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ABSTRACT

This paper considers generalized equations, which are convenient tools
for formulating problems in complementarity and in mathematical programming,
as well as variational inequalities. We introduce a regularity condition
for such problems and, with its help, prove existence, uniqueness and
Lipschitz continuity of solutions to generalized equations with parametric
data. Applications to nonlinear programming and to other areas are discussed,
and for important classes of such applications the regularity condition given
here is shown to be in a certain sense the weakest possible condition under

which the stated properties will hold.
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SIGNIFICANCE AND EXPLANATION

Many practical problems in operations research, in structural engineer-
ing, and in other fields may be reduced to problems in mathematical
programming (minimizing a function subject to constraints) or in complemen-
tarity (a type of equilibrium formulation). In this paper we discuss a

type of formula called a generalized equation, which provides a convenient

mathematical tool for expressing problems such as the ones just mentioned.

We exhibit a condition under which the solution of such a generalized equation
will be locally unique and will have a certain type of stability when the
data of the problem are allowed to change slightly, and we argue that in a

sense this condition is the best possible if such results are to be obtained.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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STRONGLY REGULAR GENERALIZED EQUATIONS

Stephen M. Robinson

1. Introduction. This paper deals with generalized equations; that is, inclusious

of the form

0€ £(x) + BWC(X) ‘ (1.1)

where f 1is a function from a subset Q of a normed linear space X to its (topological)
dual X', C is a nonempty closed convex set in X, and the notation awc 1s the
normal cone operator:
{ye X'|y(c - x) <0 for all cec}l if xe C,
9 =
Yot 9, if x4c
Such generalized equations conveniently formulate many problems of interest in applica-
tions, both in the infinite-dimensional and in the finite-dimensional cases. For example,
when X = R and C is of the form Rk x Rf, with k + & = n, then (1.1) can be
used to formulate problems in complementarity and in nonlinear programming. Examples
are given in [12] as well as in Section 4 of this paper.
In [12], we studied the behavior of solutions of (1.1) when the function f was
subjected to small perturbations. The conditions imposed upon the generalized equation
in [12] were such as to permit sets of solutions, rather than isolated or unique solutions.
Of course, for purposes of analysis it is sometimes convenient to deal with solutions
which are unique, or at least unique in some neighborhood. Therefore we investigate
here the éroblem of finding appropriate conditions for solutions of (1.1) and problems
"close" to it to have locally unique solutions, and for those solutions to have good
continuity properties when regarded as functions of the perturbations introduced into

(1.1). Assuming that f is Fréchet differentiable in some neighborhood of a solution

X, of (1.1), we obtain a condition on the linearization of (1.1) about Xy i.e., on

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
National Science Foundation under Grant No. MCS74-20584 A02.




the linear generalized equation

0 € f(xo) + f'(xo)(x = xo) + SWC(X) ' (1.2)

which ensures good behavior of the solutions of the nonlinear problem (l1.1). This condi-

tion, which we call strong regularity, is analogous to the nonsingularity condition

imposed in the usual implicit-function theorem for nonlinear equations, and indeed it
reduces to that condition if C is the whole space (so that (1.1) reduces to f(x) = 0).
We show also that, in certain sense, these conditions are the best possible if only the
information contained in (1.2) is used.

The reader will see in what follows that, throughout the paper, the linearization
(1.2) plays a fundamental role, not only in the conditions just mentioned, but also in
the sensitivity analysis of (1.1) with respect to some family of perturbations. For
example, we show in Theorem 2.3 below that (1.2) contains the appropriate local informa-
tion to carry out a sensitivity analysis of (1.1) for small perturbations, without
solving the nonlinear problem (1.1) over again for each perturbation considered. Thus,
(1.2) summarizes important first-order information about the behavior of (1.1) near X
in a form which is fairly convenient for analysis and computation.

The arrangement of topics in the rest of the paper is as follows: in Section 2
we define strong regularity and prove the main results about the nonlinear problem (1.1);
in Section 3 we study the linearization (1.2) and exploit its structure in specific
cases to develop criteria for strong regularity to hold. We also discuss briefly a
reduction procedure which is very useful when C is polyhedral (as is the case in
important areas of applications); the details of the reduction for general polyhedral C
are deferred to the appendix. Finally, in Section 4 we apply the results previously
developed to t} important special cases of complementarity (briefly) and of nonlinear
programming (in more detail). In particular, we show that satisfactory analysis of a
nonlinear programming problem can be carried out without the usual assumption of strict

complementary slackness.




We close this introduction by indicating briefly some similarities and differences

between this paper and others which have been written previously. The standard implicit-
function theorem was used in [3], [4], [11] to analyze perturbed nonlinear programming
problems under stronger hypotheses than those we use here. Extensions of that approach
to generalized equations will be reported in the forthcoming dissertation of A. Reinoza
in the Computer Sciences Department of the University of Wisconsin-Madison. Levitin [7],
[8], [9] has investigated stability aspects of infinite-dimensional optimization
problems, and Mangasarian [10] has obtained uniqueness results in linear programming
using hypotheses which seem to be closely related to those used here.

Finally, we mention two papers treating the stability of convex quadratic programming
problems: Daniel [2] used assumptions similar to those made in [12], while Hager [5]
imposed conditions similar to those used in this paper. However, Hager's method of
analysis is quite different from ours: for example, he assumes that unique solutions
will exist for all of the perturbed problems that he considers, and he then proceeds
to investigate the continuity properties of these solutions. We prefer to identify
conditions on the unperturbed problem which will permit us to prove that solutions of
the perturbed problems will in fact exist, and which in addition enable us to analyze
their continuity properties.

Many other papers have, of course, been written on stability questions related to
those we investigate. The above papers represent only a sample of the literature; many

additional references can be found in them.

2. Strong regularity and local solvability. 1In this section we define a condition,

called strong regularity, which can be satisfied by a generalized equation at a solution

point. We prove a basic solvability theorem which says, roughly speaking, that if a
generalized equation is strongly regular at a solution point then it is invertible near
that point and the inverse function is Lipschitzian; further, any generalized equation

which is close, in a suitable sense, to the one with which we are working will share

-3




|
I
|
|
|
|

these desirable properties. We then show how this basic solvability thcorem may be
applied, first to the problem of parametric sensitivity analysis and then to the exten-
sion of Banach's inversion lemma to linear generalized equations. Both of these
applications depend upon strong reqgularity, which we now proceed to define; conditions
to ensure that strong regqularity holds at a point will be developed in Section 3. The
definition and results given here are stated for spaces more general than an but the
material in the remaining sections is developed for R".

