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ABSTRACT

Let

(1) U 0 < x  < 1  , (v = 1, . . .  ,n )

be the unit cube of ~~~ Using ideas pionee red in 1913 by König and Sz~ cs in ~2),

we study the following problem . Let

k k
(2 )  L : X  = ~~ A

1 u . + a  ( k < n )
fl V 3. V

be a k-flat , so that the point ( a )  is interior to U , and such that Lk is in

a general position (G.P.) and write L
k 

~ G.P.  By this we mean that any k among

the x of (2) may assume preassigned values for appropriate values of the

Ne interpret Lk as an optical signal starting from the point (a ) at the time

t = 0 , and spreading uniformly within the k— flat L
k 

. We assume 

V

the 2n facets

x = 0 or 1 , of U , to be mirrors , so that the reflected path of the signal

is a finite or infinite k-dimensional skew polytope c U . Using the auxil-

iary function

(x)= x if 0 < x  < 1 , ~x )= 2—x if 1 < x < 2 , and (x+2 )= (x)

if ~~~~~~

we may represent the reflected path by the parametric equations
k

x = ( 
~ A1 

u . + a ) , (V  = 1,... ,n)n v i=l V 1. V

For the x defined by ( 3) ,  we study the quantity

p~ 
= ~sup inf (max }x )

L E G.P. (u.) ~
ii

and wish to determine , or to estimate it.

Sponsored by the United States Arm y under Contract No. DAAG29-75-C-0024.
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Theorem i. ~~~~~~ (l < k < n — l )
k ,n 2 2n

1 n—i 1
Theorem 2.

n—l ,n 2 2n 2n

It is shown that there is an essentially un ique which does not penetrate

into the cube

1 1max x - —~ 
—

V V 2 2n

The polytope fl
3 

is identical with the ~urface of Kepler ’s regular tetrahedron T

inscribed in U
3 , 

and Theorem 2 gives , for n = 3 • an apparently new extremun

property of T . Finally we state

i kC~~ 1~~~E~1f~ ~ k,n 
= — 

~~

-

~

- (1 ~ k ~ n-i)

This was established in [4] for k = 1
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SIGNIFICANCE AND EXPLANATION

Suopose that we have a square billiard table a b c d , and that we shoot a-

billiard ball ( b.b. ) along any of the paths represented by the diagrams

These are very simple closed paths that we see on windows of numerous suburban

homes. A famous theorem of the late 19th century mathematician L. Kronecker

Lmp hies the following: If we shoot a b.b. in a direction having an irrational

slope (like V~ , say) with respect to the sides of the table , then the path of the

b.b., if pursued far enough will come as close as we wish , to any point of the

~:aL1e. We then say that the motion is ergodic .

In the opposite direction we ask : What is the largest square A B C D such

a C that an appropriate b.b. shot , no matter how far pursued ,

D _______ C will never penetrate inside the square? (We do mean here

.0 b’ that A B C D is concentric with , and parallel to the table

A a b c d.) The answer is the square r~ B C D of the diagram ,

-~ a’ 0 with AB ab , and the appropriate shot runs for ever

along the boundary of the square a ’ b’ c ’ d’ whose vertices are the midpoints of

th~ sides of the table. This can be shown : The path of any other slanting shot

nu;,t eventually penetrate inside the square A B C D (See our reference [5]). By

s.~in t i n g  shot we mean that the shot is not parallel to any of the side of the table.

~
‘ i~ represents a characteristic extremum property of the shot a’ b’ C ’ d’ . The

nt pape r explores the problem in higher dimensions .

r~t~ rn on~ ibi 1~~t7 for the-’ wording and views expressed in this descriptive summary
1 i ~~~ wLth ti-C , and not wit h the author of this report.
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EXTREMUM PSOULEMS FOR TUE MOTIONS OF A SILLI7tRD BALL I I I .
THE MU LTI-flIMF1~SIONJtL CASE OF K~iN1G ANI) sz(ics

I. J. Schoenbe rg

1. In t roduct ion and ma in  results .

This  is the t h i r d  pape r on the subject , but can be read independently of the f i r st t - .~

( ( 3 1 , (4 ) ) .  Let

(1.1) U : 0 < x < 1 , (v~’l ,. . - , n)n

be the un i t  cube in Rr
~. Let (a ) be a point in te r ior  to U and

(1 .2)  L’ x = A u  + a , (~~ l , . . ., n ; — = < u  < )

a re c t i l i n e a r  and un i f o~~ motion , where u = t denotes the time. We interpret  (1 .2)  as

the motion of a bi l l iard ball ( b . b . ) ;  as we wish to reflect  the b.b. in the usual  way on

s t r ik ing  the 2n facets x 0 or 1 of U , we use the funct ion ( x >  def ined  by

x if O~~~ x < 1 ,

(1.3) ( x) and ( x + 2 )  ( x )  for a l l  x -

2-x if l < x < 2 .

We have used this  fun ction in [3) and [4] in a slightly di f fe rent normal iza t ion . The re-

fl ected path of the b.b . within U ma y be described by the equations

(1. 4) : x = ( A u  + a ) ,rt v V V

A classical theorem of Kroneck~ r (See ( 2 ) ) ,  and its general izat ion (See ( 1 ) ) , show

the foll owing:  If th~ n components ( A )  are arithmetically l inear ly  independe nt , then

the motion (1.4) is erg odic , i.e. the path Ii’ is dense in U - If 1 ~ k ~ , n-l ,

while the ( A )  actnit precisely n-k l inearly indepen dent linear homogeneous relat ions

with integer coef f ic ien ts , then the path ))1 is contained in and is dense in a f i n i t e

k—dimensional skew pol ytope . This was shown by x~nig and Sz~cs in 12) for k 2

and n 3.

This result shows tha t the b .b . motions generaliz e naturally as follows : Let

(1.5) — ~~~~~~~~~~~~~~~~~ (i—l , . .. , k)  (1 ,~~ k ~, n — l)

be k l inearly indepe n dent ve ctors. We rep lace ( 1 .2)  by

( 1.6) x — I X~u~ + a , (v— i ,. - . ,f l ;-  ~ —)

Spon:;orcd by the United States Army under Contract No. DA 29 75-C 0024.
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~t j - h  we ‘~~~~,.r~~ l t  ~; i  k — d im en s i o n a l  opt ical si gnal  s t a r t i n g  t ror ~ ? n i n ~ (a ) 
~

i- j
~

u it  t~~ im~ t = 0, and sj readinq  u n i f o nn ly w i t h i n  the k — f l a i  T . k. s. row t h ~~- k

of t h e  f~~i ’, t s  ef i- ~ m i n im , t h i  r f l i ’ - t -~ a t h  ef t h i  s i gna l  is a f i n i t i  n t  i n —

n i t .  k — d i m en s i o n a l  skew f~~l - t  h . The f u n c t i on ( x > m i - .- a g a i n  be m e d  and  n~~.

that  t he  t l . - t . - d  t A t  1:; T a r ~I n e t r i e . l ly  n.- ~ ri r i t i d  b y I : . . u a t i c r n ,

k -
( 1 . 7 )  x ( 1

u . a I , ( - =1 ~~~~~~~~~~~~ u .

