytic surfaces. One particularly

interesting result is the natural appearance of relaxation oscil-

lations in all of these systems as the Lewis number vanishes.
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THE CONTINUOUS STIRRED TANK REACTOR

The dynamic behavior of the CSTR has been analyzed earlier
by bifurcation theory [17,18] and the influence of reactor
parameters explicitly determined when the Lewis number was
unity. Here we wish to be more general and pose the CSTR
modelling equations for a first order, irreversible exothermic

reaction as

A— - - —
Vi o= File, . c,) Vkoexp{ E/RT}cA (1)
at
v (pc ). %X - pc F(T. - T) + V(-AH)k exp{-E/RT}c
T p T dt' P £ 0€*P A
~hA(T - T ) (2)

The quantity VT(pCP)T corresponds to the total thermal capacitance
of the reactor (perhaps including solid packing, reactor wall,

etc.) while Vpcp represents the thermal capacity of the

] reacting fluid alone. Similarly VM is the total material

capacitance of the reactor while V is the material capacitance

of the reactive part of the reactor. As an example, volume V

M

{

i

might be influenced by a catalyst while V, -V is not. A E
recent experimental study [19] illustrates the necessity of |
!

this more general formulation.

By defining the dimensionless quantities

- ¢ T E

C
xl = _E_.__A_ ’ x2 - f ' T ‘%
Caf e s
- '
on k. oV, tet = , Y = E/RT
0 V. £ -
i, (3) |
f Bs(-AH)cAf{E} i} -'rc-'rf[a]
PC T, RT 2¢ Ty RT
ha Vo (PC)
B = F C ’ Le = —?— —_C.LT
ar w PCp




one obtains

dxl %,
e m =3 + D&(l - X.) exp l—+——)-(—2-—/-Y- = fl(xl,xz) (4)

dx x2
= =-x, + BDa(l - x.) exp I_T_;;77

-B(x2 = .- (5)

2¢c

When one assumes Le = 1, these model equations reduce to those
treated in [17,18].

To begin our discussion we should provide a general
definition of the Lewis number. Earlier definitions (e.g.; [20])
are limited in scope and the physical interpretation has not

always been made clear. Here we define the Lewis number as the

ratio of the physical transport thermal time constant to the

physical transport material time constant. As we shall show,

this allows an appropriate Lewis number for each reacting
system with all playing the same role and having the same
physical interpretation.

For the CSTR, the Lewis number can be written

VT(pC )TAT time required to raise the tempera-
—_r - ture of the entire system by an
V. (pc ) FpCpAT amount AT through inflow and out-
L i e el flow of fluid at flow rate F

vM pcp vMAc time required to raise the concen-

tration of the entire material
volume an amount Ac through in-
flow and outflow of fluid at flow
rate F

Flc

(6)
which is, of course, the ratio of the physical transport thermal
and material time constants.

By carrying through the bifurcation analysis with respect
to Le, just as was done earlier with respect to Da and T

[17,18] and augmenting this with an analysis of relaxation

e S o e e~ St = =5




phenomena, one can see the entire structure of the dynamic
behavior. Obviously steady state multiplicity is not influenced
by Le, so that we shall only consider stability and oscillatory

behavior here. Let us divide Eq. (5) through by Le to yield

: dx (1L + B) B x Bx
] e | = - —— x2 + — Da(l - xl) exp 2 + 2¢ = fz(xl,x?)
dt Le Le 1+ x2/Y Le ;

(7)
This puts Egs. (4,7) in the same form as the equations treated in

[17,18] if one defines

1 + B

s s & x2c
a = |=— ¢ B = e e, % e (8)
| Le Le Le

Thus all of the graphs, calculations, etc. found in [17,18] can
be used directly.

To illustrate these results, let us take the case when
Xpo = 0, and look at Figure 1 which is adapted from [17]. Some

very interesting features may be noted:

(i) Along any straight line through the origin, the

T ———————————— TR T e

steady state behavior as a function

*18* *24
of Da is invariant. For straight lines below the
multiplicity line (M) (curve 1), the steady state

behavior is in the form of Figure 2, while for

straight lines above line M (curve 2), the steady
state behavior takes the form of Figure 3.

(ii) The range of dynamic instability behavior of the
steady states depends on ;, a as shown in Figure 1.
By reducing Le while keepir3j all other parameters

fixed, the parameters B, 0@ move to the right along

these straight lines. Curve 1 type lines would begin

M—_—_
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¢ allow limit cycle behavicor for Le values
corresponding to point A on Figure 1, where the
straight line enters region V. Curve 2 type lines
would begin to permit limit cycles to appear at
point B where the straight line enters region III
(or VI as the case may be).

