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ABSTRACT

“In this report we consider the various problems related to the numerical
analysis of elliptic variational inequalities. After proving some abstract re-
sults concerning the approximation of variational inequalities, we consider the
approximation of some specific examples by conforming and non conforming finite

element methods. Various iterative methods of solution are also described.
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SIGNIFICANCE AND EXPLANATION

Many boundary value problems for elliptic equations can be formulated as
variational problems in which a quadratic functional must be minimized on the
subspace of functions which satisfy the boundary conditions. The best known
example of such variational problems arises when Laplace's equation must be
solved subject to prescribed boundary values, in which case the variational
problem requires the minimization of the Dirichlet integral. This provides
the starting point for the widely-used finite element method for computing
solutions of potential problems such as occur in steady state heat conduction
or inviscid fluid flow, for example.

An elliptic variational inequality is a generalization of variational
problems of the above type: it is required to minimize a quadratic functional
on a convex set. Elliptic variational inequalities arise in contexts in which
a physical system is subject to restraints, as when a membrane is stretched
over an obstacle. (If no obstacle is present, the deflection of the membrane
is governed by Laplace's equation. The obstacle is the new feature that leads
to the variational inequality. The region of contact between the membrane and
the obstacle is not known beforehand.)

This report first describes the theory of approximating elliptic varia-
tional inequalities, and then goes on to discuss the numerical solution of

such problems using finite elements.

|
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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FINITE ELEMENTS AND

VARIATIONAL INEQUALITIES

R. GLOWINSKI®

INTRODUCTION

During these last years many works concerned with the Numerical Analysis of

Variational Inequality problems have been published. We would like in this

paper to describe some of the results which have been obtained with emphasis

on the Finite Element Approximation of these Inequalities.

The content is as follows :

1. Abstract Elliptic Variational Inequalities. Existence, Uniqueness,
Approximation.

2. Specific examples and error estimates for conforming finite element
methods.

3. Iterative methods for solving variational inequalities,

4. Approximation of the obstacle problem by mixed finite element methods.

i 5. Further comments. Conclusion.
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1. ABSTRACT ELLIPTIC VARTIATIONAL INEQUALITIES. EXISTENCE, UNLQUENESS,
APPROXIMATION.

1.1. Orientation.
In Sec. | we just consider, following GLOWINSKI [53,Ch. 1,2,3] some simple

classes of Elliptic Variational Inequalities (E.V.I1.) and their approximation

by Galerkin type methods. More specific examples will be considered in Sec. 2.

1.2. Functional context.

We introduce the following mathematical o

g . A real Hilbert space V equipped with the inner product (+,*) and the corres

ponding norm ”-
. A bilinear continuous form a : VxV - R, V-elliptic (i.e. Ja >0 such that
a(v,v) 2(1”v||2 VveV) ; we don't assume that a(+,*) is symmetric.
. AformL : V>R, linear and continuous.
. A closed, convex, non empty subset K of V.
. A functional j : V>R (=R y{+o} u {-=}), convex, lower semi continuous

(l.s.c.), proper (i.e. j(v) >=-» YveV, j E+x),

4 1.3. Two classes of E.V.I. |

Let us consider now |

Find ue K such that

(EVI)l

a(u,v-u) 2L(v-u) Vv eKk,
and

Find ue V such that
(EVI)2

a(u,v=u)+j(v)=j(u) 2 L(v-u) VYvelV.

] In the sequel (EVI)l (resp (EVI)Z) will be denoted as an EVI of the first

(resp. second) kind.

Remark I.1. : We can find in the litterature more complicated EVI, (cf. for
example LIONS [65]) and also the generalization called Quasi Variational In-
equalities (QVI) introduced by BENSOUSSAN-LIONS (see for example BENSOUSSAN-
LIONS [ 9], BATOCCHI-CAPELO [ 6] and the bibliography therein).
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Remark 1.2 : If K=V in (EVI)] and J20 in (EVl)z, then both problems reduce

to the standard linear variational equation

Find u eV such that
(1.1
a(a,v) = L(v)VYveV.

Remark 1.3 : The distinction between (EVI)l and (EVI)2 is rather artificial

(theoretically at least) since (EVI)I is equivalent to
Find ue V such that
(1.2)

a(u,v-u) + IK(V)—IK(u)Z L(v-u) VveV

where IK is defined by

0 if veK,
IK(V) =

+° if v¢K.

The functional IK is called the indicator functional of K, and since K is a

closed, convex, non empty subset of V, IK is l.s.c., convex, proper.

Therefore (EVI)l is a special case of (EVI)2 3 however formulation (EVI)1

is usually more practical.

Remark 1.4 : If a(*,*) is symmetric (EVI)l and (EVI)2 are respectively

equivalent to the minimization problems

Find ue K such that

(nl)
J(u) sJ(v) VYveK
where
(1.3) J(v) = % a(v,u)-L(v),
and
Find u e K such that
(“2)

J(u)+j(u) = J(v)+j(v)

-,




where J(¢) is still defined by (1.3).

1.4. Existence and Uniqueness results for (EVI)I, (EVI)Z.
From LIONS-STAMPACCHIA [66] we have the following

I Theorem 1.1 : If the above hypotheses on V,a,L,K hold then (EVI)I has a

unique solution.

Proof : (1) Uniqueness

Let v and u, be two solutions. Then
(1.4) a(ul,v-ul) ZL(v-ul) Vvek, u € K,

(1.5) a(uz,v-uz) > L(v—uz) VYveK, u, € K.

Taking v=u, in (1.4), v=u, in (1.5) we obtain by addition and using the

V-ellipticity of a(*,*) that
a |ju,-u n2 < a(u,-u,,u,-u,) <0
7 VI Dl b e e
which implies the uniqueness.

(2) Existence

It is known from the Riesz representation theorem that there exists Ae &£ (V,V)

and % €V such that

(1.6) a(u,v) = (Au,v) Vu,veV,

(1.7) L(v) = (L,v) YveV.

Then if u is solution of (F.‘.VI)I we have
(Au,v-u) 2 (2,v-u) Vvek,

(1.8)

uek

which is equivalent to (EVI) . Then (1.8) is equivalent to
|

-g=

B




(u=p (Au-R)-u,v-u) € 0 VveKk,

¢1.9)

nek, p>0 ;
and (1.9) is equivalent to #
(1.10) u = Pp(u-p(Au-g) , p>0,

where in (1.10) PK is the projection operator from V to K in the -norm.

It follows from (1.10) that every solution of (EVI)l is also solution of

the fixed-point problem (1.10) for any p >0, and conversely if there exists

a particular p such that (1.10) has a solution, this solution is also solu-

tion of (EVI)].

A sufficient condition for (1.10) to have a solution is that the mapping

from V to V
v > PK(v—p(Av—l))

is strictly and uniformly contracting for p well chosen.

Let denote by w the vector PK(v—p(Av—R)) and let consider
w, = PK(vi-p(Avi-R)) s 1=ly2 -,
Since the projection mapping PK is a contraction, we have
(1.11) lwy=w, || < [[vy=v,-paCv,~v | .

From (1.6), (1.11) we obtain

2 7 2 2
sz—w]l| < Hvz—v‘ll =2 a(vy=v ,v,=v,)+p ”A(vz-vl)ll <
2 2.2 2 2
& flv,=v, 12 200 llv,mv, 11 502 14112 flv,v,
]
so that
(a2 e 12 < (=20 + 0% 1al]2) flv,=v, 12

-

T



From (1.12), the above mapping will be strictly and uniformly contracting

if

20

(A 0<p < 5
Il All

If p obeys (1.13), the fixed point problem (1.10) has a solution which is

also the solution of (EVI)l and we know that this solution is unique.

Remark 1.5 : The proof of Theorem 1.1 suggests the following algorithm for

solving (EVI)l 3
(1.14) u’® eV, given

then for n>0

Cr.15) un+l = PK(un—p(Aun-l)).

2a,

2
e e . lall”
(u )n defined by (1.14),(1.15) converges strongly in V to the solution u of

(EVI)l.

From the proof of Theorem 1.1 it follows that for 0<p < the sequence

Practically the interest in (1.14),(1.15) is quite limited in most applications
(at least in the above form) since we usually don't know £ or A, and to project
on K is in most cases a very complicated operation. We should observe that if
a(e,*) is symmetric, then A is also symmetric and (1.14),(1.15) is a gradient

with projection algorithm ; cf., e.g., CEA [28 for a study of these methods. .

Concerning (EVI)2 it follows from LIONS-STAMPACCHIA, ioc.cit., that

Theorem 1.2 : If the above hypotheses on V,a,L,j hold then (EVI)2 has a unique

solution.

