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ABSTRACT

We discuss the numerical solution of the nonlinear Volterra integrodifferential

equation

t
px ’(t) + f a(t—s)F(x(t), x ( s ) ) d s  = 0 , t > 0

x ( s) = g~ s) , —
~~~ < s < 0

Here x(t) is the unknown function, g is given history , p is a small positive

number, a(t) is a positive, decreasing , logarithmically convex kernel, while F

vanishes on the diagonal , and is increasing in the first and decreasing in the

second variable. The time discretization is done using backwards differences , and

we show that the discretization preserves the qualitative properties of the solu-

tions and give an error bound which is uniform in p and t for 0 < p 
-~~ 

p
0~

and t~~~t0
>0.
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SIGNIFICANCE AND EXPLANATION

• In this paper we discuss the numerical solution of a problem which arises in

pol~~ er rheology: A mathematical model was derived ~~~~~~~~to descrf:  ~ the e last ic

recovery of molten plastics. We replace this model by a discrete model , for which

the solution can immediately be constructed by computer.

The main part of this paper concerns the relation between the solutions to the

original and discretized models. The original problem is a Volterra equation;

Volterra equations usually occur when one models evolutions which depend on their

history . We would like to emphasize that when one solves Volterra equations numeri-

cally, it is important that the discrete problem have similar qualitative properties

to the original one. In the particular problem considered h~ re this forces us to

choose a rather poorly convergent method if we wish to guarantee the r~o~u1ts obtained .

The numer ica l  r e su l t s  conf i rm d discrepancy between theory and experiments indi-

cated previously in [3] , namely that when the elongation of a filament is large and

ra id , the model predicts somewhat more recovery than is observed experim€ ntally .

The r~ sponsibilit~• for tho wordinq and views expressed in this descript ive summary
lies W i t i  ~~~~ and of with t -b r  au thor  of this  report .

4
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NUMERICAL SOLUTION OF A SINGU LARL Y PERTUR SED

NONLINEAR VOLTERRA EQUATION

Olavi Nevanh inna

1. 
__________

In this paper we consider the numerical solution of some singularly perturbed nonlinear

Volterra integrodifferential equations. These were modelled , af ter a problem arisin g in poly-

mer rheology, and studied , by Lodge , McLeod and Nohel (3].

The solutions to these equations have a boundary layer for small posi tive time values

but one is actual ly mainly interested in the behavior as time is large . The solutions are not

• exponentially stable , so that errors during the time stepping generally affect the estimated

behavior at infinity. However , we show that af ter any posi tive time t
0
, the convergence

for the scheme we propose, is of order O(h~) with some S c (0 , 1) ,  un i formly  on t > t 0

and C < p c p
0
, where p is the singular perturbation parameter. On any compact

ft
0
. T] C (O ,o~) the convergence order is 0(h), uniformly again for ~i € (0 , p

0
] .

In order to obtain such a strong result the discretization has to be chosen to preserve

as much properties of the continuous problem as possible. This we achieve using the backwards

— 
nh n

di fferences, i.e. we replace x’(nh) by h 
1(x(nh ) - x((n-l)h)) and f ~0s)ds by h~~ ~ (j h ) .

It seems unlikely that similar results could be proved for the second order central difference/

trapezoidal rule discretization. In fact , in order to prove results independently of

p (0 , p
0
] we have to preserve the pointwise monotonicity of the discrete solutions , other-

wise the nonlinearity can cause them to run out of control. As a very simple model problem ,

consider the numerical integration of

(1.1) px ’ + x 0, t > 0 , x ( O ) = 1

using one-step methods

— x ) + Ox + (l—O)~~ = 0
h n n-i n n—i

These methods preserve boundedness uniformly in p > 0 i f f  0 ~ 1/2 , and pointwise monotonicit.’

Permanent address : I3epartment of Mathema tics, Oulu University , 90101 Oulu 10, Finland .
Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National
Science Foundation under Grant No. ~~S75—17385 AOl.
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when 0 > 1. Since for 0 > 1/2 the local truncation error increases with 0 it is reason-

able to have 0 = 1, i.e. the backwards difference method .

For ordinary differential equations it is possible 161 to derive sharp error bounds if

we know for which Ab ~ the method (linear multistep method) yields bounded solutions to the

test equation

(1.2) x = Ax

The set of such values of Ah are customarily said to form the stability region of the method.

A similar concept for Volterra integrodifferential eOuations ~an be based on a test equation

of the form

(1.3) x’ = ax +