DEFINITION: Let X be a normed linear space, and let (! be an open subset of X
containing a point xo. Let C be a closed convex set in X, and let f : Q2 » X'

(the topological dual of X) be Frechet differentiable at x Suppose that the

0
generalized equation

0€ f(x) + BWC(X) (2.1)

has xo as a solution, and define, for x € X,

TX 1= f(xo) + f‘(xo)(x = xo) + ch(x) ”

We say that (2.1) is strongly regular at xo with associated Lipschitz constant i if

there exist neighborhoods U of the origin in X' and V of X, such that the
restriction to U of T-l NV 1is a single-valued function from U to V which is
Lipschitzian on U with modulus ).

Note that if C is the whole space X (so that 3wc(x) = 0) then (2.1) becomes
f(x) = 0, and strong regularity then amounts to the assumption that f‘(xo)_l is a
continuous linear operator, which is the regularity condition that one would normally
impose in such a case.

We can now prove the main result, a type of implicit-function theorem for aeneralized

equations satisfying the strong reqularity condition.

THEOREM 2.1: Let X, X', C, 9 and x0 be as in the Definition. Let F be a

topological space, Py € P, and let f : P x ) » X'. Suppose that the partial Fréchet

derivative of f with respect to the second variable, written f'(-,-), exists on
P x Q, that both f(-,-) and f'(-,:) are continuous at (po,xo), and that X, solves
0€ £ + 9 v 2.2}
(pO'X) WC(X)

_4_




If (2.2) is strongly regular at Xy with associated Lipschitz constant X, then

and a single-

for any € > O there exist neighborhoods N, of Py and wa of Xoe
valued function x : N > W

e e such that for any p € NF, x(p) 1is the unique solution

in we of the inclusion

0€ f(p,x) + 3y .(x) . (2.3)

Further, for each p and gq in Nc one has
lxte) - x@ |l < O+ e)|lfeext@) - £l@x@|l . (2.4)
PROOF: Suppose that a positive € has been prescribed; choose a positive number
8 so small that A6 < /(X + €). By strong regularity, there exist neighborhoods U
of the origin and V of X, such that if we define, for x € X,

L(x) := f(po,xo) g f'(po,xo) (x - xo) % ch(x) ’

then the restriction to U of L.l NV is single-valued and Lipschitzian with modulus X.

Let
r(p,x) := f(polxo) + f'(polxo)(x - X)) = £lp.x)

for (p,x) € P x Q, and choose a neighborhood W of p0 and a closed ball v of

radius ¢ about %X, SO that VEC V and for each p€ W and x € Vc one has

r(p,x) € U and Hf'(p,x) - f'(po,xo)u < 6. Now shrink W, if necessary, to obtain

a neighborhood Ns of po with Ne C W and having the property that for each p € Ne'
xllf(po,xc) - f(p,xo)” < (1= 28)o

Choose any p € Ne’ and define an operator @p from VE to V by

8, (x) =V O t 7 tetpor )

Note that x € Ve 8} ¢p(x) if and only if x € VF and 0 € f(p,x) + ch(x).

Now let xl, x2 be any two points of Vr' We have, using the assumption of strong

reqularity,
||¢p(x1) - op(x2>ll s Mlleax)) - reax,) |l
< Mlix, - X2||sup(||r'(m(l =wx +ax)fl o < w <)
< olla, =, .

-5=
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since r'(p,x) = f'(po,xo) = £Yp.x) . Since A8 < 1, Op is strongly contractiv~= on V .

>
= =]
i = = ]
Further, since xo Vv N L (0) and @p(xo) Y L. [r(p,xo)]. we have
e xp) = %l < allreaxpll
= x|[f(po,x0) - £(p,xy) Il
ST Do

and therefore for any x € VC,

[|¢ (x) - x
P

A

oll = lle 0 - e xrll + lle xp) - xi

A8]lx - x

A

Oll + (1L - A8)p £ 0

so that ¢p is a self-map of Ve' By the contraction principle, Qp then has a unique

fixed point x(p) € V_, and for each x € VC one has the bound
L
-1
lxe - x|l £ -8 ||4>p(x) - x| . (2.5)
It follows from our earlier observation that x(p) is the unique solution of (2.3) in

VC. We have thus established the existence of the function x : Nc > VE; to obtain

the bound (2.4) we take any p and gq in Ne and apply (2.5) with x = x(g) to get

=1
@) - x@]| = @ -8 [|¢p(x(q)) - x@|l -
If we now recall that x(q) = @q(x(q)) and employ the bound

e, (@) - oq(x(q))I! < Mlr,x(@) - rg,x(@) ||

M Fpax(@) = E(q.x(@) || .

we have

lxe) - x@]l < =28 emx@) - £@,x@ | .

Observing that A(l1 - AG)-l s A + e, we find that (2.4) holds, so that the proof is
complete.
By imposing a more restrictive continuity conditic: we can show that x(-:) is

locally Lipschitzian at pO.

COROLLARY 2.2: Assume the notation and hypotheses of Theorem 2.1. Suppose further

that P is a subset of a normed linear space and that for some constant v and for

each p,q € NF and each x ¢ VE, one has

-6=-




Hew.x) - figoall < vilp-all -

Then x(<) is Lipschitzian on NE with modulus v(X + €).

PROOF: Immediate from (2.4).

It may be worth pointing out here that the condition of strong regularity is the
weakest possible condition which can be imposed on the value of a function f and its
derivative at a point Xqe SO that for each perturbation structure satisfying the
hypotheses of Theorem 2.1 and Corollary 2.2, a function x(-) will exist having the
properties stated in those results. To see this, one has only to consider a function
f : @ » X' which is Fréchet differentiable at x. and which satisfies

0
0 € f(xo) + ch(xo). Let P be a neighborhood of the origin in X', and let

f(p,x) := f(xo) + f'(xo)(x - xo) - p, with po = 0. Fix some positive ¢. If neighbor-

hoods NE and ve' and a function x(-), exist having the properties asserted in
Theorem 2.1 and Corollary 2.2, then with
= + f! -
TX f(xo) f (xo)(x xo) o+ awc(x) '

we see that the restriction to Ns of 'I‘-1

tion: that is, the generalized equation 0 € f(x) + awc(x) is strongly regular at X,

(A VC is a single-valued, Lipschitzian func-

One of the by-products of Theorem 2.1 is a useful formula for parametric sensitivity

analysis, which we give in the next theorem.

