
AD— AO fl 015 WOODS HOLE OCEANOGRAPHIC INSTITUTION MASS F/s S/fl
NOTES ON THE 1976 SUMNER STUDY PROGRAM ON DYNAMO MOD€L.S OF GCOM——E TC (tJ)
NOV 75 W V MALKUS. N C THAYER N0001N—75—fr.Q072

UNCLASSIFIED W HOI—78 57—VOL —2 NL

EJE~!1 !PU 
_

_ _

_ _ _  _ u 11 

ø!•1flUE~ULI___



____ ~~ ff 2.2

I I i  llhlI~0

HlII~11111’ .25 1111hi4. MII~
MICROCOPY RESOLUTION TEST CH~~T

NAtIO+IAL B UR EAU OF STANOARDS 1963-,~



- w

- 8 -



1 - — 
— 

-

t EVEL~” WHOI—78-67~~~ ’

1978
VO LUME II

‘S 1-
- 

-

\If ~ ~~~ ~~~ 
•~~~~~~~~~~ \\L

-

• (
I —

II. e~ 
T~

•l~~l —

W H O %

0 0 0
1 [Ef

~I?UY~ ./7EIn)
~~ 1919

• I.~J U U L

j LECTURES of the FELLOWS

~a1



. LEVEV
~~

t
~~~

1oI...78...67_VO4L_
~~,/ ~

I
~~~/J~OTES ON THE 1978 MMER~~TUDY ~~ OGRAM 7

ON DYNAMO ~JDELZ OF g$~MAGNE’fISM
- 

~~~ IN 
~ /
DYNAMICS

AT ~
THE WOODS HOLE OCEANOGRAPHIC INSTITUTION .I V / ~1~ z~~~~~~1_

I
Willem V . R.IMa1kUs~~Di~~.~e~~ /

(III~IIIIIIIIIIII~ 
1 

Mary ~ hayer~~E44!~e~~~

WOODS HOLE OCEANOGRAPHIC INSTITUTION
Woods Hole, Massachusetts 02543

(~\) Nov bs~-4~978
‘
~
L—

~
I ~~~~~~~~~~~~~~~ 

—
- TECHNICAL REPORT

• flits

“ “~‘~ 0 Prepared for  the Office of Nava l Research
0 under Contrq1*~ 19OO14—?B—G—O9?2/~

Reproductio

~

’ whole or in pa rt is pe rmitted D D C
‘1 •‘ - for  any purp ose of the United States Gc~verninent.
I •lsTIlpu1IgI/UAIUIILITT NIU This report Bhould be cited as: Woods Hole (]

~~~ 
AVA IL ud/v VUIM Oceonograp hi~.c Insti~tutton Technz.ca i Report j~~ 30 1979

WH OI—78-67.

Approved fo r  public release; distr ibution
____ ________ 

unlimited. U

Approved for Distribution: (Z~1_LJ tO
Robert W. Morse -

Dean of Graduate Studies

~~~ OOO



- ________..-. 
.~~~~~~~~ ______ ..

I STAFF MEMBERS and PARTICIPANTS

Benton , Edward R. . . Universi ty of Colorado , Bou lder

Busse, Frederick H. . . Univers ity of California , Los Angeles

Childress , Stephen . . Courant Institute of Mathematica l Sciences

I Gilman , Peter A. . . N.C.A.R., Bou l der , Colorado

Howard , Louis N. . . Massachusetts Institute of Technology

I Huppert , Herbert E. . . California Institute of Technology

Kell er , Joseph B. . . Courant Institute of Mathematica l Sciences

Kraich nan , Robert . . Dublin , New Hampshir e

I Layzer , David . . Harvard Observatory , Cambri dge

Loper, David . . Florida State Univers i ty , Tallahassee

I Malkus, Will em yR .  . . Massachusetts Institute of Technology

Melcher , James R. . . Massachusetts Institute of Technology

I Moffatt , Kei th . . Bristol Un i vers i ty, England

Olsen , Peter . . The Johns Hopkins Un i versity

I Pedlosky, Joseph . . Un i versity of Chicago

I Proctor , Michael R.E. . Cambridge Un i versity, England

Robb i ns , Kay A. . . University of Texas

Roberts, Paul H. . . Un i versity of Newcastle-on-Tyne , England

Soward , Andrew . . Univers i ty of California , Los Angeles

1 Sp iegel , Edward A. . . Columbia University

Stern , Melv in E. . . Un i versity of Rhode Island

Weiss , Ni gel 0. . . Cambrid ge Univers i ty, Eng land

Whi tehead , John A. . . Woods Hole Oceanographic Insti tution

1 Widna ll , Sheila E. . . Massachusetts Inst i tute of Technology

Postdoctora l Fellow

Knobloch , Edga r • • Harva rd Un i versity

Predoctoral Fellows

Chapman , Chris topher J. • Bristol University, Eng land

Condi , Francis J. . . The Johns Hopkins Un i versity

Cuong , Phan Glen . . Un i versi ty of California , Los Angeles

Frenzen, Christop her 1. . California Institute of Technology , Pasadena

Hart , David . . Unive rsi ty of Cal i fornia at Berke l ey

Holyer , Judi th . • Un i vers i ty of Cambrid ge, England

Hukauda , Hisashi . . University of Tohoku , Japan

lerley , Glen . • Massachusetts Institute of Technology

Mitsumoto , Shigek • . University of Tokyo, Japan

Ol i ver , Dean S. . . University of Washington , Seatt le.



— 11 —

EDITOR ’S PREFACE

VOLUME II

This volume contains the manuscripts of research lectures by

the eleven fellow s of the sumer program. Five of the lectures overlap

si gnificantly with the centra l summe r theme of geomagnetism. The other

six lectures cover a broad range of current G.F.D. topics from collective

instability to strange attractors .~ Severa l of these research efforts are

q uit e pol i shed and p robably  w i l l  ap~ear in journals soon . The middle

half represent reports of sound prog r~ss on stud i es of thes i s cal i bre.

But then , a few of the lectures report on only the very first conse-

quences of a novel idea .

These lecture reports have not been edited or reviewed in a

manner appropriate for published papers. They , therefore , shou ld be
regard’~d as unpublished manuscri pts. Readers who wish to reproduce any

of the materi al recorded here shoul d seek permission directly from the

authors .

These two volumes represent both what we brought with us to the

program and the exc i ted first p roduct of our scientific intera ctions.

More sedately worded professional results inv ariably emerge as the year

progresses . For this opportunity, we w ish to thank the Woods Hole Oceano-

graphic Institution , the Office of Nava l Research , and N.A.S.A. or

encouragement and financial support.

Mary C. Thayer

W ill em V. R. Ma l kus
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LECTURES OF THE FELLOWS

BENARD CONVECTION WITH CONSTANT HEAT FLUX BOUNDARIES
Christopher J. Chapman ~ -

(1) Introduction

The convection which occurs when fluid between two infinite horizontal

planes is heated sufficiently strongly from be l ow has been intensively studied .

In mos t of the published analysis it is assumed that the horizontal boundaries

of the fluid are perfect conductors , so that the temperature on each is con-

stant. (The term ‘constant ’ w i l l  invariably be used to mean ‘independent of

position ’ .) In this paper it is assumed instead that the heat flux across the

boundaries is constant , so that their temperatures will depend on position once

convection has begun. It would be possible in the laboratory to supp ly heat at

a l ower boundary at a rate i ndependent of position and temperature , and one

means of removing heat from the top at a constant rate would be to have cool-

ing by evaporation . An approximation to constant heat flux is obtained by

placing the fluid between two poor conductors , and a linear anal ysis of this

situation has been g i ven by Hur le et al. (l967)•

(2) Effect of Fluid Motions on Temperature Distribution

Suppose that at some initial inStant the fluid is motionless and the

temperature varies linearly with height z, from T0 at the bottom of the layer

to i~ at the top (To > 11). If we now i mpose a steady roll-type motion on the

fluid , then in a reg i on where the fluid is rising, the advection of the tem-

perature profile will  cause the temperature in the centre of the laye r to rise;

since our boundary conditions are such that the temperature gradient at the

boundaries does no t al ter , the temperature at the boundaries must then rise

and the resulting temperature profile will be approx i matel y a linear function

of z wi th the same gradient as before . Similarly, in reg ions of sinking fluid ,

the temperature will be its value before less an amount i ndependent of z. The

f low of hea t is i n the ho r iz ontal d i rec t io n , and the appropriate length scale

for es t i mat i ng the ma gni tude of d i f fusion i s the horizon tal leng th sca le of the
motion , since diffusion does not alter the shape of a linear temperature profile.

Thus we deduce the ra the r su rp ri sing fac t - tha t a rol l  mo t ion of give n small

ve l oc ity can produce arbitraril y large changes in the temperature if the width

of the rolls is taken large enough . (This fact is important later.) The

equilibrium isotherm pattern is:



Low Temperature Isotherm J

Sinking Fluid Ri sing Flu id High Temperature
I sotherm

The difference in temperature between top and bottom of the layer is approx i-

mately independent of position . If the width of the rolls is very large , it

w i l l  clearly take a long time for the equilibrium temperature distribution to

be reached ; there is thus a long initial period during which heat is slowly

transferred from the regions of sinking fluid to the regions of rising fluid

far away.

Note how different this is from what happens when the boundaries are

held at constant temperature . In this case diffusion in the vertica l d ftection

limits the alteration of the temperature , however large the horizontal length J
scale.

(3) Definitions and Governing Equations

Assume that fluid of kinematic viscos i ty V and thermal diffusivi ty X
lies between the p lanes z = -d and z = +d:

F - d 
--

We take the equations describing the motion to be:

at —

+~~-~~~t’1
- 

~~X 7 t 1
~ (1)

J
~r ~:-~~ T - T 0)j .

wh e re u is the velocity, I i s  the temperature , .‘~ the density. p the pressure .

the density at temperature T0. c~~ the coefficient of therma l expan . ion .

and —~~ç~ the acceleration due to gravity. The Boussinesq approx i mation is

1 

~~~~~~~~.
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made , that the fluid can be taken to be incompressible except insofar as

changes in density produce buoyancy forces. At the boundaries we assume that

here is no stress in the fluid and that the temperature gradient is _/ 3 (j 3>C) ;
so writing u = (u, v , w) we have :

W~-O , 
.-W~ 1O , ~~~~~~~~ ~~ (2)

The equations admit the steady conduction solution :

T 1 T0 -fl~~. (3)
ft

p p5
Define 9 S,p , and by the equations

(4)

Then from (1) and (2) we obtain

cc~p

+ ~.v 
~ = (5)

.~~~~~~~~~ + ~~~~ w+~~~~7’~9, )
d

w:O, -~j ~~~ O i  -~~-- = O  oh ~a~~± d . (6)

We shall consider only motions in the (x, z) plane and i ndependent of y .

The ve l ocity can therefore be expressed in terms of a stream function ‘~ (x1~
)

c,jr(
3 (7)

( _ V
~~

. , O, Lt
~~

) .

After  taking the curl of the momentum equatipn , the governing equations become :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \
,

-
~~~~~

+ ~-~~+~t V ~ 9 ~~
. (8)

I I+):O, W~~~~Oi 92~~
0 or~ a~ tc i .J

These equations can be made dimensionless by defining new quantities as follows :

I
= di , 4) ~ o- =v/~ , (9)

t- 1
a- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _
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where R is the Rayleig h numbe r and cr the Prandt l number. Equations (8) become

(omitting primes):

~ ~~~~ 7~~] A + t~
11”+~

+ a’’ ‘*‘~ ~ t~ ~e (10)
-. 

~3A

4~~
91!z~~ ~~~~~~ t,fl

The prob l em not~’ is: g iven that at some initial instant 
~ 

and ~ are small and

that they evolve according to (10), what u ltimatel y happens?

(4) The Marg inal Stability Curve

The margina l stability curve for infinitesima l disturbances can be ob-

tained from Eqs. (lO) , less the nonlinear terms . Hurle et al. (1967) have per-
formed the calculations with the following result:

uns table 
J
Z
~
__
..marg inal stability

cu rve
Raylei gh
number

R stable

c~ O Wave number k

(They also show that the principle of exchange of stabilities is valid.) The

critical va l ue of R is R0 = 1 5/2 and the critica l wave numbe r is k = 0; note

that all Raylei gh numbers as we define them diffe r by a factor of 2~ from the

usual ones , because the thickness of the fluid laye r is 2d not d - this simpli-

fies some arithmetic later on. The curve has a horizonta l tangent at It = 0 ,
and so if the heat flux through the layer is gradually increased , then the con-

vection first sets in with very long wave lengths. This is markedl y different

from the manner of onset of convection when the boundaries are maintained at

constant temperature ; the convection cells then first obta i ned have widths of the

same order of magni tude as the th i c k ness of the laye r .

If the Ray leigh number is fixed at a va l ue sligh tl y above R0 then on tne
linear theory all disturbances with wave numbers in a certain band wil l grow

exponentially in time . Since these results can be deduced from the equations de-

rived in the nonlinear theory (wi th which this paper is primari ly concerned),

they are discussed in subsequent sections.

(5) Some S i mp le Orde r-of-Ma gnitude Estimates

Suppose we have s teady convec t ion a t a Raylei gh number only sli ghtly in

I
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exces s of R0, so that ve l ocities are small. Let the typ ical cell width be L ,

where L’;’d by the results of section (4). Then from (5) and the equation

di v u =  0, we obtain the rollowing order of magnitude equations , in dimensional

quantities :
w (H)a

~~ 
(12)

.— —Ti-,
L

(13)
cLt

,~- J2~~ .
~-jo~ &, 

(14)

where ~~T is the difference in temperature between the top and bottom of the

layer. This difference in temperature was shown in section (2) to be approx i-

mately constant. In (11 ) we have used the result of section (2) tha t to l eading

F orde r , diffusion acts in the horizonta l direction . Eliminating pressure from

(13) and (14) L

cLt
( 1 6)

c2t d’~
The first term of the left of (16) is negligib le compared with the term on the

right since 1>> d ; thus the main balance of forces in the horizontal direction

is between the pressure gradient and viscosity, while in the vertical direction

it is between the pressure gradient and buoyancy. Combining the equation

.L J~~ ..—~~~‘ qc,~~ ( 1 7)
ct’ i~

with (11), we see tha t L2 cancels out to give

I . (18)

Thu s , as expected , the Rayleigh numbe r is order one . Equation (11) can be

written in the form . 2.w d L
9

which becomes , in the dimensionless variables of section (3),

(—~-) te. (20)

The above considerations guide us to a system of scaling for a perturba-

tion anal ysis of the dimensionless equation (10). Let the Ray leigh numbe r be

(21)

where O<6~~’ 1. Equation (21) defines E . From the shape of the marginal

stability curve of section (4), the uns table wave numbers w ill be in a band
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of t hi ckness of orde r ~ . We the refore scale the variable ~( by making the

transforrna t ion

~ ~..L , (22)

A nondimensiona l wave numbe r of order ~ corresponds to a dimensi ona l

wavelength of order d E . which is L as defined above. Hence E -~~d/L. We ex-

pect ~ to be proportional to the amp litude of the convection as represented by

the horizonta l ve l oc i ty component. (Compare Ma l kus and Veronis (1956)). There-

fore we make the transformation
(23)

From (20), using w = 4 ) x  and E —.- d/L , it is seen that 9 must be order one. It

turns out that the appropria te scaling for t is obta i ned by making the transforma -

t °“ .._iL_ ...~~ ~~ ~~~~~~~~~~ (24)
ar

The new -~~- , -~-~- , , and c’ are thus order one.

Using the notation D~ —j!~j  and ~~~~ -J~ , 
transformations (22) - (24) g ive

(10) the form :

~~~~~ 

~~~~ 
& P + &t

~~9÷ .D’
~~, (25)

- -~ ~~ ~~~~ _______  

~~~~~~~~~~~~~

~~ ~~ ~~~~~~~~~~~~~~ WF (~ ~~~~~~~~~~ a r )~ 
~~ 

~~~~~
(26)

It is assumed that c~ is of order one . We now write
& : Q Q + & t&

1 + 
2

~ ~ ~~~~~~~~~~~~~~~~~~~~~~ 
( 7)

there being no terms in odd powers of , beca use Eqs.(25) and (26) contain no

odd powers. Equations (25) and (26) can now be solved by equating powers of 6
to give differential equations for 

~~ 
, 4J~ , 9~ , , . . . , in that order.

The boundary conditions are

‘.rn ~~~~ ~~,

for n = 0, 2, 4, ... The calculation is given in the next section .

Of particular interest in the above scheme is the fact that the tempera-

ture perturbation is 0(1) as E —i . 0. This is in accordance with the analysis

given in section (2), and means that the equations above apply onl y after the

initial period of convection during wh i ch a large amount of heat is trans-

ferred from reg i ons of sinking fluid to reg ions of rising fluid a distance of

order 1/€ away. It would be of interest to examine this initial period more

-i 

--- -— ~~~~~~~~~~~~~.- .~~~~~~~~ ,-
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cl osely, and try to match it with the later behavior. This is a possible direc-

tion for further i nvestigation .

(6) The Perturb ation Analysis

From Eqs.(25) - (27) we obtain:

Eq.(25),E°:

Theref ore by (28), 9~,
Eq. (26) , 6°: .D ” V~ 

—

where the notation -fe, stands for ~~-~/ôx”. The boundary conditions then g ive

= -T~0 .f1 (-k~a~ -~~~s -
~~

)

~ 
F(e.i, S a y ,

where P i ncorporates R0.

Eq._(25),~~~: 1~ 9~ ~~~ —

where P~ denotes ci ~~~~~~~ Now the boundary conditions Den : 0 On ~~‘ ~~~ 
I

imply that 
da 0

Thus we obtain a condition which the ri ght-hand sides of the equations for

must satisf y (the secularity condition). Since p1 is an off polynomia l , and f is

a bounded function of X , we obtain the value of R0 from the equation

Hence R0 = 15/2, in agreement with Hurle et al. (1967) after allowing for our

different definition of the width of the layer , and so

p(z) = -5/16 z4 + 15/8 z2 - 25/16.
The equat ion for 9

~ 
can now be solved to g ive

~ ~~.) -t .f ~ .,.
where .4.;.2’~. ~~~ 

-

~~~~~~~~

R (?~ ~~~ t _1 —
~

- 
~

and g is a function which will be determined at a later stage .

Eq. (~~~~€~~: Writing r for R0 henceforth (to avoid confusion with R(z)), we have

a(~ ,D~~) - ~~‘r2 ~

- .- --- . ---- -- .
~~~ -. ~~—-~~~~- 

a- —-- ., ~~~~~~~~~~~~~~~~~ -~ - - .—
.- -— .
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~~ f2 ~~(P~- ~~~)-2~~~}-~) 12~~+ ~Q34 ,- ~~

Hence 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

with A = value of expression in brackets ( . . . )  at z = 1 ,

B = value of second deri vative of expression in brackets (...) at z = 1 ,
and U (z) = -1/24 (z~ - 6z2 + 5).

It turns out that the expression for s(Z) is not required ; but note that

it is an odd polynomial and 5(1) = S (-l) = 0.

Eq . (2 5) , G ’
~

- !!. ~. + 
a — ‘~~~~°

‘

~ — —£j at ~ (x~~
) i.

f~~ ~Pi~, - 2~~R -5 ,1

~ ~: ~FQ ,-’S- 2R~

+ 1-F ~Q- T , - S - ~~R ]
+

~~~
-
~ ~~~~~~~~

+~~~~~
_ L.Lj  

~~~~~~~~ ~
P (

~ ) + ’ 1
The secu la rit y c~ndit ion now g ives the equation for f. All odd polyn omials

integrate to zero, as a l s o  do the even polynom i a l s 
~l (because S(l) = S(-l) = 0)

and P(z) + I (by construction of P). We also have R 1 = -p. The result is
therefore i

O:~~~- ~~~~~~~~~~~ +$‘(1+~
\d
~~f9_ {+5u.cL3} f~ (28)

Evaluation of the integrals gives

~~~~~~= l.2~~O,~ 5i(f
’)-.. ~~~~~~~~~~ — -7 . _

~
_
z (29)

(The detailed arithmetic has not been checked independently. Equation (29)

should therefore be regarded as provisional.) This is the fundamenta l equation

describ i ng , to leading orde r , the nonlinear evolution of the system ; reca l that

~ f 
(,c .t ), (30)

and g 
~~~~~~~ (31)
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The ca lcu la t ion  above has some interest ing features. F i r s t l y ,  the fact
that e0 is independent of 2 is in accord with the plausibility argument g iven

in section (2). Second l y, the inertia term 
~ ~~~~~~~~~~~

-

~~

--— makes no contribu-

tion to the equation for f , because the term containing it integrates to zero.

The equation for f therefore does not contain ~~ . In  fac t , the only terms

which contribute to the nonlineari ty are 
9~) and 

9l~.) 
, wh i chac~~ a c~~

represent advection of temperature by the leading order velocity term .

(7) Proof that the Expansion Procedure is Consistent

It is necessary to prove that the procedure above , if continued , wou ld
give equations for 9~ , , 9~ , t~’~ , . . .  , uniquely and withou t contradic-

tion . Thus it must be demonstrated that we obtain differential equations for

the functions f , g, h , . . .  introduced into the terms 9~ , , To
show th i s , suppose that for some even n(~~4), we have

9,., = h(x,t) + terms not involving h(x ,t).

Then from (26), ~~~~ —‘r 1 p terms of subscript less than or equal to (n-2)

So h , P(z) + other terms .

N f (2 ) if~e &(‘1~~6,) ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ow rom 5 
~~~ acx ,?) ~ (z ,~

) ~~
+ terms of subscri pt less than or equa l to (n-2)

= —2f 1 h 1 P1 - h2(P + I) + terms not involv ing h.

So the function h(X ,t) introduced into 
~~ does not appear in the secular-

ity equation for D1~~,42 , and is determined by the secu la r i t y  equation for
If

~ 
~~~~~~~~~~~ Hence we obtain a d i f fe rentia l equation for each of the functions intro-

duced . Note tha t these d i f fe ren t ia l  equations (othe r than the one for f) contain
the functions determined by the ear l ier  d i f ferent ia l  equations in the sequence ;

they are l inear and inhomogeneous.

(8) Linea r Ana ly s i s

Equation (29) , w i t hout the nonlinear terms , is
..~L _ C i~~

_ 
~~~~ (32)

~~vI

where b = 0.787157 and c = 2/15. Trying the solution

L

g ives 
~~~~~~~~~ ck L)3 (t).

_ _ _
-- ---

~~~~~
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The growth rate is therefore zero when k = 0 orI~7~ 
( = 0.4116), and positive

only for k between these values. The maximum occurs for ~~~~~ . Returning
to the or ig ina l units , we see tha t if the Ray leigh numbe r is R0 s E1 then on
the l inear theory the unstable disturbances are those w i t h

If,. 
~wavelength ) 2Ji (~ /c) . .

and the d isturbances of maximum growth rate are those w i th

wavelength = 271 C2~/c) 4.