(Or similarly for integral equations of the second kind) , see LU , 12). However , this test

equation is essentially an autonomous differential equation , and one cannot hope that preserv-

ing boundedness of solutions for such a test equation would imply good error behavior for pro-

blems where the kernel is truly time dependent. In [4] we proposed a different type of test

for discretizing the integral terso often in applications the kernel k(t,s) satis fie s  some

posi tivity properties of the form :

T t
(1.4) f ~(t) f k(t ,s) ~‘(s)ds dt > 0

0 0

for all ‘1’ > 0 and al l  smooth ~~. We characterized those discretization schemes which pre-

serve this kind of positivity, and , in (5], we derived error bounds for such methods when

applied to some systems of nonlinear Volterra equat~. ,. We also applied the technique to

ordinary diffe rential ec-iuations and showed that for linear multistep methods preserving the

positivity was equivalent to A—stability (the left half—plane belong ing to the stability

region) .

For the problem studied in thi~ : paper , the qiobal stability of the solution is not a con-

sequence of a positivity property of the  ~on (L4 , but  it , instead , follows from a pointwise

positivity of the kernel and .oir~~w I .~~ rn , t t ’ n i  t~ ro I ert.jes of the nonlinear term and the

— 2 —
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solution itself. Therefore, we asked that these should be oreserved in the discretization.

That narrowed the class of method down to the first order backwards difference method, but in

return we can prove a fairly strong convergence result.

We state our theorem in section 2, prove it in section 3 and discuss the application to

polymer rheology in section 4.

Finally, I would like to thank Professor J. Nobel for introducing me into this problem .

I
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2. (opy~ f~~~~~~ ~~~~~~

The following integral eauation was studied in (31:

t
(2.1) px ’ (t) + J a(t—~~)F (x (t) , x (s))ds = 0 , t > 0

x(t) ~~g~ t ) , t < O

under the assumptions:

(a C1 [0,=) ~ L
1

( O ,=) ,  a(t) > 0, a ’(t) < 0

(H )~~a . ( t ) / a ( t )  nondecreasing

(F  : R R, F(x ,x )  = 0 for a l l  x > 0

(II ) ‘
F •~~ ( J ~~ 1k) and F1(y , z) ~ 0 , F 2 (y , z )  ~ 0

(y,z . subscripts denote p a r t i a l  d i f f e r e n t i a t i o n )

: (— “  .01 (O ,’~) ;  ~~~~~ = 1

(H ) (
~ is nondecreasing and g ( O )  ‘ 1

We state a convergence theorem for the following discretization of (2.1)

- x ) + h a ( n h - j h ) F ( x  , x . )  = 0 , n - 0h n n - i  • =_ ~~• 
n ]

(2.2)
x . ~~ q ( j h ) , j ~~ 0

We shall assume that t ? s~ initial function p ~s also d i f f e r e n t i a b l e :

sa t i c t i e s  (H
g

) and q

( H ’ )
sup q ’ ( s)~

S.

T h o r n . A c ; i j m, t h a t  ( H )  , ( H
F

) and (H ’ s h o l d .  Then for  •~ll p 0 , h 0 , equat 1~~n

( 2 . 2) ha~ • i u r i que ~oiut ion {x I ,  such • ( l , o ( 0 )  I and fo r  n 0 . x -• xn P n n - I

There exi t mt • (I, h 0 
fl , •

~ 
, C

2
, C~~, c

4 ~~, C~~, such th at for ~nv T

— 4 —
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p € ~~~~~~~ 
h c (0 , h 0 

and 0 < n < T/h we have

~x(nh) — X t  ~~C1
e

2
(l + T)h

h I C4h~\
n

( 2 . 3 )  + c3
(_)

Kl +

+c~(~) 
[( ~

If additionally af t) decays exponentially, then there exist ó ~ (0,1) and C
6 

such t h a t

(2.3) holds for all n > 0 if we replace the first term C
1
e
2 (l  + T ) h  by C

6
h
6.

Remark. Equation (2.1) under hypotheses (H
a
) (H

F
) and (H

g
) contains a large class of

problems . For example, let h a il 1 = 1, and F(y,z) = ~(y) — ~(z), with ~‘ (y) > 0, then we

have the following equation

t
(px ’(t) + ~‘(x(t)) — 5 a(t—s)~ ,(x(s))ds = f(t) , t > 0

0

. x(O )  = g (O )  ,

0
where f ( t )  = 5 a(t—s)~p ( g ( s ) ) d s . In particular , from this equation we see immediately that

the limit equation (p = 0) is numerically well condi tioned , as implied by (2.3) .

—5—
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3. Proof of the theorem.

In order to prove our theorem we have to f i r s t  show that the discrete equat ion has essen-

tially all the properties that  the continuous problem has and in p a r t i c u l a r  al l  bounds hold

with constants independently of the Step length h.

Denote a (n h )  = a , then Ia  € Q
l
, ~ > 0, Va = a — a ~ 0 and (~~) is nonde—

n n n n n n — i  a n

creasing. We consider the discrete Vol terra  equation

n
(3.1) ~- V x  + h~~ a • F ( x  ,x •) = 0 , n > 0

h n ,, n-j n j

x . = g .  for j < O

Here g .  = g (j h )  so that u r n  g . = 1 and 1g.) is nondecreasinq and g
0 

> 1.

Lemma 1. There exists a unique {x} satisfying (3.1). Moreover , 1 < X
n 

< g0 for all

n > 0.

0

proof. Write  ( 3 . 1)  into the form

2 n
( 3 . 2 )  x + fl— 

~ a • F(x ,x.) = xn )i n —j  n j  n—i

The lef t  hand side of ( 3 . 2 )  is a cont inuous  increasing funct ion in x , mapping [l ,g
0

] Onto

[a ,b ] , where a < 1, b > 
~~~~~ 

