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ABSTRACT

We discuss the numerical solution of the nonlinear Volterra integrodifferential
equation
€

px'(t) + f a(t-s)F(x(t), x(s))ds =0 , t >0 ,

-00

x(s) =gls) , ~=<s<0 .

Here x(t) 1is the unknown function, g is given history, p 1is a small positive
number, a(t) is a positive, decreasing, logarithmically convex kernel, while F

vanishes on the diagonal, and is increasing in the first and decreasing in the

second variable. The time discretization is done using backwards differences, and

we show that the discretization preserves the qualitative properties of the solu-

tions and give an error bound which is uniform in p and t for O < p < My
j > £, > O.

and t > 0
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SIGNIFICANCE AND EXPLANATION

\
\In this paper we discuss the numerical solution of a problem which arises in

polymer rheology: A mathematical model was derived in*f%fﬁfo descr’t 2 the elastic

recovery of molten plastics. We replace this model by a discrete model, for which

the solution can immediately be constructed by computer.

The main part of this paper concerns the relation between the solutions to the
original and discretized models. The original problem is a Volterra equation;
Volterra equations usually occur when one models evolutions which depend on their
history. We would like to emphasize that when one solves Volterra equations numeri-
cally, it is important that the discrete problem have similar qualitative properties
to the original one. In the particular problem considered here this forces us to
choose a rather poorly convergent method if we wish to guarantee the results obtained.

The numerical results confirm a discrepancy between theory and experiments indi-

/

cated previously in I3]; namely that when the elongation of a filament is large and

rapid, the model predicts somewhat more recovery than is observed experimentally.

r

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.




NUMERICAL SOLUTION OF A SINGULARLY PERTURBED

NONLINEAR VOLTERRA EQUATION

Olavi Nevanlinna

1. Introduction.

In this paper we consider the numerical solution of some singularly perturbed nonlinear
Volterra integrodifferential equations. These were modelled, after a problem arising in poly-
mer rheology, and studied, by Lodge, McLeod and Nohel [3].

The solutions to these equations have a boundary layer for small positive time values
but one is actually mainly interested in the behavior as time is large. The solutions are not
exponentially stable, so that errors during the time stepping generally affect the estimated

behavior at infinity. However, we show that after any positive time t the convergence

OI
for the scheme we propose, is of order O(hG) with some 6 ¢ (0,1), uniformly on t > to
and 0 <y < My where yu 1is the singular perturbation parameter. On any compact

[to, T] C (0,#) the convergence order is O(h), uniforrmly again for yu ¢ (0, uol.

In order to obtain such a strong result the discretization has to be chosen to preserve
as much properties of the continuous problem as possible. This we achieve using the backwards

nh n
differences, i.e. we replace x'(nh) by h_l(x(nh) - x((n-1)h)) and f ¢(s)ds by hE ¢(3h) .

- —
It seems unlikely that similar results could be proved for the second order central difference/
trapezoidal rule discretization. 1In fact, in order to prove results independently of

u e (0, uol we have to preserve the pointwise monotonicity of the discrete solutions, other-

wise the nonlinearity can cause them to run out of control. As a very simple model problem,

consider the numerical integration of

(1.1) ux' + x =0, t > 0, x(0) =1

using one-step methods

u b
h(xn - xn-l) . an + (I-B)xn_1 =0

These methods preserve boundedness uniformly in u > 0 iff 6 > 1/2, and pointwise monotonicity

Permanent address: Department of Mathematics, Oulu University, 90101 Oulu 10, Finland.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National
Science Foundation under Grant No. MCS75-17385 AOl.




when 6 > 1. Since for 6 > 1/2 the local truncation error increases with 6 it is reason-
able to have 6 =1, i.e. the backwards difference method.

For ordinary differential equations it is possible [6] to derive sharp error bounds if
we know for which Ah ¢ @ the method (linear multistep method) yields bounded solutions to the

test equation
€1.2) %' = AR .