We refer for the proof to LIONS-STAMPACCHIA, loc. cit., and also to GLOWINSKI
[53] ; in fact in this proof which is a variant of the proof of Theorem I.1,

one still uses a fixed point technique.

e ——— S ——
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1.5. Internal Approximation of (EVI)l

The assumptions on V,a,K,L are those of Sec. 1.2.

1.5.1. Approximation of V and K.

The parameter h converging to zero, the space V is approximated by the family
(Vh)h where the Vh are closed subspaces of V (usually the Vh are finite-

dimensional).

Then the convex set K is approximated by (K, ), where the are closed convex
h

subsets of Vh ;3 we do not assume that th:K. We do assume however that (Kh)h

has the two following properties

(i) 1If (vh)h is such that vheth Yh then all the weak cluster points of

(vh)h belong to K,

(ii) There exist x,X =K and r, : x > K_ such that
b
L’ lim r,v = v strongly in V,VveYy

198 —_—
h~>0

;
4 Remark 1.6 : If Kh<:K Yh , then (i) is automatically satisfied.

1.5.2. Approximation of (EVI)l.
E We approximate (EVI)l by

FinduheKh such that
(EVI)lh
a(uh,vh-uh) > L(vh~uh) v Yy, € Kh.

Remark 1.7 : In most cases it will be necessary to approximate also a(+,*)
and L(+) by ah(-,-) and Lh(') (usually defined - in practical cases - from

a(*,*) and L(*) by a numerical integration procedure).Since there is nothing

g new on that point compared to the classical linear case we shall not insist more

about this problem for which we refer to CIARLET [33].

It is easily proved that

Proposition 1.1 : Problem (EVI)lh has a unique solution.

o,




1.5.3. Convergence results.

Let us prove now the following convergence theorem

Theorem 1.3 : If the above hypotheses on (Vh)h’ (Kh)h hold then

(1.16) 1im||uh-uH =0
0

where u,u, are respectively solutions of (EVI)I, (EVI)]h :

Proof : (1) Estimates for uy

We have from (EVI)]h
alup,up) < aluy,vy)-L(v,-u,) VvheKh
which implies Vv, K that
(1an allyll®s Al Tup [ Tvg 1+ el v 1+ el w01
From (ii) in Sec. 1.5.1. and (1.17) we obtain
o flug 12 < Al fuglHmgvll+ el fepvll + DLl eyl Yvex -

Now take vV, EX - Then with Ci denoting various constants depending on v but

not on h, we have from (ii)
levoll<c, ¥n
which implies
2
(1.18) allug |17 < ¢ flull + c, Yh .
In turn (1.18) implies the boundedness of (uh)h in V.

(2) Weak convergence of (uh)h.

We can extract from (uh)h a subsequence, still denoted by (uh)h’ such that

(1.19) uy > u” weakly in V.




From (i) in Sec. 1.5.1. we have

*

(L.20) u ek,
From (1.19) and property (ii) we obtain taking the limit in

a(uh,uh) < a(uh,rhv)—L(rhv—uh) Vvex
that

CEc2h) lim inf a(u

h) < a(u*,v)-L(v-u*) Vvey .
h-+0

Y
Then we observe that
* 2 * * * ok * *
o ”uh—u H Sa(uh-u »Up"u ) = a(uh,uh)+a(u ,u )-a(uh,u )-a(u ,uh)
implies in the limit
“ . * *
(1.22) lim inf a(uh,uh) 2a(u ,u )
h->0
which is a (well-known) weak lower semi continuity property.
From (1.21),(1.22) it follows that
(1.23) a(u™,u") <a(u”,v)-Lv-u™) Yvey .

Since x=K, (1.23) also holds Vv e K, so that with (1.20) we have

{ a(u*,v—u*) 2L(v-u*) vVveK,

*
u €K.

Thus u” is a solution of (EVI)]. But from the uniqueness of such a solution

* 3 . .
we have u = u. The uniqueness property implies also that the whole sequence

(uh)h converges weakly to u.




(3) Strong convergence of (uh)h.

We have

a(u

IA

2
a||uh—uH h—u,uh—u) = a(uh,uh)+a(u,u)-a(uh,u)—a(u,uh)

IA

a(uh,rhv)—L(rhv—uh)+a(u,u)—a(uh,u)-a(u,u1) Yvex

From the above relation, from property (ii) and from the weak convergence

of (u we have in the limit

"
o lim sup Huh—uH2 <a(u,v)-L(v-u)-a(u,u) = a(u,v-u)-L(v-u) Yvey

But since X=K we also have

(1.24) o lim sup ”uh-u||2 <a(u,v-u)-L(v-u) VYveK.

Taking v=u in (1.24) it follows that

o lim sup “uh-u||2 <0

which implies that lim Huh—u|| = 0 i.e. the strong convergence.
h~0

Remark 1.8 : Error estimates for some EVI's of the first type have been

obtained by several authors (see Sec. 2 for more details). But like in

many non-linear problems, the methods used to obtain these estimates are

specific to the particular problem under consideration.

This remark still holds for the approximation of EVI's of the second kind

which is the subject of the next sub-Section 1.6.

—————

1.6. Internal Approximation of (EVI)Z.

The assumptions on V, a(°*,*), L(*), j(°) are those of Sec. 1.2. Furthermore

we assume for simplicity that

ClheZd) j(.) is continuous over V.

] !

(In Sec. 5 an important family of (EVI)ZS for which j(*) is non continuous

will be considered also).

=10=




1.6.1. Approximation of V.

The space V is approximated by the family (vh)h’ Vh being a closed subspace
of V(dim Wy < e in applications). We assume that (vh)h has the following
property

(i) There exist ¥ <V,¥ =V and ¢ Y + V. such that

h

lim B = ¥ strongly in V,yYve ¥ .
h~>0

1.6.2. Approximation of j(e).

The functional j(+) is approximated by (jh)h where

: V>R,
(1.26)

jh is convex, l.s.c., uniformly proper in h ;

the last property implies the existence of A : V » R, linear and continuous

and of u € R such that
(1.27) jh(vh) zk(vh)i- u Vvhth, Vi .

We shall assume also that (jh)h obeys

(ii) EE Uy M@ weakly in V then
lim inf jh(vh) > j(v)

(iii) lim jh(rhv) = j(v) Yve7.
h>0

Remark 1.9 : In all the applications we know, if j(*) is continuous, then

it is always possible to construct continuous j, (*) obeying (ii), (iii).
y h

Remark 1.10 : If jh=j vh, then (1.26), (ii), (iii), are automatically

satisfied.

-11~
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1.6.3. Approximation of (EVI)2

We approximate (EVI)2 by

Find u € Vh such that

(BVD),,
auy, vy mup) +ip (V) =3y () 2LCvp-u) Yoy e V) o

It is then easily proved that

Proposition 1.2 : If the above hypotheses on (Vh)h’ (Jh)h hold then (EVI)2h

has a unique solution.

Remark 1.11 : Remark 1.7 of Sec. 1.5.2. still holds for (EVI)Zh.

1.6.4. Convergence results.

Using a variant of the proof of Theorem !.3 we obtain (see GLOWINSKI [53]

for more details)

Theorem 1.4 : If the above hypotheses on (Vh)h’ (jh)h hold then
lim [lu-ull = 0, 1im j (u) = j(u)
0 h h~0 h'Yh

where u,u_ are respectively solutions of (EVI)Z, (EVI)Zh.

h

2. - SPECIFIC EXAMPLES AND ERRQOR ESTIMATES FOR CONFORMING FINITE ELEMENT
METHODS.

2.1. Stationary obstacle problems.

Problems of this type are fairly simple but provide a good mathematical model
for several important applications. Futhermore obstacle problems are those for

which the finite element approximation error analysis is the most achieved.

2.1.1. Formulation of a particular obstacle problem.

Let @ be a bounded domain of RN with a smooth boundary T = 3Q. We consider

A K ;3 4N .
with x = {xi}i=l and V = {522'}i=| the particular obstacle problem

~-12~




Find ue€ K such that

(2.1)

VueV(v-u)dx 2 J f(v-u)dx VveKk,

Jo Q

where in (2.1), fe LZ(Q) and K is defined by
(2.2) K={vel' @, vy a.e. on @, v|, =gl
with Y and g given functions defined respectively on Q and T.