(I am not c lear about the interpretat ion of the above resul ts , since the l inear -

ana iys is  app l ies only to the i n i t i a l  period dur ing which the order one tempera-
ture perturbations are created and after this period f is not s m a l l . )

(9) Steady Nonlinear Solutions

By an order one linear scal ing of x. , , and f , the coef f ic ients  on the
riaht-hand side can be given any prescribed values (or the correct si gn) .  Here
it is convenient to take the equation as

2. —i-- I ( -
~~

--
~~~ ~
‘ 1 - -a x  L~ dx . ’ .1 a% ” ~ ‘x ’-

Later on we shall choose different values for the coefficients. (Recall that

in th is  equation X and t are sca led by powers of E . )  To obtain steady solu-

tions f(X ) let g = —a- . Then integration of (33) g ives

*-$i - + 3 _ 2 3’+ +A 0, (34 )
where A is a constant of integration . Hence

~~ A~~
- ~

) a, (35 )

where B is another constant of integrat ion . If we regard X as ‘ time ’ and g as

‘d is tance ’ then (35) represents the motion of a pa r t i c le  in a potential V g iven by
V (g)  = 1/2 ( -g4+g2-s. Ag-B ),

and the val ues of g a re such tha t V 0. The fo l lowing are graphs of V for di f-

ferent values of A.

t,4~~ 1 V [A>o]~~
’. ~~v [A <oj

~~~~~~~~~~~~~~~~~~~~~~~~

For an in f in i te  plane layer , f must be bounded , and so the mot ion of our

ima g inary par t i c le  is such that the time average of i ts  posi t ion g is zero. 
-

i~.
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Therefore the particle must oscillate in the potential well. If A >0 , the

o s c i l l a t ion is abou t a negative value of g, say g0 , and from the shape of the
wel l  it can be seen that the p a r t i c l e  spends more time w i th  g~~ g0 than w i t h
g > g0. So the t ime-averaged value of g is then negative . Hence we cannot have

A >  0. S i m i l a r l y ,  we cannot have A <  0. Since the bottom of the we l l  must
have a negative potential and the top a positive potential , (from (35 ))  we f ind
that

so that the graph of

2V

is then

t

~~~~~ o,~~..t0..., I
I ~~~~~~~~~~ 

I

From (35) we obtain

- ctq (36)) - 
~ v’ ( — ~~~~)

The integration can be performed using el l i ptic functions . It turns out to be
convenient to define the quan tities 

~< and ?~‘ by

(o~~o~~~± 7r )

(o~~ X~~.4?T )

Equation (36) then gives the neat expression

3 (x ) z ( s i n  ?L) Sri. 2.) X , ta r7 (37)

in which we ignore the a rb i t ra ry  constant which can be added to X . Values of
?~. be tween 0 and 1/411 give a l l  the steady bounded solutions of (33 ) on integra-

tion . The resu lt is

.
~ (~ç )  Lo3 [ c1n { (c os ?L) x~ (ta n ?~

.) {jco ~ 
A) ~ }] (38)

where the constant is chosen so that the average value of f is zero , since there
ca n be no cha nge of the fl u id’ s average temperature . Equations (37) and (38) show
clearly the dependence of amplitude on wavelength. When .2. is close to zero ,
is approx i matel y s in u s o i d a l , with wavelength approx i matel y 27T and amplitude ?.. 

,.—- —.~~~---.-- -~~~~--..-~~~~-— ~~~ 
- - -- -

~~~~—~~~ 
—, - .

~~~~~~~
- - . ---
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When A is c~ose to 1/4 7~ , g has wavelength approx i matel yf2~ Ioq ~~~~~~~~~~~~~~~

and amplitude 4- . The gra phs of f , df/dx , and d2f/dx2 are as follows (for.k

nea r l/4m).

H ..L.. tc ’~ ,[iTt.,,~ A

Now O~~ ~~~ , ~~~ 4~ 
P(z~, and (to leading order) W P (z ) ;  hence these

graphs show the shape of temperature and ve loc ity d is t r ibut ions for steady con-

vection at large wavelength. (To obtain the ori gina l unscaled length variable

x the graphs should be stretched hor izontal ly by a factor of L
I
.)

From the symmetry of f it can be seen tha t there is no di f ference in

shape between t he regions of r is ing flu id and reg ions of s inking f lu id .  By a

simp le extension of the arguments g iven in section (2) it can be seen that if we

a ltered the boundary conditions to have constant f lux on one boundary and con-

stant temperature on the ot her , then the isotherm pattern at the reg ions of ris-

ing f luid would be considerably di f ferent from that at reg ions of si n k i n g  fluid.

I
L~~~ A
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There would be a corresponding difference in the flow patterns , and possibl y
also in the horizontal length scales of up and down motions. This could be

worth further stud y.

The stability of the steady solutions is considered in section (13).

(10) Energy Equation

It is convenient in this section to scale x , t , f , so that (29) becomes

~~~~~~~~~ .f.,~ (39)

Multi p l y ing by f and integrating by parts gives

—
~~~~ 54i f d.)( -= h~ cLx- _ J4~~ cLx~ + 5 4~~c~ z (40)

provided that the integrated terms ff~ , 
~~xxx ’ 

1
~x~xx 

and 
~~ 

a l l  vani sh. Th i s
is so if the integra l is taken from - — ~~ to + L and f -- ---f 0 sufficientl y

rapidly as x—> ~~~~ , or if the integral is taken over a finite range and at

the boundaries

(1) f = 0 and = 0 ‘I

or (ii) I = 0 and 1xx = 0 (41)

or ( i i i )  
~x 

0 and = 0 1

In this problem the natural conditions are ( i i i ),  s ince these correspond to
zero heat flux and zero stress on the side walls , by (30) and (31).

(11) Proof that there is no Subcritica l Instability

Suppose that in section (6) we put R = R0 -G
2 nstead of R = R0 ~~~~

Then the anal ysis is identica l , except tha t in the equation for D2~i2 we need

+ ~ on the right-hand side , instead of— .~ ~~, . The expression for V’2 is

therefore the same as before prov i ded that U(z) is defined as being minus the ex-

pression given. Hence in (29) we need only alter -2/15 f2 to +2/15 f2. Re-

scaling the variables gives

+ (42)

and the energy equation becomes

~~~~~~~ ~_ x _ 5 ~~~~~~~~~ (43)

Thus all disturbances d ie  away and the system is stable. Hence there is no sub-

critical instability i n the expansion scheme we have adopted .

(12) Ana l ogue of the Nusselt Number

If we define
— 

~I;’+i 

-~~~~~ -- - --~~~~~~~----~~~~~~-—— .- --~~~~~~~ - —
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then from the expressions for 9, and G~ in sect ion (6) , we see tha t

L~ 43 ~ 2~~~ G -t- ~~~
Therefore in dimens i onal units ,

A ~ - ~~6 ’+ o(& M
where t.~T~2,-3d. Thu s when R = R0 + the effec t of convection is to re-
duce the mean temperature difference across the laye r by a factor

-~ o~~~) , ]
whe re ~

ç > denote the mean over x.

In the B~ n a r d  problem w i t h  constant temperature boundaries , the Nusse lt
number is defined as the ratio of the mean heat flux passing throug h the laye r

to the heat flux which would be obtained if the heat flow were entirely by con- [1
duction . During convection the Nusselt numbe r is greater than unity; that is , 1
convection increases the mean heat flux for a given temperature difference be-

tween the boundaries. With constant flux boundaries , the dimensionless numbe r

of interest is the ratio of the mean temperature difference actuall y present to j
that which would be obta i ned if the heat flow were entirely by conduction . This -

~~~~

numbe r is less than unity during convection (as has just been demonstrated);

tha t is , convection decreases the mean temperature difference for a given heat

flux through the l ayer. When R - R0 is small , this temperature difference is

small; but recall that the actual temperature perturbations are large .

In much of the work that has been done on convection with constant tem-

perature boundaries , considerations of heat flux play an important role. It

would appear that all of this work will  have its analogue in the constant flux

problem , provided tha t temperature differences are the object of stud y. Fur-

ther investigation of this may be worthwhile. For examp le , the reduction in

mean temperatui’e difference described above may be expected to occur for all

R > R0, (not just R sli ghtly greater than R0) and it should be possible to

prove this directl y from the governing equations , withou t using perturbation

theory.

(13) Variationa l Method

If f(x,t) is any sufficientl y smooth function of x and t , we may define

V b y  ~~~~, ‘1 i

V&,t)=~ ~~~~~ ~~~~~ ~~~ 
)cL~ , (44 )

where a and b are f ixed numbers. Now let f (x ,t ) be any so lut ion of (39) sat is-

fy ing one of the condi t ions in (4 1) at x = a and b for a l l  t .  Then it eas i l y

I

--

~

-- --~--~~~~- - - -- -~~ 
----- -~~~~~~~~~~~— - —----——— -- —
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fo l lows that

— ~~~~~~~~~ ~-5 ~~~~~ (4 5)

Thus V decreases during the motion un less the solut ion is stead y. In the steady
state , we know from the energy equation (40) that

o~j’(-~+ 
~ r ) dx , (46)

and so in the steady state ,

(4

By the Eule r— Laq range equation , the condit ion for s ta t i onar i t y  of the integral
in (4~i) (for f ixed t) is

2 — (48)
~~~~ .)

which is the equat ion for steady solut ions of (39) . If we speci fy  tha t the layer
of f lu id  extends from x = a to x = b and we speci fy the boundary condi t ions of
f there , then only cer ta in wave lengths are possible for the steady solut ions ,
and (48) shows that these solutions make (44) stat ionary for var ia t ions  satisf y-

ing the boundary conditions. If V is a l oca l minimum then by (45) the stead y

solutions will  be stable to all small enough perturbations; if V is a local max-

imum then after a small perturbation the fluid can never return to its original

state , and if it does subsequentl y reach a steady state it wi l l  be at a wave-

length for which V has a smaller value than ori ginally.

The steady solutions are given by (37), in terms of the parameter 2..

which may take onl y certain va l ues for given boundary conditions , and it may

eas i ly be shown , by considering the shape of g or by explicit evaluation , tha t

(47) is a decreasing function of A , and hence wavelength. Thus perturbations

cannot result in a shift to a shorter wavelength. To discover whether a larger

wavelength could result , we would need to consider the second variation of (44)

in terms of .2.. ; the result might be tha t for certain range of 2.. the steady
so lutions are s table. Un fo rtu nate ly I have not yet had time to do the ca lcula-

t ions.  This l ine of attack seems very promising.

(14 ) Effec t of Rotation
Suppose that the Benard laye r is rotat ing w i th  angular ve loc ity i).~~ .

We work in the rotat ing frame of reference and consider motions independent of

y, and w i th  a y-component of ve loc ity V (x ,z ) . The governing equations are then 

~~
- - -~~~~~~- - - ~~~~~~~~--~~ 
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(~~~~~~
‘ )

~~~ ~~ -

- 
~
. ~ . ~~ 

r~~ i- 2 a &Y?

+

c~
The dimensionles s form of these is

* ~f ( V ~~V J * ~~~~~~~~~~ 7 _ A v ~ -1- R&~~, 
~~

,

~~~~~~~ ~~~~~~~~ 
~v~ + A - ~ -j 5-~ (50)

~~~~f P -_ D ~~
_- D e -_ O  ~

_ t~~~~~t i ,
where V is measured in u n i t s  of h ~A and /c : 2 . _-~.

We now consider the motion when R = R0 + . In order for the solution

to be near to that obtained withou t rotat ion , it is necessary that k is order
and this imp l ies that V must be orde r C ’ . Making the transformations

A , € A , V ~ ~~ V . together w i t h  those given in section (5) , we

can proceed as before . The calcu lat ion is st ra ightforward , and the end result
is Eq .(28 ) ,  except that U is defined by the equations

- ‘ (5 1 )
~~~~~

Hence

~f . - (c ,~~
c ? .

~
’)
~~~ (52)

where
a = l.230 ,.59

b = 0.787,157

C 1 = 2/15

c 2 = 0.164021

This part of my report is unfortunately rather compressed . For com-

p le teness I ough t to g ive V and show , what is in fact true , that the in i t i a l l y

unknown function in it does not appea r in the equation for f.)

If .‘e ignore the non linear term in (52) and try a solut ion of the form 
j

I 

— - -~~~~~~~~ - --
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~~ L~~~~~~~ S I ’~7 
~..X

then we requ i re

k2. ~~c, — C2 A~) - b k’~} :i~
Thus a disturbance of wave number k will grow if

c’~K ~~~~ C~~A~ ;

where T is the Tay lor number. Thus for given R , sli ghtl y above R0, we can

define a c r i t i c a l  Tay lor number by

If I > Tc then the system is stable. If 1< Tc then apart from a linear

change  of scal e, Eq.(52) is the same as that stud i ed in the nonrotating case ,

and most of the previou s ana lysis carries over. These results are in accord

w i t h  the general resul t  that rotation is a s t a b i l i s i n g  inf luence .

(15) Extensions of the Present Work

It would be of great interest to devise a variationa l princi p le for

this prob l em , expressing R as a quotient of two integrals , in the manner of

Chandrasekhar (1961). This might be qu i te easy. A more detailed theory of

the rotating B~nard laye r could be given , and the theory could be extended to

al low for the effect of a magnetic f ie ld , when the fluid is electricall y con-

ducting. The d i f ferent ia l  equation for f is of interest in itself , irrespec-

t ive of i ts  app l ica t ion  to this particular prob l em ; regarded as an initial

value problem it might be poss ib le  to obtain some very genera l results abou t

how the evolution of f depends on the initial value.
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SIDEWALL BOUNDARY LAYERS IN RAPIDLY ROTAT I NG HYDROMAGNETIC CONVECTION
Franc is  J. Cond i

1. Introduction

Convection in the earth’ s outer core is generally felt to be a most

l i kely source of energy for driving the geodynamo . An assumption is usually

made that the Lorentz force is comparable with the Coriolis force , but Busse 1
(1973) advocates tha t rotation is dominant in the core and that the above ba l-

ance is unli kely. Busse (1970) has found that therma l ins tab i l i t y  in an inter-

nally heated , rotating, self—gravitating sphere sets in as long thin convection

ce l l s  in a cy lindrical annular region intersecting the sphere at abou t 600 lati-

tude. In his (1975) model he considered a cylindrical annulus with slop ing top

and bottom boundaries and found that the Ekman layers which form on these bound-

aries have profound influence on dynamo action .

Eltayeb (1972) concerned himself  with various cases of hydromagnetic con-

vection when both the Tay lor number I, and Hartmann numbe r 71 are large . Thes e
numbers are defined as ~-r LiJS?.jd a M-- 

\)
2. 

-

where .51. is angular ve loc ity, d is a cha rac te r i s t i c  length; ~) kinemat ic  v is-

cos i ty ,  ço dens i ty ,  p. permeabi l i ty ,  h, magnetic d i f f u s iv i t y , and I B O I magnetic

field strength. The cases are classified by the relative orientations and mag-

nitude of rotation and magnetic field for various types of boundaries . He found

when T<~~ M4 the most unstable mode has a roll axis making a small angle with

the magnetic field and when T~- .’O(M
4), for a certain critical va l ue , the roll axis

becomes parallel to the rotation axis. In addition , for I ~ M4 the critical

Rayleigh number of the obli que rolls is greater than that of the rolls with axes

parallel to rotation , hence the latter is preferred . The orientation of the cells

for I ‘-~ 0(M
4) and T M4 is the same as that for Busse (1970) .

Another interesting result of Eltayeb’ s study is that in some cases the

boundary condit ions to be appl ied on the mainstream depend upon the insulating

L 

—— ~~~~~~~~~ - ~~ - -----~~ . ------~~~~-—- - —=——-—--~-- - -
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rather kinematic propert ies of the boundary. The fo l low ing  anal ys i s  w i l l  be
concerned with this question and i t s  e f fect  on the s t a b i l i t y  problem. A balance

between the Corio l is and Lorentz force will  be assumed. Therefore a several-

hund red gauss toroidal field wi l l  be supposed to exist in the earth’ s core. The

cases considered here w i l l  be for large I and large M where

2. The Prob lem

I n i t i a l l y consider a rotat ing, thin annulus w i th  a toroidal magnetic

f ierd , in which the ratio of gap width to mean radius is small enough so that

loca l car tes ian  coordinates may be used. Ignoring the centri fuga l force , we may

treat  the problem as a layer of e l e c t r i c a l l y conducting f l u id  in so l id  body rota-

t ion , w i t h  a uniform magnetic f i e ld .  We suppose that the temperature of the

l ower boundary (z = 0) is greater than tha t of the uppe r boundary (z d) and

take the case when gravity acts in the negative z-direction , rotation in the

x-direction and the uniform magnetic field in the y—d i rection where Oxyz is a

right-handed coord i nate system (see Fi g.l).

F ig .l.

The fl u id has the follow i ng physica l properties: elect rical conductivity

kinematic viscosity ~? , therma l diffusivity ~ , pe rmeability ,L~ , and

angular ve l ocity j2. . An assumption is made that when the temperature gradient

is large , the conduction solution wil l  be unstab le to convective motions. We

suppose that squares and products of perturbation quantit ies , 9 the perturba-
tion temperature , b the perturbation in the magnetic field , and u the perturba-

tion ve l oc i ty are negligible. Therefore the equations are linearized around the

conduction solution .

Dimensionless variables are introduced by the following transformations

(Roberts and Stewartson ( 1974 ) )
-

U.” : -
~j~

- ~~~ (x , t)  (I)

~~ Ø0 .,24~~I~~Ø(,çt)J
e~ e,+,~~~~sce( ,~t ) }

L~. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



where £ is a small parameter representing the magnitude of the disturbance ap-

p l ied  at t = 0, /3 is the temperature gradient , u is the ‘-‘e loc i ty , B0 the uni-

form magnetic field , and O~ a constant temperature. The equation of state is

g iven by
.-v
’
~~~ p 1 T

,9_ Q ) J  (2)

where ~~ is the coefficient of volume expansio n.

Upon emp loying the Boussinesq approx imat ion , the following linearized

equations resul t

Momentum: ~ -. A
(3)

Tempe r a t u r e:

Induction : a (5)

where ~ f~~ ck’ 
, ..~~~~~~ K (6)

dt _ ~~~~ ~ E- JL1T~- 2~rid~
and ~ is a reduced pressure.

We now take the z-components of the curl of (3), curl curl of (3) and curl of

(5). It is then possible to assume a norma l modes solution

~( kA t-L~j ~~~~ (7)

where G represents any of the above variables. The result is five ordinary dif-

ferential equations. It may be shown that these equations may be written as

(f~
_ 

~~~~~ ~~~~~~ 
(8)

—~~ -~~.°-) 5 - —~ew (9)

{ [~~6~~~E D~_ a1
~~~~~~~~~ _~~J ~ z k(Dt~~~j~~~jW (1 0)

~ [
(•t~ Ex (~~~ 2 &t)).~~~ t %

. )] e1~ :~1;~ w (II)

{ (D~ a’) 
[(U’:. a~

)_ 
~~ (i

1-o~-~ ~ -)(D’.~~- L~-)* 
t
(D~.a~)(D~a~_i o.)}

x jfup~~-_ ( ))(D -y))=M ’
~iw. 

?~
2MT ~(i~t r)aCDtaI~ ~ )W

(12)

where D:_ &, & k ~+~~~, p =v /~ 

~~~~~~~~~~ ----— -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
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m d  £~ , ~ and B are the vertical components of vorticity, electric current ,

and magnetic field respectively. We note that E~. may be expressed as M 2 and

E may be expressed as T~~~.

Upon assuming the principle of exchange of stabilities is valid (Cr = 0)

and canceling a (D2 - a2) from each side of (12) Eq .(8) throug h (12) reduce to

vi
(14)

- L k 2 ~(22~~t~) W (1 5)

r E B ~~~eJ~ ~~ (16)

~ [E~1(D~a’)~
. [j

~- 1~
2(D

~~~~~ J w~ ~ ~A [E X~I) ~ c&~Yt fJW (17)

3. Boundary Conditions

Equation (17) is a tenth order equation . We will need five boundary

conditions on each of the two boundaries for its solution . We follow Eltayeb

(1972) and assume for all kinds of boundaries that they are perfect therma l

conductors , therefore the temperature perturbation vanishes there . We also as-

sume that the norma l ve l ocity vanishes at the boundary. Then at ~ _ o ,d 9:W~ 0.

The next conditions app lied are that for rig id boundaries (no sli p) D~V~ Dand

for free boundaries ~~~~~~~~ The magnetic boundary conditions are

K n • t3 >~~O , ( ri~ E )~ < n . Y ~~:O (18)

where ( ) denotes a jump in the quantity across the boundary. It can be

shown that for an insulating boundary the condition becomes ~ 0 at ~ o’d,
and for a perfect electrica l conductor that D~~~0 at ~~ o~d . The boundary con-

ditions may be summarized as follows :

(1) Free , Perfectly Conducting Boundaries

e:w~~~~D~~o ~
j ( 1 9)

(ii) Ri gid , Perfectly Conducting Boundaries

~~~~~~~~~~~~~~~~~~~~~~ &t~~’o~d 
(20)

(i i i) Free , Insulating Boundaries

~~~~ ~1~t ei~~, d (21)

( iv)  Ri g i d , Insu la t ing  Boundaries
@-W :DW : .~~~ ~ 0 c~t ~~~~~ (22)

For all cases B is con t i nuous. 

--- - -- 
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4 . The Boundary Layer
From (17) we obtain a boundary laye r equation

a (23)

and a mains tream equation

(24 t ) h ~~~A
i(D~~~~~~ Y~ ~ &~~~ttJ w~~o (24)

It should be noted that no magne tic terms appear in the boundary laye r equati on
(23). The thickness of the layer is

A so lut ion to (23) is
-v V :A ,e~~~+A 2 e~~~+ A 3 e %*~’+ 13e ’

~
. 

~~~ ÷ - l 3 i i J 3 a’ (25)

where 
‘ (26)

Expressions for 9 , c , can now be found f rom ( 1 3 ) ,  (15) and (16) respec-
t ive ly .  We now w ish  to test the hypothesis that 9 ~Vl/~~O are the correct bound-
ary cond i t ions to appl y at the edge of the mains tream . At ~~~~ , for any bound-
a ry  

e (O):o
l

j +o 2 !
~~2 +o < 2

~~:Aa # e~~~~~O (27)

W.
~~A ,~.A 1+A 3 + W 0  (28)

where the subscript MS denotes mainstre am quantities.

