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PREFACE

This report documents work performed during the
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of Tennessee Space Institute , Tullahoma , Tennessee 37 388 ,
under Contract F08635-77.-C-0093 with the Air Force Armament
Laboratory , Armament Development & Test Center , Eglin AirForce Base , Florida 32542 . Captain Rober t A . Grow (DLJC)managed the program for the Armament Laboratory .

This report has been reviewed by the Information Office (01) and
is releasable to the National Technical Information Service (NTIS) . At
NTIS it will be available to the general public, including foreign
nations.

This report has been reviewed and is approved for
publication .

FOR TJ~ COMMANDER.

JO R. TAYLOR , Lt C onel , USAF
Chief , Munitions Div sion
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SECTION I

DISCUSSION OF THE VARIOUS TRANSONIC SMALL PERTURBATION
EQUATIONS DESCRIBING THREE-DIMENSIONAL

WING-BODY FLOWS

1. INTRODUCTION

One of the most difficult problems yet to be solved
to a certain degree of completion is the three-dimensional
transonic interference problem . At transonic Mach numbers ,
three-dimensional effects due to the presence of a fuselage
or wing tip can influence the flow field for large
distances in the spanwise direction . For low and moderate
aspect-ratio wings combined with a body , the flow fields
are rarely similar to two-dimensional ones anywhere on the
wing except , perhaps , on certain localized regions.
Therefore , the treatment of the three-dimensional transonic
flow problems involves more than a trivial extension of
existing two-dimensional methods , which are fairly well
developed by now .

Some of the major complications are :

(1) The circulation changes with the spanwise
coordinate and has to be determined as part of the
solution .

(2) The swept and tapered p lanform shapes complicate
application of wing boundary conditions using
finite-difference methods .

(3) The shocks , which are nearly normal to the
free-stream direction in two dimensions , can be
‘oblique in the lateral direction for finite
swept wings , thereby making them difficult to
cap ture sharply because of poor alignment with
the coordinate sys tem.

(4) Finally , difficulties in the stability of the
results may arise , especially in supersonic
regions in the finite-difference method.
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2 .  BRIEF DESCRIPTION OF THE FLOW DEVELOPMENT
ABOUT SWEPT WING-BODY COMBINATION

Figure 1 shows the flow development about a simple
swept wing-body combination with increasing free-stream
Mach number .

At moderate subsonic speeds , if the l i f t  is not large ,
an important e f fec t  of the sweep is Co move the loading
forward at the tip . As a result , the firs t appearance of
supersonic f low occur s in the tip region . Since the
isobars near the wing tip lose much of their sweep , the
supersonic flow generally gives rise to a shock wave--
the initial tip shock which is comparatively weak and lies
almost normal to the free stream [Figure 1(a)]. This tip
shock , though limited in the spanwise extent , ex tends to
considerable distances above and below the wing .

As the free-stream M,c, is increased , the initial tip
shock moves rearwards over the wing surface , but its
influence on the wing is limited by the appearance of a
second shock ,. This rear shock rapidly develops to affect
a large part of the wing span , particularly the flow ahead
of the initial tip shock [Figure 1(b)]. The rear shock may
be regarded as associated primarily with conditions at the
wing root. It consists of a compress ion sys tem propagating
outward from the root which coalesces on the outer part of
the wing to form a shock wave [Figure l(b)1 .

With increasing M , the rear shock moves af t more
rapidly than the initial tip shock which is overtaken and
disappears. At a sufficiently high Mc,~, the rear shock
reaches the trailing edge . The high local flow velocities
close to the leading edge over the outer part of the wing
lead to flow separation at the leading edge . This starts
near the tip and spreads inboard with increasing c~. For
leading-edge sweeps greater than about 30 degrees, the
separated flow rolls up to form a partspan vortex lying
obliquely across the wing . Above a certain stream Mc,, the
flow changes in type; the leading-edge separation is
suppressed , the flow passe s smoothly around the leading
edge through a forward shock wave which appears to
originate close to the leading edge at some spanwise
position [Figure 1(c)]. The forward shock is in fact the
boundary of disturbances from the inboard par t of the wing
leading edge which, because of the higher local supersonic
Mach number , propagate over the outer wing in a direc tion
more highly swep t than the leading edge . The Mach number
component normal to the leading edge (N cos A) for which
the flow attachment occurs varies consi~erably , depending

2
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on A , and more particularly on the leading edge profile .
In general M~ cos A has a value between 0 .55 and 0.90 .

As the free-stream ~‘1~ is increased beyond thatnecessary for flow attachment , the forward shock moves
inboard and rearward and at some stage intersects the rear
shock . Outboard of this intersection a strong shock forms
(the outboard shock) which frequently induces a severe flow
separation even though the flow is at~.ached behind boththe forward and rear shock [Figur e 1(d)]. When separation
is present behind either of these shocks , a vortex tends
to form and the associated outflow modifies the flow
structure outboard and becomes an important factor in the
ultimate breakdown in the attached type of leading-edge
flow over the wing . Separation then takes place along
almos t the entire leading edge , and the shock waves no
longer have a direct influence upon the surface pressures
which are dominated by a large port-span vortex as for
lower subsonic M~c,.

Many of the features described above are shown in the
surface-film pattern of Figure 2 , obtained at Mc,, = 0.95or with c~ = 10°.

Complex flow patterns similar to Figure 2 are largely
due to the three-dimensional nature of the wing flow and
hence to the dominance of the root and tip influence at
transonic speeds . The root a f f ec t s  the flow strongly
behind the forward shock which therefore indicates the
limit of the root influence and the flow in this region
is part ly conical in character . The tip influence at
transonic speeds is delineated by small disturbance from
near the tip leading edge [the tip shock : Figure 1 (c ) ].
Ahead of the forward , outboard and tip shocks the flow is
almost two-dimensional in character . The extent of this
zone depends on the shock pos itions which , in turn , are
dependent on wing planform , c~, and N - By making the
aspect ratio large , or by deliberateTy attempting to reduce
the root and tip influence , flow can be obtained over a

- 
large portion of the wing . This flow closely resembles
that postulated in the simple sweepback theory which is so
highly desirable .

The relationship between swept-wing flow and that on
the equivalent two-dimensional section at a component Mach
number normal to the leading edge , M cos A (if not too
large) is shown in Figure 3. At hig~er values of M~ cos A
it is difficult to minimize the effects of the finite wing
aspect-ratio. Recent experiments however have given
satisfactory results: surface pressures , separa tion

4
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boundar ies and shock positions correlating well on the
basis of the simple sweep theory .

3. DISCUSSION OF BASIC EQUATIONS

A. Various Forms of the Transonic Small Perturbation
Dif fe ren t ia l  Equations

First consider the exact nonlinear equation for
inviscid , isentrop ic , two-dimensional potential flow
written in Cartesian coordinates:

(a2-~~)~ - 2
~~~~~ xy + (a2-~

2)~ = 0 (1)

where a is the local speed of sound , and ~~~~, the total
velocity potential . In terms of U = 

~~ and V = ~ , the
total velocity components of Equation (1) become ~

(a 2 _ U 2 )U
~ = 2UV ~~ - (a2 - V2 )V~

(2)
= U~ ( irrotationality condition)

The expressions of these equations in terms of the
perturbation potential ~ and the perturbation velocity
components u and v , defined by

(3)

and ~~~~x +~~ (4)

can easily be written down in full (see Reference 1,
page 204). We will , however , consider two of these
perturbation forms for our guidance in selecting the best
form for three-dimensional flows .

One form is referred to as the small per turbation
equation derived by neglecting all terms containing
products of perturbation velocity components. We will
refer to this as NASA  Ames ( t r a n s o n i c)  e q u a t i on
(Reference 2) (NAE)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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( +l)M
~~ x H~xx - 2M

~4~~4~~ 
+ El_ (Y_l)M

~A~x
]
~ yy = 0 (5)

or in terms of u and v:

~~~~~~~~~~~~~~~~~~ = 2M~ v u~ - [l-(i-l)M~u]v~ (6)

The second form is the usual classical transonic
equation (CTE) derived from Equations (5) and (6) by
considering the special behavior of the fluid flow when
the local velocity is close to the speed of sound :

[l_
~
I
~
_ (Y+l)M

~~x]4~xx + 4~yy = o (7)

or [l-M 2-(y+l)M2u]u = - v~
(8)

vx = u y

We will now analyze these equations with regard to
how they model characteristic lines , sub- and supercritical
flows , and shock waves .

When Equations (1) through (8) are used for supersonic
flows , they can be analyzed to find characteristic lines;
that is , line s across which velocity gradients can be
discontinuous . One simple way to derive the equation for
a characteristic line is to rotate the coordinates through
some angle 0-. and ask if U-there is a v~ lue of 0c for ‘ —J e~which an advance along E~ I
is not posbible. For I
Equation (2), it is easy I 1)
to show that a character- /
istic line occurs in its /
solu tion when /

x
-. Cos20

~
] + [2v coso csin0c

_u(y_ l+2cos 2Oc].1 (92 2
- [(~~ 1)(u+v ) + (u cos Oc

_v sinO )2] = 0

8
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where the brackets enclose terms having zero- , first- and
second-order powers of u and v.

Similarly, it can be shown that the characteristic
lines of Equations (6) and (8) are

- cos~ 0~~] + [2v cose~ sin00_u (~ _ l+2 cos
20
~ )I = 0 (10)

and

1 2 2- cos - u( y+l) ~~~~ = 0 (11)
N

respectively.

Notice that Equations (9) and (10) are identical for
both the zero and first powers of u and v. But Equation
(11), derived from the classical transonic equation , is
not in agreement with Equation (9) even through the first
order in perturbation velocities . Since , to the first-
order , oblique shock waves bisect characteristic lines of
the same family , this result can influence our choice of
equations when we seek to compute flow fields wi th oblique
81200k s.

The Crit ical  Velocity

If we express a second-order par t ia l  d i f f e r e n t i a l
equation in the form

A 
~xx + B + C 

~yy + f~~~~~~~~~~~ c~ ) = 0 (12)

it is said to be elliptic o~ hyperbolic , depending on
whether the discriminant (BL_ 4Ac ) is <0 or >0 , and it
changes type as it goes through zero. This occurs in
Equations (1) and (2) when aL(Q2_a2) goes through zero ,
where IQ I is the magnitude of the local velocity . This
gives the classical result that Equations (1) and (2)
change type which the local flow speed passes through the
speed of sound and is hyperbolic on the supersonic side .
This speed is referred to as the critical speed and the
value of the pressure coefficient

9



P P c , ,
C~~= (13)

at which it occurs , as the critical pressure coefficient ,
C*.p

Figure 4 shows a p lot of C* versus Mc,,. This
relationship is valid under the~assumption that the flowis isentropic along a streamline between the reference

and any given point. Alsc. shown in Figure 4 is the
j first-order small perturbation approximation to C~ 2u*.