(iii) The bifurcation diagram with respect to Le at
constant values of Da should have one of the
forms shown in Figure 4. Here we use the same
notation as in [17,18]; solid lines denote stable

steady states while dashed lines are unstable steady

states. ©Solid dots represent stable limit cycles
while open dots correspond to unstable limit

cycles. The particular type of bifurcation curve

found for each case is given in Table 1 and depends
strongly on the sequence of regions traversed in
Figure 1 as well as the value of Da chosen. Note
that stable periodic oscillations seem to persist
all the way down to Le = 0. As we shall show, in
some cases these harmonic oscillations become
asymptotic to relaxation oscillations as Le =+ 0.
However, no relaxation oscillations are possible
for the case when Yy - o,

In order to see these ideas more clearly, let us linearize

Egs. (4,7) about the steady state to obtain

(9)

ol o
|
[
>

S




=T
[ p.t
o B P
where Yy =
: %o = Ean
afl Bfl
ax Ix
£/= 1 2
3f2 3f2
9x dx
S 2--Jxls'XZS

As noted in [17,18], the bifurcation points to periodic solutions
are the real roots of tr A =0 which also satisfy Det A >0
and we can examine the locus of these points as Le varies by

solving the cubic

€ 3 2 =
tr 5‘- ie [s~ + a,s + als + aol =0 (10)
B A
Here r = W
2
¢ - r°(1 +8)

D 2
Y (l—xls)(l-foS/Y)

5 ¥ (11)
Le
1-+B] 17

i)
"

'
——
—

+

0 r
2 2
al=3{_+3_2._31 1+._L_e_
z r r 1+8
2
a, = - s + us + 1 - X
- r 1+8 r )

The cubic in (10) may be solved numerically to determine the
bifurcation points, S,r8,- The critical value of Lewis number,

Lec, above which there are no oscillations, is the solution to

3 2
(Za2 9a2a1 + 27ao)

4

+ 132, -(an?1® =0 (12)
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For the case where Y =+ <, Eq. (l0) reduces tc a quadratic
- +
trA=L(1+B) 82_u+£[1+_1‘e_J = 0 (13
(1 - x, )Le = r 1+ B
which has the solution
e i r + 1 + 1/2
L {——;—— = b ] (14)
where
r + 1 2 4 Le
= —— e M + >
D [ > ] < [l T + B] 0 (15)

is required for real roots. Thus Lec in this case is given by

2
Le_ = [iE_I_il_ = 1] (1 + B) (16)
4r

In general for values of Le < Lec, there is a range of Da
over which periodic solutions will exist provided Det’5‘> 0. The
actual bifurcation value of Le depends on the value of Da
selected.

The locus of the bifurcation points s_,s

1 are explicitly

2

calculated for two cases in Figures 2 and 3 and these serve to

illustrate the essential points. Note that for parameters
4y

Y-4
Figure 2 and for parameters allowing multiple steady states (i.e.

yielding a unique steady state always, i.e. r < as in

r > %%Z as in Figure 3), the range of transient instability
s

1 < X < 5, expands as Le * 0. This may be seen explicitly

for the case Yy * ®©, where s, > 1l/r and s, = 1 as Le =+ 0.

1 2

Thus for a fixed value of Da,

limit cycles are expected to persist down to very low values of




Le as shown in Figure 4. In fact for the case of finite Y,
these limit cycles become asymptotic to relaxation cscillations
as Le vanishes. This may happen both fo- the case of a unigue
unstable steady state (Figure 5) or for the case of three
unstable steady states (Figure 6). The relaxation trajectory
kegins at point A (Figures 5,6), follows the guasi-steady-state
defined by X, = @6, 2, > 0 teo point B where it must jump guickly

& )=

to C, follows iz = 0, *l < 0 again to point D where it jumps

quickly to A again. Clearly this process repeats, giving a

periodic solution of the limiting or reduced problem

dxl

—

dt

fl(xl'x2)

o
"

f2(x1'x2)

It is useful to discuss the properties of these relaxation
oscillations (cf. Stoker [21] for a more general treatment).
Firstly, it is easy to show that relaxation oscillations do not

exist for the case Y > ® becausSe the isocline iz = 0 does not

have the proper form (i.e. three branches do not exist).