in r d . - n  t i i  d V ’ i i  i~~~ 4 i f l i ! l it e  IoW ,~ ] — - ’ l r i i  ni l  pr~~ u rn s we s h a l l  a- j t m ~~ ‘i ’ a t  t h i

z i ; i n a l  signa l  ( l . i , )

k t i r : i t i i ) r i  I .  We i a ’ t , - .n t h e  i~~r i il ( 1.6 )  is in rs~ p o s i t i o n  ( ( P p . ) , r o v i d i d

t h i t

( l . A)  th e  n k m a t r i x  i t fl h au no “ i m i ;h i n g  m i n o r  of order k -

t~ 1 U V i i t t t  I f  I - V
1 

- . . . n , t h i n the k l i n  or f un n t  m o r ~-

x , x X

of (1. ’ , ma y a -irs - i t !  i t  r u  ~ r i - s i ~~ i t i d  v i l u e s  f i i .  r h  r m .t ~~ u~

. 1  0 ‘ - •
~
- , x = (ii ) , c = ( -~, 

~
- ) , and - i n si d e r  th e  cu be

n(1. ’) C (I x — c )(  -

w L i - r ~ l x i ’ = max ( x 1
ii J

t i f i r i t  1 , 1  2 .  ~ in t k i a ~ t he  j . i t  ( 1 . 7 )  in -  —a ~~~i s s i t l i  , and t i - n t i  ~~t ( - -:

j~~~~~~ i - ( ~~~t t h a t  i t  i m r i  G t ’ .~~ an t h i t  l ever  j c net r a t c s  m t  the cube (1 .9 )  , hence

r - I t

( 1 .10) ,k n 
=

As ar x~ rome q -ni i t  - t  f t  i i  r~~ i i  , wi t udy t h e  t 1 l i i w i r q

Problem I .  To il -f m i t e , a to e n t  i n  t h . -~u a nt it -

(1 .11) ;s~ y sign

the iu [r e s~~~ b i i  n i ;  t ake n f i r  a l l  h avi t - i~~ m s - ih 1~ u t h  
k 

~~,

Our m a i n  i - i l  t i n  an m i t

r -  ri 1. Wi I v -  i to i i  i t  ,

I k(1 .].’) k r  I — — , ( 1 k n n — I )

In ~ w.- = ~ i l 1  Ti a .  ri 1 ti -7 u t  l i t  i i ;  a p ath ~ ( ) for  va lues  of sh~ ct

I n  -1 ml  u . .- t — ~~-- - i = ’- wi 0

4
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In [41 I have shown that the equali ty sign holds in (1 . 12 ) for the case when k = 1.

We can now do the same for  the other extreme came when k = n-i

Theorem 2.  We have that

1 n—l 1(1.13) pn—l ,n 
= — -

~~~~~~ ~~~ • (n 
-~~ 2)

The Simplest case when n = 3 , and therefore

(1.14) p2 ,3 =

leads to what I call Kepler ’s tet rahedron. .1. Kepler was the f i rs t  to notice that four

appropriate vertices of the cube U
3 are the vertices of a regular tetrahedron T . P.S

any two facets of T intersect in ~. facet of 1)
3 forming equal angles with that facet ,

it should be clear that the surface of T carries a reflected signal . It carries ,

of course , many such , but let us single out one of them and denote it by - Actually ,

this signal ?~
2
~ is readily foun d to be ~—admissible, and it  is essentially the only

which is .~~ —admissible . This is an apparently new characteristic extremum property of

Keple r ’ s tetrahedron : P.ny other signal (1~ in general position, must penetrate into the

cube c3 , with p~~~~~~ .
p — 6

Theorem 2 allows us to generalize this extremum property of T : There is an essen-

tially unique signal which is in general position and is ~!_ -admIssible. It is

explicitly given by

x = ( u I , (v= 1 n—i
(1.15) ~~n—l : 

v v

x = (u+u +...+u ~~~~~~~~ (_ = i < u , < ) .n 1 2  n— i 2

In our elementary paper (5) we considered the case of n=2 , when the path of is the

square with vertices in the midpoints of it
2

Theorem 3. We construct explicitly the signal ( - 
~~~- ) for the two cases

(1.16) (k ,n )  = (2 ,4)  and (k , n )  = (2 ,6 ) .

Notice that (k,n) = (2 , 5) is miss ing:  I could not do it.

In view of Theorems 1,2 and 3 , I wish to state

c~~ije cture 1. The value of (1.11) is

(1.17) 
~
t k ,n 

= 

~~~~ 
• (1 ~~ k n — i ) .

The remainder of this paper is in two parts and an Appendix , Part I deals with

monochromos and n—chromos in already used in 141 for  k = 1. We derive Theorems 1’ ,

— 3—

-~~~~~~~~~~~~ ,- .~~~ 
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2 ’ , and 3~~; in Part 
II it will be shown that these theorems are equivalent to the above

Theorems 1, 2 , and 3 , ru -uj i ct iv i- l y .

There are three out s t and ing  problems that  we leave un resolved:

10 . A proof of Conjecture 1.

2° . A general arithmetic—analyt ic  construct ion of a signal

(1.18) fl k ( ~ —

as done by Theorem 3 in two very special cases .

3° To show that the number of signal s (1 .18) is f i n ite , as shown in [41

for k = l .

Problems 10 and 2 °  are probably related and all three d i f f i c u lt.

In the Appendix (~~(l0 and 11) we study the same extremum problems , where the recti-

linear reflected k—flats are replaced by k—dimensional Lissajous manifolds. Again,

Theorems 1’ , 2 ’ , 3’ on n—chromos , allow us to derive imn~~diately three Theorems

2 L 
3

L concerning the new s i t u a t i o n .

—4—

I

4
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I. n—chromos

2 , h i s - i d i o m .-, .

We consider the funct ion

(2.1) l x i  = mm I x — m i  for m € ~

which is related to the function (1.3), in fact {x } = ( 2 x  1/2.  It seems tailor made for

d e a l i n g  w i t h  systems of parallel arid equidistant planes in = {u = (u
1 

u
k
)}. For

k -

i t  ~ \‘u .  + a is a non-constant  l inear  func t ion  of the variables u .  , then the equa—
1 1

tj cin
k

( 2 . 2 )  f ‘
- ~

1
u + a )  = 0
1

represents  such a y;tem of planes , it being equivalent with the system of equations
k -

(2.3) ~ A’u . + a = j  (j  € Z ) .
1

Let

(2.4) 0 < 5 < 1

and let us replace ( 2 . 2 )  by the inequal i ty

( 2 . 5 )  Mk (~~) : + a }

This represents a system of con gruent , parallel , and equidistant  slabs of space. We call

t i c  point-set tt k (~~) a monochr ome (M . C . I  ~~ ~k , because we like to think of its points

as carry ing  a ce rtain color y . The most fami l i a r  case is k = 2, when M2 (6 )  assumes

the aspect of an awning, of the kind used to provide shade to storefronts.

We s h a l l  r e fe r  to the planes (2.3 ) as the central planes of the monochrome (2.5)

(cen t ral  l ines if k = 2 ) .

The d is tance  between two consecut ive central p lanes (2 .3 )  is found to be p =

while the width of a slab of (2.5) is seen to be w = 5/~~(
i
)
2 Therefore

- w
p

and for this reason we call S the density of the monochrome M
k
(S). Clearly S

represents the density of the color y in the space containing

—5—
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3. r i — c h r n u m ’ S .

Let

(3.1) n ‘k

and let us have P n r n c u r i o c ! r r - s

k k k( 3 . 2 )  i~I
1 

( 5 )  it u ( i )  M
n 

( i )

al l  of t he  sam e dens i t .  it . To riei ti u ’ mat te rs  more picture sque , we t ’ i n k  of  ~t
k 

~ as

- am - in -; the color ~y

D e f in i t i o n  3. he u57 th at  t h e  n monochrom es ( !  .2 )  de f laie an n-chromo k 
(~~~ L9:

vid ed t h a t

( 3 , 3 )  ‘J1 t-~~ ( . )  ~ :t k

The c h a r a c t e ri s t i c  u r n  . c c -  c~~~i-r. n—chrome  is t h er e f o r e  t h a t  eve r -  p o i n t  Cu ) of

is covered by one or more of t h u  colors -
~ 

. Using  ( 2 . 5 )  we man re; r ec e n t  our

monochromes by
k

( 3 . 4 )  t : 5 ( i )  { I a } , (~~~ l n )
S 1 v - 2

Definition 4. We say that the n- ironi c )~ ( 5) is a d n t m ; u i b t c ,  ; r n ’- i . l i  1 t a t  t i e  u t

of n vectors

u l~~~~ k(3 . 5 )  = I \ ‘ ,• _ , ,  ) , ( =1 
V

which are the normal vectors of our  monochromes , have the following n m -  rt :: t i  r: cub -

riot of k vectors 
~~1

< 
~~~~~~~~ k~~’ ~~~ t h e  