2.1.2. Physical interpretation.

Assume that () © R2 ; then a classical interpretation of (2.1), (2.2) is that

u represents the small vertical displacements of an elastic membrane {0 under

the effects of a field of vertical forces, whose intensity is given by f

(f represents a surface density of vertical forces). This membrane is fixed

on its boundary ' (u=g) and lies over an obstacle, whose height is given by

Y(u=y) ; see Fig. 2.1 for a geometrical description of the phenomenon.

u=y ]f

u>y

u>y

Figure 2.1

2.1.3. Other phenomena related to obstacle problems.

Similar EVI's also occur, sometimes with other type of boundary conditions

and/or non symmetric bilinear forms, in mathematical models for the following
problems

% . Lubrication phenomena (see, e.g., CRYER [41], [42], MARZULLI [67], GLOWINSKI-
LIONS-TREMOLIERES [57, ch. 2, Sec. 5] for finite difference treatments and more

references, and CAPRIZ [27] for a discussion of the mathematical modelling).

&




. Filtration of liquids in porous media (see in particular BAIOCCHI 1 3

L21,[3], COMMINCIOLI [35], BAIOCCHI-BREZZI-COMMINCIOLI [ 5 j, CRYER-
FETTER [43], BAIOCCHI-CAPELO [ 6 | and the numerous references therein).

. Two dimensional potential flows of inviscid fluids (cf. BREZIS-STAMPACCHIA
(171 , (181, BREZIS [11], CIAVALDINI-POGU-TOURNEMINE [34], ROUX (78] and the

references therein).

. Wake problems (cf. BOURGAT-DUVAUT in1).

This list is far from complete and we also have applications in Biomathematics,

Economics, Semi-conductors, etc...

2.1.4. Interpretation of (2.1), (2.2) as a free boundary problem.
Let define from the solution u of (2.1),(2.2)

Qb = {x|xeQ, ux) >y} ,
Q° = {x|xeQ, u(x) = Y(x)} ,
y =23 naq° ,

and then
u, - ul 3 u|Qo g

Classically (2.1), (2.2) has been formulated as the problem of finding v
(the free boundary) and u such that

(2.3) - Mu=f on ',
(2.4) u=yon°,
(2.5) u=gonl,
(2.6) u*lY = uOlY v

The physical interpretation of (2.3)-(2.6) is the following : (2.3) means

+ ; s :
that on  the membrane is strictly over the obstacle and has a purely elastic

; o Aot y
behaviour j; (2.4) means that on { the membrane is in contact with the obstacle

(2.6) is a transmission relation on the free boundary.

]G




——

In fact (2.3)-(2.6) are not sufficient to characterize u, therefore it is

necessary to add other transmission properties ; for instance if y is smooth

enough (let say Y eHz(Q)), we should require the "continuity'" of Vu on vy
(we may ask Vue Hl(Q) XH](Q))-

Remark 2.1 : 7This kind of free boundary interpretation holds for the other

examples considered in the sequel.

2.1.5. Existence, Uniqueness, Regularity of the solution.

Concerning the existence and uniqueness of a solution of (2.1),(2.2) we can
easily prove

/2

Theorem 2.1 : Assume that ' is smooth and that we'Hl(Q), g€ Hl (') with

w|rsg a.e. on T

then (2.1),(2.2) has a unique solution.

Remark 2.2 : The above theorem holds for f € (H](Q))' and for fairly

discontinuous Y.

Concerning the regularity of u let us recall the following classical results
of BREZIS-STAMPACCHIA [ 19]

If T is sufficiently smooth, if, for pe JI,+~[, £ e LP(Q) n (Hl(Q))',

wewz"’(a) ,y B = §|l.. with §5W2’p(9), then uewz’p(ﬂ).
Actually the above results have been refined by.BREZIS [12],[13] and very sophis-
ticated properties of the solution and of the free boundary have been obtained

by Lewy-Stampacchia, Brezis, Kinderlehrer, Nirenberg, Schaeffer, etc...

2.1.6. Finite element Approximations of (2.1),(2.2). (I) Piecewise linear

Approximations.

We consider in this subsection conforming finite element approximations of
order one of the obstacle problem (2.1),(2.2). Piecewise quadratic approximations
are considered in Sec. 2.1.7 and non conforming approximations of mixed type in
Sec. 4.

_15_




L : 2 2
We assume for simplicity that Q is a bounded polygonal domain of R".

We assume also that | € Hl(Q)rwco(ﬁ). g€ HI/Z(F)IWCO(F). We introduce then

a standard triangulation 1:h of O such that

=8

TL{J‘Ch :

with as usual, h = length of the largest side of Z:L.
Let define now

L, = {PeQ, P vertex of Te Tfh}

]

Zh={PeZ Pdl‘}=£hn9.

h ’

We approximate then H](Q) and K by respectively

(2.7) v, = {v, e @, v, [, Py VT G},

1

(2.8) K, = {vhe Vi vh(P)Z V(P) VPe E h(P) = g(P) VPe Zhn r'}

h Y

where in (2.7) and the sequel (for k2 0) Pk = space of polynomials in two

variables of degree < k.

Finally we approximate (2.1), (2.2) by (2.8) and

Find uhe Kh such that

(2.9) ‘
IQ VuhoV(vh—uh)dx 2 Jnf(gh-uh)dx Vvhe Kh.

Proposition 2.1 : The approximate obstacle problem (2.8), (2.9) has a unique

solution.

Concerning the convergence of the approximate solutions as h + 0, we refer
to GLOWINSKI [53, Chapter 4, Sec. 2] for the case where u is not very smooth.
Below we shall briefly consider the derivation of error estimates, in the
H](Q) norm, if u,y, g EHZ(Q). We follow very closely the analysis of BREZZI-

HAGER-RAVIART [21, Sec. 4] (in which a(u,v) = | VueVv dx + J uv dx).
Q Q
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To obrain these error estimates we need the following
Lemma 2.1 : Assume that uc:Hz(Q) ; then

(2.10) - Au-f 20 a.e. on Q,

(2.11) (=Au-f)(u-y) = 0 a.e. on Q.

Proof : see BREZIS [14].

Lemma 2.2 : Let u and uy be respectively solutions of (2.1), (2.2) and (2.8),
(2.9). Then

(Z2.12) a(uh-u,uh-u) Sa(uh-u,vh-u)+a(u,vh-uh)- JQf(vh-uh)dx Vvhe:Kh.
Proof : Following BREZZI-HAGER-RAVIART (21, Theorem 2.1] we have Vvh ekﬁ
a(uh—u,uh-u) = a(uh~u,vh-u)+a(uh-u,uh—vh) =
= a(uh-u,vh~u)+a(u,vh—uh)- JQf(vh—uh)+ Jgf(vh—uh)dx—a(uh,vh-uh).

Since Y obeys(2.9), we have

JQ f(vh-uh)dx~a(uh,vh-uh) <0 Vth:Kh

which combined with the above equation implies (2.12).®

We prove now

Theorem 2.2 : If fe LZ(Q),we HZ(Q), g = §]F . B€ HZ(Q) and if the angles of

tfh are bounded below by 60 >0, independent of h, then

(2.13) Huh—uii ; = o(h) ,
H' (%)

where u and u, are respectively solutions of (2.1), (2.2) and (2.8), (2.9).

h

w]T=

-

1__.__._—-—-—-—-—"—"_—"_‘



Proof : We follow again BREZZI-HAGER-RAVIART, loc.cit., Theorem 4.1 (see also

FALK [48]). We have from Green's formuia

(2.14) a(u,v) = J VueVv dx = —J Au v dx +J %5 vdl Vve Hl(u).
Q Q e

1 1
. 4 2
Since Vi uhe:HO(Q) Vvheth it follows then from (2.14) that

(2.15%) a(u,vh-uh)— Jﬂf(vh-uh)dx = JQ(-Au-f)(vh—uh)dx Vvh eKh.

Let ™ be the operator of Vh-interpolation on Zh. Then since Q(fRz we have
H2(Q) < C°@) and ueHX(Q), uzy on Q imply

(2.16) nhueKh.

Taking vy = M u in (2.12),(2.15) we obtain

(2.17) a(uh~u,uh—u) Sa(uh-u,nhu-u)+JQ (—Au—f)(nhu-uh)dx -
Observe that

(2.18) TRu=uy = (ﬂhu—u)+(w-ﬂhw)+(u-w)+(nhw—uh).

Let w = -Au-f ; then wesz(Q) and from (2.18)

w(ﬂhu-uh)dx = [Qw(ﬂhu-u)dx + jgw(w—ﬂhw)dx - Jﬂw(u—W)dx +

(2.19) i

+ | w(m_¢-u, )dx .
IQ h" l

Since Lemma 2.1 holds we have w20 a.e. and w(u-y) = 0 a.e. ; moreover since

uy eKh we have nhw-uh‘so on §l. It follows then from (2.19) that
(2.20) j winu=wyaxsllwll »  Clmomll 5, * im el
Q h h LZ(Q) h LZ(Q) h L2(Q))'

Since u,d}eHz(Q) we have (since the angle condition holds)

2
(2.21) [, u=ul| < Ch [|ul| Sl u=ul| < Ch” [[ul| .
L () B A (7)) 2 ()
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(2.22) o w=wlf sculloll , L]l , = cn’llvll
h B () " B LE(Q) H ()

where the C's are independent of h,u,p .