THEOREM 2.3: Assume the notation and hypotheses of Theorem 2.1 and Corollary 2.2.

Then for each € > 0 there exists a function a. s Ne + R, with 1lim a(p) = 0,
PP,

such that for any p € Nc one has

lIxe) - e )l caterllp- pyll -
Before proving this result it may be helpful to interpret it. To compute Or(x‘1
is to find the unique solution in Ve of the linear generalized equation

0 € f(p.xo) + f'(po.xo)(x = xo) + 3¢C(x) ’ (

and the theorem says that this solution, for values of p near po, will be very close

to the solution x(p) of the nonlinear generalized equation

0€ f(p,x) + 3¢C(x) . (2.7)




f

It is easy to verify that in the case C = X (i.e., when one is solving f(p,x) 0)

this corresponds to the result that if f(',xo) is Freéchet differentiable at P, then

sao is x(-), with
S o - =13
x (po) = ~f (po,xo) 5p f(po,xo) c

In many applications, one might find (2.6) significantly easier to solve than (2.7).
For example, in finite-dimensional applications involving nonlinear problems in
complementarity or in mathematical programming, (2.6) is, respectively, a linear
complementarity problem or a quadratic programming problem. Particularly if one is
interested in sensitivity analysis of a computed solution to a nonlinear problem, one
may already have at hand much of the information needed to solve (2.6) guickly for
different values of p (e.g., using parametric linear complementarity or parametric
quadratic programming techniques). Thus, in such cases Theorem 2.3 could provide a
relatively cheap way to find a good approximation to x(p) for p near Py
PROOF OF THEOREM 2.3: We know that x(p) = ¢‘p(x(p)); thus by strong regularity

we have

A

%) - ¢p(xO)H Ml p,x(p)) - r(p,xo)H

< Alx(p) - xoﬂsup{Hr'(p,(l-u)x(p) + uxo)[] 'o < p < 1}

< Awi+e)|lp- p0[|sup{||f'(po,x0) = £' (p, (L= x(p) + ux )| !o <1}, (2.8)

The quantity in brackets approaches zero as p approaches Py by the continuity of
x(-) and of f'(-,-), and this completes the proof.
Note that if we knew that for some constant £ and all pe€ P, x € {/, we had

e teox) = £ oy ox )l < 8llp - poll + llx=xh .

Q

then we could obtain from (2.8) a bound of the form

' 2
llxe) -2 xp Il < vlle- gyl

for scume constant Y.




We illustrate next another application of Theorem 2.1, this time to the establish-

ment of an analogue of the Banach perturbation lemma for linear operators.

THEOREM 2.4: Let X be a Banach space, let ao be a point of the dual space X',

let C be a closed convex set in X and let Ao belong to L(X,X') (the space of
£ bounded linear operators from X to X'). Suppose that X is a point of X which

satisfies the generalized equation

+ 3 o .
I Q€ on ag * dwc(x) (2.9)

If (2.9) is strongly regular at X, with associated Lipschitz modulus )}, then

there exist neighborhoods M of A

o in L(X,X"), N of a, and W of the origin

in X', and V of xo, such that if for A€ M, a€ N and x € V one defines
T(A,a,x) := Ax + a + ch(x) ;

=1 ’ : : . C A ;
then T(A,a,-) NV is a single-valued function on W and is Lipschitzian there with

modulus A(1 - A"A - AOH)-I.

PROOF: Apply Theorem 2.1 with P := L(X,X') x X', p_ := (Ao,ao), and

0

3 ' f(p,x) := Ax + a (with any positive €) to produce neighborhoods Nl of (Ao,ao)

and V of xo, with a single-valued function x : Nl + V having the property that

for each (A,a) € Nl' x(A,a) 1is the unique solution in V of 0 € Ax + a + 3¢C(x)-

Note that (2.4) implies [/x(A,a) - xOH

A

(+ e @a- A)x, + (a - aO)H for such (A,a).

X0

Choose neighborhoods M of AO' N of a and W of the origin in X', such that

o’
(1) for each A€ M, A|la - AOH <1
(2) M x (N - W) C N1 7
and
(3) for each A€ M, a€ N and y € W, the point y + (AO - A)x(A,a) + (aO - a) lies
in the neighborhood U of the origin given in the definition of strong regularity for (2.9).
Evidently for any A€ M, a€ N and y € W, the generalized equation

y € Ax + a + awc(x) is uniquely solvable in V (by x(A,a - y)). Let Y1 and Y,

belong to W, and let x and x be the solutions associated with y1 and

i 2 Yar

-0=
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Then for i = 1,2 we have

Yy + (Ao - mxi + (ao = &) € oni ta + ch(xi)

Thus, by strong regularity,

e, = =0l <Mty + @y - 2% + (a) - a)] - [y, + (&) - B)x, + (a5 - a)l]|

A

A

My, - vll + A lag - all fix, - %, -

But as AHAO - all

A

1, we finally obtain
lx, - %l <@ - allag-alb™ lly, - vl .
which completes the proof.
It should be noted that this result says, among other things, that if a generalized

equation is strongly regular at a solution x then any sufficiently "close"

ol
generalized equation will be strongly regular at its solution near xo (which must
exist and be unique by Theorem 2.1); further, the neighborhoods involved in the defini-

tion of strong regqularity can be taken to be the same for all nearby generalized equations.

This is a property which is not available under the weaker hypotheses used in [12].

3. Conditions for strong regularity. We have seen that nonlinear generalized

equations can be expected to behave in desirable ways if their linearizations are strongly
regular at the points in question. In this section we develop a general condition
which is sufficient for strong reqularity, as well as a sharper condition, designed for
the case most frequently seen in applications, which we show to be both necessary and
sufficient.

