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EDITOR'S PREFACE

VOLUME 11

\

the eleven fellows of the summer program. Five of the lectures overlap

This volume contains the manuscripts of research lectures by

significantly with the central summer theme of geomagnetism. The other
six lectures cover a broad range of current G.F.D. topics from collective
instability to strange attractors., Several of these research efforts are
quite polished and probably will abpgar in journals soon. The middle
half represent reports of sound progngs on studies of thesis calibre.
But then, a few of the lectures report on only the very first conse-

quences of a novel idea.

These lecture reports have not been edited or reviewed in a
manner appropriate for published papers. They, therefore, should be
regardzd as unpublished manuscripts. Readers who wish to reproduce any
of the material recorded here should seek permission directly from the

authors.

These two volumes represent both what we brought with us to the
program and the excited first produzt of our scientific interactions.
More sedately worded professional results invariably emerge as the year
progresses. For this opportunity, we wish to thank the Woods Hole Oceano-
graphic Institution, the Office of Naval Research, and N.A.S.A. ‘or

encouragement and financial support.

Mary C. Thayer
Willem V. R. Malkus
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LECTURES OF THE FELLOWS

BENARD CONVECTION WITH CONSTANT HEAT FLUX BOUNDARIES
Christopher J. Chapman

(1) Introduction

The convection which occurs when fluid between two infinite horizontal
planes is heated sufficiently strongly from below has been intensively studied.
In most of the published analysis it is assumed that the horizontal boundaries 4
of the fluid are perfect conductors, so that the temperature on each is con-
stant. (The term 'constant' will invariably be used to mean 'independent of
position'.) In this paper it is assumed instead that the heat flux across the
; boundaries is constant, so that their temperatures will depend on position once
convection has begun. It would be possible in the laboratory to supply heat at
| a lower boundary at a rate independent of position and temperature, and one
means of removing heat from the top at a constant rate would be to have cool-
ing by evaporation. An approximation to constant heat flux is obtained by
placing the fluid between two poor conductors, and a linear analysis of this

situation has been given by Hurle et aql. (1967).

! (2) Effect of Fluid Motions on Temperature Distribution

i sy Al

Suppose that at some initial instant the fluid is motionless and the
temperature varies linearly with height z, from T, at the bottom of the layer
to T; at the top (To > T]). If we now impose a steady roll-type motion on the
fluid, then in a region where the fluid is rising, the advection of the tem-
perature profile will cause the temperature in the centre of the layer to rise;
since our boundary conditions are such that the temperature gradient at the

boundaries does not alter, the temperature at the boundaries must then rise

and the resulting temperature profile will be approximately a linear function

of z with the same gradient as before. Similarly, in regions of sinking fluid,
the temperature will be its value before less an amount independent of z. The
flow of heat is in the horizontal direction, and the appropriate length scale
for estimating the magnitude of diffusion is the horizontal length scale of the
motion, since diffusion does not alter the shape of a linear temperature profile.
Thus we deduce the rather surprising fact - that a roll motion of given small
velocity can produce arbitrarily large changes in the temperature if the width
of the rolls is taken large enough. (This fact is important later.) The

equilibrium isotherm pattern is:




Low Temperature Isotherm

NS\

Sinking Fluid Rising Fluid ——

High Temperature
Isotherm

The difference in temperature between top and bottom of the layer is approxi-

mately independent of position. |If the width of the rolls is very large, it

will clearly take a long time for the equilibrium temperature distribution to

be reached; there is thus a long initial period during which heat is slowly

transferred from the regions of sinking fluid to the regions of rising fluid

far away.

Note how different this is from what happens when the boundaries are
held at constant temperature. |In this case diffusion in the vertical direction
limits the alteration of the temperature, however large the horizontal length

scale.

(3) Definitions and Governing Equations

Assume that fluid of kinematic viscosity V and thermal diffusivity X

lies between the planes z = -d and z = +d:
== 4\2 2=+d
: d
9 Fluid ‘ﬁf//////)”
——— x
_T Zz-d 7\x
We take the equations describing the motion to be:
ou [ i *u
gt—-+L_4.anl- =—?3YddP—'£8§--\'Vv = ¥
oT . OT - ’
5t T4 0T axv T, (1)
d.fb”g: (7]
P B Z"“‘C""To)}

where u is the velocity, T is the temperatuire, 2 the density. p the pressure,
S the density at temperature Ty. ol the coefficient of thermal expan.ion,

and —~q€, the acceleration due to gravity. The Boussinesq approximation is
-

i‘ﬂ : . . . . n—— ; P




made, that the fluid can be taken to be incompressible except insofar as
changes in density produce buoyancy forces. At the boundaries we assume that
here is no stress in the fluid and that the temperature gradient is —/3(/3>0);

so writing u = (u, v, w) we have:

3w oT

W=, =xv0; Aos=f on wuk d (2)
The equations admit the steady conduction solution:
| L= u, =0
T =T5 :T,"ﬁa.
| (3)
Pz o= Pll+apz),
p = PS :-};3(1+.‘Io(ﬂi‘.’>fcnntranf.
Define © , 5/0 , and JP by the equations
—T'&Ts'f 6,
L= ps+dp ()
P=PS ‘l‘J‘F
Then from (1) and (2) we obtain
Jﬂ = “f’pu 9)
o u w U = ~—2-qrad (Jp)+qubBeEa T
55 * w7 U = =3 pr*9 Cz+ w, (5)
4 >
1 gg + & ..V © =ﬂW*KV9:
weo, 2.0, £2.0 on z=2d. (6)

We shall consider only motions in the (x, z) plane and independent of y.
The velocity can therefore be expressed in terms of a stream function‘*(&.i) :

w curl (‘Pg‘j) 7)

(-¥2,0, ¥x). |
After taking the curl of the momentum equation, the governing equations become:

> o8
3% (T79) aalf;?mw’?“ VY
00  Jd(w.B) _ 3y

e T )l Al (8)

W:o, sz:OQ ez:o on Z:id.c ]
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These equations can be made dimensionless by defining new quantities as follows:

x:d-;(’, 6-.-.,646/ R:aocﬁd“/'uﬂ.,
2 : da’, p =KV, c: WK , (9)
t :—d—i—t‘r

K
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where R is the Rayleigh number and o~ the Prandt] number. Equations (8) become

(omitting primes):

o v. 208V, 28 4
’5—*{’35(5’ ¥}« 5 (x, 2 }'RT vy
.8_9_ 2%,8 v g (10)
S TP
u,J-_\Vu=QE=o en 2= + |

The problem now is: given that at some initial instant ¥ and 4 are small and

that they evolve according to (10), what ultimately happens?

(4) The Marginal Stability Curve

The marginal stability curve for infinitesimal disturbances can be ob-
tained from Eqs.(10), less the nonlinear terms. Hurle et al. (1967) have per-

formed the calculations with the following result:

s talile marginal stability {3

curve
Rayleigh
number

R R,

stable

K=0 Wave number k ; i
(They also show that the principle of exchange of stabilities is valid.) The
critical value of R is Ry = 15/2 and the critical wave number is K = 0; note
that all Rayleigh numbers as we define them differ by a factor of 24 from the

usual ones, because the thickness of the fluid layer is 2d not d - this simpli-

fies some arithmetic later on. The curve has a horizontal tangent at k = "

and so if the heat flux through the layer is gradually increased, then the con-

vection first sets in with very long wave lengths. This is markedly different

from the manner of onset of convection when the boundaries are maintained at
constant temperature; the convection cells then first obtained have widths of the

same order of magnitude as the thickness of the layer.

If the Rayleigh number is fixed at a value slightly above Ry then on the
linear theory all disturbances with wave numbers in a certain band will grow
exponentially in time. Since these results can be deduced from the equations de-
rived in the nonlinear theory (with which this paper is primarily concerned),

they are discussed in subsequent sections. \

(5) Some Simple Order-of-Magnitude Estimates

Suppose we have steady convection at a Rayleigh number only slightly in




. A

.5-
excess of R,, so that velocities are small. Let the typical cell width be L,
where L >>d by the results of section (4). Then from (5) and the equation

div u = 0, we obtain the trollowing order of magnitude equations, in dimensional

quantities:

K& o &T (1)

L ¥ P

£ -
o (Jp) L vu (13)
3x \ A e
3 (9P) . uw

where QAT is the difference in temperature between the top and bottom of the
layer. This difference in temperature was shown in section (2) to be approxi-
mately constant. In (11) we have used the result of section (2) that to leading

order, diffusion acts in the horizontal direction. Eliminating pressure from

(13) and (14) L VYa (15)
= 2 o d*
L 3
= 4k (16)

The first term of the left of (16) is negligible compared with the term on the
right since L>> d; thus the main balance of forces in the horizontal direction
is between the pressure gradient and viscosity, while in the vertical direction
it is between the pressure gradient and buoyancy. Combining the equation
kL M# o g8 (17)
= el
with (11), we see that L? cancels out to give

HIATdT oy, (18)

v
Thus, as expected, the Rayleigh number is order one. Equation (11) can be

written in the form N 3
& wd L
U SIS

1
AT K a*’ (19)
which becomes, in the dimensionless variables of section (3),
d X
w ~ (£]'e. @

The above considerations guide us to a system of scaling for a perturba-

tion analysis of the dimensionless equation (10). Let the Rayleigh number be
2>
R:R + € > (21)

where 0< € €< 1. Equation (21) defines € . From the shape of the marginal

stability curve of section (4), the unstable wave numbers will be in a band




s th

1 =

of thickness of order € . We therefore scale the variable X by making the

transformation > 3 (22)
Sl e s 22
2X E3x

A nondimensional wave number of order € corresponds to a dimensional
wavelength of order d '€ . which is L as defined above. Hence & ~d/L. We ex-
pect < to be proportional to the amplitude of the convection as represented by
the horizontal velocity component. (Compare Malkus and Veronis (1956)). There-
fore we make the transformation

Y —EeY, (23)
From (20), usingw=%¥x and € ~d/ , it is seen that @ must be order one. It

turns out that the appropriate scaling for t is obtained by making the transforma-
tion d

S b LN (24)
ot € ar
The new R P S 'g and @ are thus order on
ax > 9t ’ ’ €.

Using the notation D= —%E and J = 15%-, transformations (22) - (24) give
(10) the form:

4 06 2 o(v.0) 2 2.2 2
€ ﬁ"'e a(inz)zé &"V+63 9+.D e, (25)
(v 9 L e 2 (p? « (W) + o(w DY)
é{ébat_ ) W))«G F(D ‘4’)4.6 alx,2) + € W
SR,00+€C09+ €W 26797 D Y + DY, (26)

It is assumed that O is of order one. We now write

9:00-4-61'9’_4- eue.,-r o ooy }

Yot Y, r €9, v ey (27)
there being no terms in odd powers of - , because Egs.(25) and (26) contain no

odd powers. Equations (25) and (26) can now be solved by equating powers of E
to give differential equations for &, , L}Ja o By , in that order.
The boundary conditions are

QJ“=_D"\P”:D9,‘:O om 2=1%2 |

for n =0, 2, 4, ... The calculation is given in the next section.

Of particular interest in the above scheme is the fact that the tempera-
ture perturbation is 0(1) as € -— . This is in accordance with the analysis
given in section (2), and means that the equations above apply only after the
initial period of convection during which a large amount of heat is trans-

ferred from regions of sinking fluid to regions of rising fluid a distance of

order 1/e away. It would be of interest to examine this initial period more

[ ———

Or——
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closely, and try to match it with the later behavior. This is a possible direc-
tion for further investigation.

(6) The Perturbation Analysis
From Eqs.(25) - (27) we obtain:

©
Eq. (25), € : D*e, = ©
Therefore by (28), 0. = £(x,t),say.
Eq. (26), €”: DY, = -R.f,,
e oo n
where the notation ‘f‘n stands for d »f-/éx . The boundary conditions then give
i Ho L o s
¥, = <R Gine- 5=+ §

$ P, say,

where P incorporates Roe

Eq.(25),€ 2’8, = ii;iw—‘i—] - 0¥ -6,

)

e
'-‘F‘ Pl "{',_{P(Z-)-o-l},
n
where F, denotes d P/d?.-“. Now the boundary conditions DG,\z Oen 2=+ |

impl h b s
imply that j.D@hda:.O,

=7
2.
Thus we obtain a condition which the right-hand sides of the equations for D G,\

must satisfy (the secularity condition). Since py is an off polynomial, and f is

a bounded function of X , we obtain the value of Ro from the equation

O = f'{PLZ)+I}d2.

Hence Rg = 15/2, in agreement with Hurle et al. (1967) after allowing for our
different definition of the width of the layer, and so

p(z) = -5/16 2% + 15/8 22 - 25/16.

The equation for ©, can now be solved to give

6, = £, R 2+ £ R+ g(xt),

. L. gt 2. " 4

where Qel=ge?® ~37% Y 33
| s = 3 25
2) 2z — - et

R(2) 2 g B,

and g is a function which will be determined at a later stage.

Eq.(26), €% Writing r for R, henceforth (to avoid confusion with R(z)), we have

W iﬂ%’:'f—’ -rd6,-06,-200"Y,

b P————— =

S



r‘kj

=46 [ (P £R)-2vREA (100 10}k - g

Hence %=£f15(2)+f,T(Z)-rﬂu.(!)»g.p
where

1 3 A o\
o | /“2____ i52 692 PR [ o gl A
T(=1= 42 f (7840 ¥ S5 8t 3Ase o) ~A-B.4(2™) y

with A = value of expression in brackets (...) at z = 1,

B = value of second derivative of expression in brackets (...) at z = 1,
and U (z) = -1/24 (2% - 622 + 5).