It follows then from (2.17),(2.20)-(2.22) that

(2.23) [yl o = O(h)
!

where

2 1/2

Mg = 19wl Ze0
1,Q Q
(and where below”v“]’Q = || vl|| | ) i
H (R)

To estimate]]uh-uH] q We observe that, since Q is bounded
’

1 -
€2.24) ||v|| 1,0 SCIVII'Q Vve HO(Q), C independent of v.
It follows then from (2.24) and from u MU HL(Q) that

Fup-ully,g <llup=mpull oy Iyl Py

’ ’

(2.25) < Cluh—

T ul * “ﬂ u—uH <
he 'l @ h 1.0

»

< Cluh_ull,Q + C|u-ﬂhu|]’Q+ H'rrhu--qu’Q
Then (2.13) follows clearly from (2.2!),(2,23),42,25).

To our knowledge the first O(h) estimates for”uh—unl’Q have been obtained,
for piecewise linear approximations, by FALK [46] and then MOSCO-STRANG [72]
These works have been followed by FALK [47], [48] (see also GLOWINSKI-LIONS-
TREMOLIERES [57, Ch. 1], CIARLET [33]). In our opinion one finds in FALK

[48] the most complete analysis for piecewise linear approximations, since

it also considers non convex and/or non polygonal §. The problem of obtaining,
: ] ] ; i : 2 3 ;

via a generalization of the Aubin-Nitsche trick, L -estimates (of optimal

order) is not completely solved yet ; however for some partial results in that

direction see NATTERER [76], MOSCO [70] and the references therein.

-19-

..hlllIIllIilIlIIlIIlIllIIllllllIlllIlllIlIlllIIlllIIlIIlIllIlilIllllllll--'-"""""""“""‘.‘l




To conclude with piecewise linear approximation, let us mention that under

suitable hypothesis BAIOCCHI [ 4] (resp. NITSCHE [77 ])have obtained for the
2- :
obstacle problem Huh-u]] N = 0(h E), € >0, arbitrarily small (resp.
2 .
”uh-u!' - = 0(h“|Log h')).
L (Q)

2.1.7. Finite Element Approximations of (2.1), (2.2). (II) Piecewise quadratic

approximations.

o

With Zh, Zh as in Sec. 2.1.8 define

Iy = {PeQ® , P midpoint of a side of Teth},
o

Al = "

I {PeZh PR ENRENE

no_ ' e '
It =L vl =T v,

We approximate H](Q) and K by

(2.26) v, = {v, cC°@ , v.lpe®, ¥reG .},
(2.27) “1'1 = {vhe vy s v (B) 2 Y(P) VPEE{{’ v (P) = g(P) VPeIPn r} ,
(2.27), x.fl = v, €V, v, (®) 20(®) VPeL] , v, (B) = g(P) VPeZinl} .

We observe that in Kﬁ the condition vh(P) > Y(P) is only required on the side

midpoints.
We approximate the obstacle problem (2.1),(2.2) by

. i i
Find u € K‘n such that

(2'28) ]'
;u ; \' u dx 2 f \' u )dx VV EKI

where i=1,2.

Proposition 2.2 : The approximate problems (2.28)i have a unique solution.

Concerning the convergence of the approximate solution we refer to GLOWINSKI

[53] where %im Hu;-ulll Q = 0 is proved, for i=1,2, assuming the usual angle
> ’ NG

condition. The error estimates analysis is much more complicated that with

k=1, and we refer to BREZZI-HAGER-RAVIART [21] where under suitable assump-
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e iian i

tions on f,u,,g and the free boundary, one proves that Vi=l,2

) , €>0 arbitrary small,

if the angle condition holds.

2.1.8. Concluding Remarks. Further comments.

Non linear obstacle problems have been considered by WHITEMAN-NOOR [g3].
Concerning the numerical solution of the approximate obstacle problems we

refer to Sec. 3.1 where several methods of solutions are described.

2.2, The elasto-plastic torsion problem.

The problem we shall consider in this section is more complicated than the

obstacle problem of Sec. 2.1, It is related to the elasto-plastic torsion

of a cylindrical bar of infinite length. It is a fairly simple plasticity

problem but it is of great interest from both theoretical and numerical

points of view.

2.2.1. Formulation of the continuous problem.

Let {2 be a bounded domain of RZ with a smooth boundary I' = 3Q . We consider

Find u e K such that
(2.29)

VueV(v-u)dx > J f(v-u)dx YveKk,

Q2 Y]

where f ¢ L2(Q) and
(2300 K= {veH () , |[W|<1 a.e.} .
We recall that

]
H@ =BT D 2 olver'@ , veo on 30},

Remark 2.2 : Since the bilinear form a(e,*) occuring in (2.29) is symmetric

(a(u,v) = J VueVv dx), (2.29) is indeed equivalent to the minimization problem

2]




Find u ¢ K such that

€2.31)
| J(u) <= J(v) Yvek,

where J(v) = %—I ’Vv]zdx = J fv dx.
Q Q

2.2.2. Physical interpretation.

Let consider an infinitely long cylindrical bar of cross section

s Where §!

is simply connected. Assume this bar is made of an isotropic, elastic,

perfectly plastic material whose plasticity yield is given by the Von Mises

criterion (see DUVAUT-LIONS [45, Ch. 5] , for a general discussion of plasti-

city phenomena). Starting from a zero-stress initial state, an increasing

torsion moment is applied to the bar. The torsion is characterized by its

torsion angle per unit length C. It follows then from the Haar-Karman prin-

ciple that the stress field can be obtained through the solution of the

following variational problem
; 1 2
(2.32) Min {7- |9v|“dx - ¢ | v dx} ,
veK f Q

which is a particular case of (2.29), (2.31), with f=C.

The stress vector 0 in { is obtained from u by 0 = Vu. Hence u appears as

a stress potential.

Remark 2.3 : If @ is not simply connected, the formulation of the elasto-plasti

problem has to be modified and we refer to GLOWINSKI-LANCHON [ 56], GLOWINSKI
[53, Ch. 4, Sec. 3.27 for the new formulatior.

2.2.3. Existence and Uniqueness results. Regularity and further properties.

The condition of Sec. | being fulfilled we can apply Theorem 1.1., then

Proposition 2.3 : Problems (2.29), (2.31) have a unique solution.

For the proof we refer to GLOWINSKI-LIONS-TREMOLIERES [57, Ch. 3]
Concerning regularity properties it follows from BREZIS-STAMPACCHIA [19

that if 90 is smooth (or £ convex) and if f € LP() with p 22 then the solution
u of (2.29), (2.31) satisfies

~P P




ue Wz’p(Q) n K.

If in particular, f = const. (as in (2.32)) then uce wz’p(Q) for p arbitrary
large. If for example Q is a disk and f = const. then for f large enough
we W @@ ¥s<3, but ud @, ud B®@.

Remark 2.4 : If f = const., BREZIS-SIBONY [20] have proved that the solution

u of (2.29), (2.31) is also the unique solution of the two-obstacles problem

(2.33)  Min %J |Vv|2dx -C J v dx}
veK* Y] Q

where
K* = {ve H;(Q), lv(x)| <8(x,I') a.e.}

with §(x,') = distance of x to ' = 3Q.

Remark 2.5 : For the free boundary aspect nf the elasto-plastic problem we

refer to e.g. GLOWINSKI-LIONS-TREMOLIERES [57]. Actually SHAW [80] has nume-

rically solved (2.32) as a free boundary problem using finite difference

approximations.

2.2.4. Finite element approximations of (2.29), (2.31).

We assume  polygonal, then we define tfh as in Sec. 2.1.6 and we introduce

Vi = {vheCo(ﬁ) . vh‘I‘:O " thTeP VTeth} .

oh 1

K= {v eVy s |vvhl <1 a.e.} KN

h h -

Then we approximate (2.29) by

Find u € K.h such that
(2.34)

JQ Vuh'V(vh-uh)dx < JQf(vh-uh)dx V\ﬁ)eKh.

It is clear that (2.34) has a unique solution.

-23=




Remark 2.6 : Since Vvh is piecewlise constant , the condition vy, € Kh amounts

to Card (tfh) quadratic constrains (|Vvh|2 <1 on T, YPe t?h). If instead of

a piecewise linear approximation, one uses a piecewise quadratic, requiring

|Vvh| <1 a.e. then Vi eKh would amount to 3 Card(??h) quadratic constraints
(see GLOWINSKI-LIONS-TREMOLIERES [57, Ch. 3] for more details).

