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SECTION I

DISCUSSION OF THE VARIOUS TRANSONIC SMALL PERTURBATION
EQUATIONS DESCRIBING THREE-DIMENSIONAL
WING-BODY FLOWS

1. INTRODUCTION

One of the most difficult problems yet to be solved
to a certain degree of completion is the three-dimensional
transonic interference problem. At transonic Mach numbers,
three-dimensional effects due to the presence of a fuselage
or wing tip can influence the flow field for large
distances in the spanwise direction. For low and moderate
aspect-ratio wings combined with a body, the flow fields
are rarely similar to two-dimensional ones anywhere on the
wing except, perhaps, on certain localized regions.
Therefore, the treatment of the three-dimensional transonic
flow problems involves more than a trivial extension of
existing two-dimensional methods, which are fairly well
developed by now.

Some of the major complications are:

(1) The circulation changes with the spanwise

coordinate and has to be determined as part of the
solution.

(2) The swept and tapered planform shapes complicate
application of wing boundary conditions using
finite-difference methods.

(3) The shocks, which are nearly normal to the
free-stream direction in two dimensions, can be
‘oblique in the lateral direction for finite
swept wings, thereby making them difficult to
capture sharply because of poor alignment with
the coordinate system.

(4) Finally, difficulties in the stability of the
results may arise, especially in supersonic
regions in the finite-difference method.




2. BRIEF DESCRIPTION OF THE FLOW DEVELOPMENT
ABOUT SWEPT WING-BODY COMBINATION

Figure 1 shows the flow development about a simple
swept wing-body combination with increasing free-stream
Mach number.

At moderate subsonic speeds, if the lift is not large,
an important effect of the sweep is to move the loading
forward at the tip. As a result, the first appearance of
supersonic flow occurs in the tip region. Since the
isobars near the wing tip lose much of their sweep, the
supersonic flow generally gives rise to a shock wave--
the initial tip shock which is comparatively weak and lies
almost normal to the free stream [Figure 1(a)]. This tip
shock, though limited in the spanwise extent, extends to
considerable distances above and below the wing.

As the free-stream M_ is increased, the initial tip
shock moves rearwards over the wing surface, but its
influence on the wing is limited by the appearance of a
second shock. This rear shock rapidly develops to affect
a large part of the wing span, particularly the flow ahead
of the initial tip shock [Figure 1(b)]. The rear shock may
be regarded as associated primarily with conditions at the
wing root. It consists of a compression system propagating
outward from the root which coalesces on the outer part of
the wing to form a shock wave [Figure 1(b)].

With increasing M_, the rear shock moves aft more
rapidly than the initial tip shock which is overtaken and
disappears. At a sufficiently high M, the rear shock
reaches the trailing edge. The high local flow velocities
close to the leading edge over the outer part of the wing
lead to flow separation at the leading edge. This starts
near the tip and spreads inboard with increasing a. For
leading-edge sweeps greater than about 30 degrees, the
separated flow rolls up to form a partspan vortex lying
obliquely across the wing. Above a certain stream a, the
flow changes in type; the leading-edge separation is
suppressed, the flow passes smoothly around the leading
edge through a forward shock wave which appears to
originate close to the leading edge at some spanwise
position [Figure 1(c)]. The forward shock is in fact the
boundary of disturbances from the inboard part of the wing
leading edge which, because of the higher local supersonic
Mach number, propagate over the outer wing in a direction
more highly swept than the leading edge. The Mach number
component normal to the leading edge (M_ cos A) for which
the flow attachment occurs varies consigerably, depending
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Figure 1. Shock Formations on Swept Wing-Body
Combination with Increasing M_.




on A, and more particularly on the leading edge profile.
In general M_ cos A has a value between 0.55 and 0.90.

As the free-stream M_ is increased beyond that
necessary for flow attachment, the forward shock moves
inboard and rearward and at some stage intersects the rear
shock. Outboard of this intersection a strong shock forms
(the outboard shock) which frequentlv induces a severe flow
separation even though the flow is atcached behind both
the forward and rear shock [Figure 1(d)]. When separation
is present behind either of these shocks, a vortex tends
to form and the associated outflow modifies the flow
structure outboard and becomes an important factor in the
ultimate breakdown in the attached type of leading-edge
flow over the wing. Separation then takes place along
almost the entire leading edge, and the shock waves no
longer have a direct influence upon the surface pressures
which are dominated by a large port-span vortex as for
lower subsonic M.

Many of the features described above are shown in the
surface-film pattern of Figure 2, obtained at M= 8,95
or with a = 10°.

Complex flow patterns similar to Figure 2 are largely
due to the three-dimensional nature of the wing flow and
hence to the dominance of the root and tip influence at
transonic speeds. The root affects the flow strongly
behind the forward shock which therefore indicates the
limit of the root influence and the flow in this region
is partly conical in character. The tip influence at
transonic speeds is delineated by small disturbance from
near the tip leading edge [the tip shock: Figure 1(c)].
Ahead of the forward, outboard and tip shocks the flow is
almost two-dimensional in character. The extent of this
zone depends on the shock positions which, in turn, are
dependent on wing planform, o, and M_. By making the
aspect ratio large, or by deliberateTy attempting to reduce
the root and tip influence, flow can be obtained over a
, large portion of the wing. This flow closely resembles
that postulated in the simple sweepback theory which is so
highly desirable.

The relationship between swept-wing flow and that on
the equivalent two-dimensional section at a component Mach
number normal to the leading edge, M_ cos A (if not too
large) is shown in Figure 3. At higﬁer values of M_ cos A
it is difficult to minimize the effects of the finite wing
aspect-ratio. Recent experiments however have given
satisfactory results: surface pressures, separation
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boundaries and shock positions correlating well on the
basis of the simple sweep theory.

3. DISCUSSION OF BASIC EQUATIONS

A. Various Forms of the Transonic Small Perturbation
Differential Equations

First consider the exact nonlinear equation for
inviscid, isentropic, two-dimensional potential flow
written in Cartesian coordinates:

(a%-02)0 - 26 0. 0. + (a2-02

x’ 7 xx X'y Xy _q)y)(I>

yy = 0 (L

where a is the local speed of sound, and ¢, the total
velocity potential. 1In terms of U = ¢4 and V = ¢_, the
total velocity components of Equation (1) become y

S0 O 2 o2
(@%-u)u, = 20V U - @ -VOV

(2)
VX = Uy (irrotationality condition)

The expressions of these equations in terms of the
perturbation potential ¢ and the perturbation velocity
components u and v, defined by

U

e é& =v (3)
and ¢ = x + ¢ (4)

can easily be written down in full (see Reference 1,

page 204). We will, however, consider two of these
perturbation forms for our guidance in selecting the best
form for three-dimensional flows.

One form is referred to as the small perturbation
equation derived by neglecting all terms containing
products of perturbation velocity components. We will
refer to this as NASA Ames (transonic) equation
(Reference 2) (NAE)




(L-ME- DMy o, - 20 0,0 + (1= (=120, 105, = 0 (5)

or in terms of u and v:

(1-M2- (+DM2ugu, = 242 v uy - [l-(y-l)Mozou]vy (6)

The second form is the usual classical transonic
equation (CTE) derived from Equations (5) and (6) by
considering the special behavior of the fluid flow when
the local velocity is close to the speed of sound:

(L-MZ- (rbLME0 16, + 6y = O 7
or [1-M2- (+D)Miuju, = - v,
(8)
Vx = uy

We will now analyze these equations with regard to
how they model characteristic lines, sub- and supercritical
flows, and shock waves.

When Equations (1) through (8) are used for supersonic
flows, they can be analyzed to find characteristic lines;
that is, lines across which velocity gradients can be
discontinuous. One simple way to derive the equation for
a characteristic line is to rotate the coordinates through
some angle 6, and ask if

there is a value of 6, feor | ~~<16¢ ok
which an advance along & / T,
is not possible. For / e
Equation (2), it is easy / n
to show that a character- /
istic line occurs in its /
solution when L
1
13 X )
[iﬁ - coszec] + [2v cosecsinec-u(y-l-+2cos ec]
“w i9)

2ol
= [(Y_l)(g_;z_) + (u cosb -v sinec)zl =0




where the brackets enclose terms having zero-, first- and
second-order powers of u and v.

Similarly, it can be shown that the characteristic
lines of Equations (6) and (8) are

[Jt - coszec] + [2v cosecsinec-u(y-1-+2 coszec)] =0 (10)

(e}

f and
1 2 2
[MZ - cos BC] - u{(y+l) cos B, = 0 (11
respectively.

Notice that Equations (9) and (10) are identical for
both the zero and first powers of u and v. But Equation
(11), derived from the classical transonic equation, is
not in agreement with Equation (9) even through the first
order in perturbation velocities. Since, to the first-
order, oblique shock waves bisect characteristic lines of
the same family, this result can influence our choice of
equations when we seek to compute flow fields with oblique
shocks.

The Critical Velocity

If we express a second-order partial differential
equation in the form

A QXX + B ¢xy +E ny 5 f(¢x,¢y,¢) = 0 (12)

it is said to be elliptic 05 hyperbolic, depending on
whether the discriminant (B4-4Ac) is <0 or >0, and it
changes type as it goes thro%gh zero This occurs in
Equations (1) and (2) when a (Q -a ) goes through zero,
where |Q| is the magnitude of the local velocity. This
gives the classical result that Equations (1) and (2)
change type which the local flow speed passes through the
speed of sound and is hyperbolic on the supersonic side.
This speed is referred to as the critical speed and the
value of the pressure coefficient
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at which it occurs, as the critical pressure coefficient,
C*.
P

Figure 4 shows a plot of C; versus M_ . This
relationship is valid under the"assumption that the flow
is isentropic along a streamline between the reference
M, and any given point. Als¢ shown in Figure 4 is the
first-order small perturbation approximation to C¥X = 2u*.
This approximation follows at once by neglecting gll terms

-1.0
C.* -o0s

=0.6

- \
Exact, Equations (1) and (2)
—— Perturbation, Equation (14)
I -

1 1
Se 0.7 0.6 X0 10
M,

Figure 4. C; versus M, as Given by
Equations (1), (2) and (14).
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with products of u and v in Cp-equation and can be
expressed as ¥

-o2wr =1 - (L - - K <£§ - 1) (14)

. The condition under which Equation (5) changes type
is:

M (y2-1)02 -

2 by [r+1+M2) -1 + (2) - 1l 62 = o
(15)
There are two roots for Mi ¢*, and the one of
physical interest leads to
" 2 o1 M "5
- 2u 5 fie= .Y—+I [qz- — 1 - 1 4 Y'l(l_\Iz)] (16)
“Too 'Y_+T “too

Equation (16) reduces to Equation (14) if ¢2 and higher
order terms in ¢y are neglected. y

It is easy to show that the expression for -2u¥*
derived from Equation (7) is identical to Equation (14).
We therefore conclude that, to the lowest order in
perturbation velocities, Equations (1), (2), (5), (6),
(7) and (8) all change type according to the same
relationship among u, y and M_ as given by Equation (14).