Therefore  it has a unique solution x , in the open interval

(l ,g 0
) ,  whenever xn i  

( l , g
01.

o

Lemma 2. { x }  is nonincreasinq for  n . 0.

Proof .  By Lemma 1 x - x - Let m 2 be f i r s t  index such that Vx > 0. We show that then

V
2
x <  0,  being a contradiction . Since F(x ,x) = 0 , we have

5-1
~ 

2
>~ + h ) a •(F (x ,x . ) — F(x ,x .)]

h rn m -j  m 3 m—1 3

(3.3)
m-2

= —h ~ 
‘a • F(x ,x ,) .r n — j  5—1 j

4



By assumption x x
1 

so that the second term on left in (3.3) is positive. If we can

show that the term in the right is nonpositive then V
2
X must be negative and a contradiction

follows.

D e f i n e  J to be the largest index j such that g. < x
1
. Set

m-2
S = h ~~~~Va • F ( x  ,x . )m 

-~~ m-j rn-i j

and

m—2
R = h ~~~ a •F(x ,x .)m ,0 m-3 rn-i )

Then R is negative which follows from the identity

rn-i
R = - Vx - h a ,{F (x ,xj — F(x ,x .)}rn h m ,, m-j m rn-l j

and from the assumption that x > x . Butm rn- l

S > S  — ( ~~~) Rm —  m a m— J m

= h Y . ( (
~~~

) m_j  -

m-2
+ h ~ { ( ~~~) • — (~~) } n .

J+l 
a m-j a m—J j

where p .  = a •F (x ,x.). Since (~~~) is nondecreasing the term in brackets in the f i r st3 m—j rn-i 3 a

sum is nonnegative and in the second sum it is nonpositive. But by construction p.  is non-

negative for j  c J and negative for j  > 3 and therefore S
m 

> O~ and a contradiction

• follows .

0

Next we formulate some other properties of the solution CX ), all of which have counter-

parts for the continuous problem, [3).

Proposition 1. Solution depends monotonically on the initial data: if g. < g. for all

j 0, then x < x for all n > 0.— n —  n

Proof. Let m be the first index such that x
n ~ 

x .  Then

—7—
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— 1x
5

) = _h
~~~

am _j ( F ( xm .X j
) - F (X ,x .)

+ F(x ,x ,) - F(x ,x .)Im 3

and since F I x  , x , )  F ( x  , x . )  and F ( x  , x j  F ( x  ,x .)  we q~~ t 
;~ < V~c wf ~~ ’h is a con—Tn j  — ni m j  — rn j a — ’ m

tradictjon.

