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ABSTRACT

The influence of Lewis number on stability and osc illations

for  s t i r r e d  tanks , catalytic wires and gauzes , and catalyst par-

ticles is determined quantitatively. The mathematical structure

is discussed and illustrated by example. Relaxation oscillations

are found to be the natural asymptote to the bifurcating limit

= cycles as the Lewis number vanishes .
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S I G N I F I C A N CE  A N D  E X P L A N A T I O N

This paper shows explicitly the effect of the Lewis number

(a measure of the relative importance of the thermal and material

time scales) on the dynamic behaviour of a wide variety of chemi-

cally reacting systems. The mathematical structure , which is

the same for all the diverse physical systems treated (which

include stirred tanks, and porous and nonporous catalysts), shows

that the dynamic state tends to one of relaxation oscillations as

the Lewis number vanishes. The results will aid the understanding

of experimental observations in many chemical systems.

~~
The responsibility for the wording and views expressed in this
descriptive summary lies with MRC , and not with the authors of
this report. 
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THE INFLUENCE OF THE LEWIS NUMBER ON THE
DYNAMICS OF CHEMICALLY REACTING SYSTEMS

W . Harmon Ray t and Stuart P. Hastings~

I N T R ODUC T I O N

Chemically reacting systems show very interesting dynamics

for a wide range of applications (1—4). The influence of various

parame ters on this behavior has been studied for catalyst parti-

cles , continuous stirred tank reactors (CSTR ’s), etc. A particu—

larly important parameter is the ratio of intrinsic thermal time

constant to intrinsic material time cons~~~nt (generically referred

to as the “Lewis ” number) for these reacting systems. It is well

known that this parameter has a very striking effect on the system

dynamics , but the quantitative effects have not been completely

understood. Previous numerical results by Hlava’~ek et al. [5-7),

Luss and Lee [8,9], and others [10-16], showed that catalyst par-

ticles and their lumped models demonstrate oscillations for suffi-

ciently small values of the Lewis number in some cases. Although

these results have been particularly well treated in the fine sur-

veys by Aris (15] and Sheintuch and Schmitz [4], the form of the

b i f u r c a t i o n  phenomena , t he  a s y m p t o tic b e h a v i o r  as Le -
~ 0, and

the quantitative dependence on parameters have not yet been dealt

with.

In this paper we endeavor to demonstrate rather explicitly

the influence of the Lewis number for several major classes of

reacting systems and attempt to show the underlying mathematical

structure which transcends a wide range of specific problems .

First we develop the key results for CSTR’s and then extend these

to porous and nonporous catalytic surfaces. One particularly

interesting result is the natural appearance of relaxation oscil-

lations in all of these systems as the Lewis number vanishes.

t D e p a r tm e n t  of C h e m i c a l  E n g i n e e r i n g ,  U n i v e r s i t y  of W i s c o n s i n ,
Ma d i son , W i s c o n s i n  5 370 6
~0n leave from Department of Mathematics , State University of
New Y o r k  a t B u f f a l o , B u f f a l o , New Y o r k  1421 4

Sponso red by the U. S. Army under Contract No. DAAG29-75-C-0024
and the National Science Foundation under Grant No. FNG76—17604
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THE C O N T I N U O U S  ST I R R E D  T A N K  R E A C T O R

The dyiiamic behavior of the CSTR has been anal yzed  e a r l i e r

by bifurcation theory [17,18] and the influence of reactor

parameters explicitly determined when the Lewis number was

unity. Here we wish to be more general and pose the CSTR

modelling equations for a first order , irreversible exotherinic

reac tion as

V
M ~~ 

= F ( c Af 
- C

A
) _Vk

O
exp{_E/RT)c

A 
( 1)

V
T PCp :~~~~u PC~ F ( T

f 
- T)  + V ( _

~~
H ) k

O
exp{_E/RT}c

A

— h A ( T  — T ) ( 2 )
c

The q u a n t i t y  V
T(PC )T 

corresponds to the total thermal capacitance

of the reactor (perhaps including solid packing , reactor wall ,

e t c . )  w h i l e  VP C~ r e p r e s e n t s  the  the rmal  capac i ty  of the

reacting fluid alone. Similarly VM is the total material

capacitance of the reactor while V is the material capacitance

of the reactive part of the reactor . As an example, volume V

might be influenced by a catalyst while VM
_ V  is not. A

F 
recent experimental study [19] illustrates the necessity of

this more general formulation.