This approximation follows at once by neglecting ~l1 terms

-‘.4

\\
-10 - \\

~~~ 
...o a

0.6 .

— 0 . 2 -

Exac t, Equations (1) and (2r~~.~—
~~~~~~~ Perturbation , Equation (14)

C I I
0.7 0.8 0.9 1.0

M~

Figure 4 . C vereus N,,, as Given by
Equations ( 1 ) ,  (2) and (14) .
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with products of u and v in C -equation and can be
expressed as p

~~2u*~~~ l~~ ~~~
2 2 1  (14)

The condition under which Equation (5) changes type

- M~ ~~ 
[i+l+(l-M2)(y-l)] + (l-I1~) - M~ ~~ = 0

(15)

There are two roots for M~, q~~, and the one of
physical interes t leads to

M~~~
2

2 * —  1 1 _ _ _ _ _ _ _ _ _  16U — - 
~~~~ 

- - 
1 

1_l ,l ~2

Equation (16) reduces to Equation (14) if ~2 and higher
order terms in 

~y are neg lected.

It is easy to show that the expression for _2u*
derived from Equation (7) is identical to Equation (14).
We therefore conclude that , to the lowest order in
per turbation velocit ies , Equations (1), (2), (5), (6),
(7) and (8) all change type according to the same
relationship among u, y and Mc,, as given by Equation (14) .

Simple Sweep Theory

The simple sweep theory is generally derived by
considering a sheared wing of inf ini te  span and constan t
section (Reference 3). The principal assumption is that
the velocity component parallel to an edge is constant or
that the perturbation velocity parallel  to an ed ge is zero.
Under these conditions a shock , if it occur s , would also
have to be parallel to an edge , and hence i ts s t rength
would depend only on the component of ve loci ty  normal to
an edge . We will use the symbol C~ (0) to designate the

11
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pressure coefficient in an isentropic flow at which the
component of the total velocity normal to some plane , fixed
by B = cons tant , is sonic . This plane will be assumed to
be vertical , i .~~~., perpendicular to the xy-plane . Note
that C~ (0) = C~~, which has the same meaning as given in theprevious section .

~: r ~ ~~~~~~~~~~~~~ ~~~~

+
..U

classical sweep theory
leads at once to the
critical value of q(0):

x

q*2(e) - U~ sin2s = a2 (17)

From Equation (14) it can be shown that , for isentropic
flow

1 - (q*( e) 
= - 2 cos20 

( 2 
1 

2 - l (18)
Mco

cos O

Equation (18) can be used to derive the exact value for

C~ (0) = ~~~ [{
~~~~~ (1 + N2 cos 2O)}~~~ - 1] (19)

Applying the small perturbation approximation to
Equation (19) yields

- 2u*(0) 1 - [q*(e)] - 
2 cos 20 

( 2 2 (20)
M cos 0

Figure 5 compares Equation (19) with Equation (20) ,
which is the simple sweep-theory counterpart of
Equation (14).

12
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Figure 5 . C*(0) versus 0 as Given
by Equat~ ons (19) and (20) .

Shocks

So far the discussion has been restricted to the
properties of genuine solutions of the d i f ferent ia l
equation , i.e. , solutions tha t result in con tinuous
variations in the velocity components. We must next
inspect the properties of possible weak solutions of
these equations (see , for example , Reference 4) . A weak
solution can be composed of two genuine solutions

13
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separated by a surface across which the dependent variables
can be discontinuous . We refer to this surface as a shock ,
regardless of the form of the hyperbolic equation being
investigated . For the Eulerian equations , the j ump condi-
tions for the dependent variables across the shock are
referred to as the Rankine-Hugoniot conditions. In
general , the conditions that must be sa tisfied across a
shock can be found by writing the partial differential
equations in conservation form and connecting the
differences in the conserved variables with the direction
cosines of the surface across which they are discontinuous
(Reference 4). The jump conditions for the isentropic
shock embedded in Equations (1) and (2) lead to an implici t
relationship between the velocity components on the two
sides of the discontinuity , which can be written as
(Reference 5):

C,1 u1 - G2 u2 = (G1v1 - G2v2)tanO (21)

where

1

y-l 2 2
= [1 - 

~~~~~~~~~~~~ 
; 1 = 1,2

and the subscripts 1 and 2 refer to conditions on the
upstream and downstream sides of the shock at any given
point. The local slope of the shock is -tanO .

The conservative form of Equation (8) can be written
as

~~ [(l-M~)u - ~j.I M
2v2 - ~~

. N2 (y+l)u2] + 
~y 

[v-M~(y-1)uv] = 0

(22)

~v

~1x ~y

and for its jump condition , we obtain

14 
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[1 - 
~ M~ (y+l)(u1+u2)j tan

2B - 2 M2 (v2+u2tan0)

+ 1 - - 
~ M~ (y+l)(u1+u2) = 0 (23)

The jump condition for the classical transonic
equation , [(7) and (8)] is important for our purpose.
The conservative form of Equations (7) and (8) is

~~ [(l-M~)u - 
~~
. M~(~+1)u2] + .~.! = 0 (24)

~v 3u 0
~x ~y

and the j ump conditions yield the equations:

(1-U~,)Au - 
~~

- ~1~,(y+l)Au
2 = Av tanO

Lw = - Au tanO

where

Au = U
1 

- u2 ; Lw = v1 - V2

Eliminating Lw , by noting that

= u~ - u~ = (u1-u2)(u1+u2) = (u1~~ 2)Au = 2~ Au

we have

tan2O = - 1 + M~ (y+l)ii (25 )

or

(-2u 1)+(-2u2) 2 1
2 

- 
~~~ M2 cos 20 

- 1) (26)

15



This is the condition that must be met across the shock
according to the classical transonic theory expressed by
Equations (7)  and (8) .

Shocks and Supercri t ical  Flow

A flow becomes supercrit ical when the differential
equation changes type from elliptic to hyperbolic. To
the lowest order in the perturbat ion velocit ies , it has
been shown that this occurs under the same condition for
Equation s (1) through (8) , name ly ,  where

_ 2 u = _ 2 u *~~~
_

1 (..4_1) (27)

When all simulated shocks are nearly perpendicular
to the f ree-s t ream direction , that is to say the
approximation 0 = 0 and v2 = 0 is good enough , Equation s
(22)  and (24) lead to the same resul t .  This result  applies
to the standard two-dimensional flow simulations and , in
the form of Equation (26), it gives a condition that must
be met by the average of the perturbation velocities
across the discontinuity. Notice that as u1 -

~ u2, they
both approach u*. This me ans that the intensity of a
shock perpendicular to the free stream is centered about
the critical perturbation velocity , which , in turn , is
based on the condition that the equation changes type .
For such cases , Equations (5) through (8) give essen tially
the same results , and Equations (7) and (8) are to be
preferred because of simplici ty.

If the boundary conditions are such that a vertical
shock is oblique to the free stream , the shock position
and intensity could be significantly d i f fe ren t  depending
on whether Equations (5) and (6) or Equations (7) and (8)
wet-e used for the simulation . For example , consider the
special case where v9 = - 2u., tanO , which exists when the
component of the perturbatioft velocity parallel to the
shock is zero , which is the condition for simple sweep
theory . Under this condition , the relation [Equation (23)]
reduces to

(-2u )+( -2u  ) 21 2 2 cos 0 1
:4 cos 0

16

L  ~~,.  - , .  —----
~~~~~~
-.--- -,—- 

.... ..



On the other hand , the jump condition for Equations
(7) and (8), given by Equation (26), does not depend on
any special relation be tween u~ and V2 and is thereforevalid for all values of 0. This simple treatment brings
out clearly the difference between Equations (5) and (6)
and Equations (7) and (8) in simulating oblique shocks

— 0.9 - I /Equation (26) I /
(-2u 1)+(-2u2) / /

- 

E~ ua~~~on (28)
/

\

\
,,

~~

/
/

—0.6 - / /,,(
C ( O ) / /,,/ Exact C~*(O)~ Equation (19)

— 0.5 - j ,//
1 /7
I / 7

—0. 4 -
/7 ...,-
‘7.-,-

0.3 ~~~~~~~~~~~~ f —~~~~ —- Perturbation Equations (7) and (8)
Derived from — -- -—P ertu rb ~ILi on  Equations (5) and (6)

—0 2 J. _ ._ ._L.__._ __ I . L . ... L .1
10 20 30 ‘10 50 ~0

Sweep ang le , 0 , deg
•1

Figure 6. Exact and Approximate Values
of C~ (o) for Mc,, = 0.85.
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from a comparison of Equations (28) and (26) . This
difference is shown in Figure 6 for N = 0.85. Exact
value of C~ (o) from simple sweep theory , Equation (19),
is also plbtted in Figure 6. It is clearly seen from
Figure 6 that Equations (7) and (8) are very poor models
for flows with shocks that are more than 30 degrees
oblique to the free stream . Equations (5) and (6), on
the other hand , are acceptable for a wide range of 0,
limited only by the accuracy of the small perturbation
approximation itself .

Hence , for three-dimensional transonic flows in which
the presence of oblique shocks at moderate to large sweep
angles is anticipated , the proper form of the transonic
small disturbance equation is

~~~~~~~~~~~~~~~~~~~ 
- 2M

~~y~xy + [l~~(Y_1)N
2
~x1~~yy

+
~~zz = 0

(29)
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SECTION II

THREE-DIMENSIONAL TRANSONIC SMALL-PERTURBATION EQUATIONS
AND THE ORDER OF MAGNITUDE ANALYSIS

Cons ider fir st the exact equation for the veloc ity
potential ~ in rectangular coordinates x ’ , the local s tream
direction and y ’ and z ’ normal to the free stream :

~~~~~~~~~~~~~ ~~~~~~ + a2
~~~

t
~~

i = 0 (30)

where a and q are the local values of the speed of soun d
and stream speed , respectively , related by

2 _ y-l
+ 1 ~ -l 2 31a 

~~~~~ 
g— - --2— q

where Mc,~ is the free-stream Mach number and the f ree - s t r eam
velocity has been taken to be of unit magnitude . The
underlined term in Equation (30) determines when the
equation changes type .

A transformation from the (x’ ,y ’ ,z’)-system to the
sys tem (x ,y,z) is now made by rotating the coordinate axes.
Here x is the free-stream direction and y and z normal to
the free stream :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + 2uv
~xy + 2uw

~xz +2
~~~~ z1

+ ~~ [(q
2-u2)~~~ + (q2~v

2)~ yy + (q2 w2)~

- 2uv~~~ - 2uw
~~~ 

- 2
~’ yz~ 

= 0 (32)

where u = 
~~~~~~

, v = ~ and w = are the velocity components
and q2 = u2 + v2 + ~2. In Equation (32) the underlined
terms result from the underlined term in Equation (30).
This equation is no more than a rearrangement of the

19
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standard compredsible flow equation for ~ , in which each
of the second derivatives has been split into two parts.

Transonic Sinall-Perturbation Approximation

The transonic small-perturbation equation may be
derived from the exact Equation (32) in a number of ways.
We give here a derivation in which the scaling of the
variables is avoided but the physical meaning of the basic
assumptions is stressed.