Secondly, for relaxation oscillations, it is

necessary that the steady states of the system (corresponding to

intersections of *1 = 0, *2 = 0) fall on the middle branch of

iz = 0. It is easy to show as well that for steady states on either the

upper or lower branch of X, = 0, tr A < 0 always and no bifurcating
periodic solutions are possible. Thus whenever there are limit cycle
oscillations around a unique steady state or around three unstable

steady states, these may become asymptotic to relaxation oscilla-

tions of the same type.
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(a)

® 0 o ® o6
.'0. X,s

o e e > e e e O

(b)

P %

XJ & & 6 o o n B xt’i(C)
b et L
FEAR S Xig
x,T:- o S S (d)
e X
0 : Le —

Figure 4 Bifurcation of limit cycles with respect to
Lewis number
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i Table 1 Types of Bifurcation Behavior for Le

Sequence of Regions (Fig. 1) Types of Bifurcation
as Le * 0 (Figure 4)
1 1. 1 ~+vV (i) Type (b) for left hand bifurca-

tion point in region Va

(ii) Type (a) otherwise

2 E ¥ * IXIth > IV (1) Type (d) for bifurcation in the
region of multiplicity

(ii) Type (a) for the upper branch
in region of uniqueness

(iii) Type (b) for the lower branch
in region of uniqueness

3. I <+ IIIa <+ 1IiIib =+ 1V (1) Type (c) or type (d) for
bifurcation in the region of
multiplicity (depending on
the particular value of Da)

(ii) Type (a) for the upper branch
in the region of unigueness

(iii) Type (b) for the lower branch
in the region of uniqueness.
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Figure 5 Sustained oscillations for the case of a
unique steady state; Yy = 20, r = 4.05,
g = 3.0, X, = 0, Da = 0.15
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B = 3.0, Sne ™ 0, Da = 0.090
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As an illustration of these points, consider Figures 5
and 6 where computed stable limit cycles are shown as a
function of Lewis number. The case of 2 unigque steady scate
corresponding to curve 1l in Figure 1 and Da = 0.15, is
shown in Figure 5. For Le = 1.0, the steady state is
stable and surrounded by both stable and unstable limit
cycles (to avoid cluttering the drawing, only the stable one
is shown). As Le decreases to 0.5, the steady state becomes
unstable and the limit cycle becomes very large. Further
reduction in Le causes the limit cycle to approach the
relaxation oscillation. Clearly this example is a case
of type (b) bifurcation in Figure 4.

For the case of three steady states, the dynamic behavior
as Le varies along curve 2 in Figure 1 was computed for
Da = 0.090. The bifurcation behavior for this case is of
type (c) in Figure 4. From about Le = 2.25 down to
Le = 2.16, an unstable limit cycle was found surrounding a
stable upper steady state. From Le = 2.16 to about

Le = 0.33, only the lower steady state is stable with no

limit cycles present. At about Le = 0.33 an unstable
limit cycle appears around the lower steady state and a

stable limit cycle appears, encircling all three steady

states. For Le < 0.21, only the large stable limit cycle
remains and it grows asymptotic to the relaxation oscillation

as Le =+ 0.
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NONPOROUS CATALYTIC SURFACES

For nonporous catalytic materials such as catalytic wires
or gauzes, the dynamic equations can take the general form of
Eqs. (4,7) where depending on the specific model assumptions,
the parameters Da, B, Y, B, Le can have several meanings (22].
To illustrate a gpecific case, consider the model of Ervin and
Luss [23] for an infinite length,cylindrical, catalytic wire upon
which oxidation reactions are carried out. This model assumes
that mass transport to the wire surface is controlled by
irreversible adsorption of reactant, and that the reaction
products have negligible surface coverage. In primitive form,

the model equations are

deA -la/R'rs
— = k. c (8, -06_) ~k_. e 6 (17}
e 1¢g VT A 0 A
2
ﬂ(dw) dT‘ —E/RTs
—-:“‘— pscps ;:T = "dwh(Tg - T') + (-AH)ﬂdwko e SA (18)

where BA and BT represent the surface coverages of reactant

and total surface respectively, Tg, c are the gas phase

temperature and reactant concentration, and kl represents a
temperature independent adsorption rate constant. Further, h
is a heat transfer coefficient, 'rs the wire temperature, and

dw the wire diameter. By defining the dimensionless quantities:

8., - 6 T -7 k. e Y
x, = —2 , x =29 (g/rT) , pa = -2 "
0 : T 9 k.c
T g i g
' (-AH)k.c B _y apc k.o
bl k1Cg » Y = E/RT r B = Agl r Le = wsps lg L
s th 4h

x2c ol Sl




then Egs. (17,18) take the form of Egs. (4,7). Here our
definition or the Lewis number for the catalytic wire is totally

consistent with our general definition presented above, for

[ J
5 dwp-cp'klc9 i -_2—__-CBSPSAT/“anAT

20)

Le (
4h (BT/klcgeT)
or

time required to raise the wire temperature
an amount AT through heat

Le = transfer from the gas
time required to increase the surface concentratio
by an amount GT due to adsorption on the surface

which is, of course, the proper ratio of physical transport time
constants.