The firs t case to consider is that of the free , perfectl y conducting
boundary . The boundary conditions are given by (19) . The other equations whi ch
are requ ired are

o( ’2 1 ,-1. ~~~~~~~~~~~~~ o~q~A3+ (.D’W) ,~~: o (29)
‘(o)

~ ~~~~~~~~~~~ %~A~+ (V
~~

)MS O (30)

(3 1 )

(27) through (31) may be rewritten as

(32

A ,~ A~-4. d43 
~~~~~~~~~ U (33 )

~
,P A V A )~ — (Ifw.~ / ~< ’.~ 0

(35)

~~~~~~~~~~~~~~~ (36 )
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whe re U, V , X , Y , Z are de fined for convenience by the above equations. In

add i t ion , we may form a relation between (33) and (36)

(Z — U),A1 -
~~ 

(Z ÷LJ) ,A~ ~
. (Z+U)A~ 0 (37)

~~~~~~ 
is just the left-hand side of (32) divided by a large quant i ty .  Therefore

to order (o~ ~ ) it is zero and we may concentrate on the other equations.
No similar statement can be made about the othe r quantities. From (33), (34)

and (35) the coef f ic ients  A 1 , A 2 and A
3 

may be determined

~~0 , ~~~~~ A ,— ~~~~~~~~~~~~ (38)

Using (37) a relat ion may be obtained between Z and U

U(Z + U) ~ 0 (39)

• .. U = 0 is just the trivial solution . All three coefficients in this case are

zero. The interesting relation which emerges is that Z + U = 0 or

+ (0
~~ M$ -~ 0 (40)

This says that the vertica l ve l oc i ty alone does not vanish at the edge of the

mainstream but that a linear combination of the vertica l ve l ocity and change in

vertica l current are broug ht to zero there . (V ~ 
),~ can be expressed in terms

of Vv~~ by use of (16).

We now consider the case of rig id , perfectl y conducting boundaries. The

boundary conditions are given by (20). Equations (32) , (33). (36) and (37) are

still va l i d .  Instead of (40) and (41) the following equations are used

~~~ x/ ~ (41)

— — Y/a (42)

By follow i ng the same analysis as that for the previou s case , the result is

~~~~~ (D~~)~~ o
The next case is that of free , insulating boundaries. The boundary con-

ditions to be applied are (21). Equations (32) through (35) are stil l  valid.

Equation (36) is replaced by

~~~ ~ A, ~~ — ~
- ~< 2. . (44)

From th is  ana lys i s  it can be seen that Z is zero to order ( 1) ,  i .e.

0 (45)

The same resul t  holds for r ig id  insulat ing boundaries.

The resu l t s  for a l l  cases indicate that the boundary conditions to be

- --- -

~ 

- -  --~~~~~ .-- -- --- -- ----- --
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app lied on the mainstream Jo indeed depend on the conductivity properties of

the boundary ; however , the above derived boundary conditions differ from those

of Elt ayed (1972) who assumed W = 0 ~- 0 to be valid on the mainstream. From

this analysis we can expect a significant change in the critica l Ray leigh numbers.

Extension of the work si l l  be to calculate the critical Rayleigh numbers with

the der ived boundary condit ions and cons ider more ph y s i c a l l y rea l i zab le  geometr ies.
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LONG WAVE MOTIONS 114 AN AD I ABATIC ATMOSPHERE

Pham Giem Cuong

Introduction

We use the tida l equations , der ived by Kara l~ w i th  some minor modif ica-

tions of our own , the small amplitude wave-like disturbances in a spherical adia-

batic atmosphere . It is found that to the first order approx i mation there is

onl y one band symmetric with respect to the equation where disturbances of a g iven

frequency Co can propaga te. For ~~~~ , where .(2 is the rotation of the p lanet ,

the band width is proportional to .f~.. . For larger C~-’ it is proportional to W

Inside this reg ion onl y waves with azimuthal wavelengths satisfying rn -
~3-~ 

~~~~

can propagate where Y is the adiabatic exponent; this smaller ~rflL is the

— farthest the wave can reach poleward . The characteristics of the waves are ex-

~~~ amined qualitatively.

~The tidal equations used in this pape r are only one part of Kara l ‘s work on the
weather. Since we do not know when it will be published , an out l ine of his deriva-
tion is g ive n here . 

~~~~~~~~
_ - - -~~~~~~~~~~~~ —---- - _ -—

~~~~~~*-- 
-- - 
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I. Ka ra l’ s Model

We consider a non-v iscou s , non-heat conducting isentropic troposphere
surrounding a ri g i d , rota t ing and almost sp her ica l p lanet. The boundary between

the t roposphere and the tropopause is considered to be a free surface where the

pressure 2
~
. is g iven. This boundary and the surface of the solid planet are

described respectively by

~r 
(1. 1)

and ~ (1.2)

where ( ,- ,
~~~~

- ,f ) are the spherical coord i nates with origin at the center of the

planet and is the time . Let us call the mean radius of the solid planet

and the mean thickness of the troposphere d . Then

(1.3)

is a very small number which is of the order 10-3 in the earth’ s case. This is

the case in which we are most interested . For later use we also defined

I (~~~, c
~~~± )  -~~~ . (1.4)

~j- (e ,~~) ~t 
~ 
) — ci- (1.5)

and ‘x r— ~ (1.6)

The equations describin g such an atmosphere are

- --2 fl X (~~~~~~~~~÷ &~~~~~~ 7P (1.7)

(1.8)

cL ~‘

(1 9)- -

The appropriate boundary conditions are

= ~~~~~~~~ ~ t r~~~ (1.1 0)

-. 0 at (1. 1 1)

and ~~ ~t r~~ y1 ( 1 . 1 2 )

Here u , G , p , , ii, ~~~ 
are respectively the ve l ocity, gravity, pressure ,

density, and unit norma l vectors tb~~and ~ , see Fig. 1 The equations (7, 8 and

9) are the momentum , continu i ty and isentropy equations. The Eq.(1O) describes

the free surface Y~~ while Eq .(ll ) corresponds to the ri gid one r = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Fig .l

Let
L (Li...v~w)

and (~~~P.’ G~ , G~
’)

in spherica l coordinates. Then the Eqs.(7-12) become

(1.13) H
dv ~ v 

___  (1.14)

____  (1.15)

- ~ r ~~~ -p-- .j~. ~~~ 
‘ 

~~~~~~ -~ ~~~~~~ (1.16)dt ~~~~~~ b~ ~~~ r 
~
. J

do 
(1 l’~cit dt • 1 /

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~f ~~~~~~~~ 

~ft (l~~l8)

u— —
~~
- 

~~
—

~~
-- — 

~~~~~~~~~~~~ 
-

~~
-

~~~
- c a~i~ ~~ -

~~ (1.19)

z i:i- ~.t-~
- - (1. 20)

The Eqs. (13-18) with the boundary conditions (19,20) form a system for

the 6 unknowns u , v , w , p, 
~
o , for g iven G r~ 

G 9, G~ and intra l values or

the unknowns.

We now nond i mensiona lize the equations by defining

- - ~~~~~ --— . - ___ -- 
‘

( 1 .2 1)

- Hc~t

~r. . t~~~

where ~ is the vertical acceleration of gravi ty at Y~ ~ and ,1, A mean

_ _ _ _ _ _ _ _ _ _  4
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densi ty .  This sca l ing procedure makes the quant i t ies  in the ve r t i ca l  d i rec t ion
comparable to those in the hor izontal.  The horizontal ve loc i t y  has been scaled
by the shal low water wave ve loc ity , since we w i l l  be interested onl y in motions
of wavelengths long compared to d (but stil l  small compared to a).

The next step is to expand a l l  the dimensionless (dropped bars) varia-
bles u , v , w , p, 

~
o and in series of the form , e. g .,

:_A. ~~ 
~~~~~~~~~ ( 1. 22)

to the zeroth order in E we get from (13-20)

-

~~~~~ ~~~~~~ 

(1.23)

w’~ a ( 1 .24 )
L ~~~ 4- ÷ 

~F.
J I;

r a ~ a ~~ .~ ~~~~ .L1 w~°~s. ~~~~~~~~ 8—~n. ~~~ ~~ 
I if.~”~ G c.) — (1 .25)-

~AE~ ~~~ ~~~~~~~~ C’) e~ I3W 
~~~~~~ 9 0 (1 .26).(u ).r

4~
_
~
°
~+v ~• 

-1- —---r 
~~~~~ ~~~~~~

- 

~~;;iT-~~
-- ~e

p(O)

[~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _-
~y 

(1.27)

,_
~1~

_ v~~ ~~~ 
(0)

‘~~
‘ae ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

&t X~’J (1.28)

Uf’ V~ 
?0 WW acr 

~ — 0~
- (1 .29)- r~~~~i Tzr

~ (o) (1.3 0)

Equation (23) implies a vertical hydrostatic ba l ance.

Equation (27) is satisfied if

g ~~~~ (1.31)

This means that the t roposphere is ad iaba t i c  (or , in other words , constant
entropy).

C.,
Since G~ ~

- !  , the equations (23, 30 and 31) give

~~.b) 

~~~~~~ 
_ x )+ (3]~~ ( 1 .32)

and 
p” : ~~~~~ 

_
~~) 

4.,3]~~~ (1.33)
Iin whi ch only ~ remains unknown and

K~ :~ 
K . ~~~~~ y/(Y—t). 

~ 
(1.34)

_ _  _ _ _ _  _ _ _ _ _ _ _  _ _  ~~~~~~~~~ -- - _ - - ---_ - - -
~~~~ 

--.-— 
~~

_ —
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Integrating (26) g i ves

- ~ a v~ ~ ~ 
~~J 
d 

, r ~t~ p’~: _ 5 ‘~~~~~~~ ~ ‘I ~~~
+
~~~~~ W4 V 

~~‘ ~~L~P ~~ 
( 1 .35 )

0 0

Now if we assume a spherical solid planet then tra C and from (29)

as ~. . Conseque ntl y the last term on the rig ht-hand side of (35)
(o)vanishes. Eliminating 

f in (35) by using (33) gives

r ~ ,.
~ 

— r— r o~ t ( i-~L’j
~ 

-x
~~C4~~~

(
~ 

~~ J[~
(
~ 

.
~‘spi .L~~~

L
~*-~ ~~~~~~~~~~~~~~ 

(1.36)
0 0

where
r

~~~‘ L~t ~~~~~~ 
$)~~ ~~~

)~ 
~~ I (1.37)

I ~ 
V 7

a~~
)

1~ ~~~~~~~ ~j~~
- -

~
-
~~

- +v~~~~t& )
Let ~ in (36) and solve for c-~* . Substitu ting this result into

(28; we get 
~~

_

~~

‘

d “~~:c~I ~~~ x)+p] [~ r L,+ -~~ L~)z
’+~ ~~~~

‘)+ -
~~] L2dx +~3

00 I- ’
Also i f we assume now that V amd W are independen t of hei ght ? then

this becomes
r I 1r ‘~)I

~
L,*L~~ +/ 3] L.~~L~~ 

-t3] ~~~~~~~~~~~~~
This become s s impler if we take P.s- = 0, name l y

~~L1 — ~~~~ 
0. (1.38)

In brief we have assumed an inv i scid , non—heat conducting, compressible ,

adiabatic atmosphere surround i ng a rotating spherica l ri gid planet. The top of

the atmosphere is a free surface where the pressure is zero, and the horizontal

velocity in the atmosphere is he i ght-independent. The system of equations des-

cribing suct’ an atmosphere is

~~~~~ +v-~-- -
~- —a-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Ceo (1.39)

~:n9 &~f)

r~ 
3

- 
~~~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ Gy O (1.40)

~~~ -1.~~-~L-. 
w’ a]

~~~~ 
~v ~I , -,. 

~~~~~~~~ ~

-

~~~

- 

~~

-

~~

- + 

~~~~~~~~ 

-

~

--

~.
- .. (1.41)

_ ._~~~_ r_ .~ + ç~
-
~
i. 

~-~- t veot~~] (1.42) 

~~ ----- _ - _ - _ -_ - -  - - _ - --_ - - _-~~ --
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ItrJ~.(~ x~
1 (1. 43)

— 
L ~~ 

— 
)J

(t.44)

Here the superscr ipt (o) has been dropped .

This deriv ation is due to Karal. The minor modifications we have intro-

duced are :

(i) the scaling of £.L~ ~~~~~ instead of his i. ~~~~~ This is more

reasonable since u is of ~~~E J  compared to v,w, and it makes the scheme work

faster withou t chang i ng the results ;

( i i )  introduction of the operator L in (37) wh ich , we think , he had for—

gotten . This does not matter in the last step since P.~
. is supposed to be zero

anyway .

(iii) Retaining G.9 and in (39, 40). In his version , after the as-

sumption of a spherical solid planet , which he called perfect , i.e., spherical

surface with spherically symm etric distribution of mass inside , he had to take

-
~~ ~. 0 . This would lead to a distrat iou s distr i but i on of pressure

in the static state which will  be discussed in the following.

II. A llowed Regions for Linear Disturbances
The system (1 .39 - 1.44) admi ts  a s t a t i c  so lu t ion

~~ ~v :w= 0~ ~ I

(II I)

provided that

— -~~
— n P c ~’~~~; c~~:c,.

In this static state the top of the atmosphere is a spher ic al su rface and so are

the sur faces of constant pressure and densi ty .  The non-vanishing value for

in this case is supposedly one to some non-spherically symmetric distribution

of mass inside the solid planet.

Had we take n 0 , as Kara l did , we would have had from (1.39,40)

£4

1L

Th i s has the sol ut ion 
~

I 
--
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Let us take the case of the earth where f)~-~~’i1and ~~~= 3.5. Then this

expression for ~ would give an oblate spherioda l-l ike atmosphere wi th the

thickness at the equator abou t 3 time s that at the poles. The ratio of the sur-

face pressures between the equator and the poles would be then , using (1.43),

abou t 4.6. Such a super-unrea l is t ic  ra t io  is par t ly  caused by the assumption of

homentropy and partly because of G~ 0 . This is the reason why we reshape the

atmosphere by letting ‘ , balance the centrifuga l force.

We are now interested in perturbing the stati c state (1) by small amp li-

tude disturbances. We only have to concentrate on the three equations (1.39-41)

since they form an independent system for (v, w , ~ 
) .  Once these are known u ,

p and 
~
o follow by using (1.42-44). Let us call the disturbances by (v’ , w ’ ,

~ ), i.e., in (1.39—4 1). Let

V ’, W - w’, C i ~~ ~~
‘
.

By neg lecting quad ratic terms in them we get the fo l lowing l inear ized system :

~ f LW ’ C~~~~~ t -

~~

-

~~

- 

~ o 
(11 .2 )

~~~ ~~~~~~~ 
-
~~ ~~ ;T,:~

-
~
-
~ 

~~~~~~~~ (11.3)

~~~~ 
-

~~
-
~~
-

‘ 

+ .4. L~. 

~~ 
+ v’ c~~ * 9 0 (11 .4)

In (2, 3) we have the horizontal momentum balance between inertia , Coriolis and

pressure forces. Equation (4) is the continu i ty equation , balancing the horizon-

tal divergence of the flow with the change of hei ght of the atmosphere .

We are going to look for solutions of (3-4) of the form

V 1 ~~~~~~~~~ 
-
~

LE~~t+ m~ sf 4~~ )~ 9. 
~11v;’ -:

~ L ~~~~~~ i
The fact tha t there are solutions proportional to e~~~~~

’
~
’
~
” ’
~ is clear

since the equations are linear and the coefficients do not depend on t and ~
-?

exp l i c it ly. Moreover ~~ and ~ must be rea l because the prob lem is nondissi pa-

tive and axially symmetric. Hence w , m , k ,c~ are all real and the amplitudes

V . W , ~ depend only on . Also since we expect (5) to have a wave-like form

we assume that the derivatives of V , W , ~ with respect to are much smaller

than ~~ ,“~ ~and ~k+~~o (  . This assumption w i l l  be j u s t i f i e d  at the end . Then
(2) - (5) give -

________________________
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- -V.

w—ac~~9 
L u.) 31~ t 9

L Y v~ 
.~~_.*L O W

L (K + I O I) +  ~t9

To have a non-trivial solution for ( V , VT, ~~ ) the determinant of co-

effic ients has to van sh; this gives

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Cc~t~& -(~+ ~ct)~~ij ~~~~ (,~ — ~~~~~~~~ J C

By separating the real and imag ina ry parts and solving for k and c’( we get , for

!~~~0 and O~’~ 
0,

o(_ (~~~~+~~)cot9~~~
0 ( 1 1 . 6 )

and
0 ( 11 .7 )

For the time being we are not interested in (6) since it just changes the ampli-

tudes of the waves by the mu lti p l y ing function

(11.8)

which does not affect the behavior of the wave pattern ,

The constraint that k be rea l implies

K
t 
~ 0

or from (7)

>, y~)
2. (11.9)

For a g iven w the variati on of F as a function of 9 is described by Fi g.2.

In Fi g.2 it is clear that waves of a given frequency c.~ are confined to the re-

gion C..(~~) defined by 9~ ~- ~ .
~~ ~~ + .

~~- . In other words , there exist in gen-

eral two polar caps in which waves of given W are not allowed to propagate.

The approx i mate values of O,(Lu~ are given as follows :

~ 3 fo~ cv ~~
4or W >~~ S2

The numerica l value of 30 is for the earth’ s case. Thus the larger .& is the

sma l l er the caps , which disappear as c t — .-- -~.~~ 0 . This means that waves of hi gh

frequencies can propagate a ll the way to the poles , which is to be expected s ince
rotat ion .51. can be neglected in th is  case. 
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e~~o

_____ 

Fi g.2

i~ (~~~c ’)

Now after w has been given , suppose we also specif y m, the zonal wave
number. Then the waves are confined in the smaller region D(w,m) def i ned by

~ P1<~~ ‘~~~M~~ 
2t wher e ~~~~~~ 9~ ~ due to (9). This region D(t~~r) w i l l

become narrower a s v ~
t gets larger and w ill disappear when ‘v,i~ reaches i ts  max-

imum possib le value Y’
~W

’ .

By def in i t ion .c~
... 

~~~~~~~ 
(11 .10 )

Therefore 4 vanishes at 9 9,.~ or 9~ ~~~~ and increases monotonically to

its maximum va l ue (~~~
“
C4.J’ — m t ) at 9 .!~ . Since we have assumed that ~KI be

large enough so that we can neglect the derivatives of V ,’W~ G~, any results

nea r these borders are doubtfu l. Anyway 9M ca n be ca lc u la ted by

~ 
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _In 

‘1 - 
~ . Y

where .
~~~ 

.
~

~~ +.c~.)

I I I .  Quali tati ve Properti es of Responses

The dispers i on relation defined by (11.7) can also be written as

~~
. (9, ‘1’ , t~ 5 , 1’4 .i”n1w) o (111 . 1 )

9 Iwhere s(e ,~f , t)= wt+m u 1 + J , < d G .

The d isturbances f rom a given point sou rce would propagate along the character-

i s t i cs , or rays , of the equation (1) .  These rays can be characterized by a

parameter , 0 say, wh ich determines the ray arc length from the source. It is

therefore convenient to introduce the character i s t i c  system of d i f ferent ia l
equations correspond ing to (1) as fol lows :

(111 .2)

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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2i .  
().f.

.~~~~~~~~e~~~~
2
~~9) (111.3 )a~ ~“~~6

.-z[-?~...
_ -‘~

‘
~~ot

’
~e] (111.4)

~ ~G .. 
~~~~~~~~~~~~~~~~~~ ~~

4 cL1
~s~~z Q (111.5 )

0 (lll ~ 6)

(111.7 )

where ( • ) means d i f fe ren t iat ion  w i th  respect to 0

1 1 1 . 1 .  Ray Properties

The Eq s . ( 6 ) , ( 7 )  simp ly imp ly that along any par t icu lar  ray ~~ and vvi are

constants . Thus waves w ith di f ferent  val ues of w and ~i w i l l  have d i f ferent
paths in the reg ion D~~ -’,rr~ . The parametric equations of A ray are defined by

(2,3). The differential equation for A ray is obtained from these as

~ ~~~~~~ ~~ 1 1 1 8ao ~~~~ ~ 
~~~~

To integrate (8) in the general case demands some numerica l work which is not
necessary for just know ing the qualitative behavior of the rays. By inspection ,

keeping in mind the varia tion of < as function of & , we can picture the form
of a ray of given c..O and fli as in Fig. 3a.

C.r~~Je.

Fig. 3

Just as a check we consider the simplest case in which C.u and w~ are much

larger than .fl.. so that the effect of rotation can be neg l ected . Then (8) becomes

with the solution

(si n’
~9 (Q.’~s iv~ ~ + I

~~ct. sIrt 9~~y~f .  ~~~~~~~ ~~~~~ —

Ths is the equatizrn of a grea t circle with the inclination ang le with respect 

_ - ‘ ~~~~ -- - - - -  - -—-— --- - -~~~~~ -- --— - - - ---—-~~~~ -~~~ -
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to the equator equal to arctan a (see Fig.3b) . The definition of the equator is

completely arbitrary in this case (no preferred direction) and so is the orienta-

tion o the great circle. Of course this is to be expected in case of no rota-

tion . In other simp le cases the evaluation of (8) involves ell i p t i c  integrals.

11 1 . 2  Group Velocity

The energy of the disturbance , provided ini t i a l l y at the sou rce , propagated

along these rays with the group veloc i ty. From (2, 3, 4) the 9 and “J
~ 
components

of the angular group veloc ity are

c ~~~~~~
— -~~~~~ (111 9)

~& -~ E K  -

and
- - ~~~~~~~~~~

J’ ~‘~~) (1 1 1 . 1 0 )

t~ 
-

It is easily seen that decreases monoto nicall y with from the

maximum value at the equator , wh ich is
____ “

~~ 
(111.11 )

~~ 
‘
~~~~~L ~-~

t J
to zero at 0 ~~ . Also 1~~J has the oppos i te variation . Its minimum value ,

at the equator , is 111 (i l l . 1 2)

Al so i~ ~~~ has a maximum at the equator with the constant value

‘‘~~ ~~~~~

1 1 1 . 3 Phase Ve loc i t y
By de f in i t ion  the 0 and ‘f components of the angular phase ve loc i ty  are

g i ven by c wk 
— (111.1 3 )

P& K~+r’~
- —~ F—— (111. 14 )- 

k~~~~Yr~ ’

At the equator , where ro ta t ion has no e f fec t , we expect the waves to propagate

along the d i rec t ion of the corresponding rays.  That is , the group and phase
ve loc i ty  are identica l except they are in oppos i te d i rec t ions , as can be seen
from their expressions. The fact that the phase veloc i ty is constant , independent

of .
~- and rr~ , at the equator can be interpreted as in the case of shallow water

waves.

The variation of is si m ila r to . As to (c.~91 we have from (13) 
— 

- ----- -~~~~ --~~~~-- -- _ - - -
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_______ - 
1c~~I (vn ’

~-l~~) ~I~’- 

(~~~~~‘)‘~
where ?!J.~I is positive with its value zero at 9 -~~ . Now

Therefore has another zero if for g i ven W

2w~ ~~ ~~~~~ ~~
‘ j 4.)

In this case there exists O~ , 9,~1 < 9~, < .J~- , where changes i t s  s i gn

from positive to negative . As Yr~~ increases the reg i on of positive si gn be-

comes narrower and narrowe r until it disappears for ~~~~~~~~~~ (see Fig.4).

_ _ _  
_L

Fig. 4

In Fi g~4 the value of I~ y~ is less than i C~~J : 1c~~I
in the case 2 m2<. ~“LU 2

~, otherwi se it is the other way around .

111.4 Justification for Small Variation of Wave Ampli tudes
Earlier we assumed that the variations of V , W and G~ with respect to

9 are small so that the disturbances have a wave-like form . Now we try to

justify that assumption in the reg ion where the results should be reliable.

This reg i on is centered around the equator , i.e., 0 close to ~~~
. . To make

the borders , where ~ or 9 , far from the equator we assumed

rfl
2(< ~U

’.This is not a constraint upon the following arguments ; it just insures

the existence of a good reg ion of large width (See Fig.5.).