The total velocity potential ~ is first replaced by
a perturbation potential ~ def ined by

(33)

where U~c, = 1. The velocity components are now

u = 1 + , v = , w = . (34)

We assume first that 
~~~, q~ and are all small and

if the z-axis is taken in the vertical direction the slope
of the wing-body surface relative to the horizontal plane
z = constant is approximately given by ~~ . We shall
assume that is small:

cS -
, S < < 1  . (35)

This small-perturbation approximation cannot obviously
be valid near a blunt leading edge but , as in two-
dimensional sec tions , we accep t this local inconsis tency
and proceed . It is convenient to choose the streamwise
chord length to be of unit length. So the condition

< <  1 implies that cp << 1 and we write

C , c << 1 . (36)

Now we introduce two lengths b and t in the y and z
direc tions , respec tively, such that
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(37)

The length b is related to the planform of the wing . Thus
for any wing of aspect ra t io  -.1 or of any aspect ra t io  but
appreciable sweep , b — 1. On the other hand , for a wing
of high aspect ratio and small sweep , b >> 1. This is
consistent with the exact relation 

~~~ 
= - q~ tanA for an

infinite swept wing at an angle !i with constant chord

length. The length t is related to the wing slope ~ 6 ,

since 4x = ~ approximately, so that

(38)

The next step is to expand the terms in Equation (32)
in the new dependent variable ~ , by making use of the
conditions :

1 (39)

— << 1

Thus , on omitting quantities of third and higher order , we
have Equations (31), (32), (34) and (39):

[l_M
~~
(’Y’+l)M~~x1~ xx + 2(l-M)~~ t~ y~xy~~z~xz’

+ [l
~~
(Y_l)N

~~x
](
~ yy+~zz) - 

- ~~~~~~ = 0

(40)

To the first-order , the pressure coefficient is given by

C
~~

= - 2 4
~ 

(41)

The small-perturbation Equation (40) is now fu r the r
simplified by making a transonic flow approximation . We
suppose that 1 - M~ -

~ 
that is

21



(42)

Thus the second of the underlined terms in Equation (40)

can be omitted. Furthermore the term (Y_1)M
~4x(~yy+4zz )_ c

2

can also be omitted.  The result is the transonic small-
disturbance equation for arbitrary wing-body combination :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~ = 0 (43)

This equation differs rom the commonly adopted equation
in having additional terms 2

~ y c~xy and

Note t~iat for b — 1 , that is , for wings of aspect
ra tio 1, or for wings of any aspect-ratio but appreciable
sweep , (~ yy + 4~~~) << c . Yet -. c so it follows
that — c and the length t 1. However , for b +
that is , for two-dimensional flows , 

~yy ÷ 0 and 
~y~xy 0,

while 
~~~~~~~~~~~~~~~~~~ 

<< 
~~~~~~~~~~~ 

, and the equation reduces to
the well-known two-dimensional nonlinear transonic form :

~~~~~~~~~~~~~~~~~~~ 
+ 0 (44)

which implies that 
~~~ 

e2 so that t that is

t >> 1. From the relations (36) and (38) it follows that
t6 and is larger for a two-dimensional airfoil than

for a finite wing of the same thickness.

The magnitudes of various quantities for three- and
two-dimensional wings follow .
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MAGNITUDES OF VARIOUS QUANTITIES FOR
THREE- AND TWO-DIMENSIONAL WINGS

Quantity 3-Dim . Wing 2-Dim . Wing

b: transverse y-direction
length scale 1

t: length scale in z-direction 1

~~: perturbation potential 6

l_112 6 o
2/ 3

-. pressure coefficient 6 62~
3

streamwise pressure 2 3gradient 6 6

vertical pressureZZ gradient ‘S 6

62
~x

4
~xx

(~~ +~ ~ 
terms in governing ~2\‘Vyy ‘~‘xz~’ differential
equations 

62 62z x z  J

Cotnmen t s

For the two-dimensional airfoil , the magnitudes that
have emerged for t , 4 and l-M~ show that if new scaled
quantities of unit order of magnitude are to be defined
then the appropriate scaling is obtained by writing

~l/3

(45)
l-M~

23
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Equation (44) then reduces to

[K - (y+1)~~~]~ + = 0 (46)

For a three-dimensional wing the corresponding
scaled quantities are different. They are

z

— ~-l~ (47)
1-N,~

K 
‘S

It is very important to recognize these differences.
Note that from inspection of Equation (43) it does not
seem possible to define similar ity parameters like K such
that the solution depends only on K (as with two-dimensional
airfoils) and not on the thickness ‘S as well. In other
words , there does not appear to be a simple transonic
similarity rule for finite wings as there is for airfoils.

The differences in the vertical length scale t and
the perturbation potential • imply differences in thephysical flow fields . The pressures and streamwise
pressure gradients on the wing surface are smaller by a
fac tor of -_ 61/3 than those on the corresponding airfoil
surface . For a finite wing the normal and streamwise
pressure gradients are of the same order of magnitude , but
for an airfoil section the normal gradients are smaller than
the streamwise gradients by a fac tor of .~ 61/3
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SECTION III

SUITABILITY OF THE VARIOUS TRANSON IC EQUATIONS

We have already der ived the NASA Ame s equa tion
given by Lomax , Bailey and Ballhaus (Reference 2):

[(1-~-I~) - (y+l)M2 cp 1 
~~~ 

+ [1- (y-1)M
~~~ 1~~~ 

+ 
~~~~~~~~~~~~ 

= 0

(43)

This equation was suggested for use in the case of flow
over finite wing-body combinations where oblique shocks at
moderate to large sweep angles are anticipated. If ‘S is
the thickness-to-chord ratio , the assumptions leading to
this equation are :

= 0(’S~~~~)

z-scaling according to z = 6 1j3~ (49)

and (1 - M~) = 0(1)

For flow with shocks we have

M2cos20-l = M2cos 2B-1 + 2M2( l+ i~~ M
2)~ cos2e+ ... > 0

(50)

where N is the local Mach number in fron t of t~~ shock and
0 the shock sweep angle. Now we have q~ = 0(’S&’3) > 0 and
consequently for M~, < 1 Equa tion (50) requires

M~ cos2O - 1 = 0(6 P) , p ~ 2 / 3

or

M~, - 1  = tan
20 + 0(6~ )cos 20 , p ~ 2/ 3  (51)
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whence

- 1 ~.i
2 cos2O - 1 = 0(6213 )

The ignored ent~ opy rise across a shock is then of order
(Mn _ I ) 3 .~ (6~ 1~) 62 , which is consistent with the fact
tha t Equation (48) is a second order accura te approximation.

Now since we expect normal shocks to occur in any
case , we may have 0 = 0 and thus

- 1 = 0(’SP) , p � 2/3

which contradicts the assumption 1 - M~, = 0(1) . This mean s
that Equation (48) can only be used for subcritical flow ;
that is to low transonic speed regime . Yet , it is a
nonlinear equation and as such capable of producing shocks.

The classical Guderley-Karman equation is

+ + = 0 (52)

which is usually given for a slender body as well as for
high aspect-ratio wings of very small sweep and dihedral.
The necessary assump tions are

• = 0(6
2/ 3)

y- and z-scaling is according to

y = ‘S ’
~~~ ; z = ‘S

h/ 3
~ (53)

and

1 - M2 = 0(6213)

whence we attribute it to the medium transonic speed regime
since Mc,, is closer to one than in the foregoing case. In
the derivation of this equation no contradictions are
encountered for the case of flow with shocks as long as
they are sli gh tly swept.
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Newman and Klunker (Reference 6) have added one
third order term to the Guderley-Karman equation for a
better approximation of the critical speed where the
equation changes type from elliptic to hyperbolic :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 (54)

The necessary assumptions are the same as given in
Equa tion (53) .

In Reference 7 (see also Reference 8), Hall and
Firmin have derived and used the equation (see Section 4):

[(l-M~) - (Y+l)M~~~
] xx + yy + zz - 2

~ y~ xy - 2
~ z~ xz = 0 (55)

for a low aspect-ratio wing fuselagL combination or a
wing of any aspect-ratio but appreciable sweep . The
necessary assump tions are

• = 0(6) , 1 — M~ = 0(6) (56)

whence we attribute it to the high transonic speed regime
since Mc,, is still closer to one than in the foregoing
case. Also in the derivation of this equation no contra-
dictions are encountered for the case of flow with shocks .

The Conservation Forms of Small Perturbation Transonic
Equa tion s

The mass conservation law for the compressible fluid
flow may be written exactly as:

+ [P’y] + [ P
~~~

] = 0 (57)
x y z

Various approximations to Equation (57) may be
derived by subs tituting the properly trun cated ser ies for
the terms inside the brackets:
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~~!8 ?A~~ IS B~~T QUi~4I!T 
?R&~~ICAB~4

~~~ 7~J~&I.Sli~ I’O D~Q ~~~~~~

P (l+
~~

) = 1 + ( l _ M
~

)
~ x -

- ~~~~~~ - ~~~~~~ + . . . (58)

=
~~ - M

2
~~~~ + . .y ~~x y

= - 
~~~~~ + . .

in Equation (57). For instance , keeping only terms up tothe second powers of •-derivative s in the x- and y-directions
the conservation form of the transonic equation given by
van der Vooren and his associates at NLR in Holland

- {3_ (2_Y)M~}M~,~
2 

- ~~M~,~
2 ] +  

~~~~~~~~~~~~~ ~~~~~~ 
0

(59)

The conservation form of the NASA Ames Equation (48)
turns out to be

[(l_M
~
)
~ x 

- 
~.(y+l)M~~

2 +

+ 
~~~~~~~~~~~~~~~ 

+ 
~~z’ 

= 0 (60)
y z

The Equation (59) can be shown to differ from
Equation (60) only by third order terms. However their shock
relations differ significantly and will be compared below .

Investigations of Shock Relations

Consider three typical cases of vertical shocks , forwhich~~~~= O  .

The first case is the normal shock which occurs, forexample , at the wing roots. We have •y 
= = 0 . The
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results are shown in Figure 7 for 0.8 ~ M,, ~ 1. The NASA
Ames, Guderley-Karman and RAE equations [Fi gure 7(a)1 show
fair agreement with full potential equation .
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Figure 7 . Normal Shock Relations
for Various Transonic Equations.
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For values of M1 ~ 1.3 there is also fair agreementwith the Rankine-Hugoniot relations. The results of NLR
equation [Figure 7(b) ] are prac tically independent of M,~,,and agree well with the potential theory . The results of
toe Klunker-Newman equation [Figure 7(c)] are nearly
independent of M~ . Though the agreement with full potential
theory as well as with the Rankine-Hugoniot relations is
good for low MI-values the overall picture ~.s not as good
~ for the NLR equation , or even the other three equations
for reasons already indicated.

Secondly, the strong oblique shock on an infinite
sheared wing , for the var ious equations , was compared.
If A is the sweep angle of both wing and shock we have

= - •~ tan A. The results of the specific case
= 0.84, A = 30° are shown in Figure 8(a). It is apparent

that neither the Guderley-Karman nor the Klunker-Newman
equation can describe this kind of shock adequately . The
results obtained with NASA Ames and RAE equations are
reasonab le , the RAE equation being slightly better . The
NLR equation gives good agreement with full potential theory
and for Ml ~ 1.3 fair agreement with the Rankine-Hugoniotrelations . For Mc,, = 1, the NASA Ames and RAE equations
also agree very well with full potential theory .