Having put (17,18) into the equivalent CSTR form (4,7).,
all of the analysis of the previous section immediately applies.
Thus one may readily determine the influence of the Lewis number
(as well as other parameters) on the dynamic behavior. From
a practical point of view one may calculate the critical
Lewis number, Lec and compare with the actual value to
determine whether or not periodic solutions or relaxation
type oscillations are to be expected. As noted in [22], for
the most common models of catalytic wires, such oscillations
are not predicted by the equations. However, there are models
for which Le 1is in the proper range to allow oscillations

for nonporous catalytic surfaces [24].

POROUS CATALYTIC MATERIALS

Porous catalytic materials such as catalyst particles,
catalyst impregnated gels, etc. are known to have exotic

dynamics which are influenced by the Lewis number. To

}
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illustrate, let us consider the case of a single irreversible

first order reaction, for which the basic equations take the

form (1l5]
de Ja 9 ( ac)
— = = — |2 —| -k, TR (21)
ot g o3 | 0z
aT k- 3§ . am
pe, — = — — [® —| + (-amx, e*/FT (22)
P ae z® 3z | 3z
jj dc
- = k (c = @)
9z A
z = & (23)
9T
k — = h(T - T)
oz
and
dc oT
—_— = e— = () at z =0 (24)
3z 32

where ¢ 1is the reactant concentration, T the temperature,

ij'the mass diffusivity, k the thermal conductivity, km and h

external heat and mass transfer coefficients, and a 1is

geometric parameter having the following values: a = 0 (slab), ’

a = 1 (cylinder), a 2 (sphere). By defining the dimensionless

quantities
c_ - ¢ T - Tg{ E ] g Xy oYt
X=—9———,x= r 97 = r T = 2/8
1 2 b RT ig
cg g g
£ N (-am) T Eoc
T = 3 ¢ B - — , Le = —2P + Y = E/RT (25)
) KT X 9 j
g
k_ % h{
Sh = —2— ’ Nu = —
J k

one obtains the dimensionless equations




-2 0=
ax
Ix i ] a[z‘ l] X
1 or 2 -
= e + ¢ (1 - xl) exp = gl(xl,xz) (26)
aT 3 dxr I % x2/Y
Ix ]
a 2
3x2 1 3[: e 2 X, N
Le = — + B¢ (1 - xl) exp = gz(xl,xz) {27)
3T r dr L+ x,/Y
Bxl
- 4+ Shx = 0 (28)
dr 1
r = J
sz
— + Nux. = 0 (29)
3 2
r
9x 9x
-—i = 2 = 0 r =0 £30)
or or

Notice that (28,29) are Robin type boundary conditions; however

as Nu, Sh » ®, they reduce to Dirichlet conditions of the form

X, = x_ = (O 3 r =1 . (3% )

Consistent with the earlier definition, the Lewis number for
this catalyst particle is the ratio of appropriate transport time

constants; i.e.,

(v pC AT time required to raise the catalyst ¥
iapc KBEZ$7E particle temperature an amount AT due to
Le = el z B - \heat conduction across the external surface)
k (v_Ac time required to raise the catalyst parti-
P cle concentration an amount Ac due to
A fTAc/l diffusive mass transport across the
i - external surface

{32)
By the use of any number of lumping procedures ([15], Eqgs.
(26-30) may be reduced to an equivalent set of CSTR equations of
the form of Egqs. (4,7). Thus the effect of Lewis number may

be seen by using the CSTR results developed above together with

il

one of these lumping procedures.
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To provide an example, consider the lumping procedure of
klavacek and coworkers [5-7] for the case of a slab geometry
(a = 0 in (26,27)). Their equivalent stirred tank equations

take the forn

dx1 X

—_— = (Al) X, + 67 (1 xl) exp (33)

dt e x2/Y

4T I + xz/y

where Al’ ul are first positive roots of the transcendental

equations

tan A

tan y

Note that as Nu, Sh =+ o, and the Dirichlet boundary conditions

apply, Al = M, = TW. By defining

2
2 2
te A%t , pa=—2o L 148=wpZapn? Lx, =0
1 2 1 24 2¢
(A

Equations (33,34) are exactly in the form of the CSTR equation
(4,7). Thus all of the earlier CSTR analysis and resulting
structure also applies to the catalyst particle problem.