I.
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5004 ‘regt ~en
Fig.5

From (11.2-4) we can eliminate v ’ and w’ to get the following equation

f —or

where ~
( is given by (11.6) :

‘
~~~~~~ 1(: .,. 2m~~~~~,j~~ 2-.~2~ 4n~~c4,~9 ] c’~~
d 0  t L t4) I + 

~o’~+fl’c.~~~ 9

~~~~~~~~ -? ~ ~~~~~~~
This is similar to the Laplace tida l equation . In the good reg i on defi ned
above it reduces to — —

+ cr .
~ 

0 5 is smal l .

By di f ferent iat ing ~ and neg lect ing small terms th is  become s

[ i~
t+ (~~w~-. 

~.nt)] ® + Ic -‘~ 
-~ .&) ~ t 2 

~ 
~~~~~~ =

Also in the good regi on ~‘1 W-’rt . Therefore the rea l part is automaticall y

almos t zero. The imag inary part can be written as

-- 1÷-~~~~-)- a~
But again in the good region ~~~~~~ thus

d~ 
_ ,
~IS~

Since c~ is the amplitude of small disturbances , we have therefore Justified
our assumption that the der ivat ive of ® is small compared to ~~
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SLURRY DY NAM ICS AND THE GEODYNAMO
Christop her L. Frenzen

Introduction

The most likely origin of the earth’ s magnetic field is a dynamo process

in the conducting li quid core ; the interaction of fluid motion , magnetic field ,

and e l e c t r i c  current comb ine to generate an add i t iona l  magnetic f i e l d  capable of

sustaining itself against ohmic and viscou s losses. The maintenance of this

fie ld has neve r faltered (yet) and although frequent reversals in polarity (on

a time sca le  of order several hundred thousand years ) have been recorded by

pa leomagnetic measurements , these same observations suggest tha t the strength of

the main field has changed little over the past three billion years . Numerous

theories have arisen to explain the geodynamo and all must rel y on some source

of power capable of maintaining the motions necessary for dynamo action over

most of geologica l time . The most likely energy sources are internal radioactive

heating, latent heat released from the gradual cooling and solidification of the

inner core , and gravitational energy supplied by the acc retion of a dense inner

core. Since the fluid motions generated by thermally driven and gravitationally

driven convection are essentially the same , little distinction has been made be-

tween the two in models describing the generation of magnetic fields. However

their therma l :ha racter is qu i te different.

Since convection is a very efficient process for transporting heat , a con-

vecting therma l dynamo must transfer much of the total heat supp lied to the core

mantle boun-:~~r,; however the high therma l conductivity of the liquid core greatl y

aids th is  transfer and subtracts from the therma l dynamo ’ s necessary convective

motions thereby lowering its efficiency. Estimates of the ohmic heat flux in the

co re , the observed values of heat flux at the earth’ s sur face , and the distribu-

tion of rad i oactive sources in the crust lead to the concern that the postulated

thermal energy sources may not be large enough to drive the inherently inefficient

therma l dynamo . The possibility of gravitationa l energy released by accretion of

the i nner core , f i rs t proposed by Bragi nsky (1963), appears as a very promising

al ternative . Judg ing the effec t iveness of a powe r sou rce by the amount of energy
it puts directly into fluid motion and by the i nev i tability of energy flow into

• this mode rather than convers i on into heat l eads the gravitationa l dynamo strong

favor over thermal l y driven models.

Ther mal Regi mes
The core probabl y consis ts of a number of elemen ts , but often it is simpli-

fied to a binary alloy composed of a heavy metal (perhaps i ron with a fraction of

• •

~

•

~

_ _ _ _ _
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n icke l )  and a l ight non—meta l (sul fu r or silicon). A sample phase diagram ap-

pears below .

~ op,centpt~tt tin

Fi g .l

Temperature is p lotted on the ordinate and concentration is taken as the ab-

scissa. The unshaded reg i ons represent homogeneou s states while the shaded

portions are reg ions of phase separation . In the liquid phase the components

mix in all proportions. Above line ABC the mixed li quid phase is in equili-

brium with one of the components. When the temperature of the l iquid mixture

decreases one or the other of the components freezes out depending on whether

the concentration lies to the left or right of point B , the eutectic point.

As the temperature decreases further , the liquid composition varies along

curves DB and EB , and the li quid freezes comp letely at the eutectic point.

DBE is known as the liquidus; above it onl y li quid exists. ABC is known as

the solidus; below it only eutectic solid and one of the solid components

exist , depending on the relative position of the eutectic point. At the lat-

ter , the liquid freezes to ta l l y  into eutectic solid. The conducting liquid of

the core is assumed more metallic than the eutectic; the solid freezing out of

such a composition is more metallic and hence more dense than the surrounding

liquid , and is capable of accreting on the inner core . (Lope r ( l97 8a) ) .

Follow i ng Loper (1978a) the various therma l reg i mes competible with the

gravitationall y powered dynamo will  be described . Temperature gradients are

taken with respect to pressure for thermodynamic convenience; these differ lit-

tle from gradients taken with respect to depth because of the essentially hy-

drostatic pressure distribution in the earth. The conduction gradient , deno ted

by ~~~ is defined as the change in temperature with respect to pressure neces-

sary to remove heat in the absence of motion . The adiabatic temperature gradient

( aTA ’1 - I ?T\ I~ -v• \
I
’ 
) - )p~ ~~~

(Here V = volume , S = entropy , C~, = T(-~f)~~, the specific heat at constant pres-

sure , and r’~~ ~~ (~~~
_)~ ,the coefficient of therma l expansion ) and the li quidus

or melting temperature gradient 

~~~~~~--~~~~~~ -- -~~~~~~~~~~~ - - •~~~~~-— ~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ —-~~~~~ --~~~- - 
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(where .c~ denotes change upon melting)

are determined solely by the thermodynamic properties of the fluid. The con-

duction gradient , on the other hand , is determined by the temperature at the

core - inner core and core-mantle boundaries. T and k’— represent the actual

temperature and temperature gradient respectivel y. Assume(-~~~)> 
a ,(%~.

\
)>  0,

and(4~~) ‘ 0. (The latter implies a cooling core.)

The conventiona l therma l regime for the geodynamo results when

/~~TA ‘
~ ( a T ~. ’~ ~ (~~T~/ < 

~p I ~

• COflvee Tj. IcO hlDMCT,ON Sou p
P

Fi g. 2 (after Loper (l978a))

The core l i quid , more metallic than the eutectic , freezes out a dense i ron-rich

sol i d capable of accretin g on the inner core . The loss of a dense metall i c solid

to the inner core leaves the surrounding fluid compositional t’,’ buoyant. In the

superad i aba t ic case ( 
~~ 

) ~‘ (_ ~~~&) the f lu id  may convect therma ll y as

well as compositionally. A thin conductive boundary layer will form near the

inner core to transport away the latent heat released by the freezing of a dense
~~TA \ /~~1’,.\ ( - ~~~~meta l l i c  sol id d i rec t l y  on to the core . However if (_~~—j c 

~
-

~
- - ;  <

1~

-r~.•’-~ -1:~.~’CONY$CTI6N 1S&URft~ ,SOL.t O

P
Fi g. 3 (after Loper (l978a))

The fluid will s t i l l  be compositionall y and thermally buoyant but no conductive
f~~T 

‘
~ ,b r \

l ayer will ex ist for(~— - ~’--J<~~ ~~~

-

~~~
--) in such a laye r implies it is frozen solid. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~ • - --- -
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Here a slu rry layer for ms , a suspension of solid metallic particles in the

fluid above the inner core. The slurry contains enough solid materi al so that

the release of latent heat raises the ‘ d ry” solid free adiabatic gradient in

the s lurry layer.  (The meteorologica l analogy is immediate.) The inner core

grows through a “rain ” of heavy i ron-rich particles from the slurry layer above.

(The concept of a slurry was first introduced by Busse (1972), Malk us (1973) and

Elsasser (1972) to render the thermall y stabl y stratified core of Higgins and

Kennedy (1971) neutrally stable to the radial motions necessary for the geo--

dynamo.) If 
(.~f ~ ~~~~

-

“ )
~~~~~~~‘‘

-

4
~~ Cbslp, ~~’~~~ g~ I SO LI D

Fi g. 4 (after Lope r ( l978a))

The core is subad i abat ic and thermall y stabl y stratified . Heat is removed by

conduction and it may be , as Loper (l978a) assumes, that the fluid is compos i-

tionally buoyant enough to overcome the stable temperature gradient and con-

vect gravitationally. Since the tota l heat transported arises from heat conduc-

tion down the conductive gradient as well as heat transport by convection , the

buoyant convect ive motions may transport heat radia l ly  inwa rd to make up for
the excess heat conducted outwa rd by the adiabatic temperature gradient.

A Simp l e Model of a Slurry

Consider a sim p l e thermodynami c model of a sl urry i n equi l i brium . Wh i le

such a model is too simple for use in the earth ’ s core , it g ives a usefu l p ic-

ture for the behavior of slurries. A slurry of constant composition formed from

only one of a two-component mixture , e.g. a slurry of solid i ron (Fe) partic les

formed from a non-eutectic mixture of i ron and silicon (Fe- Si) can be described

by the following 3 parameters :

= mass fraction of slurry containing Si

= mass frac ti on of the li quid phase contai ni ng on ly Si

= mass frac t ion of the sl ur ry wh i ch i s solid.

Then — 
L 

(1)

- --- -- - • ~~~~~-•-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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for the slurry consists only of solid Fe. The free energy and free entha l py
C are

F E - T S
C = E + P V - TS

The first law of thermodynamics for a mix ture of two substances is

dE TdS- .~p dV+ ,,i-~,dn , i ~~~~~
where n 1 and n2 are the part ic le  numbers of the two substances and ,U, ,

are the chemical potentials. Hence for (I)

— P~LV- 
s ) ~~÷ 

~
1-
~~
),~~L

d
~~ L + US -~.J~~

’ 
(2)

cLG V~~p -ScJT÷ ~
‘— 1 ) ., -’-~- L  aO

~L

where ~ ~ ~j
’ 

~~~~~~~~ 
= the chemical potential of the liqui d phase

[ ( i  ~~~~~~~ ~~~‘

- = the chem ica l potential of the solid phase relative to the l i qu id

phase. (Note LL~ = the chem i ca l potential per unit mass of the i th phase of
the jth substance).

Using the di f ferent ia l  form of (1)

dF~ — ~Jv- S~4T+ )u.LJn< -~- 
‘-

~~~~~~- . V a p _  ~~~~~~~~~ k
~~~~~~ L

t
~~~~~

uL.)r JY

Let if ,U~ S L i~ ~. U. ,u.~~~~.. ,A..t.~~~~) 
= the chem ica l potential above the equili-

brium li quids value. In equilibrium ~~~~~~~~~~~~~~~~~~ jj~~~~ and 1J~ 0.

G ibb’ s phase rule for this system implies ~ is a function of three variables ,

Expressions for ‘.~. ~
‘ and d 0(1. in terms of p, T and ~~.. are now sought ,

Since tJLp,T,ø~- ) :0

~~~~~L
)
P 1~~

’ L(11)pJco( L ~~~~~~ F~~ ,1T~ ~ 
(~)

Subst i tut ing for cloc 1.from (I) and solv ing for d ~~
‘ 
, and then aoc~

cA~L * £~ ( .t,o~~~~0 + 
~~~~~~~~~~~ ~ Pt (i~~)ro~~ 

ctT] (5)

~~~~ 
A

~~~~~~ P~~~~L ,T, 1 ~~~~~~~~~~~~~~~~~ 
d1- (~~~~~~~~/ü_i~~ ct~~J

~~ 
(6)

where 
~~~~~~~~~~~ 

.~~:~!_ 
~~~~~~~~~~~~~~~~~~~ 

~~ -- -- •
~~~~~~~~

- -
~~~~~~~~~~~ ~~~~

- --
~~~~~~

- • • -

~ ~~~~~~
--

~~~~~~~~~~~~~~~~~~~~~
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~~~~
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These differentials are valid within the slurry ; outside the slurry
d~ ~J a n d cL~~— 0 . Separate differentials inside and outside the slurry

wil l  lead to discontinui ties in the fluid properties across the slurry edge .

For examp le , consider the entropy S

(7)

Substitutes d~cX~ and J~’ from (6) into (7)

- -~~ - + ç~~~j  s’~”~v ~~T t’AL.)P’ sL L1Ri~i
where -

j— c,~ i_ ~~~
_ ’•

~ ~it7 ‘
~ZZ \ ~ i~’ ~~~~~~~~ ~ (8)

- ~ ~~ ~( ~~~~~~ ‘~P ~~~ ~ 
L 

~~
These discontinuities across the slurry edge are due to the change in specific

vo l ume (proportional t0 (_~-~L)~~,~~7 ) and the latent heat absorved (proportional
due to the presence of solid matter in suspension .\ ~.‘T ~~~~~~~~~~~~~~

The dry adiabatic temperature gradient is given by

~P ~~~~~~~~~ (from use pf a Maxwe l l
c~

relation in (1)). By ana l ogy, in the slurry we could expect the “wet ” ad i abatic

gradient to be
— _ ‘ \ ~ 

p 1Si.ui~~y (~)L c9p ‘SLL4~~~y

These gradients diffe r because a fluid pa rcel moving into the slurry

freezes out solid particles and releases enough laten t heat to raise the temper-

ature to tne liquidus. Normally the dry adiabatic gradient require s a tempera-

ture less than the l i quidus. Hence in the slurry the liquidus should also be

given by (9) as well. Therefore

/aTL) tO _ I _ !A~’~ ~.cf~1~M
OP / ~ ~P I 

— (Cp)SLU4!y I ‘. ~~ ~ 
)s~’~’~”y \ ~ 

p / j~ 
,
~,. .1-

(10 )
L 

— ____(Cp ) I ~’%y \’~L 4 à J  ,
~~~° ( P  ~~~~~~~~~

For~~~.~~~ ( ‘- = constant in homogeneous slurry) , (6) imp l i es :
.~
i_ _ Lrf~ tL’~ + - -~m L!1 t Jj I .~

.LT
~- 

°‘
~~
. L~ 31’ ~~~~~~~~~ 

3 T J y c... p ~4p. 
o~~ a 

~~~~ ~~~~~~~ ~~~~~~~~~~ ~~~~~~~ /
-‘ (11)

- .-~~~~-- 1( -~~~~~~ -
‘

~ — ~~~~~~~~~ t~
-.‘... 4.~

)s
~~~v [L ) p ~ 

~~~~~~
- -—

~~~~
- - -

~~~~~~~ 
---
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‘~ombin ing (10) and (11)
di Cr — ~~~~ (12)- 

(.~2) ~~~ L~ ~ ~~~3T r.* . P
If the l i quidus is greater than the adiab atic gradient , the mass frac-

tion of solid in the slurry increases wi th pressure (md depth) and the slurry

rests at the bottom of the core . On the othe r hand , if the oppos i te is true ,

the slurry will occur in the outer core . Finally, by the Maxwell relation ,

~

~ ~~‘j~ 
I T, N ~ . ~ M ) p ,T

where N is the particle numbe r and cY is the specific volume . Hence

( ~~‘~~&.\ - 
~~~~~ ~J 7• ~ J — ~~~~ (13)

\~. ~P /~~M ~~‘Ir”~ ~~~~~~~~~~~

since ,M.~~ = chemical potential of the solid relative to the l iquid and

= ..
~~ — . Therefore

~~~~~~~~~~~ 
> 0 implies parti cles are l ighter  than surrounding l iqu id .

1N

~ . 0 implies particles are heavier than surround i ng li qu id.

For 
~~~~~~~~~~ ~ 0 and .-~ -L ~ 0 particles can accrete on the core and com-

~~~~ 
/1v . ‘~.P . .positional buoyancy will maintain the surrounding fluid in a homogeneous state.

However i f ~-~:t..
\ .

> o or 
(
~~~~ S~ 

)
~~N 

~ Q -~ - ~ 0

the s lurry  layer w i l l  gradually become stably s t r a t i f i e d  by sed imentation and
thermal l y driven convection by latent heat re lease w i l l  be the only way of
driving the dynamo.

The slurry laye r imag ined to drive the gravitationally powered dynamo

differs from the one created to a l low therma l convection in the thermally sta-
bly stratified core of Higgins and Kennedy (197 1) .  The first slurry ori g inates

from a binary alloy on the metallic side of the eutectic , thus allowing composi-

tional buoyancy; the second slurry consists of one metal and contains enough

sol id  material to ra ise the dry adiabatic temperature gradient to the liquid

and allow convective motions. Of course the slurry in the gravitationa lly-

powered dynamo performs the latter function as well.

Loper (l978b) has concluded that the accreting core can supp l y as much

as 1.76 1 012 watts , enough to drive a large dynamo. He notes tha t the frac ti on
of heavy material alloyed with light material in the frozen solid plays an

-



r ~~~

- -

i mportant role in qravita tiona l energy release for once the composition in the

outer core has evolved to the eutectic , further inner core growth will not re-

sult in separation of li ght and heavy material and the gravitationall y-powered

dynamo wil l cease to function .

Conclusion

Some possible therma l reg ime s of the gravitationally-powe red dynamo and

the qualitative behavior of a slurry have been examined. The direct non-therma l

stirring by compositional convection lends the gravitationally-powered dynamo a

large efficiency , defined as energy delivered to the kinetic mode over total

energy delivered . Loper (l978b) has concluded that the efficiency may be as

hi gh as fifty percent. Further work along these lines would seek a suitable

dynamica l mechanism for the gravitationally-powered dynamo .

It is interesting to note that in the thermally stable stratified reg ime

,~ (~~ 4 ) ~~(ai!!~) wi th  an unstable composi t ional  gradient double

J i f f us ion  can occur. Any time gradients of two fluid p roperties with different

mo l ecular diffusivities are present and have opposing effects , double diffusion

can take place . Since the therma l diffusivity is much greater than the mo l ecu-

lar diffusivity of i ron in an Fe - S or Fe — Si mi xture , an i ron—rich parcel dis—

p l aced downward will lose its heat faster to its surroundings than its i ron -

it will be heavier and continue downward . Large scale “iron fingering ” in the

core coupled with the Alfven or MAC wave mechanism in hydromagnetic fluids could

lead to collective instability and convection ana l ogous to interna l wave - salt

finger ins~~ bili t j e s (see The Collective Instability of Salt Fingers by J.Ho l yer

in th e ; me volume). Perhaps further work with double-diffusive experiments

mode l l~ -~i co ndit ions in the core can shed more l ight on dynamica l mechanisms in

the gravi L~ tio nally-powered dynamo.
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STRANGE ATTRACTORS DUE TO FEEDBACK IN POTENTIAL SYSTEMS

Dav i d C. W. Hart

We consider systems of nonlinear ordinary differential equations of the

form
( i )  X + ~/~~~~‘*~ 0

(ii) A ~ ~~~~~~ + o
where x and ~ are scalars and the “potential” V is a polynomial in x (a “cus-

poid” , (8)), and .~ .. is one of its coefficients. The dependence of x on V , of

V on A. , and of 7~. on x prov i des the “feedback” mechanism of the title. We

have been pa rt i cu la rl y concerned with the systems

~. c I & 4 ~LX.

~1’) . 
- 2. 

-

A~ — .-\ ÷ ~~~~(~~ 
—

~~~ )),

A
(Z)

The equations modelling a large number of physical systems can be put in this

form. Examples include the Lorenz-Sa l zman model for B~nard convection (6), which

can be transformed to Eq. (l), wi th cc = 0; the Bullard-Howa rd-Ma l kus model for

the geodynamo (7,9), involving the same equation ; the Moore-Sp iege l model for a

Bouss i nes q fl u id wi th a li near restori ng force (I), which can also be transformed

to Eq. (1), but wi th the roles of A . and S interchanged in V , ,~ = 0, and the

function g(x) = x3 - x in the second ( A )  equation ; and the generalized van der

Pol osc illator of Rossler (10), which can be transformed to Eq.(2).

As we are interested in the assymptotic behavior (as t —~~~o) of solu-

tions , we study the isolated invariant sets , particularl y those -which are loca l-

ly stable (attracting), a l though exchange of stabi l i t y associated with bifurca-

tion (as C varies) forces us also to consider sets which are not assymptot ically

stable (of saddle type , for example) . The most mathematically interesting be- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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havior occurs when C is of moderate size , say .1 - .5 (t he other parameters

are between 1 and 10). For this reason , we have favored numerical and geometric

over perturbation methods.

By “strange ” attractor , we mean one which is not a differen tiable mani-

fold - so not a fixed point , limi t  cycle , or surface of any dimension . Such

sets have been extensively studied since Smale ’s work on the horseshoe (II),

which has the structure , locally, of the Cartesian product of a Cantor set ,

times i t se l f , time s a line interval. Preliminary numerical results seem to es-

tablish that a somewhat modified horseshoe is present in the system (2). As-

suming that this is indeed the case , the method s of symbolic dynamics (2) esta-

blish the existence of infinitely many periodic orbits , collectively attract—

ing thoug h individually unstable , as well as an infinite numbe r of other recur-

rent orbits in the same set. This situation , referred to with some justice as

“chaotic ”, has been proposed as a model for turbulence (11).

The existence of a different type of chaotic invariant set for the system

(1) with = 0, attracting for .1 
~~~ £ ‘~- .2, has been established under some

mild geometric assumptions (the “geometric Lorenz attractor ”, (3)), and also

from numerica l work giving apparently qu i te reliable estimates for an asso-

ciated Poincar~ first-return map (5). Moreover , the geometric Lorenz system

has been shown (4,9) to be structurally unstable of cod i mension two - mean ing

that although a perturbation of these equations produces a f low which is not

“topolog ica lly  equivalent ”, in that it has a d i f ferent  (though s im i la r )  phase
por t ra i t , the resu l t ing  system is equivalent to a member of a two-parameter

famil y of f lows , obta ined as fol lows : For C between .1 and .2 , the system (I)

has three cr i t i ca l points , a node at (0 , 0 , A ) and two foc i at (± ( ~~~~~~~~~~~~

o, .~A_ ), of unstable dimension 1 ,2,2 respectively. The unstable manifold of

the node loops abou t the two foci; one forms a sequence w i th  an 0 for each
loop abou t the focus w i t h  negative x-coord inate , and a I for each loop about

the focus whose x coordinate is positive . These “kneading sequences”, wh i ch

may be regarded as bi nary ex pans i ons fo r numbers between zero and one , com-
pletely determine the dynamics of the attracting set (9).

The methods of (2,5) were used to show that a strange attractor also

e x i s t s  for ~~ 0 , and that one may mani pulate the two knead ing sequences by

va ry ing £ and S , thus providing a concrete “unfolding ” for the Lorenz sys-

tem , that is , a particular realization for the two-parameter famil y of nearb y

sys tems. 

--- -.-•-- -• - ----
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The hi gher-order cuspoids wil l  also , with appropriate pa rameters and

feedback , exh ib i t  strange a t t rac to rs , since they “contain ” the ones discussed
above.
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BAROTROPIC AND BAROCL INIC SOL I TONS

Hisash i Hukuda

1. Introduction

Since Maxworthy and Redekopp (1976) presented the solitary Rossby wave

theory as a dynamica l model of the Great Red Spot observed in the Jovian atmo-

sphere , there is no doubt that its theory has become “nouvelle vague” in the

field of pla netary atmospheric science. Redekopp (1977) developed the genera l 
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theory on the existence of so l i ta ry  Rossb y waves (p lanetary sol i tons) in the
zonal shear flow on the continuously stratified atmosphere and showed that the

evolution equation of solitary Rossby waves is the Korteweg de V r i e s  (KdV) equa-
t ion or the modif ied KdV (M KdV ) equation depending on the d i s t r i b u t i o n  of den-
sity stratification . Redekopp and Weidman (1978) studied the interaction of

two planetary solitons with a motivation to model the phase shift observed in

the in teract ions between the Great Red Spot and other waves and showed that

these interactions are described by a coupled KdV equation .

On the other hand , there is no evidence , so far , that so l i t a ry  Rossby
waves may real l y exist in the ocean. However , it seems to be not so unusual

that we expect the existence of these waves and their interactions also in the

ocean.

The solution for a single mode of solitary Rossby waves in a two-layer

system was shown in Hukuda (1978). We attempt , in this report , to extend the

same theme to the problem of interact ions between two modes af ter  Redekopp and
Weidman (1978) . The motivation for this problem is also related to what hap-

pens in the interaction of barotrop ic and baroclinic modes , the theme unexp lored

up to date and with an i mportance in understand i ng the large scale energy ex-

change between upper and deepe r fluids in the ocean.

2. The Derivation of a Coupled Evolution Equation

The basic equation is a two-layer vers ion of the conservat ion of poten-
tial vorticity. It is written below in a nond i mensional form.