The third case of interes t is the weak oblique forward
shock . As suming infinite-sheared conditions 

~~~~~ 
= - 

~~ tan A)in front of the shock and flow parallel to the fuselage
(4~~ 

= 0) behind the shock . The results for the case
= 0.84, A = 30° are shown in Figure 8(b). The

conclusions are the same as for the second case . Only the
NLR equation gives fair agreement with both the full
potential equation and the Rankine-Hugoniot relations.

In Reference 9 , van der Vooren and his associates have
given some results of calculations of transonic flows over
isolated semi-wings . Nonconservative as well as fully-
conservative rotated difference schemes have been used.
They came to the conclusion that a nonconservative scheme
is inadequate for shock cap turing capabili ty [see Figures
8(c) and 8(d)].
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SECTION IV

INTEGRAL EQUATION FOR THREE-DIMENSIONAL TRANSONIC
FLOWS PAST WING-BODY COMBINATION

THE NONL1FTING CASE

Theoretical pressure distributions on nonlifting
circular arc airfoils immersed in a high subsonic free
stream were f i r s t  given by Oswatitsch in 1950 by approxi-
mately solving the integral equation , which was proposed
by him. The analysis is carried out in the physical rather
than in the hodograph var iables , and lead s to a non linear
integral equa tion in which the unknown veloci ty appears
outside as well as inside the integral . Oswatitsch found
approximate so~iu tions no t by itera tion , bu t by introdu cing
various fun ction s con taining unde termined parame ters in to
the integral equation and then by determining these
unknowns by satisfying the integral equa tion at a small
number of points on the airfoil chord. The application of
the method to some airfoil section did show certain
definite characteristics of transonic flow such as the
appearan’-e of shock waves and their rearward movement
across the chord with increasing Mach number . However , the
method fails to give proper results at high subsonic M~greater than about 0.88 with a 6 percent-thick circular
arc airfoil.

Gullst”:and, at KTH , Sweden , tried to rec ti fy  the
situation by seeking a solution by iteration . Gullstrand
uses the integral equation to determine only the solution
for the forward part of the airfoil and then uses the method
of characteristics to complete the solution for the rear of
the airfoil.

Spreiter and Alksne (Reference 10) proposed in 1955
a solution of the three-dimensional integral equation given
by Oswatitsch using an iteration process permitting the
integral equation to be satisfied at a much larger number
of points than in the original method of Oswatitsch. This
method gives approx ima te solutions at all Mach numbers up
to unity , and appears to avoid any multiplicity of solutions
that were unavoidable in Oswatitsch ’s earl ier method for
supercritical Mach number s .
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Basic Equations

The simplified small per turba tion equa tion in the
transon ic flow regime is the usual nonlinear equation

(l-M
~
)
~~~ 

+ cbyy + = K 
~x~xx (61)

where

k = M ~~~ ti . 

(62)

and ~ , the perturbation velocity potential given by

\~~As a result
of minor variations
in the per turba tion
analysis , other
authors have used
at least four
different relations
for k , the coe ff i-
cient of the non-
linear term in the
simplified equation
for the tran sonic
flow . A straigh t-
forward developmen t
of the second-order

• theory leads to the
relation given in
Equation (62). Figure 9. View of Wing
This is sometimes and the Coordinate
simplified to System .

~~~~~~~ (63)

by arguing tha t M~ can be se t equal to unity since the
right-hand side is after all an approximation to the
actual second-order equation . If the full nonlinear
equa tion in ~
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(a2-u2)
~~~ 

- 2uv
~~~ 

+ (a 2~v
2)~ yy = 0

the total veiocity potential is divided by a2 and the
quotient l/ a ’~ in each term is expanded in a binomial
series , the resulting coefficient k of the term
turn s out to be

2 E2 + (i-l)M~,1k = ~ L ] (64)

Still another expression for k is used by
Oswatitsch by writing

i - r i 2 = i - ~~
2 - 

l-M~
a*_Uc,~ x

thereby giving the value of k as

l-M2

k =
*~~ 

(65)

where a* is the critical sourtd speed given by

a* _ Iy -l  2

A similar situation arise3 in the derivation of the
simplified equation for the shock polar given below . A
significant case where the four relations for k lead to
different results is the prediction of the variation of the
critical pressure coefficient Cpcr with M,,,. The critical

pressure coefficient Cpcr is the value of Cp at a poin t

where local N = 1. This condition is recognized by the
vanishing of the coefficient of thus
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1 - N2 - k(~~ ) = 0

or

Cpcr 
= - t~j ~~~~~~ 

= - ~~~ (1-M~,) (66)

The exact relation for isentropic flow from
Reference 1 is

I
c — 2 ri 2 + ~~~~~~~~ M2

~~~T 1Pcr~~~~~~~L~y+1 ~~T j 
-

Similar comparisons can be made for local Mach
numbers N other than uni ty or by considering the veloci ty
jump across a shock wave or by comparison to some of the
existing experimental results on drag of a wedge. Each
of these comparisons provides striking evidence in support
of the value of k given by Equation (62) although in some
cases Oswatitsch ’s va lue , Equation (65), gave good results
as well .

Equation (61) is valid only in regions where the
necessary derivations exist and are continuous . Since
the se condi tions do no t hold where shock wave s occur , an
addi tional equa tion is needed for the trans ition through
the shock . The necessary equa tion is provided by the
classical regulation for the shock polar :

u u
+ w2 = (u 1-u2) 2 2 2

~~~~~~~~~ ü1 - ü1ü~ + a*

where ü , ~ and ~ refer to Cartesian velocity componentswith ü being parallel to the flow direction ahead of the
shock , the subscripts 1 and 2 refer to conditions ahead of
and behind the shock , and a* is the critical sound speed.
Carrying out a small perturbation analysis of Equation (67)
analogous to that performed in the derivation of Equation
(61), it can be shown that the following relation results
between the perturbation velocity components on the two
sides of the shock wave :
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2 2 U +U .
(1-M ) (u1-u2) + (v

1-v2
) + (w

1-w2
) k 

2 ~ (u 1 u2) (68)

where now u , v and w are the per turba tion veloci ty
components parallel to x, y and z-axes . This equation
corresponds to the shock-polar curve for shock saves of
small strength inclined at any angle be tween tha t of
normal shock waves and that of the Mach lines. On either
side of the shock wave , Equation (61) holds .

The Boundary Condi tions

(a) At x = - ° ’

= 
~ 

= 
~~~ 

= (69)
y co

(b) At the wing or bod y surf ace

= 
~~~~~~ (70)

~ Wor B x

where ~z/~ x is the local slope of the wing or body surfacein the x-direction .

In addi tion , it is necessary to prescribe that the
direct influence of a disturbance in the supersonic region
proceeds only in the downstream direction and that the
Kutta condition applies whenever the flow velocity at the
trailing edge is subsonic for unique solution .

Integral Equation for Transonic Flow (Non—Lifting Case)

Since the principal object of the following analysis
is to determine the perturbation velocity components at
any poin t , it is convenient to work with equival ent
equation s for u , v and w obtained by differentiating
Equation (61):

- 
2 ~~~ a 2

~ ~~~ — 
~~~~~

(1 N )  —~~
. + —~~~ + —a- - k

ax ay az ax
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with respect to x , y and z, respectively :

2 a2u a 2u 32u — a 2 
U
2

(1- M~) 
__

~~~ 

+ —
~~

. + -_
~~

. - k —
~~
. 

~-r 
(7 1)

2 a2v a2v a 2v — a 2 u2(l-M00) ~~ + + - k aya x (72)

(l~ Mcx, ) —4 + + = k azax  
(~4-) (73)

since

~ au _ a

We will assume that M~ < 1, i.e., the free stream is
a high subsonic velocity though the local speeds on the
body exceed unity in some areas .

Then normalizing Equations (71), (72) and (73) by
letting

x = x  , ~~~
=
~~~ y , z = B z  ,

—
- a~~_ k —

- a~~_ k —
- a~~_ ku -— - .--2.u , v - — -- - 3 .v  ,

ai ~

(74)

where
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Equations (61) and (71), (72) and (73) reduce to the
following :

a 2
~ a 2

~ + a 2
~ - ~2— — 

a~ a 2
~ (75)

~~
2 —2

V2U =  42- (~~~ —) (76 )

2
= 

— 
(7 7)

ayax

—2
2 a 2 1u~~V w =  —— (78)

a z a x

where

2 a 2 a 2 a 2

is the Laplacian operation in the normalized var iables ~ , ~and z .

Before proceeding , it should be noted that the
introduction of the reduced perturbation velocity component
u permits the ready recognition of regions of subsonic and
supersonic velocities and emphasizes the points at which
sonic velocity occurs. This becomes apparent from the
approximate relation between the local M and

l - M 2 = l  - M ~~- k q  (79)

or

l - M 2 _ 1  k — 1  —

2 ’
l - M ,c,
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from which it is clear , for flows having subsonic free-
stream M0,(M,, < 1), that u < I when the_local velocity is
subsonic , u = 1 when it is sonic , and u > 1 when it is
supersonic .

We will now app ly Green ’s theorem to Equa tion (76) .
The resul ts for Equations (77) and (78) will follow
immediately. If a and ~2 are any two functions which ,
together with their first and second derivatives , are
finite and single valued throughout a region R enclosed by
a surface E , Green ’s theorem , which follows from Gauss’
divergence theorem , states:

JJ (a ~~~~ 
- 

~ ~~)d E = JJJ (QV 2a - aV 2c2) dR (80)

where the directional derivatives on the left-hand side
are taken along the norma l n , drawn inward , to the surface .

Now in Equation (80) let ~ = ii and choose a as thefundamental solution h r 3 of the Laplace equa tion V2o = 0,
i.e.,

1 
= 

1 
. (81)

[(~-~) +(
~~~

-
~~~) 

+(~~)2J
Then we have from Equa tion (80)

JJ [J~~~~~~~~~~~
.~~~L)]dE= 

JJJ~~
LV 2

~~~ dR

= - J~S * 
—

~~~ 
(4-) dR (82)

since from Equation (76)

2 —2
~v u - —a- ‘-T
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The variables of integration in Equation (82) are
~I , ~~~~, ~ while x , y ,  z are the coordinates of a point P.
It must be observed that h/ r3 is singular at r3 = 0 and
ii is discontinuous at the shock wave. The point P and the
shock must , therefore , be excluded from the region R.
A schema tic indication of the body (wing or fuselage) and
the region of integration is shown in Figure 10 . The
complete three-dimensional extent of the body has not been
pictured . It suffices , however , to state that the surface
~ (shown dashed) is composed of a sphere of large radius
which forms the external boundary of R , an infinitesimal
sphere surrounding P , and a final surface enveloping the
wing and body , the wake (for the lifting case), and the
shock waves.

Let us now apply Equation (82) to the region R~bounded by the xy-plane and a hemispherical dome of i n f in i t e
radius lying above this plane , exclusive of the subregions
surrounding P(x ,y,z) and the shock waves (Figure 10). Since ,
fur thermore , u may be assumed to diminish su f f i c ien t ly
rapidly with distance , the contributions of the integrals
over the hemisphere vanish and the contribution of the
surface integral over the small sphere surrounding P may
easily be shown to be 4ir 

~~~~~~~~~~~~~~~~ when the radius Cl + 0 -

We have , therefore , from Equation (82) the following result :

= - 
~~~~~

. J’J [
~ 

~~~ - 

~u 
~~~~~~

~~~~ 
3 aç a~ 3

- 

~~~~~~~~ ~~~~~
*}

2~~~~

- 4~~JJJ~~ -~~L~~(4-)dR (83)

where the subscrip t u denotes conditions on the upper side
of the xy-plane , the subscripts 1 and 2 denote values imme-
diately ahead of and behind the shock wave , and S is the
surface of the shock wave. The volume integral is defined
as follows when P is ahead of 5:
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Figure 10. Region of Integration : M,~c, ~ 1.