It turns out that the expression for S(Z) is not required; but note that
it is an odd polynomial and S(1) = S(-1) = 0,

Eq. (25), €
sy L 26, 3(%,8)  (¥,.6) -
DG = 3¢+ * 3G 3lxe) ~ 9%~ 6,

\!

W

2 ' {Pr,~ 2PR-5)
+ £, [PQ,~S-2R|
+f8{-pa-T,-5- 2R/
+'hl‘ i"bt'}
* ;q LT-4a;
*';'z{"u'} "2-?,3,[’,—32 EP(Z)-H}

The secularity condition now gives the equation for f. All odd polynomials
integrate to zero, as also do the even polynomials S; (because s(1) = s(-1) = 0)

and P(z) + 1 (by construction of P). We also have Ry = -p. The result is

therzf:% - {-’2— SIP‘J z‘! (F>) - {Lz Sl(‘r...Q\da}{-q- {—; j'lu dz} f. (28)
5 &

Evaluation of the integrals gives

- b z
%‘%: 1.230,159(§’) - 0.98%, 15?‘}‘-“ -5 5 (29)

(The detailed arithmetic has not been checked independently. Equation (29)
should therefore be regarded as provisional.) This is the fundamental equation

describing, to leading order, the nonlinear evolution of the system; recal that

6= (xt), (30)
and y = 2ree. ‘ (31)

S
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The calculation above has some interesting features. Firstly, the fact

that 9, is independent of Z is in accord with the plausibility argument given

DI-
in section (2). Secondly, the inertia term é: —Qig%ﬁiﬁi?g) makes no contribu-

tion to the equation for f, because the term containing it integrates to zero.

The equation for f therefore does not contain 6 . In fact, the only terms
- Z) ¢ ,06 :
which contribute to the nonlinearity are 2(%-5) and —gi—iLL—lLln which

9 (x,2) 3(x,2)
represent advection of temperature by the leading order velocity term.

(7) Proof that the Expansion Procedure is Consistent

It is necessary to prove that the procedure above, if continued, would
give equations for 6, , v, , 9‘4 , Wy , ... , uniquely and without contradic-
tion. Thus it must be demonstrated that we obtain differential equations for
the functions f, g, h, ... introduced into the terms ©,, 8, , & .~ s T
show this, suppose that for some even n(Z4), we have

©n = h(x,t) + terms not involving h(x,t).

1}

Then from (26), D“‘#n -r é;%F + terms of subscript less than or equal to(n-2)

So W,= h, P(2) + other terms.
%, 6, 3{%, 8 2
Now from (25),_9‘9,“1 = ———~—-%((;";)) - _a((z,z';)' a;’t’n - ?;9:‘

+ terms of subscript less than or equal to (n-2)

= =2f1hiP} - ha(P + 1) + terms not involving h.

So the function h(X,t) introduced into 9.-, does not appear in the secular-
ity equation for D."Q\,,,.z , and is determined by the secularity equation for
Jf'e“,,. Hence we obtain a differential equation for each of the functions intro-
duced. Note that these differential equations (other than the one for f) contain
the functions determined by the earlier differential equations in the sequence;

they are linear and inhomogeneous.

(8) Linear Analysis

Equation (29), without the nonlinear terms, is

(% 2" orf '
2 --b 2t 2, (32)

where b = 0.787157 and ¢ = 2/15. Trying the solution
f (x,t)= g(t) sin kx

gives ? Y -
a-—ta— =(—-bk + ck )3(*)-




_‘0_

The growth rate is therefore zero when k = 0 och/b (=0.4116), and positive
only for k between these values. The maximum occurs for k=J¢/ab . Returning
to the original units, we see that if the Rayleigh number is R, + €’ then on

the linear theory the unstable disturbances are those with
l/:_
wavelength 27 ( b/ d
g b ( C) il
and the disturbances of maximum growth rate are those with

I/.“
wavelength = 277(26/02) -i

€
(1 am not clear about the interpretation of the above results, since the linear
analysis applies only to the initial period during which the order one tempera-

ture perturbations are created and after this period f is not small.)

(9) Steady Nonlinear Solutions

By an order one linear scaling of x , € , and f, the coefficients on the
riaht-hand side can be given any prescribed values (or the correct sign). Here

it is convenient to take the equation as
3f o2 (13 ’E 3“f 2%
3t * * O (350 - %% T xx’ (33)

Later on we shall choose different values for the coefficients. (Recall that

in this equation X and t are scaled by powers of € .) To obtain steady solu-
tions f(X) let g = 4f . Then integration of (33) gives

dx ",
7‘;‘-3;+3_23’+§A=o, (34)

where A is a constant of integration. Hence

@1;_)2 (59" Ag- B) - 0, (35)

where B is another constant of integration. |If we regard X as 'time' and g as

'distance' then (35) represents the motion of a particle in a potential V given by
V(g) = 172 ( -g"+g2+ Ag-B),

and the values of g are such that V 0. The following are graphs of V for dif-

ferent values of A.

For an infinite plane layer, f must be bounded, and so the motion of our

imaginary particle is such that the time average of its position g is zero.

L e—

[ —



Therefore the particle must oscillate in the potential well. |If A >0, the
oscillation is about a negative value of g, say - T and from the shape of the
well it can be seen that the particle spends more time with g« g, than with

g > g,. So the time-averaged value of g is then negative. Hence we cannot have
A> 0. Similarly, we cannot have A< 0. Since the bottom of the well must
have a negative potential and the top a positive potential, (from (35)) we find
that

so that the graph of

is then

Partie lc‘ Oscilators !

in heve
o
From (35) we obtain
R e 36)
(34-g*+ B)
The integration can be performed using elliptic functions. It turns out to be
convenient to define the quantities < and A by
B2 2 sec %, (04 = $77)
A s (%= CEX ST
Equation (36) then gives the neat expression
3()():(5/)1 l}m{(tas 3.)?(; tan 2—}) (37)
in which we ignore the arbitrary constant which can be added to X . Values of

A between 0 and 1/4T give all the steady bounded solutions of (33) on integra-
tion. The result is

£0x)= tog [dn {(cos ) x} = (an A) en {(cos 2)%)] (38)

where the constant is chosen so that the average value of f is zero, since there
can be no change of the fluid's average temperature. Equations (37) and (38) show
clearly the dependence of amplitude on wavelength. When A is close to zero, 3(1)

is approximately sinusoidal, with wavelength approximately 2 77 and amplitude A

gou..




When A is ciose to 1/4 T , g has wavelength approxnmately[I l°3¢~
and amplitude 757 . The graphs of f, df/dx, and d 2§ /dx2

near 1/4 T\).
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Now 6,= f, V¥, = %—% P@), and (to leading order) w = - ;;; P (2); hence these
graphs show the shape of temperature and velocity distributions for steady con-
vection at large wavelength.

X , the graphs should be stretched horizontally by a factor of €

shape between the regions of rising fluid and regions of sinking fluid.
simple extension of the arguments given in section (2) it can be seen that if we
altered the boundary conditions to have constant flux on one boundary and con-

stant temperature on the other, then the isotherm pattern at the regions of ris-

ing fluid would be considerably different from that at regions of sinking fluid.

d
dx

tan* X

are as follows (for A

(To obtain the original unscaled length variable
-1
o)

From the symmetry of f it can be seen that there is no difference in

By a

B
-

[ J
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There would be a corresponding difference in the flow patterns, and possibly
also in the horizontal length scales of up and down motions. This could be

worth further study.
The stability of the steady solutions is considered in section (13).

(10) Energy Equation

It is convenient in this section to scale x, t, f, so that (29) becomes
of _ 3 =
'a'f- = (‘F‘; >x "‘qux ‘F’xx (39)

Multiplying by f and integrating by parts gives
_%5%{."&;:~S{-‘~dl~j.ﬁx:dx+5¥:dt (40)
provided that the integrated terms ffi, ffxxxs fxfxx and ffy all vanish. This
is so if the integral is taken from - ©© to + o< and f -——> 0 sufficiently
rapidly as x—=> +o0o, or if the integral is taken over a finite range and at
the boundaries
(1) f=0and f, =0)
or (ii) f =0 and f ‘
)

or (iii) fy = 0 and fy,, =0/

(41)

[}

In this problem the natural conditions are (iii), since these correspond to

zero heat flux and zero stress on the side walls, by (30) and (31).

(11)  Proof that there is no Subcritical Instability

€ instead of R = R°-+e2.

Suppose that in section (6) we put R = Ry -¢€
Then the analysis is identical, except that in the equation for Dzwz we need
+ 09 6, on the right-hand side, instead of =26, . The expression for ¥, is
therefore the same as before provided that U(z) is defined as being minus the ex-
pression given. Hence in (29) we need only alter -2/15 fy to +2/15 fp. Re-

scaling the variables gives

3
—g-g“ > ('F, )1" {:wa + 7CK)() (42)
and the energy equation becomes
d 2 H £ = 2
S LS L

Thus all disturbances die away and the system is stable. Hence there is no sub-

critical instability in the expansion scheme we have adopted.

(12) Analogue of the Nusselt Number

I f we define

DO (x,t) = el,._, oL, . RN

|
i
i




r

v 3k =

then from the expressions for ©, and ©, in section (6), we see that
. -
DO =-~247€ «0ET)
Therefore in dimensional units,

Y
-——A—?‘—‘FE O(é)

where AT= ?/30[. Thus when R = R, + €", the effect of convection is to re-

duce the mean temperature difference across the layer by a factor
IF I\ ., o €Y
<(ax>>6 + OLE)
where < » denote the mean over x.

In the Bénard problem with constant temperature boundaries, the Nusselt

number is defined as the ratio of the mean heat flux passing through the layer

to the heat flux which would be obtained if the heat flow were entirely by con-

duction. During convection the Nusselt number is greater than unity; that is,
convection increases the mean heat flux for a given temperature difference be-

tween the boundaries. With constant flux boundaries, the dimensionless number

of interest is the ratio of the mean temperature difference actually present to

that which would be obtained if the heat flow were entirely by conduction. This
number is less than unity during convection (as has just been demonstrated);
that is, convection decreases the mean temperature difference for a given heat
flux through the layer. When R - Ry is small, this temperature difference is

small; but recall that the actual temperature perturbations are large.

In much of the work that has been done on convection with constant tem-
perature boundaries, considerations of heat flux play an important role. It
would appear that all of this work will have its analogue in the constant flux
problem, provided that temperature differences are the object of study. Fur-
ther investigation of this may be worthwhile. For example, the reduction in
mean temperatune difference described above may be expected to occur for all
R > Ry, (not just R slightly greater than Ro) and it should be possible to
prove this directly from the governing equations, without using perturbation

theory.

(13) Variational Method

If f(x,t) is any sufficiently smooth function of x and t, we may define

V($.t) = 5(«**?¥ -2 & e, (k)

where a and b are fixed numbers. Now let f(x,t) be any solution of (39) satis-

V by

fying one of the conditions in (41) at x = a and b for all t. Then it easily
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follows that ;
——v FW“}# dx. (45) !
Thus V decreases during the motion unless the solution is steady. In the steady |

state, we know from the energy equation (40) that |
b H 1 > d
0:f (~£1+F7+ £ ) dx, (46)

o

and so in the steady state,

V(. t) ,_..;L,jﬂc: dx
-.---;-Zba“dx.

By the Euler-Laarange equation, the condition for stationarity of the integral
in (44) (for fixed t) is z

(47)

) 9 5 (48)
o~ = +
C‘ax‘l 3 3,
which is the equation for steady solutions of (39). |If we specify that the layer

of fluid extends from x = a to x = b and we specify the boundary conditions of

f there, then only certain wavelengths are possible for the steady solutions,
and (48) shows that these solutions make (44) stationary for variations satisfy-
ing the boundary conditions. |If V is a local minimum then by (45) the steady

solutions will be stable to all small enough perturbations; if V is a local max-

imum then after a small perturbation the fluid can never return to its original
state, and if it does subsequently reach a steady state it will be at a wave-

length for which V has a smaller value than originally.

The steady solutions are given by (37), in terms of the parameter A ,

which may take only certain values for given boundary conditions, and it may

easily be shown, by considering the shape of g or by explicit evaluation, that
(47) is a decreasing function of A , and hence wavelength. Thus perturbations
cannot result in a shift to a shorter wavelength. To discover whether a larger
wavelength could result, we would need to consider the second variation of (kL&)
in terms of A ; the result might be that for certain range of A the steady
solutions are stable. Unfortunately | have not yet had time to do the calcula-

tions. This line of attack seems very promising.

(14) Effect of Rotation

Suppose that the Benard layer is rotating with angular velocity g ,.
We work in the rotating frame of reference and consider motions independent of

y, and with a y-component of velocity V(x,z). The governing equations are then




B —

_]6-

d—i (V%) + aia--;r‘; = VI -2V g8 N
R W A ELA } (43)
iy 226,20 or 2:%d ’.;

| 3 BM/V \i il X
?:*3f\v‘¥*.3753\ 7 - AV + R&
S -;'.4 a V)V/ 7% A
Flar " BT =R % A Hoo t (50)
QQ_ J ‘f{») .}) \
af Dn). V 6+

V=D"’-P=Dv=D9=0 at p=El .

where V is measured in units of Kv(jv,and,k = ;_fl-lf/b’

We now consider the motion when R = R, + G . In order for the solution

to be near to that obtained without rotation, it is necessary that A is order
6 , and this implies that V must be order € © . Making the transformations
A —> €A, Vv —/8Fg*V . together with those given in section (5), we

can proceed as before. The calculation is straightforward, and the end result

is Eq.(28), except that U is defined by the equations

u
-j:—z—qq == AP(2), (51)
wu: A =0 ovr 2=l
Hence dz?
—g-g—-: “'(_'Fxs)x' bfexnx = (6i- ca X™) §a (52)

where

a = 1.230,.59

b =0.787,157

cyp = 2/15

Cy = 0.164021

This part of my report is unfortunately rather compressed. For com-
pleteness | ought to give V and show, what is in fact true, that the initially

unknown function in it does not appear in the equation for f.)