~~~~~ + Un r ~~~ ~~~~~~~~)}~~~~~
2.
~~~~~~~~ F 

~~~~~~~~~ ~~ (2.1)

with boundary conditions:

‘f’ ~~~~
0 c~.t (7, 1.

~~~~

where ~~- = 1 , 2 and = 1 , c~ = -1 . The subscript h. = 1 , 2 refers the

quantities of upper and l ower layers , respectively. The nondimensional para-

meters have the definition :

I. : (the interna l rotationa l Froude number)

- (the so-called B parameter) 

-- ~~~~~~— - • — - --- -- -- - - -~~~~~~~~~~-- - - - — - — ~~~~~~~~~~~~~-- 
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Equation (2.1) is derived from Pedlosky ’s (1970) by the transformati on

[ )J~~~_J Li~ ( y ) d ~j +~~~
cp

~ 
(x ,~j,~~ )

( ~~~~~~~~~~~~~~~~~~~~~~~~

where LJ~ ( i ~) denotes a basic fl ow , ~~~~ a perturbation stream function and smal l
parameters E~t.ç’...<i) measures of disturbance amp litude and length scale , re-

spect ive l y.

The asymptotic solution of (2.1) may be written , after Benney (1966) , in

the form
E #~~~

‘°‘
-+ ,a~ 

~p
(o. ~~~ (2.2)

By subst i tut ion of (2.2) into (2 . 1) ,  we have the lowest order prob lem .

~~~~ 6F(~ ’~
’ ~~~~~~O)

)

~ ~ ~~~~~~~~~~~~
_ u~ ~~ v~u,-u2)÷ ~~) o (2.3)

Equation (2.3) has generally modal solutions 2 x oo for an arbitrary trave l-

ling wave. ‘We study the interaction of two modes by writing the solution of

(2.3) in the form

A t)
~~ ~~~~ ÷ ,A (x,t)f~~ (tj ) 

(2.4)

Suppose that
-C , A,~ . t0~~,~ t’) ‘I

(2.5)

~~~~ 
— C 2 A 2 ÷O(~,,U.’)

where C 1 and C2 (C
1 ~ C2) represent the phase speeds of differen t long wave

modes.

Then the moda l functions must satisf y

~~~~~~~~~~~~~~~~~~~~~~~ 
-
~j~~~~~~f~~) -0 (2.6)

~~~, L (i.: .‘~2

where P,~; 
(J~ + 

~~~~ 
F(u, -u2 ) ,~. /3

For later conven ience , we introduce the linear operator:

.Dn f ~ y~] ~(u~ - ~~~~ ~~
E ~~~~~~~ ~~~ 4~n~J.

Before proceed i ng to the next order , we note the orthogonali-t y condition im-

plied by (2.6)

~~~~ 

— ~_ o .  (2.7)
~ SI L/ ,,— c , ‘-J~~

-C
~~

The problems of O(~ )and O~u
’)are:

_
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- 

~~ ,io)

~~~~~~~~~~~~~~~~~~~~~~ )]÷Pn~~z

- - F (~
‘
~~ ~~~~, ~~~~~ J 

(2.8)

1d 1 (I~~A~~) [~~ ~ €~~(f 2 H~ J
—k 2 (A ; A3 ) [~~~

+ ~~~~~~~~~~~(~~~2~~~-ç ,1)]

C~~ F ° 
~,‘°“~)]~ 

p~

(2.9)

L2C&~ ~~~~~~~~~~~~~~
In the above , Eq. (2 .5) was w r i t t en :

~~ ~~~~~ ~~~,L -~~ O~~~~) (7 .10)

4~,t~~cA~~ G )~~~L~ (A 2~~o(~t) )
This means that amp l i tudes of l inear waves must be modif ied by the ef fect  of
nonl inear i ty and dispersion (Benney (1966)) .

K
~ 

and L
~ 

generally have the form :

~~~~~~~~~~~~~~~~~~~~
~ (~

-
~~~ ) S~ ~~~ ~~).

By inspection , the solutions of Eqs.(2.8) and (2.9) are

ço~’°’~ (A~ /z)~~ n 1 
s ’~~~~~~/ z)~~1,1

-2 ~ A~?~Z 
(~f l 3

(2.1 1)
1~
°
~
’
~ ~~~~~~~~~~~ ~~~~~ +A 2,.~ ~~ )

The modal functions must s a t i s f y  the sequence of inhomogeneous problems :

Dn [~~11 
~~~~~~~ 

$. ~~~~~~~~~~~ -
~
-

~ un-C ’
~ J!Pn fnt~

’_ ~~~ + .! ~~~n l -r9
‘~n1 ~~ ‘ i ~

-:-
~~~~ ij ,,-c , 5 n’ ~‘i% L1.~

. 
~~~ , 

21 U~~~2 (2 1 2)

i~~ n31
: 

~~~~~~~~~~~~~~ 
~~~~~

7
~~~~

1

S ~~~~ ~~ 
+ V L% 
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D,.,, 
~~~~~~ -

~‘f’~ — (un- ~~~~ ‘I
____ (2.12)

One can show by us ing the so lvab i l i t y  condit ion and the orthogonality condi-
t ion (2.8) that

I /

~ I ~~
_‘I d ,y

-.~~~~~~~~ tJI%..
~~ \~U

/ (2.13)

~ ~
‘/ 4~ p ~ — ~~~~~~~ ~ -

.

- ~~~~~~~~~ Un~
CIL ~~Ufl~~~~J U~-c ,J
8 /

where

a~ — J ,~; (U~-C~~~~! (~
‘
~ I~2)

These are necessary conditions for the solutions of inhomogeneous prob l ems
(2.12) to exist. The above process to determ i ne the coefficients also shows
that the terms includin g rtj , 

~~ 
(t~*j)are redundant. Thus , we can set

~~~~~~~~~~~ (~~~j),Y ; ,w3~-V~without the loss of generality.

Now, to th i s order , the wave amplitude equations take the form ;

A 1~~+C ,A 1,~~ E~ ,A,,A ,x ~~~~~~~~~~~~~~~~~~ (2 14)

~ z,t +C1A 15~ - ~~~~~ + ~~~~~~~~~~~~~~ ~~~~~~~~

Equation (2.14) is a coupled KdV equation , if one takes ~ =,2.4.~, which was de-
rived by Tedekopp and Weidman (1978) in order to study the interactions be-
tween d i fferent long wave modes. However , as was shown in Hukuda (1978), a
special situation yields vanishin g coefficients in the nonline ar terms of the
KdV equation . This occurs when one considers a pu rely baroc linic mode in the
vertical ly uniform mean shear. In this case , one has the ei genfunction
.~~~ . :—f ~ for a baroc l in ic  mode. A sim p l e exam i nat io n of the coeffic i ent s 
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(2.!3) shows ~
- 

~ ,) for this mode. Therefore , Eq .(2.114) cannot

descr i :e  the interact ions of baroc l in ic  modes in th is  special  but in terest ing
case. One should proceed to the next order (O (c.~)) for the completeness of sol i-
ton morphology .

When proceedin g to the 0(C) , we have
r

“~ L~~, 
+ ~~~~~~~~ ~~~~~~~~ P~ 40

( d , s)-~
~~~~~~~~~~~~~ a~ -~~~ ax) L~ ~~c -  ~~~~

‘ °
~ )1 (2.15)

~~~~ r ~~— (~~~ 
d~ - ;~ )1 q’~~ tC-~~~~~~~~ ~

E~

where Eq .(2 .lO ) was wr i t ten

A , + C1 A ,~ - £~ A , A3)+~~ L , (4, ’
~ ~~~~~~~~~~~~~~~~~~~~~~~~~

+ c 2 ~~~~~~ ~~ ~2(A~A + L 2 (i4)~ ~~~~~~~~~~ 
.
~
. o(t,~~, ,

~
‘)

with a genera l form of /tZ( ,-~\ LA ;/~k)

1 ATA ,~~
+
~~~4:,4~~ +X~,A~ A11~ *

~~~~~~ ~~~~~~ + ~~~~~~~~~~ 
C i

The solut ion of Eq. (2.15) is
(2.b? 

~ço ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2.16)

By substituting (2.16) into (2.15) and repeating the same process as before ,

one can show that the terms includ ing o ,.J, X~ j ~~~~~~~ (L*j) are redundant.

Thus we obtain the sequence of inhornogeneou s equations which X~~(~:I~4)

must sat isf y.

c ( ~~‘ ~ I 3 
______ ______ _____

~~~ ~~~~~~~~~~~~~~~~~~ —~ c~ 
--

~~~~

~ )

~~~
[x flt]-

~~~~
f I- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ (v~-cjft~ z un-cl (2.17)
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ O~.C ,)

.E~,2[X~,] ~~~~~~~ 
~~~~~~~~~~~~ 

+ fn~ ~
n
~(iZ~

’E )
’ 
~!3~ ~

F~ 
~

‘

~

‘ 

~~

‘ 

5fni~
f
~i c .~ f_L_ _L_’~~ ~~~~~ C, \ t/TI~ C I / .) + u,,—c , I. ~ (5 L~,~_ C~ LJ.,-C , J J  2.

~~~ ~~~~~~~ 
P~~~~~ f (

p .
) — 

~ i. ~ (2 .1 7)

~~~~~~~ ~~~~~ 
—

I — 
/ r,,’ ,~~

. 
I’,,-f.,1 t’ L..L._ I ~~ ~

‘

~~ 
J ~~~~~~~~~~~~ ~j~~C~I T~ t &v~— c~ \u,,.c, /

— -I. 
~~~~ ~ Un - C2.

wi th  the coeff ic ients

F 
+ i~~~7 ~~~~ ~

]
~ r~ ~~~~~~~~ fI;’~2~

_ (—L ... j-
_!!! _. ‘~~ i~1 ~~~

~ 

,

~~~~ LI t~-c, \ t4,- C, I ~ ~~~~ ( u,~-c iJ.un- C,~ .i ~________ - - 

13
(2.18)

— J 
~~~~

, [~ ~~~~~~~ ~I (J:~:)
’ — ____ 

+ _______ ______

t 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

+ ~~~~~~~~~~ 
— = ~~~~~~~~~ 

~~~~ ~

X2.~ [the subscri pts I — 2 or 2 —b I in the above]

(
“ . f f ’~ 

/ f 5 ( r~ ~~~~
.

~~~~~~~ / ~~~~~ t,._ %J,~~C~ 1

~~~~~~ ~~~~± ~~~~~~~~~~~~~~~ ~~~~~~~~~~~
CA) _______ 

.s,,-c, LL’~-c ,~,. .J~-c 2 ) (h,-C ,~’~ )I —- - - ---C
I

-- - _ _ _ _ _

the subscripts 1 —42 or 2 —~‘l in the above
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Now , to the order of ~~ , wave amplitude equations take the form:

A ,,t + C tA ,,z :6(~~~A ,A %, ic1 ))I,4LA l x
’
l *  ~~~~~~~~~~

(2.19)

A~e4C2,4~ c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note tha t the terms of O(€~)have a meaning only if the terms of 0 (~ )van ish

(i.e. r~ :V,.~ ~ ) and then the evolution equation appropriate to interactions

of such modes is a coupled Mkd V equation with the balance

3. The Classif ication of a Different Type of Interactio ns

Once given a coup led evolution equation , one can c lass i f y the d i f ferent
types of interactions between planetary solitons and constitute a possible fea-

ture of interactions. This is summarized in Tables I and 2.

TABLE I

MEAN SHEAR U) “~

Type of interactions B.T.- B.T. B.T.- B.C. B.C. - B.C.

Type of evolution KdV - Kd V 7 Mkd V - MkdVequation

TABLE @ 
- - _ _______

MEAN SHEAR 
-- 

~ II_~i~ ~~~~ —— -

Type of interactions B.T.- B.T. B.T.- B.C. B.C. - B.C.

Type of evolution
equat ion KdV - KdV

B.T. = Ba rotrop ic Mode

B.C. = Baroclinic Mode

Table 1 shows the types of interac t ions and evolu t ion equa ti ons in the
absence of mean vertical shear. The interactions between barotrop i c modes obey
a coup led KdV equation . On the other hand , the interaction between ba roclinic
modes is described by a coupled MkdV equation . In this special case , the inter-

F action of ba rotropic and ba roclinic modes is not possible , for both modes obey
a differen t type of evolution equation .

However , when- we consider a more general situation , tha t is , a ba ro-

c l in ic  mean state , the above feature of interactions changes drastically.



rr-5 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- -- --

- 55 -

Table 2 shows the interactive feature in such a case. There , the interactions

between every pair of modes are described uniquely by a coupled KdV equation .

There are two types of interactions depending on a type of evolution

equation . The solut ions of these coupled evolution equations are obta i ned by

following the theory of Olkawa and Yaj i ma (1973).

These solutions and phase shift formulae are shown in the Appendix.

Type 1 describes the interact ions between every mode except for pu re l y baro-

clinic modes and agrees with those of Redekopp and Weidman (1978) but for the

difference of coefficients. Type II describes the interactions between purely

baroclin ic  modes and d i f f e rs  from Type I in the form of phase var i ables . In
the latter type of interaction , the phase of one mode is not onl y related to the
phase of another mode , but a lso to i ts  own phase. This is because the MKd V

mode is strongly nonlinear compared with the KdV mode.

In orde r to substant ia te these interact ive features , we need solve the

digenva lue prob lems and evaluate the va lues of coef f ic ients  Y ,  , etc. However ,

th is  is beyond t he scope of the present report.

4. Summa ry

A coup led evolut ion equation which describes the nonlinear interaction

of solitary Rossby waves in a two-layer system was derived . Two types of inter-

actions were classified depending whether these interactions obey a coupled KdV

equation or a coupled MKd V equation . It was shown that , except for a special

s i tuat ion , a coupled KdV equation described appropr iate l y the nonlinear inter-

action between solitary Rossb y wav es .
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Appendix
The solut ions of a coupled evolution equation and phase sh i f t  formu lae

are show n bel ow :

TYPE I
Evolution equation :

A ,,~
t C,A ,,x ~~~~~~~~~~~~~~~~~ S;iA i,.,~ ,c)

A5,~-+ c~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

Solution :

A ,~~ A0 S~~r~f r , S, ) s e c J ~
2 

~,

where

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ~h~ I~fr 
- vj-.E

4 
~~~ ~~~ (r Si)

wi th
vI~~ c,-~~

y1:

I n the above , (X ,TI represen ts the origina l coord i nate

phase shif t 5

= 2. & S ~ r~ $2) j ~
d~ 2 é ’

~ 
~~~~ ~

S ,) 1J~ j 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5---- -—
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THE COLLECTIVE NSTAB I LITY OF SALT FINGERS
Judith Holyer

1 . Introduction

The salt finger mechanism was first discussed by Stomme l et al. (1956) ,

when it was considered an oceanographic curios i ty of little practica l or sci-

entific i mportance . Since this time the subject of thermohaline convection has

been studied both theoretically and experimenta ll y by a number of authors and

it is now believed to be a feature of major i mportance in transport processes

in the ocean. Williams (1974) has observed salt fingers in the ocean thermo-

d ine and it is thought that the step structure in the thermocline is maintained

by double diffusive processes .

Salt fingers can be formed when a laye r of hot , sal ty fluid lies above

a layer of cold , fresh fluid of greater density. It is possible to get a phy-

sical understanding of this instability by considering a blob of cold , f resh
fluid in equilibrium with its surroundings. If we lift this blob of fluid it

will move into a hotter , saltier environment. Since the therma l diffu sivity is

much larger than the salt d i ffusivity, the blob wil l  first come into therma l

equilibrium with its surroundings. However , it will still be fresher , and hence
li ghter , and so it will continue to rise. By an equiva lent argumant , if a blob

of hot , salty fluid is moved down in the fluid i t will continue to fall.

The problem we wi sh to consider here is the stability of these salt fin-

gers to large wavelength interna l wave perturbations. Stern (1969, 1975) first

stud i ed this instability, wh ich is known as the collective instability of salt

fingers. This is because energy is fed from the groups of small scale fingers

to the large scale wave motion . In his stud y Stern (1969 , 1975) does not ex-

p l icity i nvesti gate the coup l i ng be tween the sma ll scale and the lar ge scale
mot i ons. He takes the averaged momentum , heat and salt equations and then re-

la tes each of the terms to the large scale. In order to do this he assumes

that the Reynolds stress is negli g ible and that the salt fingers are rotated

by the interna l wave , but tha t the magnitude of the fluxes associated with them

remains unaltered . He then finds that the fingers are unstable if

~~~~~~ ~~~/3S~)
where F~1 and a re the heat and sal t f l uxes of the sal t f i ngers. ‘~? is the

k i nema tic viscos ity of the f lu id  and~ <T~ and are the heat and salt gra-

dients in the fluid.

-; 

I 
_ ~~~~ 

i I T - / -~ 
~~~~~~~~~~~~~~~~~
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In the work presented here we study the collective instability , but we

explicitl y consider the coup ling between the salt fingers and the large scale

motion . Including all possible coup lings , we find there is instability if

U~-F7) > 
~ F

Thus , we find that Stern ’s assumptions were not correct , although the form of

the stability criterion is the same .

2. The Salt Finger Solution

Suppose we have an unbounded reg i on of fluid which has a stable linear

tempe rature gradient , T~ , and an unstable linear salt gradient , S~ , with

the overall density statically stable , i.e. increasing with depth. The coord i-

nate vertically upwards shall be taken as ~ and the horizontal coordinate shall

be x. We shall consider onl y two-dimensiona l motions , so we can define a

stream-function , ‘f’ , by
2 1U. — -

~i:- 
_;
~
-
~~

-

where u is the horizontal veloc i ty and w is the vertica l veloc i ty in the fluid.

The temperature field , T’ , and the salinity field , S’ , will be given by

T ’= T.a z + T(~x.,i,t)
(2.2)

+

The densi ty f i e ld  w ill be given by

p p (i_ (~~T~- ~~~~~~~~~ 
_ ( T_ ,~3S~ (2. 3)

The two-dimensional equations of motion can then be written as

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

if. ÷ ii’i’.T)-~- -1~ ~~~~ ~~~~ T (2.14)

~ (q’ s) -~. ~~~~~~~ 
-: K5c7 

5
~S

where T ( 4’,q’) ~. ~~~~~ 
j—~ — -

~~
-
~~~

- -~-~j -  , the Jacobian :

and ~~~~~ ~~~~
- +-

~~~
-
~. . The thermal d i ff us iv i ty is and the salt diffu-

sivity IA 5

We now look for a steady solution to the equations (2.14) which represents
the motion in the salt fingers. We try a solution in which

-

~ 

-- --~~~~~~~~~~~~~~~~~~~~~- -— ~~
_
~

_ ____
~~

i__ 
- - - . -— ~~~~~~-- —-- — — - ~~~~~~~~-_- - ~~~~~~—--~~~~ — - ---5- -~~~- - - -
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~~s,n -~
. (2.5)

~~ A A 

S~~~~1~ -~-
where W , r and S are constants.

Substituting (2.5) in (2.14) we find (2.5) as a solution p rovided

~~~~~~~ 4~ .(o~
1_ /3~~) (2.6a)

A ~~

and ~ ‘~ AJ ; S =_ ~~~
_ !_ W (2.-Sb)

T S

These imp l y Sc;--
k~ k.T.

From (2.7) we see that we need

(2 8)ø~T~
for a solution to exist. Thus , as pointed out by Huppert and Manins (1973),

(2.5) with the relationshi ps (2.6) — (2.3) gives a steady solution to the

fully nonlinear equations (2.14).

The heat flux in the fingers is given by

where ( 3  denotes a horizontal average over long distances.

The n FT ‘~~ ~Z’.T ~~~~~~ — ~<W T (2.9)

Similarl y the salt flux

— ~~~~ — (2.10)

So ~~~~ — -
~~~~~

-
~~~

-- (2.11)

By (2.6b) we then see

EL~~~~~~;3Sa .~~~~~~
FT

There is a further usefu l relationship. If we multi ply (2.6a) by W and use

(2.9) and (2.10) we find

1... (~~~-F1.) (2.12)
2e V

Th is equation expresses the balance between the buoyancy flux and viscous dissi-

pation flux. From (2.8) and (2.11) we see

_ _
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-

is the ratio of the potential energy lost by the salt field to that

ga~~ed by the temperature field , and so must be greater than one , since other-

wise the system is gaining energy. From (2.12) we see tha t the energy that

is not ga i ned by the temperature field is dissipated by viscos i ty.

3. The Averaging Procedure

We now suppose

14/ ::.~~~~~~ ‘C.vS 
~~~

- ~~~

7 Tg,n -

~~~ ~~
T~~~/ z f )  (3.1)

~~~= Ss~
f l _

~~~5 - \~~~~t) --

Substituting (3.1) into (2.14) and l inearising gives

‘
~~~v~~)~~ *—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 3 . 2 a )

(~~
_ f~c~~,1)TT .

/ 
~~~~~~~~~~~~~~~~~~~~~~~ (3.2b)

(_~~_~4sV~)S ~~~~~ ~
. 

~~~~~~~~~~~~~~~~~ ~~~~ (3.2c)

We now wri te the Eq.(3.2) in the operator form

Lu. .M u. (3.3)
where L is the operator on the left—hand side of (3.2), !~ is the “rapidly

vary i ng” operator on the right-hand side of (3.2), which is due to the salt fin-

ger f i eld , and A Z  ( l , S) T.