~ -ice
1 2 k

~~ 5 !en~ ly : Ml (~~) Pt!: order m inors  of t h e  m a t r i x

(3.t) .‘ = II 11(1
V

are different from zero.

The following lemma seems evident  and requ i res no t r o o f .

Lemma 1. A n o n — s i n g u l a r  ~ f f i n i ’  t r a n s f o r m a t i o n  of )u i n t o  m t - l i  maj s  monochromes

and ri — chrotmuos into l ike  objects of t h u  nam e d e n s i t y.

‘ To ii i- exarn;ulcs of n— chromo s in the  r u i i t u ’ r  iS into  t i d  to ins ;  t t to 5— chr omo (2 ~~!
of F i j u i r i .  1 (~~~) ,  and I i i -  4—chromo ~~( i / 2 )  of F i g u r e  2 ( : 7 ) .  Thu f i r s t -  is t~~t
admissible , I a n - a u: --  i t s  monoch t u rn e r  M , t t 4 , in d i , a n i  parallel : t i 1, sec- mi t in i l m i ! ! .

1110 cc no tic  of m l  monochromes ar,  ~ar o I  ( i l .

4
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4. An extremurn ~~~rob lem f o r  a d m i s s ib l e  n-ch romos .

Let

(4.1)  A
k

( 5 ) ( M ~~( i ) , M~~( I )  .M
k (1)}

denote the n—chromo defined  by (3 . 4 ) .  I f  we keep everything fixed in ( 3 . 4 ) ,  e x c em n t that

we replace the densi ty S by 6’ > , t hen  i t  is clear t h a t  k 1 .  C is a fo r t io ri  an

n—ch r omo . This is no longer t rue  i f  we try  to d i m i n i s h  the dens i ty  . In fact , keeping

only k and n f ixed , i t  w i l l  be our main concern to f i n d an admis s ib l e  n— chrome

having as small a density S as possible . Evidently ,  S can not be too small .  It is

t r i v i a l  that  we must have

( 4 . 2 )  6 >

for if i , then our monochromos ( 3 . 2 )  are clearly unable to cover , as r equ i red

by ( 3 . 3 ) : There jus t  isn ’t enough pa in t  around!

As mentioned above we are interested in

Problem 1’ . To determine, or to est imate s t he  quan t i ty

(4 .3 )  iS = infimuin 6P ,n
for all densit ies iS of admissible n—c!-iromos

The main resul t  of Part I is

Theorem 1’ . We have the i nequa l i t y

( 4 . 4 )  5 , (1 < k a n - i )
k ,n = n  =

Pemark. The result  ( 4 . 4 )  is ra ther  t r i v i a l  if P = 1, in fact

( 4 . 5 )  =

Proof of (4.5): 

l ,n 

( 4 . 2 )  it s u f f ic e s  to e x h i b i t  an admissible x~~
(
~

) of d e n s i ty

Observe first that the requirement that ~ be admissible drops out because it is

automatically fulfilled for k = l~ The relations (3.4) redu ce to

(4.6) M
1

(uS ) : I l~~u + a } < -
~

- , (=1 n)
v ~~ 1 v — 2

where we implicitly assume tha t i~~ � 0 for all s , or else we could not speak of mono—

chromes : The mat r ix  ( 3 . 6 )  re duces to a column of non -van i sh ing  e l emen t s .  Secondl y ,  i t  is

clear tha t  the monochromes of P1 of densi ty

(4. 7) M~~H :  {u
1 + } , (um l n )

do not overlap and cover the real axis P
1
. Therefore S

i n  1 and this established (4.5).

-I
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5. k,~ .~ oof Of Th cOrp!n 1’

We shall proceed am , fo l lows : We sha l l  exhibit an admissible , 1((5) having a density

which is am ; close t i  as we wish , t h e r e by e s t a b l i s h i n g  the inequal i ty ( 4 . 4 ) .  This

is done ‘n two s tages.

A. Construction of a ce r ta in  n o n_ a d m i s u i b l u  of densi ty  6 =

Let

(5.1)  6 = ~
- , q = n-k

We use the freedom a f fo rded by Lemma 1 and  may , w i thou t  loss of gene ra l i t y ,  assume the

central  planes  of the f i r s t  k monochromes to Di- the p lanes u - = j  , hence

( 5 . 2 )  hi
k (S )  {u - 

~
-) <}  , ( - = 1  k )

In Figure 1 we e x h i b i t  the case k = 2 and n = 5 of our  construction , but the same

construct ion holds f o r  any k and n ( 5 k ) .

~~~~~~~

. i O

.3 N HE
r i  _ H

2 . ~ . 5 q • fl -k .

r i gu re  1.
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Notice that monochromes (5.2) already cover all of Rk, with the exception of the lattice

of cubes having side s = 1-6

(5. 3) C (m
1 

m
k

) : C) x — mCI ~ ~
-
~~

-
~~

- , in = Cm . ) €

The remaining q = m-k monochromes are to cover all those cubes .

I claim that the monochrome

k
~~~~ u .