Simple Sweep Theory

The simple sweep theory is generally derived by
considering a sheared wing of infinite span and constant
section (Reference 3). The principal assumption is that
the velocity component parallel to an edge is constant or
that the perturbation velocity parallel to an edge is zero.
Under these conditions a shock, if it occurs, would also
have to be parallel to an edge, and hence its strength
would depend only on the component of velocity normal to
an edge. We will use the symbol cg(e) to designate the

11
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pressure coefficient in an isentropic flow at which the
component of the total velocity normal to some plane, fixed
by 6 = constant, is sonic. This plane will be assumed to
be vertical, Z.2., perpendicular to the xy-plane. Note
that Cg(O) = C* which has the same meaning as given in the
previous section. U.

If then q(0) is the \' - Yy !
component of velocity %)
normal to an isobar plane,
classical sweep theory

leads at once to the
critical value of q(8):

2

¢*2(s) - U2 sin? 2

sin“p = a (17)

From Equation (14) it can be shown that, for isentropic
flow

2
*(6) _ 2 cos™ 9 1
1< fges = - SRy llme e = 13 W8

M~ cos“p
[e o]

Equation (18) can be used to derive the exact value for

cg(e):

i 2 =1 2 2 :
C;(G) " ;ﬁz [{§$T (68 5= M cos 6)} 1] (19)

Applying the small perturbation approximation to
Equation (19) yields

2 2
- Yk & 1 < 1378 s o 2. co878 1 |

Figure 5 compares Equation (19) with Equation (20),
which is the simple sweep-theory counterpart of
Equation (14).

12
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—08}- ]‘;(]Ll{ltj\/ix (19) /
—-= Perturbation,

Cp (1)~ -2u%(0) /
-07}- Equation (20},

M_ = 0.825

-0.6

-0.3

-0.2

1 | ]
(0] 10 20 30 40 50 GO

6, deg

Figure 5. CX¥(0) versus 6 as Given
by Equations (19) and (20).

Shocks

So far the discussion has been restricted to the
properties of genuine solutions of the differential
equation, Z.e., solutions that result in continuous
variations in the velocity components. We must next
inspect the properties of possible weak solutions of
these equations (see, for example, Reference 4). A weak
solution can be composed of two genuine solutions

13
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separated by a surface across which the dependent variables
can be discontinuous. We refer to this surface as a shock,
regardless of the form of the hyperbolic equation being
investigated. For the Eulerian equations, the jump condi-
tions for the dependent variables across the shock are
referred to as the Rankine-Hugoniot conditions. In
general, the conditions that must be satisfied across a
shock can be found by writing the partial differential
equations in conservation form and connecting the
differences in the conserved variables with the direction
cosines of the surface across which they are discontinuous
(Reference 4). The jump conditions for the isentropic
shock embedded in Equations (1) and (2) lead to an implicit
relationship between the velocity components on the two
sides of the discontinuity, which can be written as

(Reference 5): J
where
&
= =
6; = 11 - Ll +vh) R

and the subscripts 1 and 2 refer to conditions on the
upstream and downstream sides of the shock at any given
point. The local slope of the shock is -tan§.

The conservative form of Equation (8) can be written

as
2 1(1-M2yu - 35X M2v? - Lo (y+1yu?) + - (v-M2 (y-1)uv] = 0
(22)
v o L
&= 5 Y

and for its jump condition, we obtain

14 f




2

(1 - 5 M2 (y+1) (uy+uy) ] tan’s - 2 M%(vy+tu,tans)

+1 -2 - L (uptuy) =0 (23)

The jump condition for the classical transonic
equation, {(7) and (8)] is important for our purpose.
The conservative form of Equations (7) and (8) is

((1-¥2)u - L +1)u?) + W= o (24)

9
ox oy

v Ju 0
9x oy

and the jump conditions yield the equations:
(1-Mi)Au = % Mi(y+1)Au2 = Av tan®

Av = - Au tan®f
where

Au = u; - uy s Av = Vi - Vo

Eliminating Av, by noting that

8u?) = uf - uf = (u-uy) (uytuy) = Cuptuy)bu = 23 Au

we have

2 2

tan®6 = M2 - 1 + M2(y+1)T (25)

or

z Y+ ME cosze

15




This is the condition that must be met across the shock
according to the classical transonic theory expressed by
Equations (7) and (8).

Shocks and Supercritical Flow

A flow becomes supercritical when the differential
equation changes type from elliptic to hyperbolic. To
the lowest order in the perturbation velocities, it has
been shown that this occurs under the same condition for
Equations (1) through (8), namely, where

-2u-—-2u*z-Y—_%_1-(§];2'-1) (27)

When all simulated shocks are nearly perpendicular
to the free-stream direction, that is to say the
approximation 6 = 0 and v, = 0 is good enough, Equations
(22) and (24) lead to the“same result. This result applies
to the standard two-dimensional flow simulations and, in
the form of Equation (26), it gives a condition that must
be met by the average of the perturbation velocities
across the discontinuity. Notice that as u, -+ u,, they
both approach u*. This means that the inte&sity of a
shock perpendicular to the free stream is centered about
the critical perturbation velocity, which, in turn, is
based on the condition that the equation changes type.
For such cases, Equations (5) through (8) give essentially
the same results, and Equations (7) and (8) are to be
preferred because of simplicity.

If the boundary conditions are such that a vertical
shock is oblique to the free stream, the shock position
and intensity could be significantly different depending
on whether Equations (5) and (6) or Equations (7) and (8)
were used for the simulation. For example, consider the
special case where v, = - 2u, tan6, which exists when the
component of the pergurbatioa velocity parallel to the
shock is zero, which is the condition for simple sweep
theory. Under this condition, the relation [Equation (23)]
reduces to

(-2ul)+(-2u2) 2 cos“B a1

- S ( - 1) (28)
2 +1 Zfz co;Ze

16




On the other hand, the jump condition for Equations
(7) and (8), given by Equation (26), does not depend on
any special relation between u2 and v2 and is therefore
valid for all values of 6. This simple treatment brings
out clearly the difference between Equations (5) and (6)
and Equations (7) and (8) in simulating oblique shocks

-0.9~
Equation (26) / /

| (-2u))+(-2uy) #

-0.6
*
C5 ()
-0.5

—0.4

— ——Perturbation Equations (7) and (8)
— ——Perturbation Equations (5) and (6)

Derived from

N | PN W——— 1 L. 1 )
i 10 20 30 10 50 G0

Sweep angle, 0, deg

Figure 6. Exact and Approximate Values
of C;(e) for M, = 0.85.
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from a comparison of Equations (28) and (26). This
difference is shown in Figure 6 for M = 0.85. Exact
value of CX(8) from simple sweep theory, Equation (19),
is also plgtted in Figure 6. It is clearly seen from
Figure 6 that Equations (7) and (8) are very poor models
for flows with shocks that are more than 30 degrees
oblique to the free stream. Equations (5) and (6), on
the other hand, are acceptable for a wide range of 6,
limited only by the accuracy of the small perturbation .
approximation itself.

Hence, for three-dimensional transonic flows in which
the presence of oblique shocks at moderate to large sweep
angles is anticipated, the proper form of the transonic
small disturbance equation is

[I_Mi_(Y+1)Mi¢x]¢xx..2M£¢y¢xy-+[1-(Y-1)M2¢x]¢yy-+¢ 0

zz

(29)
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SECTION II

THREE-DIMENSIONAL TRANSONIC SMALL-PERTURBATION EQUATIONS
AND THE ORDER OF MAGNITUDE ANALYSIS

Consider first the exact equation for the velocity
potential ¢ in rectangular coordinates x', the local stream
direction and y' and z' normal to the free stream:

g 2 g g _
(d q )¢xlxq+ aod ..+ + a @sz| =0

Yy 3

where a and q are the local values of the speed of sound
and stream speed, respectively, related by

& =St (31)

where M_ is the free-stream Mach number and the frce-stream
veloc1ty has been taken to be of unit magnitude. The

underlined term in Equation (30) determines when the
equation changes type.

A transformation from the (x',y',z')-system to the
system (x,y,z) is now made by rotating the coordinate axes.

Here x is the free-stream direction and y and z normal to
the free stream:

—z(az-qz)[u <I>Xx+v2<1> +wle +2uve_  +2uwb_ +2vwb ]

q yy 22 Xy X2 yz
& 3 3 2. o2 g 3
+ ;Z [(@°-u )@XX + (q°-v )ny + (q°-w )¢zz
- 2uv<bxy -~ Juwb,, = Ivuto.l = G (32)
where,u = ¢x, v and w = ¢, are the velocity components
and q2 .yt v2 4+ %2

In Equation (32) the underlined
terms result from the underlined term in Equation (30).

This equation is no more than a rearrangement of the
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standard compressible flow equation for ¢, in which each
of the second derivatives has been split into two parts.

Transonic Small-Perturbation Approximation

The transonic small-perturbation equation may be
derived from the exact Equation (32) in a number of ways.
We give here a derivation in which the scaling of the

variables is avoided but the physical meaning of the basic
assumptions is stressed.