If e ignore the nonlinear term in (52) and try a solution of the form

[S———Y
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$ (€)= g (Bl sim gkx

then we require d
8 3 - A 1.\'_ \.}
—(If— —-k :\Cl C:A / bk j‘
Thus a disturbance of wave number k will grow if
2
bk*< ¢, € = ¢, A" 3¢, (R-R,)-C T,
where T is the Taylor number. Thus for given R, slightly above Ry, we can
define a critical Taylor number by
cl
Te= €, (R‘Ro\
If T > T. then the system is stable. If T < T. then apart from a linear
change of scale, Eq.(52) is the same as that studied in the nonrotating case,

and most of the previous analysis carries over. These results are in accord

with the general result that rotation is a stabilising influence.

(15) Extensions of the Present Work

It would be of great interest to devise a variational principle for
this problem, expressing R as a quotient of two integrals, in the manner of
Chandrasekhar (1961). This might be quite easy. A more detailed theory of
the rotating Bénard layer could be given, and the theory could be extended to
allow for the effect of a magnetic field, when the fluid is electrically con-
ducting. The differential equation for f is of interest in itself, irrespec-
tive of its application to this particular problem; regarded as an initial
value problem it might be possible to obtain some very general results about

how the evolution of f depends on the initial value.
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SIDEWALL BOUNDARY LAYERS IN RAPIDLY ROTATING HYDROMAGNETIC CONVECTION
Francis J. Condi ]3

! 1. Introduction

: Convection in the earth's outer core is generally felt to be a most
likely source of energy for driving the geodynamo. An assumption is usually
made that the Lorentz force is comparable with the Coriolis force, but Busse f]
(1973) advocates that rotation is dominant in the core and that the above bal- :

ance is unlikely. Busse (1970) has found that thermal instability in an inter-

nally heated, rotating, self-gravitating sphere sets in as long thin convection
cells in a cylindrical annular region intersecting the sphere at about 60° lati-
tude. In his (1975) model he considered a cylindrical annulus with sloping top J
and bottom boundaries and found that the Ekman layers which form on these bound-
J‘

aries have profound influence on dynamo action.

Eltayeb (1972) concerned himself with various cases of hydromagnetic con- ‘
vection when both the Taylor number T, and Hartmann number M are large. These

numbers are defined _a;.s: L{]_ledq R 16, | d ;

Ve upym)™
where JSL is angular velocity, d is a characteristic length; ) kinematic vis-
cosity, o density, s« permeability, n magnetic diffusivity, and }Bol magnetic
field strength. The cases are classified by the relative orientations and mag-
nitude of rotation and magnetic field for various types of boundaries. He found
when T << M4 the most unstable mode has a roll axis making a small angle with
the magnetic field and when T‘AJO(M“), for a certain critical value, the roll axis
becomes parallel to the rotation axis. |In addition, for T > MY the critical

Rayleigh number of the oblique rolls is greater than that of the rolls with axes

parallel to rotation, hence the latter is preferred. The orientation of the cells
for T ~ 0(M*) and T > "

is the same as that for Busse (1970).

Another interesting result of Eltayeb's study is that in some cases the

boundary conditions to be applied on the mainstream depend upon the insulating
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rather kinematic properties of the boundary. The following analysis will be
concerned with this question and its effect on the stability problem. A balance
between the Coriolis and Lorentz force will be assumed. Therefore a several-
hundred gauss toroidal field will be supposed to exist in the earth's core. The

cases considered here will be for large T and large M where TAAJO(M“).

2. The Problem

Initially consider a rotating, thin annulus with a toroidal magnetic

F field, in which the ratio of gap width to mean radius is small enough so that
local cartesian coordinates may be used. Ignoring the centrifugal force, we may
treat the problem as a layer of electrically conducting fluid in solid body rota-
tion, with a uniform magnetic field. We suppose that the temperature of the
lower boundary (z = 0) is greater than that of the upper boundary (z = d) and
take the case when gravity acts in the negative z-direction, rotation in the
x-direction and the uniform magnetic field in the y-direction where Oxyz is a
right-handed coordinate system (see Fig.1).

| £h
7 X

g — O

2=d 2=0

2

SRS
o)

Fig.l.

The fluid has the following physical properties: electrical conductivity
o, kinematic viscosity ¥ , thermal diffusivity X , permeability & , and
angular velocity f2 . An assumption is made that when the temperature gradient
is large, the conduction solution will be unstable to convective motions. We
suppose that squares and products of perturbation quantities, & the perturba-
tion temperature, b the perturbation in the magnetic field, and u the perturba-
tion velocity are negligible. Therefore the equations are linearized around the

conduction solution.

Dimensionless variables are introduced by the following transformations

(Roberts and Stewartson (1974))

. R LS.
=5 X L KT e
ws L& Eu (x,t) (1)

B'= B,[t:?+,uck€ B(x, t?]
6 = 6,+¢%¢[z+€9(x,t)]
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where € is a small parameter representing the magnitude of the disturbance ap-
plied at t = 0, /? is the temperature gradient, u is the “elocity, By the uni-
form magnetic field, and ©. a constant temperature. The equation of state is

given by ¥

< = &LpdTLO-@JJ (2)
where &% is the coefficient of volume expansion.

Upon employing the Boussinesq approximation, the following linearized

equations result

Momen tum: ~ A
Jﬁ—%%—{-?(('x/\(_/_t-):VF* %—%~+ ARB(X,2)2+EAV L (3)
Temperature: 3
(v*- ¢ 35) 0 =W (4)
Induction:
AL b Bl ol ] )
(V-4 55)B =- ;;?— (5)
where . asle L ARA L = wa K
Gl Ra2sgun>' &4 % (6)
YLATIX 5 2B
d Z2adv ’ E= 2hd .

and P is a reduced pressure.

We now take the z-components of the curl of (3), curl curl of (3) and curl of

(5). It is then possible to assume a normal modes solution

o dy+o )
G(xy,2,t)= G(2)e e (7)

where G represents any of the above variables. The result is five ordinary dif-

ferential equations. It may be shown that these equations may be written as

(2*-a"-ic)6 =W (8)
P™-ar-iga)B=-ifw (9)
{[(id“aﬂ—sz(n‘-aﬂ)wt u‘_zzfr)]—e*} C=iAR(D=aigoW (10)
{[es-er 0t wige)] -6 - Laaw ()

{(0%a)[™a)-Lptr) 0 d-igo)D-a- L) LML ) (D -0}

p A g[‘( LP"d'- (D‘.'.Qa))(Dto}_,: %e,)]_M’:{t} We ARMT V;(Dt O.‘~(‘-x.0’)‘(D‘-A‘~{ o)W

2AM'R a%nta*‘a%r){[up“ - (0%aM)(D%at-Lqm) -Ns‘{‘} w (12)
ere Dx s 2tk 2, pavy

dz
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and & , E and 4 are the vertical components of vorticity, electric current,
and magnetic field respectively. We note that £ A may be expressed as M~2 and

E may be expressed as T'Ml.

Upon assuming the principle of exchange of stabilities is valid (o = 0)

and canceling a (D2 - az) from each side of (12) Eq.(8) through (12) reduce to

(D=a) 8=y (13)
(D-a*)B = ~tlw (14)
FEX(D=a)4 €)= ~thA(D%a*) W (15)
[EAW@ e *]E = -2h2 W (16)

£ rm Nt e e 2 2 R
CEa)[EADTa ) - kA (D e e RaA[EADIDs 2w (1)

3. Boundary Conditions

Equation (17) is a tenth order equation. We will need five boundary
conditions on each of the two boundaries for its solution. We follow Eltayeb
(1972) and assume for all kinds of boundaries that they are perfect thermal
conductors, therefore the temperature perturbation vanishes there. We also as-
sume that the normal velocity vanishes at the boundary. Then at 2=0,d 6 =Wz 0.
The next conditions applied are that for rigid boundaries (no slip) DwW: 0 and
for free boundaries D*W=0. The magnetic boundary conditions are

<n-B8>=0, <n,Ey, <«n:J,=0 (18)
where < 2> denotes a jump in the quantity across the boundary. It can be
shown that for an insulating boundary the condition becomes E =0 at 2= O,d,

and for a perfect electrical conductor that [J§= Oat 2=0,d. The boundary con-

ditions may be summarized as follows:

(1) Free, Perfectly Conducting Boundaries

6:W:=D"{:DE:0 af z:0,d (19)
(ii) Rigid, Perfectly Conducting Boundaries

O:W:=:DW=f=Df 20 af 2-0.d (20)
(iii) Free, Insulating Boundaries

9=W=D'_._“'V=DI=E=O “t !sO,d (2])
(iv) Rigid, Insulating Boundaries

0=:W:DW= "=2E =0 ot 2=0,d (22)

For all cases B is continuous.




4. The Boundary Layer

From (17) we obtain a boundary layer equation
D' (D*-k*T)W = 0 (23)
and a mainstream equation
(£'(0% a*)-4*A*(DZa')- Ra*AL*}w=0 (24)
I't should be noted that no magnetic terms appear in the boundary layer equation

o
(23). The thickness of the layer is O(T *)s

A solution to (23) is

\_V‘/:A,e"‘“_*Aze“"“_’_ Aseta“\* Bg* B,z +Bzi‘0 B’Z, (25)
where Z:z‘f"'ﬁz:'i' ) ‘l.yz':":("'@a"" (26)

. 1r’“ f s

Expressions for & , 5. , g can now be found from (13), (15) and (16) respec-
tively. We now wish to test the hypothesis that © =W =0 are the correct bound-

ary conditions to apply at the edge of the mainstream. At 2= 0, for any bound-

ar - -
) B oA v ot At o A B n0  (27)

W(0)=A,+A1+A3+WMS=O (28)
where the subscript MS denotes mainstream quantities.

The first case to consider is that of the free, perfectly conducting

boundary. The boundary conditions are given by (19). The other equations which
are required are

Dwe) = °('LA:+ “2%}A1+ “;%LA{* (th)ms i (29)
DE @)=z ~CA+ ol At < g1 Ay x (D), = 0 (30)
D§C0}=A,—A;A3+(D5)M:.o (31)

(27) through (31) may be rewritten as

AtgAtq,A, - -=<"6, ==tV s
ArAA, 2w, = U (33)
ArIANIA, 2 - (DW),, /< 6 = X /uc? (34)
~A.+%?A,+%:A,=—(D[)m/¢x‘—_o-.7{/<,<‘ (35)'

|

A-A- A -(0§), -z (36)
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where U, V, X, Y, Z are defined for convenience by the above equations. In
addition, we may form a relation between (33) and (36)

(Z-V)A; + Z+U)Ay + (2+V)A; =0 (37)

O, is just the left-hand side of (32) divided by a large quantity. Therefore
to order (o< ™' ) it is zero and we may concentrate on the other equations.
No similar statement can be made about the other quantities. From (33), (34)

and (35) the coefficients Ay, Ay and A3 may be determined

-Uqs X UaV
A‘-O,Azf- %?_%;’ A,’- ?‘5._$5’ (38)
Using (37) a relation may be obtained between Z and U
v(iz+u)=0 (39)

U=0 is just the trivial solution. All three coefficients in this case are

zero. The interesting relation which emerges is that Z + U = 0 or
= 4
W, + (08), =0 (40)

This says that the vertical velocity alone does not vanish at the edge of the
mainstream but that a linear combination of the vertical velocity and change in
vertical current are brought to zero there. {0t LS can be expressed in terms
of W, by use of (16).

We now consider the case of rigid, perfectly conducting boundaries. The
boundary conditions are given by (20). Equations (32), (33). (36) and (37) are
still valid. Instead of (40) and (41) the following equations are used

*A,*q,A,_«-%,A,:—(DW)MS/x=O= X/oc (41)
A|+1‘A1+11A3= - fms/x =0 = Y/f/cr. (42)

By following the same analysis as that for the previous case, the result is
W+ (DE),, = O ek

The next case is that of free, insulating boundaries. The boundary con-
ditions to be applied are (21). Equations (32) through (35) are still valid.
Equation (36) is replaced by

A AR A m m B =T ()

From this analysis it can be seen that Z is zero to order (1), i.e.

£ =0 (45)

ms

The same result holds for rigid insulating boundaries.

The results for all cases indicate that the boundary conditions to be
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applied on the mainstream do indeed depend on the conductivity properties of

the boundary; however, the above derived boundary conditions differ from those

of Eltayed (1972) who assumed W = 6 = 0 to be valid on the mainstream. From
this analysis we can expect a significant change in the critical Rayleigh numbers.
Extension of the work sill be to calculate the critical Rayleigh numbers with

the derived boundary conditions and consider more physically realizable geometries.

Acknowledgments

| wish to express my sincerest thanks to Dr. Andrew Soward for suggest-
ing the problem and for his unending guidance throughout.

| also wish to thank Glen lerley for some very helpful discussions.

References

1. Busse, F.H. 1970 Instabilities in Rapidly Rotating Systems. J.Fluid Mech.
44: L41-460.

2. Busse, F.H. 1973 Generation of Magnetic Fields by Convection. J.Fluid
Mech. 57: 529-544.

3. Busse, F.H. 1975 A Model of the Geodynamo. Geophys.J.Roy.Astr.Soc.
ﬁgf 437-459.

L. Eltayeb, I.A. 1972 Hydromagnetic Convection in a Rapidly Rotation Fluid
Layer. Proc.Roy.Soc. A 326: 229-25k.

5. Roberts, P.H. and K.Stewartson 1974 On Finite Amplitude Convection in a
Rotating Magnetic System. Phil.Trans.Roy.Soc. A 277: 287-315.