(5 . 4 )  !t~~~
1

(m ) 
:tl q

Just covers all  cubes
k

(5 .5 )  C(m
1 m2

) such that  ~ m . s 0 (mod q)
1

Proof of claim: We look at the cube C(0 , . . . ,0) and let

1—6 l — ~ 1—6 1—6(5 .6)  A = (— —f--- —--i—- ) , B = (—i —— —i--—
be its vertices such tha t  AB has direct ion n umbers (1,1 1). The slab of ( 5 . 4 )

containing the orig in is defined by
k

~ u ,
1

( 5 . 7 )  — — <  a

Notice that  the right bounding p1an~ ~ u / g  = 6/2 contains the point B , because at

B we have by ( 5 . 6 )

~~~~~~~~~~~~~~~~ k 1 n k n-k _ k S
q ~~q 2 q 2 2n q ~n 2

by ( 5 . 1 ) .  S i m il a r l - - t he  l e f t  bounding plane — ( 5 / 2 ) = ( ~ u .)/q parses through A . The

normal to the monochrome (5.4) being the vector (1 1), it is clear that (5.4)

conta ins  the set

- J  C (m m ) .
r 1 k
L rn 0

i owi v, r , the central planes of (5.4) are

k
U .

1 
= j (j Z ) ,q P

aria - ‘ - - : ~ ; -a - ; s  through the cente rs of all cubes C(m
1 

m )  such that ~ m . = q j
1

This  T r r i vu u our claim.

It ; parallel ‘ r- .nu ;iation we now de f ine

— 9—
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k
) u . + r—i

(5.8) M
~ +r

( 6 )  ( i 
q ) < 

~

- , (r= l,2 .q)

and this covers all cubes
k

C (nt
1
,. .. ,iu~ ) such that m . S —r i- i (mo d q)

1

because the central planes of (5.8) pass through their centers . The n-chrome

(5~~ ) A
k (6) = (6 ) (6 )

def ined by (5 .2 ) and (5 .8)  is the inadmissible  n— chrom o of densi ty 6 = k/n we wish to

construct.  ( 5 . 9 )  is not admissible because its last n-k=q monochromes are pairwise

parallel.

B. Construction of an admis s ib l e  n—chromo of densi ty  5 close to k/n .

This w i l l  be achieved by an appropriate s l ight  per turbat ion of ( 5 . 9 ) .  We start by

select ing a f ixed ma t r ix

(5 . 10)  A = I I a II (r=l ,. . . ,q;i=i k)

having the fol lowing propert ies :

(5.11) The elements a , are integers ,
ri.

(5.12 ) All minors of A , hence of orders f rom 1 to min (q, k )  are ~ 0

From the kn own total posi t ivity  properties of the binomial coef f i cien t s , both conditions

are v e r i f i e d  if we select

(5.13) a .  = ( 
k+v ~

We are now going to modify the n-chromo (5.9) as follows. We will select for it a density

to be determined later .  We replace the first monochromes (5 . 2 )  by

(5.14) tt
k
(~~) : (u — ~~- !  < (v= l k ) .

- , ui 2 — 2

For the last n—k q monochromes we prescribe their central planes to be

P
ii . + ( r — l )

( 5 . 15 )  r ,j  
: N 

1 

q ~~~~~~~~ 
a
rl

u l + a
r2
u
2 
: •~~~~

+ P
::

U
k ~ , €

Here N is a positive integer to be made large later. We claim that every lattice point

(m . ) € ~ k in in one of these planes -
1 — r , ]

— 1 0—
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For if ( r n )  € is given , we determine the uniqu e r such tha t
1

( 5 . 1 6 )  r S — in . + 1 (mod g)
1

and then

(5.17) (is .)  € m
r ,j ’ 

for  some i ’  € Z

Thus
q ~

(5.18) Z c u u mu -
. r ,Jr=l j=— =

Let us now look at the geometric aspect of the planes mu . (5.15) may be written

as

(5 .19) mmr j  : ~ u
1 

+ 
~~ 

(a
ri

u
i 

+ a
r2 u2 + ... + S

rk
U k

) = i — r+l

and this shows that
k

(5.20 ) all the planes mu - are nearly parallel to the plan e ~ u . = 0, provided
1

that N is suf f ic ien t ly  large.

Let A ( m ) B ( m . )  be the diagonal of the cube c(m . ) , which is parallel to the old

diagonal AB of C(0 0). Let r be fixed such that (5.17) holds. We construct a

monochrom e M.
k (S ) ,  parallel to mu . ,  which just  covers the cube C (m .). It isK-f r r r,j 1

obtained by bounding its slab of color ( containing C(m .)) by the two planes para l le l  to

it .,  and passing through the points ACm .) and B(m
1
), respectively. This monochrome

will also cover all cubes c(m.) such that (5.16) holds , or
k 1

(5.21) ~
‘ m~ S —r + l (mod q)
1

We may write
k( u . + r—l 

k S
( 5 . 2 2 )  

~~~~~~~~~ 
:~~~N 1 

q + ~ 
arj u

i~~~~ ~~

In view of ( 5 . 1 9 )  we conclude that its densit y 5
r w i l l  be as close as we wish  to

the old density k/n of (5.9).

For the final selection of our monochrome M k 
, we keep the inequalities (5.14t and

( 5 . 2 2 ) ,  only modify ing the density, by selecting for both groups the common densit -.- S

defined by

P
( 5 .23 )  6 = max ( — , S , 5 S

n 1 2  q
1.

Thus S ‘ — . If S -. — , then (5.14) shows that our old cubes C(m . ) have shru nk ,n n 1
k ~~

and are there fore a fortiori covered by the

—11— 
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Since ;~ ‘ as t~~~’ ”  t t i -  n—chtomu

(5.24) 
K ?) = - M ( 5 ) ~ ( 1 ) 1

will have a den:ity am; close to , provided t h a t  we select N sufficie n tl y large .

The ques t ion : in- t I ; -  : - i .C . r um - ; (5 . - i )  ad m i u s t b l e 7

By (5 .  14) and ( 5 . 1 1 )  w i - m i - u - m I u t  t i -  mat rix (3.6) for its ci bntra l planes is

1 0 0

0 1

O 
‘ ‘ 1 ‘P

(5.25) .5 = (C -‘H 1+ 
~ 

I + 5lk 
=

: l + a a .
. N ri

, . . .
N ql N qk

We claim that all its kth order minors are 
~ 0 if N is sufficiently large.

This will be th~ case if an d onl y if

for sufficientl y large N the matrix Iii + ~~
- a II h~~s no

(5.2’;)
van i sh ing  minor  of any order from 1 to min (q,k).

To verify this statement let us look at an sth order minor of the matrix of (5.26).

We inspect the leadi ng m i n o r  det 1 + ~ a .~ f or r = 1,. ..,s , 1 = 1 ,...,s. Splitting

each of its columns into two column s , we find

( 5 .2 7 )  det 1 + a a - = ( q )
S det :a - + a S i , 

~N r i  1,~ N - r i. 1 , s N

where S is t i e  sum of s determinants  obtained from det
~~a ri l i s  

by replacing each of

its column s s u c c e ss i v e l y by a column of l ’s. We distinguish two cases:

1. I f  S i~ 0 , t hen  the r i g h t  hand side of ( 5 . 2 7 )  wi l l  surely  be ~ 0 i f  N is

suffirm ien tl y large.

2 .  If  S = 0 , we reach the  same conclusion in view of the prope rt y (5 . 1 2 ) which

imp l i e s  th at det a - ~ 0. We have shown that the n-chrome (5.24) is- r i  1, 5

admiss ib l e , which c o m 1- i e t i - ; m  our proof of Theorem 1’.