The set of such values of Ah are customarily said to form the stability region of the method.
A similar concept for Volterra integrodifferential equations can be based on a test equation

of the form
i 3

€1.3) x' = ax + Bof x(s)ds ,
(or similarly for integral equations of the second kind), see [1], [2). However, this test
equation is essentially an autonomous differential equation, and one cannot hope that preserv-
ing boundedness of solutions for such a test equation would imply good error behavior for pro-
blems where the kernel is truly time dependent. In [4] we proposed a different type of test
for discretizing the integral term: often in applications the kernel k(t,s) satisfies some
positivity properties of the form:

& €

(1.4) [ e(t) | k(t,s)¢(s)ds dt > 0
0 0

for all T > 0 and all smooth ¢. We characterized those discretization schemes which pre-
serve this kind of positivity, and, in [5], we derived error bounds for such methods when
applied to some systems of nonlinear Volterra eguati -s. We also applied the technique to
ordinary differential equations and showed that for linear multistep methods preserving the
positivity was equivalent to A-stability (the left half-plane belonging to the stability
region) .

For the problem studied in this paper, the global stability of the solution is not a con-
sequence of a positivity property of the form (1.4), but it, instead, follows from a pointwise

positivity of the kernel and pointwise monotonicity properties of the nonlinear term and the

=Je




solution itself. Therefore, we asked that these should be preserved in the discretization.

That narrowed the class of method down to the first order backwards difference method, but in

return we can prove a fairly strong convergence result.

We state our theorem in section 2, prove it in section 3 and discuss the application to

polymer rheology in section 4.

Finally, I would like to thank Professor J. Nohel for introducing me into this problem.
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2. Convergence theorem.

The following integral equation was studied in [3]:

t
(2.1) ux'(t) + [ a(t-s)F(x(t), x(s))ds =0, t > 0 ,

x(t) = git), t <0 |,

under the assumptions:

a ¢ C1[O,m) n LIIO,W), alt) > 0, atlt) <0

(H_)
. ka‘(t)/a(t) nondecreasing ,

I/F:R*K R, * R, P(x,x) =0 for all x>0 ,

(H.)
F
\_F c (R, ®) and Fily,2) > 0, Fyly,z) <0

(y,z « R, subscripts denote partial differentiation)

(9t (=00 + (0,®); gt-m) =1 ,
(H_)

9 iq is nondecreasing and g(0) > 1

We state a convergence theorem for the following discretization of (2.1):
n

g, = m_ ) * B ) a(nh-Jh)F(xn,xj) =0,n>0

==

j=—

(2.2)
xg = g(jh), j <0

We shall assume that the initial function g 1is also differentiable:

/q satisfies (Hq) and g « (.‘1(-"“.01 '
'
(H*) (
9 | sup |[g'(s)]| < =
se R _

Theorem. Assume that (H'l), (HP) and (H(;) hold. Then for all u > 0, h > 0, equation

(2.2) has a unique solution (xn}, such that X (1,g(0)] and for n > O, S

There exist constants - Qp By > 0, €

0 0 ik

> Civ @ : < ®
1 P Cyr ('4 0, 5 such that for any T

=i




u € (O,uO], he (0,hy and 0 <n < T/h we have

' C2T
{x(nh) - xnl < Cye (X + Tih

/ =n
h C4h
(2.3) + €. (=t + ——
3y u ‘
£ 1

If additionally a(t) decays exponentially, then there exist 6 ¢ (0,1) and C6 such that
(&R
(2.3) holds for all n > 0 if we replace the first term Cle a (1 +T)h by Cshé.

O
Remark. Equation (2.1) under hypotheses (Ha), (HF) and (Hg) contains a large class of
problems. For example, let ||a|ll =1, and F(y,z) = ¢ly) - ¢(z), with ¢'(y) > 0, then we

have the following equation
t
Fux'(t) + o(x(t)) - [ a(t-s) o(x(s))ds = f(t), t > 0 ,
{ 0
|
W x(0) = 9(0) ’

0
where f(t) = f a(t-s) ¢(g(s))ds. In particular, from this equation we see immediately that

-0

the limit equation (p = 0) is numerically well conditioned, as implied by f2-3) .
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Proof of the theorem.

In order to prove our theorem we have to first show that the discrete equation has essen-
tially all the properties that the continuous problem has and in particular all bounds hold

with constants independently of the step length h.

v
Denote a(nh) = a , then {a } ¢ 21, a >0, Va =a =~-a < 0 and (—E) is nonde-
n n n n n n-1 a’'n

creasing. We consider the discrete Volterra equation

n
B =
(3.1) i B h_Zman F(xn,xj) =0,n>0

20

Here gj = g(jh) so that lim gj =1 and {gj} is nondecreasing and 9 > 1L

jre—oo
Lemma 1. There exists a unique {xn) satisfying (3.1). Moreover, 1 < xn < 9 for all

n > 0.