The total velocity potential ¢ is first replaced by
a perturbation potential ¢ defined by

¢ = x + ¢ (33)
where U_ = 1. The velocity components are now
u=1+ Oy ; v = ¢y ’ WG (34)

We assume first that ¢y, ¢y and ¢, are all small and
if the z-axis is taken in the vertical®direction the slope
of the wing-body surface relative to the horizontal plane

z = constant is approximately given by %% = g . We shall
assume that g is small:

=4
@
o

0 SRR ' (35)

This small-perturbation approximation cannot obviously
be valid near a blunt leading edge but, as in two-
dimensional sections, we accept this local inconsistency
and proceed. It is convenient to choose the streamwise
chord length to be of unit length. So the condition
P < 1 implies that ¢ << 1 and we write

o ~ € , g << (36)

Now we introduce two lengths b and t in the y and z
directions, respectively, such that
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b~ B 2 By AE - (37)

The length b is related to the planform of the wing. Thus
for any wing of aspect ratio ~1 or of any aspect ratio but
appreciable sweep, b ~ 1. On the other hand, for a wing
of high aspect ratio and small sweep, b >> 1. This is
consistent with the exact relation ¢y = - ¢x tanA for an
infinite swept wing at an angle A wi{h constant chord

length. The length t is related to the wing slope g ~ 6,
since oy = g approximately, so that

o

Wit S (38)

The next step is to expand the terms in Equation (32)
in the new dependent variable ¢, by making use of the
conditions:

¢ ~ € << 1
€
¢y ~ig s 1 5 (39)
€
4, - T
Thus, on omitting quantities of third and higher order, we

have Equations (31), (32), (34) and (39):

2 2 ol
[1-M0- (YHLM0 10y + 2(1-M0) (00,50 0 ) ]

2 —
o [1'(Y'1)Mm¢x](¢yy+¢zz) - 2¢y¢xy = 2¢z¢xz =0
(40)
To the first-order, the pressure coefficient is given by

Cp - - 2¢x (41)

The small-perturbation Equation (40) is now further
simplified by making a transonic flow approximation. We
suppose that 1 -~ M< . Bt that is

L
(e}
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P e (42)

Thus the second of the underlined terms in Equation (40)
can be omitted. Furthermore the term (Y-l)Mi¢x(¢yy+¢zz)~ez

can also be omitted. The result is the transonic small-
disturbance equation for arbitrary wing-body combination:

(1M (M0, To,y + 000 +6,, = 20,0, = 26,0y, = 0 (43)

This equation differs I{rom the commonly adopted equation

in having additional terms 2¢y¢xy and 2¢z¢xz

Note that for b ~ 1, that is, for wings of aspect
ratio 1, or for wings of any aspect-ratio but appreciable
sweep, (¢yy + ¢zz) << g . Yet ¢yy ~ € , so it follows

that ¢zz ~ ¢ and the length t ~ 1. However, for b » o |
that is, for two-dimensional flows, ¢y + 0 and ¢y¢xy ~ 0,

2

. € € ;

while ¢Z¢XZ(~EZ) << ¢zz(~—7) , and the equation reduces to
the well-known two-dimensional nonlinear transonic form:

(1-M2- (HME0 To + b = O (44)

2 =172

g0 that t ~ ¢ , that is

t >> 1. From the relations (36) and (38) it follows that
¢ ~ té and is larger for a two-dimensional airfoil than
for a finite wing of the same thickness.

which implies that ¢,, ~ €

The magnitudes of various quantities for three- and
two-dimensional wings follow.
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MAGNITUDES OF VARIOUS QUANTITIES FOR
THREE- AND TWO-DIMENSIONAL WINGS

Quantity 3-Dim. Wing 2-Dim. Wing
b: transverse y-direction
length scale 11 o
t: length scale in z-direction 1 5-1/3
¢: perturbation potential § 62/3
1-42 § 13
6., ~ Pressure coefficient 8 62/3
Qs streamwise pressure
iy gradient S 62/3
¢, vertical pressure
e gradient $ §
terms in governing 2 4/3
(¢yy+¢xz) differential ¥ § §
equations 2 2
P20z 8 :
Comments

For the two-dimensional airfoil, the magnitudes that
have emerged for t, ¢ and 1-M5 show that if new scaled
quantities of unit order of magnitude are to be defined
then the appropriate scaling is obtained by writing

- (45)
1-1
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Equation (44) then reduces to

[K - (yv+1)o 16, . + 65> =0 (46)

X "XX ZZ

For a three-dimensional wing the corresponding
scaled quantities are different. They are

S & 2

. (47)
1-M2

K 3

It is very important to recognize these differences.
Note that from inspection of Equation (43) it does not
seem possible to define similarity parameters like K such
that the solution depends only on K (as with two-dimensional
airfoils) and not on the thickness § as well. 1In other
words, there does not appear to be a simple transonic
similarity rule for finite wings as there is for airfoils.

The differences in the vertical length scale t and
the perturbation potential ¢ imply differences in the
physical flow fields. The pressures and streamwise
pressure gradients on the wing surface are smaller by a
factor of ~ §1/3 than those on the corresponding airfoil
surface. For a finite wing the normal and streamwise
pressure gradients are of the same order of magnitude, but
for an airfoil section the normal gradients are smaller than
the streamwise gradients by a factor of -~ §l/3
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SECTION III
SUITABILITY OF THE VARIOUS TRANSONIC EQUATIONS

We have already derived the NASA Ames equation
given by Lomax, Bailey and Ballhaus (Reference 2):

[(I_Mi)-(Y+1)Mi¢x]¢xx-+[1-(Y-1)Mi¢x]¢ -2Mi¢y¢xy==0

yy+ 22
(48)

This equation was suggested for use in the case of flow
over finite wing-body combinations where oblique shocks at
moderate to large sweep angles are anticipated. If § is
the thickness-to-chord ratio, the assumptions leading to
this equation are:

o = 0¢s2/3y
i ; ; _ -1/3=
z-scaling according to z = § Z (49)
and (1 - Mi) = G(L)
For flow with shocks we have
Mzcosze-l = Mozocosze—l + ZMi(l +1;Mi)¢x cosze SRR >0
(50)
where M is the local Mach number in front of t97 shock and
6 the shock sweep angle. Now we have ¢4 = 0(S 3) > 0 and
consequently for M_ <1 Equation (50) requires
M2 cos?e - 1= 0(P) , p 22/3
or
M2 - 1 = tan®s + 0(sP)cos®s , p 2 2/3 (51)
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whence

]

2 - 1= M2 cos?p - 1 = 0¢s2/3

The ignored entropy rise across a shock is then of order
(Mn-l)3'v(62/3) = §2 , which is consistent with the fact
that Equation (48) is a second order accurate approximation.

Now since we expect normal shocks to occur in any
case, we may have 6 = 0 and thus

2

MC-1=0(P) , p22/3

which contradicts the assumption 1 - Mi = 0(l). This means
that Equation (48) can only be used for subcritical flow;
that is to low transonic speed regime. Yet, it is a
nonlinear equation and as such capable of producing shocks.

The classical Guderley-Karman equation is

[l-Mi'(Y+1)Mi¢x]¢xx e LR ENE S (52)

which is usually given for a slender body as well as for
high aspect-ratio wings of very small sweep and dihedral.
The necessary assumptions are

o = 0(s%/3)

y- and z-scaling is according to

= 5'1/3§ , oz =833

(53)
and

1 - M2 = 0(s2/3y

whence we attribute it to the medium transonic speed regime
since M, is closer to one than in the foregoing case. 1In
the derivation of this equation no contradictions are
encountered for the case of flow with shocks as long as
they are slightly swept.
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Newman and Klunker (Reference 6) have added one
third order term to the Guderley-Karman equation for a
better approximation of the critical speed where the
equation changes type from elliptic to hyperbolic:

(-M2)- (HDMBe - 5 HLMEe210  + ¢ - 0 (54)

Yy * ¢ZZ

The necessary assumptions are the same as given in
Equation (53).

In Reference 7 (see also Reference 8), Hall and
Firmin have derived and used the equation (see Section 4):

2 e a B
[(L-MO) - (FLM0, 10, + 00+ 6, - 20,00, 0 = 20,0, =0 (55)

for a low aspect-ratio wing fuselage combination or a
wing of any aspect-ratio but appreciahle sweep. The
necessary assumptions are

5=0(8) , 1-M =0() (56)

whence we attribute it to the high transonic speed regime
since M, is still closer to one than in the foregoing

case. Also in the derivation of this equation no contra-
dictions are encountered for the case of flow with shocks.

The Conservation Forms of Small Perturbation Transonic

Equations

The mass conservation law for the compressible fluid
flow may be written exactly as:

[p(1+9,)]+ ooyl + [p0,) = O (57)

Various approximations to Equation (57) may be
derived by substituting the properly truncated series for
the terms inside the brackets:
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p(l+6) = 1 + (1-M2)o, - ﬂs-(z-y)mi}mitpf{
(T SRR
-fMoo(by_Q-Mooq)z-'-‘ & (58)
Lt
by = by - MIb 0 + .
r 2
pe, = ¢, -~ Mod %, + .

in Equation (57). For instance, keeping only terms up to

the second powers of ¢-derivatives in the x- and y-directions
the conservation form of the transonic equation given by

van der Vooren and his associates at NLR in Holland

o o e 2}22_1,22+ il 2
[(1 Moo)d)x 7{3 (2-y)M_ Mw¢x 2-Amq)y]x [¢>y Mm“’x‘byl +[q>z]z 0

:
(59)

The conservation form of the NASA Ames Equation (48)
turns out to be

2 1 2.2 1 202
[A-M0) 0y - FO+LIMZ0. + z(v—s)MJny
2 2
+* [¢y-(v-1)Mm¢>x¢y]y + [¢>Z]Z =0 (60)

The Eguation (59) can be shown to differ from
Equation (60) only by third order terms. However their shock
relations differ significantly and will be compared below.

Investigations of Shock Relations

Consider three typical cases of vertical shocks, for
which 0y = 0 .

The first case is the normal shock which occurs, for
example, at the wing roots. We have ¢y -, = 0 . The

28




THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0DDC ____—

results are shown in Figure 7 for 0.8 Z M, Z 1. The NASA

Ames, Guderley-Karman and RAE equations [Figure 7(a)] show
fair agreement with full potential equation.

06 .
. 53208
Q., ‘D,\
04 - \“
 — RANKINE - HUGONIOT — RANKINE - HUGONIOT
02} --- POTENTIAL THEORY 02} ---POTENTIAL THEORY
r
o O o Sl o B e B Bl e el et el e )
0 & 14 18 16 2 10 12 14 16 18 20
| M\
a) NASA AMES, GUDERLEY-VON b) NLR (), (=0, 08 <M, =<1).

KARMAN , RAE 6~),
(=0, 08 <My, <1)

Q2] RANKINE -HUGONIOT Y 021 RANKINE-HUGONIOT
== POTENTIAL THEORY ~=-POTENTIAL THEORY
Co 12 14 16 18 20 %0 T2 T1a 16 18 20
M, M,
¢) KLUNKE R-REWMAN (v) d) GUDERLEY-VON KARMAN (0)
(p=0, 0B xiMy =51) (-20° < p =3+20°, M, 084)

Figure 7. Normal Shock Relations
for Various Transonic Equations.
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Figure 8(a). Infinite-Sheared Shock
Relations for Various Transonic Small o
Perturbation Equations (M_=0.84, A=30").

3
:




THIS PAGE IS BEST QUALITY PRACTICARLE
FROM COPY FURNISHED T0 DD ____—

-~

186t
i MV
14 M»‘

121 y! A
SWEAK L
: EHGCM? 3 2
Y , WA .
o P e vt rrca 15
h‘\
RANKINE-HUGONIOT

---- POTENTIAL THEORY

o NASA AMES

e NLR

a RAE

o GUDERLEY-VON KARMAN
v KLUNKER-NEWMAN

Figure 8(b). Shock Relations for Various
Transonic Small Perturbation Equations in
a Case of Forward Shock (M_=0.84, A= 309).
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For values of M) £ 1.3 there is also fair agreement
with the Rankine-Hugoniot relations. The results of NLR
equation [Figure 7(b)] are practically independent of M,
and agree well with the potential theory. The results of
tne Klunker-Newman equation [Figure 7(c)] are nearly
independent of M,. Though the agreement with full potential
theory as well as with the Rankine-Hugoniot relations is
good for low Mj-values the overall picture is not as good
4s for the NLR equation, or even the other thiree equations
for reasons already indicated.