0

Proposition 2. Solution depends rnonotonically on p :  if {x(~~1
)~~, ~x (u)} ar two solu-

tions to (3.1) with the same initial data but different p ’s. then )i~~ u
2 

implies

x (p 1 < x (p ) for all n > 0.
0 1  n 2

0

Proo f . One sees easily that x
1

(p
1

) ~ x~ ( U
2

) . Supoose therefore that rn is a first index

such that X U JJ
1

) > X (1 1
2

) .  This would imply V (X (p
2
) — x (ii

1
)) < 0. But

1
~ V (x (u .,) — X

m Ui i))

(3.4) = - ~~~
- 

~ a •{F(x (p ) • x ,(p 1)- F(x (p  ) ,  x ( p  ))}
m—j m 2 j 2 rn 1 j 1

+ [~!_ _ ~~!~ ] h ~ a , F(x (p I , x , (p ))
U1 p

2 —= m—j in 1 j  1

which shows that the right hand side of (3.4) is nonnegative . In fact ,

h~~ a .F(x (p
1
),x .(p

1
) )  = - 

~~~~ 
V X (p

1
) > 0

and

F(x (p
2
) ,x .(p

2
)) — F(x (p

1
) ,x .(p

1
))

= { F (x  ( p
2

) . x~~~(u
2

) )  — F(X (p
1
) ,x .(p

2
)) I

+ {F(X Ui1) ,X~ (p
2

) )  — F(x Ui
1
) ,x~ (p 1

) )} 0

since both bracket terms are seoarately nonnositive. Hence we arrived i nto a contradiction .

0

— 8—
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Proposition 3. For p
0 

> 0, h
0 

> 0 small enough there are positive constants c~ , C
2 , G

such that for all p € (O,p I, h e (0,h
0

) we have

(3.5) 0 < h~~ Vx < C1p~~ (1 + hG/U ) l— n 
+ C

2
h~~~ a ., n > 0 .

Proof.  In order to bound Vx one has to solve a second Order d i f f e r e n c e  equat ion . By mean
value theorem we have for some E~. c (x , x ) ,

j  n n-l

n—l n-i
~ V

2
x + h a •F (~~. ,x ,)Vx = .-h ~ ~a •F (x ,x ,) -h n 

-= 
n—~ 1 j  3 n 

-~~ fl J n-i  j

This is of the form

(3.6) 
~ V ( V x )  + G ~Px = fh n n n n

where t3~~ is uni formly  bounded from below :

G
n inf  F

1
(y , z ) . h  ~ a .

y,z~~[l , q0I 3.

• 
= y{J a(s)ds + 0(h))

0

and f sati s f ies

(3 .7) 
~n

1 < C l ( ~~ ) 1h ( h ~~~a.  + (1 + O (h ))lVx i )

where C only depends on g
0
. In fact, write

0 n—l
—f h~~Va .F(x , g.) + h ~ Va •F (X , x .) = S + S• n 

—= 
n — j  n—i 

~ 1 n—j n—l 3 1 2

-9-
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Then 0 ~ S = h , C ~ ) , a .F’(x , x— 2 ,i n— j n—j n—i I

< (~~) h ,i .F(x , x .) C h L ~~) lh ~ a ,— -~~~l n— j n— i 
~~~~ a l  

~

+ -
~~ . 4 1 5  a(s)ds +
a l  

0 
•

since ~~~~ is negative and nondecreasinq ,

F(x , x , ) < O  , an-i
n—l j —

n—i o
-h a .F(x , x ,) = Vx + h~~ a .F(x ,g.)

1 
n-j n—i j h n 

-= n—j n j

n-l
—h a .F (~~.,x .)Vx

1 ~~~ ~ J j  n

so that C = sup F ( y , z)
• y,z [i,g

0
]

For the other sum we get

0

I < h~~~-(~ -~ ) . a . i F ( x g i l1 — a n — ]  n — j  n — i  3

< C~~(~~~) lh 
~ 
a ,

— a n  3

and together  they imp ly ( 3 . 7 )

Set 7x = y - Then we obtain from (3.6) that 
~

- v + G y = 
~~

- y + fii n h n  n o  h n-l n

and f u r t h e r

G )  y0l I ~b ’i~
_
~l + I f 0h

Suppose from here on that h < h
1
, where h

1 
is so chosen that 1 — 1 (

~~
)l l - 1/2 . Then

we see from the bounds for and f that for some constant C > 0n n

(3.8) (lC~ 4- C )  lv I ‘ I + gh ‘ n — h  n—l n

—10—
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-,

~~~~~~~~

where g
~ 

< C i (~~
)1Ih ~ a~. Since = ~

-
~1 h  + 0(h

2
) we obtain from (3.8)

(3.9) I~~l < (1 + hG
) 1 1  + 

~
i:i4

X~
i
G
. Ch~~~~(l + 

bG~~~~~~~

Consider the second term in the right hand side of (3.9):

= 

j=2 
+

By part ial  summation we obtain

r j—i n—i
2 1 n—l(l + ~~) —l (1 + ~~ -) — l

s~ = (1 + ~~) 
~~j=2 

hG/u 
a~ + hG/p h

k~n
a
~;)

But a . = — ~ < 
~~~a