To begin with, we suppose that we are considering a generalized equation of the
form Q€ Ax + a + swc(x). where A is n x n, a e IJH and C 1is a nonempty
polyhedral convex set in Rn. Let x be a solution of this equation, and consider

0

the inclusion

y e Ax + a + awc(x) ’ £3<1)
for y near O and x near Xq- We claim that this can actually be reduced to the
consideration of

=10~
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z € Bw + Y = (w) , (3.2)
R XK

for some non-negative integers r, s with r + s < n, a square matrix B of dimension
(r + s), a pointed polyhedral convex cone K in R®  of dimension S, ana points

z,w near the origin in nr+s. This reduction is carried out in detail in the appendix
to this paper, but here we indicate how it may be done in the case found most frequently
in applications: namely, that in which C = Rl X RT. This case includes the standard
linear complementarity problem (2 = 0, m = n) and the problem of quadratic programming
without implicit constraints, such as non-negativity (with £ the number of variables
and equality constraints, and m the number of inequality constraints). If C = Rl x RT,
we know that for i =2 +1,...,28 +m = n we must have (Ax0 + a).1 > 0, with ecuality
3£

xo)i > 0. Assume that the variables and the elements of Axo + a have been

reordered, if necessary, so that

for i =0 +2;,..-,2 % Jj, (Ax0 + a)i =0 and (xo)i >0 ;

for =0+ 3+ 1,..:,8 +3J * 8, (Ax0 + a)i = 0 and (xo)i =0 ;
£ i = j G o + = &

or & £ +3+5s +1, o, (Ax0 a)i > 0 and (xo)i 0

It is quite clear that if x and y satisfy (3.1), with x near Xq and y near

zero, then for i =2 +3j +s + 1,...,n we shall have (Ax + a)i > 0 and thus X, = 0;

similarly, for i =28 +1,...,8 + j, xi >0 and so (Ax + a)i = 0. Thus if we let
r := £ 4+ j, partition elements Vv € Rn as (vl,vz,v3) with vl € Rr, v2 € RS,
v3 € Rn-x-s, and partition A conformably as
A11 12 13
A= P gz Poal ¢
A

we see that we really only have to consider solutions of

1 1 2 1
y = Allx + A12x + a

2 ¢ 2 2
Yo s Azlx + A22x + a

2 1 2 2 2
20, (x ,A21x + Azzx + a y)=0;

%
v

-]11-
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that is, of

1 Tt L 1’
2 Y12 &
€ + + oY (3.32)
2 A A x2 2 Rrx]RS 2
i 21 22 g 3\
However, if we recall that
)
LY [a 0 ]
1 2
+ = + =
oty F 8 = {Maph¥e * 18 o .
3 1 3
By ’:’J s
2 5
and that xo = 0, then by writing
xl L 1
w o= %o
) x2 = x2
(o]
we can write (3.3) as
1
y A
11 k2
o € W o O (3.4)
Y Por . Pag T
I
Y
and with 2z := 5 this is in the form (3.2). This reduction, though quite simple,
Y A11 Al2—]|
is very useful in identifying that portion of the problem (viz., the matrix 1)
A2l A22J

to which we have to attach conditions in order for the original generalized equation to

be strongly regular at x In quadratic programming problems with linear constraints

o

but without implicit constraints on the variables, this reduction procedure amounts to
(1) eliminating the constraints which are inactive at the point in question, and (2)
regarding as equations those (active) inequality constraints whose associated multipliers
are positive.

Before proceeding to establish conditions ensuring that (3.4) will behave well,
we comment on the question of continuity for such problems. If K 1is any polyhedral

3 s
convex set in R, the operator

-12=

|
I
i
|
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is an example of a polyhedral multifunction [12], and T-1 i1s also polyhedral. We
have from [12, Prop. 2] that for some fixed 1, 'I‘_1 is then locally upper Lipschitzian
with modulus A at each point yo € Rr+s: that is, for each such y0 there exists

a neighborhood V of YO such that for each vy € Vv,

=1 -1
€ T + A - B o

T (y) trg) + Ally - 2 ll
where B 1is the unit ball. It is not difficult tc show that if '1‘.l is also single-

r+s =3 . . ' oy
valued on a convex set D C R ' then T will necessarily be Lipschitzian there
with modulus A. Thus, if we can show that such an operator is single-valued on some
convex set, we can conclud=2 immediately that it is also Lipschitzian there.

In the following theorem, we develop conditions for single-valuedness of such an

operator. We use the idea of a Schur complement: if a matrix A is partitioned as

with A and A square and A

11 22 nonsingular, then the Schur complement of A

=¥
22~ 2Pt

1 §
in A, written (A/All), is defined to be A

11

An interesting treatment
of this idea may be found in [1].

THEOREM 3.1: Let r and s be positive integers, and let K C R®  be a non-

empty closed convex set. Let A be an (r + s) x (r + s) matrix:

B o= All A12 ]
A21 A22
where All is r xr. For we Rz+s define
Tw := Aw + 3¢ (w)
R xk
For ’l‘-l to be a Lipschitzian function defined on all of Rr+s, it suffices that:
(1) All be nonsingular
and
(2) (A/All) be positive definite.
_13.-
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In the special case in which K = Rf, (2) may be replaced by

2%) (A/All) have positive principal minors,

and conditions (1) and (2') are then both necessary and sufficient.

PROOF: For the first assertion, suppose that (1) and (2) hold. Let

X
y
Yl s= i' Y GRr' Y;G RS: i=131,2,
¥a
and consider the system
y1 € Aw + Y (wl) 5 (3.5)
b 4
R xK
This is equivalent to
1 i i
= +
¥y = By AR,

i i X %
€
y2 A21wl + A22w2 + BwK(wz) ”

As All is nonsingular, we can see that
e OIS
Wi T Ay T R N o a0
so that (3.5) holds if and only if (3.6) holds and
i i =1 3 3 i

2 = y2 A21Allyl € (A/All)w2 + awK(wz) < (3.7)

The operator defined on RS by
S(w) := (A/All)w + BWK(W)

is maximal monotone; as (A/All) is positive definite, S(w) is also strongly monotone,

and thus its inverse is Lipschitzian on all of Rr®. Thus, for some fixed L,
1 2 1 2 =1 L 2
llwy = wall <ozt - 220 < elleay,all ol iyt - ¥

This inequality, together with (3.6), implies that for a constant M independent of
i | 2
y and y,
1 2 1 2
v =Wl cmlly” - 7)),

which proves the sufficiency of (1) and (2).