Remark 2.7 : The numerical analysis of (2.29) via (2.33) is done, if f = const.
in GLOWINSKI-LIONS-TREMOLIERES, loc. cit., Ch. 3.

1
H (2)

Convergence analysis : Since B(Q) nK = K (where B/(Q) = {v ecm(ﬁ),

v has a compact support in }) we can prove using the general approximation

results of Sec. | that
(2.35) lim ||u, -ul| =0
h0 h ) BN

if the angle condition holds. For the proof of (2.35) and of the above density
result see e.g. GLOWINSKI-LIONS-TREMOLIERES, loc. cit., Ch. 3 and GLOWINSKI
[53, ch. 4, Sec. 31].

Moreover if f < LP(Q) and u ewz’p(Q) with p>2, it is proved in FALK [46]
(see also GLOWINSKI [53, Chap. 4, Sec. 3] ) that

(2.36) ““h'“”l,g o O(hl/z-l/p)

In FALK [ 46] one also considers the case where Q is non polygonal.
Remark 2.8 : If R <R then f €L2(Q) implies that ||uh-u||]Q = 0(h), instead
L

of (2.36).This result is related to the fact that in the monodimensional case

the piecewise linear interpolate of v €K is still in K, which is no longer

: 2
true in R .
The iterative solution of the approximate problems is discussed in Sec. 3.2.

2.3. Flow of a Bingham medium in a pipe.

We have considered in the two previous sections, examples of EVI's of the first
kind. In the present section we shall discuss an EVI of the second kind related
to the flow of a Bingham's viscous-plastic medium in a pipe. This section follows
GLOWINSKI [54] and GLOWINSKI-LIONS-TREMOLIERES [57, Ch. 5] (see also DUVAUT-

LIONS [45, Ch. 6] for a more precise mechanical interpretation),

=P




2.3.1. Formulation of the continuous problem.

2

Let ¢ be a bounded domain of R™ with a smooth boundary [ = 3Q0. Let define

j(+) by

.
(2.37)  j(v) = | |Vv|dx ;

Ja

j(*) is Lipschitz continuous but not differentiable.

Let consider now the following EVI of the second kind (with f eLZ(Q)) -

Find u<5H;(Q) such that
(2.38)
u) VueV(v-u)dx + gj(v)-gj(u) = I f(v-u)dx VvezHl(Q) .
f,\, Q

which 1is gﬂgjvalent to
(2.39) Min {%'J |Vv|2dx + gilv) = J fv dx} .
vsHO(Q) Q Q

Assuming that p >0 and g 20 if follows from Theorem 1.2 of Sec. 1.4 that

Proposition 2.4 : The two equivalent problems (2.38),(2.39) have a unique

solution.

2.3.2. Mechanical Interpretation.

If £ = const. = C ( C>0 for example) it follows from LIONS-DUVAUT ([ 45,

Ch. 6] that (2.38),(2.39) models the laminar stationary flow of a Bingham's

viscous plastic fluid in a cylindrical pipe of cross section 2, with u(x)

the velocity at x. The above constant C is the linear decay of pressure

b and |,g are respectively the viscosity and the plasticity yield of the

medium.

The above medium behaves like a viscous fluid (of viscosity u) in

ot = {x|xe , |Vux)]| >0}

and like a rigid medium in




r””j

{

We refer to MOSSOLOV-MIASNIKOV [73], [74], [75] for a detailed analysis of

the properties of Q+ and 0°.

2.3.3. Regularity properties. Existence of multipliers.

Regularity properties : Concerning the regularity of the solution u of (2.38),

(2.39), H. BREZIS [15] has proved that u eHZ(Q) nH;(Q) and also if §l is convex

@)
(2.40)  |[|ul] < L2 g
B2 (Q) H L2(Q)

If Q is a disk and f = const. then we have u ewz’w(n) nHS(Q) Y s < %
g is small enough u ¢ Cz(ﬁb, u 4H3(Q).

, but 1if

Let mention also that if g is large enough then u=0.

A characterization involving multipliers : Let define

2
A= {qlq ELZ(Q) xL°(Q) , lq(x)l <1 avee)
where |q|== Vq$+q§ . It follows then from e.g. GLOWINSKI-LIONS-TREMOLIERES
[57, Ch. 5] that the solution u of (2.38),(2.39) is characterized by the

existence of p such that

uf Vu+Vv dx + gJ p*Vv dx = J fv dx ¥ v<zH;(Q) .
Q

2.y § 8 s
1
u eHO(Q) :
p*Vu = qul a.e.,
(2.42)
peh .

2.3.4. Finite Element approximations.

Since the regularity of the solution of (2.38), (2.39) is usually low we jus

concentrate on piecewise linear approximations. Let assume that Q is a polvg

domain. Then we define if% as in Sec. 2.1.6. and VOh as in Sec. 2.2.4,, and e

approximate (2.38), (2.39) by




Find uy eV such that VY Vi eV

oh oh

€2.43) r
UJQ Vuh-V(vh-uh)dx + gJQ leh|dx - gJQ iVuhldx : J“f(vh—uh)dx

9

The approximate problem (2.43) has clearly a unique solution. Concerning

the convergence of u to u as h - 0 we have

Theorem 2.3 : Assume that the angles of i:h are uniformly bounded from

below by 60 >0, as h +~ 0, then
(2.44)  lim ||u_-ul]|, 5= O.
wig B R

If furthermore u eHZ(Q), then

1/2

(2.45) ”uh-u“]’g=0(h .

Proof : We follow GLOWINSKI [54]. Taking vh=0 in (2.43) we obtain

2 1
(2.46) luh|]’9s E||f[|L2(m ”uh“Lz(Q) Vh .

Since 2 is bounded v = ( Vv de)l/Z defines on HI(Q) a norm equi-
—_— 1,0 o

valent to Hv”l q+ We have moreover
’

1 1
""HLz(m = lvl, o YveH @ ,
(2.47) o

. 1
XO = smallest eigenvalue of -A over HO(Q).

It follows then from (2.46),(2.47) that

1
(2.48)  Ju |, o< II£]]
hl1,Q ml?z Lz(m

In other respect we do have

UJQ vuhoV(vh—uh)dx +g j(vh)"gj(uh) 2 JQf(vh—uh)dx v vhc Voh §
UJQ Vu'V(uh~u)dx + gj(uh) -gj(u) = JQf(uh-u)dx 3

and hence by addition we obtain

s b [

h S » . .




2 : :
(2.49) u[uh—u]I’Q~:gj(vh)-gj(u)+uJQ Vuh-V(vh—u)dx- JQf(vh—u)dx Vv, €V, .

From (2.48),(2.49) and
(2.50) j(v) = J |Vv|dx < V meas.(Q) ]vl] Q Vv eHl(Q)
Q b
we obtain
2 1 2
(2.51) luh-u|1,§2 < 5 (g ¥/ meas.(Q) + —-—'/_->‘—_0-”fHLZ(Q))Ivh-uh,Q Vvhevh .

Let ¢ ¢ £(Q) ; we denote by ﬂh¢ the V0 —-interpolate of ¢ on Y:L, i.e.

h
ATy
mé (P) = ¢(P) VP vertex of ‘tfh ;
Since the angle condition holds we have
(2.52)  |mo-o), o <clloll , b Vo e B
4 H™ (Q)
with C independent of h and ¢.

From (2.51),(2.52) and from the triangular inequality we obtain, taking

i - ﬂh¢ in (2.51)

Jou=el® = L (g FTRE T + o= el y(Jo-u|, o*clloll h)
@ h 1,8 M v Ao LZ(Q) I % HZ(Q)

Vo eb).

Since /() is dense in HL(Q), (2.53) implies clearly (2.44). To prove (2.45)

we use directly (2.51) ; indeed if uce HZ(Q)rwﬂl(Q), then u eCO(ED and T, u

h
can be defined. We have furthermore

(2.54)  |mu-ul, o< Ch |Iu||Hz

Then taking vy = Mu in (2.51) it is clear that (2.54) implies (2.45). Q.E.D.
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Remark 2.9 : Assuming some extra-regularity assumptions (satisfied if &

isa disk and if f = const.), it is shown in GLOWINSKI [53, Ch. 51, [54]

that

lluy=ully o= 0Cl1og nl'/2h)

Iterative methods for solving (2.38) and (2.43) are described in Sec. 3.3.

2.4, Error estimates of optimal order for the elasto-plastic torsion and

Bingham's flow problems via a new formulation.