Proof. Write (3.1) into the form

h2 n
(3.2) x +— ] a
n H

-0

Fix x.) = X
n o j

n-j n-1

The left hand side of (3.2) is a continuous increasing function in xn, mapping [l,gO] onto

[a,b], where a < 1, b > Therefore it has a unique solution xn, in the open interval

94

(l.go). whenever X € [l,gol.

O

Lemma 2. (xn‘ is nonincreasing for n > 0.
Proof. By Lemma 1 X < Xy Let m > 2 be first index such that me > 0. We show that then
2 : e .
v X K 0, being a contradiction. Since F(x,x) = 0, we have

b 2 m-_l

=W h_); Aoy (Flxpex) = Flr ) 0x,)]
€3.3)

m-2
-l Jam_jF(x 1,xj)

-




By assumption xm > xm_l so that the second term on left in (3.3) is positive. If we can

show that the term in the right is nonpositive then szm must be negative and a contradiction

follows.
Define J to be the largest index j such that qj = Xo1° Set
m-2
= v
Sh h-zw am_jF(xm_l.xj) -
and
m=-2
R, = h_{' B T, )X

Then Rm is negative which follows from the identity

m-1
i AL — &
R h me h.);’ am_j{l-‘(xm,xj) F(xm_l,xj)}
and from the assumption that x > x . But
4 m m-1
E 5 Va
a5 (a )m-J m
J
4 Va Va
3 =) {(=_ .- (> 12
k _ZD a m=j a m=J° j
m-2
va Va
1 +h) (D .- In, ,
J+1 @ ™3 a m-J j
where nj = am-jF(xm-l’xj) . Since (V:a_) is nondecreasing the term in brackets in the first

sum is nonnegative and in the second sum it is nonpositive. But by construction nj is non-
negative for j < J and negative for j > J and therefore sm > 0, and a contradiction
follows.
a
Next we formulate some other properties of the solution (xn}, all of which have counter-
parts for the continuous problem, [3].
Proposition 1. Solution depends monotonically on the initial data: if g. < {; for all

J J

j <0, then x_ < x for all n > 0.
= n-="n

Proof. Let m be the first index such that X, 7 xn. Then

e




m
Yyx - 9% ) = -h)a _{F(x ,x.) - F(x ,x.)
S Tm m = e m’"5 m’"j
+ BlR 2] - Pk ax))
mj m
and since F(x ,x.) > F(x ,x.) and F(x ,x.) > F(x ,%x.) we get ¥x < Vx which is a con-
m' "3 — m'"j m'"§ = m'"j m— m

tradiction.

O
Proposition 2. Solution depends monotonically on p: if {xn(ul)‘, {xn(u7)} are two solu-
tions to (3.1) with the same initial data but different u's, then “1 < u2 implies
xn(pl) < xn(uz) for all na > Q.

O

Proof. One sees easily that xl(ul) < xl(uz). Suppose therefore that m is a first index

such that xm(ul) = xm(uz). This would imply V(xm(uz) - xm(ul)) < 0. But

1
= V(xm(uz) = xm(vl))

m
h
(3.4) bl ~2m A (PO 005) s % () = Pl (u)) s x5 00)) )
m
1 1 o
& [q = El h _)m g Flglup s xup))

which shows that the right hand side of (3.4) is nonnegative. In fact,

u

m
1
hZam_jF‘(xm(ul) X (g} = = 3= V% () 20

-

F(xm(u2).xj(u2)) - F(xm(ul),xj(uli)

= {F(Xm(uz),xj(uz)) - F(xm(ul),xj(uz))}
- }
+ {F(xm(ul),xj(uz)) F(xm(ul),xj(ul)), 0 5

since both bracket terms are separately nonpositive. Hence we arrived into a contradiction.