Since the coefficients in (3.3) are independent of z and we can find

solutions with - -
e (t.~. ~~~

where ni is a vertica l wavenumber and ~ is the wave frequency . Now we wish to

consider perturbations , &.~. , which vary over a horizontal length scale much

larger than -C . However , the salt finger field forces mot i ons which vary on

a shor t length scale , .-L . So we put

u(z) -= LA.~~ (Z -~
. u.-~. (~

where u.m ,~~
..) is the mean part of the field , which var ies over a le ngt h scal e,

• , and 
~~r( 

t) is the rap i dly va ry ing part , which varies on a length scale ,
-
~ . For the mean f i e ld we shall look fo r wave sol ut ions

- - - -- - - - 
A
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The wavenumber of this wave is given by ,~~~. , whe re,AA.
a )ç~ -t- 

~~~~ It is

travelling at an ang le ~ to the vertical where

/~~ psin~~ ~.nd rn~~ ,t& cos~~~
.

The basis of our approx i mation will be ~~~~~~~~

We define a new coordinate system ( x ’ z ’ ) with
+ z ~~~~ (3.6)

~~

In this system x ’ measures distance in the direction of propagat ion of

the wave and z’ measures distance perpendicular to the direction of propaga-

tion of the wave along the wave fronts. Then

/ ø
~

- (~3 7)IR~ ~~~
~~~1

,1

We define an averaging operator ‘-. ~~ by

- , I~~rn ...L (3.8)
L.

Thus i... > represents the average of a quantity along a wave front. So. from

the definition , <~u,.,,> LA ,.,, and . Since L is a linear operator with

constant coefficients (‘—. -
~5 L~. j > , so ~~~~~~~ .~~ , and 4 L

~~~~ ,.1- = 0. Also
< ..Mq ) ~0 since the rapidly vary ing operator acting on a mean quantity wi l l

give a rap idly varying result. Thus , averag i ng (3.3), we find

L~~& ,.,, - u.,. ,
Subtracting (3.9) from (3.3) gives

Lu r~ 
/~1&~~ -

~~~~~~ r ~~~~~~~~~~~~ ~3.10)

(‘low we expect /tlur
_ 
<t1u~.) to be neg lig ible compared with ilM ,~since U,. is

assoc i ated wit h the leng th scale ~ and u,,, is associated with the length scale

Then , prov i ded p~~~~ ÷ , Eq.(3.1O) becomes

Li~r 
r1~~m 

(3.11)

This approx i mation is equ i valent to the first order smoothing of kinematic MHD.

I
- -~~ - - ---5 
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We verified the validity of this approx i mation when we had calculated u.,.,, and

U~. explicitly.

In order to solve (3.9) and (3 .11) we use the rela tionshi p that

1RC(&) 
~~e (~ )~~-~ ~1R (c~b)t ~~e(c~b~)) (3 . 12)

where denotes comp lex conjugate . Then from (3 .11) we find

~~ 

I/ (—I D , \

-~ (3. 13)LI r~ ~~~~~ ~~ , /e ÷ ~~ , J e

Substituting (3.13) and (3.5) in (3 .11), using (2.6b) and (3.12), and equating

coefficients , we find

/

_ (~w . ~~~)j ~~
2 ,4~ 4 

~~~~~ 
- ,3 c,) ~~~~~~~~~~ (2L~

_ 
-
~~~~~ 
),A (3.l4 a)

(
~
u+ tk~

).9÷T~(!. ~‘~A ~~~~~~~~~~~~~~~ (s÷ .L A) (3.l4u~

Lrv lw(~c.~+K g,L.~~) C , ÷ s~(-~.
_ k)A 4 — _—

~~
_- (C ÷ ~~ A ) (3.l4 c)

D, 
~~~~~~~~~~ 

~~~~~~~~~~~ 
~~~~~~~~~ ~~

)A (3 . l 5 a)

- iL. ~ ) (3 . l5 b) - 
-(

~~ th ~~~~’) E , + 7L ( t $ k) D ,~ ~th~’ (13 K-,.

€S,~ ~\ (3.15c)
~~~~~~~~~~~~~~~~~~ ~~~~~~~ ,~

~,- ‘S /

where 1.
+ r*-~-

By substitutin g (3.13) and (3.5) into (3.9) we obtain

L~~Z ’ / 2

— ~~~~~ - - 3 C —i-- ((
f
~LL~ 

- -
~~~) 

A ,~ 
\ (3. 1 6a)

+

(L ~~l)+ <
~ ~

‘) ~~ ~~~~ :~
.!~~ ? ( 

~ ~~~ 
(3.l6b)

_ i.’!’?!’ (_
~~~

, — I
~
)_ �-~_2. (3.l6c)

Now (3.114) - (3.16) constitute a set of nine linear , homogeneous , simu l-
taneous equations in A , B , C . A 1 , B 1 , C 1 , D 1 , E 1 , and F1. Thus , in order for

a solution to exist , the determinant of the coefficients of this set of equa-

tions must be zero. This determinant wi l l  give the dispersion relation

_________________________________ —- - —-- - -5-  — --5—- 
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~, (P~,’ni) O.We can , in fact , somewhat simpli fy this procedure by solv in g
(3.14) and (3.15) to give A 1 , B 1 , C 1 , D 1 , E 1 , and F 1 in terms of A , B and C
and then using this to substitute into (3.16) . We do this in the next section .

We note here that it is possible to do the averag ing usin g a different
averaging operator and to obtain the same dispersion relation . If we define
.( ~

‘ as the horizontal )(. - average over distan ces 
~~~
‘ such tha t

i.e. ;/
l

then we obtain the equations Lu..,,-. -
~~ <

and L~’-~.

provided ,LA. <<

and the dispersion relation remains identical.

14. The Stability Criterion

We solve (3.14) and (3.15) for A 1 to F 1 and substitute in (3.16) , using

~ .j .. . We retain onl y the l owest order term in ILL. that multi plies each
coefficient. Then

-~~q~~C~~”’~ -~fl~ Ax) (4 .l a)

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

( + c ~~~
T

3~~~fA~~) (4.lb)

~~~~ \ S L4~~ 
C. - A — 

~~~

(.. ~~~~ ~ . ( L ~~~~
-4
~ 2

i-c 
(~cw+ 

)~~~÷~~ + ~~-~~
) ÷ ~ z) (4 lc)

where

P~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ l)3~acT z -~3S ~) —

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2..S1.

~~~~ ~~ ~~‘~ ‘(i~ ~~T t ~~~~~~~~~~~~~~~~~~ ~~4k~s~
’
) 

-— -- - — - --- - -5 - ---“-—- --- -— ---- -- -—-- -~~ — - -  - -- - -- --
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and .~ ~~~~ ~~~~~~~ j
y z — - -

~~~~~

- - - --

~ 
(2. oJ

~~~ 
— -~~)s -~~~~~ 

(~ -‘
~

-
~

-)  ~~~~ _4~~ )) .J
~~~~~~~~~ 

(~~P- (~u)-~~~~~~~ +~~~ (t~~~~~~~~- -~ ÷~~~~))

The condition for (4.1) to have a solution , for A , B , and C , is that the

determinant of its coefficients is zero. We make the assumptions ‘- “~~k1 and ]
~~ , which are reasonable for most fluids. Then we find to order ,~C tha t -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
t 1~ ~~~ o~~13~~~~~~~FV )-  T

~~~~~k~~]

~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~

*J~ R~J~+ 2(L 2 +~~~~~~(
’o T L ( I - f r t ) 4 .  

~~~~~
o(T3LF .I

~)

+ ~~~~~~~~~~ (~
_ 

)~~~

_

~~~ 
t 

~~
( •

~~~~~~~~~
)(• 

~~ 
(—p- ~; K1(i.... Ft ‘)

- w  
~ ~~~~a ~~~~Te

1
~ FI )~) -

- 
2 (~~w.~~~~~~)(~~~~~÷~~~~~~

) I ~~~ I~ ~~~ ~~~~ U-Fr)

- ~~~~~~~ (F r))] (14.2) 1

i ’ .. !i_ 
~).fld

~~

Now, if we want a soluti on of (4.2) with ~~ = 0 (1) , but not o (1) ,
then the only solution is found to be 

-

— ,i3 s~ + (14.3)

This gives a wave oscillating at the buoyancy frequency . It is necessary to re-
tain the small quantity ~~~ in (14.3) in order to consistentl y app ly the condi- J
tion ,~~L<< —~ -’ . The conditio n for instabili ty is tha t for (cj )~~ O . We then
find that the system is unstab le if J

_~~~~~~~~~~
-
~~~~~~ ~~~~~~~~ (r.ci~ + ~~~~~~~~~~~~~~~~~~~~~~~~~ (4.14)

I

-5 —-—-— -- -~~~~~~- - -- —- — ---5- -- — -— -  —------—---_-----5—~~~~~~~~~~~~~~~ -———-- ~~~~~~~~~-5-5 
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where
1~

— -s--— ~ —~~ -- - -
-- 

Mt -

and

)

aCs~~t’)~ ,~ -..
~
.(i- a~D)-~.e ~~~~~ x.~L ( l - p r) ~. k~/ * (s÷r)h.

g ac ÷ 2 X (  I÷t)(.i~.I)(i_ Ft-’ .)b ~L(,-PZ J e  +d( p~-ri
÷bh ~~~~~~~~~~~~~~~~~~~

with

- C~~p-~)~— ~ (F-t )(J-Fr)~1÷t~ . ~~~~~~~~~~
6

~~~ i- -i)’i. (F—ri ~; - t~

C(F J )(~~~t~) 2r(F I)CI~~( V ) ~~~~ ( t -  FITY

e. ~~~~~~~ X (l— F~V~~i-Ftt ) -2

3 I O V ( P  - F- L ) — i~ -~) (, -P r) —~~~(F-r )(i-. F t) ~- tD ~ i-~ t)

h ~r~(~-’)’ 4 3~~ t [~~~~ ;) ()1. ~C ( I - F r ) [ i o r ( F - I  )
2

~~. ~
(,_p

~~)
3- ;o ~F-t )(I-I c~ ÷~

In the stability criterion (4.1+) there are two independent numbers , ~F5 - F
and cos ’

~G , wh ich we are free to choose. The smallest value of —

to give instability will obv i ousl y occ u r whe n Co5~~~~ —~ I . This implies

I . The dependence of the stability criterion on X is somewhat com-

p l ica ted. In fac t , 
~~‘t 

.÷ s~) and (q~,
l .tX(F_))(~~_ F~~)p 2) are both quintic

polynomids in ~1 . Si nce -
~~~ 
(.< and -~~~ -)‘  I ,X(~ 

..
~~ 

.-
~
— ) may range from

zero to plus infinity.

If we let X—~oo in (4.14) then we find it reduces to the very simple

condition that there is instability if _
~~~ <!~ :~~ 5) ~ 

independent of

F and t . Now we w i sh to know i f there are any c i rc um s tances in wh i ch we ca n

f ind the system unstable for l ower values of

For sal t f in gers of hea t and sal t , I~~~ .4X~ so t ~~ < I. If we make this

~
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approx i mation in (4.1+) we find instabili ty if

_ _ _ _ _  X (~ t~+~~ +F (F - l ) ( 3 F - i 0) ]
Vo(-r

~ 
I.

>~~‘~(p- +~~(2F
”..2F÷i)~i. F

2
~1F~;)

It can be shown analyticall y tha t the minimum value of the stability criterion

occurs for ~.—-—- ~~~ and the system is unstable if ~~~~~~

The problem of salt fingers in salt and suga r is more comp licated since

0(J). We considered this case numerically. For salt and suga r

and it has been found experimentally tha t —~~ 0.90 ± 0.01 (Stern and Turner

1 969. We put these values in (4.4) and i nvestigated how it behaved as a func-

tion of x. The conclusion was that the minimum value again occurred for X—~oo.

Thus we find that any system of salt fingers is unstable to large scale

wave perturbations if
(4 5)

ci4 Tt / 3S ) ~

Having obtained this result it is possible to trace the problem backwards in

order to determine which terms affec t the final result. When we do this we

find tha t the Reynolds stress in the momentum equation (4.la) is neg ligible.

However , in the heat and salt equations , we find that the two forcing terms
A

—W~~~-~~ 
and -~-c~~ f -~

.
~~and equivalent terms from the salt equation are both

i mportant in determining the stability. Consequentl y, it is not correct to

assume that the flux remains constant in the salt fingers.

There are solutions to (4.]) other than (14.3). Another solution was in

fact considered , name l y
.~~~ Hp. (4.6)

For this solution the rea l and imag ina ry parts of the frequency are of the same

order and it was thought that this solution mi ght prove to be more unstable than

the wave perturbation which oscillates at the buoyancy frequency. This was not ,

howeve r , found to be the case. The system is apparentl y always stable to per-

turbations of this frequency.

5. Discussion

Having obtained the condition (14.5) for instability, we w i ll now compa re
it w it h some labo ra tory experimen ts. The f i rs t , and most relevant experiment we

shall consider is that of Stern and Turner (1969). They use salt and sugar rather
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than heat and salt as the two diffusing substances as it is experimentally sim-

ple . We shall still however refer to them as heat and s.~lt . They make a very

deep layer of fresh water with a uniform temperature gradient T Z > 0 and surface

temperature T~ o) . Another very deep l ayer of uniform temperature T(o) ~

and salinity ~~S is then placed above the first layer. The density of the upper

layer is less than that of the l ower , sooAT ’/3~~S. Salt fingers form at z - 0

as soon as the two layers are formed . The system is shown diagrammatically in

Fi g. 1

Fi g .l Fig .2

If the experiment is repeated , but with a smaller value of T~ , and the

same values of AS and A T , then initiall y  the salt fingers form as in Fi g .l.
Howeve r , after a short time the fingers between ? 0 and a — H become unstable

and g ive way to a well-stirred convective laye r , which is maintained by the flux

throug h the salt finger layer at 3 0 . This is shown in Fig.2.

If the temperature gradient T~ is reduced further the l ayer be l ow

3~~-W can become unstable. By suitable choices of the parameter LT , AS and

T~ it is possible to obtain severa l convect ing layers , each bounded above and be-

low by a relatively thin layer of salt fingers. Layers like these have been ob-

served in the ocean by severa l authors (e.g. Tait and Howe (1968 , 1971) and Howe

and Tait (1970)).

In order to compare this experiment with the theoretica l stability cri’-

ten on , it is necessary to know the salt flux . F , throug h the fingers. There

is a fairly well-documented relationshi p between F~ and AS (Turner 1967)

F5~ 
c(,~~ s ) ’~”

The number C in the relationship may vary with and . For heat and salt
T

experiments Turner (1967) found C = 10 1 cm/sec whe n ~~~~~~~~~~~ ~~with C decreasing

only slow ly as~~~j increased . For the salt and suga r system Stern and Turner 
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(1969) found C = l0~
’2 cm/sec from an experiment with -

~~
-
~~~ 1.05. Lambert and

Demenkow (1972) found C = 0 .5 - - - )  0.75 10-3 cm/sec from an experiment with

1.25. Thus for salt and sugar the salt flux changes quite considerab ly

and the salt flux is reduced for larger values of 2~-~~ App ly ing the re-

lationshi p (5.1) to Stern and Turne r ’s (1969) experiment , using their value of

c io 2 cm/sec . we find that if )S~~~T
F

$~~.~ 
2 ~8 the system is unstable and

that if ~ ).2. the system is stable. Considering the uncertainties

in the experiments the value for instabili ty of abou t 2 is close enough to the

theoretica l 1/3 for the instability wh i ch is observed to be the collective in-

stability.

The second experiment we shall consider isolates the thin salt finger

layer that exists between two convecting reg i ons . A very deep layer of uniform

tempearture 7, +4 E and salinity ~~~~~ is placed above another deep layer of

temperature Tb ~ ~~~ and salinity 5~— 4- . The system is shown in Fi g .3.

~~~

~~t~&fl ~ t~~bn ~~~~

—
t % }

ft4l~ ~~~~‘CCi~~ Fi 3

Linden (1973) performed this experiment using heat and suga r and he found values

F~ -F-,-of ~~~~~~~~~~~~~~~~~~~~~~~ ranging from 0.2 —p 1.9 in the salt finge r layer. The fingers
/ 

. _ _ _are observed to be stable thus tie theory of ~ 4 predicts that

should be less than 1/3 . The fact that the value actually obtained is close

to 1/3 suggests that the reg ion may actually be marg i nall y s table. Lambe rt and
Demenkow (1972) performed this experiment with salt and sugar. They found , using

-
~~ a mixture of theory and experiment , that ~ 2 x 10 3 for their ex-

.. T,~../ ~

peniments. This suggests tha t their salt finger region is very stable. The
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reason it is so stable is probabl y that they did their experiments at compara-

tively large values of~~-~-~- , which reduced the salt flux through the fingers ,

so making them more stable.

More recently some experiments have been done by Linden (1978) in which

he set up a reg i on of linear salt and suga r gradients of a fixed thickness. He

let this region develop in time and he found tha t , in some circumstances , the

reg ion became unstable. The reg ion developed convection regions sepa rated by

thin salt finger layers. There is some difficulty in applying the theory to this

experiment as the tempe rature and salinity gradients are changing as the expe r-

iment proceeds. However , if we take initial values , we do find that

~ (/3 is an approx i mate measure of whether or not the system wi l l

be unstable. —

So we see that the results of the experiments are not in disagreement

with the stability theory . We have shown here that the two-d i mensiona l salt

fingers will be unstable if _ ~
I_
~
__
) > 

1/3. The main result of this study

is that it has shown tha t the collective instability can be put on a firm foot-

ing, and does not have to rest on shaky physical assumptions . Before this in-

stability is fully understood it wil l be necessary to l ook at the energet ics of

the process , in order to see where the energy that drives the large scale motion

is coming from and whether this instability increases or decreases the hea t and

salt fluxes through the system.
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MEAN FIELD EQUATIONS FOR CERTAIN MOMENTS OF THE MAGNETIC FIELD
Glenn R. lerley

Introduction

A great dea l of work in dynamo theory has centered on the kinematic

prob l em of identifying classes of fluid motion that may generate magnetic

fields and it is now well-known that helical homogeneous isotropic turbulence

can do so. Kraichnan and Knobloch have separately shown that for a turbulent

veloc i ty field with large scale persistent he licity fluctuations but zero net

helicity, the mean magnetic field may be negativel y diffused to small spatial

scales . Equilibration of the magnetic field requ i res solution of the full y

interacting dynamica l problem and not surprisingl y, much less can be said

abou t this. In the first part of this paper we find the kinem atic mean field

equation for the Lorentz force with the motivation that in the weak field re-

gime the results may suggest an iterative scheme for finite amplitude equili- - -

bration although it is i mportant to bear in mind as Kraichnan has noted that

it may be the fluctuations of the Lorentz force that are important or as Knob-

loch has ment ioned , that the magnetic helicity may play a si gnificant role in

suppressing helicity in the ve l ocity field.

In the second part of the paper we consider the Lagrangian evolution

equation for the magnetic energy and conclude that kinematic considera tions

alone result in magnetic energy being concentrated in large scales even in
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the instance that the mean magnetic field is negativel y diffused .

Lorentz Force

For a stochastic differen tial equation of the form (suppressing spatial

dependence)

(1) [-a-- + L’ (t) ~ L (t)] (-f (~~) ~ -~
.‘(t)) 0

where bar denotes mean , and prime denotes zero mean fluctuations ; the exact

solution for the mean field f(t) may be written (Knobloch 1977), assuming

f’(O) = 0, as t t
~t)~ ç a t ~ L (j.)ez~~ [- ~,

CLti LLe (t,t.)

(2) (i-M ~ ~~~~ ~
0(t,~ t’)~~ (e’) ~(t

’).

U0 satisfies the equation~~~~- ~ V (~)1 U 0(t,O)~~Ow ith U0(O ,O) = 1. The sub-

scri pt “0” on the exponential denotes a time ordered product (latest time to

the left) in the expansion , and A is an operator which takes the average of

everything to the right. In the limi t  of short autocorrelation time I.e.
~~ 

L ,t ) at ’)? ~~ < L ’ 
~~t) ~~ (t) >

we have

(3) 4(t) <L~ (~) L
’ (i)> r f (i).

The result may also be obtained from first order smoothing.

We do not include any sure operator t (t); thus molecular diffusivity is

ignored . Moffatt has questioned the convergence of the coefficients in the ex-

pansion of Eq.(2) in this circumstance and the poin t is not fully resolved . For

the Lorentz force the operator L’ is a fourth rank tensor obtained from the in-

duction equation .

(1+) - £~ (v~ ~j- 13~ Vj )

where 3j Bj-~x,t). Writing the same equation for 13, ~
. I3K (x

~
t )  , multiply—

ing the first by 13~ , the second by L3j we find

(5) ~4 ( L 3~~I3~4 i )  ~~~~~ (3 ,,,, 13 r. ’ )

where  ~~~~~ - 
~~~m ~~~ ~~ • )~ ~~m ~~~ ~~ 

) + ~~ (~~~~ ‘ Va’) .

Thus Eq .(3) become s

(6) ‘~~~ < LjA~~~ ~~~) r ~ B~
The res u lt is

--— - — - -- ---- -

~

_

~

- -—--- —

~

- -——--- - - - - -
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(-7 ) —°(~&~ j ~~ ~~~~~~~~~~~~~~~ < L ~~~~~~~~ (~~~~~~~~~ L < B~ L3,~~’>

where

(3) ~~~ (Z,t) V,~~~, t
’)dt ’

~ ~~~ 
(i ~-X

’l)~ ~~ ~~~
. r~ + ~ ( I- -fr-) ~*~ (oc + ~~~~~~ r~.

and r~z I Z X~ )~. is the Taylor mi croscale.

u2 is the mean square ve l ocity.

Now we operate with ‘ on both sides obtainin g ; (dropping prime s on
B and its derivatives)

(~) 
[
~~ ~~ vt÷v 4 

~~~~~~~~~~~ ~~~~~~~~ B > ]÷
2L~<.~~,L 

~~~~~~~~~~~~~~~~~~ 
E
~~<~ ~~~~~~ -

~~~~ ~~~ ~c~+ ~~~ ~ ~~ ~~~~ ~~ )

~~ E ,~~ <i3~~ ~~~~~~~ - ~ ~c ~~~~ ~~~~
~Lni~~l3 mj  ñr~,e) ~~i ~nh1 <~~j

6rn,tt ~>-. ~ o t~~ s~r~ <.~j,, 13m ,i>

~~~~~~~~~~~~ KB.~ ~3,~~
’>+ 2 ‘~~~~

_‘ c)n’~~. ~~~ ~ i3~ i3,~,>

-r -
~~~~~~ 5 6 ~~ç~

’)~’2 ~~~~~~~ E30~a3~,~
-2 ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Now things ar e si mp l i f ied  by con t rac ting both s i des w it h ~~~ ,~ mto form
on the left-hand side. It may be noted the terms in 

~~~~~~~~~ g ive rise
to a contribution

—
~~~~ 

-

~~~~~~ L~~ 
L3x ( V x  ~~~1~’2 -~ v< (r >.

The ~~ terms give x (~s~)1, and the term 2(at.ia m’ ai. P1J.~
’) va ni shes

upon contraction of the indices. The contribution 
~7~35 may be elimin ated

using the operator [~~~— (A~~~ i ‘c’~ )J which ann i hi la tes <13~) ( , a result pre-
viously found by Knobloch (Knob loch 1978 a). The fi nal answer may be writ ten 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(10) Lt(w ”~) -4 v - ~.k ) -vx 1  KBx (I7cL3 )>~~O.