In this Section we shall briefly describe some of the results of FALK-MERCIER
[49] , who via a new variational formulation of the problems in Sec. 2.2,

2.3 have obtained error estimates of optimal order.

2.4.1. The elasto-plastic torsion problem.

We consider again the elasto-plastic problem of Sec. 2.2. We assume that
% is simply connected (which corresponds precisely to the physical problem).
Then

Proposition 2.5. : Assume that Q is simply connected, then the variational

problem (2.29) is equivalent to

Find p € AnH such that

(2.55)
J p*(q-p)dx 2 J ¢+(q-p)dx Vq € AnH
Q Q
where ¢ = {¢],¢2} is any solution.of f = 5;; - 5;: and where
2 2
(2.56) A = {qeL“(Q) xL°(W, |q| <1 a.e. on Q}
2 2 1
(2.57) H = {qelL(2) xL°(Q) , J q*Vw dx = 0 YweH ()} .
Q

The solutions u of (2.29) and p of (2.55) are related by




g r——

~ e

i S

Remark 2.10 : It is clear that q ¢H is equivalent to

q € LZ(Q) x L2 @),

Veq = 0 a.e. on Q, q*n = 0 a.e. on 39
where n is the outward unit normal vector at (.

Remark 2.11 : If f = const. = C, one can take

b, =Cx, 5 ¢, = (0 B

If f is not constant and 3Q smooth or §} convex it is always possible to

2 | .
construct from f e L°(Q), ¢;>¢, €H (Q) such that f = 5;—'— - 5{2' . For instance
we solve . :

Au = f on Q,
(6]

u_eH (@)

(o] (8]

which produces ug €H2(Q) an‘). It suffices then to take

auo auo
Bk iR Bl -

The approximate problem : For simplicity we assume that {0 is a polygonal

bounded convex domain of RZ 3 let th be a triangulation of Q like in the

above sections. We approximate HI(Q), LZ(Q) XLZ(Q) and H by respectively

0 = %
Vy = vy €@ , vp|pcP, YTeGH,
2 2 2
Ly = {a, €L°@ xL°@ , q | <R” ¥1eT ),

M {qheLh, J qp,*Vwy, dx = 0 thevh}

Q

Then we approximate (2.55) by

Find Py € An Hh such that
(2.59)

Ph'(qh—ph)dx 2 J ¢°(qh-ph)dx v qay eI\th.
Q Q
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The approximate problem (2.59) has a unique solution and it is proved in

FALK-MERCIER (49] that if some convenient properties of u and p hold together
with the usual angle condition, then
= 0(h)

(2.60)  |{p,-pll 9

2@ x 2@

If for example f = const., which correspond to the physical problem, then

(2.60) holds. We refer to FALK-MERCIER, loc. cit., for more details.

Concluding remark : In conclusion by a change of formulation an error estimate

of optimal order have been obtained. It seems however that (2.59) is more

complicated to solve numerically than (2.34).

2.4.2. The Bingham's flow problem.

We consider now the Bingham's flow problem of Sec. 2.3. Then we have

Proposition 2.6 : The variational problem (2.38) is equivalent to

Find p € H such that
(2.61)
u| pe*(g-p)dx + gj(q) - gj(q) 2 f $*(q-p)dx VYqeH
Q Q

where ¢ and H are like in the statement of Prop. 2.5 and where

j(q) =j lqldx .
Q

The solutions uof (2.38) and p of (2.61) are related by

...
P -5@ ? Bxl

The approximate problem : With VioLyoH, as in Sec. 2.4.1. we approximate
(2.61) by

Find P € Hh such that
(2.62)
Mg Pht (g =Py dx + gi(ay) - gilpy) z[gcb'(qh-ph)dx Yaq €H, .

-3



The approximate problem (2.62) has a unique solution and under suitable

assumptions on u and p it follows from FALK-MERCIER [49] that

” Ph-PH 2 = 0(h)

Z@yx 2@

(we still assume that the angle condition holds).

The concluding remark of Sec. 2.4.1. still holds for (2.62).

2.5. Further problems.

We have not considered in this paper the numerical analysis via finite

elements of problems like

Find u e K such that

(2.63)
VueV(v-u)dx > [ f(v-u)dx VYvekK
Q Q
with
K={veHl(Q) s ¥] =g ,ved a.e. om 1"1}
1“o
where ' and I', are guch that T nl, = ¢, T u T, = 3R, or like
o 1 o 1 o 1
Find ueHl(Q) such that
(2.64)
VusV(v-u)dx + j(v) - j(u) = J f(v-u)dx VveHl(Q) .
Q
with

jv) = gj |v|dr .
aQ

For finite element approximations of these problems by conforming methods
we refer to GLOWINSKI-LIONS-TREMOLIERES [57, Ch. 4] , GLOWINSKI [53, Ch. 4],
SCARPINI-VIVALDI [79], MOSCO [70]), BREZZI-HAGER-RAVIART [2]], etc...
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3. = 179 RA \ l_\'_ki_:ﬂ: l‘HU".lidF(\R SOLVING THE APPROXIMATE VARIATIONAL INEQUALITIES
OF SEC. 2.

In this section we shall give some brief indications on the actual solution

of the approximate problems of Sec. 2 by iterative methods. For more details

and other applications, we refer our readers to GLOWINSKI-LIONS-TREMOLIERES
[57) , TREMOLIERES [81], GLOWINSKI [55], MERCIER [69], the references
therein and the references below. In fact the methods to follows are closely

related to Non Linear Programming.

3.1. Iterative solution of the obstacle problem.

3.l g{icntation

The obstacle problem of Sec. 3.1 and its variants (possibly involving non
symmetric a(+,*)) may be solved by several methods. We shall concentrate
on S.0.R. with truncation (see Sec. 3.1.2), duality (see Sec. 3.1.3) and

give some indication on the use of penalty methods in Sec. 3.1.4.

Actually solution of discrete variational inequalities based on the so-called
Complementarity Methods have been studied thege last years ; in that direction
we refer to e.g. COTTLE [ 38], [39], COTTLE-GOLUB-SACHER [ 40], MOSCO-SCARPINI
{711 . In our opinion these methods are less effective (at least for most
discrete EVI's) than the methods of Sec. 3.1.2, 3.1.3 and will not be

considered here.

3.1.2. Methods of S.0.R. with truncation.

These methods have been by far the most popular for solving discrete obstacle
problems and are in our opinion the simplest to program and the most economi-

cal in term of computer storage.

The various discrete obstacle problems we have discussed in Sec. 2.2 are in

fact particular cases of
S e
€3.1) Min { 5»(éy,y)—(b,y)}
s % 4

where in (3.1) {yl,...yN} eRN , A is a NxN positive definite symmetric

N T
matrix, (x,y) = Z xiyi ¢ D cRN and
A i=1 -




N ' -
(3.2) € = {yeR » 8, <y, <b, Nisl,...N}

with a; :bi Yi=l,...N. Some of the ai's (resp. bi's) can possibly be equal
to —« (resp. +«).

1f é = (a..)

#1371 1,3 <% then a typical S.0.R. + truncation algorithm is

N p :
(33 x" R , arbitrary given,

; n n+l n
assuming x known, one computes x from x , component by component as

~

follows
EEE_i=|,... N, compute
(3.4)i X?+I/2 = E;T {bi_ 'Z_ aijx?+l - 'Z. 35 x?}
31 j<i >i
3.5, = -p el w(x2+]/2-x2))

with Pi(yi) = sup (ai, 1nf(bi,yi)).
About the convergence we have

Theorem 3.1 : If 0<w<2, then oneRN,

4 n
lim X = X

n->+ o

where x is the unique solution of (3.1).

For the proof of Theorem 3.1 we refer to CRYER [42 1, CEA-GLOWINSKI (29 ],
COMINCIOLI [26 ], GLOWINSKI-LIONS-TREMOLIERES [57, Ch. 2]. In some of the
above references generalization to block algorithms in Hilbert spaces are

also considered.

Remarks on the choice of w : It appears that the optimal value Popt of w

(i.e. this giving the fastest convergence for a given norm) is a function

of C and b. Therefore for the discrete obstacle problems discussed above

it will be a function of f,g,y.




e E——

In practice several strategies can be used ; one can either use the optimal
w of the corresponding linear problem (Ax = b), or apply the Young's method
(see VARGA [83], YOUNG [841]). Actually the last methed has given very good

results even for matrices A which are not M-matrices.

Remark 3.1 : In practice, when using S.0.R. with truncaticn to solve dis-
crete obstacle problems, the first components of fn to converge are those
for which the discrete soiution coincides with Y . It appears in fact tnat
most of the computational time is used to compute the approximate solution
of -~ Au = f on Q+ = {xeQ, ux) > YY)}, with ung+ = w‘aa* as boundary
conditions. And indced we have observed that the optimal value of w corres-—
ponds to the optimal choice for the approximate solution of the correspon-

ding linear Dirichlet problem on Q+.