1 l ~k=j+l k=j+l

so that

( 1 + 
~~~2 n—i ( i  +~~~~~~~~ _ 1 

a .

and hence, if u0, and h
0 

< h
1 

are ~uch that I — 
~~ 

(~~~~~( > 1/2 for u c (0 ,p
0
)

h (0 ,h
0

] (which  is possible since (‘~
-
~~ ) = ~~—~~~~~ -- h + 0(h

2
) ) , we f i n a l l y  have

(3.10)  S
n 

< 2 —u-- [ ( 1  + — ( 1 +

• Since

1y 1 1 x
~~ 

— g
0

j ‘ C h ~ a ,

(3.5) follows by substituting the hound (3.10) for S into (3.9) -

0

The next  resul t  w i l l  be used to Drove the u n i f o r m  convergence of the approximations on

— 1 1—
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the hai f line t > 0.

Corollarl 1. If additionally (ja .} t t~~, then

(3.11)  x — x < C (1 + + C h ~ ( k -n ) h  a
n — 1 ii 2 k=n+l 

k

0

Proof .  (3.11) follows immediately from ( 3 . 5)

0

Up to this point we have more or less followed the treatment of the continuous problem in (3].

In order to prove convergence we need to investigate the perturbation properties of the differ-

ence eouatiOn. When proving the convergence we would like to substitute the local truncation

error in the place of the perturbation.

However , we can control the solutions only when we allow nonnegative perturbations , and

the local truncation error does generally change signs during time stepping , so that some extra

consideration is in order .

Lemma 3. Assume u . = v . = g., j < 0 and lu } , Cv } satisfy
3 3 3 — n n

(3.12) Vu + h a .F(u ,u .) = a
h n 

—= 
n-j n j  n

(3.13) Vv + h a .F ( v  ,v .) > q
h n n-j n j — n

Then v > u for all n 0.
n —  n —

Proof. Let m be the first index such that V < u . Then V ( v - u )  < 0 and we get
m in m

~~V(v-u) + h a IFfy ,v .) — Flu ,u .)) < 0
h m 

-= 
m-j m j m j

contradict ing (3 .12)  , (3 .13) .

0

Let now {y }  be a sequence from which it is known that  f ‘r a l l  n i tl
~
o
o

I (we know

that x (n h )  c (l ,g 01) and that  it sa t i s f ies

—1 2—
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Vy + h ~ a .Fty ,y.) 
~n

’ n > ~

and y .  g . ,  for j < 0. construct two seouences {w I and {z } as fol lows : w s a t i s f i e s3 j  — 0 n n

Vw + h a F(w ,w .) = ah n -= 0-)  0 3 n

• where w . = g. for j 0 and q = h p ,., 1 if this will imply W g
0
, otherwise set

w = g
0 

and compute the corresponding value for q .  The other sequence (z I  wil l  serve

as a lower bound. Therefore define it by the same equation , now with perturbation r
n

whenever you would have Z > 1, otherwise set Z
n 

= 1 and def ine  r cor respondin gly .

Lemma 4. If {x } satisfies (3.1) and Cy 1, {w } , (z } are given as above , thenn n n n

lx -y < 1w -z j .n n — n n 0

Proof.  By construction, a > 0 and r < 0 so that by Lemma 3 we have z < x < w . The
0~~~~ fl fl 0

conclusion will follow since we also have z
0 

< y < w .  To see this , assume for example that

in would be the first index for which y > w . Then , since y - g we must have q = 1~ I ’m m m —  0 n -n
and therefore we are back in the situation of Lemma 3 and a contradiction would follow.

0

According to Lemma 4 we can proceed as follows. Suppose that x(t) is the solution to

the continuous problem. Define the local t runcat ion error sequence by

(3.14) k(x(nh) - x( (n-l)) + h a .F(x (nh) , x(jh)) =
h n-j n

If X
n 

satisfies (3.1) with g. = g ( J h )  , then in order to bound lx — x (nh) I it is suffi-

cient to bound w — z j, where 1w - z I satisfiesn n n n

• (3.15) 0 ~~V(w—z) + h a .{F(w ,w .) — F(z ,z .))
— h  n n—j n n j = n

with w . = z. = g., j < 0, and by the above construction we can assume that

l < z  w ‘q for all n ’- l .— n — n — U —

— 1 3 —
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Lemma 5. Assume that w I, {z I C )l ,q and n i t  i~i t y
n n 0

• (3.16) 0 a V(W_z) + h a . C F (w ,w ,) - F(z ,z .)}— h  n _ •~ n-j n 3 n 3 ~~~n

and w . = z. - q for  j < 0. if p
0, h0 are small enouqh , u~ ( 0 , u

0
) ,  and h - (0,h

0
)

then for some constants A , B, C, depending on p
0 and h

0 
hut not on u and h we have

Hh
n—l ——- - n—i —v

(3 .17 )  w —z .~ < ch + 
~‘ 

(1 +
~~ 

— 
v=O 

• 14 —— v=O ° •

Ii

0

Proof. As in the proof of Lemma 3 we ob serve that ( 3 . 16)  implies w z for a l l  n - 0.
n — n

Therefore we can devide the sum in  (3 . 1 6 )  Into two pa r t s :

n-i
(3.18) ~(w—z) + h a , IF (w ,w .) — F(z ,w .)Ch n n 3  n j fl 3

0-1
< p + h a .{F (z ,z .( — F(z ,w .)}
= n 

1 n — j  n j  n 3

Let i = mm F
1( 1~,p )  and ~ = max —F

7
(E~,r) , then ( 3 . 1 8)  and w ,  > z i r s  I’;

~ , ri- [l ,a0
) l,n . [l ,g

0
] - 3

n—l
(3. 19) 

~~
- 11w—sI + ~h a - ‘1w —zh n - n —j n n

n — i
< p + ~h ~ a
— n 

1 
n—j 

~

Set w— z = ~ and ~a ( 0 )  = B. Choose A ‘~ if  a (s)ds and h so small that ah ~ aCjh ) ‘ A.
0

Then (3.19) implies

( 3 . 2 0 )  (1 + ~11) I  < ?~ + h + p , n > 1
II n n—i 

~ ~ n

where

P.h 
— l  

h