Secondly, the strong oblique shock on an infinite
sheared wing, for the various equations, was compared.
If A is the sweep angle of both wing and shock we have
¢y = - ¢x tan A. The results of the specific case
M, = 0.84, A = 30° are shown in Figure 8(a). It is apparent
that neither the Guderley-Karman nor the Klunker-Newman
equation can describe this kind of shock adequately. The
results obtained with NASA Ames and RAE equations are
reasonable, the RAE equation being slightly better. The
NLR equation gives good agreement with full potential theory
and for Mj £ 1.3 fair agreement with the Rankine-Hugoniot
relations. For M, = 1, the NASA Ames and RAE equations
also agree very well with full potential theory.

The third case of interest is the weak oblique forward
shock. Assuming infinite-sheared conditions (¢, = - ¢4 tan A)
in front of the shock and flow parallel to the %uselage
(¢y = 0) behind the shock. The results for the case
Mo = 0.84, A = 30° are shown in Figure 8(b). The
conclusions are the same as for the second case. Only the
NLR equation gives fair agreement with both the full
potential equation and the Rankine-Hugoniot relations.

In Reference 9, van der Vooren and his associates have
given some results of calculations of transonic flows over
isolated semi-wings. Nonconservative as well as fully-
conservative rotated difference schemes have been used.
They came to the conclusion that a nonconservative scheme
is inadequate for shock capturing capability [see Figures
8(c) and 8(d)].
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SECTION IV

INTEGRAL EQUATION FOR THREE-DIMENSIONAL TRANSONIC
FLOWS PAST WING-BODY COMBINATION

THE NONLIFTING CASE

Theoretical pressure distributions on nonlifting
circular arc airfoils immersed in a high subsonic free
stream were first given by Oswatitsch in 1950 by approxi-
mately solving the integral equation, which was proposed
by him. The analysis is carried out in the physical rather
than in the hodograph variables, and leads to a nonlinear
integral equation in which the unknown velocity appears
outside as well as inside the integral. Oswatitsch found
approximate solutions not by iteration, but by introducing
various functions containing undetermined parameters into
the integral equation and then by determining these
unknowns by satisfying the integral equation at a small
number of points on the airfoil chord. The application of
the method to some airfoil section did show certain
definite characteristics of transonic flow such as the
appearance of shock waves and their rearward movement
across the chord with increasing Mach number. However, the
method fails to give proper results at high subsonic M,
greater than about 0.88 with a 6 percent-thick circular
arc airfoil.

Gullstrand, at KTH, Sweden, tried to rectify the
situation by seeking a solution by iteration. Gullstrand
uses the integral equation to determine only the solution
for the forward part of the airfoil and then uses the method ‘
of characteristics to complete the solution for the rear of |
the airfoil. |

Spreiter and Alksne (Reference 10) proposed in 1955
a solution of the three-dimensional integral equation given
by Oswatitsch using an iteration process permitting the
integral equation to be satisfied at a much larger number
of points than in the original method of Oswatitsch. This
method gives approximate solutions at all Mach numbers up
to unity, and appears to avoid any multiplicity of solutions
that were unavoidable in Oswatitsch's earlier method for
supercritical Mach numbers.
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Basic Equations

The simplified small perturbation equation in the
transonic flow regime is the usual nonlinear equation

(61)

2 i
(I'Mw)¢xx * ¢yy *t ¢, = K b0,

where

k= M2 M ' (62)

o

and ¢ , the perturbation velocity potential given by

¢ =-Ux+ ¢
Ve 7

As a result
of minor wvariations y
in the perturbation
analysis, other
authors have used
at least four
different relations
for k, the coeffi-
cient of the non-
linear term in the
simplified equation
for the transonic
flow. A straight-
forward development
of the second-order
theory leads to the *
relation given in
Equation (62). Figure 9. View of Wing
This is sometimes and the Coordinate
simplified to System.

e (63)

by arguing that M, can be set equal to unity since the
right-hand side is after all an approximation to the
actual second-order equation. If the full nonlinear
equation in %
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2. .2 2 2 i
(a“-u )¢xx - 2uv¢>xy + (a“-v )¢yy =0

2

the total velocity potential is divided by a“ and the
quotient 1/a4 in each term is expanded in a binomial
series, the resulting coefficient k of the term ¢_¢

X' XX
turns out to be

: [2 + (Y-l)MiJ
k = M (64)

© U

(o}

Still another expression for k is used by
Oswatitsch by writing

a.—*-z Y_1+ 2
U LT T )

A similar situation arises in the derivation of the
simplified equation for the shock polar given below. A
significant case where the four relations for k lead to
different results is the prediction of the variation of the
critical pressure coefficient Cpor with M. The critical

pressure coefficient Cpcr is the value of Cp at a point
where local M = 1. This condition is recognized by the

vanishing of the coefficient of ¢yx» thus
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1-M - k() =0
cr
or
sy PEE - _anl
Cpcr U (¢x)cr KU (1-M) (66)
; The exact relation for isentropic flow from
: Reference 1 is

%
y-1 MZ]VTT

2 [[ 2
C = — + -1
Por YMZ y+1 y+I

Similar comparisons can be made for local Mach
numbers M other than unity or by considering the velocity
jump across a shock wave or by comparison to some of the
existing experimental results on drag of a wedge. Each
of these comparisons provides striking evidence in support
of the value of k given by Equation (62) although in some

cases Oswatitsch's value, Equation (65), gave good results
as well.

Equation (61) is valid only in regions where the
necessary derivations exist and are continuous. Since
these conditions do not hold where shock waves occur, an
additional equation is needed for the transition through
the shock. The necessary equation is provided by the
classical regulation for the shock polar:

e 2
u,u, - ax*
$2 + W - (Byet,) il (67)
2 2 1°%2 T80 - Sh i at
f e Ry B o A

where u, Vv and w refer to Cartesian velocity components
with 4 being parallel to the flow direction ahead of the
shock, the subscripts 1 and 2 refer to conditions ahead of
and behind the shock, and a* is the critical sound speed.
Carrying out a small perturbation analysis of Equation (67)
analogous to that performed in the derivation of Equation
(61), it can be shown that the following relation results
between the perturbation velocity components on the two
sides of the shock wave:
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2 2 AN 2 Uty
(L-M) Cup-up) ™ + (v =vy) " + (W) -wy) —k[—7~

(u_up®  (68)

where now u, v and w are the perturbation velocity
components parallel to x, y and z-axes. This equation
corresponds to the shock-polar curve for shock saves of
small strength inclined at any angle between that of
normal shock waves and that of the Mach lines. On either
side of the shock wave, Equation (61) holds.

The Boundary Conditions

(a) At X = - o

[0

(0 = (4) = (8,) =0 (69)

(b) At the wing or body surface

1 9z
() . (70)
U, " "2 Wor R 9xX

-

where 3z/9x is the local slope of the wing or body surface
in the x-direction.

In addition, it is necessary to prescribe that the
direct influence of a disturbance in the supersonic region
proceeds only in the downstream direction and that the
Kutta condition applies whenever the flow velocity at the
trailing edge is subsonic for unique solution.

Integral Equation for Transonic Flow (Non-Lifting Case)

Since the principal object of the following analysis
is to determine the perturbation velocity components at
any point, it is convenient to work with equivalent

equations for u, v and w obtained by differentiating
Equation (61):

2 2 2 2
-y 23+ 284 0 8. 303

QU
-©

N
»
d

ox oy 9z

X
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with respect to x, y and z, respectively:

2 2 2 2 2
2\ 3*u 9°u 9°u 3 u
(1-MD) “5 + S5+ 25 =k 25 (%)
X Yy 9z 9xX
2 2 2 2 2
2. v 3%V 3°v _ 3 u
(l-ww) ;;7 + ;;2 + ;;7 k 5y3% (TF)
2 2 2 2 2
2 3w 9w 9w 3 u
(l-Mm) . + ~y + Sy k o (TF)

since

2
9 9 Ju _ 3 ,u
U " (7

i

(71)

(72)

(73)

We will assume that Mo < 1, i.e., the free stream is
a high subsonic velocity though the local speeds on the

body exceed unity in some areas.

Then normalizing Equations (71), (72) and (73) by

letting
i =N ' S'_ = By ’ z = Bz ’
= 09 k — 3¢ k
u=—-= I v=—L= b
X% B2 5y 83
where

8= 1 -2 .
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Equations (61) and (71), (72) and (73) reduce to the
following:

RN DA, N
Tt +is 42 g0 28 (75)
ax dy 9z 9X 90X
B
vE = 2, &) (76)
9xX
2
2 u
o N o o (77)
dyox
s
2 u
Vo = 2 el (78)
9Z93X
where
L N i) L
e e ey
ax ay 9z

is the Laplacian operation in the normalized variables x, ¥y
and z.

Before proceeding, it should be noted that the
introduction of the reduced perturbation velocity component
u permits the ready recognition of regions of subsonic and
supersonic velocities and emphasizes the points at which
sonic velocity occurs. This becomes apparent from the
approximate relation between the local M and by

Z 2

L=0"w 1+ -§K Oy (79)
or
2
1 -HM k =
T A R . 2 Sl SE
e 1-M
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from which it is clear, for flows having subsonic free-
stream Mo(Mo < 1), that u < 1 when the _local velocity is
subsonic, u =1 when it is sonic, and u > 1 when it is
supersonlc.

We will now apply Green's theorem to Equation (76).
The results for Equations (77) and (78) will follow
immediately. If ¢ and Q are any two functions which,
together with their first and second derlvatlves, are
finite and single valued throughout a region R enclosed by
a surface I, Green's theorem, which follows from Gauss'
divergence theorem, states:

” (032 - d%gs - ”J (av20 - ov2Q) dr (80)
) R

where the directional derivatives on the left-hand side
are taken along the normal n, drawn inward, to the surface.

Now in Equation (80) let @ = u and choose o as the
fundamental solution 1/r of the Laplace equation V2¢ = 0,
i.e.

el 1
o v 177 - (81)

(@2 GF-n2+E-D]

Then we have from Equation (80)

=il & @2

2 -2
2— _ 9
v ot &)
X
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The variables of integration in Equation (82) are
£, n, ¢t while x, y, z are the coordinates of a point P.
It must be observed that 1/r3 is singular at r3 = 0 and
u is discontinuous at the shock wave. The point P and the
shock must, therefore, be excluded from the region R.
A schematic indication of the body (wing or fuselage) and
the region of integration is shown in Figure 10. The
complete three-dimensional extent of the body has not been
pictured. It suffices, however, to state that the surface
£ (shown dashed) is composed of a sphere of large radius
which forms the external boundary of R, an infinitesimal
sphere surrounding P, and a final surface enveloping the
wing and body, the wake (for the lifting case), and the
shock waves.