LONG WAVE MOTIONS IN AN ADIABATIC ATMOSPHERE

Pham Giem Cuong

Introduction

We use the tidal equations, derived by Karal* with some minor modifica-
tions of our own, the small amplitude wave-like disturbances in a spherical adia-
batic atmosphere. It is found that to the first order approximation there is
only one band symmetric with respect to the equation where disturbances of a given
frequency (v can propagate. For w < S , where L2 is the rotation of the planet,
the band width is proportional to £* . For larger ¢ it is proportional to «w .
Inside this region only waves with azimuthal wavelengths satisfying nﬁﬁg-%}ic&)*
can propagate where ¥ is the adiabatic exponent; this smaller (rr\l is the
farthest the wave can reach poleward. The characteristics of the waves are ex-

amined qualitatively.

“The tidal equations used in this paper are only one part of Karal's work on the
weather. Since we do not know when it will be published, an outline of his deriva-
tion is given here.
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1. Karal's Model

We consider a non-viscous, non-heat conducting isentropic troposphere

surrounding a rigid, rotating and almost spherical planet. The boundary between
the troposphere and the tropopause is considered to be a free surface where the
pressure JQT is given. This boundary and the surface of the solid planet are
described respectively by

Y—;.Y)h(ej“?’t: (1.1)

- y = h0,9) (1.2

where (~ ,© ,7 ) are the spherical coordinates with origin at the center of the
planet and T is the time. Let us call the mean radius of the solid planet

and the mean thickness of the troposphere d . Then

g = A (1.3)

.
is a very small number which is of the order 1073 in the earth's case. This is

the case in which we are most interested. For later use we also defined

£(6,9,t) = n(8,4t)-0a (1.4)
c(8,9) = hi6y9)-a (1.5)
and X = F=a. (1.6)

The equations describing such an atmosphere are

L L .
’E:*?ﬂX%HQX(QXL')q-Q"PVP (1.7)
de
az * PV =@ (1.8)

d _?

S = e ) )
dt ©r T (1.9)

The appropriate boundary conditions are
dn,
e M= A = (1.10)
e e Fe =T
w.ny = O af r=h (1.11)
and p = ODT at r=m (1.12)

Here w, GL’ Pe "hu’ w}k are respectively the velocity, gravity, pressure,
density, and unit normal vectorstbvtand f , see Fig.1 The equations (7, 8 and

9) are the momentum, continuity and isentropy equations. The Eq.(10) describes

the free surface r = 7 while Eq.(11) corresponds to the rigid one " = h .




Let
w = (v, w)

and G = (6> Gq. Gy
in spherical coordinates. Then the Eqgs.(7-12) become
du V,;'u’. 2 . .
TE " =G irsmeranwane- 4 28
dV V_

'—v
9
_ wetb 2, ¢ weemb_, L 2
= Ggf_(')_ r.imﬁcq.,..zﬂ P_§'5

dt r
o dw , wwel® G aqusimbogavent. ) Zp
i : v Ypwn @ 9y
8 ol 8w 1. 3V ! . 3w v =
Gt —PLaket 36 TrmD 3 ¢ 2 - 2b=0
Ay - de
Sy -
TR . 9y 3w . =
Foe - spe e - A0 shaey
Y. 3h w3k =
U= % 58 ~ vsme 5¢ 0t ¥=h
P:f_f a.r"*rl

(1.13)
(1.14)

(1.15)
(1.16)

(1.17)

(1,18)

(1.19)
(1.20)

The Eqs.(13-18) with the boundary conditions (19,20) form a system for

the 6 unknowns u, v, w, p, P s 7 for given G, Gy, Gq and intral values or

the unknowns.

We now nondimensionalize the equations by defining

i:ﬁq F=1+6x, t = L ¢

B L V. s
u:Z—f(:j‘ \/:.—V—_;_—‘L-_ﬁ, ﬂ_J?"_K‘I.
Pomge P

.z, £2d, A= den

(1.21)
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density. This scaling procedure makes the quantities in the vertical direction

comparable to those in the horizontal. The horizontal velocity has been scaled

by the shallow water wave velocity, since we will be interested only in motions

of wavelengths long compared to d (but still small compared to a).

The next step is to expand all the dimensionless (dropped bars) varia-

bles u, v, w, p, e and E in series of the form, e.qg.,
0

L :Z E"u.(“) 7 (1
n=0
to the zeroth order in € we get from (13-20)
()] (o)
T':(O) gix '_Gx =0 (1
[ e 25 Bt Gunsmmtentivon 1470 O
@ (O] ) o) () ) g )
E% u__a _'_VCQ_g_ v': ] ), /¢ cot@-nVv cm01- ‘%‘M’ —a%—- ¢ =0 @]
2 @) (@ aﬂ cd P 09 9P @ Ve @ Iw® @ .
3z @re)« ﬁmi%eaﬁ‘*mw*f" el L
) T RRVLY B G A el QO
E “US V38 tamp av] Sk
) ® ® )
Q_E_ _!%; %%F = 3%, 20 at x=23% (1
®_ 200 wY 9o o
WvEs < s =0 a2l H
P(o)= @T ot %= E<°) (I
Equation (23) implies a vertical hydrostatic balance.
Equation (27) is satisfied if
(02 <7 = Q
c® = K = const.
This means that the troposphere is adiabatic (or, in other words, constant
entropy) .
(®
Since G,‘ = —l , the equations (23, 30 and 31) give
[ e 3J~£r-
(§7-x)+ ( (1
b,
and P(.)z K[D((;u‘l) +/9] -1 (l
in which only ‘C.) remains unknown and
i
/ gl K. i}
K‘_Po SJ/P.) g W= = J'*" y/(r ‘)a ﬁf-' PTJV‘, (O

.22)

.23)
.2k4)

.25)

.26)

27)

.28)

.29)
.30)

.31)

.32)
.33)

.34)
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Integrating (26) gives
x ]
w [ far” wae® Wl 3 .| L ow”
weee = [3E Y 5T * T p }V‘"‘f’"{;? tin b aup*‘"je "**[“P Jrzo (1.35)
o

Now if we assume a spherical solid planet then o = Cand from (29)

=0 as 2 =2. Consequently the last term on the right-hand side of (35)

vanishes. Eliminating P‘” in (35) by using (33) gives

“["(f ~X)r /’] ][ (E>x) [7/. L 50 j[« (£%)+ 4] g Ldyt (1.36)

where
@
4 5 \Na, w a s
CleE e By '5'?5']5

N

. ov® i ow®
b 5y *sme ;;D + vt 8 /

Let 2 = € "in (36) and solve for w.*”. Substituting this result into
(28 we get _7 £

j [x(;m ) ﬁ] ftr. N, ] Jz’+j [a‘(gf)x'}+,3]ﬁ-L:dx9ﬁ‘;‘ L =0

. Ly) (e
Also if we assume rnow that V_amd W' are jndependent of height X then

this becomes !
*
I

5 L"[’x gwj’ﬁ]"z’ [’*5“;.-3]-;? [?7 b+ Pr—;:i.:} + ‘PT"V L

This becomes simpler if we take Pt = 0, namely

“L-g7L, = 0. o

=0

In brief we have assumed an inviscid, non-heat conducting, compressible,
adiabatic atmosphere surrounding a rotating spherical rigid planet. The top of
the atmosphere is a free surface where the pressure is zero, and the horizontal
velocity in the atmosphere is height-independent. The system of equations des-

cribing suck an atmosphere is

I ? .

..adr T ¥ 3 aq]" Wic"w‘%SUan\Q..nww:B’-%% -GB=0 (1.39)
J & .

[5-{4-'/?]— + ;'L:? Daq]v\/fvwcota ,ﬁ.vcer-up*.m[9 sa%__.oy -0 (1.40)
L2 syl o o B v , _L_ dw

I*L‘”" Vo0 Tim ,?}E*g 50 " wm® X2 +chta] 7 (1.41)

I ov -
u=~'x'z‘; ‘L"a_- + sin& ‘%" -'-Vfl)tl;] (].1‘2)

.
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s[4 (6% e
i
e (1.44)

e :K[—f;(g-xJ

Here the superscript (o) has been dropped.

This derivation is due to Karal. The minor modifications we have intro-
duced are:

e

w ooy
=. This is more

(i) the scaling of w = é-v?le instead of his @ =
reasonable since u is of 0. &) compared to v,w, and it makes the scheme work
faster without changing the results,

(ii) introduction of the operator Lj in (37) which, we think, he had for-
gotten. This does not matter in the last step since Py is supposed to be zero
anyway.

(iii) Retaining G(: and G;) in (39, 40). In his version, after the as-
sumption of a spherical solid planet, which he called perfect, i.e., spherical
surface with spherically symmetric distribution of mass inside, he had to take

G;»: G‘;) =~ 0 . This would lead to a distratious distribution of pressure

in the static state which will be discussed in the following.

1. Allowed Regions for Linear Disturbances

The system (1.39 - 1.44) admits a static solution
A 3Vaw=0; E = |

(reat)

]
P

P2l3¥L

.

K
b
oK
e :"LFU—QX)

provided that

2
A~

smbem by G =0.

In this static state the top of the atmosphere is a spherical surface and so are
the surfaces of constant pressure and density. The non-vanishing value for

in this case is supposedly one to some non-spherically symmetric distribution
of mass inside the solid planet.

Had we taken Gg = O , as Karal did, we would have had from (1.39,40)

Ok I o gt
=5 v S npen®

28 =0

(3~ co’)

’

-

J
This has the solution g

n
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Let us take the case of the earth where S ~4land ¥ = 3.5. Then this
expression for § would give an oblate spheriodal-like atmosphere with the
thickness at the equator about 3 times that at the poles. The ratio of the sur-
face pressures between the equator and the poles would be then, using (1.43),
about 4.6. Such a super-unrealistic ratio is partly caused by the assumption of
homentropy and partly because of ’39 =0 . This is the reason why we reshape the

atmosphere by letting f;g balance the centrifugal force.

We are now interested in perturbing the static state (1) by small ampli-
tude disturbances. We only have to concentrate on the three equations (1.39-41)
since they form an independent system for (v, w, § ). Once these are known u,
p and © follow by using (1.42-44). Let us call the disturbances by (v', w',
£ ), i.e., in (1.39-41). Let
va=v, w.w' §:l+§'.

By neglecting quadratic terms in them we get the following linearized system:

Q‘f—,VJ:fL-N'chr%% =0 (11.2)
’ A ¥ 1.
%—-‘2—’--(‘.‘_/0”3-1' W—W:O (I 3)
o Q8 ov' i dw! ¢
U e Y35 tmo g tVeor+f =0 (11.4)

In (2, 3) we have the horizontal momentum balance between inertia, Coriolis and
pressure forces. Equation (4) is the continuity equation, balancing the horizon-

tal divergence of the flow with the change of height of the atmosphere.

We are going to look for solutions of (3-4) of the form

v v 3
‘. (‘/ . /"
s WL A (11.5)
g | { @(e,:J
L J
'\..u:fmq)

The fact that there are solutions proportional to e is clear
since the equations are linear and the coefficients do not depend on t and ¥
explicitly. Moreover ww and m must be real because the problem is nondissipa-
tive and axially symmetric. Hence w, m, k,o are all real and the amplitudes
V, W, ® depend only on & . Also since we expect (5) to have a wave-like form
we assume that the derivatives of V, W, @ with respect to € are much smaller
than jw , m ;and |K-*fdi . This assumption will be justified at the end. Then

(2) - (5) give




e —— T —— T T — Ty W W S e

.3l =
‘w —con O (ke o) V] ’
¢ 0 Cw 51:9 Wi.o
Cfceiat)s cot s‘\_nmé L¥w e |

To have a non-trivial solution for ( V "W, @ ) the determinant of co-

efficients has to vanish; this gives

l- . ; o
(2ﬂm+w)(K¢Ea)¢:o'['9-'-L”w,'mn cot B -fhe iat)w + 5w S con? 6 - ,r:zu;] =0

By separating the real and imaginary parts and solving for k and £ we get, for
K0 and w¥ O

u—(%‘“-&é—)cofﬂ =0 (11.6)
and 5 »
& 5}(".3'((0‘,_(1")-[(2—'0‘)-#-}{-]+3’ﬂ1:in’9#[m’<l+ :‘—,)07}]#9 z 0 (11.7)

For the time being we are not interested in (6) since it just changes the ampli-

tudes of the waves by the multiplying function
\
oty TR (11.8)
$(6)=(sn8) "
which does not affect the behavior of the wave pattern,

The constraint that k be real implies
K*= 0

or from (7)
= ¥ +1)sin "8 X’(L";{n"zg,
T O Ll b L 5 o (11.9)

H(1+ Lo 8)

For a given w the variation of F as a function of @ is described by Fig.2.
In Fig.2 it is clear that waves of a given frequency co are confined to the re-
gion C(w) defined by B, < € < 6 _+ —’;:’: . In other words, there exist in gen-
eral two polar caps in which waves of given «J are not allowed to propagate.

The approximate values of 8, (w) are given as follows:

6~ —_znll'rfi = 3 for w £ N
and '

933;‘/—2——; for w >S> N2
The numerical value of 3° is for the earth's case. Thus the larger w is the
smaller the caps, which disappear as wW —3 >0 . This means that waves of high

frequencies can propagate all the way to the poles, which is to be expected since

rotation fL can be neglected in this case.




Fig.2

Now after w has been given, suppose we also specify m, the zonal wave
number. Then the waves are confined in the smaller region D(w,m) defined by
6n<9 <-9»1-4- _1_7. where 904 8y < ZL due to (9). This region D(wm) will
become narrower as v gets larger and will disappear when yw* reaches its max-

. . x
imum possible value ¥ w™.