44



555
u r n  00 ~OO X - E  X - C  +00

~d~~+ ~d~~+ J ~dr}

2 x~~+E 1 XS+C2

(84)

where we have written i.~i ~ ~2 
(4.)and c1, c2 are the

the radius of the small sphere surrounding ~~~~~~~~ and
the thickness of the surface surrounding the shock wave
surface 

~~ 
respectively . Similarly , when P is behind S ,

the volume integral is

00 X - C  X - C  00r r r  r — ~S 2 
— rP 1 — r —

j J J  4idR = 9~im I drj 
J 

d~ j ipd~ + J ipd~ + j i~d~ (85)
R

~ 4+0 
-00 Xs~~ 2

If P is kept fixed in the upper half space and the
region R bounded by the xy-plane and a hemispherical dome
of infinite radius lying below this plane is considered ,
it follows in a similar manner that

~~~~~~~~~~~~~~~~~~ [
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~

+{
~~ ~~ ~~~~

}21d~~~~~~~~~~~ 

~2~~~2 (86)

where the subscript £ denotes conditions on the lower side
of the xy-plane and the volume integral is defined as
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j~j ~~ 4 dR JJ 5 ~dR = 
E~~~0 

J n  5 d~ { ~~ - C2~d~ + ~~00 

~dr}
2 -00

(87)

introducing the notation

— au
(88)a~ a~

and adding Equations (83) and (86) , we have

= - ~~~~.. f.~ [~
.

~~~~ 

- ~~~i)} +{ i 
~~~~}2]

d5

- ~i_ f f5 J _~_2. (4-)dR . (89)

where B represents the wing-body or wing alone and S repre-
sents the sum of the surfaces Su and S~~; and R = Ru + Ri,.
The first integral on the right-hand side of Equation (89)
will be recognized as the value of u given by the linearized
theory of subsonic flow past wing or wing-body combination .
Denoting this linear value by UL , we have

= - 4% 55 ~~~~~ - -
~~
- 

~~
-)1

d
~
d
~ 

(90)

Equation (89) may be regarded as the final integral equation
for u for the nonhifting case. But for numerical computa-
tions , it is advantageous to write it in another form by
integrating the volume integral twice by parts with respect
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to ~~~~, taking proper cognizance of the definitions given in
Equations (84) , (85) and (87) , and to decompose the surface
integral over the shock wave into components parallel to
the axes of the coordinate sys tem . If then n1, n2 and
are the direction cosines of the normal to the shock
surface drawn inward as shown in Figure 10 , the following
equation is obtained from Equation (89):

UL + -
~
- 4 %J J JT_~~~~~~~ dfld~

+ - (
~~-~~

) 3

- {
~ ~~ 

(
~~-;~) - 

~~

I aii — a  I I a~i — a  1+

+ I - ~~I) - J— i~! - ~ -~~(I) 1d~d~~~ r3 1 
r3 a~ aç r3 

2J

(91)

where is given by Equation (90).

Although the integral equation obtained above appears
to be more complicated than Equation (89), it is superior
from the point of view of approximate solutions f~r the
following reasons :

(a) The triple integra1~of Equation (89) shows a verystrong influence of the velocities in the neighborhood of
P since they are multiplied by h/r3 . This influence is
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largely nullified in the triple integral in Equation (91)
because part of the region has a negative influence and
part has positive influence . The predominant influence in
Equation (91) is furnished by the term i12/2 standing
outside the integral.

(b) The contribution of distant regions is also
diminished in impor tance in the triple integ~al of Equation
\ 11) since their influence now varies as l/r~ rather than
h r 3  as in Equation (89).

(c) The biggest advantage in using Equa tion (91) is
that the value of the triple integral in this equation is
continwous through a shock wave (due to the presence of the
term u’~/2 outside the second derivative) rather thandiscontinuous as in Equation (89). A point of great
impor tance in the approxima te solution ar ises from the fac t
tha t the integra tion by par ts provides extra terms (those
containing i12/2) in the integrals along the shock surface S
which combine with those already present in such a way that
the contribution of these integrals becomes very small when
the shocks are nearly normal waves, as is usually the case
for high subsonic speeds .

In addi tion to satisf ying the integral equation for ii
given in Equation (91) , the velocity components on opposite
sides of shock waves must be in accord with the simplified
relation for the shock polar g iven in Equation (68) , which
can be rewritten in normalized form , using Equation (74)
as follows :

2 2 u1+u 2 2- U
2
) + 

~‘l 
- 112) + 

~~h 
- W2) = 

2 ~
‘l 

- u2)

- 

(92)

or with sligh t manipulations it can be written in the
following two alternative forms :

u1 +u 2 2 21 - 

2 
2 

~~l 
- ‘
~2~ 

+ 
~~1 

- 

~
‘2~ 

+ 
~~1 

- = 0

(93)
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and

r 2 ~ 2
I U U

- U
2

- -y- + 1~~~
’2~ ~~~~~~~~~ 

°

(94)

If the shock wave is a normal wave and the flow is
parallel to the x-axis ( i . e .  , 111 = v2 = Wi = W2 = 0, 

—but u1 ~ u 2 ) ,  it can be seen from Equation (93) that u
j ump s f r om 1 + ~ immediately ahead of the shock to 1 - A

U1 - 
U

2immediately behind the shock , where A . On the
other han d , Equation (94) shows that the quantity u - u  /2
is equal on the two sides of the shock . This is consistent
with the fact that the latter quantity corresponds , in the
tran sonic approximation , to the mass flow , which is
continuous through a normal shock .

The general problem of the three-dimensional transonic
flow about nonhifting bodies requires the solution of
Equation (91) while taking account of the shock relations
given in Equations (92), (93), and (94). This is a formi-
dable task well beyond the reach of present analysis. We
therefore introduce some further approximations before
solutions can be obtained. They are : (a) all shock waves
are assumed to lie in a plane perpendicular to the x-axis
and (b) the shock wave s are assumed to be normal to the
local flow direction. The first assumption corresponds to
setting n 2 = n3 = 0 and the second leads to the relations :

—2 —2 —2 —2
(ii = 4-) = (ii - 4-) ; 1. (ii - 4-) = —p— (ti - 4-) = 0

1 2 1 a~ 2

(95)
Hence Equation (91) simplifies to

U _ 1
L + T~~~~~~fJJ 7~~~~~~

(_)d
~
dT)d

~ 
(96)
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A similar , but s l ight ly  more involved analysis shows
that from Equations (77) and (78) , the equations to
determine v and w are

= “L - 4% f~J 4- a~a~ 
(~~ )drd Td~ (97)

W = T’
~L 

- 

~ J~J ~~ a~:~ 
(~ —)d~diTdZ~ (98)

Before proceeding further , it should be observed that
the solutions of Equations (96), (97) and (98) must approach
those of the linear theory when N

00 
<< 1, since ii < < 1 and

therefore the terms involving u2 become negligible,
thereby leaving only

(U , V ,W) M << i (uL,~ L,~ L
) . (99)

Let us now write Equation (96) as follows :

—2
(100)

where

I = 

2[4% JJJ u2 a 2 
(~~)drd~d~~ (101)

Al though I is a function of ii and is therefore unknown,
it is informative to rewrite Equation (100) by solving for
u in terms of I and 

~
1L’ thus

= 1 ± /t - 

~
2
~
3
~L 

- 1) = 1 ± /1- L (102)

50 

~~~~~~~~~~ . • .~~~~~~~~~  .



- . - -~ 
_ _

where

L = 2 u
L

- l

Several interesting observations can be made from
Equation (102).  First of all , for real values of u

I

I~~~L .  (103)

Fur thermore , the choice of the plus or minus sign
determines whether the local velocity is subsonic or
supersonic . A change in sign at a po in t where the rad ical
is zero corresponds to a discontinuous jump in velocity.
As pointed out following Equation (94), such discon tinuities
correspond to normal shock waves and are permissible when
they proceed from supersonic to subsonic velocities or from
plus to minus sign in Equation (102), when progressing in
the flow direction . Discontinuities in the reverse
direction are inadmissable since they correspond to
expansion shocks , a phenomenon which violates the second
law of thermodynamics.

The values of 
~
1L, and hence L , can be calculated for

any given body and are generally characterized by certain
reg ions in which uL > O and other regions in which u1~ ~ 0.The absolute values of u increase continuously with
increasing M

00 
and the maximum positive values may

considerably exceed unity as sonic velocity is approached
in the free stream . Not very much can be stated at thi s
poin t abou t the values of I , excep t tha t they depend on the
distribution as well as magnitude of ii and that the above
inequality must be satisfied.

The Two-Dimensional Flow Past Circular Arc Airfoil:
The Oswatitsch-Spreiter-Alksne Solution of the Integral
Equation

The starting point for the solution of the full
integral equation derived for the three-dimensional cases ,
would be to examine the methods needed for two-dimensional
flows given by a number of authors : Oswatitsch , Gull strand ,
Sprei ter and Alksne , Nixon , and Nors trud .
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The analysis of the two-dimensional case is based on
the following equation :

u(
~~~~~~

ifL(~~~~~~~~~~~’~~ -

~~~~~~~~ 55 ~~~~~~~~~~~~~~

-00

104)

Approximate solutions of this equation could conceivably
be worked out numerically by startin~ with a two-dimensionalgrid of suitably selected values of u and iterating until_
convergence is obtained. If the first approximation for u
is taken to be the results given by incompressible or
linearized subsonic flow theory , convergence will be obtained
only when M

00 
is sufficiently small and the flow is subsonic

everywhere . Oswatitsch suggested that mixed flow fields
containing shock waves can be obtained if the starting
u-distribution contains shock waves. The idea then is to
start with a reasonable guess for u , being sure to include
a proper discontinuity complying with the shock relations
of Equation (95), then proceed to the solution . It is not
necessary to be highly accurate in the initial guess for u.

A further simplifying assumption is made by Oswatitsch
and others regarding the variation of u in the z-direction ,
which has the effect of reducing the double integral in
Equation (104) to a single integral. Oswatitsch suggested
the following relation :

= 

~~- 2 (lOS)
[1 +

where ifB (~~,0) is the value of ~ on the body as taken in thelinearized theory and b is a function of x so chosen that

the irrotationahity condition = ~~.! is fulfilled at ~ = 0.az ax
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SECTION V

THE INTEGRAL EQUATION FOR THE THREE-DIMENSIONAL
LIFTING WING-BODY COMBINATION

We star t with the nonlinear par tial differential
Equa tion (61) :

(1 _ M
00

2)
~ xx + + = k 

~x~xx (106)

where

k = M
00

2 ‘~+l  (107)

The change of type of the equation is an essential
feature of tran sonic flow and the reg ions where this occur s
are recognized by the sign of the coefficient of

r 2 2 -

~ 

> 0 ellip tic (subsonic)
j 1~~Mc,, -M 00 

(v + l) 
~~ 

= 0 parabolic (sonic) (108)
L 00 -J < 0 hyperbolic (supersonic)

Equation (106) is , of course , valid only in regions
where the necessary derivatives exist and are continuous .
Across a shock surface the normal component of velocity is

• discontinuous while the tangential component , and therefore
4, is continuous . The necessary relation follows from the
classical expression for the shock polar given in Section IV.
This approximates , in small disturbance transonic theory,
to [see Equation (68)]:

(l-M
00

2) (~ ~ )2~~ (~ ~ )
2~~ (~ ~ )

2
x1 x2 ~

‘l y2 z1 z2

~~ + q
~x

= k 1 
2 

2 
~~~ 

- 
~:t, )

2 (109)xl x2

53 

--~~~~~ . • .-•-— • - ,- - - .. -— --.. --~~~~~ -—-..—--~~



.- . .

where the subscripts 1 and 2 refer to conditions ahead
of and behind the shock.

Equations (106) and (109) are usually applicable to
the case where the x-axis is parallel to the free-stream
at infin ity and are good approxima tions where the coordina te
system is rotated slightly. Choosing the body-axis system ,
whpre x-axis is aligned in the longitudinal axis of the
wing and body , the relation between the total velocity
potential ~~x,y,z) and the per turba tion velocity poten tial
~~x,y,z) is approximated by:

~(x,y, z) = U
00

( x+ cxz) + •(x , y z )  (110)

where ~ is the angle of attack.