Let us now_apply Equation (82) to the region
bounded by the xy-plane and a hemispherical dome of infinite
radius lying above this plane, exclusive of the subregions
surrounding P(x,y,z) and the shock waves (Figure 10). Since,
furthermore, u may be assumed to diminish sufficiently
rapidly with distance, the contributions of the integrals
over the hemisphere vanish and the contribution of the
surface integral over the small sphere surrounding P may
easily be shown to be 4n u(x,y,z) when the radius €] + 0

We have, therefore, from Equation (82) the following resuit:

r ;
3 1 3 3 2
2 =2
1 1 3 u
; !n_f J e %) dr (83)
Ru

where the subscript u denotes conditions on the upper side
of the xy-plane, the subscripts 1 and 2 denote values imme-
diately ahead of and behind the shock wave, and S is the
surface of the shock wave. The volume integral is defined
as follows when P is ahead of S:
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Figure 10. Region of Integration: M
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”J r13 a; (-2—)dR = J” ydR =

Ru R,
lim _+w _ xp-el E Xg-€, 5 +o ¥
el+0 J dnj dc [ ydg + ] yde + j yag
€,*0 - o - = =
2 xp+e:1 xs+t»:2
(84)
1 2
where we have written y = — ——2 (jr)and €1, €9 are the
3 XS

the radius of the small sphere surrounding P(X,y,z) and
the thickness of the surface surrounding the shock wave
surface S, respectively. Similarly, when P is behind S,
the volume integral is

oo o] —E
|

dE + wdE+[ vdE|  (85)
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If P is kept fixed in the upper half space and the
region R bounded by the Xy-plane and a hemispherical dome
of infinite radius lying below this plane is considered,
it follows in a similar manner that

- S L
= 2 =2
l dJu -3 1 i 1 9 u
+{i§—ﬁ -uﬁ(a)}z}ds-ﬁgjgg(T)dR (86)
L

where the subscript & denotes conditions on the lower side
of the xy-plane and the volume integral is defined as

45




J—

2 2 o T
1 3° . S o o S B - s
7y (5)dR= vdR = ¢im | dn | dg yag + vde
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) 2 RXgT€2
(87)
introducing the notation
- Ju du

L IR e (88)

B 3 oL
1 1 396 =3 .1 1 3u_ -3 ,1
S i 2
2 2
i 1 3 u
_H”JEEEZ(—Z—)dR (89)

where B represents the wing-body or wing alone and S repre-
sents the sum of the surfaces Sy, and Sy; and R = R, + Ry.
The first integral on the right-hand side of Equatgon (89)
will be recognized as the value of u given by the linearized
theory of subsonic flow past wing or wing-body combination.
Denoting this linear value by u;, we have

du.
AR W (P R e Ty

Equation (89) may be regarded as the final integral equation
for u for the nonlifting case. But for numerical computa-
tions, it is advantageous to write it in another form by
integrating the volume integral twice by parts with respect
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to £, taking proper cognizance of the definitions given in
Equations (84), (85) and (87), and to decompose the surface
integral over the shock wave into components parallel to
the axes of the coordinate system. If then nj, np and nj
are the direction cosines of the normal to the shock
surface drawn inward as shown in Figure 10, the following
equation is obtained from Equation (89):

e b e
u=uL+—2——H”J—2—;€—2—(F-)dgdndc
R

£3 ‘o an I3 T3 an sn =3 |
2
il ogih) - (Lo gl ] lanag
3 3¢ dC 3 1 3 3z g 3 )

(91)

where Gi is given by Equation (90).

Although the integral equation obtained above appears
to be more complicated than Equation (89), it is superior
from the point of view of approximate solutions for the
following reasons:

(a) The triple integral®of Equation (89) shows a very

strong influence of the velocities in the neighborhood of
P since they are multiplied by 1/r3. This influence is
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largely nullified in the triple integral in Equation (91)
because part of the region has a negative influence and
part has positive influence. The predominant influence in
Equation (91) is furnished by the term uZ/2 standing
outside the integral.

(b) The contribution of distant regions is also
diminished in importance in the triple integral of Equation
Y1) since their influence now varies as l/r§ rather than
1/r3 as in Equation (89).

(c) The biggest advantage in using Equation (91) is
that the value of the triple integral in this equation is
continyous through a shock wave (due to the presence of the
term u“/2 outside the second derivative) rather than
discontinuous as in Equation (89). A point of great
importance in the approximate solution arises from the fact
that the integration by parts provides extra terms (those
containing u2/2) in the integrals along the shock surface S
which combine with those already present in such a way that
the contribution of these integrals becomes very small when
the shocks are nearly normal waves, as is usually the case
for high subsonic speeds.

In addition to satisfying the integral equation for u
given in Equation (91), the velocity components on opposite
sides of shock waves must be in accord with the simplified
relation for the shock polar given in Equation (68), which
can be rewritten in normalized form, using Equation (74)
as follows:

u; +u
- = - = - = 2 — 2
@ -ap® + @ -t Gy -p? = | LR @ -
(92)
or with slight manipulations it can be written in the
following two alternative forms:
u, +u
e D = =2 - =2
b “lj_g(ul‘“z) +(vl-v2) +(w1-w2) =0
(93)

48

|
|

A o o e



T O TR T T

and

2 ( 2

- - " u2
iy - %) [“1 g T] = [uz E i
(94)

If the shock wave is a normal wave and the flow is
parallel to the x-axis (i.e., V] = v2 = w] = w2 = 0,
but uj # uz) it can be seen from Equation (93) that u
jumps from 14 A immediately ahead of the shock to 1 - A

uy ~u

immediately behind the shock, where A = —l—z—g . On the
other hand, Equation (94) shows that the quantity 63-52/2
is equal on the two sides of the shock. This is consistent
with the fact that the latter quantity corresponds, in the
transonic approximation, to the mass flow, which is
continuous through a normal shock.

The general problem of the three-dimensional transonic
flow about nonlifting bodies requires the solution of
Equation (91) while taking account of the shock relations
given in Equations (92), (93), and (94). This is a formi-
dable task well beyond the reach of present analysis. We
therefore introduce some further approximations before
solutions can be obtained. They are: (a) all shock waves
are assumed to lie in a plane perpendicular to the x-axis
and (b) the shock waves are assumed to be normal to the
local flow direction. The first assumption corresponds to
setting Ny = ng = 0 and the second leads to the relations:

CEG e RO S N Ul g
kg 27 §. = ® 4 § .. 0y
(93)
Hence Equation (91) simplifies to
S s gl g2 22 (L) dEdndz (96)
bt Tl it - - T g
R
49




*"""'""""'F""—""”"—"""'E!-"""""'!!!

A similar, but slightly more involved analysis shows
that from Equations (77) and (78), the equations to
determine v and w are

-2 2

T el B2 (LlyaFanar

T -t [IU T sos (E)dEdRaT (97)
o 2

% - u_ 9 (LlyaFandz

LR Uj T 2 () dEandt (98)

Before proceeding further, it should be observed that
the solutions of Equations (96), (97) and (98) must approach
those of the linear theory when M_ << 1, since u << 1 and
therefore the terms involving a2 become negligible,

thereby leaving only

(E’V’V_W)Mw << 1 = (GL:GL;GL) L (99)

Let us now write Equation (96) as follows:

= = 52 I
U=ty -y (100)
where
-2 .2
= 1 p) | R
= 2[}? JJJ 92- ;EZ (Fg)didndC} (101)
R

Although I is a function of u and is therefore unknown,
it is informative to rewrite Equation (100) by solving for
u in terms of I and U, thus

u=1+/T- (ZﬁL - 1) =1+ /I -1 (102)
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Several interesting observations can be made from
Equation (102). First of all, for real values of u

[ (103)

Furthermore, the choice of the plus or minus sign
determines whether the local velocity is subsonic or
supersonic. A change in sign at a point where the radical
is zero corresponds to a discontinuous jump in velocity.

As pointed out following Equation (94), such discontinuities
correspond to normal shock waves and are permissible when
they proceed from supersonic to subsonic velocities or from
Plus to minus sign in Equation (102), when progressing in
the flow direction. Discontinuities in the reverse
direction are inadmissable since they correspond to
expansion shocks, a phenomenon which violates the second
law of thermodynamics.

The values of uy,, and hence L, can be calculated for
any given body and are generally characterized by certain
regions in which up, > 0_and other regions in which u, < 0.
The absolute values of u increase continuously with
increasing M_ and the maximum positive values may
considerably exceed unity as sonic velocity is approached
in the free stream. Not very much can be stated at this
point about the values of I, except that they depend on the
distribution as well as magnitude of u and that the above
inequality must be satisfied.

The Two-Dimensional Flow Past Circular Arc Airfoil:
The Oswatitsch-Spreiter-ATksne Solution of the Integral

Equation

The starting point for the solution of the full
integral equation derived for the three-dimensional cases,
would be to examine the methods needed for two-dimensional
flows given by a number of authors: Oswatitsch, Gullstrand,
Spreiter and Alksne, Nixon, and Norstrud.
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The analysis of the two-dimensional case is based on
the following equation:

+
) Sl e
W) =Ty (5.5) + 53 L ” L ED (G- (EoD) L, aaz
= [(x-D)2+(Ez-D?)

104)

Approximate solutions of this equation could conceivably
be worked out numerically by starting with a two-dimensional
grid of suitably selected values of u and iterating until
convergence is obtained. If the first approximation for u
is taken to be the results given by incompressible or
linearized subsonic flow theory, convergence will be obtained
only when M  is sufficiently small and the flow is subsonic
everywhere. Oswatitsch suggested that mixed flow fields
containing shock waves can be obtained if the starting
u-distribution contains shock waves. The idea then is to
start with a reasonable guess for u, being sure to include
a proper discontinuity complying with the shock relations
of Equation (95), then proceed to the solution. It is not

necessary to be highly accurate in the initial guess for u.

A further simplifying assumption is made by Oswatitsch
and others regarding the variation of u in the z-direction,
which has the effect of reducing the double integral in
Equation (104) to a single integral. Oswatitsch suggested
the following relation:

1(x,2) = g (105)
, ST
[l + £l

where ug(x,0) is the value of u on the body as taken in the

linearized theory and b is a function of x so chosen that

the irrotationality condition 34 - W 4 fylfilled at z = 0.