The same reasoning will apply to any o t h e r  m i n o r .

— 12—
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6.  Sojution of Prob~~ mj ~~~~~ f k n- 1 .

~~ ong the n-chromes ( 5 . 9 )  for k = 2 , 3 . n—i  we single out t he case

(6.1)  k - n—I

this being the only tine which is admissible. Its density is

(6.2)

By ( 5 . 2 )  arid (5 .8) , i ts  monochromes are described by

( 6 . 3 )  M (~ —L) :  u — 
~~

—
~
— (~~l ,...,n—1)n v 2 — 2n

(6. 4)  M ( ~ —~
--) : { ~ u . )  n-l

since q 1 .

We wish to prove th e

Theorem 2 ’  We have that

( 6 . 5 )  = ~~~~~~ , (n s 2 )
n-i .e n

Proof:  We know from 55 that the monochromes (6 .3)  cover all of Ru 1  wi th  the

exception of the l a t t i c e  of cubes

( 6 .6)  C(m in ), Cm in €n — i  1 n — I

centered at t he  lattice points and having sides = 2. ~~~~ = 1— 6 = 1 — = I
2 n n

We also know that the last monochrome (6.4) jus t covers all these cubes .

For conv i-m ; i u - : i - i -  we say that  a monochrome 110 1 ( 5 )  of pC i  
is slanting, prov ided

that all n—i components of i tS  normal vector are positive.

Le~~a 2. if the slant in~~ monochrome

n — I  6’(6 7) C ‘)  - mi
1 

+ ‘t
2

U
2 

+ . . . + Y ~u + b }

where

( 6 . 8 )  
n — j  0

covers the set

(6, 1) r = .J C(m m
n-I 1 n — iC m )  c x

then we mus t have that

(6.10) 1 2 ( 3 ‘. .  

~n— 1 
=

— 1 3 —

4
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P roof of L~nuna 2: Let $ donut,- t I 5  ~~t of t o r i -  mm ,.u ,  S o n -  .~ r s 1 1 i  1 t i ~ (i . 7)

and intersect th e set r , hence
n- i

( 6 . 1 1 )  S I ml :  + y u . = const . -u Ii / -

2
Crucial in our discussion is the nature of the m c t

)~i .12) ( 3 — s  O R 1

where

(6.13) N 1 
= ( C u . )  U = ... = u =

i 2 n — i

is t he u 1
— a x i s .

We c laim : If

(6.14) (i~~,y
3 m; — l~ 

(1,1 1)

then

(6.15) in = N’

Proof of Claim: The set S is the union of those planes mu which intersect the

individual cubes C(m
1 

m
1
). At this point it is more convenient to shift the Orig in

of 
n i  

to the “lower left hand corner ” of t h e  cube C ( 0  0 ) .  This  is the point A

of (5 .6 ) ,  for k = n-l . Since 1-6 = ~
- , we see that after this shift of orig in

(6.16) C(m m ) = (Cu ) : m • < u . .m m , + ~
- , (i=1 n—i )

1 n—l V 1 i~~~ 1 n

Let us project  this  cube onto N 1 by planes paral le l  to our monochrome. The two extreme

planes are two planes of support of C and their equations are
n—l n— l

Cu —m ) + (u -m .) = 0 and Cu -m - 
~-) + - (u ,—m . — ~

— ) = 01 1 i 1 1 1 n t L 1 n

respect ively .  To intersect them with N1 , we ~-et u
2 

= .. .  = u~~~ 1 
= 0 in these equa-

t ions an d solve them for  u
1 

. In this way we find that the cube (6.16) is projected

into the interval

(6.17) I(m
1 

m
1

) = (m
1 

4 ~~ y m , m + + n 
(1 + + +

For the set (6.12) we now find that

(6.18) = ~~ I(n u
~ 

mn_ i ) for Cm
1 

mn_i ) c ~
n_ l

We d i s t inguish  two canes.

1.  Among the ‘y ,  there is an irrational one, ‘y
2 ~~~~ 

Setting mj 
= 0 for  i > 2 ,

we f ind the lower end point of T C m
1

,nti , 0 m m )  to be

(6.19) m
1 

+ ~ 
ti~ 

( y
2 

is i r r a t i o n a l )

— 1-1-

4



and Kronecker’s theorem shows that these lower endpo ints are dense in N’ - By (6 18) ~~~

conclusion ( 6 . 1 5 )  clearl y fo l lows .

2.  All y are rational. Writing them in s implest term s w i t h  a common denominator

we have

( 6 .2 0 )  -j~
-
~

- , (v~’2 n — i ) ,  Cb ,a2 a 1) = I

As our assumption (6.14 ) excludes the case when b a = ... a I , we have
2 n-l

b + a ÷ ,.. + a -~ n and therefore2 n—i
1 1(6 . 2 1 )  (1 + -y

2 + 
~~~~ + 

~~~~~~~~~ ~~

However, the lowe r endpoints of the intervals ( 6 . 1 7 )  form the ar ith isetic pr og resslon

j/b (j  € Z ) .  Since (6 .21)  shows that the common length of our intervals ( 6 . 1 7 )  is > 1/b ,

again we have by (6.18) that (6.15) holds.

Com~pleting a proof of Theorem 2’. By Lemma 2 we learn that a monochrome (6.7)

covering the set (6.9), must be of the form
ri- 1

(6 . 22 )  Mt \ l ( 5 )  : { u , + b J <
1 1 — 2

As this must also cover (6.4), we conclude that 5’ .
~ 2._! , This establishes Theorem 2’ :

For if we diminish the common density of the (6.3), then this would increase the common

side of the cubes ( 6 . 6 ) ,  and then these could only be covered by a slanting monochronuo

of density > ~~~ as we have seen.

In view of Theorems 1’, 2 ’ , and the examples of Theorem 3’ , I wish to state

çgn~~ cture 1’ . The value of ( 4 . 3 )  is

( 6 . 2 3 )  6 = Cl < Ic < n — i )

Rmmark. Ju6t a comment on the monochromes (4 .7)  of R ’ , of d en s i t y S = . Clea n  l v ,

the inequalities

{u ~~~~~ < - i— , ( \fluu l , . , . ,n )
v n 1 n ~~2n

also define an n—chroino ( i-) in R~ , having the dens i ty  . This doe s not cnm-it radiu -t

the above conjectured relation (6.23): The quantity k m  was defined as the infim tmn of

6 for n-chrornos x~~
( 6 )  in ~k which are admissible, while the above n-chromos ,k ( ~~n n f l

is far f run sat isf ying that essential requirement. In fact all of i ’s n monochrom,- - s

are parallel.

— i s —

L ~~ 
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7, ‘j\~ ~~~~ -c  i~~l m x l i i l - i t  t i — i - l i rom ~~.