By definition sz F-m® (11.10)

Therefore K vanishes at 6 =6, or s 6,+% and increases monotonically to
its maximum value (¥ w”-w*) at 6 ‘-3‘;- . Since we have assumed that lKl be
large enough so that we can neglect the derivatives of W/:\NC ®, any results
near these borders are doubtful. Anyway QM can be calculated by

8- N>y rn> [m> (e %—:\4— ‘?T

P

P - 2 >
Bz A « (m L fw) e 4
I1l. Qualitative Properties of Responses

SIHqu =

where

The dispersion relation defined by (11.7) can also be written as

Gr(6,f,t,5 Kk.mw) =0 (rrean)
8
where 5(8,4,t)= wtem¥s | Kkdo' .

The disturbances from a given point source would propagate along the character-
istics, or rays, of the equation (1). These rays can be characterized by a
parameter, O say, which determines the ray arc length from the source. It is
therefore convenient to introduce the characteristic system of differential

equations corresponding to (1) as follows:

9‘:9_?(.. 2K (111.2)

-
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¢=%€=$?(,+§;m19) (111.3)
L jf-f, s v2{¥w- m:;‘,,tvg] (111.4)
L yl:-ba_g_z z[m’(:+§)¢_{7 e -Y'atsn20 (111.5)
;,,=_§_$_=o (111,6)
w=-2%:0 (111.7)

where ( « ) means differentiation with respect to & .

q [ T

Ray Properties

The Eqs.(6),(7) simply imply that along any particular ray w and M are

constants. Thus waves with different values of w and Y will have different
paths in the region D (w,m). The parametric equations of A ray are defined by
(2,3). The differential equation for A ray is obtained from these as
o4 n Ui 2
= +*
A6 - Tmp (1% S5 em*0) (111.,8)

To integrate (8) in the general case demands some numerical work which is not
necessary for just knowing the qualitative behavior of the rays. By inspection,
keeping in mind the variation of K as function of € , we can picture the form

of a ray of given w and M as in Fig. 3a.

Souvee

\ayctahtb

@ G yeat (b)
Circle Tay

Fig.3
Just as a check we consider the simplest case in which w and wv are much
larger than L so that the effect of rotation can be neglected. Then (8) becomes

df _ t |
46 P 9‘(%‘&5‘“19~‘)Vz

with the solution
sin" 6 (a."‘sm‘ ¢ + ') =

b L
('oseza,&lr\es;n‘f.’ q_l__ éw o |

m 1

This is the equation of a great circle with the inclination angle with respect
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to the equator equal to arctan a (see Fig.3b). The definition of the equator is
completely arbitrary in this case (no preferred direction) and so is the orienta-
tion o/ the great circle. Of course this is to be expected in case of no rota-

tion. In other simple cases the evaluation of (8) involves elliptic integrals.

111.2 Group Velocity

The energy of the disturbance, provided initially at the source, propagated
along these rays with the group velocity. From (2, 3, 4) the 6 and “f components

of the angular group velocity are

.6 _ 9w _ =i
Cﬁe' t 0K Feow Ml e 17 (111.9)
and A i
Cglf?t(f‘i' e, _Blcgue s (111.10)

i - R > -
om T P smrpe Mi0T0sTE
It is easily seen thathgg! decreases monotonically with 9 from the

maximum value at the equator, which is ;

|c‘l=-'__. P . . (1.
61 vy ¥ wr
to zero at 0 =P",. Also {Gg$] has the opposite variation. Its minimum value,
at the equator, is Gy I 'm (111.12)
t 9?\ T w
Ehr A '

|~ S 2 1 : .
Also | ql = &539 + ngl has a maximum at the equator with the constant value

(I i
;’_.‘Y‘,‘"\"’

.

111.3 Phase Velocity

By definition the © and ¥ components of the angular phase velocity are

given by ik
CPB S e CEVT13)
wm 3
5 AfE 111.14
CP\’ NG ( ' )

At the equator, where rotation has no effect, we expect the waves to propagate
along the direction of the corresponding rays. That is, the group and phase
velocity are identical except they are in opposite directions, as can be seen

from their expressions. The fact that the phase velocity is constant, independent
of w» and v , at the equator can be interpreted as in the case of shallow water

waves.

The variation OFlcPYl is similar to lcﬂ‘f| . As to lCPGI we have from (13)

[ N—

e——
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9}%9' _ Jwl (m*-K?) 3kl
ag 3 (K"%m‘)" 26
where aa‘—el is positive with its value zero at 6 = -%_‘ . Now m*_K'z =(F-2wm®-

c
Therefore —a—,a——f-o—\ has another zero if for given w

L N === “ 1
2w <)'m‘;=xw 2

_ c
In this case there exists §p, 0M< Bp < -“i- , where i‘a_g_e_‘ changes its sign

from positive to negative. As W increases the region of positive sign be-

comes narrower and narrower until it disappears for m:w? (see Fig.k).

¥t
L B
:‘IL
Kd
Fig. &4

g -2 A
In Fig.4 the value of IO;{l = ICPY, is less than] CJD) — lcpgl
in the case 2 m!< d*w", otherwise it is the other way around.

111.4 Justification for Small Variation of Wave Amplitudes

Earlier we assumed that the variations of V, W and ® with respect to
6 are small so that the disturbances have a wave-like form. Now we try to

justify that assumption in the region where the results should be reliable.

This region is centered around the equator, i.e., © close to "—;' . To make
the borders, where 8 = 6y or 6 = 6, «+ —l} , far from the equator we assumed

m'&< W This is not a constraint upon the following arguments; it just insures

the existence of a good region of large width (see Fig.5.).
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Fig.5
From (11.2-4) we can eliminate v' and w’ to get the following equation

é g |
for g_ @(Q)QL'I (K+t)d ©

where =< is given by (11.6):

ﬁ+[(l+ 2L} ) ot .4 2a’a’rnecm9] d ¥

d 0 w*+ 2%cent @ de
X/ q .~ *4)_ m"__m_{l_ 2n>01\60319 -_
+[x <OU*QCI75 ) sm*B w + oy (w‘.'.‘._(l"mxg—y ; - 0

This is similar to the Laplace tidal equation. In the good region defined

above it reduces to =
d;'{ F o‘! +(x*w‘_n§)§zosgis small.

By differentiating E and neglecting small terms this becomes
[.Kn(x‘w‘:mt)]@u[(am Yo+ 24 49]. 0
* %
Also in the good region K$:f)r4*"h¢. Therefore the real part is automatically

almost zero. The imaginary part can be written as

AKy . A®
—-Qﬁ-(f*'“'i‘ot‘é‘)’ 40

But again in the good region —"?-—%(—I<<l5|', thus
d® . o (f®
e DOm)

Since @ is the amplitude of small disturbances, we have therefore justified

our assumption that the derivative of @ is small compared to ®
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SLURRY DYNAMICS AND THE GEODYNAMO

Christopher L. Frenzen

Introduction

The most likely origin of the earth's magnetic field is a dynamo process
in the conducting liquid core; the interaction of fluid motion, magnetic field,
and electric current combine to generate an additional magnetic field capable of
sustaining itself against ohmic and viscous losses. The maintenance of this
field has never faltered (yet) and although frequent reversals in polarity (on
a time scale of order several hundred thousand years) have been recorded by
paleomagnetic measurements, these same observations suggest that the strength of
the main field has changed little over the past three billion years. Numerous
theories have arisen to explain the geodynamo and all must rely on some source
of power capable of maintaining the motions necessary for dynamo action over
most of geological time. The most likely energy sources are internal radioactive
heating, latent heat released from the gradual cooling and solidification of the
‘ inner core, and gravitational energy supplied by the accretion of a dense inner
core. Since the fluid motions generated by thermally driven and gravitationally
driven convection are essentially the same, little distinction has been made be-
tween the two in models describing the generation of magnetic fields. However

their thermal character is quite different.

Since convection is a very efficient process for transporting heat, a con-
vecting thermal dynamo must transfer much of the total heat supplied to the core
mantle boundary; however the high thermal conductivity of the liquid core greatly
aids this transfer and subtracts from the thermal dynamo's necessary convective

motions thereby lowering its efficiency. Estimates of the ohmic heat flux in the

core, the observed values of heat flux at the earth's surface, and the distribu-
tion of radioactive sources in the crust lead to the concern that the postulated
thermal energy sources may not be large enough to drive the inherently inefficient
thermal dynamo. The possibility of gravitational energy released by accretion of
the inner core, first proposed by Braginsky (1963), appears as a very promising
alternative. Judging the effectiveness of a power source by the amount of energy
it puts directly into fluid motion and by the inevitability of energy flow into
this mode rather than conversion into heat leads the gravitational dynamo strong

favor over thermally driven models.

Thermal Regimes

The core probably consists of a number of elements, but often it is simpli-

fied to a binary alloy composed of a heavy metal (perhaps iron with a fraction of
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nickel) and a light non-metal (sulfur or silicon). A sample phase diagram ap-

pears below.

7l

Concentration

Fig.l
Temperature is plotted on the ordinate and concentration is taken as the ab-
scissa. The unshaded regions represent homogeneous states while the shaded
portions are regions of phase separation. In the liquid phase the components
mix in all proportions. Above line ABC the mixed liquid phase is in equili-
brium with one of the components. When the temperature of the liquid mixture
decreases one or the other of the components freezes out depending on whether

the concentration lies to the left or right of point B, the eutectic point.

As the temperature decreases further, the liquid composition varies along
curves DB and EB, and the liquid freezes completely at the eutectic point.
DBE is known as the liquidus; above it only liquid exists. ABC is known as
the solidus; below it only eutectic solid and one of the solid components

é exist, depending on the relative position of the eutectic point. At the lat-

ter, the liquid freezes totally into eutectic solid. The conducting liquid of

the core is assumed more metallic than the eutectic; the solid freezing out of
such a composition is more metallic and hence more dense than the surrounding

liquid, and is capable of accreting on the inner core. (Loper (1978a)).

Following Loper (1978a) the various thermal regimes competible with the
gravitationally powered dynamo will be described. Temperature gradients are
taken with respect to pressure for thermodynamic convenience; these differ lit-
tle from gradients taken with respect to depth because of the essentially hy-
drostatic pressure distribution in the earth. The conduction gradient, denoted
by-%%i is defined as the change in temperature with respect to pressure neces-

sary to remove heat in the absence of motion. The adiabatic temperature gradient
(2. () - (23X, &£
2p dp /s 3as /p~ »Cp

(Here V = volume, S = entropy, C. = TG;%—)p, the specific heat at constant pres-

p
sure, and o= ?}— (;—_}’-)P’the coefficient of thermal expansion) and the liquidus

or melting temperature gradient




< > ( ) (where &3 denotes change upon melting)

are determined solely by the thermodynamic properties of the fluid. The con-
duction gradient, on the other hand, is determined by the temperature at the
core - inner core and core-mantle boundaries. | and ég;- represent the actual

aTA) ,(_aa_%p o,

temperature and temperature gradient respectively. Assume

T
and(gpc) > O. (The latter implies a cooling core.)

The conventional thermal regime for the geodynamo results when

(32) <« (5) < ()

convecTion ]C.nnnc7..~ : Seuip
1
P
Fig. 2 (after Loper (1978a))

The core liquid, more metallic than the eutectic, freezes out a dense iron-rich
solid capable of accreting on the inner core. The loss of a dense metallic solid
to the inner core leaves the surrounding fluid compositionally buoyant. In the
superadiabatic case a’ﬁ; ) P (' a‘?A ) the fluid may convect thermally as

well as compositionally. A thin conductive boundary layer will form near the

inner core to transport away the latent heat released by the freezing of a dense

T 0T 37'
metallic solid directly on to the core. However if (a A) ( . («9p )
1’
T

T\— TA /(“ 7/ |
P
- I
/” // |
/” 4 | |
T(_ ’r/C/ | |

s ConNvVECTIoN ISLURRY |SoLd

p

Fig. 3 (after Loper (1978a))

The fluid will still be compositionally and thermally buoyant but no conductive

; . 07| oT
layer will exist for —-—ik-)<r( Q;L- in such a layer implies it is frozen solid.

vk
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Here a slurry layer forms, a suspension of solid metallic particles in the

fluid above the inner core. The slurry contains enough solid material so that
the release of latent heat raises the ''dry' solid free adiabatic gradient in

the slurry layer. (The meteorological analogy is immediate.) The inner core
grows through a ''rain'' of heavy iron-rich particles from the slurry layer above.
(The concept of a slurry was first introduced by Busse (1972), Malkus (1973) and
Elsasser (1972) to render the thermally stably stratified core of Higgins and
Kennedy (1971) neutrally stable to the radial motions necessary for the geo-

dynamo.) |If y
EANERYES

e
T -,-’L'7'
- -t = —
- x

! \
- ! )
EE e
© 4 :

Conviction 7 ‘cowpucrion ) SoLiD

Fig. 4 (after Loper (1978a))

The core is subadiabatic and thermally stably stratified. Heat is removed by
conduction and it may be, as Loper (1978a) assumes, that the fluid is composi-
tionally buoyant enough to overcome the stable temperature gradient and con-
vect gravitationally. Since the total heat transported arises from heat conduc-
tion down the conductive gradient as well as heat transport by convection, the
buoyant convective motions may transport heat radially inward to make up for

the excess heat conducted outward by the adiabatic temperature gradient.