9z X
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SECTION V

THE INTEGRAL EQUATION FOR THE THREE-DIMENSIONAL
LIFTING WING-BODY COMBINATION

We start with the nonlinear partial differential

Equation (61):

2
(1 =g )¢xx + ¢yy + ¢zz
where
s R0 e T |
k M T

k ¢ ¢ (106)

(107)

The change of type of the equation is an essential
feature of transonic flow and the regions where this occurs
are recognized by the sign of the coefficient of Opx

9 9 ¢ 7 > 0 elliptic (subsonic)
[‘l--Moo -M “(v+1) ﬁ—-] = 0 parabolic (sonic) (108)
© < < 0 hyperbolic (supersonic)

Equation (106) is, of course, valid only in regions
where the necessary derivatives exist and are continuous.
Across a shock surface the normal component of velocity is
discontinuous while the tangential component, and therefore
¢, is continuous. The necessary relation follows from the
classical expression for the shock polar given in Section IV.
This approximates, in small disturbance transonic theory,

to [see Equation (68)]:

2 2 2
(LMD (0 =0y )T+ (8y =0y )T+ (0, = 0,)

¢X +¢X
=k L2 (o, -0
s SN

2
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where the subscripts 1 and 2 refer to conditions ahead
of and behind the shock.

Equations (106) and (109) are usually applicable to
the case where the x-axis is parallel to the free-stream
at infinity and are good approximations where the coordinate
system is rotated slightly. Choosing the body-axis system, i
where x-axis is aligned in the longitudinal axis of the '
wing and body, the relation between the total velocity
potential ¢(x,y,z) and the perturbation velocity potential
¢(x,y,z) is approximated by:

¢(x,y,z) = U (x+az) + ¢(x,y,2) (110)

where a is the angle of attack.

The expression for the pressure coefficient C, is not
invariant with respect to small rotations of the cgordinate
system. In body axes, the proper expression is

e 2 1
Cp — U, (¢x'*0¢z) = 6—7 (¢y

(2]

24,2 (111)

The Boundary Conditions

The condition at infinity yields

() = U;(x-+az)
or that
() =0 (112)

An exception to this statement occurs in the vicinity of
the wake at great distances behind the wing, but no
complications arise due to the relative smallness of this

region. The conditions at the airplane surface result in
the relation
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(113)

where nj, n2 and w3 are the direction cosines of a normal
to the airplane surface with respect to the x, y, and z
axes, respectively. This relation is too general. For

our needs n} << 1 or (n%-+n§)1/2, i.e., slender bodies and

wings are considered. hen"Equation (113) reduces to
a9 99 _
Um(n1 +om3) +n2 3y +n3 5z 0 (114)

or

where n is the normal to the curve bounding a cross section
in a plane normal to the x-axis.

We will now apply Green's theorem in two different
forms, one for M_ < 1, and the other for M 2 1. Let

1/2
g = (|1-M2]) ; k=M Y¥l (115)

Case 1. Subsonic Freestream Flow: M, < 1

Equation (106) can be rewritten as
2
2 P E)x
B 0xx + ¢yy T gy = Kb = Kk X (—7_) (116)

and the corresponding expression of Green's theorem is

fffle(n) i s Jj(w v - @ gha (117)
v z

55




F"V

where Q and y are arbitrary functions and L is the
Prandtl-Glauert operator:

2 32 2 2

s ..dn. ;. @
+ + (118)

L =8

and g% is the derivation along the conormal defined by

4 _ o2 0 d 9

where n], n2, n3 are the direction cosines of the normal
to the surface drawn into the region V.

, Where

Q|

Now choose y =

1/2
o = [(x-g)z + 82y -2 + (z - ;)2}] (120)

so that L(y¥) = 0 and let © = ¢ , the perturbation velocity
potential, in Equation (117). Then from Equations (116)
and (117) we obtain

”[%-3%°¢aa—v<%>]dz=-H[é%(%—)dv (121)
\'

In these equations the running coordinates in the
integrations are &, n, ¢ and ¢ is to be calculated at
point P(x,y,2z).

If Equation (121) is applied to the infinite region
V consisting of a sphere of large radius which forms the
external boundary V, a sphere of infinitesimal radius
surrounding the field point P(x,y,z), and a final surface
enveloping the wing-body, its wake, and its shock waves,
we obtain the following expression:
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2
& [[ B3 e B)er- £ [[[34 (e
2 (122)

where B+W denotes the wing-body surface and its wake and
A1 and A2 are the shocks, upstream and downstream shock
surfaces, respectively. On the shock surface A the

conormals are directly opposed on the upstream and down-

stream faces A1 and X2. On the body itself and the wake,
as mentioned earlier, we may approximate

~ -

3 9 9 9
v - M2 3yt Ry 5n t o5y

If now the triple integral in Equation (122) is

integrated by parts twice with respect to x, the resultant
form of Equation (122) is

PRy I 1(3 k. 2 )
¢(X,Y',Z) Vi ﬁ '[J' [6[5%‘2'(1)5 nl}- ¢'a—n'%]dz

(123)

Equation (123) is of particular interest because the
integrals over the shock surfaces may be shown to vanish as
in the nonlifting case. Finally, if we neglect the term
n1¢€2 in comparison with 3¢/3v , the simplified integral
equation is similar to the nonlifting case:
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(124)

The first integral on the right-hand side of
Equation (124) is the expression for ¢(x,y,z) in
iinearized theory and the spatial integral is a
contribution brought about by the nonlinear term of the
basic differential Equation (106). It is of interest
to remark that a straightforward derivation ignoring
the existence of the shock waves leads to the same
equation as Equation (124). For the majority of cases
of practical interest, it can be shown that compensating
terms arise and the discontinuity surfaces are taken
care of by a formal development that ignores the
existence of these surfaces. However, if it is not
possible to ignore so completely the existence of the
discontinuity surface, Equation (122) will be preferable
to Equation (124).

Since

& wnd
9X

Qi
Q|-

8
9

Equation (124) may be written in the final forms as

0(x,3,2) =op v+ [[[Fo.2 (Elrav (125)
\
or
o(x,y,2) =8 (x,y.2) - g & [[[Fo 2 bav . (126)

Introducing the notation

<)-() + (2
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and the variable

w = sinh—l : s = ZTIZ
BL(y-n)" + (z-5)"1]
_ (x=§) i [x-&[4-{(x-E)2*'Sz(y-n)z'fgz(Z-C)z
= pere

B[(y-n)24-(z-c)2]

and remembering that ¢ is continuous at the shock
surface the more exact Equation (122) may be written
in the following two alternative forms:

oz syterrr - [[af3) b - [ (5] 3o
)\ v (127)
"
oy - a3 o
(128)

The perturbation velocity components, u, v and w,
are obtained by differentiating ¢ with respect to x,y,z,
respectively from either Equation (125/126) or
Equation (127/128).

Consider Equation (125) for the x-derivative. After
isolating the singularity at the field point by intro-
ducing the limits £ = x* ¢ and using the rule of
differentiating under the sign of integration with
variable limits:

a9




82(5)

82(3) dg
&7 Freax - [T Fax+ F g (e)i0) ok
gl(s) gl(s)

dg2
- F {gz(s) ;s} v

we have
X-€
u(x,y,z) = u;(x,y,z) + 9,1[61 Zt(—ai f[ dndz I %‘q’gz[%ol]dg
E>
1 2 1
* [0 B dae

x+ez- & 9 ©

sdnd(

uL(x’y,Z)+§i82%[f%¢£2(x;n,(:) 5 377

[e +B (y-n) +8 (z-2)"]

In the 1limit as €+0 the influence function in the
integrand of the double 1ntegra1 is a two-dimensional
Dirac delta functlon at the p01nt n=y , ¢=2z and of
strength 27/82 . The expression for u then becomes

u(x,y,z) =uL(x,y,z) +Bl<2-ﬁ{21w 'Zt% I” 1-;[3?22—0;] dv

\'
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Again starting with Equation (125) and differ-
entiating with respect to y, we have

¥ -€
M:i(pL(x,y,z) +Zf‘7§i;8_§_ ”dgdc f' %c:)gz[é?g_l.]dn

oy oy ay o
40
i 23 1
yte
or
K ([[L,?2 32 1
vix,y,z) = v;(x,y,2) - o J;J 7 b [‘a‘{a‘ﬁ 5—] dv
\
+ 2im hk? ”%%Z(E.y;a)dida " 2x - 2 377
e [ (x-£)2+8%e2+8% (z-1) 2]
5 % = £
3/2
[(x-£)2+8%2+82 (z-0)2]
or finally
. k u2 32 1
V(X,y,z) = VL\‘-{»Y,Z) = ZF_TT_ IJ{T ['ag—aﬁ‘g.]dv (130)

v

where we have made use of the fact that

o
oy

Q|-
=
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and the double integral tends to zero in the limit for
all values of & and ¢ .

Similarly it is easily seen, by differentiating
Equation (125) with respect to z, that

w(x,y,z) = wL(x,y,z) - Z;kF JIIEZZ_ (a—?:;c— %—] dv (131)
\Y

Case 2. Integral Equation for M > 1

If the undisturbed-flow at infinity is supersonic,
i.e., M_ 2 1, Equation (106) can be written as

co

¢x2]

2 . ol )
xx T ¢yy t9,, Kk Oxxx = K 3% (_7_

- B¢ (132)

and the corresponding expression of Green's theorem is

[[] [wt(sz) - 9Ly |av = - ” (wa—‘_’-na_ﬂdf (133)
Vv Qv
A% T
F where
2 2 2

- 2 9 9 9

L= -8 + “r (134)
J and

(135)




The derivation of the integral equation
in Case 1 would suggest that y be replaced by

[(x-£)2 - 82(y-n)2 - B2(z- 5)2]-1/2 but this leads to the
introduction of a finite-part technique in the integration.
For the initial stages of the analysis, y will be
identified with the fundamental solutlon

T -1 X = E
w = cosh 177

BL(y-n)2 + (z-1) 2]

of L(y) = 0 used by Volterra (see Reference 14, page .
Then from Equations (132) and (133), we have

” [EJ%% - ¢§%]dz - U}f G L ($)dV

Z

=_f‘fl[ka-,f—g[f§2—]dv (136)

We_have now to choose properly the three-dimensional
reglon V and its enclosing surface I . Discontinuities
in the velocity components are again to be taken into
consideration at the shock waves. Furthermore, the
fundamental solution of Volterra becomes infinite at
n=y ¢ =z , that is, everywhere along the line passing
through the field point 'P and parallel to the x-axis.
Figure 11 indicates the disturbance field of the body
as well as V and ¥ (dashed lines). The bow shock fixes
the foremost extent of the disturbance field and I lies
adjacent to it and other possible shock surfaces as well
as the surface of the body and its wake. The downstream
limits of region V are fixed by the forecone with vortex P
and determined explicitly by the relation

2 2 1/2
x - & =8[(y-n)" + (2-2)°] (137)
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Cylindrical
\ Surface

Figure 11. Region of Integration for M_ 2 1.