In spite of numerical calculations showing reasonalble
agreement between the behavior of the distributed and approximate
lumped systems, the formal, nonrigorous nature of these lumping
approximations to distributed reacting systems may cause concern.
Thus it is useful to consider more direct evidence that suggests

we have the correct structure. Firstly, a number of detailed

numerical case studies of the distributed catalyst particle

2 2
= —(ul) x, + BO (1 - xl) exp{——— (34)

- A/Nu (35)

-u/sh (36)
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[6,8-14,16] =with varying Lewis number show the type of behavior
predicted from the lumping analysis. In particular, the oscilla-
tions observed become stiffer with decreasing Le so that
distributed relaxation oscillations seem to be the plausible
asymptote. The general nature of these distributed relaxation
oscillations can be seen with the aid of Figure 5 and Egs. (26-30).
When Le > 0, then gz(xl,xz) = 0 and (26) together with
appropriate boundary conditions define the behavior of the
system. For a given composition profile, xl(r), the equation
gz(xl,x2) = 0 and associated boundary conditions could have
three guasi-steady-state solutions xg(r), xz(r), x:(r) as

shown in Figure 7. This is similar to the situation for the
lumped system shown in Figures 5 or 6 where for any value of

x between points A and B, there are three quasi-steady-state

1

¢ ;lutions X,. It is conjectured that by analogy with the lumped
Bxl(r,t) Bxl(r,t)
———— &, —_—

case, e 0 on the lower branch le(r), and 7T >0

on the upper branch x:(r), so that a distributed relaxation

oscillation jumping between a sequence of lower solutions xi(r)

and a sequence of upper solutions x;(r) should occur.

Further evidence of this behavior may be seen if we let

the composition profile xl(r) be the steady state solution

corresponding to a steady state value of xZSS(r) on the middle
branch such as in Figures 5 and 6. Recalling that xg(r) < xg(r)
. axl(r,t)

- . < s :

szs(r) x2(r), we can see that 3% in Eqn. (26) will
have the signs noted above if xZSs(r) is replaced by xg(r)
(lower branch) or x;(r) (upper branch). This is due to the

X
monotone increasing nature of the term exp {————3——} in Eqn.
1+ xz/Y

c26) .
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Xz(r) Xz(l’)

X'Z" (r)

x2 (r)

0O r {

Figure 7 Quasi—steady-stat.e catalyst particle
temperature profiles




One should note that the observesd oscillaticns of Lee and
Luss [81 for Le = 0.1 are rather stiff; however, their spatial
character, showing a transient hot spot clcse to the external
surface, cannot be due to purely relaxation phenomena. This
illustrates the point that relaxation oscillations must be
considered no more than an asymptote to the bifurcating limit

cycle oscillations found at finite values of Lewis number.

CONCLUDING REMARKS

It has been suggested that the Lewis numbers necessary
to allow oscillations in catalytic systems are much too small
to be realistic. However, as can be seen from recent work
(e.g., [4,24]), more detailed models indicate that such small
Lewis numbers may be realized in practice and consideration of
Lewis numbers close to zero is a fruitful exercise.

A conjecture put forth by a number of workers is that
for Lewis numbers smaller than some bifurcation value, the
steady state in question becomes unstable and oscillations
arise, while for values greater than this bifurcation value the
steady state is stable and no oscillations arise. The present
analysis shows that this conjecture is, in principle, correct;
however as seen in Figure 4, things are a little more
complicated. For a unique steady state, bifurcation can be

to the right as in Figure 4(b) and stable oscillations observed

even when the steady state is stable. Furthermore, for the case

of multiple steady states as in Fiqure 4 (c),(d), there are
different bifurcation values of the Lewis number for the upper

ana the lower branches.

Although a rather wide range of reacting systems have been

considered here, it has been possible to put them all within a




unified mathematical structure. This has the advantage that in
analyzing new problems of stability and oscillations, these
results may serve as an aid to physical intuition in order to

evaluate the dynamic phenomena to be expectecd.
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