By defining the dimensionless quantities

x 
CAf 

- C
A 

, x = 

T - T
1 

= I
2 T

f 
RT

f 
f

D a = k
0

e~~~t ,  ~~~~~~ ~~Y E/RT
f

(-s
~
}i)cAf  E T - T

f 
E

E s —  — x = —c~C T
f 

RT
f 

2c T f RT
f

hA V
T (pC

_ _ _  
p T

FpC ‘ V pC
p H p
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one ob ta i n s

= -x 1 + Da(1 - x
1
) exp 

{l 

x
2 }  = f1

(x
1,x2

) (4)

Le —x
2 + BDa (l - x

1
) exp + x2/Y} 

—~~(x2 
- x 2 ) (5)

When one assumes Le = 1, these model equations reduce to those

treated in [17 ,18].

To begin our discussion we should provide a general

definition of the Lewis number. Earlier definitions (e.g.; [20])

are limited in scope and the physical interpretation has not

always been made clear. Here we define the Lewis number as the

ratio of the physical transport thermal time constant to the

physical transport material t ime  c o n s t a n t .  As we s h a l l  show ,

this allows an appropriate Lewis number for each reacting

system with all playing the same role and having the same

physical interpretation.

For the CST R , the Le~iiS num ber can be written

VT (PC )TAT Itime required to raise the tempera-p 
- 

J ture of the entire system by an
V (pC ) FpC AT ~amount AT through inflow and out-

= ~~~~~~ ~~ 
T 

_ _ _ _ _ _ _ _  ~flow of fluid at flow rate F

V
M p c V

M AC time required to raise the concen—p 
tration of the entire material

FAc volume an amount Ac through in-
flow and outflow of fluid at flow
rate F

(6)

w h i c h  i s , of c o u r s e , the ratio of the physical transport thermal

and ma terial time constants.

By carrying through the bifurcation analysis with respect

to Le , jus t as was done earlier with respect to Da and t

[17 ,18] and a u g m e n t i n g  t h i s  w i t h  an a n a l y s is  of r e l a x a t i o n

4
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phenomena , one can see the entire structure of the dynamic

behavior. Obviously steady State multiplicity is not influenced

by Le , so that we shall only consider stability and oscillatory

behavior here. Let us divide Eq. (5) through by Le to yield

dx (1 + 8) B (x  ) ~x
= — x + — Da(l — x

1
) exp ~ 2 + 2c 

= ~ (x
1,x 2

)
dt Le 2 Le 

(i
i. + x2/yJ Le 2

(7)

This puts Eqs . (4,7) in the same form as the equations treated ili

(17 ,18] if one defines

1 + 8  B A

, B = —  ,~~~2 
.~_E. (8)

Le Le C Le

Thus  a l l  of the g raphs , ca l c u l a t i o n s ,  e tc .  f o u n d  in (17 , 18] can

be used directly .

To illustrate these results , let us take the case when

= 0, and look at Figure 1 which is adapted from (17]. Som e

very interesting features may be noted :

(i) Along any straight line through the origin , the

steady state behavior x 15 , x 25 as a function

of Da is invariant . For straight lines below the

multiplicity line (M) (curve 1), the steady state

behavior is in the form of Figure 2, while for

straight lines above line M (curve 2), the stead y

state behavior takes the form of Figure 3.

(ii) The range of dynamic instability behavior of the
A

steady states depend s on B , ~ as shown in Figure 1.