The inner boundary of V is the cylindrical surface
of infinitesimal radius given by the relation

(y-n)2 + (Z-c)2 = g2

On the infinitesimal cylinder its direction is parallel
to that of the normal to the surface, and on the forecone
from P the conormal is directed along the surface itself.
We, therefore, obtain from Equation (136) the following
expression for ¢(x,y,z):

64

The conormal derivative is defined by Equation (135).




¢(x,y,2) = -2173—3; ” [5—3%- ¢>2—‘3df

SRR (EEary

where integrals over the surface of the body and wake are
denoted by t, over the two sides of the shock surfaces by
A1 and A2, and over the enclosed volume by V. 1In each
case, only that portion of the surface or volume lying
within the forecone of P is included in the integrals.
The surface integrals over the forecone itself vanish
because w and %w/3v are zero on it (Reference 14).

Integration by parts, in the volume integral in
Equation (138), leads to the relation:

o= [ [3(8-Foctn)- o Blor
T ~

SYHECES

Equation (139) is the form for M, 2 1 analogous to
Equation (123) for M, < 1 and on the body and wake surface
involves the approximation

9
v
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As before, it can be shown from the shock-wave
relation that the combined integrals over the surfaces
Al and AZ vanish. Therefore

0oy =g [[ (F3-038)ar

k a 1. 2{38) =
o f” 7 o [ﬁ]dv ) (140)
v
Since

- _ -1 X - &

w =cosh 2 - 177
BL(y-n)" + (2-7)“]

dw 1 bl

Ll St (141D)

(L 2 2 2 2 9 2™ =

[(x-E)T =B " (y-n)" - B (2-0)“]

Equation (140) may be written in the following two
alternative forms:

03,2 = o xy.2) + g 2 [[[ Fo,2 (28] av (142)
v

or

000y,2) =0 .2 - g [[] Fotl av (143)

]
v
Similarly, Equation (138) may be given in the
following two alternative forms using the notation

é 2202+
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0(x.y.2) = o (x,.2) - g [[ o (22] Gaz

X Y
o
. 1 J” (:—g—%—]Gd\_l (144)
v
4 or
$(x,5,2) = 0, (x,7,2) - U A [%%L) %df
=
&3
v

where o1, is the value from the linearized supersonic theory.

Conditions at the Shock Surface

It is of some interest to study Equation (125) or
Equation (126) as the field point approaches a discontinuity
surface and to discover the mechanism by means of which
these basic equations furnish the velocity jumps associated
with the shock waves in the field. The surface of the wave
can be replaced locally by a planar element and a new
coordinate system X,Y,Z introduced with the origin fixed
at the intersection of the line n =y , ¢ = z and the shock
surface. Then the point P, at which conditions are to be
calculated close to the surface of the wave. has the
coordinates (X,0,0) and the planar surface of the wave is
given by the linear relation

i aXl + bYl + ch =0 . (146)

67




We assume that u2 in Equation (125) is composed of a
continuous part and a discontinuous part that has the
constant value ui ahead of and u% behind the shock.
Equation (125) then yields

2im [u(X_,0,0) - u(X+,0,0)]
X-+0

x K ) aledZ

s 3
= gllm (u -u ) —
X>0 AT 1 727 3X

1

2
[ (aX+bY1+cZI) 2 + 3282Y12+a282212]

(147)

where the double integral extends over the region of the
discontinuity. If the differentiation with respect to X
is now carried out within the integral signs and X allowed
to approach zero, we will obtain

; kaz u%-u%
ul-u2=21m [u(X_,0,0) -u(X+,0,0)] = > —7 (148)

X>0 aBl+b%+c

It can easily be shown that Equation (148) agrees with
the result given by Equation (68), the shock polar condi-
tion, for M_s1 .
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SECTION VI

SOLUTION OF THE TRANSONIC THREE-DIMENSIONAL
INTEGRAL EQUATION FOR THE NONLIFTING CASE

We have described the difficulties and complications
involved in the solution of two-dimensional transonic
nonlinear equation. As a consequence of the obstacles
encountered in the two-dimensional case, attempts at the
solution of the nonlinear equation with three space
variables are very few. 1In fact, only two references
can be cited which can be regarded as a proper three-
dimensional analysis. The first one is the work by Alksne
and Spreiter (Reference 15) which is actually an extension
of the local linearization method previously developed for
planar (Reference 16) and axisymmetric flow (Reference 17).
This has been summarized below. The second work is by
Norstrud who, for the first time, attempts to solve the
nonlinear integral equation by analytical-cum-numerical
technique. This needs detailed review and discussion.

1. THE ALKSNE-SPREITER METHOD OF SOLUTION OF THE TRANSONIC
THREE-DIMENSIONAL EQUATION FOR NONLIFTING WINGS

Essentially this method is an extension of the local
linearization technique so successfully employed by the
authors for two-dimensional thin airfoils in transonic
flows (Reference 16).

The axis system, as shown in Figure 12, consists of
the Cartesian coordinates with x-axis parallel to the free-
stream and with the origin at the west forward point of the
wing. The wing sections are given by z = Z(x,y) and the
wing planform is described by y = -S7(x) and y = Sp(x) as
shown. For all practical wings we will take =
|S | = b/2, the semispan.

Somax! =
1lmax
If ¢ is the perturbation velocity potential, whose
gradient yields the perturbation velocity components u, v

and w, parallel to the x, y and z axes, the problem of

transonic flow around thin finite wings can be studied by
using the usual nonlinear equation.

5 M2 (y+1) .
(LM by + by + b, = T 00, = ko0 (149)

X XX
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The appropriate boundary conditions are:
(1) u,v,w » 0 far ahead of the wing, and
(2) the flow be tangential to the wing surface.

The latter condition is satisfied if

4,) =u22E3 (150)

In addition to the above condition it is necessary
to take proper account of the difference in regions of
influence and dependence in the subsonic and supersonic
portion of the flow field. In general, additional
equations are needed for flows across the shock. Alksne
and Spreiter did not consider them for the following
reasons:

(1) 1In the first place, attention was restricted to
M, very close to 1 so that the flow in the vicinity of the
wing is essentially the same, by virtue of the Mach number
freeze, as at M ~ 1 .

(2) Secondly, they assumed that the shock stands at
the rear of the wing where its influence cannot extend
onto the wing surface.

Approximate Solution

First, the coefficient of ¢x is replaced by the
symbol A as follows:

M2 (y+1) L
- Ha g 2k B0 (151)

[}

so that Equation (149) becomes:

o 2
byy * bgp = Mg = - (L-M)0, . (152)

They have restricted their attention to only
accelerated flows for which A > 0. 1In the initial stages
of the analysis it is assumed that A is a constant.
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The resulting Equation (152) is linear for A = constant
and is of elliptic, hyperbolic or parabolic type depending
on whether M$1. Use of the boundary conditions given
above anc the application of Green's theorem to Equation
(149) leads to the following equation for u if shock
conditions are not taken into account:

U x  5,08) [(y-n)2+22]
w 3 3Z/3E -2
up(x,y,z) = - = f dg f —= e 4(x-%) dn
+oo +oo X 2.2
f 3y L{y=n) "4z"]
-%595-[ dnf dr,f o et A de

(153)

where

fp = - (L-MDoy, .

At M, = 1, fp = 0 and up can be calculated for any
given value of X for a known profile and planform. At
other M, Equation (153) is an integral equation whose
solution remains to be found. For M, near 1, however, fp
is very small and ¢ can safely be replaced by A/k from
Equation (151). Thé triple integral can then be evaluated
giving us the following result:

wplx,yz) 1 lf‘d [Sz(ﬁ)az,3E _y L= 24223
X 0 &

- - e TI-D  dn
U, Wi+ 2T Sy (63 <

(154)

Next, the value of k¢yxyx at the point x,y,z is restored
in place of X in Equation (154). Then for each value of
y and z the result is a first-order, nonlinear, ordinary
differential equation for u as a function of x. Dropping
the subscript P and writing k¢xx as k u', we obtain from
Equation (154):
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1-M°2° 1 3 deg SZ(g)BZ/ag -ku'ggy-gg?'ﬂz] 4
- — x-
M (y+1) 27 3X| ' e const XL 5
o 0 -Sl(g)

(155)

It is convenient to express Equation (155) in terms
of reduced variables indicated by the transonic similarity
rule and defined as follows:

Stk 4z d(z/t) £
X = = ; = _—_ - T = (—) )
& ax - " dx ¢ max
1/3 1/3
y= MG+l L, = 0Bl 2,
1/3 1/3
s= DG S, A= Dl D
® M2-1
& = %‘ ) e ™ s 273 s
(M2 (y+1) 7]
(M2 ( +1)]1/3 o
3 e &
g = L. (156)
773 R 5
Equation (155) thus becomes
(x,5y,z) =
X 5408 == 2,2
e vk ] dgjz a(z/t) /oF (2L ¥z ] o
= I ozl g N

(157)




In cases where interest is confined to conditions
on the wing surface, u can be evaluated with z = 0 and
Equation (157) can be simplified to become

u(x,y,0) =
i S, () -5
_Eo_zl__g_ f B(Z/t)/ag T(LE-)—— 3
x—
¥% | Srmconst © § (%) x-€

(158)

Properties of Transonic Flow

From Equation (158) it can be seen that for affinely
related planforms (fixed s(x)) and affinely related

profiles (fixed 3(Z/t)/3x), u at a given x and y varies
only with

M2-1
e = 273
[M2 (v+1) 7]

Thus the present results follow the transonic
similarity rule. Note also that s has the same parametric
form as the aspect ratio parameter customarily used for

the transonic similarity rules, i.e., A = Mz(y+1)1]1/3
where A is the aspect ratio.

Furthermore, u' in the exponent in Equation (158) can

be replaced by gigiéﬂl for a given value of y and it
follows for_wings_ of affinely related geometry that u+é,

at a given X and y does not vary with £.. Thus the results
given by Alksne and Spreiter contain the Mach number freeze.
Notice also that there is a coupllng of aspect ratio,
thickness ratio, and Mach number in A, such that in order
to maintain a fixed A for a wing of given thickness ratio
as M, varies it is necessary to vary the aspect ratio
likewise. The variation of aspect ratio with M, is not
great in the range for which the freeze can be expected to

apply.
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Solution of Equation (157)

For each value of y and z Equation (157) is a first
order ordinary differential equation and its solution
requires the specification of an initial or a boundary
condition. The simplest case is one for which a value of
u is known at some value of x for every spanwise station
and z = 0. This is the case for a wing of wedge profile,
for which the sonic velocity occurs at the shoulder.

In general, however, there is no point at which u is known

a priori and some alternative condition must be imposed

in order to determine a unique solution. It happens in

all cases considered, that is, two-dimensional flow around

an airfoil, axisymmetric flow around a body of revolution,
and now three-dimensional flow past a wing, that the equation
contains a singular point through which pass an infinity of
integral curves. 1In each case only one is analytic. Thus
the requirement of analyticity is sufficient to determine

a unique solution.