~~~ 
1 ( 1  + 

~~ p1

—14—
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To solve (3.20) we first consider the roots of the polynomial

~i + 
Ah

>~~
2 

— (2 + + ~~ — ) A  + 1

When and h
0 

are small then we have after a straightforward estimation two positive

roots, 
~ 

say , such that for p (O ,p
0

] ,  h (0 ,h
0

)

h 21 + — . Kh
• P- ( — — —— — 11 —  Ah

1 + —

and

Bh
A

where K depends on u and h . The solution t~ then sa t i s f ies0 0 n

(3.21) 1 ~ 1
2

-A
1 :~ ~~~~~~~~~~~~~~~~~ 

- - A~~~
1 

+

Now ‘2 
— > j~~~

-
~
-—- and (1

2 
— 1 ) 4

2 ~~~( l  + ~~3e A 
and 

~
( A

l 
— l )A ~ 

~~~~~~ 
(1 +

(after possibly choosing a smaller A and h
0
). Substitutino these bounds into (3.21) yields

n 

: Ch 

~ + e~~~ + 
~~~~~~ 

( 1 + ~~) }

+ 
l+Ah/p 

v~ 0 
(1 + 1’n-v

f~~r mu ’ constant. C , and we hence obtained (3.17) .

0

Next Lemma bounds i Ci.  local truncation error.

— 15—
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~~~~~ de,s’I • th i - i o oj  1 truncation -n n o r  C io- i  (3.14) ) . Then t hi-ri cxl , ’

C C (p
0
,h
0
,q
0
) and K = K(;-~~,u0

) such that - (0 , - I  , h (0,1 1  we have

1: 
< C)~[ 

f a(s)ds + ~ -K (n-l)h/P

m b—h

(3.22)
nh - -

+ j’ acnh—s)Ifa (s)ds + e

fl

Proof .  I f  x(t) is the solut ion to the cont inuous  r r o ) ’ l - P , t C , ~- r ~

n jh
( 3 . 23)  ~-x ’ ( n h )  + 

~ 
f a(nh—s)F(x (nh),x(s))dc = 0

-= (]—l )h

~~i’t. us consider the sum first:

n jhf a(nh—s)F (x (nh) ,x(s))ds
-= (j-flh

= h ~ a (nh-lh)F (x (nh) ,x (jh)) + S
1 

+ S
2

where

n jh
• = 

~ 
f ( ( j — l ) h — s ) [ — a ’ ( n h — s ) F ( x ( n h ) , x ( s ) )