Concluding comments : The main advantages of S.0.R. methods with truncation

arz that :

- they are easy to program

- they require few computer storage,

- they have however some drawbacks which are that they are mainly
limited to second order potential problems. Indeed they usually
show a fairly slow convergence when applied to the solution
of obstacle problems related to A2 or to elasticity operators
(the block variants of algorithm (3.3-(3.5) are not so easy to
program since the truncation has to be replaced by a more compli-

cated projection step).

3.1.3. Solution of the obstacle problem by duality methods.

Several dual problems may be associated to the obstacle problem (2.1),(2.2)
(see Sec. 4 below for one of them). Among these dual formulations the follo-

wing is well suited for computations.

Let define

A= {ueLz(Q), u=0 a.e.} ,
Vg = {V'GH](Q) , v=g on 30}

~35~
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3 |
and a lagrangian functional £ : H () XL2({Z) -+ R by

fv dx - j p(v=y)dx .

£(v,u) = %‘J ‘Vv]zdx—J
Q Q

9/

Assume that the solution u of (2.1),(2.2) belongs to HZ(Q), then X = -Au-f

is the unique solution of the dual problem

(3.6) Max Min Z£(v,u) ;
uel veVg

moreover we can easily prove that {u,A} is the unique saddle-point of &£ over
V_ xA .
g

From these properties we can use the Uzawa's algorithm discussed in GLOWINSKI-

LIONS-TREMOLIERES [ 57, Ch. 2] which takes the following form :

€3.7) 2 e Lz(Q), arbitrary given (ko = 0 for ex.)

then for n>0, assuming A" known we obtain u" and Xn+l by

~ 5™ st e Mg,
(3.8)

un+] = g on of),
(3.9) A" =B Mo -a™) L, 00,
where

P, () = Sup(0,})
Using GLOWINSKI-LIONS-TREMOLIERES (57, Ch. 27 we can prove

Theorem 3.2 : Assume that ueHz(Q), then Vloe L2(Q) we have

lim Hun-u|| 0 =0
n->+o H ()
55 0<p<2p

-6




Comments

1) If one uses A% = 0 we have observed that the smallest is Q° = {xe Q, ux)=Yx)1},

the fastest 1s the convergence.

2) The above method (in its discrete form) is very well suited to users having

at their disposal finite difference or finite element elliptic solvers.

3) Another advantage of this duality approach is that it gives directly A
whose Mechanical interpretation is interesting since it is the reaction

force of the obstacle on the membrane.

4) Variants of the above algorithm have been successfully used witin A replaced

2 i
by A” or elasticity operators.

3.1.4. Solution of the obstacle problem by penalty methods.

Like in Sec. 3.!1.3. we shall focus our attention to the continuous obstacle

problem whose formalism is simpler.

With V_ like in Sec. 3.1.3. we consider

S

(3.10) Min { % J |Vv|2dx = J fv dx + je(x)}
veV =2 . Q
8
with
(3-L1) e tR = %J l(lb-v)+|2dx
5 = g

where q* = sup (0,q)

The minimization problem (3.10) is in fact equivalent to the Non Linear Dirichlet

probolem




| | + .
-~ - = (Y~u ) =f in Q,
£ £ €

| uo =8 on of2.

Cencerning the convergence of u, to the solution u of (2.1) (2.2) we can
prove that

lim Hug-u[{ | =0

£+0 H ()
The non linear problem (3.103, (3.12) (in fact its discrete variants) can

be solved by various methods, like e.g. Non Linear S.0.R.,Conjugate Gradient

with Scaling (cf. CONCUS-GOLUB-O'LEARY (37], DOUGLAS-DUPONT [ 441}) using as
scaling operator a discrete form of - A, or an operator obtaiaed by Lncomplete

Cholesky Lecomposition (see MEIRINJK-VAN DE VORST [68] for details).

| Comments : The main inconvenient of that penalty method is that it requires

f a small € to have u_-u small. Then (3.10),(3.12) are ill-conditioned problems.

However this technique has been successfully used in Optimal Control or

Optimal Design problems in which the state equation is replaced by a varia-

tional inequality.

3.1.5. Other methods.

The above obstacle problem can also be solved by Conjugate gradient with

truncation methods (see e.g. TREMOLIERES [81]) or by using a discrete time
dependent approach requiring at each time step the solution of a problem

of similar type but better conditioned.

We can also use augmented lagrangian methods (in this direction we refer to

CHAN-GLOWINSKI [32]).

3.2. Iterative solution of the elasto-plastic torsion problem.

In this section we just describe one algorithm and send the reader to GLOWINSEK
LIONS-TREMOLIERES [ 57, Ch. 3], CEA-GLOWINSKI-NEDELEC [ 31], FORTIN-GLOWINSKI
[ 51, Ch. 3] and GLOWINSKI-MARROCCO [ 58] for more details and/or other methods

The problem under consideration is (2.29) ; we associate to this problem a

lagrangian functional #£ : H(‘)(Q) XLm(Q) + R defined by

~38-
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I 2 ( g 12 i\
(3.13) Z(v,u) = 7[ !VVE dx —J fv dx + | u(|Vv]“-1)dx
SR Q I
If A = {pe ﬂm(Q), L20 a.e. }, then we can easily prove that if {u,A} is a
. o - - - - oL
saddle-point of @2 over HO(H)XA, then u 1s the solution of (2.29). If f = const.

the existence of such a saddle-point has been proved by H. BREZIS [16], for
more general f the situation is not clear at the moment. However the existence

of such saddle-point is proved for the finite difference or finite element

approximation of the elasto-plastic problem (see GLOWINSKI- LIONS-TREMOLIERES [57,

Ch. 2] and CEA-GLOWINSKI-NEDELEC [3!] £or further information). From the
above properties it is then natural to use the following algorithm to
compute the saddle-points of &£ and therefore u :

(s}

(3.14) A €N , arbitrarily given ,

then for n 20 compute u" and An+l by

-ve (1AM = £ in Q ,
€3.15)
n
( u ‘ag =0,
(3.16) x“” = P+()\“ + p(qu“lz—l)) 3 P20,

with Ee like in Sec. 3.1.3.

For the convergence of (3.14)-(3.16) see the two references above.

We observe that the solution of (3.15) require at each iteration the solution
of a Dirichlet problem whose right-haud side depends upon n (via A™) . However

(3.14)~(3.16) appears as an efficient algorithm for solving (2.29).

3.3. Iterative solution of the Bingham flow problem in a pipe.

We consider in this section the iterative solution of (2.38),(2.39). Actually
the simplest method to solve this problem is based on the characterization

(2.41),(2.42). The algorithm is the following

(3.07) poe LZ(Q) xLZ(Q) is arbitrarily given (po = 0 for ex.)

. n n+l n
then for n2 0 one defines u and XA from A" by

=30




- udu" = £+ g Vep" in Q,

(3.18)
n —_
1 lag = 0
(3.19) M =By ™ T L 00,
where A ={qe LZ(Q) XLZ(Q) , |Jax)| <1 a.e. } and

ST S = B
R RN e

It follows then from CEA-GLOWINSKI [30] and GLOWINSKI-LIONS-TREMOLIERES [57,
Ch. 2 and 5]

Theorem 3.3 : Assume that we have

2
Q<o =
s g
o 2 2
then ¥ p e L7 (Q) xL"(Q) we have
lim ”un-u|| 1 =0
n - +o H ()

o n » o 0
lim p =p in L (Q) XL (Q) weak~*
n > +o B

where u is the solution of (2.38),(2.39) and where p is such that {u,p} obeys
(2.41),(€2.42).,

Remark 3.2 : The above function p is' actually a solution of the dual problem

Max Mi? { % f lelzdx = f fv dx + gf q*Vv dx} .
qel veHo(Q) 9] 9 2

Remark 3.3 : More efficient algorithms based on augmented lagrangian techniques

are described in GABAY-MERCIER (52], FORTIN [50], FORTIN-GLOWINSKI [51],

GLOWINSKI-MARROCCO [58]. These algorithms are more complicated tc handle than

(3.17)~(3.19) which is definitely the simpler efficient method to solve (2.38),

(2.39) and their discrete variants.

|
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4. = APPROXIMATION OF THE OBSTACLE PROBLEM BY MIXED FINITE ELEMENT METHODS.