O

3
E




Proposition 3. For uo > 0, ho > 0 small enough there are positive constants Cl' i G

2[
such that for all y e (O,uO], h ¢ (O,ho] we have

@

(3.5) 0 < h'IVxn < Clu_l(l * R/t 4 A aj,n>0
j=n

0

Proof. In order to bound Vxn one has to solve a second order difference equation. By mean

value theorem we have for some Ej € (xn, X y,

n-1
p 2 n-1 n-1
5 v xn + h an_jFl(gj,xj)Vxn = =h z Van_jF(xn_l,xj) =
-0 -0
This is of the form
)- s =
(3.6) h V(Vx)n * Gn Vxn fn '

where s is uniformly bounded from below:

G, > inf F. (y,z)+h Z a,
i veze[1,g,] & 3 2
= y{[ a(s)ds + o(n)} ,
0
and f satisfies
va s
(3.7) le | iC‘(~a—)l|{h.Z a; + (1+o0)]|vx |}

J=n
where C only depends on go. In fact, write

n-1

0
£ = hZVan_jF(xn_l, 95) +h g Va JF(x

~-co

1" Xy SR

-9~




n-1 ra
< 5. = ) = ; po
Then 0 < > =h i (a )n—jdn—jp(xn—l x])
Va h:l Va L
£ = b ! an_ 3P e %) <l |n ,Z, a

Va i .
+ i(:)liw{foa(s)ds + O(h)}|Vxn| .

since is negative and nondecreasing,

m,f

so that C = sup F(y,z)
Y 2€ [1190]

For the other sum we get

Is,| < nf -3 [F( )
1 %g- a n—jan-j Fno1” gj
Va =
cejt=) |nfa,
n

and together they imply (3.7).

- u U
| = . v = + = = -
Set 7xn Ve Then we obtain from (3.6) that n ¥ Gnyn =R fn
and further
H Wy
= S < B
(h i Cn"yn! = htyn-1| v IfnI
Suppose from here on that h = hl' where h1 is so chosen that 1 - |(%§)1| > 1/2 . Then

we see from the bounds for Gn and fn that for some constant G > O

v
+ GYly | « &
Yy, ly

(3.8) gt

| +g .

(o
h n-1 n

=10=




where qnicl(%a)l\hz.aj. since (o, = 2-10)
n

2 :
2’1" a0 h + O(h”) we obtain from (3.8)

1-n n j=n =
h
(3.9) ly | <@+ TG) ly, | + h/}:'coch J o+ -’;ﬁ) pla .
1+ j=2 k=j
Consider the second term in the right hand side of (3.9):
n § o
hG
s, = _Z (1 +33 hilak ;
J=2 =~}
By partial summation we obtain
j-1 n-1
e nil(1+%§) -1 A+ a ozv I
S_ = (L +=—=) \h a, + h .
n TR PP T i hG/u k=nalj
o v o
a
But a, =- ] Va <-(3 7§
3 eget TP
so that
j=1
hG
2 n=1 (1L +==} -1 M Va
(1+b-§) _— ajihcl(a)llsn
W oy hG/u
j=2
and hence, if u and h_ < h are such that 1 - E ll(y-é-) | > 172 €or u € $0.n.)
o' == GhR' "a"1 - s =l
.
h ¢ (0,h_ ] (which is possible since (25) - 848 h + O(hz) ), we finally have
0 a 1 a(0)
n+l 2 ®
AL he & L
(3.10) 8,5 255 I3 +=5 (1+u)]h25k 4
k=n
Since
h o
vyl = ey =gl cepnlay

(3.5) follows by substituting the bound (3.10) for sn into (3.9).

O

The next result will be used to prove the uniform convergence of the approximations on

-11-




the half line t > O.

Corollary 1. If additionally (jaj} € Ql, then

(3.11) X - % 0+ B = c,h I (kemh ay
¥ k=n+1

Proof. (3.11) follows immediately from (3.5).

O

Up to this point we have more or less followed the treatment of the continuous problem in [3].
In order to prove convergence we need to investigate the perturbation properties of the differ- |
ence equation. When proving the convergence we would like to substitute the local truncation
error in the place of the perturbation.
However, we can control the solutions only when we allow nonnegative perturbations, and
the local truncation error does generally change signs during time stepping, so that some extra

consideration is in order.

Lemma 3. Assume u, =V, =g., j < 0 and {u}, {v } satisfy
e 3 J g - n n
n
(3.12) Evu +h J a ,F(u,u,) =g
h n oL on=y o il | n
u n
(3.13) LV, +h ] 3 F Varvy) 2 q

-

Then v_ > u for all n > 0.
= n —

Proof. Let m be the first index such that Vi < Upe Then V(V—U)m < 0 and we get

m
2t - & <
g Vv-w) 4 h ] a5 (Fvpevy) = Flyu)}l <o

-0

contradicting (3.12), (3.13).