We note there are two modes for the Lorentz force where the second is

strikingly like the o(.-effect generation of the mean field <‘5). At this order

the following equations are also satisfied :

(11) [4.
~ 

r<~~ ’> + ~r<w t>v 2] ~
It is instructive to plot the growth rates of the above moments at wave vector

k and the mean magnetic field at k/2 as a function of k for a state of maximum

hel icity.

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

7k~~ 
<3lNk

C’ t
~~)4~:e.vI~(3,) <C)cV~~&)~p

The followin g features should be noted : for(A K).~ .504 the variance of

the mean field grows faster than the field itself. Thus it no longer makes

sense to identify the rea l field with the mean field. For AK > )~TT the

mean field decays which is also uninteresting. Finall y only for .504<M (l.6O8

does the Lorentz force grow , for l.6O8<?IK~~ 2Jr kinematic results ind i cate de-

cay of the Lorentz force (as well as the magnetic helicity for (ak) 7 1

For a genera l spectra l distribution of <13 > in k space the picture is unclea r

but it seems qu i te plausible that there is still a range of XIc in which the

growth of~ ca n only be limit ed by fluctuations of the Lorentz force at

least initially.

Interestingly, if one cal cula tes X (V’~
( ~ 5~) the result is:

~ezp (_ + V< t. .t2 7 + )~~~~~~~~~°)~~
Th i s i s obta ined f rom the exac t sol ut ion of the Rour ie r transformed dy namo

-5-.

equation with the condition that B (I’c ,O’) 0 . In this case a growing Lo-

rents force ar ises sol e ly f rom < 13’X (17 X ~
‘)), the nonzero average of the pro-

duct of fluctuating fields.

- -
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Mean Square Magnetic Field

For the induction equation

( 12)

in an i ncompressible fluid one may write the exact Cauchy solution
-s

I_ s  -‘( 13 )  
~~~

~~

where

.
~~

X
~ 

-
~~ ~‘)~~a~ &)ld —

~~. (~~t) ~~~~~ 
(~~t)— a~ , the relative dis olacement of a fluid particle

starting at ~ at t = 0.
—5 -5

For the convection of the quantity @
~-(x ,*) &~(X ,t) it is easil y shown

that the solution is simply the product of the Cauch y solutions

~~ _
~ i. 13~ (~.-,o) ~(14) ~~(x , t ) 8~(~,~ -~ -~ — ~~~

If we expand each factor on the ri ght-hand side about ~c , then

-5

(‘5) ~~~~~~~ 
“ ~~~~ B~~~~~o )_ ~~~ _~~i ~~~~~ o.~1i 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
aQ,~ ~~~~~

~~ ~~~~~~ _________-~~ aa-,~

Thus
.5 

-5 ~~, ~~ _.&_ ~~~~~~~~ ~~~~~~~~~ 
a(16) ~~[(,~~~~)BJ (X ,—’ i~~~ ~~ L3m (X,0)~~pi (X ~~~~ aa~ ~

.3

~& ‘-~~ -~~~~. .~!J_ [/3b~ 
(~ 

0 )  -~~-~~~~~ 
(~t,o)413,, (

~, o) O~4 
0)

~~~~~~~~~~~~~~ ~~~ ~~~~ ‘
~~~ aa~.. ~ax,,’

Now we average both sides assuming statistical independence of the field at

t = 0 from all realizations of the ve l oc i ty field for t ~ 0. The assumption

of homogene i ty and isotropy allows us to write , for example ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\ ~~ a~~
and after contraction of indices i , j and n , m , we find

(~ +~~~÷ C) ~ < f
~~

L\
~ > .

(~~~czvn )

In this fashion we evaluate all the terms i nvolving moments of the

ve l ocity field. Finally Eq.(16) is contracted with a factor of d~
.
cj . The

result may be written as
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( 17 )

~~~~~~~~~~~~~~~~ 
~ 3 < 8 a(~~0)>~ i...[3<g~~~L g. -~ i >

~~~~~~~~~~ K~~(~~°) ~~~~~~o) >

To estimate the time dependence of the coefficient s we assume (c.f.
Kraichnan 1976b) 4 ~ ~
where <W,~,> ~ and ~~~~~~ >~ That is , the disp lacement is the sum of small
displacements from a large numbe r , N , of independent eddies while the diagonal
component of the strain is the p roduct of N independent strains again from in-
dependent eddies . Using the fact that

‘J

we see that
f..

~ “f “
~~J “a; “ ‘.

The second term however must vanish by homogeneity and diagonal compo-
nents of the strain must therefore average to one . The model above reproduces
this result as

and the fact that the W’s are fluctuati ng quantitie s implies <A/ s, . The same
reasoning implies off diagonal components migh t be represented as where ~L~)~0
ensuring ( 

~~~~~~ >~ 
0.

It is by no means clear that KU~ > is less than one , however , we assert
that it is p lausible that

> (U~

which condi tion will  allow us to neglect off-diagonal contributions in (17).
From the assumption tha t the displacem ent in each eddy is i ndependent of the
strain a coefficient of the form

/ 
~ 
)~(~~~L f>

may be written as < (~~~~)
t
(~~~~~~: ) > t  1:<(fl2(~~~~~~~~.

The term < g,ç -~-~ ~~~~~~~~~ 
> must by i so tropy have k = j and thu s becomes

3< (~ )~(± if)+.e < (g )’(.~~L)’)where we have used the equ i valence of 

— -—- - - ------—-- -- --
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C - ~ ~x ~KC~ ) ( -
~

-
~
--j > wsth <(g ) (_ ~

_
~‘J~ ). It is now apparent that the last two

terms in (17) may be written as

÷ [o] ~ ~~ ~~~~ (~~ ,~~~
)‘>•

Observe that off-diagona l terms make a positive definite contribution to the

diffusive term (which as noted above we will neglect) , while the coefficient

of the mixed derivative term vanishes g iven the independence of disp l acement

and strain. In the instance of negative diffusivity of the mean magnet ic field

this is i nvalid but we appea l then to the assertion that 
~~~~~~~~ 

‘
~~ < Us

’’
> for

the neglect of the last term.

From (l7a ) we estimate that

4-_ < ~~~~~~~~~~~~~~~~~~~~~~~ <Li ’
~~~

We claim ).a~’ ?—t where 1./0 and ..2.~, are characteristic velocity and

l ength scale of the eddies thus

~
- 
<(.~~~~~~~;L) ~~~~

where o< is positive definite since in ~~W 5
2

� ~.O . Similarly a term

is proportional to

reflecting linear growth in time . Terms proportional to N2 here vanish as they

invo l ve averages like

We need 
~~~~~~~~~ 

~ wh i ch is easily seen to be

N~ ~~~~~~~~~~~~~~~~~~~~

Collect ing our results we obtain:

(18) ~~~~~~ c < C ~~
o
~>÷ /~

te~
t
~7~~~ 13

1.(~~0)>.

In the case of a uniform field , B0, the second term vanishes and we see asym-

ptotica l l~ 
,~ [.~3’(~t ? .  

~13:-

~f r i c h  i s  confirme d in Kraichnan ’s numerica l experiments for severa l prescri p-

v i  .-~, r f  the turbulent field. Differentiating the equation above we find
• - N 

~~~~~ u
~
t
<~~(X o)) s~(p. ~~~~~~~~~~~~~~~~~~

- .-..‘ ‘~q III) to f ind < L3 (X,O))’ in terms of <,3 (i,t)> we obtain

•
0~ 8~

’
~ ~ ~~~~~~~~~~~ ~)) (3 1:7~’-< B

t(~,t~ �
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where (3 is a positive definite constant (~c(~~~) w’,5) . In the presence of

strong persistent large scale helicity fluctuations Kraichnan argues (Kraidh-

nan , GFD 1978) ,
~(f ) ” ~~ L) c ~c - t ’~

~.

since even though sequential realizations of the velocity field are completel y

uncorrelated , the negative correlation of large values of with large values

of the strain makes probable an even more negative correlation in the next inter-

val. In a fluid with zero net helicity then (~~)ø~ — t  and negative diffusion

obtains. In these same circumstances we conjecture

~g 
)

1~ 

( ~~~~~~~~~ ~~> 
~~~~

t 
/

While the matter of the exponent is uncertain , /9 is surely positive definite

thus positive diffusion of the mean square magnetic field obtains even in the

instance of negative diffusion of the mean field and poss ib l y the diffusion of

< 13~~ is greatly enhanced.

The conclusion is that from kinematic considerations alone the magnetic

energy is always in large scales prompting us to note tha t the contribution

Of <3 13’) to Z I3~
’> completely dominates that ofKI3>KB) when the latter is

negatively diffused .

Finally we note that in reproducing the mean field approx i mation to the

mean square field in terms of the Eulerian ve l oc i ty Keller has shown that there

is a difficu l ty of a rather general nature connected with the fact that an equa-

tion like (17) is not valid for f .---, oo , in particular we have

< T 32(~,t)?-~(l÷_ kt<kJ
2>t)<B ’(X ,0)> + -~ t

and differentiating we see

~~ <~~~~~,t) 7 -~-r < ) <~~~( X , 0) >+~ r~~~ >v t<l3~ (X O)~~.

To reproduce the first order Eulerian result for all t we need to obtain

~~~~~~~~~~~~~~~~~~~ 
from the i nversion . This does not obtain for t—v -~o

CONCLUSIONS
For further exploration we feel it would be usefu l to examine

1 r 3 X ( t 7x 5) 1 >
I ~~~~~~~~~

to see under wha t circumstances the mean Lorentz force dom i nates the fluctua-

ting Lorentz force although it would perhaps be most useful to do this in a

Lagrancjian framework as was done for < (3~~~~~. As to the applicability of (10)

- ~~~~~~~~~ - 5 - - 5~~~~~~-_---~~~~~~~~~~-—~~~~~~~~~~~~~~~~~~~~~~ -—
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we expect for realistic turbulence the coefficients may be rad i cally changed

by renormalization but there is at present no means to exp lic i t l y  calculate

appropr late values even given the exact form of higher correction terms . Thus

in a pragmatic sense we fee l tha t the development of the formalism for large

mol ecular diffusivity, while not completely straightforward , might be more use-

ful for quantitative app lications in appropriate ph ysical systems .

The sensitivity of the results to departures of the turbulent field from

homogene i ty or i sotropy is not clear although the length scale of inhomogeneities

is an i mportant consideration . This prob l em is natu rally of some interest in

regard to dynamica l interactions and warrants further investigation .
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ON TURBULENT EKMAN LAYERS -

THE EFFECT OF FINITE ROSSBY NUMBER ETC .
Shigeki Mitsumoto

1. Introduction

The Ekman l ayer is the l owest part of the troposphere , or the uppe r part

of the ocea n , in which the flow is under the simu l taneous influence of pressure ,

Coriolis , and frictiona l forces , which are equall y dom i nant.

For the theoretical study of the turbulent Ekman layer flow , or in gen-

era l , of the boundary layer flow , the greatest problem is the turbulent mixing

process by small scale motion . This is so complicated that meteorolog ists or

oceanographers in their search for a suitable scheme have chosen to paramet-

ize it with some mean field values , relating the Reynolds stress with the shear

of the mean ve l ocity by an “edd y diffusivity ” Km as ~~~ 
k,~, ~~~~~~ A variety of

parametization schemes have been suggested , which resu l ted in a variety of theo-

ries for the Ekman layer.

For example , in his study of atmospheric turbulence , E ll i son (1956)

assumed that Km is proportiona l to hei ght and obtained the vertical wind pro-

file in the Ekman l ayer.

However , the assumption of eddy diffusivity itself has been questionable;

accord i ng to some observational data , it is sometimes found to be negative or

even infinite. Some alternate method s , with not too much sophistication to

apply to the actual situation , but based on more physically reasonable con-

sidera ti ons , has been sought.

Ma l kus (1978) presented qu i te a unique method to obtain the ve l ocity

profile of the turbulent , neutrally stratified , one-d i mensiona l steady channel

f low , which is based on two simple assumptions; (i) the mean ve l oc i ty profile 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5- --~~~~~~~~~~~~~- .— --—-----



- - - —-5

- 8 0 -

is free from any inf lexion points and (ii) spectra l smoothness of the Reynolds

stress. The remarkable point in this theory is that the prodi le of the mean

velocity and the Reynolds stress are obtained uni quely withou t any assumption of J
edd y diffusivity.

The object of this study is to apply Malkus ’ theory to the two-d i mensiona l

turbulent Ekman layer.

Laboratory experiments for turbulent Ekman layers were carried Out by
Caldwe l et al. and by Kreider (1973). Kreider compares the ve l ocity profile

with some theoretica l curves and those obtained in field observation . Among them ,

the curve derived from El lison ’s theory which is simp ler than others , fits Krei-

der ’s data best. However , Kreider ’s curve shows dependence on Roa, the appara-

tus Rossby number , representing the effect of centrifuga l force , which is not

considered in Elli s on ’s theory . The experimental curve by Caldwe l et al. does

not show the systematic dependence on Roa.

Thus , another purpose of this study is to investigate the effect of finite

Rossby ,iumber on the velocity profile and to g ive a quantitative explanation to

Kreider ’s results. We do this by extend i ng El li son ’s theory to include Rossb y

number , since El l i son ’s curve is most consistent , at least qualitatively, with

Kreider ’s data.

II. Basic Equation for the Turbulent Ekman Layer and its Nond i mensionalization

The Momentum Equation including Reynolds stress in (r , 9,~ ) coord i nate

rotating with angular ve l ocity .fl.. (= const) is written as follows if we assume s

-ft
1 . Mean Field is axisymmetric

‘A ’,.

r - ~4—~~ I

2. V/ — 0 (quasi-two-d i mensional)

Fig. I

~~~

_ _ _ _ _ _ _  

.(~ 7~7i)_ U
’~+~~”~~ ~ 

(2.1) 
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- J:.~~~~~~~~~ 
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(2.2)
0

where

under bar denotes dimension al values ,

and — ‘~~—r
’
~)red’.ced pressure).

Scaling

It is natura l to scale t~ ~~~~ , ( ~~ -
‘ 

) and in the followin g way :

L r (L: radius of the rotating tank ’

(
~ ) G(-~~) (G: speed ‘Df flow relative to rotating tank~

~~~~~ ( the friction velocity ~t~~(,’7T’i)~ ~~~~

P~~ Pf L ~~~~ p*
As for the scaling of Z, two ways are applicable in the present situation .

i) 
~ ~~~

_) ‘

~~~
. (smooth lamina r scaling)

i i )  ~~ 
— .~~ (rough turbulent scaling)

Hereafter , either of them will be adopted accord i ng to the occasion .
Then Eqs .(2.l) and (2.2) are dimensi ona lized as

go — — ~ 
-
~~ c

(2.3)
.L . (ti~u ’) _  JL~~~t j

_ _ _

- 
- (2.4)

where
- V

G ‘

Coefficients B and C depend on the z-scaling fac tor .

~I, C 

~~
-

~~ 

_~~~2~
-
~~~~ 

~~~~~~~~~~

‘- ~(
I )4~, ~~~

t i
- - 4

—-5 —-5 -5— i—



In the laboratory experiment by Kreider:

R~~~~ - - 5~~.
-.-- / o~~ 

R~ -”:o’ m...-y~-

(..f)~~~~
.O.O~~ cm~ J .J c r n

Since F and are much smaller than other coefficients for both scalings ,

at least as far as the laboratory experiment is concerned , (2.3) and (2.4) are

reduced to

- 
~~~~2) 

~
,. + -?~ç 

~~~~~~~~~~ + c ~~~~~~~~~~ o (2.5)

~~~~~~~~~~ —B ~~~
. ~~~~~~~ 0 (2.6)

Further , nonlinear terms in 17 are linearized in the following way :

(1) Nonlinear terms in (2.5) can be approximated by —R0 ~~ since

t CL I 4~:::ILr I
(2) Define geostrop h ic -cyc los t r i ph i ca l l y  balanced wind speed I.f~ c as

(LJ-~ c — -
~~~~~) 

0

or replac i ng —~~~- with geostrophic wind vc~ , as

(2.7)

(3) Replace ~Y
2 by if~ c U (Oseen ’s approx i mation)

(4) Nonlinear term in (2.6) totall y vanishes since

j
~ 

.
~~~~

. + ~~~~~~~~~~ + 
£~.~_)~~o ; .ç. o~ e r :  cori~’t.

Then (2.5) and (2.6) become

~ C-~~~~
’
~ ÷ ~~~~~~~~~~~~~ 

(~~~~~~) ~ 0 
p 2.8)

(2.9)

where R~~ ~~~ , and overbars are dropped from the mean ve loc i ty
components.

Now tha t -
~~~~~

- no longer appears in the equation , we can regard .~ as
constant and identif y it with L , so that r E 1. Also is iden tified with

G , so that (f~~~ I . Then IR ,,’ 
~ 

. (2.10)

II I .  Modification of El 1 i son ’s Theory
In his theoretica l study on turbulent Ekman layer , El l ison (1956) assumed

-- -— - — —-—~~~~~~~~~~~--- -—  --—~~~~~~~~~~~~~~~~~~~~~~-——~~~~-—-
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_ L A~W ’ = b ~~L&~~~ ~~~

KLt~~~ 
. (k ~ VO,4J von Karman ’s const .)

When thi s is applied to our basic equations (2.8) and (2.9) they become

(3. 1)

~~~~~~~~~ ~~~ ) 
— Q.LA. ~~ (3.2)

where ~ . ~ ER when ~~ (-
~~
--)
‘

~~ 
, and a. -k- when ~

The solution is easily obtained as
L 

~ A’ ‘
~.((~ La’~)

V
~) (3.3) —

where ~ ~~~~~~ ( 3 . 4 ) .  
~~~~ is the E 1? iso n ’s solution when

A l -~.~
’
~ ((~~~a.~~

) ’/~.). 
( 3 .3 ’)

To apply the same boundary conditions as Ell ison does , our solution
(3.3) should be writ ten in the “stress-wire ” coordinate (j~ j~ )which turns

~ by ~< , the turnin g angle of Ekman spira l , so that

(3.14)

LI’ C4.c.~ o( -P (.P s,n o~ (3.5)

~~t~~; ~~~~

I- Ls.t)

~ 

(~)

Fi g.2

Then , applying Ell iso n ’s bounda ry cond it ion , which is

~~~~IdVt 4
- 

o ) for small z, (3.6)
/

we obtain the solut ion modified by

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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-
, 
~~-~~ c P(~ )(~~- ~~~

) ~~
_
~~~~c (~~~~i~~)~~IEi~ Q(~ )~~~~v ~~~~ (3.7)

tttT~ C<:~

-
‘o.23~2.

Result

The modified curves of (L~’~j - t J) , ass- and (
~ 

— Li~ ) ‘Uv.. for R,, = 1.0
is superposed on Kreider ’ s f igures . (F ig .3) .

Io~

I ~~tC

- -

I(~~-~~~) ‘~ •

N N

It. . S

~~~~ 
‘
~\ 

- ‘5

~~~~~~~~ ‘5 - ‘5
D,

~~~ ~~~ t
~ .. ~~~~~~~~~ - ~~~~( *6 

~ ~~~~~~ 
p 

~
•s._ 

- 
~~~~~~~~~~~~~~~~~~~~~~ 

\
c
~ \ ~~~~~~~~~~~~ 

INCN.
tNCR. 

~ 
- 

~-A ~ ~ uLI. I

- 

I. 0 
~~.

I I I I t  r t  I \ , I i t t  I I I I I !  r i  , t i i
t I 0 .p .

~ 
.3 4 ~~ ~~ .7 .5 .5 — tO —II Z I 0 —I —2 3 .4 ~5 6 ~7 —$ .s —,0 •,, i2
(ff — u,)/u . ~~~~~ 

I g~~)Iu.
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It is shown that the modified curves are in qualitative consistency with depen-

dence of the profile obtained by the laboratory data on R0 (Roa in hi s paper) .

In addition (3.7) explains the experimental fact tha t ~~. increases with

R0. In Ellison ’s theory, in which R0~ O ,c~~ would rather decrease with the

increase of k . U ’  
, which is , in Kre i der ’s data , somewhat associated with the

increase of Roa.

Note 1: It should be ascertained , of course , that C increases less rap idly with

R0 compared to ~~~~~~~ , for (3.7) to explain the increase of o~ , but Kreider ’s

data is too sparse to investigate this point.

Note 2: In Kreider ’ s Fig .l8 and 19, El l i son ’s theoretical curves do not seem

to coincide with his data of neither 1.cj.-~i nor — V  even at the limit of

Roa — 
~0.

Although U and V itself in the experimental data should coincide with

Ell i son ’s curve since LA.’~ , , and o~. are determined so that the profile of

U should match the logarithmic law at the points closest to the surface ((29)

and (30) in Kre i der ’s), there is no necessity that as measured by Kreider

should coincide with El l ison ’ s solution for U~, , wh i ch i s

1J~ ~~~~j _ (L i  ~~~~~
-1. 0. 2 32 ) .

The discrepancy between them is approx i mately equal to

It is one of the demerits in El l son ’s theory that the value of geo-

strophic wind speed is g iven only by the surface values , regardless of the pres-

sure gradient in the mean field.

IV Application of Ma l kus theory to the Ekman Layer.

IV - l .  Vert ica l prof i le  of mean veloc i ty in one-dimensiona l channel flow .

Malk us (1978) derived the vertica l profile of the one-dimensional neutrally

stratified steady channel flow ve l oc i ty with qu i te a unique method , based on

the following two assumptions.
- lit

( i )  The ver t ica l  profi le of the mean

veloc ity shou ld have no in f lex i on poi nt ,

so tha t 
- — 

-

‘ 0 (or ) o)- (4.1)

+Gv O~.cp < l~ll

tJ~o ~P:Vm ~~
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This condi t ion ca n be expre ssed in a Fejer ’s seri es as

d~u f’i , I (q’) -~~~~~~~ I~~c~~~~~~~
d p1

(ii) “Spectral Smoothness” - Spectrum Ii< is supposed to be smoothed in the

sense that (~~I)~~~I 1-I~ =O (~~/Rv) for some kV , for which

~ ~~~~~ 0. (4.2)

These assumptions lead to the result that , for ~ >~
~~~~~~~~ 

_!:21_ II.I cose~~
1- (4.3)

dq~~ 
fl~

where —u~~
(_ 

~ ~
_
~~) 
i~ c0n~~T. (4.14)

Hence -~~~ 
___  

~~~ (~~~~~)J (4.s)

This velocity profile approaches the logarithmic law in the l ower laye r but

becomes a pa rabatic profile near the center of the channel. The point in this

theory is that the vertica l profile of the mean ve l ocity of the neu t rally

stratified shear flow is determined uni quely without any assumption of “edd y

viscosity ’’ .

If we suppose , as E l l i son  did , that the wind pro f i l e  in ( 14.9 ) should
match the wel l -known logarithm ic pro f i le  in the “matched” or “over lapp ing ” re-
gion , which is

(k ~~~~~ :von Ka rman ’ s const.)..
or , in nond i mensional ized form , U -~ ~~ ~Z-’r’ ~ -~- c~~sI. (14.6)

then , equating the coefficients of-tn cpof (4.9) for p<<. I with -~~ we get

(4.7)

wh i ch y i elds
j— u,.~~ • !L.. 

~~~~
, (~st,i 
!. ~~ (4.8)

The profile of momentum flux is obta i ned from (14.3) and the basic equation for

the steady channe l flow , which is written in the dimensional form as

— 
j_. 