• 
- - (j - l ) h

• and

n jh
= 

~ J ( ( j — l ) h — s ] [ a ( n h — s ) F
2

( x ( n h ) , x ( s ) ) l x ’( s ) d s
(]—l)h

We know that x(t) is decrcasinq i n C x(t ( (l ,q
0
) for t > 0 (Theorem l;3]. Therefore ,

set C sup lF (y,z) I and D = o m i t  1F 2
(- .’,z) . We split S ’ s rot - two par t s  and

y,z (1 ,q
0
( y,r (1 ,mn 0 C

e ’;t imate :

0 jh

I 
~ ll 

= 5 N (-n) li-s C (-a ’ ( nh - a )  F (x  ( n h 4  ,x Cs)) ‘is
( j — l ) h

— 1 ’~—
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0 jh
< C h I  f a ’ (nh—s) Ids

—= ( j — l ) h

~ Cl~
—
~~ -Ih .~ 

a(s)ds
— a (0 )

nh

where we again used the logarithmic convexity of a(s). Similarly we ’a t , s;t i x(t is

decreasing,

~ h~~~
-~~

--
~ f

Oh
a(nh_s)(_F(x(nh,x (s)))ds

oh 0
But —f a(nh—s)F(x(nh),x (s))ds = px ’(nh ) + a(nh—s)F (x(nh),q(s))ds , and since x ’ (nh)

0 -=

we obtain

1S 12 1 ~~Cf~~~~~-Ih f a(s)ds

Hence

l 5~I < 2Ch~ —~~
-
~-!h f a(s)ds

Also S21 is of this form :

0 jh

~2l h = h ~ f ((j—l)h—s)a (nh—s)F
2
(x(nh),g (s))q ’(s)ds~

—~~ ( j — 1 ) h

< D  sup g ’(s)~~h 5 a ( s ) d s
s t ( — o ,0J nh

while 
~22 carries the effect of the boundary layer : By (Theorem 2:3) (which should be com-

pared to Proposition 3) there exists constants K
1 

and K
2 

such that

K - K t ~4i
(3.24) 0 < —x ’(t) < —a- e 

1 
# K $ a(s)ds .

— — p  2~~

Substituting this into 
~22 yields

oh K -K S /n

s
22 I < Oh f a ( n h — s)  (—

~
- e 

1 ~~ . f 5(r) r I m

— 1 7 —  



We have to mt i l l  cons 1 - r  t so , i m n  i i i  - - I  by rt - J  1am i t t ; mix ’ by ~~
- x . By mean value

theorem we have for s snu- i ( n-l )hnh )

x ( n i h )  — x( ( n — l ) h )  1(3 , 25) —— - -  —— ,x ’(nh) — p hx ()~Ii  2 n

U s~~nml i n n , -  4 . 1 ,  in ( 3 1  j u l  (3. °fl WC • .l ’ t - .mn

p ~ x”( ) l I ’ m .  • ‘
- — . - _ — - _ + I a (s)ds~~~~.

- 
0 1

Co l t  i t  r.~ all t , rms y i n  h Is  (3.22)

0

N o t , ’  t h a t  ( 3 .22) jmp lmn .’m; that is u n i t m m i m l y bounded for  n > 2 , p e (0,p
0
1 , h (0,h

0
].

However , tI;- same is t rmi r - ~ilo fo r  h i ~ i , which we now demonstrate. We see from the proof

above tha t  the unbounded t --r ~~ in t h e -  bound for  T h: C~~, comes from (3.25). However , the1 Li

. 1 t ion C i a - a boundary layer for small t ~ 0, and this implies the un i fo rm boundedness of

this t i n S . In  f i t , t i m ’ r i  - ‘xist - ; a continuously •iifferentiable function ~ on [0 ,=) , such

that  r ,t; ( l , m ; )  and ‘mu : . ~ ‘( t )  • 
‘, and a constant  K = K ( h 0

) ,  such that
t - (0 , ’~(

(3. 2 + 1  x(h) — ~(h/~m ( I Kh , f i n  h - (0,h
0
]

(see FI o r m r ’ ’ i o  7;3] and l i nt  ice t l , • i t  sjnci 1 ( t )  is decreas ing , so is Y (t )  ) . But (3.26) 
C

imp lies t h a t

x (h)—q

lu —--
~~

--—--
~~ 

— , , x ’)h) • -r
• h/ 

+ R’(h/u) + 2Kp

which is hm imm n ili t as soon a;, 
~ 

.- 

~~~~ 
md t he n - f i r e  there ext s t °  M ~-t(p 0,h0

) such that

— N f or - 
~~~~ 

h - h
0

.