-14-




Now assume that K = Ri and replace (2) by (2'). For sufficiency, note that

(3.7) is the linear complementarity problem

(A/All)w; - zi >0
w; >0 (3.8)
(w;.(A/All)wi - zi) =0,
where (-,-) denotes the standard inner product. It is known [6] that (3.8) has a

unique solution for each 2t e RS if and only if (A/All) has positive principal
minors. In view of (3.¢) and our earlier comments about polyhedral multifunctions,

this 1s enouch to rrove sufficiency. For necessity, suppose that T_1 is Lipschitzian

on all of K °. 1f All is singular, let u be a point of R°  not in the range
of All' Let v be a roint of R® with all of its components strictly negative, and
for any non-negative } define Y,y = [i?]. We know that Yo € T(0), and by the

assumed properties of ’I‘-.l we know that for all small positive A the point

T‘l(Y)\) =:

N> >

will be near the origin. However, we have

>

A A
bt B o asz(w ) »

+

N

and for small 2 the left-hand side will be strictly negative in all components,

v A
implying that w_ = 0. But then

2
A A A
SR 0" MM
contradicting our choice of u. Thus All must be nonsingular, so (A/All) is well

defined. Now by our previous analysis T-l(y) will be a singleton for each y € Rs

if and only if the complementarity problem (3.8) is uniquely solvable for each zi e R°.

We have already remarked that this is equivalent to (2'), and this completes the proof.
We observe that if K is a cone in Theorem 3.1, then the operator T is positively

homogeneous (i.e., for A > 0, T(Ax) = AT(x)). In that case, for T-l to have a

-15=-
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property such as unique solvability on all of Rn it is necessary and sufficient
that that property hold on any neighborhood of the origin. Also, the conclusions of
Theorem 3.1 are not invalidated if ecither of the spaces Rr and PS does not appear
(i.e., if the set Rr x K 1s Rr itself, or is K). 1In fact, the arguments are
simplified in that case; of course, the obvious changes in the conditions (1), (2) and
(2') must be made.

The following corollary relates the conditions just developed to the property of
strong reqularity which we used in Section 2.

COROLLARY 3.2: Let C be a polyhedral convex set in Rn, let A be n X n,

ae€ Rn, and let xo sclve

O € AXx + a + awc(x) = {390
Let the reduced form of (3.9) at xo, if not vacuous, be
B B
0 € Bw + 3y = (w), B = & b ' (3.10)
X
s BZl B22

where K 1is a polyhedral convex cone in R°. For (3.9) to be strongly regqular at X
it suffices that (i) the reduced form be vacuous or that (ii) B be nonsingular and

11

(B/Bll) be positive definite. If K = Rf then for (3.8) to be strongly regular at

X, it is necessary and sufficient that (i) the reduced form be vacucus, or (ii) B11

be nonsingular and (B/Bll) have positive principal minors.

PROOF: Immediate from Theorem 3.1 together with Theorem A.4 in the appendix.

4. Applications and examples. Having developed the theoretical aspects of strong

regularity in Sections 2 and 3, we apply these developments here to problems in
complementarity and in nonlinear prograrming. We first give an example from complemen-

tarity: consider the linear complementarity problem

Ax +a >0
x >0
(x,Ax + ak =0 ,

-16-




in which
32 32 ~1
A=14 5 11, a= |[-4
7 AU S | 0
This is equivalent to the generalized equation 0 ¢ Ax + a + 3y 3(x). The matrix A
is neither positive definite nor a P-matrix (i.e., a matrix wit:{EOSitiVe princiral
minors), but the problem has a solution with xg = (1,0,0). Noting that the third

component of Axo + a 1is positive, as is the first component of x we can apply the

0’

reduction procedure to obtain the problem in reduced form as

1 1jf= z
1 1
0e b *3"‘an+ 7
X, x,
where 2z := x - 1. The conditions for strong regularity thus reduce to the require-

1 1

ments that the submatrix [1] be nonsingular and that its Schur complement be a P-matrix.

As the Schur complement is [5] - [4][11_1[11 = (1], we see that this problem is strongly

regular at Xg: The reader may wish to check that if the entry of S5 appearing in the

matrix is changed to 4, the problem is no longer strongly regular at x although x

o' 0

remains a solution. In fact, with that change one finds that if the second component
of a is perturbed to -4-¢ (¢ > 0), the resulting problem cannot have any solution
near xo, although it has the solution xz = (0, 1 + €/4, 0). Even with ¢ = 0 the
solution set consists of the line segment {(1 - A)(l,O,O)T + A(O,l.O)TIO g k< Ll

so that Xq is not an isolated solution.
We next examine the standard nonlinear programming problem

minimize 8(x)

subject to g(x) 2 (4.1)
h(x) =0 ,
where 0, g and h are Fréchet differentiable functions from some open set 0 C Rn

into R, Rp and RY respectively. The optimality conditions for (4.1) are

~17~




L' (x,u,v) =0
g(x) <0
h(x) =0 (4.2)
u > 0
Cu.gix)) =0 ,

where u and v are points in ®’ ana rY respectively, and where
[ L(x,u,v) := 08(x) + {u,g(x)) + {v,h(x)) and the prime indicates differentiation with

respect to the first variable (x). The conditions (4.2) can be written more conveniently

as the generalized equation

I

S L' (x,u,v) x

|

| 0 € -g(x) + 3y u - (4.3)
? R"xmfan

} -h(x) v

and we shall consider the question of proving strong regularity at a solution of (4.3).