~~~~~~~~ + ~~ ~~~~~~~~~~~ -~ ~(— u.’w) o (4.9)

Defining U~- as (14.4) and nondimensionaliz ing the variables as

LJ~~ Ur L! , (A W ’~~ ~~~~~~~~~ ~:-j~::- 9’ ,

(4 .9) becomes
.*. 

~ 
.j_ . 4-44 ~~~~~~~~ 

(—
~~~~~~~~~

“)  ~o , ( 14 .10)

_ _ _ _ _  -~~ - ----- -
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where R’e~ is the stress Reynolds number (~ in Ma l kus , (1978)).

L i kew i se , (14.3) and (14.4) are nond i mensiona lized as

- d~i) — _L~_. cc’5cc
’
~ 

(4.11)
dç ’.

and 

~~~~~~~ (4.1 2)

Thu s , from (4.10), (4.11) and (14.7) the divergence of momentum flux is

(4.13)

~~~~~~~~~~~ •~/ ~~~~~

d ‘-
~~‘°

Fi g. 4 
— — —

I — 

P

5u~4.~ce 0 /1, k~~ ,

‘Di4 4~ —n— ~

This relation is illus trated in Fi g. (4 . The dotted line that branches off

the curve for -~~- ~~ denotes what should be expected in the furface laye r

in which (4.8) is not applicable. The actual boundary conditions

for Rey nolds s tr ess shou ld be

~~~~~~~~~~~~~~~~~~~~~~~~~~~ (~~~A
’w’)~~ 0 Q.t ~~~O , 2 T T

and hence t~r~ 
(

~~~~~_ 4 ~~~~~~
... 4.

’

)d p
z ~~- - -~- t.ils.4~’)d~~ :O (4.14)

Since 6 , the thickness of the su rf ace layer is expec ted to be mu ch sma l l er
than ‘l. , (4.14) is approx i mated by

,
‘5 ‘~~t cl~~ 11/

wh i ch y i el d s
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_J-,~~ hind 
~~~~~~~ 

(
~ R

’
~~).

Note tha t S corresponds to the measure of in (4.2)

IV-2 Application to the Ekman flow.

In a first approx i mate application of these ideas we assume that

(I) The profile of the divergence of momentum flux obtained by Ma l kus theory

(4.13) is applied to both
—~~-. / —r ~~

) 
~~a L ’ T J -~ J )

ciz \5

(ii) The direction of the stress does not change with ? , rega rdless of the

turn of main flow , so that in the stresswise coordinates

(1) means that the two assumptions in Ma l kus ’ theory , (4.1) and (4.2), are

valid for each component of mean ve l ocity, U or V. Modification of ‘k spec-

L 
trum due to the Coriolis forces is , of course , expected , but wil l  be left for

future study.

(ii) comes from somewhat physical consideration , that the momentum lux is

[ caused by an intermittent violent penetrative convection which shoots up too

quickl y to feel the rotation of earth. Then our basic equations (2.8) and (2.9)

become

(l + R (v-~ r~~~)~~ ~~~~ ~~~ -~~~~~- R - - -s ’~’°~) (4.15)

- u. — E
Z
R e ~~~~~ R~~~~(2)c05~~ 

(4.16)

where -1 ~~~ 2 
~
‘ ( ~~~~~~~~~ ~

-j — 
.
~~

-)

S ii.
P -

‘- V I

I ~~~~~~ v .

- --~~~~~~J-

As we d id for the sol uti on of the Modified Elliso n ’s equation , turn the coord i-

nates by ~~ to the stress wise direction .

( 
~~ 

U nfl O’. + V c~ S —.~

L ~~ 
-
~~ 

-t ~~~~~~ ~~

When R’~ ~ o it turns out to be qu i te complicated , bu t when R~, ~ , (4.13)

and (4.14) are transformed to

—--5--

--5---— - ---5 —---~~~ —-5- —.~
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(4.171

(~ Q (4.18)

~rac L”~c ~~ ~ LA.~ic LJ
~~C co_a .

Using a comp lex function w (~
)
~ (~~~~~

- c)
~~~~~~

Y_
~~~~)and (4.18) are united

into
-. — E~ R~4(~) ~ (~~

1. (4.19)

The solution is formall y g iven as

~~~~~~~~~~ ~~~~~~~~ .

where A ~~~~~~~~ , 
/ 

c 

(4.20)

~~~~ —~-~~~(~~
‘e ~~~~~~

- -h- ) ~ ~~~~~~~ )

Since g(Z) contain s cosec2 bZ , this solution cannot be expressed in tabulated
functions. Thu s we try to get its appr oximating solution by an iterative
method .

Defining ~~~~~~~~~~ (4.17) and (4.18) become

b~.’L” ~~ 
— 

~~
. ~

. C (4.21)

b~~” - - o (‘4.22)

where
I ‘

a.~ 4P.R’e. 
•
‘ 

C &  R~

Expand LrC (~) Q.S~ -p S1f (
~j) , where l~ (~j is defined as

(~~3c -G~~~ (~fjc(~ -~ 
-
~~~

-)
Then from (4.21)

- a Coscc~~~j t C + 
~~~~~~ (~~ 

- -.
~~~)

b’~ti0~
. ~~ c.os ec + C~~~

..-
~
J
~-)÷ ~~s.~~~~

ity

~ (s,n 
~~

+ — -
~~~~~

-
~

- 

~~~ (~ 
-

~~~~~~ ~~~~ ~~~~

Thus + ~~ z P (~L (4.23 )

where 
p~~~~~~~)~~~

Ins tead of going to further iteration , i t would be more he l pful to try to 

- - ---- --~~--‘-- - -— 



~~~~~~~~~!os5 wooDs HoLE ocEANoeR!Ic INsTxyuTIoN MAss~~~~~~~~~~~~~~~~~~ r,e e,:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~NOTES ON THE 1978 SUMMER STUDY PROGRAM ON DY
NOV 78 W V MALKUS, M C THAYER

UNCLASSIFIED W HOI— 78—6 7—VOL —2

a°5 I t ] t l

U
END
~*1E

Fl& ~~ED

pDc

I
I

p I
I

,1



• 1 .0 ~~
____ ~ ~Ill2.2L t36L •~~~

I~ 2.0 *

Ij~~~

II1•iI .25 IHhJ~ ~
MICROCOPY RESOLUTION TEST CH*T

NATIONAL. BUREAU OF STANDAROS~1963~j~



- 90 -

obtain a cons istent set of rough prof i les for u. and (7 sa t i s f ying (4. 17)  and
(4 .18) by i l l us t ra t ing  the curves of LA. , (7 , (.A.’~ and If ” w i th  t he aid of (4~
in (4 .23 ) .

\ r ~i-~ 
-

~~~~~~~~~~~~
-(

~~~~
-
~
-)

•1

ti _ 2 j (-u~w ) I ~~I

_ _ _

_
_ _  

___ it:
I 0

2 2
7JI7I~~L~’~~~ ~~~~~~~~~~~~~~~~~

Rough i l l us t ra t ion  of curves sa t is fy ing (4.17) and (4 .18)

It is shown in this rough i l lus t rat ion  that ~~. prof i le  overshoots ~~~~~ , as in
El l ison ’ s curve and in Kreider ’ s exper imental curve , and that the prof i les for
both a and i~ have one inflexion point , in contrast to the osc i l l at i ng  beha-
vior of El l i son ’ s so lution .
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STEADY BUOYANT PLUMES IN A FLUID OF LARGE PRANDTL

NUMBER AND TEMPERATURE DEPENDENT V!SCOS ITY

Dean S. Oliver

1. In troduct ion

Qu ite often in fluid dynamics the assumption of large PrandtI number ,

y~~~.3L. , wi l l si mplify a prob l em. This is certainly the case in B~nard con-

vection where it allow s the inertial terms in the momentum equation to be ne-

glec ted . Large Prandtl number fluids also seem to be more stable to transi-

tions to time-dependent motions. Yet by changing the prob l em onl y sli ght l y to

cons i derat ion of lam i nar convect ion from ei ther a li ne source or a poi nt source

the infinite Prandtl number assumption actually makes the solution more diffi-

cul t. Closed solutions are well-known for laminar plumes in fluids of Prandtl

number equal to I or 2 (Fujii , 1963), bu t in the limit of large constant Prandtl

numbe r the equations have only been solved numerically and even then the solu-

tion is much different from the a = 0 (1) solutions.

Still , i t is the large Prandtl number case that we expect to be appli-

cable in the earth’s mantle and further we believe that the viscos i ty of the

mantle material is strongly temperature dependent. So whethe r the interest is

in fast viscous convection app lied to the earth (Roberts , 1977) or in the forma-

tion of island chains from discrete plumes in the mantle (Skilbeck , Whiteheat,
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1978) the problem of buoyant plumes in a fluid of large Prandtl number and tem-

perature dependent viscos i ty should be i mportant .

2. The Plume Equations

I n order to study the plume formed above a line source of heat in an in-

fi nite fluid we use the coord i nates shown below . W is the vertica l or ~—com- ç
ponent of ve l ocity defined by the direction of the gravitationa l acceleration

and (4. is the horizontal ve l ocity component.

In genera l , the viscos i ty of the

flui d will be allowe d to be a func-

tion of the temperature . -
~~

Fi g. 1

The equations for the ve l oc i ty and temperature fields in this problem are4

~~~~~~

~~~t~A. a~ 
tA)

c~~~ 
- ..r.. ~~

ax
and 

,J w9d ~ ~~

where Eq.(2.4) states that the vertica l heat flux must be constant at all

hei ghts in the plume . The fluid has been assumed to be Boussinesq (except for

the variation in viscos i ty) and the boundary layer approximation has been made

whereby pressure forces and vertical derivatives are neg ligably sma ll compared

to horizonta l gradients. The conditions justif y ing the boundary l ayer approx i-

mation are exam i ned later for each case individuall y..

I t is possible to obtain similarity solutions for the temperature and

the ve l oc i ty when the viscos i ty is proportional to a power of the temperature

per turbation . A pl ume in a fluid of constant viscos i ty is considered first be-

cause it can be compared to results obta i ned by others (Spa lding, Cruddace , 1961).

The case of viscos i ty inversely proportional to the temperature is then examined
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because a solution has been found n the large Prandtl numbe r limit.

3. The Constant Viscos i ty Plume

If we introduce a stream function , “f” , such that ~ and ~~

then Eq.(2.1), (2.2) and (2.4) become

1±. -~2t .~ ~± _Q.t r~ ~j & ~ 
.i2~ (3 1)

~~~ - 3+ -~-~~~ 1..’ -~~-~- (3.2)
~ X. ~~~

‘

f~ 
-

~~~~~~ 
. (3.3)

It is quite easy to nond i mensionalize these equations such that the

inertia terms are unimportant and the boundary l ayer approximation is satis-

9fied . To do this we introduce a Grashof number , ~ , as well as

nondime nsio nal s imi lari ty functions , 4.’ and (~ , such that

and S (x~~) —
~~~~

- G ” (.
~’~~ )

where j- C~’ is the similarity variab le. Substitution of these functions

in to (3.1), (3.2) and (3.3) leads to a set of equations which are identical

to the equations of Spalding (1961) except that the Prandtl number multi plies

differen t terms.

:i< I: f d + ’~ — _ _ _ _  

cJ~+ (3.4)
-
~~ 

Lg ~~ g /  .4. dç~ cAY

d (e± ’-  ~~ 
(3.5)

(3.6)

I t is now easy to see that the condition under which the boundary layer

approx i mation is justified is that the Grashof numbe r be much greater than 1 .

We can proceed further by in tegrating (3.5) and substituting the solution for

“
~~~~
‘ into (3.4).

i~ ’ 
~~~~~~~~~~~ 

4 t~~~
- hi hi

Closed sol ut ions to this equat ion have been found for the special cases

when the Prandtl number , ~~ , is equal to 5/9 and for ~~ = 2 (Yig, 1953).

Numerical solutions for a = 0.01 , 0.7, and 10 have been obtained by Fujii

L (1962) and the infinite Prandtl number l imit  was considered by Spalding and
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Cruddace (1961). It is the large Prandtl number case whi ch we wish to exam i ne

he re .

We def i ne new var i abl es

~ (°) ~~~ (~~~) ~ .

Then Eq .(3.7) becomes q
— ~ p’”J e ~ ~~~~~

“ (3.8)

it is straightforward to show that if ¶
~ i s  ex pande d i n  a powe r s e r i e s  of an

unknown small parameter E. such that ~~ -t . . , the sol ut ion
sa ti s f y i n g  the bound a ry cond i t i ons i s

-

whe re ,~~ has now bee n abso rbed i nto the cons tant a.. . Howeve r , near the on-
g in where X ‘—‘. I we can presumably neglect the () ~~ term also . To lowest or-

der the constant U. is then determ i ned to be Ct~ ~~~~~~~~ If the Prandtl number

i s  lar ge , this approx i mate solution is quite good and the temperature drops to

nearly zero a short distance from the plume axis. The lowest order approx i ma-

t ion i s  —-

~~~~ ~
— 

~~~~~~~~~~~~~~~~~~ ~
)

This must satisfy the integra l condition (3.6). If the Prandt l number

is very large than the approximate solution can be used when evaluating the

in tegral  and the res u l t i s
2’~

¼~ I t ’D ~~~~~ I

Putting a l l  the d imens iona l  de pendence back in to the sol ut ion

G~X ~~‘ / ~~~~~ ~~~~~ ~—_\
‘ ‘

~~~ 
x’~ (_FO

2O
~~~~

9I \Y~1
t~ ~ ~~~~~~~~~~~ ~oo -ir z r-~) ~‘ L ID 

~ 
‘
~ .“ 1 ~

which is completely independent of viscos i ty.

Spa lding and Cruddace (1961) arrived at essentiall y the same approx i-

mate solution for the tempe rature , but they proceeded furthe r and determ i ned

the velocity profile for the infinite Prandtl number limit. They also con-

cl uded that the results were independent of whethe r or not the viscosity de-

pends on temperature .

4. The Effect of Temperature Dependent Viscos i ty

The laminar plume for a f1u~d of large Prandtl number and constant
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Il’

LO~.

0 2

Fi g.2. Nond i mensiona l ve l ocity distribution abou t
a li ne source from Cruddace (1961).

viscos i ty is character zed by two very differen t length scales . A therma l bound-

ary laye r whose nondimensional width is of the order of the i nverse Prandtl num’~
ber forces mot ions i n a p l ume of uni t nondimensio nal wid th. Spald i ng and Crad~
duce i ncorrectly reasoned that since the therma l plume is very thin the same re-

sults hold even when the viscos i ty depends strongly on temperature. By choosing

a specific temperature dependence for which similarity solutions can be found ,

the general effect of variable viscos i ty can be determined . If we specify a tem-

perature dependence of the form V then the momentum, heat and continu i ty

equa ti ons are

~~~~~~~~~~~~~~~~~~~~ 
-

~~
-
~~~~ (4.1)

(4- -- .-“ 
~,c ’. 

.2)

(4 .3)

J
°°o w dx  (‘4.4)

Anticipating that for large N the last term in (4.1) may be larger than

the other v i scous term , we choose a nondimensio nalizat ion which puts a factor of

1 /N in front of the viscous dissipation and the inertial terms but makes no ap-

prox i mation in the equations. These scalings give the following substitutions

-.~~~- ~~~~
“
~±(~~

)

where the similarity variable , ~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

O.v~~~ JJ~ ~~~~~~~~~~~~~~~~~
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The s t ream func t ion , ‘i” , is introduced into Eqs.(14.1), (4.2) and (4.4) to elim-

m a te the continu i ty equation , then substitution of the similarity variable ,

reduces the part ial di f feren t ial equa t ions to ordi nary differential equations

wh i ch , when nondime ns i onalized , became the fol low i ng :
‘
~~~i - 

d ~~~~~~~~~~~~~~~~~~ (4
~~~~~~ t~~~) L’ ~ d. g .r d ~ - L) 

~~ I. ~

Li 
~~~~~~ ( 4 6

3 ~~~~

~~~~ ~ ~~-I (4.7)

It mi ght appear hopeless to expect to find a simple solution to this sys-

tem of equat ions but a sol ut ion has been found for the case whe re the Prand t l
number , ~~~

‘ - , is large enough that the iner t ial terms can be neg lec ted. In
the case of N = I the equa t ions si mp l if y to

J f t  (4 8)
dT ~~ ‘.t y /

‘I

~~ ~2 —j-~
The sol ution of these equations corresponding to the appropriate boundary

condi ti ons is

2 Ji -~~-~~ ~~~~~~~~~~ ~

and

Finall y, the integra l condition (4.7) must be satisfied in order to deter-

mine the constant a.

~~~ 
_ e/ r~~,~sec~ c2. ~~d~~~~-I

so

When the temperature , velocity, and viscos i ty profiles are plotted together

on one graph as in Fi g.3 i t is easy to see why the flow reg ion is only as wide as
the therma l layer. The centra l core of the plume has a relativel y const ’it t’is-

cos ity which increases rapidly outside the hot therma l region . Natu ra l ly , th i s

is the region where the motion must be concentrated .

Some interesting observations about the shape of the plume can be made when

the solutions are written in dimens i onal form.

______
—A
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Fig .3 The nondi rnensiona l plume quantities for a fluid
wi th viscosity inversely proportiona l to temperature .

e (z,z) ~~~ ~~~~~~ ~ * 5Ec~ ~~~~~~~~~~~~~~~~ ~ ]
‘(> ,~~)~~ ~ ü.z(~~~~t) ~~~~~~~~~~~~~~~ ~-1

t.&( _
2 ( , ~~~) 

_
~~.t~~~k[

+ 
1(F0~c.~ ~

1, 8.-vo l ~

Firs t , notice that the scale width for both components of ve l oc i ty and

the temperature are the same. The envelope of the plume increases in width as

the square root of the hei ght but if ~ ~ I the plume is widening

very slowly as the hei ght increases (and the boundary laye r approx i mation is

justified). While the width of the vertical ve l oci ty profile is i nversel y pro-

portiona l toJ~~ , the peak ampl i tude is i ndependent of therma l di ffusivity

The peak value of the temperature increases asJ~~~
’
~ so if the diffus ivity is

smaller holding all other parameters constant the width of the plume will shrink

and the peak tempera tu re at any he i gh t will increase.

5. The Axisymmetric Similarity Equations

If we consider a point source of heat instead of a line source the equa-

t ions are simp ler when wri tten in cylindrica l polar coord i nates. The steady ,

asymmetric Boussinesq equations in the boundary l ayer approximation are

(5.1)

(5 .2)

4. ( r w) ~~ 
.
~L(ru.) (5.3)
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Naturally, we define a stream function , “1’’ , such that

Then i f we conside r a v i scosi ty ‘/~~-V0 (f )_ N  and a vertical heat

f l ux F~ J
’°e ~~~~~~~~ d~~, the variables can be nondimensiona lized and reduced to

functions of only one variable in the follow i ng way :

~ ~~~~~~~~/ 
jç

whe re ‘~~ 
- :;.~~~~

-v’~, .. e’~ I
In the l imi - t / 

~~ 
• )

N
-2

~_ —~~0o the axisymmetric equations can be reduced to
0

the nondimensiona l similarity equations given here.

d [~~3
—’~~cL (

~ -&f ] + C (5.4)

(5.5)

6. The Experi ment
We decided to try a very quick experiment to produce a plume in a fluid

whose tempera tu re changed markedly w it h tempera tu re. A sugar wa ter sol ut ion - .

was chosen because of the availabili ty of sugar. Approx i mately 20 lbs . of suga r

was mh~ed w it h enough wa ter to make three gallons of sol uti on . The spec i f i c
gravity of the solution was 1.259 at 21+.2°C . A rough approximation for the tern-

perature dependence of viscosity for this solution near 25°C was

20— g (T— ~ S) centistokes

whe re i is the tempera ture .

The heater , made by winding nichrorne wire around a block , was 10 cm long
and 0.5 cm wide and had a resistance of 37 ohms . It was placed near the bottom

of a p lexi glass tank and the output was adjusted to nearly 70 watts which corres-
ponds to F0 = 1.2 cm2 0C sec 1 .

Fi gu res 4 and 5 are shadowgraph p ic tu res of the p l ume 15 and 30 seconds

after the heater was turned on.. The dark core of the plume is fluid wh i ch is

less dense and therefore has a l ower i ndex of refraction . Fi gure 6 represents

an attempt to determine the veloc i ty distribution across the plume 15 seconds

af ter hea t ing began. Onl y qualitative conclusions can be drawn from the experi-

ment. Obv i ousl y, it is possibl e to ge t narrow , almos t ver t ica l pl umes in a

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~~~
- -
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~~~~~~~~~~~~~~~~~~~~~~~~~~~ i i~
’

Fig .4 Shadowgraph view of the temperature Fi g.5 Full y developed plume at 30 seconds
profile in a develop ing p lume 15 seconds after beg inning heating.
after heating began.

—~ ~~~~~~~~~~~~~~

~ -k 
~~~~ ~~~~~~~~~

- 

___

U

Fig.6 Hypodermic needle drawn through the
plume re l easing ink to determine the ve l oc-
ity profile. 15 seconds after turning on
heater.
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A
fl ui d wi th eve n a s l i ghtl y temperature dependent viscos i ty as long as the

su i tabl y defined Grashof number is large enough. The velocity distribution

shown by the ink line in Fig.6 might be far from the actual steady state dis-

tribut ion because at 15 seconds the plume had still not reached the surface .

7. Concl usions and Remarks

The real hope in s tudy ing th i s prob lem was tha t some prog ress cou ld be
made in understand i ng the structure of plume s which might occur in the mantle.

The ages of island chains , the regula r ity of spaci ng , the direction of propa-
gation and the chemical composition all suggest that the source of the material

is fixed fairly deep in the mantle. If the plume is to have a localized sur-

face exp ressio n then there must be some mechan ism which keeps the plume from

diffusing greatl y as it r i ses. One ex p lana ti on is tha t the upwell in g mater i al
i s chem ical ly di f fer ent f rom the sur roundi ng ma te ri al , in wh i ch case we ex pec t

the types of plumes studied by Whitehead and Luthe r (1975) to be applicable.

Anothe r possibility however is that the p l ume materials are chemically identi-

cal but that the viscos i ty of the plume is l ower because of the hi gher tempera-

ture in that reg i on . The real case is probabl y a comb i nation of these two pos-

s ib i l it ies , each approx i mately valid for different depths.

I might suggest that there are many problems associated with these p lumes

that remain to be solved . The ins tab i li ty ca used by a shea r laye r above the
source d ir ec t ly app l ies  to the geophysica l prob lem of hot spots. And even
though the difference may not be great it can be argued that the temperature

dependence chosen in this study is not realistic for geophys i ca l fluids. Finally,

I suggest that this could be a first step towards determining the asymptotic heat

f low behav i or at large Raylei gh number in a fluid of variable viscos i ty .
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