O

Let now {yn} be a sequence from which it is known that for all ny_ « [l,qO] (we know

that x(nh) ¢ ll,qol) and that it satisfies

=] Ju




n

0
= + X ) = >0
=¥ +h -Zw 3, Fly e yy) = p.on '
and yj = gj, for j < 0. Construct two seguences {wn} and (zn} as follows: W, satisfies
o n
S w o+ 4 i
B v, h ?; an_)F(wn,w)) a
where wj = gj for j < 0 and g |pnl if this will imply w <S4 otherwise set
v =9 and compute the corresponding value for Q.- The other sequence (zn} will serve
as a lower bound. Therefore define it by the same equation, now with perturbation K= -[pn{

whenever you would have z, > 1, otherwise set z, = 1 and define r, correspondingly.

Lemma 4. If {xn} satisfies (3.1) and {yn}, {wn}, {zn} are given as above, then

= < = -
|2ty | < Loz, .
Proof. By construction, 9,20 and r = 0 so that by Lemma 3 we have Z SR S The
conclusion will follow since we also have zn i_yn i_wn. To see this, assume for example that
m would be the first index for which s > W Then, since Y. 5 95 we must have qa.= lpn],

and therefore we are back in the situation of Lemma 3 and a contradiction would follow.
O
According to Lemma 4 we can proceed as follows. Suppose that x(t) is the solution to

! " ; hy,
the continuous problem. Define the local truncation error sequence {rn} by

n
u - N . o G
(3.14) p(x(nh) = x((n=1)) + h _Zm a _4F(x(nh), x(Gh) =7 .
If x  satisfies (3.1) with 95 = g(jh), then in order to bound Ixn - x(nh)| it is suffi-

cient to bound |w_ - z_ |, where {w_ - z_} satisfies
n n n n

n

(3.15) 0<L9w-20_ +n Y a {Flw,w) -Fz,z)} <2,

o n e N n 3 = n
with wj = zj = gj, j < 0, and by the above construction we can assume that
i & B IV, L9 for all n > 1.

«i3=




Lemma 5. Assume that (wn), {zni C ll,qol and satisfy

B |

) - { - <
(3.16) 0 < Viwz) +h _Im 3, (F W) - F(z 20} b,
and wj = zj = qj Eoy 7 < @, 3L uO' ho are small enough, u « (O,UO], and h ¢ (O,hol,
then for some constants A, B, C, depending on uo and h0 but not on U and h we have

Bhv
n=-1 n-1 -V

(3.17) lw-z|<cn I p_e o, —hé& :p e ’:Th) :

1 v=0 ]_+—E— v=0

O
Proof. As in the proof of Lemma 3 we observe that (3.16) implies w Z for all n > 0.

Therefore we can devide the sum in (3.16) into two parts:

n-1
R
3- = - =,
(3.18) p V(w-z) 4 h _{) AP v - Pz o))
|
n-1 {
P, + h § an_j{F(zn,zj) - F(zn,wj)} "
Let a = min F.(§,n) and B = max -F_(£,n) , then (3.18) and w, > z. imply
g,nell,a.l e tonell,g. ] # «= 3
’ I,O ’ ’ O
i n-1
e = - . .
(3.19) i V(w-z) +an _Zm a_y (Wmz)
n=1
< + Bh a . (w.-z, .
=S E n-3 %5725
o o«
Set w-z = and fa(0) = B. Choose A < a! a(s)ds and h so small that ah Z a(jh) > a.
0 ¥
Then (3.19) implies
n-1
Ah Bh h
3.20 + — < — -
( ) (1 u)cn={’n-1+uh§cj+upn'n>l
where
-1
Ah h
Ly (1 + U) L P o

-] =




To solve (3.20) we first consider the roots of the polynomial

2
(1eMy,2 o.M B0, L, .
u v w

When o and ho are small then we have after a straightforward estimation two positive

roots, Al' Az say, such that for y « (O,uol, h € (O,ho)

and

A e 2

e
where K depends on uo and h_. The solution Cn then satisfies

0

n~1

h 1 1 v+l v v+l v
(3.21) § & Szt ¥ ) R SO S I R
pr.A b = "
Rl Auh 2 *1 - BN 2 2 1 1
Bh =
Ah/u v _ Bh Bh, A v Ah Ah
% e e < = S o -
Now XZ L v and ( 2 l))\2 < =1 + A)e and (Al 1))‘1 < e {1 )

Bh
n-1 ——v -V
¢ Bh Bh, A Ah/u Ah
Lis \)ZO Bacy'h W ¥ T+ Ol 11 + 0 )
Bh
nt Ry
< Ch 2 e P

n-1 -
h/u Ah
* T+an/u vzo -y

for some constant C, and we hence obtained (3.17).