The expression for the pressure coefficient C~ is notinvariant with respect to small rotations of the cbordinate
system . In body axe s , the proper expression is

C~ = - 
~~~~ 

- .L2. (~~~2 ÷~~~2) (111)

The Boundary Cond ition s

The condition at infinity yields

= 1J,~c, ( x + c t z )

or that

= 0 . (112)

An exception to this statement occurs in the vicinity of
the wake at great distances behind the wing., but no
complications arise due to the relative smallness of this
region . The conditions at the airp lane surface resul t in
the relation
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U ( n 1 + cm3) +n 1 ~~~~~~ +n2 ~~ + n 3 ~~ = 0 (113)

where 
~~~ 

n~ and W3 are the direction cosines of a normalto the airplane surface with respect to the x , y, and z
axes , respectively . This relation is too general . For
our needs n1 << 1 or (n~~+n~)

1
~~
2, i.e., slender bodie s and

wings are considered . Then Equation (113) reduces to

U ( n 1+ cm3) + n 2~~~~+n 3~
±=O (114)

or

U
00

(n 1+ cm3) + 0

where n is the norma l to the curve bounding a cross section
in a plane normal to the x-axis.

We will now apply Green ’s theorem in two different
forms , one for M

00 ~ 1, and the other for N ? 1. Let

1/2
8 = (11-M

00

2
1) ; k = M (115)

Case 1. Subsonic_Frees tream Flow: N00 5 1

Equation (106) can be rewritten as

a 2
8
24)xx + 4

~yy + = kq
~xcbxx = k ~~ 

(—i—) (116)

and the corresponding expression of Green ’s theorem is

fJJ [~L(Q - QL(~ ) ]dV = - jJ(~ ~~~~ 
- ~ ~~)d E (117)
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where c~ and ~ are arbitrary functions and L is thePrandtl-Glauert operator :

2 2 2
L 82 

~ 2 
+ + ~~~~~~~~~ (118)

ax ay az

and is the derivation along the conormal defined by

a 
= 82 n1 ~~~ — + n2 ~~~— + n3 ~~~~

-. (119)

where nl, n2, n3 are the direction cosines of the normal
to the surface drawn into the region V.

Now choose i4.i = ~~
. , where

2 2 2 2 1/2
a = ~~~~~~ + ~ {(y-n) + (z-~~) (120)

so that L(tP) = 0 and let ~ , the perturbation velocity
potential , in Equation (117). Then from Equations (116)
and (117) we obtain

2

j~1~ ~~~~~ - = - Jf f~ ~~ (~~_) dV (121)

In these equations the running coordinates in the
integra tions are t , r~, ~ and • is to be calculated atpoin t P(x ,y,z ) .

If Equation (121) is applied to the infinite region
V consisting of a sphere of large radius which forms the
external boundary V , a sphere of infinitesimal radius
surrounding the field point P(x,y,z), and a final surface
enveloping the wing-body , its wake, and its shock waves ,
we obtain the following expression :
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~~x ,y, z) = - 4% 55 {~4~- ~~
_ (

~-)

J

dE - 4% 55 [~
. 

~~~~~

- 
~~~~~ (~.)JdzB+W A 1

21 If 11 a~ a 1 
~~~ 

k 1 f f  1 a
~~~~~j j ~~~~~~~~~~-~~~~~~~(~~)j ~~~i J i ~~~~~ t-2~~~

V
X2 V

(122)

where B+W denotes the wing-body surface and its wake and
X j~ and A 2 are the shocks , ups tream and downstream shocksurfaces , respectively. On the shock surface A the
conormals are directly opposed on the upstream and down-stream faces A 1 and A2. On the body itself and the wake ,
as mentioned earlier , we may approxima te

a a a a

If now the triple integral in Equation (122) is
integrated by parts twice with respect to x, the resultant
form of Equation (122) is

~~x ,y-,z) r - 4 %  55 [i(~~~_~~ q~~2n1J .
. 

~~~~dE
B+W

1 11 1~i fa q k 2 a fl 1 (f  ri (a~ k 2 a fl. Z~ JJ L~~~~2~ fl
1 ~~~~~~~~~~~~~~ 

~~~~~~ 
n1 -~~~~~~ -

j
dZ

A 1 A2
k ff 1 1 2 a l dV

~~~~ J J J  2~~ ~~~~ . 

( 123)V

Equation (123) is of par ticular in teres t because the
integrals over the shock surfaces may be shown to vanish as
in the nonlifting case. Finally , if we neglect the termn1q~~2 in comparison with a~ /a v  , the simplified integral
equation is similar to the nonlifting case :
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q (x ,y,z)=_ 4% Jf (~.~ -~~.
~~~.)dE +~~~ ff 5 2 (~~

.
~ )dV

B+W V (124)

The first integral on the right-hand side of
Equation (124) is the expression for 4(x,y,z) in
~inearized theory and the spatial integral is acontribution brought about by the nonlinear term of the
basic differential Equation (106). It is of interest
to remark that a straightforward derivation ignoring
the existence of the shock waves leads to the same
equation as Equation (124). For the majority of cases
of practical interest , it can be shown that compensating
terms arise and the discontinuity surfaces are taken
care of by a formal development that ignores the
existence of these surfaces. However, if it is not
possible to ignore so completely the existence of the
discontinuity surface , Equation (122) will be preferable
to Equation (124) .

Since

a l _ a 1
a x e

Equation (124) may be written in the final forms as

4 (x ,y,z) = 

~L
(x ,y,z) 

~~~~~~~~~~~ 5f f 1~~~2 (k~~
)dV (125)

or

q(x ,y,z) =
~~L

(X,y,Z) -
~~~~~~~

. 
~~~~~~ fJf~~ cp~ 2~~ dV . (126)

Introducing the notation

— ( a4~\ +‘Dv’ av~ 1 2
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and the variable

-1 X - C
= sin h

8[(y—ri) + (z— ~) ]

(x-)~~ ~~ 
lx-~~l +{(x-~)

2 +8 2(y-n)2 +8 2(z-~)
2

Jx-~~J 2 2 1/2
8[ (y— n) + ( z — ~ ) j

and remembering that ~ is continuous at the shocksurface the more exact Equation (122) may be written
in the following two alternative forms :

~(x ,y,z) = 

~L
(x,y,z) - 4% 55 A (~~) ~~~ - 

~ 5ff ~~ ~~dV

(127)

or

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ JfJ [~~~~~~)wdV
(128)

The perturbation velocity components , u , v and w , J .
are obtained by differentiating • with respect to x ,y,z,
respectively from either Equation (125/126) or
Equation (127/ 128) .

Consider Equation (125) for the x-derivative . After
isolating the singularity at the field point by intro-
ducing the limits ~ = x ± c and using the rule of
differentiating under the sign of integration with
variable limits :
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d 
g2 (s) ~2(5)~~ dg1ai 5 F(x ;s)dx = 5 ~~-dx + F {g1(s) ;s} -

~~
-
~~
-

g1(s) g1(s)

dg2
- F{ g 2 (s) ;s } - ~~—

we have

u(x,y,z) = u~ (x ,y,z) + ~irn ~~~~ 55 d~d~ ~~~~~~~~2(~~~~)d~

~~~~~~~ 
( 3 1}~~

]

k I r u 2 Cdfld (= u (x ,y,z)+ 9im H ~ (x;n,~ )
C [c +~ (y-ri) +8 (z-~)

k ((11 2 f a 2 1
- 

~~~~~~ ~~~~~~~ ~~

. 

~~

—

~~

- 
~~~ dV

V

In the limit as c÷O the influence function in the
integrand of the double integral is a two-dimensional
Dirac delta function at the point r~ = y , t = z and of
strength 2rr/82 . The expression for u then becomes

u(x,y,z) = u~~(x ,y , z) ~~~~~ 
u ( ~~ , y , z) 

- 

~ ff5 ~ (4~} 
dV

(129)
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Again s tar t ing  with Equation (125) and differ-
entiating with respect to y, we have

D~~(x ,y,z) 
~~~~~(x ,y,z) ±~~~~ irn~~~ [5 Jd~d~ 1~~~~~~2(~~~~]dn

• 
• + J 2(~~~~~

}dfl]

or

v(x ,y,z) = v~ (x ,y,z) - 
~~~~

-. 5 15 ~ ~~~~~~~~ ~) dV

+~~1rn [
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

[(x~~) 2+8 2:2±82 (z~~ ) 2 ]
3 /2}]

or finally

v(x ,y,z) = v~~x ,y,z) - 

~ ff54- ~~~~~ 
(130)

where we have made use of the fact that

a l _ a 1
D y e  D n a
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and the double integral tends to zero in the limit for
all values of ~ and ~

Similarly it is easily seen , by differentiating
Equation (125) with respec t to z , that

w(x ,y,z) = w~ (x ,y,z) - 

~ Jff~ ~~ dV (131)

Case 2. Integral Equation for M ~~l

If the undisturbed -flow at infinity is supersonic ,
i.e ., N ~ 1, Equa;ion (106) can be written as

2
- 

~~~~ + •yy + = k 
~x~xx 

= k 4% (— ) (132)

and the corresponding expression of Green ’s theorem is

5ff [~rc~~ _ c
~t(~P)]dV = - 55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (133)

V Dv

where

2 2 2 2
- 8 -~~~ + + (134)

Dx Dy

and

- 8
2n1 4% + + n 3 4% . (135)
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The derivation of the integral equation
in Case 1 would suggest that i~ be replaced by

-l’2
- 8L (y_ n )2 - 82(z-~)

2] ‘ but this leads to the
introduction of a finite-part technique in the integration .
For the initial stages of the analysis , ~ will beidentified with the fundamental solution

• = cos h~
1 

2 

- 

2 1/28 [ (y — n ) + (z— ~) ]

of t (~’) = 0 used by Volterra (see Reference 14 , page ) .
Then from Equations (132) and (133), we have

ff [
±_ .~JdE =

fJf~~~
t(~ )dv

= - 
ffJk~~ 

~~ 
(~~] dV (136)

We_have now to choose properly_the three-dimensional
region V and its enclosing surface E . Discontinuities
in the velocity components are again to be taken into
consideration at the shock waves . Furthermore , the
fundamental solution of Volterra becomes infinite at
n = y , z = z , that is, everywhere along the line passing
through the field point P and parallel to the x-axis.
Figure 11 indicates the disturbance field of the body
as well as V and E (dashed lines). The bow shock_fixes
the foremost extent of the disturbance field and E lies
adjacent to it and other possible shock surfaces as well
as the surface of_the body and its wake. The downstream
limits of region V are fixed by the forecone with vortex P
and determined explici tly by the relation

2 2 1/2
x — = 8[(y—ri) + (z— ~ ) ] (137)
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Figure 11. Region of Integration for M
00 ~ 1.

The inner boundary of V is the cylindrical surface
of infinitesimal radius given by the relation

(y_n)2 + (z-~~~ = C 2

The conormal derivative is defined by Equation (135).
On the infinitesimal cylinder its direction is parallel
to that of the normal to the surface, and on the forecone
from P the conormal is directed along the surface itself.
We , therefore , obtain from Equation (136) the following
expression for ~(x ,y,z):
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~(x,y,z ) - ~~~4% If ~~~~~~~~~~~~~

1 a ft — a~ a~~ — 1 D If — a~ a~fl —

2~~~ j j  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Z
~~~~ JJ W - ~~~~~~~~~~~-j

A l A 2

2

-~~4% 5ff ;~~~(~~_ }dv , (138)

where integrals over the surface of the body and wake are
denoted by T , over the two sides of the shock surfaces by
Al and X2, and over the enclosed volume by V. In each
case , only that portion of the surface or volume lying
within the forecone of P is included in the integrals .
The surface integrals over the forecone itself vanish
because w and Dw/ Dv are zero on it (Reference 14).