Mathematically, this leads to the following condition:
Writing Equation (158) as

U = F(x,0';y) (159)

where

(=]
[
1
+
Y

and

the equation will be investigated for a fixed value of y.
From Equation (159), we have

Ur = E e 2 (160)

X ou'

where, in general, 3F/3x and 3F/3U' are functions of x
and U'.

At a point where 3F/3U'= 0 we can find U' provided
that U" is finite, but this is assured if the solution is
analytic. With U' known at a point, it is possible to

calculate U at that point using Equation (159). This is
not enough to determine a unique solution because U" can
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have any finite value. However, additional derivatives
can be taken and in each case the unknown, but finite,
higher derivative of U will be multiplied by 3F/3U'
which is equated to zero. Thus all derivations can be
determined in principle at the singular point.

The location of the singular point and the velocity
gradient at that point are then obtained by solving
simultaneously the two equationms:

ﬂr_ =0 and U'= .B_:E

0" X

Special Cases

Alksne and Spreiter have considered several special

cases and deduced closed form expressions for Equation
(157) or Equation (158).

(1) Central Region of High Aspect Ratio Wing

By letting Sj(x) = §2(§) = » and considering Z a
function of x only across“the entire span, the following
asymptotic form of Equation (158) results:

X
_d_f d(z/t) /dE dt (161)

- - 1
@+e,) T = - =
/',n,‘ dx O (“x‘_'—)g

I1f the sonic point, x*, where u + £_ = 0, can be
found or is known, the general solution may be written as

_ 5 5 g
X X

R I i [ La@ro e 4| o

xx 9% 7o (x - &)

- (8] g (162)




For a smooth profile for which u + £, 1s not known
a priori at any point, the singular point is found to be
the value of x for whica

X
4 [ 2@/OE 40 o (163)
dx 0 (X-E)

Using this value of x* in Equation (162) a unique
solution is determined.

Theoretical pressure distributions computed for
several airfoils using the above equations are in good
agreement with experimental pressure distributions at
M_ =1 (Reference 16).

(2) Tip of High Aspect-Ratio Wing

_Placing the origin at the tip so that y = 51 = 0
and s2(x) can be set equal to infinity, Z can then be
considered a function of X alone across the entire span.
Equation (158) then becomes

X
T+e,=-p |2 L[ 4@V (164)
Tu' dx 0 (x-¢)

This is the same result as Equation (161) with a
factor 1/2 in Equation (164) which cannot affect the
position of the singular point. It follows tuerefore

C 2 b @ )
=2t + C
Prip ? 6w =0 5 m,

or (165)
2/3

- 1
u . = (3 (6 _a) il
t 2 £ 2 atm.
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(3) Small Aspect-Ratio Wing

In Equation (155) let the integration be performed in
two steps: 0 to x - € and then from x - € to x, where ¢
is a small quantity.

, 2.2
~ku'[(y-n) "+z°]
w(x,y,2) _ _ 1 _3_] de o i
ul

' 2, .2

s B (166)

Since the point £ = x is excluded from the first term
on the right-hand side, the exponential term for a small
aspect ratio wing can be replaced by 1. 1In the second
integral we replace 3Z/3% = 3Z/3x in the small interval
(x-g,x) and obtain the simpler equation:

X~-€ Sz(g)
Bo: -.21_ i] 4 J’ dg 2& dn
U T 90X ' X = E ag
© u =const
L0 -5,(8)
20X kuy-my® + 28] 4
* 55 dn [l 4(x-%) X -£
-Sl(x) X-€
1-M2 i
+ o, TR 7
M “(y+1)

00
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where S(x) is the cross-sectional area of the wing
perpendicular to the x-direction if Z = 0 at the leading
and trailing edges at any spanwise station and the
E~integration of the second term on the right can be

performed approximately by retaining only the first
logarithmic term.

The desired asymptotic form for a wing of vanishing
aspect-ratio becomes

2 : .
A l-Moo e SI(O) o S"(X) - Moo (y+1e
P MQZZY‘*l) amx Am 4x
X
S" (%) ' 1 S"(x) - S"(E)
+ 22X gn (‘1}—;)+ﬁ[ = de
S, () 2
fir o J 3 tn [(y-m%+2%] dn  (168)
'Sl(x)

where the Euler's constant C = 0.5772156

Remarks on the Alksne-Spreiter Method

The method is elegant and simple to use with fair
degree of accuracy but it is very limited in scope as
regards the flow conditions and the wing geometry. The
following are some of the restrictions:

(a) The wings must have sharp leading edges with
zero lift. Randall (Reference 18) has given an extension
applicable, under certain circumstances, to round nosed
two-dimensional airfoils at angles of attack.
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(b) The Mach number should be very near one and the
wing planform and profile should be such that at all points
the flow accelerates along the chord.

:
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SECTION VII

TRANSONIC THREE-DIMENSIONAL FLOW OVER ARBITRARY
WING PLANFORMS: THE INTEGRAL EQUATION METHOD
OF SOLUTION OF NORSTRUD

NONLIFTING CASE

The three-dimensional transonic integral equation for
the nonlifting case has been derived in Section IV. We
reproduce it here for convenience:

. WL TN RIS T, SR 1+w62———82 |
u(x,y,z) =u, (x,y,2) +yu"(X,y,2) - (8£,n,2)—y (=) d&dndt
1. 7 L 2 ggf I,

-0

(169)

where GL(§,§,Z) is the result from the linearized theory
and

A TN 1 e 3(Z-D)°
> p oy
38" 3 1 @Z-DAHG-IE-D2 (X-D)2+(F-) 2+(2-D) 2
(170) i

The physical interpretation of Equation (169) is that
of a mutual interference between velocity points in a
rerturbed flow-field u(x,y,z) where the linearized field
up,(x,y,z) designates the datum for zero perturbation. The
kernel of the triple integral serves as the influence :
measure and it can be seen from Equation (169) that this ﬂ
function is largely dependent on the double derivative in
the x-direction of the inverse of the distance r3 between
influencing points. This means that the strongest influence
at a point P(x,y,z) in the flow field will come from field
points which are located directly upstream or downstream of
P. The spanwise effects, however, are of major concern in
describing spatial transonic flow. Here the compressibility
cf the flowing gas tends to freeze the available stream tube
area and the density flux pu must be balanced with neighbor-
ing stream tubes. Norstrud assumes the following exponential
functional relationship to extract the spanwise influence
from Equation (169):
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BEF.D) = i 5.0 Cx (171)

which gives a relation between the velocity in the

xy-plane of the reduced wing and the velocities directly
above. The realation [Equation_(171)] satisfies correctly
the boundary condition of zero u-disturbance at infinity

(z >=). The parameter r = r(x,y)is defined using the _
irrotationality condition and the linearized value up(x,y,0)

over the wing which automatically satisfies the tangential
flow condition:

LRG0

r(x,y) = - ——— (172)
=
*2)%,5.0

Using the irrotationality condition

) ine

- wing . wing

we have from the linearized boundary condition

r(X,Y)=-————gE——— (173)
d
=2
IxX

where Z represents the reduced ordinates of the wing section
at station y.

Using the tables of the Laplace transform, the
Equation (169) can be rewritten, for x - £ = 0, as

Z 4
-2&
W50 =3 E7.D +T E7.D e || FET,08,(/5-] ;) dEdn

-00

(174)

The spanwise influence function E% = Ei(|§-ﬁ|;r) is
found, for the argument o = 2|y-n|/r (from Reference 19)
to be
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Eq(0) = - &L [2 - H (o) + N;(0)]

(175) E

where Hj is the Struve function of order one and Nj, the
Neumann function also identified as the Bessel function
of the second kind Yj. Nj(o) can be calculated using a
standard available computer subroutine. The series
expansion for the numerical evaluation of the Struve
function is

Wy = 2T
1+ 2 nZO n

where |
K =il KA (9/2)" A
0 3T 2 n+1 m+372) (n¥572) “n

In its limiting form for |o| » 0 , Equation (175)
is given by

5 1 1 1 1 3
Eq(o) = 4[;7 . Ll AR S ] (176)

Using the exponential decay and applying a similar
procedure for two-dimensional flows the influence function

EZ(X) = E2(2 lE%EL) in the x-direction is found to be
E,(X) = % {sinX[} - SiX] - cosX Ci X}
X ©

and CiX = - f
0 X

cost
-~ dt
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For small values of the argument, we have

3 5
SiX = v - P + e - .
X2 x4
Cix="c-2nx+2—2-r-rz'r+.
where

C = Euler's constant = 0.57721 .

and hence yields a logarithmic singularity for |[X| + O .
The rapid decrease in spanwise influence is typical in
spatial flows. The lateral influence function E3(c) is
shown plotted in Figure 13.

0 4 8 1.2 6, 20 24 28

o = 2(|y-n|)/r(x,y)

Figure 13. Lateral Influence Function E3(o).
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Norstrud's Approximate Method of Solution of Equation (169)

The symmetrical wing of arbitrary planform is repre-
sented by a number of rectangular panels in the xy-plane.
The distribution used for these panels is shown in Figure 14.

l 1l = y
\\ 2
3
\\ -3
\,
| N\
£ \_fgg" is]
) 4 —'—‘
.
~_ | :
L 19
1 e 20
X

Figure 14. Approximate Representation of the Wing.

The fundamental point of view adopted by Norstrud in
the definition of the influence region for a projected
point of interest (x,,y,,0) on the wing for the evaluation
of the double integral n Equation (174) is to collect the
effects of all field points located at a common streamwise
station (x=x_,%X., . . . , ) and assume this total
influence to “be represented at the point (x,y,,0) by a
mean value obtained from two-dimensional analysis. These
influences which may constitute the solution from a strip
method are supplemented by the effects of laterally located
points, i.e., for x=x, and y#y,. The influence pattern
is illustrated in Figure 14 b tﬁe shaded area and the
resulting influence matrix. {I] has the general structure




=

2.2 2,1 )
(7 - €1’ €11 €11 7
1,1 1 2.1 K,2
€21 (7 -3’ €' &'l
l!' =
R e e e e
1,1 2,1 1 L n,m
5 i - Al SRR
1.3 2,1 ) 1
€a,m €n,m €h,m (7 - eg:t(:)

The influence coefficients e?’% are integral functions
of the defined influence functions Ey and E3 for the case
where 2 = j and k = i(2 # j), respectively. If 2 # j and

k,% _
k # 1, ei,j = 0.
matrix form

Equation (174) can now be written in the

= k. B sl ” i,k=1,2, ..., n
Bt R e e e s
(177)

and the problem has been reduced to that of solving a system
of nonlinear algebraic equations. Norstrud used the Newton-
Raphson method of successive approximations to solve the
system [Equation (177)]. This utilizes a linear system at
each iteration step.
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