I’ m- ::- I • was not i -  .1 aOl j i b e d  by i - i n , i l - i t  ing an n—chromo

( 7 . 1 )  
k ( ~~.

w h i c h  is both a t t n i i , s i i m l i -  i n - f  ;,f d , - n u ; i t ’ k/n . Rather in (5 we construct admi ssible

-
‘ 

k~~~.1 ~~ i t f  S am; c l - - s e  t~~ k/ n a s w __w i s h e d .  In view of our Conjecture 1’ of 16 , the

construct ion - t  an admissible n;~~~~l i m umfl i ( 7 . 1 ) ,  f o r  prescribed k and n (k < n ) ,  is a

most i i - -  i rable but am yet un solved problem . Even for low values of k and n , the

s u r c e s m,  i 1,-~ en Wo so for , on luck and visual inspection. Needed is a general arithmetic—

analytic construction.

As a i ;ui I.- to t h u  nature of this problem , the fo l l owing  two specific examples

might be u sefu l .

~~~~~~~~~~~ we~~~ ye ox s u u n s  of the n-chronno (7 .1 ) for the followin q

m a i ,cS

( 7 . 2 )  (k ,n )  = (2, 4) and Ck ,n) = ( 2 . 6 ) .

1. k - mm 4 Here the Ii -n ~~i t - , is

( 7 . 3 )

The f o u r  monochromes of - C ~- )  on i-

2 1  - 1 1 ~~~l 1 1
M 1

(~~~) : U 1 
- , ‘5 (

i
): u . - ~ } -

~~~~

( 7 . 4 )
- 112 +

These - i t -  i c i l y  iii ni v u - - i  f -e i-i q u r i  2 which shows that we have an admissible 4—chromo

of N
2

Thu f i r st two m ii nm i mIuri , rni-s ( 7 . 4 )  cover t i n -  p lane with the exception of the lattice

ef - ;qu a r e -  C (in
1 

, m hav in g i ii i- , = 1/. . The third monochrclno M
3 

covers all  those

t a r  such H i t  m
1 

+ in , is even , whi le N
4 

covers those with an odd sum in
1 

+ in
2

— 16—
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Figure 2

2.  Ic— 2 , n = 6. Now

(7 .5)

The six monochromes of C ~
-) are

(7 .6)  l4~~(~~~) : tu~~~
-
~~

-} .5~~~~, M~~(~~~) :  (u
2 2 }I ~~

( 7 . 7 )  M~~( - ~~) : 
~

U
l + 112

} 
~~~~~~ 

M~~(~~~) :(~~) < 1

( 7 . 8 )  M~~( - ~- ) : (2 u l+u
2 

+ M~~C~~- )  :ç1’i ~ 2u
2 +

These are easily derived from Figure 3 which shows that we have an admissible 6—chromo

of R2

A guiding word in this maze of lines seems appropriate. The two monochromes (7.6)

cover R
2
, except for the lattice of squares C(m

1
,m
2
) having sides 2/3. The mono-

chrome M
3
, having central lines 11

1
+0

2 
= j  ( j  ~ Z), is seen to slice each of the squares

in to two congruent isosceles triangles ; we denote the lower one by T
1

(m
1
,m
2
) and the

upper one by T
2

(rn
1
,m
2
). The monochrome M4 ,  having central lines u

1
—u

2 
— 3j (j  ~ I) , is

seen to cover all pairs

— 1 7 —

-— —

~

-

~

— - -
~~~~~~~

- - -
~~~~~~~~~~~

— - - — -- 
~~~~~

-- - -  - — - -
~~ 

-
~~~~~~~

— 
~~~~
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Fi gure 3

T1(m
1,m

2
) ,  T2

(rn
1,m 2

)

such that m
1
—m

2 
1 0 (mod 3 ) .  The last two monochromos M

5 
and N

6 
are to cover all

remaining triangles.

At this point we observe , by ( 7 . 6 ) , ( 7 . 7 ) ,  (7 . 8 ) ,  tha t  each of the six N admits
V

(double) periodicity of period 3 in each of the variables u 1 and 112~ It fol lows that