Next Lemma bounds the local truncation error.




k
Lemma 6. Let (ré} denote the

local truncation error (see (3.14)).

Then there exists

C = C(uo.ho,qo) and K = K(un,qo) such that for u ¢ (O.uol, h « (O,hO] we have

lT:l < Ch{ [ a(s)ds + % o Hin-lh/n
\nh-h ’
(3.22)

nh . L \
e [ atmn-s){[ atsras + > o™V as |
0 s i

)

Proof. If x(t) 1is the solution to the continuous problem, then

n jh
(3.23) ux'(nh) + J [ a(nh-s)F(x(nh),x(s))ds = 0
-® (§=1)h
Let us consider the sum first:
n jh
y ] a(nh-s)F(x(nh),x(s))ds
@ (j=1)h
n
=h ] a(nh-jhF(x(nh),x(3h)) + S + 5,
where
n  jh
s, =1 | 1G-Dh-s][-a’(nh-5)F(x(nh) ,x(s)) ds
~» (j=1)h
and
n jh
s, = ) | [(3=1)h-s] [a(nh-s)F_ (x(nh) ,x(s))1x'(s)ds
-» (j=1)h 2

We know that x(t) is decreasing and x(t) (l,qo] for t > 0 [Theorem 1;3]. Therefore,

set C = sup [F(y,z)! and D = sup !Fz(y,z)|. We split Si's into two parts and
Yo2e [1’qol Y 2 2¢ lllqnl
estimate:
0 jh
o Z f [(j-n)h-s] [-a' (nh-s) F(x(nh) ,x(s)) ]ds|
11 -
= (j=1)h
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0 jh
<Ch) [ la'(nh-s) |ds
“ (3°Dh J

a'(0)

< <l 5oy

[nef a(s)as ,
nh

where we again used the logarithmic convexity of a(s). Similarly we get, since x(t) 1is

decreasing,
nh
a'(0)
Is;,l < nl =% | jo a(nh-s) (-F(x(nh,x(s)))ds
nh 0
But -f a(nh-s)F(x(nh) ,x(s))ds = ux'(nh) + f a(nh-s)F(x(nh) ,g(s))ds, and since x'(mh) < O,
(s} -0
we obtain
a'(o) =
'512' < ¢f =T6) |h fnha(s)ds ’
Hence
a'(o) 3
Is,| < 2|55y Im jnha(s)ds :
Also 521 is of this form:
0 jh
|521| =1 _f (3= h-sla(nh=s)F,(x(nh) ,g(s))g" (s)ds |
-» (j-1)h

=D sup g'(s)*h f a(s)ds ,
se (=»,0] nh

while 522 carries the effect of the boundary layer: By [Theorem 2;3] (which should be com-

pared to Proposition 3) there exists constants Kl and KZ such that

‘KICAL ™

K
(3.24) ocx'ity cFe +x, [ ats)as

Substituting this into 522 yields

nh Ky “K.8/y e
+ K, £ a(r)dr)ds

1
[s,,] < pn % a(nh-s) (== e




. o H
We have to still consider the error introduced by replacing ux' by - Vx. By

theorem we have for some {n ¢« ((n=1)h,nh)

5 x(nh) - x((n-1)h) 1

(3.25) = px'{ah) - » = hx"(€ )
h 2 n

Using line (4.1) in [3] and (3.24) we obtain

T -K.E /u
: (s -
b2 x5 )| < che™————+ [ a(s)ds}
2 n ' - \ u » |
{ E f

Collecting all terms yields (3.22).

Note that (3.22) implies that |r:| is uniformly bounded for n > 2, u € (0,u0], h ¢ (O,ho].