A Simple Model of a Slurry

Consider a simple thermodynamic model of a slurry in equilibrium. While
such a model is too simple for use in the earth's core, it gives a useful pic-
ture for the behavior of slurries. A slurry of constant composition formed from
only one of a two-component mixture, e.g. a slurry of solid iron (Fe) particles
formed from a non-eutectic mixture of iron and silicon (Fe- Si) can be described

by the following 3 parameters:

X = mass fraction of slurry containing Si
&, = mass fraction of the liquid phase containing only Si
¥ = mass fraction of the slurry which is solid.
Th - - 1
en o = (1= 7)ot M
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for the slurry consists only of solid Fe. The free energy and free enthalpy
G are

F = E = TS

G E+ PV -TS

The first law of thermodynamics for a mixture of two substances is

dZ -Tds-pdV+ udn + u,dn,
where n and n, are the particle numbers of the two substances and Ay s ey
are the chemical potentials. Hence for (1)
AdE = =PdV-8SdT+{i-¥) e dexy + uscd¥
d G

(2)

1

Vdp=-SdT+ ({-7) ., Aot + phg dY

-

where « = ,U:' a/uf" = the chemical potential of the liquid phase
Ee
’LL5L = /J_s‘!.._ [(I-ML\.(’(L -fo(‘_'u.k]
= the'chemical potential of the solid phase relative to the liquid

phase. (Note ,u-f = the chemical potential per unit mass of the ith phase of

the jth substance).

Using the differential form of (1)

dFf=- DJ\'-SJT"'_,U.LJD(-#(/LLSL«#o(L/u.L voh ) -
dG= Vdp-5dTt u, do + g ro u ) dY

Let U = /ué‘_?' ~ Gk, = (,u.s’:‘_ /M'LF‘> = the chemical potential above the equili-
brium liquids value. In equilibrium _w = yf¢ and U = 0.

Gibb's phase rule for this system implies ( is a function of three variables.

G = G L P! T) 9()
Expressions for d Y and d o in terms of p, T and o« are now sought,
Since Uf(p,T,<) =0

. _ (U U . {2V (U (4)
0:aUs Pa-;(_‘_)p,T.Y ddl‘(a, Pk d)’ "\ OPZ(‘_,’J,TAP*\oT )P'NL)O%,T
Substituting for de from (1) and solving for d ¥ , and then d o
A (2U 2 U
duL: A q"( i )P.T.“Ld« = L-éjg)dp'rﬁl df"‘(’ﬁ)P»“J dT] (5)
P - LR o A U PYo)
cdy = o< A [\‘QP )h(LpTyvd P'* 7T)P;°(L,y dT- (( -a—;:)f”_rl,/(l"r))d“] ‘
~
(6)
PAY ) -3 U '
where A :'(-3"‘—; )p/",?+ e W)p,T, . e
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These differentials are valid within the slurry; outside the slurry
d :J~xLand ct¥-0. Separate differentials inside and outside the slurry
will lead to discontinuities in the fluid properties across the slurry edge.

For example, consider the entropy S

as- {aP)'rx« d'T ( \p T xd'“ "< )7."‘;‘P d¥ (7)
Substitutes CL“Land ;IX from (6) into (7)
> 95" (_Sﬂ_s;unky T 23S

oS /\bp ISLURRY JP‘* T o f(aa( )nnnu et
where

r65) EE) Y 317) /DTT

\y, SLURRY ~ ( Piiye.” A T, (BP ¥, T \ " BT ¥, 06, p ®)

‘ e 7 U3 1 (U

(Cp)s;mu » CP“ ~, ACST )1,o<‘_,P

These discontinuities across the slurry edge are due to the change in specific

volume (proportional to( 5 51 -r) and the latent heat absorved (proportional
%]
» \,'U . . .
to CoT /v, 000 s due to the presence of solid matter in suspension.

The dry adiabatic temperature gradient is given by

C%%é) = -::£L~Q£L2111 o (from use pf a Maxwell

relation fn (1)). By analogy, in the slurry we could expect the 'wet'' adiabatic

gradient to be

_?_I&) .| (%})Sw-mv (9)
( “p SLURRY X (Cp) siurny

These gradients differ because a fluid parcel moving into the slurry
freezes out solid particles and releases enough latent heat to raise the temper-
ature to tne liquidus. Normally the dry adiabatic gradient requires a tempera-
ture less than the liquidus. Hence in the slurry the liquidus should also be
given by (9) as well. Therefore

(C ) )
( uP / B 0“) (CP)Swﬂ«y [ ( )s“‘"“'- (2_5?>"3”“‘T -——%Jﬂi]

\

35 )
) . Mk CT 3 iy P

T <p

T ik r) [ 2
(Cp)!tun«y \X A/ a1 <Y, P \L

For dx =0 ( < = constant in homogeneous slurry), (6) implies:

o), (bt

25 o b [ +(2Y) 4Tl x|
ap o, A oF 7o, T OT ()':\Lpo‘p e \ap CP““‘(Q')
5 N 3o 35 11
o L5k o (_a_l_;\' T T(o-r)a«..pka\" T‘Iou.]
o Alp)aumry )P’;MLT Cp

o
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fombining (10) and (11)
dy Cp o1\ _ _‘73]
Ip_(é,l_/‘) T[(ap) (DP) 2)
OT ‘¥’ P

If the liquidus is greater than the adiabatic gradient, the mass frac-
tion of solid in the slurry increases with pressure (md depth) and the slurry
rests at the bottom of the core. On the other hand, if the opposite is true,

the slurry will occur in the outer core. Finally, by the Maxwell relation,
au-) = [2YXY ¥
op ,.)NF (BM/F,T =

where N is the particle number and o  is the snecific volume. Hence

'_L““) = Jroun = Uliguid = Fingeit = Fhauee (13)
ap T -Ph",wb‘ — ot

since M4 , = chemical potential of the solid relative to the liquid and

P= sé—. Therefore

(j%§lk) % @ implies particles are lighter than surrounding liquid.
P o

(3}—‘& L 0

5 implies particles are heavier than surrounding liquid.

For O prse < O and jx > O particles can accrete on the core and com-
positionaq bﬁsyancy will maintain the surrounding fluid in a homogeneous state.

drg, Sus, ) Y
. sL ) Sk
However if -—L—-aP e >0 er <—-—L—-——a 5’ £ 0, e <

the slurry layer will gradually become stably stratified by sedimentation and
thermally driven convection by latent heat release will be the only way of

driving the dynamo.

The slurry layer imagined to drive the gravitationally powered dynamo
differs from the one created to allow thermal convection in the thermally sta-
bly stratified core of Higgins and Kennedy (1971). The first slurry originates
from a binary alloy on the metallic side of the eutectic, thus allowing composi-
tional buoyancy; the second slurry consists of one metal and contains enough
solid material to raise the dry adiabatic temperature gradient to the liquid
and allow convective motions. Of course the slurry in the gravitationally-

powered dynamo performs the latter function as well.

Loper (1978b) has concluded that the accreting core can supply as much
as 1.76 1012 watts, enough to drive a large dynamo. He notes that the fraction

of heavy material alloyed with light material in the frozen solid plays an
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important role in gravitational energy release for once the composition in the
outer core has evolved to the eutectic, further inner core growth will not re-
sult in separation of light and heavy material and the gravitationally-powered

dynamo will cease to function.

Conclusion

Some possible thermal regimes of the gravitationally-powered dynamo and
the qualitative behavior of a slurry have been examined. The direct non-thermal
stirring by compositional convection lends the gravitationally-powered dynamo a
large efficiency, defined as energy delivered to the kinetic mode over total
energy delivered. Loper (1978b) has concluded that the efficiency may be as
high as fifty percent. Further work along these lines would seek a suitable

dynamical mechanism for the gravitationally-powered dynamo.

It is interesting to note that in the thermally stable stratified regime

aTC. BTA BT;. . e o
(aP ) < (ap )<(3p> with an unstable compositional gradient double

diffusion can occur. Any time gradients of two fluid properties with different
molecular diffusivities are present and have opposing effects, double diffusion
can take place. Since the thermal diffusivity is much greater than the molecu-
lar diffusivity of iron in an Fe - S or Fe - Si mixture, an iron-rich parcel dis-
placed downward will lose its heat faster to its surroundings than its iron -

it will be heavier and continue downward. Large scale 'iron fingering'' in the
core coupled with the Alfven or MAC wave mechanism in hydromagnetic fluids could
lead to collective instability and convection analogous to internal wave - salt

finger instabilities (see The Collective Instability of Salt Fingers by J.Holyer

in thiz <« me volume). Perhaps further work with double-diffusive experiments
modell, 'g conditions in the core can shed more light on dynamical mechanisms in

the gravitationally-powered dynamo.
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STRANGE ATTRACTORS DUEFTO FEEDBACK IN POTENTIAL SYSTEMS
David C. W. Hart

We consider systems of nonlinear ordinary differential equations of the

form o .
(i) X +Epx +V, =0

(i) A +e(0 + 3kx)) =0

where x and )\ are scalars and the 'potential'' V is a polynomial in x (a '‘cus-
poid", (8)), and .\ is one of its coefficients. The dependence of x on V, of
Von A, and of ;\ on x provides the ''feedback'' mechanism of the title. We

have been particularly concerned with the systems

o

X=z-X+Ax ed1EuX
(.].) . 2 R
A=z =€(A+x(X -&ﬂ,
X =2= A
(2) . *

Az -g(A-(xtrax+ L))

’

The equations modelling a large number of physical systems can be put in this
form. Examples include the Lorenz-Salzman model for Bénard convection (6), which
can be transformed to Eq. (1), with d = 0; the Bullard-Howard-Malkus model for
the geodynaho (7,9), involving the same equation; the Moore-Spiegel model for a
Boussinesq fluid with a linear restoring force (1), which can also be transformed
to Eq. (1), but with the roles of A and s interchanged in V, & = 0, and the
function g(x) = x3 - x in the second (i) equation; and the generalized van der

Pol oscillator of Rossler (10), which can be transformed to Eq.(2).

As we are interested in the assymptotic behavior (as t —>o¢) of solu-
tions, we study the isolated invariant sets, particularly those which are local-
ly stable (attracting), although exchange of stability associated with bifurca-
tion (as € varies) forces us also to consider sets which are not assymptotically

stable (of saddle type, for example). The most mathematically interesting be-

i.‘ B—— ; . i ; —
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havior occurs when £ is of moderate size, say .1 - .5 (the other parameters
are between 1 and 10). For this reason, we have favored numerical and geometric

over perturbation methods.

By ''strange'' attractor, we mean one which is not a differentiable mani-
fold - so not a fixed point, limit cycle, or surface of any dimension. Such
sets have been extensively studied since Smale's work on the horseshoe (11),
which has the structure, locally, of the Cartesian product of a Cantor set,
times itself, times a line interval. Preliminary numerical results seem to es-
tablish that a somewhat modified horseshoe is present in the system (2). As-
suming that this is indeed the case, the methods of symbolic dynamics (2) esta-
blish the existence of infinitely many periodic orbits, collectively attract-
ing though individually unstable, as well as an infinite number of other recur-
rent orbits in the same set. This situation, referred to with some justice as

Y'chaotic'', has been proposed as a model for turbulence (11).

The existence of a different type of chaotic invariant set for the system
(1) with S = 0, attracting for .1 < £ < .2, has been established under some
mild geometric assumptions (the ''geometric Lorenz attractor', (3)), and also
from numerical work giving apparently quite reliable estimates for an asso-
ciated Poincaré first-return map (5). Moreover, the geometric Lorenz system
has been shown (4,9) to be structurally unstable of codimension two - meaning
that although a perturbation of these equations produces a flow which is not
"topologically equivalent', in that it has a different (though similar) phase
portrait, the resulting system is equivalent to a member of a two-parameter

family of flows, obtained as follows: For £ between .1 and .2, the system (1)

1
has three critical points, a node at (0, 0, A) and two foci at <t (,f‘L)'ﬁ3
A ), of unstable dimension 1,2,2 respectively. The unstable manifold of
Y y+a "’

the node loops about the two foci; one forms a sequence with an 0 for each
loop about the focus with negative x-coordinate, and a | for each loop about
the focus whose x coordinate is positive. These ''kneading sequences', which
may be regarded as binary expansions for numbers between zero and one, com-

pletely determine the dynamics of the attracting set (9).

The methods of (2,5) were used to show that a strange attractor also
exists for d # 0, and that one may manipulate the two kneading sequences by
varying € and ) , thus providing a concrete ''unfolding'' for the Lorenz sys-
tem; that is, a particular realization for the two-parameter family of nearby

systems.
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The higher-order cuspoids will also, with appropriate parameters and

feedback, exhibit strange attractors, since they ''contain'' the ones discussed

above.

Acknowledgments

It is a pleasure to thank Louis Howard and Edward Spiegel for many help-

ful and encouraging discussions.

References

Baker, Moore, Spiegel 1971 Aperiodic behavior of a nonlinear oscillator,
Quart.J.Mech. and Appl.Math. 24: 391-422.

Bowen, 1978 Axiom A diffeomorphisms, Regional Conference Series in Math-
ematics 35, Am.Math.Sec.

Guckenheimer, 1976 A strange strange attractor, in The Hopf Bifurcation
and Its Applications, ed. Marsden and McCracken, Appl.Math.Sci. 19:
Springer-Berlag.

Guckenheimer, Structural Stability of Lorenz Attractors, preprint.

Kaplan and Yorke, Preturbulence: A Regime Observed in a Fluid Model of
Lorenz, preprint.

Lorenz, 1963 Deterministic nonperiodic flow, J.Atm.Sci. 20: 130-141.
Malkus, 1972 EOS Trans.Am.Geophys. Union 54: 617.
Poston and Stewart 1978 Taylor expansions and catastrophes, Pitman.

Rand, 1978 Topological classification of Lorenz attractors, Proc.Camb.
Phil.Soc. 83: 451-460.

. Robbins 1977 A new approach to subcritical instability and turbulent Tran-

sition in a simple dynamo, Proc.Camb.Phil.Soc. 82: 309-325.