By reducing Le while keep ir~ all other parameters
A

f i x e d , the parameters B , a move to the right alonq

these straight lines. Curve 1 type lines would beg in



—5—

~11
-

I

I I I I I I I I a I I a I a 0 

•~1
a



-6—

~~ allow limit cycle behavior for Le values

c o r r e s p o n d i n g  to p o i n t  A on F i g u r e  1, w h e r e  t h e

s t r a i g h t  line enters region V. Curve 2 type lines

w o u l d  b e g i n  to p er m i t  l i m i t  c y c l e s  to appear  a t

point B where the straight line enters reg ion III

(or VI as the case may be).

(iii) The bifurcation diagram with respect to Le at

constant values of Da should have one of the

forms shown in Figure 4. Here we use the same

notation as in [17,18]; solid lines denote stable

steady states while dashed lines are unstable steady

states. Solid dots represent stable limit cycles

while open dots correspond to unstable limit

cycles. The particular type of bifurcation curve

found for each case is given in Table 1 and depends

strongly on the sequence of regions traversed in

Figure 1 as well as the value of Da chosen. Note

that stable periodic oscillations seem to persist

all the way down to Le = 0. As we shall show , in

some cases these harmonic oscillations become

asymptotic to relaxation oscillations as Le + 0.

However , no relaxation oscillations are possible

for the case when y -
~

In order to see these ideas more clearly , let us linearize

Eqs. (4,7) about the steady state to obtain

dy

~~~~~~A y  ( 9 )

L _ _ _ _ _ _ _ _ _ _ _  —
-

~~~~~~~~~~~~~~~~~~
-- -

~~~~~~~~~~~
---
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Er - x  11 15!
where y =

I x  - X2 2s

~3 x ax
A =  1 2

3f2
a x 3x1 2 x  ,xis 2s

As no ted  in [17 , 18] ,  t he  b i f u r c a t i o n  po in t s  to p e r i o d i c  s o l u t i o n s

are the real roots of tr A = 0 which also satisfy Det A > 0

and we can examine the locus of these points as Le varies by

s o l v i n g  t h e  cub ic

tr A = ~~~~~~ (s~ + a
2
s
2 

+ a1s + a
0

] = 0 (10)

BHere r = 

~ + 8

— 
r 2 ( l + 8 )

— 

y 2 (i-x 15 ) (1 + x 23 /y) 2

2 (11)

a
0 

= _ [l + 
Le) )~~ .

a = ~~~~~~~~ 1.~~~~- .2X j . + Le
1. r r 2 r 1+ 8

a - [~-~. +  Le + 1 -~~~~~~~~2 
Lr 1 + 8  r J  )

The c u b i c  in (10) may be solved numerically to determine the

b if u r c a t i o n  po in t s , 
~ 1

’
~~2~ 

The critical value of Lewis number ,

.e , abov e which there are no oscillations , is the  solu t ion to

3 2(2a
2 

— 9a
2
a
1 

+ 27a  ) 
2 3— + (3a 1 — ( a

2
) ] = 0 (12)
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For  t h e  case  w h e r e  y -
~ ~~, Eq. (10) reduces to a quadratic

tr A = 
—~j~l + 8) [2 — 

(r + l)s 
+ 1 + Le 

0 ( 1 3 )
“

~~ ( 1 — x 1 )L e  L r r 1 + 8 )

w h i c h  has t h e  sol u t ion

1 [ r + l + 01/ 2] ( 1 4 )

where

D = [r 
+ 
1)

2 
— . 

[i. + ~~~ 8) > 0 ( 1 5 )

is required for real roots . Thus Le
~ 

in t h i s  case  is g i v e n  by

Le = 
{1

~~ 
+ 1 )  

- 
1) 

(1. + 8) (16)

In general for values of Le < Le , there is a range of Da

over which periodic solutions will exist provided Det A > 0. The

actual bifurcation value of Le depends on the value of Da

selected.

The locus of the bifurcation points s1
,s2 are explicitl y

calculated for two cases in Figures 2 and 3 and these serve to

illustrate the essential points. Note that for parameters

yielding a unique steady state always , i.e. r < ~~~
‘ as in

Figure 2 and for parameters allowing multiple steady states (i.e.

r > as in Figure 3), the range of transient instability

s1 
< x 15 < 

~2 
expands as Le + 0. This may be seen explicitl y

for the case y + ~~, w h e r e  s
~ 

+ h r  and ~ 1 as Le + 0.

Thus for a fixed value of Da ,

limit cycles are expected to persist down to very low values of

4