“.1. Orientation.
Following BREZZI-HAGER-RAVIART [ 22] we shall consider in this section mixed

finite element approximations of the obstacle problem (2.1),(2.2) (see also

for related studies HLAVACHEK [ 61]).
For more complicated variational inequalities, solved also by mixed finite
element methods we refer to, e.g., JOHNSON [62], [63], BREZZI-JOHNSON-MERCIER

(23] , BEGIS-GLOWINSKI [ 81.

4.2. A dual formulation of the obstacle problem.

It is clear that (2.1),(2.2) has also the following formulation

(4.1) Min { l-J lq| %dx - I fv dx}
{v,qleX Q Q
where
o , 1 2 N
(4.2) K= {{v,qgd e H (@Qx(L°Q))" , q=VYv , v=g on 3Q, v=y a.e. on Q).

We associate to (4.1),(4.2) the lagrangian

2(v,q,u) = %’f }q'zdx - j fv dx + I e (Vv-q)dx
9] Q Q

and then consider the dual problem of (2.1),(2.2) related to« , i.e.
(4.3) Max Min L (yq 1)

ue (LZOHY  {v,qle¥
where

X = {{v,q} eH](Q) XLZ(Q) , V=g on 3R, v=y a.e. on Q} .

Fortunately the explicit form of (4.3) is known and is as follows

N —

(4.4) Min { = ( !q;ZdX < J P Veq dx = J g q*n dI'}
qeC }Q Q r




(4.5) C = {qeH(div,Q), Veq+f< 0 a.e. on §}

where
H(div,R) = {qe¢ (Lz(Q))N , Veqe LZ(Q)}

Conversely (4.4) has a unique solution p such that p = Vu where u is the

solution of the obstacle problem (2.1), (2.2).

Define
2
A={pel™(@) , u20 a.e. on 9}
then
(4.6) qeC & qeH(div,) , J' (Veq+f)u dx<0 VYpeAl

Q

4.3. A mixed approximation of the dual problem (4.4),(4.5)

We still assume that Q.is a polygonal domain of Rz and Yf; a standard triangu-
lation of @ . Let consider the following approximations of H(div,{), Lz(u),

A, C respectively

Hh = {qhe LZ(Q) xLZ(Q) 5 qh°n|aTe Pk sidewise where n is the

unit normal along 9T, V-thTe Pk}

(from the above properties Hhczﬂ(div,ﬂ)) ’

lhy € L2@)

]

» M lpeB, YTe &},

-
I

= AnLh = {uheLh » U, 20 a.e. on oy .

(@)
[

h {qhe Hh " JQ(V'qh'kf)uh dx <0 Vuh eAh}

An approximate problem of (4.4), (4.5) is

- D
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Find p, € C, such that .

h~ "h

(4.7)
J Ph'(qh'Ph)dx + J q)V-(qh-ph)dx > J g(qh-ph)-n dr the Ch.
§ Q I

oo

The problem (4.7) has clearly a unique solutionm.

An equivalent mixed formulation ovi (4.7) is

Find {ph,kh}elﬁleh such that ;
(4.8) J Ppt gy dx + J (Ah+W)V-qh dx = I g q°n dI Va,€H,

Q Q r

IQ (V-ph+f)(uh‘>\h)dxs 0 Vuh € 1\h .

It follows from BREZZI-HAGER-RAVIART [ 22] that (4.8) has a unique solution
with Py, solution of (4.7).

Concerning the convergence of ph,Ah as h - 0, BREZZI-HAGER-RAVIART [ 22]
have proved that if (z:h)h is a regular family of triangulations, if
fe LZ(Q), ue HZ(Q) (then ge H3/2(F)). and if k=0 then

[l o, =Vul| =[x, =Cu=y) || = 0(h).
b2 " L)

The above authors have also proved that if k=1 and if f e ﬂn(Q), u, Ye Wz’m(ﬁ),
uews‘p(m Vpell,+>=[ and s<2 + fl,- , then
3/ 2=
lpy=vull , =A@l , = om3?
L™ () L7()
with € >0 arbitrary small. |
Remark 4.1 : The numerical solution of (4.7),(4.8) is more complicated than

this of the approximate problems of Sec. 2.1 corresponding to standard confor-

ming (displacement) finite element approximations.




5. = FURTHER COMMENTS. CONCLUSION

The variational 1nequality methodology appears as an efficient tool for .
solving problems which may be originally formulated in a more classical

way. Let us consider two examples of such a situation.

Example | - A family of mildly non linear elliptic problems.

Let Q be a bounded domain of RN with smooth boundary, A : HL(Q) o H-I(Q)

(= (HL(Q))') a strongly elliptic isomorphism, f ¢ H—I(Q), ¢ :R>R , de Co, ¢

non decreasing (we can always suppose that ¢(o) = 0). We consider then the

following non linear elliptic problem (of monotone type)

(5.1) Au + ¢(u) = f
Let define a : HL«D xHL(Q) -+ R , bilinear continuous and Hl(Q)-elliptic by
a(v,w) = <Av,w>

where <e,+> denote the duality pairing between H-l(Q) and Hl(Q). Let define
also j : HL(Q) -+ R by

j(v) = I d(v)dx
Q
t

where &(t) = J ¢(t)dt . It is clear that j() is convex, proper, l.s.c.
o
Actually in view of solving (5.1) it is convenient to consider the following

(E.V.I.)2

Find ue HL(Q) such that
(5.2)
a(u,v=u)+j(v)~j(u) 2 <£,v-u> VveH;(Q).

In CHAN-GLOWINSKI [32] (see also GLOWINSKI [55]) one proves that (5.2) has

a unique solution which is also the unique solution of (5.1) in HL(Q). We

consider also in the two above references the approximation of (5.1),(5.2)

by piecewise linear finite elements. This is precisely a situation in

which the convergence results of Sec. 1.6.1. cannot be applied (directly at

; : : ; 1 :
least), since j(¢) is not continuous on HO(Q) in general. However the strong |

convergence of the approximate solution can be proved (see the above references

for more details).

|
|
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Example 2 - Transonic, potential flows.

This problem 1s far more important and difficult than the problem of Example I.
In fact it is not an elliptic problem unless the flow remains purely subsonic.
The problem is to find a velocity potential ¢ defined on Q (the domain of

the flow) such that

Ve (p($)V¢) = 0 in Q,
(5.3)

+ convenient boundary conditions,

with 2
1/y=1
0 (@) = p (1 - LTI/
y+! CZ
YT O
where p, = const., y = }.4 in air £ » critical velocity. The flow velocity

: ; -+
is given by v = V¢,

1f 0 is not simply connected, ¢ has to obey a circulation condition given by

the Kutta-Joukowsky condition (see LANDAU-LIFCHITZ [ 64] for more details, and

also the references below). Actually the above relations are not sufficient to

obtain only physical solutions, i.e. solutions without expansion shocks ; to

avoid these non physical solutions an Entropy Condition has to be prescribed.

We have found convenient to require

(5.6) (86" e1P(®) vp>i

The more common values of p are p=2 and p= +®. In order to solve (5.3), taking

(5.4) into account we have introduced the variational problem

(5.5) Min {I|V¢(w)|2dx + uJ](Aw—C)+Izdx}
weX Q) 94

where X is a set (usually convex) of admissible velocity potentials, u a posi-
tive parameter, C a given constant (or function) and ¢(w) the solution of the

elliptic problem

~45-
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| A¢ (W) = Ve (p(w)Vw) in Q,
(5.6)

+ boundary conditions + (possibly) Kutta-Joukowsky conditions.

In fact (5.5),(5.6) is a least square formulation of (5.3) taking (5.4)

into account. The problem (5.5) which is indeed a non linear fourth orde:
variational problem has been solved by a mixed finite element method coupl:
to a conjugate gradient algorithm with scaling. For further details we refe:
to GLOWINSKI-PTIRONNEAU [59], [60], BRISTEAU [24], [25], BRISTEAU-GLOWINSK]
PERRIER-PERTAUX-PIRONNEAU-POIRIER [26] where references to other methods

for solving (5.3) are also given.

To conclude this survey on Elliptic Variational Inequalities, let us meution

several books or reports relevant to the subject

- DUVAUT-LIONS [45] fur the mathematical aspect and applicat:o
to Mechanics and Physics.

- CEA [28], GLOWINSKI-LIONS-TREMOLIERES [571], GLOWINSKILI (53],
[54] , [55], TREMOLIERES [81] for the numerical analysis
(approximation and iterative solution).

- BENSOUSSAN-LIONS [ 9 ] for Quasi Variational Inequalities

- BAIOCCHI-CAPELO [ 6 ], for applications to the solution of
the free boundary problems related to flows in porous media
(for that last subject see also BATOCCHI-COMINCIOLI-MAGENE:
POZZI1 [ 71, CRYER-FETTER, loc. cit.).
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