Integration by parts , in the volume integral in
Equation (138), leads to the relation :

~(x,y,z)=_ ~~~4% T [ 1

-
~ { I{ ÷ U] [~~~~~~k~~~2f l }~~~~a]

~ k 3  5ff i
~~~ 2 ( D ~i}dV . (139)

Equation (139) is the form for M,~ ~ 1 analogous toEquation (123) for N00 5 1 and on the body and wake surface
involves the approximation

-~-~~~n ..L+n -L~~ -~
_

2 Dy 3 Dz Dn
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As before , it can be shown from the shock-wave
relation that the combined integrals over the surfaces
A
1 
and A

2 vanish . Therefore

~(x,y,z)=_ ~~~4% If 1~~—~1dr

+~ .4% f f5 ~~2(~~)dv . (140)

Since

-l x - ~~~= cos h
8[ ( y — n )  + (z—i )

1 
= 1

[(x- ~~)
2 

- 8
2
(y-n~

2 
- 8

2 ( z- C ) 2 ] a

Equation (140) may be written in the following two
alternative forms :

~~~~~~~~~~~~~~~~~~~~~~ 

fff 1
~~ 2(a~)dV (142)

~~~x , y , z) = ~~~(x ,y , z) - ~~.4% f f 5 ~~~~ I dV (143)

Similarly , Equation (138) may be given in the
following two alternative forms using the notation

A~~~~E 

X
l X2 
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q ( x , y , z) = 

~L~~ ’~
’’~~ 

- 2 4 %  55 ~ (~-~J ~~~
2

-~~4% JJJ (~~ _
~—)~ dV (144)

or

~~(x , y , z) = 

~L ’ ~~’~~ 
- . JJ i~ [ J ldr

~ ~ 
ldV (145)

where 
~L 

is the value from the linearized supersonic theory .

Conditions at the Shock Surface

It is of some interest to study Equation (125) or
Equation (126) as the field point approaches a discontinuity
surface and to discover the mechanism by means of which
these basic equations furnish the velocity jumps associated
with the shock waves in the field. The surface of the wave
can be replaced locally by a planar element and a new
coordinate system X ,Y ,Z introduced with the origin fixed
at the intersection of the line n = y , c = z and the shock
surface. Then the point P, at which conditions are to be
calculated close to the surface of the wave , has the
coordinates (X,O ,O) and the planar surface of the wave is
given by the linear relation

aX1 + bY1 ÷ cZ1 = 0 . (146)
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We assume that u2 in Equation (125) is composed of a
continuous part and a discontinuous part that has the
constant value u4 ahead of and u~ behind the shock.Equation (125) tfien yields

9~im [u(X ,O ,O) - u(X+,O ,0)]
x+0 -

k 2 2 a II adY 1 dZ1
= 9~im ~~~~~~ 

(u1-u2) 
~~ 2 2 2 2 2 2 2 1/2X~0 [(aX+bY1+cZ1) + a 8 Y1 +a B Z1 I

(147)

where the double integral extends over the region of the
discontinui ty . If the differentiation with respect to X
is now carried out within the integral signs and X allowed
to approach zero , we will obtain

2 u2-u2
u1 -u 2 =~~im [u(X ,0,0) -u (X~ ,0,0)] = 2

ka
2 2 

1
2 
2 (148)

X÷0 aB +b +c

It can easily be shown that Equation (148) agrees with
the result given by Equation (68), the shock polar condi-
tion , for M

00
� 1
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SECTION VI

SOLUTION OF THE TRANSONIC THREE-DIMENSIONAL
INTEGRAL EQUATION FOR THE NONLIFTING CASE

We have described the difficulties and comp lications
involved in the solution of two-dimensional transonic
nonlinear equation . As a consequence of the obstacles
encountered in the two-dimensional case , attempts at the
solution of the nonlinear equation with three space

• variables are very few. In fact , only two references
can be cited which can be regarded as a proper three-
dimensional analysis. The first one is the work by Alksne
and Spreiter (Reference 15) which is actually an extension
of the local linearization method previously developed for

• planar (Reference 16) and axisyinmetric flow (Reference 17).
This has been summarized below . The second work is by
Nors trud who , for the first time , attempts to solve the
nonlinear integral equation by analytical-cuin-numerical
technique. This needs detailed review and discussion .

1. THE ALKSNE-SPREITER METHOD OF SOLUTION OF THE TR.ANSONIC
THREE-DIMENSIONAL EQUATION FOR NONLIFTING WINGS

Essentiall y this method is an extension of the local
linearization technique so successfully employed by the
authors for two-dimensional thin airfoils in transonic
flows (Reference 16).

The axis sys tem , as shown in Figure 12 , consists of
the Cartesian coordinates with x-axis parallel to the free-
stream and with the origin at the west forward point of the
wing. The wing sections are given by z = Z(x,y) and the
wing planform is described by y = -S1(x) and y = S2(x) as
shown. For all practical wings we will take 1

~ 2m ~L =

IS lmaX I = b/2 , the semispan. a

If ~ is the perturbation velocity potential , whose
gradient yields the perturbation velocity components u, v
and w , parallel to the x , y and z axes , the problem of
transonic flow around thin finite wings can be studied by
using the usual nonlinear equation .

2 M~(-~+l)+ 
~yy 

+ = U
00 ~x~xx ~~~~~~ 

(149)
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Figure 12. The Wing and the Coordinate System .
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The appropriate boundary conditions are :

(1) u ,v ,w -÷ 0 far ahead of the wing , and

(2) the flow be tangential to the wing surface .

The latter condition is satisfied if

(~ ) = U
00

~~~~~~~~~ ,~~
T)  

. (150)
Z Z:=O x

In addition to the above condition it is necessary
to take proper account of the difference in regions of
influence and dependence in the subsonic and supersonic
portion of the flow field.  In general , additional
equations are needed for flows across the shock . Alksne
and Spreiter did not consider them for the following
reasons :

(1) In the first place , attention was restricted to
N00 very close to 1 so that the flow in the vicinity of the
wing is essentially the same , by virtue of the Mach number
freeze , as at N

00 
1

(2) Secondly , they assumed that the shock stands at
the rear of the wing where its influence cannot extend
onto the wing surface.

Approximate Solution

First , the coefficient of ~~ 
is replaced by the

symbol A as follows :

u
00 

~xx~~~ (~~~~ > 0  (151)

so that Equation (149) becomes :

~yy + ~zz - A~~~~ = - (l_ •~)~ xx . (152)

They have restricted their attention to only
accelerated flows for which A > 0. In the initial stages
of the analysis it is assumed that A is a constant.
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The re8u]ting Equation (152) is linear for A = constant
and is of elliptic , hyperbolic or parabolic type depending
on wheth€ r M~ 1. Use of the boundary conditions given
above anc the application of Green’s theorem to Equation
(149) leads to the following equation for u if shock
conditions are not taken into account :

U ~ ~~~~ [( )2÷ 2]
Up(x ,y,z) = - 4% 5 d~ 

~~~ 
e A 

~(x-)~~ dn

+00 x 2 2
1 ~ ~r A~~~”~~ 

+Z I
- dr~ 

-00 

d~ J —r e 4(x-)~~ dF~

(153)

where

= - (l-M ~)4~~

At N00 = 1, fp = 0 and up can be calculated for any
given value of A for a known profile and planform. At
other N00 Equation (153) is an integral equation whose
solution remains to be found. For N00 near 1, however , f~is very small and can safely be replaced by A/k from
Equation (151). The triple integral can then be evaluated
giving us the following result :

u (x ,y,z) l-M2 ç’~ ~~~~~ 
_____  

- 
[(y-n)2+z2]

U 2 r
00 M

00
(y+l) x 

~ ~-S1(~)

(154)

Next , the value of ~~~~ at the point x,y,z is restoredin place of A in Equation (154). Then for each value of
y and z the result is a first-order , nonlinear , ordinary
differential equation for u as a function of x. Dropping
the subscript P and writing k~x~ as k u’ , we obtain from
Equation (154) :
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u(x,y,z) 
=U

’~o

l M~ 1 a1 
X S2(~

)
az/a -ku ’[(y-r~)

2+z2]

M~(y+l) ~~~~~u’=const 
~~~~~ ( )  

~~~~~~~~~~~ 
4(x-~)

(155)

It is convenient to express Equation (155) in terms
of reduced variables indicated by the transonic similarity
rule and defined as follows :

— 
— x dZ — d(Z /t )  — t

-r— T T — ( — )c ‘ ax di~ ‘ c max

2 1/3 1/3
= [M

00
(y+l)T] ~~

. , = [M (y+l)’r]

1/3 2 1/3
= [M~(y+l)T] , = [M

00
(y+l)T]

M2~ l
r — 

00

2/ 3
[M”(y+l)t]

1/3
— 

[M~ (y+l)]
u =  

T
213 

~~~~

_ =  - _
~~~~

- (156)

Equation (155) thus becomes

=

- 
~~00 2~~~_]_~ J a ~ j

2 )
a~z,t /ar e

_U
.
)~~~

] 
di~

(157)
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In cases where interest is confined to conditions
on the wing surface , u can be evaluated with z = 0 and
Equation (157) can be simplified to become

u(x,y,0)

~ ~~~~ — ,~~~—

~~~~~~~~~~~~~ 
D(z/t)/a~ 

-u ky-n, —

O 2 ~~~~ ( J U ~~~
J — 

e 4(i r) ~X
J~~~~~~~t

(158)

Properties of Transonic Flow

From Equation (158) it can be seen that for affinely
related planforms (fixed s(i~) and affin4y relatedprofiles (fixed D(Z/t)/Dx) , u at a given x and y varies
only with

M~-l

~~00 2/3
[N~ (y+l) rJ

Thus the presen t results follow the transonic
similarity rule. Note also that s has the same parametric
form as the aspect ratio parameter customarily used for
the transonic similarity rules , i.e. , A = M~(y+l)T]

1”3 A ,
where A is the aspect ratio.

Furthermore , ii’ in the exponent in Equation (158) can
be replaced by d(u±L) for a given value of ~~

‘ and it
follows for_wings ~f affinely related geometry that ii+~00

at a given x and 
~~ 
does not vary with ~~00. Thus the results

given by Alksne and Spreiter contain the Mach number freeze.
Notice also that there is a coupling_of aspect ratio ,
thickness ratio , and Mach number in A , such that in order
to maintain a fixed A for a wing of given thickness ratio
as N00 varies it is necessary to vary the aspect ratio
likewise. The variation of aspect ratio with M00 is not
great in the range for which the freeze can be expected to
apply .
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Solution of Equation (157)

For each value of ~ and ~ Equation (157) ~.s a firstorder ordinary differential equation and its solution
requires the spec ification of an ini tial or a boundary
condition. The simples t case is one for which a value of
u is known at some value of x for every spanwise station
and z = 0 . This is the case for a wing of wedge profile ,
for which the sonic veloc ity occur s at the shoulder .
In general , however , there is no point at which u is known
a priori and some alternative condition must be imposed
in order to determine a unique solution . It happens in
all cases cons idered , that is , two-dimensional flow around
an airfoil , axisymmetric flow around a body of revolution ,
and now three-dimensional flow past a wing , that the equation
contains a singular poin t through which pass an in f inity of
integral curves. In each case only one is analytic.  Thus
the requirement of analyticity is sufficient to determine
a unique solution.