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Le as shown  in Fi gure 4. Ir. fact for the case of finite 
~r ,

these limit cycles become asymptotic to relaxation osc~~l1ations

as Le vaniFhes. This may happen both fo the case of a ur .ique

uns table stead y state (Figure 5) or for the case of three

uns ta b l e  s tead y states (Figure 6) . The relaxation trajectory

beg ins at point A (Figures 5,6), follows the quasi— steady-state

defined by x
2 

0, > 0 to p o i n t B w h e r e  it m u s t j u m p  q u i c k l y

to C , f o l l o w s  x
2 

= 0, < 0 again to point D where it jumps

quickly to A again. Clearly this process repeats , g i v i ng a

periodic solution of the limiting or reduced problem

dx
1

— f
1
(x
1
,x

2)

0 =

it is useful to discuss the propert ies of these re laxat ion

oscillations (c’f. Stoker [21] for a more general treatment).

Firstly, it is easy to show that relaxation oscillations do not

exist for the case y + ~ b e c a u s e  the  iso cl i n e  = 0 does not

have  the  p roper  form (i.e. three branches do not exist).

Secondly, for relaxation oscillations , i t  is

n e c e s s a r y  t h a t  the  s t e a d y  states of the system (corresponding to

i n t e r s e c t i o n s  of = 0,  = 0) fall on the middle branch of

= 0. It is easy to show as well that for steady states on either the

upper or lower branch of x
2 

0, tr A < 0 a lways and no bif u rca ting

periodic solutions are possible. Thus whenever there are limit cycle

oscillations around a unique steady state or around three unstable

steady states, these may become asymp totic to relaxation oscilla-

tions of the same type.

4
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Lewis number
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Table 1 Types of Bifurcation Behavior for Le

Sequence of Regions (Fig . 1) Types of Bifurcation
as Le + 0 (Figure 4)

1.. I -
~ V (i) Type (b )  f o r  l e f t  h a n d  b i f u r c a -

tion point in region Va

( i i)  Type ( a )  o t h e r w i s e

2.  I + VI + IlIb -+ IV Ci) Type C d )  for bifurcation in the
region of multi plicity

(ii) Type (a) for the upper branch
in region of uniqueness

(iii) Type (b) for the lower branch
in region of uniqueness

3. I 9 lIla -~ Il ib -
~ IV (i) Type (c) or t y p e  ( d )  f o r

bifurcation in the region of
multiplicity (depending on
the particular value of Da)

(ii) Type (a) for the upper branch
in the region of uniqueness

(iii) Type (b) for the lower branch
in the region of uniqueness.

~

- - — ----•• -  - “ • - . •~~~~~~~-~~~~~~~~ -• —-- • •~
- . -

~~~~ ~~~
--

~~~~~~~~~~
•
~~
-----

~~~~~~
- - 

~~~
- - - - -
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Figure 5 Sustained oscillations for the case of a
unique steady state; y 20 , r = 4.05 ,

= 3.0, X
2 

= 0, Da = 0.15 
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_ _ _

8 —  
_ _ _  _ _ _  _ _ —  _ _ _  _ _ _

x
2 

6

it ~
2 -  

_ _ ‘

I

0 

~~~~~~~~~~~ ~

Figure 6 Sustained oscillations for the case of
three stead y states; y 20 , r 5.5 ,
8 = 3.0, x 2 = 0, Da = 0.090
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As an illustration of these points , consider Figures 5

and 6 where computed stable limit cycles are shown as a

function of Lewis number. The case of a unique steady state

corresponding to curve 1 in Figure 1 and Da = 0.15 , is

shown in Figure 5. For Le = 1. 0 , the steady state is

stable and surrounded by both stable and unstable limit

cycles (to avoid cluttering the drawing, only the stable one

is shown). As Le decreases to 0.5, the steady state becomes

unstable and the limit cycle becomes very large. Further

reduction in Le causes the limit cycle to approach the

relaxation oscillation. Clearly this example is a case

of type (b) bifurcation in Figure 4.