Rossler, 1977 Continuous chaos, in Synergetics: A Workshop, ed. Haken,
Springer-Verlag: 184-197.

Ruelle and Takens, 1971 On the nature of turbulence, Comm.Math.Phys. 20: 167.

Smale, 1965 Diffeomorphisms with many periodic points, in Differential and
combinatorial topology, ed. Cairns, Princeton Univ.Press: 63-80.

BAROTROPIC AND BAROCLINIC SOLITONS
Hisashi Hukuda

Introduction

Since Maxworthy and Redekopp (1976) presented the solitary Rossby wave

! theory as a dynamical model of the Great Red Spot observed in the Jovian atmo-
sphere, there is no doubt that its theory has become ''nouvelle vague' in the

field of planetary atmospheric science. Redekopp (1977) developed the general
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theory on the existence of solitary Rossby waves (planetary solitons) in the
zonal shear flow on the continuously stratified atmosphere and showed that the
evolution equation of solitary Rossby waves is the Korteweg de Vries (KdV) equa-
tion or the modified KdV (MKdV) equation depending on the distribution of den-
sity stratification. Redekopp and Weidman (1978) studied the interaction of J

two planetary solitons with a motivation to model the phase shift observed in

the interactions between the Great Red Spot and other waves and showed that

these interactions are described by a coupled KdV equation.

On the other hand, there is no evidence, so far, that sclitary Rossby
waves may really exist in the ocean. However, it seems to be not so unusual
that we expect the existence of these waves and their interactions also in the

ocean.

The solution for a single mode of solitary Rossby waves in a two-layer
system was shown in Hukuda (1978). We attempt, in this report, to extend the
same theme to the problem of interactions between two modes after Redekopp and
Weidman (1978). The motivation for this problem is also related to what hap-
pens in the interaction of barotropic and baroclinic modes, the theme unexplored
up to date and with an importance in understanding the large scale energy ex-

change between upper and deeper fluids in the ocean.

2. The Derivation of a Coupled Evolution Equation

The basic equation is a two-layer version of the conservation of poten-

tial vorticity. It is written below in a nondimensional form.
(()Q Unda*€ (ﬁpm‘.b%" q)ﬂ*{)a")]“&‘uf" vt EqF (9 @ )]
rg,, VY€ F U 4 B] <0

(2.1)

with boundary conditions:
Pax =0 at ‘j-_(),l.

4, —0 =t [Xi—% oo
where . = 1, 2 and E. =1, €y = -1. The subscript \n =1, 2 refers the

quantities of upper and lower layers, respectively. The nondimensional para-

meters have the definition:

o Tk
T o= ':g%i%f%f (the internal rotational Froude number)
e J
% 2
&
B - lij (the so-called B parameter)
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Equation (2.1) is derived from Pedlosky's (1970) by the transformation

{ Y= =[th () dy + €0, Oy, b

X -—» ux,t —ut,

where LL‘(q} denotes a basic flow, ¢, a perturbation stream function and small
parameters € 4 (<<|) measures of disturbance amplitude and length scale, re-

spectively.

The asymptotic solution of (2.1) may be written, after Benney (1966), in

the form (1,07

AT B (2.2)

A (XS]
LA',f) = ‘{)n

By substitution of (2.2) into (2.1), we have the lowest order problem.

Yot EF(O G

o)
Y

Equation (2.3) has generally modal solutions 2 x oo for an arbitrary travel-

(80)

)+ b [-Un +€nF(UUN+ 8] = 0 (2.3)

'::7e1- Un cx)

ling wave. We study the interaction of two modes by writing the solution of
(2.3) in the form

(o, 02 |
@, ’-A;Kx»t){n.tﬂ)*/Az(x>t)*n1 (9\ (2.4) f
{
H
Suppose that {
A‘,t-'- —C'A|x_+0(6,ub)
‘ (2.5)
A21t= _'CIA‘A,’K"'O(E;M‘)
where C, and €y (C] %+ C,) represent the phase speeds of different long wave
modes .
Then the modal functions must satisfy
] P
& ol o Al v =
TCn,'*én F(;-65)+ un—c‘-‘t'u 5 (2.6)
by 0aty=01. (iz42;j«1,3)
f
where Ph:Un-té_nF(U,-U,)+‘/3

For later convenience, we introduce the linear operator:
~ P, )
-Dn‘['FnJ]E(UH‘ Ci)('{"nj"’ Eat (*'zj‘f.j)* Un-C; ‘FnJ]'
Before proceeding to the next order, we note the orthogonality condition im-

plied by (2.6) ;

S% _{l'__f_qLPol =0 (2.7)
5 n= Un"C. Un"c,_ i 3‘ g

The problems of O (€)and Og‘l.)are:
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~. L a,0) ("o)... L'n"] P (P 1,0
(at+Un6,_) (Pnljt!+€ﬂp(¢1 (P, ) nx
“ = (fy 9= Gy ox)[a +€aF (92 7,°7)] 5=

~K, (A; AN [ £+ en'ﬁ(&wﬁﬁ]

-—K,_(A,' Aj) [F\:z* EHF('FM.” {"/z)J

(_at+ U“ ax)[(Pf: é F ((PL’ ] LP (a0 )] nC; )]

ce9)

= (24 +Uq 2x)¥ (2.9)

NXK

Lol L-|(Al)[‘F:|+ en FC’FLI s ‘FH)J

~ LA [+ €nF(faag,)]

In the above, Eq.(2.5) was written:

ALt *CALx €K, AA)euLi(A,) + 0(EY) 7§
(2.10)

At «CAx = ¢ R WA +urla (AN 0 (€Y)

This means that amplitudes of linear waves must be modified by the effect of

nonlinearity and dispersion (Benney (1966)).

Ki and L; generally have the form:
s YadaNa . %
Ri (’1LA)3'Y“A‘A‘!* *deAzAh" = ¢'1Aq.Aux +V|‘1A Az%
LelAN =St AL, xxx (= L2).
By inspection, the solutions of Eqs.(2.8) and (2.9) are

F (AT /2) Gt AL L) Gna t AR G }

" (2.11)
fr 2 AL hni A x hng,

The modal functions must satisfy the sequence of inhomogeneous problems:
AYE Fofn Ry foa
L} .
Dm[gm] =<Un"cl>{- 4 Un=C, DALY Uy G
U
ol B \2* Ry fos Fof na
Dnz[sm "( C;) n2 ¥ Y2 T =

+r
S %l
(P, 4 Pn‘?\ng n'nl Twin
Dn| La'\-‘ i U'I."C’i-> Uh“C| £n| i3 vl\ Un~C‘1’v2l U C,_
(]
hFa

(2.12)

/

e, h P Bt F‘r’m—
Dnzlen] {Un"\C‘|> Ja Clk ."\nz* Va gnve Un-C, *Vi *UsCa
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. f
Do Lhnif 28, Bms _ g COE,

: P, (2.12)
Un-L[.h"“] 3 Slﬁf -.(U“-Cl) an

One can show by using the solvability condition and the orthogonality condi-
tion (2.8) that

L S e
e B ra o
¥y = -Jo hzt é_-_.lvi,_qi.cj) dj_
23 o . (2.13)
‘a fu ( F;P,.)l_ ‘Fn"i"_ d ;
A A e A R T
u B‘ , :
‘A Bt faPa . fu P }d
V.. = —«{ %l Un‘c;l_(v__'\' C,) Un- C, 5
2
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where 3

e f& fhip;__ot e
B¢ - f.% [T Gres)

o

These are necessary conditions for the solutions of inhomogeneous problems
(2.12) to exist. The above process to determine the coefficients also shows

that the terms including LA ng ([#~})are redundant. Thus, we can set

ij = V=0 (f #(j),)ﬂ‘i s ¥¢ , V) = Vi without the loss of generality.

Now, to this order, the wave amplitude equations take the form;

ALetCR, .2 E(r A A xt \),A,LA“x)f,u’,g‘A,,xx:_ (2 14)

‘Al,t +C1Az.1= E(T‘,_AZAI,‘! + \)1A,Az)z_>-l’/u."$zA1 XXX

Equation (2.14) is a coupled KdV equation, if one takes & ﬁ}kﬂ which was de-
rived by Tedekopp and Weidman (1978) in order to study the interactions be-
tween different long wave modes. However, as was shown in Hukuda (1978), a
special situation yields vanishing coefficients in the nonlinear terms of the
KdV equation. This occurs when one considers a purely baroclinic mode in the
vertically uniform mean shear. In this case, one has the eigenfunction

f;i - fz; for a baroclinic mode. A simple examination of the coefficients
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(2.13) shows r = Yu=V =y, =0 for this mode. Therefore, Eq.(2.14) cannot

descri-e the interactions of baroclinic modes in this special but interesting
case. One should proceed to the next order(O(ev)for the completeness of soli-

ton morphology.

When proceeding to the O(E") , we have

’ Y (300 2,00 2,0)
c’a:+u,.,d,_)(_$0";y CEFRNL ), g

0,3

u,o) (“o)))

ST e T az)]_cewn»e Fl¢, ] (2.15)

{

— %)y dy - @ a)m’,,:,”c Figs ‘]

-MAAANE S e F (5 -]

‘i

../'V\z(»-‘{i AJ A K\[ &’;1* én F(‘F’n‘ '&z\]

where Eq.(2.10) was written
A,’:+ C‘Aux= EK‘(_A;AJ)+}4_"L, (A:\‘ +E"MI(A‘-A3AK\+OC5/U.“'#‘I)

At +Cafgy =€ KA A > Ly (A e EMAA A + 0(tut, 14)
with a general form of M:(A;A;AR)
MUARARAY 2o ATA y o, AT AL + X AL AL *)(zzA:'A,,x
tw  AAA L +w AR AL, (D702

The solution of Eq.(2.15)
0" (8 13) Xyt (A /,))L,,,fAA By S B (2.16)

By substituting (2.16) into (2.15) and repeating the same process as before,

one can show that the terms including o ;j, X ), () (¢ #§) are redundant.

Thus we obtain the sequence of inhomogeneous equations which)(n;a=hﬂ

must satisfy.

Dn,[1n3= i—‘FmSm( P" “)‘ z‘m {ﬁ.’ (u C\g -ﬁ"f"c'.

¢
3 4 v E) | Pa € P,,fﬂ;
n..;[xm] N Fn:gn-x(vnf‘f‘x)“ "5_ %nx {u"-c, (U“-C‘ ) } T X, Un-C, (2.17)
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Dol Fo S (s S 3 50 ({5221 n.fu—.f (Bl)- Gl Bt
DalXs] =4 {(B (S J:g—c':} + fu G () - 4. £ Fad
(e tolal e ot fen (5l o
oo i, e f{3)- ). fnﬁ":(v'f"—“c:)ﬁrmfix S
i ¥ as T bl fafni
?!Uv:'C'L(D%!‘!E;)} * 5:‘_:1- S U"ic' L \P"{:le){ Un- €4
"‘ﬂ‘x{an? 2 }cvn '.’fn)(u c ) l[ﬁ'ﬂ-’\-f}_f:‘—) ;.'“ LUn, (s <L,;n-C. )
g )
~ it ) + s uLbél}
with the coefficients
\ > . y
*)/V\z:\[% é_':‘l:%ﬁ.l ( S:’Cl)‘ L" g.—mz ZU'\ Ci (Un CX }] d‘j
0(, = e <—-—~-'-~~—---"'~~-"‘“""‘*—‘B;-'
'* *nlgm n '___ -u { P I \‘ }‘1 dlj
' :.L-;[ Un-Cb (Un zun‘ 3 ((UnCalUnCo
f e "E”
[ : (2.18)
; | = = P'»Gn\' Pg Fnl n\Gn Y |
ﬁ -f 3 [hade {(57E) - g )+ Tlede () |
t _7;- UI‘Cn U ~C, i_(i"") {."" (Un , s:nl ('Fns ( - ) ‘
Pa 'F‘.F:Un
X - (l’_\_ n‘l (Un C. - U—n_‘za) -7 Jﬂ:‘c, <U'l c‘\] d\j

) B,
Xz—'-[the subscripts 1— 2 or 2—>1 in the above]
/
JE 7-;' gn‘) ’ _Fa )l* £ Sn; Fo b ) ;
_— & W ‘C Un- C, Un-Ca

- (ke (Bt Laban Y]y
0, —— e L6 (U6 )7 Te-ei= J 179
| B|

w, = the subscripts 1 —>2 or 2—>1 in the above

1 2 :
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" .
Now, to the order of € , wave amplitude equations take the form:

A“tf ClAhx =€(Y,A\A\,K1'V‘A,,Ah x)*t #’S,A,)x xx

‘*et(-d;ATAlsw* WgA:A‘:K *W\A.A,_A,, K) (2.19)

Ax,t* czA;,x = € ( ';AgAx,x + A.Ax.ﬂ-) */U-‘SxA:,xxx
+61(4,A:A,‘,‘*Y\'._ATA-.,!)th‘AzALK)
Note that the terms of O(E’)have a meaning only if the terms of O (€ )vanish

(i.e.;=V: = @ ) and then the evolution equation appropriate to interactions

of such modes is a coupled MkdV equation with the balance

3. The Classification of a Different Type of Interactions

Once given a coupled evolution equation, one can classify the different
types of interactions between planetary solitons and constitute a possible fea~

ture of interactions. This is summarized in Tables 1 and 2.