If the components of such a solution are denoted by xo, uo and VO' we can partition
+ -

the vector g(xo) into smaller vectors g (xo), qo(xo) and g (xo). of dimensions

¢ tn ; * =
r, s and t respectively, and partitions u conformably into wu_, uo, and ug so that

0 o' 0
g+(x0) =0, u; >0 5
q°<x0) = o, ug=0 ,
5=°'

|
I
% 9-(x0) < (@, u
I where the ordering is componentwise. The linearization of (4.3) about the solution we
|

are examining can, after suitable rearrangement, be written as

| "

, o wt & B Y- o1 fe ] Mx ]

|

g 4 & & 0 0 jvev, 0 v

‘ +

‘ ge e’ o e @ ol = atice o + 3y o, e
0 B a8 ot

| 0 0 g R xR xR+xR+xR+ 0

E -G 0 0 0 0 u - uO 0 u

; |-G 0 0 0 0 Jlu = u,] L-9 (xo)_ lu

| " " +l

| where L" denotes L"(x ,u_,v.), H denotes h'(xo), ¢t denotes g (xo). etc. One

1 00" 0

can check that the reduced form of (4.4) is

- o




il =

+¥T v OT
£» g 't ; ° y y

]
~H 0 0 , 0 v v
0 € + ' + + Y
:G_ -0 -o ' —0 w Rn-H;-rr xns w .

0 3 A y 0
-G~ O 0 LEN(s B u0 u

+ + +
where w :=u - uyi the dotted lines in the matrix indicate the appropriate partition-
ing for the analysis of Section 3. Using the results of that section, we see that
necessary and sufficient conditions for strong reqularity of (4.3) at the solution in

question are that the matrix

o ot ¥
4 © o (4.5)
" o o

be nonsingular, and that its Schur complement

-1
+
(c° o o[ £» uT G*T] [°T
R 0 (4.6)
<" o o 0

be a P-matrix. Of course, if go(xo) is vacuous then the matrix in (4.6) does not
appear, and in that case one may apply the standard implicit-function theorem as was
done in, e.g., (3], (4], and [11). 1If go(xo) is not vacuous, then the results given
in this paper permit one to carry out a similar analysis even though the classical
implicit-function theorem does not apply.

In the case in which go(xo) is vacuous, it is well known that certain standard
assumptions on the problem suffice to guarantee nonsingularity of the matrix in (4.5)
above. In terms of our notation, these are:

(a) the second-order sufficient condition [3, Ch. 2]: For each non-zero y such

that
Gy=20
Goy < 0
Hy = 0
one has (y,L"y) > 0.
-19-
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Note that G appears in the general form of these conditions; if g (x ) were
0
vacuous then of course G would not appear.

(b) linear independence of gradients of the binding constraints: The matrix

+

Go has full row rank.

0
(c) strict complementary slackness: g (xo) is vacuous.

Actually, only (a) and (b) are required for nonsingularity, but (c) 1s needed to

make sure that (in our terminology) the reduced form of the problem contains only equations.
We shall show now that condition (b), together with a slightly strengthened form

of (a), will suffice to guarantee that conditions (1) and (2) above are met, and thus

that (4.3) is strongly reqgular at the solution we are considering. The strengthened

form of (a) is:

(a‘) the strong second-order sufficient condition: For each nonzero vy with
4+
Gy=20
Hy = 0 ,

one has (y,L"y) > 0.

Of course, if go(xo) is vacuous (i.e., if (c) holds) then (a) and (a') are the !
same, but in general (a') is a stronger requirement than is (a). With this change, H
we can prove that even without strict complementary slackness the problem (4.3) will
be strongly regular.

THEOREM 4.1: Let 6, g and h be functions from an open set o C R" to R,

B ana gr? respectively, which are twice differentiable at a point X, € Q. Suppose
that X together with points Uy e R’ ana Yo € Rq, solves (4.3). If the strong H

,v.) together with linear independence

second-order sufficient condition holds at (xo,uO 0

of the gradients of the binding constraints, then (4.3) is strongly regular there.

PROOF: To prove that the matrix in (4.5) is nonsingular, suppose that a, b and c

are such that

=20=




+
Lva + HTb + G Tc =0

-Ha =0 (4.7)
—G+a =0
Premultiplying the equations in (4.7) by aT, bT and cT respectively and adding the
results, we find that (a,f"a) = 0. This, together with the second and third equations
of (4.7) and the strong second-order sufficient condition, implies that a = 0; the
first equation of (4.7) and the linear independence assumption now imply that b and ¢
are also zero. Thus the matrix is nonsingular, so that the Schur complement shown in
(4.6), which we shall denote by S, exists. To gain some additional information

about its structure, we note that the equations

L + HTA + G+TB = GOT

~-HV =0 (4.8)
+

-GV = 0

uniquely define matrices V(n X s), A(q x s) and B(r x s). We then have
c 0,
S = [G 0 ol|vl =GV,
A
B

but upon premultiplying the first equation of (4.8) by VT

we find (since [" 1is
symmetric) that S = VTI“V. Thus S 1is symmetric, so it will be a P-matrix if and
only if it is positive definite. Suppose that z € R® with (2,52 < 0. Then with
y := Vz, we have (y,L"y) < 0 and (from (4.8)) Hy = 0 and G+y = 0. By the strong
second-ofder sufficient condition we must now have y = 0. Postmultiplying the first
equation of (4.8) by z and using Vz = 0 we have HTAz + G+TBz = Goz, which implies
z = 0 by the linear independence assumption. This completes the proof.

It is clear that the conditions of Theorem 4.1, although sufficient, are not in
general necessary for strong regularity (consider the problem of minimizing the

2 2 . i
scalar function =g with no constraints and let EO = 0. It may not be so clear

whether we could have used the standard second-order sufficient condition (as given in
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(a) above) in the hypothesis of Theorem 4.1 instead of the somewhat stronger

(a').

To see that this cannot be done, consider the following example:

inimize 3 (x2 xz)

minim > 1 5

subject to Xy i 2x2 <

- - <

kl 2x2 £

where p represents a perturbation parameter. We can

condition

—~ pxl

(4.9)

write the necessary optimality

conditions for (4.9) as the linear generalized equation
i QF =T =1 X, -p X,
0o -1 20 =2 x, 0 X,
0 € + + oY e (4.10)
A 2 0 0 uy 0 RZXIRE uy
1) 2 0 0 u2 0 u2
and we see that for p = 0, (4.10) is already in reduced form with its unique solution
at the origin in Ré. However, for each positive p there are three solutions, as
follows:
p
(i) x = =0 (saddle point)
0
2 1
oy 2 3 S
(ii) % =-—p ; B ==0p (local minimum)
3 3
1 0
2 0
Ay 2 18 iy
(i) x==p ¢ b= =p (local minimum)
3 o 3

1 i
By making p sufficiently small, all of these solutions can be brought within any
preassigned neighborhood of the origin. It follows that (4.10) is not strongly regular

there; however, one can verify easily that the solution of (4.9) for p = 0 satisfies

both the standard second-order sufficient condition and the linear independence condi-
tion. Those conditions would therefore not suffice to establish Theorem 4.1.