For the case of three steady states , the dynamic behavior

as Le varies along curve 2 in Figure 1 was computed for

Da = 0.090. The bifurcation behavior for this case is of

type Cc) in Figure 4. From about Le = 2.25 down to

Le = 2.16, an unstable limit cycle was found surrounding a

stable upper steady state. From Le = 2.16 to about

Le = 0.33, only the lower steady state is stable with no

limit cycles present. At about Le = 0.33 an unstable

limit cycle appears around the lower steady state and a

stable limit cycle appears, encircling all three steady

states. For Le < 0.21 , onl y the large stable limit cycle

remains and it grows asymptotic to the relaxation oscillation

aS Le -1- 0.

4
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tJONPOROUS CATALYTIC SURFACES

For nonporous catalytic materials such as catal ytic wires

or gauzes, the dynamic equations can take the general form of

Eqs . (4,7) where depending on the specific mod el assumptions ,

the parameters Da, B , y ,  8. Le can have several meanings (221

To illustrate a specific case, consider the model of Ervin and

Luss (23] for an infinite length , cy lindrical , catalytic wire upon

which oxidation reactions are carried out . This model assumes

that mass transport to the wire surface is controlled by

irreversible adsorption of reactant , and that the reaction

products have negligible surface coverage. In primitive form ,

the model equations are

dO
A -E/RT5

— k j Cg (~~~ — 6 A~ 
— k 0 e 0

A 
(17)

iT- C d ) 2 
dT -E/RT

V p c —4 — tid h (T - T )  + ( — ~~H ) T r d k e ~ 0 (18)
4 

5
~~~

5 d w g s w O  A

where  and 8T r e p r e s e n t  the  B u r f a c e  coverages  of r e a c t a n t

and total  s u r f a c e  r e s p e c t i v e l y ,  Tg~ C
g 

a re the  gas  phase

temperature and reactant concentration , and k1 represents a

temperature independent adsorption rate constant. Further , h

is a heat transfer coefficient, I the wire temperature , and

the wire diameter. By defining the dimensionless quantities:

0 - e  T - T  k e ’
~
’

T A s 0x , x = (E/ R T ) , DC —1 2 T g k cT g l g

( — ~~H) k  c 0 y d p C k c
t t k 1c , y— E / R T  , B 1~~~~T , L e z  W e p s i g

g g 
hT 4hg 

(l~~)

x 2 0

4

a -~~~~~ — —— . - ------- —-, --~
g-——--———-—

~~~~—— 4



—

then Eqs. (17,1B) take the form of Eqs . (4,7). Here our

definition o~ the Lewis number for the catalytic wire is totally

consistent with our general definition presented above , for

( iT - C d ) 2

d p C k c I V p C AT/ltd hAT
Le w • ps 1 g ~~ 4 5 P0 V 

(20)
4h (e T/kl

cg
eT)

or
time required to raise the wire temperature
an amount AT through heat

Le I.tran.fer from the gas 
-

) time required to increase the surface concentration~,
~ by an amount 01 due to adsorption on the surface f

which is , of course, the proper ratio of physical transport time

constants.

Having put (17 ,18) into the equivalent CSTR form (4,7),

all of the analysis of the previous section immediately applies.

Thus one may readily determine the influence of the Lewis number

(as well as other parameters) on the dynamic behavior. From

a practical point of view one may calculate the critical

Lewis number , Le and compare with the actual value to

determine whether or not periodic solutions or relaxation

type oscillations are to be expected. As noted in [22], for

the most common models of catalytic wires , such oscillations

are not predicted by the equations. However , there are models

for which Le is in the proper range to allow oscillations

for nonporous catalytic surfaces [24].