Mathematically , this leads to the following condition :
Writing Equation (158) as

= F(i,IJ’ ;~ ) (159)
where

U u ç

and
d(~~+ ~~= ~

i, = ________

d~

the equation will be investigated for a fixed value of ~~~~.

From Equation (159), we have

U ’ =~~~~÷ U ” ~~.! (160)
au ’

where , in general , DF/D~ and aF/atT’ are functions of ~and U’.

At a point where DF/aU’= 0 we can find fl’ provided
that U” is finite , but this is assured if the solution is
analyt ic .  With U ’ kn own at a point , it is possible to
calculate U at that point using Equation (159). This is
not enough to determine a unique solution because U” can
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have any finite value . However , additional derivatives
can be taken and in each case the unknown , but finite ,
higher derivative of U will be multiplied by DF/DU’
which is equated to zero . Thus all derivations can be
determined in principle at the singular point .

The location of the singular point and the velocity
~rqdient at that point are then obtained by solving
simultaneously the two equations :

and
Di

Special Cases

Alksne and Spreiter have considered several special
cases and deduced closed form expressions for Equation
(157) or Equation (158) .

(1) Central Region of High Aspect Ratio Wing

By letting ~1(i) = S2(x) = and considering Z a
function of x only across the entire span , the following
asymptotic form of Equation (158) results:

i
(~~+~ ) ii’ = - ~L f d (Z/t )/ d r d~ (161)

00 

~~~dx 0

If the sonic point , i*, where ~~ + = 0 , can be
found or is kn own , the general solution may be written as

2 1/3

- = - {
~ ~ ~ 

j

l ~~~~ d~
] 

di
l}

- 

~~~~=o 
(162)



For a smooth profile for which ~ + ~~ is not known
a priori at any point , the singular point is found to be
the value of x for whic~i

x
d ( d (Z/ t )/ d~ —

di~~0 (i-~~)

Using this value of i* in Equation (162) a unique
solution is determined.

Theoretical pressure distributions computed for
several airfoils using the above equations are in good
agreement with experimental pressure distributions at
M = 1 (Reference 16).

(2) Tip of High Aspect-Ratio Wing

Placing the origin at the tip so that y = Sl = 0
and s2(x) can be set equal to infinity , Z can then be
considered a function of x alone across the entire span.
Equation (158) then becomes

u + = - ~ 
[ l ~~ 

5 d t )~~~ (164)
L ~~~~~ di 0 (i-r) 

/ ]
This is the same result as Equation (161) with a

factor 1/2 in Equation (164) which cannot affect the
position of the singular point. It follows tiierefore

1 2/3c =2ç 
~~~~~ 

(~
00 2-dim .

or (165)
i 2”3 —

~~~~ 
= (u~ =o~ . 

-

00 2-dim .
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• (3) Small Aspect-Ratio Wing

In Equation (155) let the integration be performed in
two steps: 0 to x - C and then from x - c to x , where C
is a small quantity.

~~~~y,z) = - 

~~~1u’=const {(
~c ~

2
~~~~~~~~e~~~

I
~~~~~~

2
+z2] 

d~

+ f d~ 5 DZ/ D~ e~~~~
’
~~?~x )

+Z

X — C —S1(~)

1— N 2

+ 
00 (166)

N
00 
(y+l)

Since the point ~ = x is excluded from the first term
on the right-hand side , the exponential term for a small
aspect ratio wing can be replaced by 1. In the second
integral we replace aZ/Dc DZ/Dx in the small interval
(x-c ,x) and obtain the simpler equation :

x-c S2(E)

~~ ~~~u’ const{ I X - ~~~~J D ~ 
d~

S2(x) 
~z 

X -ku ’[(y -~~)
2 + Z2] d~+ 5 d~ 5 e 4(x-~~) x - ~

-S1(x) X-C

l-M 2

+ 2 
00 (167)

N
00 

(‘y + 1)
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Now
S2 (E~)5 dn =

where S(x) is the cross-sectional area of the wing
perpendicular to the x-direction if Z = 0 at the leading
and trailing edges at any spanwise station and the
c-integration of the second term on the right can be
performed approximately by retaining only the first
logarithmic term .

The desired asymptotic form for a wing of vanishing
aspect-ratio becomes

u - 
l-M

00

2 
= - 

S ’ ( O )  + S”(x) Ln 
M 2(y +1)e C

U00 M 2(y+1) 4ux 4ir 4x

+ S’~~x) 
~~ + 

~~ 

S”(x)- S”(~) d~

S2(x)
+ 4% 5 ~n C ( y -n) 2 +z 2 ] dn (168)

-S1(x)

where the Euler ’s constant C = 0 .5772156 . .

Remarks on the Alkane-Spreiter Method

The method is elegant and simple to use with fair
degree of accuracy but it is very limited in scope as
regards the flow conditions and the wing geometry . The
following are some of the restrictions :

(a) The wings must have sharp leading edges with
zero lift. Randall (Reference 18) has given an extension
applicable , under certain circumstances , to round nosed
two-dimensional airfoils at angles of attack .

79



•
.

~
• - ----—•-

~
---

~

(b) The Mach number should be very near one and the
wing planform and profile should be such that at all points
the flow accelerates along the chord .
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SECTION VII

TRANSONIC THREE-DIMENSIONAL FLOW OVER ARBITRARY
WING PLANFORNS : THE INTEGRAL EQUATiON METHOD

OF SOLUTION OF NORSTRUD

NONLIFTING CASE

The three-dimensional transonic integral equation for
the nonlif ting case has been derived in Sec tion IV . We
reproduce it here for convenience :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
l

jff
u (r ) a (l )d~d d ~

(169)

where UL(x ,y,z) is the result from the linearized theory
and

a2 1 — 1 3(i-0 2
2 2 2 3

~
’2 2 2 2C (x-~~) +(y-r~) +(z-~) (x-~) +(y-~) +(z-O

(170)

The physical interpretation of Equation (169) is that
of a mutual interference between velocity points in a
perturbed flow-field u(x,y,z) where the linearized field
uL(x,y,z) designates the datum for zero perturbation . The
kernel of the triple integral serves as the influence
measure and it can be seen from Equation (169) that this
function is largely dependent on the double derivative in
the x-direction of the inverse of the distance r~ betweeninfluencing points. This means that the strongest influence
at a point P(x,y,z) in the flow field will come from field
points which are located directly upstream or downstream of
P. The spanwise effects , however , are of major concern in
describing spatial transonic flow. Here the compressibility
cf the flowing gas tends to_freeze the available stream tube
area and the density flux pu must be balanced with neighbor-
ing stream tubes. Norstrud assumes the following exponential
functional relationship to extract the spanwise influence
from Equation (169):
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= u(i,~~,O)e~~”~ (171)

which gives a relat ion be tween the velocity in the
xy-plane of the reduced wing and the velocities directly
above. The realation CEquation_(17l)] satisfies correctly
the boundary condition of zero u-disturbance at infinity
(~~ -~ co). The parameter r = r(x,~)is defined using theirrotationality condition and the linearized value uL(x,y,O)
over the wing which automatically satisfies the tangential
flow condition :

— — 
U~(X ,y,O)

r(x y) = - (172)
Du

Using the irrotationality condition

Dul ~~~aw1
D
~ J wing D

~ J wing

we have from the linearized boundary condition

— 
U~(X ,y,O)

r(x,y)= - (173)
D

L.Z

Dx

where 2 represents the reduced ordinates of the wing section
at station y.

Using the tables of the Laplace transform , the
Equation (169) can be rewritten , f or x - = 0, as

u(i ,~~~) 
~~~~~~~~~~~~~~~~~~

(174)

The spanwise influence function E3 = E3(I~~-~~I ;r) is
found , for the argument a = 2 y-n(/r (from Reference 19)
to be
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E3
(a) = - 

~~ 
- H1(a) + N1(a)] (175)

where H1 is the Struve function of order one and N1, the
Neumann function also identified as the Bessel function
of the second kind Y1. N1(a) can be calculated using a
standard available computer subroutine. The series
expansion for the numerical evaluation of the Struve

r function is

H1(a) = (~)
2
~~~A

where

A — 8 A — (0/2)2 A0 
— 

‘ n+l 
— 

(n+3f2) (n+512) n

In its limi ting form for la l  0 , Equation (175)
is given by

E
3

(a) 4[4 - + - + . . ] (176)

Using the exponential decay and apply ing a s imilar
procedure for two-dimensional flows the influence function
E2 (X) = E2(2 Ix-~ I) in the x-direction is found to be

E2(X) = ~~~ {sinX[~
. - SiX] - cosX Ci X}

where

SiX = 5 dt and CiX = - 

00 

COst dt

j



For small values of the argument , we have

SiX = ____ - 3.3 + 5.5 
- . .

CiX = - C - £nX + 2.2’ - 

4 . 4 :  
+

where

C = Euler ’s constant 0.57721 . .
and hence yields a logarithmic singularity for l x i  ÷ 0
The rapid decrease in spanwise influence is typical in
spatial flows. The lateral influence function E3(a) isshown plotted in Figure 13.  

— - -• -  -

E3(cy)

4 - 

a = 2(I~~-~ I)/r(i,~)

Figure 13. Lateral Influence Function E3(a).

84 

--~~~~~~~~- — -.--~~~~~~~~~~~~~~~~~~~~~~ .-.~~~~.



-
~~~~~~~

-
~~~~~~

- - •- - - -

~~~~~~

Noratrud ’s Approximate Method of Solution of Equation (169)

The symmetrical wing of arbitrary planform is repre-
sented by a number of rectangular panels in the xy-plane .
The distribution used for these panels is shown in Figure 14.

i i~~ 
4~

.

s 
‘.; ~~~

I 
_ _

-— —,.-~~--. .\— --I •_.u.-4- -. .~—. --\k-~-~ “J
_ _ T ~ T ; ~~~~~

± 1i

x

Figure 14. Approximate Representati on of the Wing.

The fun damental point of view adopted by Norstrud in
the definition of the influence region for a projected
point of interest (x0,y ,O) on the wing for the evaluation
of the double integral ~n Equation (174) is to collect theeffects of all field points located at a conmion streamwise
station (x = x0,x1, . . . , x.~) and assume this total.influence to be represented at the point (x,y01 o) by a
mean value obtained from two-dimensional analysis. These
influences which may constitute the solution from a strip
method are supplemented by the effects of laterally located
points , i.e., for x~~x0 and y’~ y0. The influence pattern
is illustrated in Figure 14 by the shaded area and the
resulting influence matrix. [I] has the general structure
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k,.L 1 n ,m
n ,m n ,m 

Cn ,m —

• The influence coefficients are integral functions

of the defined influence functions E2 and E3 for the case
where 2.. = j  and k = i(2. ~ j ) ,  respectively . If 9.. 

~ 
j  and

k ~‘ i, c~~’~ = 0. Equation (174) can now be written in the

matrix form

k 9. 2 i ,k = 1,2, . . .  ,
+ [Ij’j]C~i~K 9 .] 

- [u
L~~~~~~~~~~

] = 0 , 
~~ = 1,2, ... , m

(177)

and the problem has been reduced to that of solving a system
of nonlinear algebraic equations. Norstrud used the Newton-
Raphson method of successive approximation s to solve the
system [Equation (177)]. This utilizes a linear system at
each iteration step .
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