, h  su t f ices  to inspect our Figure 3 onl y in the square

1 1 1 1
5: _

~~~~
< U l ‘ 2  +~~~~

- , -~~ - . : u
2 < 2 4

which in Figure 3 is indicated by a solid f rame .  In that square we are Onl y l e f t  w i t h  the

fo l lowing  t r i angles as yet uncovered :

T1
(l ,0) , T

2
(l , 0)  , T

1
(2 ,l ) , T

2
(2 ,l ) ,  T

1
C2 ,0), T

2
(2 ,O ) ,

and the symmetric set

(0 , 1) , T~ (0 , 1 ) ,  T
1

(l , 2) , ‘F
2 

(1 ,2 ) ,  T 1
(0 ,2 ) ,  ‘F

2 
(0 , 2 ) .

—1 8—
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However, covers

Ti
(l, O ) ,  T

2
(0 , l ) ,  Ti (0 ,2 )  and T2 (2 ,Q) , T1 (2 ,1) ,  T2U,2 )

while M
6 covers their symmetric images

T
i

(0 ,1), T
2

(1 ,0) ,  T
~~

(2 ,O)  and ‘r2 Co ,2 ) ,  T
1

(l ,2 ) ,  T
2

C2 ,1) .

This proves that we have a 6—chr omo ; it is adm issible because no two monochrome s are

parallel.

Let me add that I could not discover a

—1 9—
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II. ~~~~~~~Cdt i o m i i ,  of n - h o  to il l i a rd  b a l lu n .

8. The ~~~~~ v~~ience of Problems l an d 1 .

This equivalence a~ j~m -ais immediately as soon as we switch the problems (or “action”)

f rom the space ~n 
= 1 (x ) - to the lower dimensional space R

Ic 
= ( C u ) )  . Indeed , let

k( 8 . 1 )  Ii : X = C 
1
u + a ) , (~ = 1 n -) - - 1. 5

1= 1
be a t—admissible reflected signal . Let p and iS be related by

(8 .2 )  p = — ~
— or S = 1—2;- .

That (8.1) is , - a d m u i s m ; ih l e  mean s tha t  it is contain ed in the cubical shell

(8 .3)  5n 
= —

having the width p = 6/2 . The s t r uc tu r e  of the function C x )  ~~plies the following:

The point of Rn

k -

~ ~
1
u . + a )  ( ‘= 1 n )

has the property that for every (u) and for some V the n umber ~ 11u . + a differs

f rom an integer by -. ~/2. However , this last property can be expressed thus :

v i i  6(8.4) For every Cu ) and for some v we have A u + a } < —
V v v ‘ 2

In terms of the monochromes

(8.5) 11k ( 6 ) ;  A 1u . + a C e , (~~ l,... ,n) ,V i  V — 2

the property ( 8 . 4 )  is equivalent to the set relation

k n k(8 .6)  R =

which is the definition ( 3 . 3 )  of an n—chromo. The steps can be reversed and establish

Lemma 4. Let the relations (8.2) hold. The reflected signal (8.1) is p—admissible

if and onl y if

C8.7) x
k

( s~ = M
k

( . )  M
k
CS)}n 1 n

de f i n e d  by (8.5) ,  is an n—chromo. That (8.1) is in general position if and only if (8.5)

is admissible is obvious, because they are expressed by the same condition on the

matrix A = II

-20--
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The relation (8.2), Lemma 4 , and the definitions (1.11) of 
~k 

, and (4.3) of

‘S , show that
k,n

(9.1) 
~k,n 

= 
2 

- 
2

or

(9.2) c = 1 — 2p
k,n k ,n

By Theorem 1’ ‘S < ~~
- and (9.1) implies tha t  p ‘ — -

~~
— and Theorem 1 isk ,n ~~ n k ,n ~~ 2 2n

established.

By Theorem 2’ ‘Sn-i n 
= and (9.1) implies that 

~n-l n = ~~~~~ ~~~-~~~~= ~~~
- and

Theorem 2 is proved.

Let us use Lemma 4 to derive for Ic = n—i  the equations for  the signal

From the relations ( 6 . 3 ) ,  ( 6 . 4 ) ,  we f in d by Lemma 4 for this signal the equations

x = C u  - — ) , (~=l n—i).
~~n—l 1 - 2(9 .3 )  ii (): n—ln 2n

X ~~ L u . )
n

Replacing here U by U + , we obtain

x = C u  ), ( v l  n )
~n—l 1 V

(9.4) C—) : n—in 2n n-i
Ic = C u . + —)

n i 2

w~nich are identical with (1.15). The essential unicity of the n—chromo (6.3), (6.4),

estab lished in §6 , implies the essential unicity of the signal (9.4).

In the special case that  n = 3 , we obtain Kepler ’s tetrahedr on T mentioned in

connection with the relation (1.14) .  By ( 9 . 4 )  its parametric equations are

3,2 1
3~6~~ 

x
1 

= C u
~ , x

2 
= ( 1 1

2 > x
3 

= C u
1
+u

2
+l

The vertices of T = AB CD are

A = (0,0,1),  B = (1 ,0 ,0 ) ,  c = (0,1,0), 0 = (1,1,1)

An even simpler case is n = 2 when

( 9 . 6 )  7Y 1(~ ) : = C u
1 > , ,c~ = C u

1 
+

This is the square hav ing  as vertices the midpoints of the side s of U
2 

(See (5)).

As a last application of Lemma 4 we use Theorem 3’ to give the explicit constructions

of the two signals for  the cases (1.16) of Theorem 3. From ( 7 . 4 ) ,  and Lemma 4 , we f i n d

immediatel y
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1 1
x
1 

C u
1 

— — - I  , x = C u  — — )

1~ C~~)

U + u ~, u - u i - I .
x = C ~~— )  x = (  ~ -—— - z
3 2 , 4

Rep lac ing  u . by u . + , we obtain

x
1

= ( 5
1

) , x 2 C u _ )

2 1
4

(
4

)
u 1 - u  + 1  u — u  - * 11 2 1 2x = (  —- -— 1  x

3 2 4 2

Likewise , ( 7 . 6 ) ,  ‘7 . 7) , ( 7 . 8 ) ,  and Lemma 4 , show tha t

x
1 

= C ) , = 

u
”
~

~~(~~): x = ( u
1

+ u 2 ÷ l ) , x
4

( 1
3

2 )

x = C + 1 , x~ = 

U
1 

÷ 2u 
+ 1)

It is to hi - i - x j - e c t , -zI t h a t  t fl - -  ex I i -  i t  ~-ardm cmtric equations , as well as (9.4 ) ,

should reveal ~ert i n - - m i t  - m i -  s i t  n c  i i m t  S of t h u  ~uolytope s that they represent.

Our a~ z t - r m ’a c f ;  v ia  n— chromos u q q i - t - that a promising attack on the three problems

stated at the end of 1 , should be t o  solve the  corresponding problems for n-chrorsos in

These are :

1’° . A proof of r m m ; J i - ( - t u r e  1’

2~~0 . P. gene ral ;u - i t ’ - mmm - - t ic—analytic construction of the admissible n—chromo

(9 . 7)

A proof that the  number  of n—chromos ( 9 . 7 ) ,  no two of which are a f fi nely

equivalent , is finite . Th is was done in [4]  fo r k = 1

—22—
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10. ~~p), icat ions c,~4iz~~~rp~~~~~~ o ~~~ s ous-t~~~~~p~~ j fo lds .

In (3 , ~~6) we discussed our extrem ign problem for Lissajous curves in the unit  cube

—~~~~x <~~~ - , (V=1,...,n), the un derl ying norm being the Euclidean one. Here two changes

alter the situation :

1. We replace the abov e cube by our cube U of ( 1. 1).  This requires replacing the

basic fun ct ion w(x ) = cos x of (3 , 563 by the fur  ction

(10.1) L (x) = sin
2 

~~~ , (Se e Figure 4).

Observe that L I X )  interpolates at the integers the zigza , curve of C x )  defined by (1.3).

The absence of corners assures the smoothness of the resulting motions within U . How—
n

ever , the 1—dimensional Lissajous motions

(10.2) x = L ( A  t + a ), (~~ l n),V V V

of t3 , relation ( 6 . 3) ]  again exhibit the ergodic (or denseness) property described for b.b.

motions in the secon d paragraph of our In troduction , For this reason , and fol lowing again

the lead af Konig and Szucs , we replace the motion (10.2) by the k-dimensional Lissajous—

type mani fo ld
Ic -

(10. 3) : x = L(  ~ ‘
r

u . + a ) , (~~ l n)n V 
i—i - 1 V

2. We replace the Euclidean norm of (3) by the L norm of the present paper.

The Definition s 1 and 2 , of §1, concern ing the refl ected path (1.7) carry over without

any changes to the L-manifold (10.3). We may therefore safel y assume that we know what is

meant by “a A
k 

in general posit ion ” , and by “a A
k that is p1’~ admissible” , The latter

will again be denoted by fl
k
(
L
)

PS in the Introduction we propose

~~~~~~~ 1
L 

To determine, or estimate, the quantity

(10.4) 
~

-
~~

‘ 

n 
= supremum L 

-

the supremum being taken for all p
~
’ having p~

’
~admissible L—type manifolds

It does seem remarkable that our results of Part I , on n-chromos in Rk , apply

equally well to establish Theorems ~~~~~ 2
L and 3L, below, that correspond to Theorems 1,

2, and 3, on b.b . motions. In particular the sk below , is again the old constant (4.3)

for n-chrcinos. These theorems are as follows.
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Theorem 1
L 

We have the inequalit y

(10.5) 11
k ,n ~ 

- sin
2 ( ) (1 ~ k n-l)