However, the same is true also for 1(?\,

h

above that the unbounded term in the bound for 1_: CE, comes from (3.25). However, the

1

which we now demonstrate. We see from the proof

mean value

0

solution has a boundary layer for small t >~ 0, and this implies the uniform boundedness of ;

this term. In fact, there exists a continuously differentiable function £ on

that ¢£(t) « ll.qol and sup |£'(t)| < =, and a constant X = K(ho), such
te[0,)
(3.26) [x(h) - e(h/u)| < Xh, for h ¢ ()

(see [Theorem 7;3) and notice that since ¥£(t) is decreasing, so is |£'(t)|).

implies that

x(h)=-g £(h/y) =g

0 ' < ] g
b =t = ] & Py » i t/wl + 2ky

which is bounded as soon as u < u and therefore there exists M = M(uo,ho)

0’

h
ITITLM for b_-_po,h;’ho.
Next we simplify (3.22) somewhat by assuming that af(t) < rxe-Et for some
Then we have for some C <« » and y > 0, with y >0 if g > 0,
1< Fh(o"(n—l)h o C-K(n-l)h/u)' & 58
n - u
and
hl < ¢
Tgl =

»18=

[0,%), such

that

But (3.26)

such that

a >0, B_"_O.




e ——

Substitute these into (3.17). The first term in the right of (3.17) yields,

(3.27) CleBT/Ah, if y> 0, and

(3.28) c (1 Pn, if v =0

The other term yields

=1 -n+l n-2 -vk
h an, ™t | Ah h h Ah
~ (% % = o+ = ]rll T ITn-vl(l &)

\ )

Ah

o R Ah, -
=C = (W 5 ) + S, where S S1 + 52 ’
and,
-1 n=2 -V
IS,<}_‘.(1+ﬂ) °Ch21'(1+A—h-) <gh .
= M — A
0
and
2 1= 1-
eyl s 8T
2 n a - R L
where a =1 + %? and B = ekh/u. Taking, if necessary, a smaller A, we see easily that
|Szl is bounded in the form
14 l-n 1-n)
ls. | cc Bl + 2y - Gl e sy Y
2 S y "} )

Summarizing the above bounds yields (2.3). To complete the proof assume that a(t) decays
exponentially so that (3.27) holds. From Corollary 1 we see that for m > n, and for some
Yy > 0,

-n

e B ’—‘uh) :

xn - xm| < Ce

and for the continuous problem we have similarly (see [Corollary 2.1;3])

[x(nh) - x(mh)' < Ce-Ynh =

Assume that mh > T and nh < T.
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Then

[x(mh) - xml < |x(mh) - x(nh)| + |x(nh) - xni + lxn - xm: -

where the right hand side is bounded by terms of the form

(and by the boundary layer terms). Allowing T to grow with h one can bound these both
=1
terms by Kha, with & = (1 + C2/Y) , which completes the proof of the theorem.

0

g

=20

é
|
|




4. Example from polymer rheology.

For background material see [3]. In this example x(t) denotes the length of a molten
plastics filament: it is originally of length 1, then it is elongated up to time O when it
is allowed to recover freely. Hence x(t)=g(t), t < 0 describes the elongation history and
x(t) for t > 0 the free recovery.

Functions a(t), F(y,z) and g(t) are as follows:

8 =t/7.
a(t) = 2 a.e = '
i=1 =
where
1 Ti a1
1 103 107
2 102 1.8
3 10 1.89 - 10%2
4 T 9.8 = 10"
5 107t 3,67 ~ 10°
6 1072 5.86 « 10°
7 1073 9.48 - 10’
8 107° 1.29 - 10°

(these numbers were provided by Professor Lodge and based on results of H. M. Laun),

w

e 7. =t itf_o

Since a, F, and g are all of relatively simple form, one can write the integral

0
[ a(t-s)F(x, a(s))ds

-




down exactly and only discretize the other vart
&

[ alt-s)F(x, x(s))ds .
0

Furthermore, although the backwards differences lead to an implicit method, the specific form
of F implies that at each step one has to find a real root to a cubic polynomial, and that
can be written down in terms of square and cubic roots. Therefore the final recursion formula
is essentially an explicit method, which generates from the finite information {xl,...,xn}

a new value x R
n+l

In an earlier work (see [Appendix A;3]) eguation (2.1) was considered with u = 0, and it
was found that the model predicted more recovery than was observed experimentally. Since the
solution is increasing with 1y, introducing yu > 0 1leads to a reduction in the predicted re-
covery. Unfortunately, the numerical experiments show that the final recovery is effected very

5

little by u (for uy e Floy Ly, although the solutions behave very differently for small

t > 0, and so, for high strains there still is a disagreement between theory and data.
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