POROUS C A T A L Y T I C  M A T E R I A L S

Porous catalytic materials such as catalyst particles ,

catalyst impregnated gels , etc . are known to have exotic

dynamics which are influenced by thc Lewis number . To

_ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _
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illustrate , let us consicer the case of a single irreversible

first order reaction , for which the basic equations take the

form [15)

= ~~ {z~ 

~~ ] 
i~~ ~~~~~~ c (21)

k a aT -E RT
P C — -  = — — — + (—AH)k

0 
e /  c (22)

~ a

A) — = k Cc - c)
az  m g

z = 2. (23)
3T

k — = h ( T  - T)
g

and

ac 3T
— = — = 0 at z = 0 (24)
~~~

where c is the reactant concentration , T the temperature ,

the mass diffusivity, k the thermal conductivity, km and h

external heat and mass transfer coefficients , and a is

geometric parameter having the following values: a = 0 (slab),

a = 1 (cylinder), a = 2 (sphere). By defining the dimensionless

quantities

C - c T — T E k e~~
’t
2

____ _ _ _ _  
2 0

= 
c ‘ ~ 2 

= 
T 

= , r = Z/2 .

g g g

t~~2 (-AH)tlc

2 , B =  g ,Le = ~~‘ , (E / R T  (25)
kT k g

g

h9.
Sb = —s--- , Nu = —

k

one obtains the dimensionless equations

4

--

~

-- — — -
~~~~~~~~~
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-1

-2 0-

ax )
1 a r - ~3 J 2 

_ _ _ _ _ _— — 
r 

+ ~~ (1 — x
1
) exp = g1 (x 1

,x2
)

r ar (3. + x
2/yJ

I 3xI a  2 /ax 2 1 a 1r 
~~~~~~~ 2 I

Le — = — + B4 (1 — x
1) exp~ g2

(x 1,x2
) (27)

aT ra ar ~~l + x
2/~

y

ax
+ Shx 1 — 0 (26)

ar
r = l

ax
+ Nux

2 
= 0 (29)

3x
1 

ax 2
— — — — 0  r — O  (30)
ar ar

Notice that (28,29) are Robin type boundary conditions; however

as Nu , Sb + 
~~~, they reduce to Dirichlst conditions of the form

= x
2 = 0 ; r — 1 . (31)

Consistent with the earlier definition , the Lewis number for

this catalyst particle is the ratio of appropriate transport time

constants; i.e.,

v pC AT Itime required to raise the catalyst
(particle temperature an amount AT due to

Le p ‘ - (heat conduction across the external surface)

k V Ac Itime required to raise the catalyst parti-p 
Jcle concentration an amount Ac due to

A ~~ Ac/L 
‘)diffusive mass transport across the

p (external surface

(32)

By the use of any number of lumping procedures [15], Eqs.

(26-30) may be reduced to an equivalent set of CSTR equations of

the form of Eqs . (4,7). Thus the effect of Lewis number may

be seen by using the CSTR results developed above together with

one of these lumping procedures.

- — • -—- - • • - - -~~~~~- - -  - - -~~~~~~ - - -~~~~ - - -- - - - - - - -
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To provide ax’. example , consider th~ 1 u x ~p i n g  pro cedure o f

L lava~~ek and coworkers [5-7] for the case of a slab geometry

(a 0 in (26 ,27)). Their equivalent stirred tar.k equations

t a k e  t h e  f o rn

dx 1 2 2 ( x2
— = — ( A 1) x1 + ~~ (1 — x

1) exp~ (33)
dt 11 + x

2/yJ

dx 2 2 2 1 X
2Le — = _ (

~1 3.
) x

2 
+ B~ (1 — x

1) exp*~ 
(34)

Il + x 2 /y

where ~~~~ j~I~~ are first positive roots of the transcendental

equations

tan A - X/Nu (35)

tan ~.i = -~.x/Sh (36)