~~~~~~~ 2
L
• We have that

L 1 2 , s n—i
(10.6) = — — sin ;—

n—l ,n 2 2 2n

~~~~~~~ ~L 
~~ construct explici tly the 1.— type manifold

(10.7) 6
k
(~~ ) ,  where L 

= — sin
2
( 2~ .

for the two cases

(10.8) (k,n )  = (2 ,4 )  an d ( k , n )  = (2 ,6)

At this point we need art analogue of Lemma 4, that we shall call Lemma , which

~
il1 relate L—type manifolds to n—chromos . Let (10.3) be i

L
_admissible. This mean s

that for every Cu .) €  R
Ic 

, the point of R
n

(10.9) L( ~ A’ u . + a ) , (- - ‘l n)
V i  V

should belong to the closed cubical shell

(10.10) 8
n 

= — , where ~
n 

= {IC — cii 
L ,

L n L L

Equivalently:

For some V , the n umber ho 
1 
u . + a ) should differ from an integer

(10.11) 
L 

- -
~ 1 0

~~ 
‘~~‘S /2 , wh e re

(10.12) - 
t~

How is this condition i-x j - r - -;sed in t e i~m;: of ~ A’u’ + a ? If we define ‘S/2 as a

solution of the equation

(10.13) -
~

— L(~~- ) ,

then the symmetries of the graph of LOx) show (Figure 4) that (10.11) will hold if

and only i f
k -

~1 iS( 10 .14)  0 ,  u. + a m c — .) 1  V ~
- 2
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FIgure 4

This establishes

ianmta Let , ~ < ~
L 

< ~ - , be prescribed, then be defined by (10.12),

and f inal ly  A such that (10.13) holds . The L-manifold ( 1 0 . 3 )  ~~ P
L_a dmissible if and

only if the n monochromes

(10.15) ~~~(6) : 0 ~~ A 1u . + a )  < , (~~~l , . .  . , n )

define an n-chromo in R
k

Eliminating 6
L 

between (10.12 ) and (10 .13), we f i n d  that

(10.16) 
L 

= 
1 

— L (

If ~L tends to its supremum p~
’ 

, then ‘S tends to its infimum ‘S , and we obtain

(10.17) 8k n  
= 

~~

. — L(—~~~- 

k,n k,n

which is the analogue of (9.1).

Theorem 1’ , hence that ‘SIc n 
< k/n , and (10.17) , immediately establishes (10.5),

hence Theorem 1
L 

Likewise Theorem 2’ , hence that ‘Sn_i 
~ 

= (n—1)/n , gives (10.6),

hence Theorem 2
t
~ , again in view of (10.17). Finally , Theorem 3’ implies Theorem 3

L

—25—
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11. E~c ainp 1es of ,xtrerna l Lissajpus rnanifm,1,i m ..

I t  was not men t ioned  above , but  is evident by Lemma 4 L t h o m  i f  ( i . 15)  ‘ u -  t h e

inequali ties defining an n—chrome ~ C - )  , t h i n (1 . 3 )  d e f in e - s  an L—5~i i i I z l z i  w hi c h  is

- 
1
—admissible , where is defined by (10.16). As an example , t t m -  u — u  h r z j rmm - - 

n-l  
( i ) ,

defined by (6.2), (6.3), (6.4), ‘Jive t h e  I- — m an i f o l d  of Them ~~~~~

- 2x = s in  ( ~
— u ) , ( = l  n — i ) ,

(11.1) An l
C~) L

n n — l ,n
- 2 mm n — i

— x = sin —Cu + . . . i-u + —

where ~L
1 

is given by (10 .6) .  

2 1 n- i  2

Let us look at this for the smalles t  values of n

1. k = 1 ~~~n ~~~~~~~ Herv 
~~ 2 = ~~~~

— sin
2 
(s/B ) = (2~~~) 1 

. The extremizing L—motion

1
x
1 = sin —i—- = 1(l—cosmni 1)

= sin 2 
C 1L u1 + ) = i-Cl + s i n um u

1
)

is seen to be a circular motion along the circle inscribed in U
2
. This i m ;  t i~i~ analogue

of the b.b. motion (9.6).

2. h = 2 ~, n 3. The ext remizing L— surface  is found to be

1
x
1 

= sin —
~~

- — =  
~-(1 — cos u

1
)

- 2 - ‘~~2 1
(11.2) x

2 
sin —i

-— = ~-(l  — cossu
2

)

x
3 

= cos2 
~— ( u

1+u 2
) = ~-(l + cosn (u

1
-s-u
2
)).

This is the L-analogue of Kep ler ’ s tetrahedron T parametricall y given by ( i . 5 ) .  The

largest cube inscribed in T was found to have i t s  side = . For our we f i n d  a

larger cube IIx—ch < 

2~~~ 

si de = , because

2 , 3 2 5~ n 6 4 ~~
The intersections of (11.2) with the planes x c  (0 < c  < 1) ,  ( i’= l ,~~, 3) oi-e

ellipses , inscribed in the unit square , with axes paral lel  to the diagonals  of t i n  m ; q z i o I i  -

The surface is convex .

— 2 6 —
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From (10,17), for Ic = n-i , we f i nd  t ha t

- L(11.3) iim - = D
n-1 ,n

fl e.=

Most likely t i -  above , given by ( 1 1 . 2 ) , is the last A~~
1 

which is the boundary
of a convex Set  i n

1. k 1 , genera l n. With this last example we come close t u ;  t he  subject -~t o d ie d
- Lin 14). The n—chr omo (4 . 7 )  and Lemma 4 show tha t

- 2 mm V l(11.4) x = sin — (u + ) , (i=1 n; 0 < u 2 )- - 2 1  n

describ e an extr emal curv e A1 
. Frets ( 10.17) , for Ic = 1 , we obtain that

( 11.5) l im h 
=1,n 2n ’- -

The curv e ( 1 1 . 4 )  is the Lissa3ou s—analo gue of the “lu ck y ” b i l l iard  bail shot r of
[4 , relatio n ( 1 0 . 2 )  for n 3 ,  and Figure 2].
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Abstract continued

k i(2 )  L X = / )u u , + a (k n)
n .- - 

— I) I -,
1 1

be a k — f l a t , so that the point ( a )  is in ter ior  to U , and i - ~ th a t

in a general position (G.P.) and write G . P .  By th is  -...- t  m ean that a:/

among the x of (2 )  may assume preassigned valoes for  aj  r +r i . it t  ‘.u~~~~~~UI  -

the u , . We interpret  as an optical signal ~m t a r t in g  f rom ~~~ [-hint ~

at the time t = 0 , and spreading un i fo rmly  wi th in  the k - f l a t  Lk 
. Wi- a~~~ ~~~

the 2n facets x = 0 or 1 , of U , to be mir rors , so that the ref~ t — :t h~

path of the signal is a finite or infinite k-dimensional skew polytope u

Using the auxiliary function

( x ) = x if 0 < x < l , (x > = 2 — x  if l < x < 2 , and (x + 2 )= (x >

if x .  11- ,

we may represent the re flected path by the parametric equations
k

x = (
~~ )m l u.  +a  ) 

, ( v l , .. . ,n)
For the x defined by (3), we study the quantity

= ~,sup inf (max ~x ~)
,ri 

~ 
v

~ G.P. (u.)
and wish to determine , or to’estimate it.

1 k
~~~~~~~~~~ 

~k,n~~= ~~~~~~~~ (l~~~k~~~ n-l ).

1 n—i 1Theorem 2. p = — - =n—l ,n 2 2n 2n

It is shown that there is an essentially unique which does not penetrate

into the cube

1 1max lx — - - ‘1 <-— .
v 2 2n

The polytope is identical with the surface of Kepler ’s regular tetrahedron

T inscribed in U
3 

, and Theorem 2 gives , for n = 3, an apparently new extrem~~n

property of T . Finally we state

1 k
~~ ~k ,n 

= 
~~~~ ~~

-

~

- . (1 ~~k ~~n-1).

This was established in (4 1 for k 1

4
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