~i- xt we i m; 1 i C y  (3.22) -om .’wh ,ut Ii ’. u’ . m i n i  I t  a(t) nc ~o! some , > 0, 8 0.

Then we tm dji for m. • . ~~~~ni I - ‘ . wi th -,- 0 if S ‘ 0,

h • 
— ,(n— i )h 1 —K (n—1) h/ 1 ,

IT C m u , • —  C ,  n 1
n — S

.ini
- C.

—1 8—
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Substitute these into (3.17). The first term in the right of (3.17) yields ,

(3.27) C1
e

BT
~
’A

h, if ‘y > 0, and

(3.28) C1
(l +T ) e BTu

1
~ h, if ~ = 0

The other term yields

(1 + 
Ah 1(1 + 

~,~~~
0+l

h 
+ nrI~

h 
1 (1 +l, mi 1 n—v

h Ah 0
C — ( l+—) + S , where S = S  + S

P 1 2

and ,

I S I < (1 + ~~ ) ‘ch~~~ l.(l + ~~) < ~~h1 — p  p p — A

and

2 1-n 1—n
s —

~~~~~~~2 
— 

p a — B

Ah kb/p - -where a = 1 + — and B = e . Taking, if necessary, a smaller A, we see easily that

1s 2 1 is bounded in the form

Is 1 < C ~ 1(1 + - (1 +
2 —  u p p . 1

Summarizing the above bounds yields ( 2 . 3 ) . To complete the proof assume that aft) decays

exponentially so that (3.27) holds. From Corollary 1 we see that for in > n, and for some

y > 0,

— x l  < ce~
Y0h 

+ C ( l  +

and for the continuous problem we have similarly (see [Corollary 2.1:31)

x(nh) - x(mh) I < ce
_
~~

h

Assume that nib > T and nh T.

—19—
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Then

I x m h  — x I < I x m h  — x(nh ) I + Ix(nh) — x + x — x -m — n n in

where the r ight  hand side is bounded by terms of the fo rm

C1he
2 , C

3
e~~~

(and by the boundary layer terms). Allowing T to grow with h one can bound thés.’ both
—l

terms by Kh , with o Il + 
C

2/1) , which completes the t roof of the theorem.

0

— 2 0 —
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4. Example from polymer rheo~~~j 1.

For background material see [3). In this example x (t) denotes the length of a molten

plastics f i l amen t :  it is or iginal ly of length 1, then it is elongated up to time U when it

is allowed to recover f reely .  Hence x ( t )  = g(t) , t < 0 describes the elongation his tory and

x(t) for t > 0 the free recovery.

Functions af t) , F(y,z) and g(t) are as follows :

8 —t/~~.1
af t) = ~ 

a ,e
i=l

where

j 1 , a ,
1 1

1 l0~

2 102 1.8

3 10 1.89 .

4 1 9.8 ‘ l0~

5 10 1 2.67 . l0~

6 10 2 
5.86 . 10~

7 10~~ 9.48 ‘ l0
’
~

8 ~~~~ 1.29 l0
’
~

(these numbers were provided by Professor Lodge and based on results of H. M. Laun)

3
F (y , z) = — z

and

11
g ( t )  = + ~

I K(t+t
0
)

-t
0

< t < O

Since a , F, and g are all of re la t ive ly simple form , one can wr i t e  the in t eq ral

0
f a (t—s)F (x , g(s))ds

— 2 1 —
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down exactly and on l y C i ; ~~r m- t. ire the o t l e  r I l i t

t

$ a (t—s)F (x , x (sNds
0

Furthermore , although the backwards differences lead to an implicit method , the speci f i c form

of F implies tI-tat at each ste:i one has to f in d  a real root to a cubic polynomial , and that

can be written down in terms of square and cubic roots . Therefore the final recursion formula

is essentially an explicit method , which oenerates from the finite information (x
1 

x }

a new value x
n+1

In an earlier work (see )Appendix A ;33 ) equation (2.1) was considered with p = 0, and it

was found that the model predicted more recovery than was observed experimentally. Since the

solution is increasing with p ,  in t roducing p ~ 0 leads to a reduction in the predicted re—

covery . Unfortunately ,  the numerical  experiments show that the f ina l  recovery is effected very

li ttle by p (for ~ ~~~~~~~~~ 11) , althouqh the solutions behave very di f f e r e ntly for small

0, and so , for high strains there still is a disagreement between theory and data.

—22—
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