Note that as Nu, Sh 9 
~~~~, and the Dirichlet boundary conditions

apply, A
1 = = IT. By defining

2
t = (A )2t , Da = , i. + B (IA ) 2 / (A  )2 , x = 0

c

Equations (33,34) are exactly in the form of the CSTR equation

(4,7). Thus all of the earlier CSTR analysis and resulting

structure also applies to the catalyst particle problem .

In spite of numerical calculations showing reasonable

agreement between the behavior of the distributed and approximate

lumped systems , the formal , nonrigorous nature of these luxrping

approximations to distributed reacting systems may cause concern.

Thus it is useful to consider more direct evidence that suggests

we have the correct struc ture. Firstly, a number of deta~~led

numerical case studies of the distributed catalyst particle

4

IL

—
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(6,8- 14,16] -zith vary ing Lewis number show the type of behavior

predicted from the lumping analysis. In particular , the oscilla-

tions observed become stiffer with decreasing Le so that

distributed relaxation oscillations seem to be the plausible

asymptote. The general nature of these distributed relaxation

oscil lations can be seen with the aid of Figure 5 and Eqs. (26-30).

When Le -~ - 0, then g
2
(x
1
,x
2
) = 0 and (26) together with

appropriate boundary conditions define the behavior of the

system. For a given composition profile , x1(r), the equation

g2 (x1, 2) 0 and associated boundary conditionø could have

2. mthree quasi-steady—state solutions x
2
(r), x2

(r), x2 (r) as

shown in Figure 7. This is similar to the situation for the

lumped system shown in Figures 5 or 6 where for any value of

between points A and B, there are three quasi-steady-state

~1utions x
2. It is conjectured that by analogy with the lumped

3x 1(r ,t) ax1(r,t )
case , at~~~ 

< 0 on the lower branch x22,(r) , and at > 0

on the upper branch x~~(r), so that a distributed relaxation

oscillation jumping between a sequence of lower solutions x~~(r)

and a sequence of upper solutions x~~(r) should occur .

Further evidence of this behavior may be seen if we let

the composition profile x
1(r) be the steady state solution

corresponding to a steady state value of x255 (r) on the middle

branch such as in Figures 5 and 6. Recalling that x~~(r) < x~~(r)ax 1(r , t)
= x

2 (r) < x~~(r), we can see t h a t  in Eqn . (26) will

have the signs noted above if x
25 (r) is replaced by x~~(r)

(lower branch) or x~~(r) (upper branch). This is due to the

mono tone increasing nature of the term exp 
+ 

} in Eqn.

(26).

L ____
——— _._ —‘——- — — — , .*..— —..—~—- -“ .~~~“ 
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Oi~e shoula note that the observ~~d oscillaticns of L e € .. ~ r c

Luss [8] for ~e = 0.1 are rather stiff; however , their spat iai

char acter, showing a transient hot spot close to the external

surface , c a n n o t be due to purely relaxation phenomena. This

illustrates the point that relaxation oscillations must be

considered no more than an asymptote to the bifurcating limit

cycle osc illations found at finite values of Lewis number.

CONCLUDING REMARKS

It has been suggested that the Lewis numbers necessary

to allow oscillations in catalytic systems are much too small

to be realistic. However , as can be seen from recent work

(e.g., (4,24]), more detailed models indicate that such small

Lewis numbers may be realized ix’. practice and consideration of

Lewis numbers close to zero is a fruitful exercise.

A conjecture put forth by a number of workers is that

for Lewis numbers smaller than some bifurcation value , the

steady state in question becomes unstable and oscillations

arise , while for values greater than this bifurcation value the

steady state is stable and no oscillations arise. The present

analysis shows that th is conjecture is , in princi ple , correct;

aowever as seen in Fi gure 4, things are a little more

comp licated. For a unique steady state , bifurcation can be

to t h e  right as in Figure 4(b) and stable oscillations observed

even when the steady state is stable. Furthermore , for the case

of mul tiple steady States as in Figure 4(c) , Cd) , there are

diffe rent bifurcation values of the Lewis number for the upper

anu the lower branches.

Alt hough a rather  wi de ra nge of reacting sys tems have Lee x

co n s id ered here , it has been possible to put them all withir~ a
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unified mathematical structure. This has the advantage that in

a n a l y z ing n e w  p r o b l e m s  of stab ili ty and  o sc i l la tio n s , th e s e

results may serve as an a id to phys ica l  intuit ion in or der to

evaluate the dynamic phenomena to be expected.
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