We have dealt with the nonlinear programming problem in the form (4.1) because
that form (with no implicit constraints on

x) 1is frequently seen in the literature.
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However, it is perhaps worth pointing out here that for some problems one may do much
better by formulating them with implicitly-constrained variables. For example, consider
the problem of minimizing the expression (c,x) + u”x”°° for x € Rz, where ]I-“Q

is the maximum absolute value of the components of x. If, for example, we take

c = [%—,O] and a = 1, one way to formulate this problem using explicit linear
constraints is:

minimize n + % X
X
Xlr 2:“

1

subject to I||x (4.11)

o

where I denotes the identity matrix and e 1is a vector of ones. The solution is

evidently n = 0, x = 0, and all four constraints are binding; thus one cannot use

Theorem 4.1 to show that the problem is strongly regular. In fact, this problem is not
. 5 T

strongly regular: if the vector O is perturbed to (-¢, 0, -¢, 0) for' € > 0,

then the optimal solution set becomes {(O,A,e)|k € [-e,e] . However, if one formulates

the problem as

£ oales 1
minimize n + 3 X

X X 1
1’ 21“
2 * (4.12)
subject to |x | € C:={lx |In > |lx]l_t .
n n

then it can be expressed by the generalized equation

1
2 xl

Oe |0 | + awc Xyl v (4.13)
1 n

and the reduction procedure alone suffices to show that (4.13) is strongly regular (see
the Appendix; here the reduced form is vacuous, since in this case the face F is

just the origin). Of course, this problem can be solved by inspection, but it
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conveniently illustrates the point that formulation can make a critical differencs in

the stability properties of a problem. Here the formulation in (4.11) makes even the

structure of the function H-Huo subject to perturbation, whereas in the original

problem the data subject to perturbation might reasonably have been only o and the
components of c¢. This feature of the problem is appropriately reflected in the
formulation given in (4.12), and this illustrates the fact that the standard form (4.1)

may sometimes be seriously inadequate for proper representation of a problem.




APPENDIX: Conversion of a Linear Generalized Equation to Reduced Form.

We shall deal here with the linear generalized equation
0€ Ax + a + awc(x) 4 (A.1)

where C 1is a nonempty polyhedral convex set in Rn, A is nxn and a€e R'. If

X, is a solution of (A.l), we shall show that in the general case one can find integers
: s
r and s, with r + s < n, a pointed polyhedral cone K C R of dimension s,

and an (r + s) x (r + s) matrix B, such that rhere is a natural correspondence

between solutions of

y € Bx + a + ch(x) (A.2)
for small y and for x near xo, and solutions of the reduced form
z € Bw + 3y (w) (A.3)
R xK

for z and w near zero. 1In the case C = Rk x Rf this is clear, as has already
been remarked in the main part of the paper: it corresponds to removal of the “inactive
constraints." In other special cases, either K or R"  (or both) might be vacuous,
so that the problem would become even simpler. For the general case, we need some
properties of polyhedral convex sets, which we shall list here without proof. We use
the notation Tc(xo) for the tangent cone to C at X, (i.e., for 3wc(x0!°); for
general information about tangent cones, polyhedrality, etc., see [13]. 1In all of the

n

following statements, C is a nonempty polyhedral convex set in R .

PROPOSITION A.l: Let Xy € C. Then there exists a neighborhood U of the origin

. nu = n
such that (C xo) U Tc(xo) U
*
PROPOSITION A.2: Let y ¢ R, and let F := 3. (-yy). Then for each x € F,

W (x) = Wo(x) + y R =: {y + uyoly € W (x),a 0}. Further, for each y near y

[

Ol
*
awc(-y) € F.

The next proposition provides the key to establishing a correspondence between

solutions of (A.2) and those of a problem equivalent to the reduced form (A.3).




PROPOSITION A.3: Let y

and F be as in Proposition A.2. Let x_ € F, and

0 0 =t

write T := TF(xO). Let L be the subspace parallel to F. Then there exist neighbor-

hoods U and V of the origin, such that for each h e U and each k € V,

0 € (yo + k) + awc(xo + h)

if and only if

0 € PLk + awT(h) '

where PL denotes the orthogonal projector on L.
PROOF: Applying Proposition A.l1 to F, we can find an open neighborhood U of
the origin such that (F - xo) Ny =TNU. By Proposition A.2, we can find a neighbor-

hood V of the origin such that for each k € V

if €
o i 0 (y

o’ 0 =) o+ awc(x) then

x € F. Also, there is a neighborhood Vl of zero such that for any x € F,

n o= -
(B (x) +y R) NV, C oy (x) + v [0,1) := {y +ayyly e ay .(x), 0<acl)

A

To see this, note that awc(-) has only finitely many values on F; for each of these
values, say a polyhedral convex cone P, let o0 be a simplex containing the origin

in its interior. The set (P + yoR+)n o 1is a bounded polyhedral convex set, so it
can be written as the convex hull of points ql,...,qm in R". For each i,

q. = p, ta.y

i €
g i Yo’ with pi P and «a.

g 2 0. With o, := o/max{1l,a ,...,am] it follows

0 Kk

that (P + yOR+)f\0 CP+ yo[0,1]. Repeating this procedure for each value of awc(ﬂ

0

on F and intersecting the resulting simplices, we obtain the required Vl. Finally,

we let V := VO n (-Vl). Now choose any h € U and k € V.

(only if): Suppose O € (yo + k) + awc<x0 £ih)e As k€ VO, we have X, +he€e F,
and thus h e (F - xo) N U, so actually he€e T. Let t € T; we shall prove that
(PLk,t - h) > 0. To begin with, note that we may replace t - h by
A(t = h) = [(L ~ X)h + »t] - h for any small positive A; thus we lose no generality

by assuming that t e TN U (recall U was open, so h e int U). Then X e P,

and of course xo +he F, so

(x0 + &) = (%, +h) € L.
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ReTe ™

As y, is orthogonal to L by construction, we have (yo + P k.t - h) = 0. There-
L

fore, since k = PLk + P lk' we have
L

( - h) =¢( =
ka,t h y0+k,(xo+t) (xo+h));0,

since we assumed that O € (yo + k) 4+ awc(xo + h). It follows that O € PLk + aw,r(h).

(if): Suppose that 0 € PLk + BwT(h). As he€e TNU, we have xo + he F; as

h € int U we have also that BwT(h) = awF(xo + h) = awc(xo + h) + YoR, where we
have used Propositions A.1l and A.2. Noting that Ll (2 awF(xo + h), we see that since

k = PLk # B lk'

L

Qe PLk + BwF(xo + h) = k + awF(xO + h) =k + y0R+ + awc(xo + h)

But then <k € (ch(x° + h) + y0R+)ﬂ Vl' so for some a € (0,1],

-k - ay, € awc(xo + h) ,

and since X + he F, we have

S awc(xo + h)
Multiplying the second inclusion by (1 - a) and adding it to the first we obtain

0€ (y. +Kk) +ch(xo+h) ’

0
which completes the proof.
Using Proposition A.3, we can now construct the reduced form of (A.1l) for general

polyhedral C. To do so, suppose that x + a,

0 solves (A.l). Define yo 1= AX

[¢]
and let F, T and L be defined as above. Let M be the lineality space of T and
choose orthonormal bases b_,...,b for M, b G A ) for LD Ml, and
i 3 : T+l r+s

A (note: we assume here for generality that none of these spaces
is of zero dimension; if one or more are zero-dimensional, the analysis is only
simplified). Assume that A and all vectors in R"  are written in terms of the

; i X 2. 3 ; i
basis bl,...,bn; we shall write, for example, x = (x ,x ,Xx ) with x € M,

2 1 3

i 1
X"€e LNM, and x € L. We can write T =M + (TN Ml). and the cone K := TN M

" " ; T 1 2 : " ;
is pointed and contained in L N M ; in fact, since L = aff T, K has the dimension

S

S G4




1
of LNM

Choose any x € N and any y € W.

x and y if and only if
0e€ PL(Ah - v} + awT(h) -
Writing
1 B
h
- 11 12 A13
2 2
= h = = -
il - Wl A=y Ay Ay
y3 h3 A A

1 1 P
A 0
3. y 11 N2 h {0}
h™ = 0, 2] € 5 * o il
y A21 A22 h BwK(h )
and with
1 1
& h M3 ay
z = 2| w o= K B v= ’
y h A21 A2

we see that the second relation in (A.5) is of the form shown in (A.3).

established the required correspondence.

THEOREM A.4: Let C be a polyhedral convex set in R";

ae R". solves (A.1). Then (A.1)

Thus, if h € ™ we have
2 ;
n=mad0., wew, wlex,
Wah) = {0} x 3y (h%) « KO
Now apply Proposition A.3, with yO := Axo + a, to obtain neighborhoods
of the origin; construct additional neighborhoods N of xo and W of
if x€ N and y € W then
4 h 2= - €
X x0 U
k := (-y + Ax + a) - (Ax0 +ta) =ph —y€eV

Now Proposition A.3 tells us that (A.2) holds for

This construction, together with Proposition A.3, now permits us to state a
# general criterion for strong regularity of the generalized equation (A.l).
et A be n *x n

is strongly regular at x

U and V

0 such that

(A.4)

(A.5)

We have thus

and

Suppose that X, e R”

-28-
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if and only if its reduced form (i) is vacuous, or (ii) has an inverse which is single-

valued on all of L.

PROOF: We assume the notation used in the earlier part of the appendix.
(if): First, suppose the reduced form of (A.l) is vacuous. This means that
L = {0}, so that F is the singleton {xo} and T = {0}. Proposition A.3 now implies
that for any y near zero, x itself is the unique solution of (A.2) near x

o]
Thus (A.l) is strongly regular. On the other hand, suppose that the inverse of the

5

reduced form is single-valued on all of r" (and therefore Lipschitzian there, as
we have previously pointed out). Consider the neighborhoods W and N constructed
above, and find a neighborh?od wo of thehgtigin with W_C W and having the property
that if y € wo and if and some satisfy the second relation in (A.5),

2 2
hl ' h

0

then X, h h2 € N (here we have used the continuity of the reduced form's inverse).

[¢]
Choose any y € W_; by hypothesis the second relation in (A.5) is solvable by a unique
h1 hl
wole With x := X + h? , we have x € N, and therefore x and y solve (A.2).
2 2
0
hl
Further, the solution x 1is unique in N because the solution of A5 is
h

unique. Thus the restriction to wo of NN [A(*) + a + awc(-)l‘l is a single-valued
function; the Lipschitzian property now follows from [12, Prop. 2] and our earlier
remarks. Therefore (A.!) is strongly regular at xo.

(only if): Suppose that (A.l) is strongly regular at x and that its reduced

0
form is non-vacuous; choose neighborhoods S of 0 and @ of x0 so that for each

y € S, (A.2) has a solution x € Q which is unique in @ (here we are again using
continuity). Let S0 := SN W and Q0 := 9 N N, and choose any yl in the projection

: ¥
of S0 on L (a neighborhood of zero in L). Let y € S0 with PLy = . . By
e
construction, a solution x € @ exists for (A.2); define h := x - Xqe By the discus-
y h
sion preceding this theorem, we see that h3 = 0 and that - and . satisfy

¥, h

«29e




%

the inclusion in (A.5). Let G := 1 9, € Q- Xgli this is a neighborhood of
92 0
hl hi
the origin in L, and it contains . If there were another solution of
h h}
L]
hl 2 2

(A.5) in G, then X, + hé would belong to Q and would sclve (A.2), contradicting
Q

strong regularity. Therefore the reduced form of (A.l) is uniquely solvable for each
¥

A in the neighborhood PLSO; but the reduced form is positively homogeneous, so
y
3
it is uniquely solvable for each € L. This completes the proof.
Yy
2
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