TABLE |
- [
[MEAN SHEAR Uz Va -
Type of interactions B.T.- B.T. B.T.= B.C. i B.C. = B.C,
Tyee oF evolucion KdV - KdV ? MkdV - MkdV
equation
A L i i et N RN
MEAN SHEAR |y # U [
Type of interactions B.il.= B.T. BsT.- BsC. B.C. = B.C.
Type of evolution
equation | KdV - KdV
B.T. = Barotropic Mode
B.C. = Baroclinic Mode

Table 1 shows the types of interactions and evolution equations in the
absence of mean vertical shear. The interactions between barotropic modes obey
a coupled KdV equation. On the other hand, the interaction between baroclinic
modes is described by a coupled MkdV equation. In this special case, the inter-
action of barotropic and baroclinic modes is not possible, for both modes obey

a different type of evolution equation.

However, when we consider a more general situation, that is, a baro-

clinic mean state, the above feature of interactions changes drastically.
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Table 2 shows the interactive feature in such a case. There, the interactions

between every pair of modes are described uniquely by a coupled KdV equation.

There are two types of interactions depending on a type of evolution
equation. The solutions of these coupled evolution equations are obtained by

following the theory of Oikawa and Yajima (1973).

These solutions and phase shift formulae are shown in the Appendix.
Type 1 describes the interactions between every mode except for purely baro-
clinic modes and agrees with those of Redekopp and Weidman (1978) but for the
difference of coefficients. Type |l describes the interactions between purely
baroclinic modes and differs from Type 1 in the form of phase variables. In
the latter type of interaction, the phase of one mode is not only related to the
phase of another mode, but also to its own phase. This is because the MKdV

mode is strongly nonlinear compared with the KdV mode.

In order to substantiate these interactive features, we need solve the
digenvalue problems and evaluate the values of coefficients Y , etc. However,

this is beyond the scope of the present report.

L. Summary

A coupled evolution equation which describes the nonlinear interaction
of solitary Rossby waves in a two-layer system was derived. Two types of inter-
actions were classified depending whether these interactions obey a coupled KdV
equation or a coupled MKdV equation. It was shown that, except for a special
situation, a coupled KdV equation described appropriately the nonlinear inter-

action between solitary Rossby waves.
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Appendi x

The solutions of a coupled evolution equation and phase shift formulae ;

are shown below: |

! TYPE | ;
k Evolution equation: 1
E A.,t?C.An,x‘-'-E(hA,A.m*v,A,A,,z*S,A.,.x,“)
Aa:t +C A = e(n.AtAt,n +Y,AA ax ¥ 'StAa,xxv.)
| Solution:
A.: A,S?r\.(l',Sl)sec:“\1 ¢,
A,=B, gn (s ech*{,
where
{_eyl Y'Ac _li{x T I2IS:— i
5 125, -V, Teg? —L_Sﬂh{rx B It(mh(l
AR A S,
7€ Tﬁl{ -y, T-¢* e Sgn (rs)|" O 4
with

v.=c.—e%53’ncs.\

Vit CQ.-('.“—T;—‘—Bsz," (Ss)
In the above, (X,T) represents the original coordinate

phase shift
125,

Y330

d = 26" %‘%Sg’n(nsn '

4z 2e% Blegqn(nS,) |2l

rz
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THE COLLECTIVE {NSTABILITY OF SALT FINGERS
Judith Holyer

1. Introduction

The salt finger mechanism was first discussed by Stommel et al. (1956),
when it was considered an oceanographic curiosity of little practical or sci-
entific importance. Since this time the subject of thermohaline convection has
been studied both theoretically and experimentally by a number of authors and
it is now believed to be a feature of major importance in transport processes
in the ocean. Williams (1974) has observed salt fingers in the ocean thermo-
cline and it is thought that the step structure in the thermocline is maintained

by double diffusive processes.

Salt fingers can be formed when a layer of hot, salty fluid lies above
a layer of cold, fresh fluid of greater density. It is possible to get a phy-
sical understanding of this instability by considering a blob of cold, fresh
fluid in equilibrium with its surroundings. |If we 1ift this blob of fluid it
will move into a hotter, saltier environment. Since the thermal diffusivity is
much larger than the salt diffusivity, the blob will first come into thermal
equilibrium with its surroundings. However, it will still be fresher, and hence
lighter, and so it will continue to rise. By an equivalent argumant, if a blob

of hot, salty fluid is moved down in the fluid it will continue to fall.

The problem we wish to consider here is the stability of these salt fin-
gers to large wavelength internal wave perturbations. Stern (1969, 1975) first
studied this instability, which is known as the collective instability of salt
fingers. This is because energy is fed from the groups of small scale fingers
to the large scale wave motion. In his study Stern (1969, 1975) does not ex-
plicity investigate the coupling between the small scale and the large scale
motions. He takes the averaged momentum, heat and salt equations and then re-
lates each of the terms to the large scale. In order to do this he assumes
that the Reynolds stress is negligible and that the salt fingers are rotated
by the internal wave, but that the magnitude of the fluxes associated with them
remains unaltered. He then finds that the fingers are unstable if

__f;_:,EEL__._ > |

V(N‘T;‘/gsa)
where Fﬁ' and f; are the heat and salt fluxes of the salt fingers. Y is the
kinematic viscosity of the fluid and T, and /3 are the heat and salt gra-
dients in the fluid.
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In the work presented here we study the collective instability, but we
explicitly consider the coupling between the salt fingers and the large scale

motion. Including all possible couplings, we find there is instability if
(F-Fy) | o
))(9( Tz‘ﬁ.S; s

Thus, we find that Stern's assumptions were not correct, although the form of

the stability criterion is the same.

2. The Salt Finger Solution

Suppose we have an unbounded region of fluid which has a stable linear
temperature gradient, Tg , and an unstable linear salt gradient, AS, , with
the overall density statically stable, i.e. increasing with depth. The coordi-
nate vertically upwards shall be taken as  and the horizontal coordinate shall

be x. We shall consider only two-dimensional motions, so we can define a

aw .
gz *

stream-function, Y , by

o (2.1)

W= = W:Tx-—:

where u is the horizontal velocity and w is the vertical velocity in the fluid.

The temperature field, T' , and the salinity field, S' , will be given by

Tl_-_- TZZ + T('L’l,t)

, (2.2)
‘S :522 + S(_Y.,l,t)
The density field will be given by
p=p (1-(xTy= B8 —(xT-38) (2.3)
The two-dimensional equations of motion can then be written as
2T T, 9] s (g T- 8 S e VY
z—t- fT T T, 2k ot T (2.4)
35 ( LA &
we T v.5)+ 5, x Ke¥ S
where T (¢ )= 2f aq/ = g—l—:ﬁ‘ﬂ 1 the Jacobian,

,.v'r'

)
2 X
2> - The thermal diffusivity is K'T and the salt diffu-

S
and ¥ = aa,-{—

sivity K S

We now look for a steady solution to the equations (2.4) which represents
the motion in the salt fingers. We try a solution in which

e A A A . -, ~
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4 == W-CCOS'}'
A x
T:‘rsmT (25)
S = SSm—}'—
A A N
where W , T and S are constants.

Substituting (2.5) in (2.4) we find (2.5) as a solution provided

A 42 4% A
we L4 (xT-58) (2.6a)
A___{"T'\-A . A__.{‘Si “ ’
and T B KT W Y S - I(S W (2.')b)
These impl
Y {q- v '
T Ty(an o= (2.7)
AWy
From (2.7) we see that we need
B3y . HKr
K¢ < Tg i (2.8)

for a solution to exist. Thus, as pointed out by Huppert and Manins (1973),
(2.5) with the relationships (2.6) - (2.3) gives a steady solution to the

fully nonlinear equations (2.4).

The heat flux in the fingers is given by

B T R
FT i ox i
where (~ ) denotes a horizontal average over long distances.
=P AT TR wT
Then Fq4 3 —x w-T sin 7—:-53— {2.9}
Similarly the salt flux
EXY B S
o= 55 s - 222 (2.10)
Fs _ /3:
So T (2.11)
By (2.6b) we then see
FS A LSS‘_ kf
Fe = K¢ T4 (2.11)

A
There is a further useful relationship. |If we multiply (2.6a) by W and use
(2.9) and (2.10) we find

_ﬁl_ 2. (Fy=Fsd
i e (2.12)

This equation expresses the balance between the buoyancy flux and viscous dissi-

pation flux. From (2.8) and (2.11) we see
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G FT
%;Z- is the ratio of the potential energy lost by the salt field to that

¥ 1

géﬂ%ed by the temperature field, and so must be greater than one, since other- i
wise the system is gaining energy. From (2.12) we see that the energy that j

is not gained by the temperature field is dissipated by viscosity.

3. The Averaging Procedure

We now suppose

Yz-lWeos 2+ ¥ \x,3,t)

£
T: %s' -t—f-T\"—zt) (3-])
5 = ?ss -IL + S \”L 2,t)

Substituting (3.1) into (2.4) and linearising gives

;\53_& SR, )U”\P—g(«————ﬂ 7--6«/5: —-<-§;V“W+%%—%) (3.2a)

(&= K7 IT+T, 8¢ - - .nz—'gf-«-%—wof%‘;— (3.2b)

(B 4TS e85, 8 o mwin T3 Fees 2 2 (3.2¢)

We now write the Eq.(3.2) in the operator form ;‘
= Mu (3.3) |

where L is the operator on the left-hand side of (3.2), M is the 'rapidly

varying'' operator on the right-hand side of (3.2), which is due to the salt fin-
T

ger field, and += (¥, T.9).

Since the coefficients in (3.3) are independent of 2z and & we can find

solutions with {ma « vast)

- Re (u e
where m is a vertical wavenumber and w is the wave frequency. Now we wish to
consider perturbations, w , which vary over a horizontal length scale much
larger than £ . However, the salt finger field forces motions which vary on

i a short length scale, 4 . So we put

Ux) = Ues ()« Wy () (3.4)

where Wm (1)is the mean part of the field, which varies over a length scale,
)
R
4. For the mean field we shall look for wave solutions

-y, and W,.{ X)is the rapidly varying part, which varies on a length scale,
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/’l]u \ /’A \

Pggy S (( Tm 1= Re ! -1 B ':ezp(kanmz +iwt) (3.5)
\\ Sm/ \\ o C( /,
The wavenumber of this wave is given by « , where/u_‘ I LIRS s

travelling at an angle © to the vertical where

R=usin® and ™ = i cos B
I
The basis of our approximation will be te¢<< z°

We define a new coordinate system ( x' , z' ) with
v e Yun D 4B e (3.6)

z' = -Xcos O +Z5m 3
In this system x' measures distance in the direction of propagation of
the wave and z' measures distance perpendicular to the direction of propaga-

tion of the wave along the wave fronts. Then

e o [#x'+;. \, 3.7}
)

We define an averaging operator < > by

Chre i e (3.8)

Thus < > represents the average of a quantity along a wave front. So, from
the definition, <u,,>= u, and <u,> =@ . Since L is a linear operator with

constant coefficients < j,} = [ f> , so <Lagys b, and <t =0. Also

n
< ﬁﬂqu =0 since the rapidly varying operator acting on a mean quantity will
give a rapidly varying result. Thus, averaging (3.3), we find

Lu‘mz <MLL,.\/ (3.9)
Subtracting (3.9) from (3.3) gives

Lups Mup + Mu,- <Mu,y (3.10)

Now we expect Mu,.— {Mu‘_) to be negligible compared with mumsince W, is
associated with the length scale £ and W, is associated with the length scale
{f . Then, provided m << —, Eq.(3.10) becomes

L
Lu, 2z Mupy (3. 11

This approximation is equivalent to the first order smoothing of kinematic MHD.

e e —
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We verified the validity of this approximation when we had calculated w,, and

W, explicitly.
In order to solve (3.9) and (3.11) we use the relationship that

Re (@) Re(b) =4 (Rab)+ Re(ab) (3.12)

where * denotes complex conjugate. Then from (3.11) we find
(,‘ i'.\‘_'\‘ /'[Dl\

. . : ey oy
u, = Re {I 5, /el(‘q"‘_h“m“wti- / E, el(k'z)xm“wt (3.13)
'y

LY ey P

Substituting (3.13) and (3.5) in (3.11), using (2.6b) and (3.12), and equating

coefficients, we find

—(Cwrpp2)ut A 3C-h\(o<'3,-/5C.) % i’;w (uz- -}—,)A (3.14a)
((w+KV,¢__2)5,+Tz(_l{_ RIA, = ( (3.14b)
(tw+Ksu?)C 4 Sz(—é'—_k}A CV/ A) (3.1kc)

,.~¢'w+p,a+’)uj D,+3(z'—¢k)(a E,—-ﬂF,) = L?h} <,u"‘— -{",)A (3.15a)
Cwrhyul) E,0T, (F0k)D,= l";V\"(z3_ 4)3‘; A) (3.15b)
(w0t Kou, )F+5( + R) D, = M(Cq A , (3.15¢)

where

Y k)wn‘ , /4—.‘:(-{'_-/«) 5
By substituting (3.13) and (3.5) into (3.9) we obtain

- gt o SO fras LN g 7 .16
—(tw VUt A-gk (xB-p3c)= 755 ((/J-- 72 At (u —.l'_AD,) (3.16a)

+
(Llw"<"l' ua)B_leA:}%V_\_/ (:_, BI_ [’-.A"-—Q‘LD."A,\> (3.]6b)
Gk ut Co S, RA 2 im¥ L C - R) Be(p a) (3.16¢)

Now (3.14) - (3.16) constitute a set of nine linear, homogeneous, simul-
taneous equations in A, B, C, Ay, By, Cy, Dy, Ey, and F]. Thus, in order for
a solution to exist, the determinant of the coefficients of this set of equa-

tions must be zero. This determinant will give the dispersion relation

W 4
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w (R,m)=0.We can, in fact, somewhat simplify this procedure by solving
(3.14) and (3.15) to give Ay, By, Cy, Dy, Ey, and F; in terms of A, B and C
1 ] ] 1 ] 1

and then using this to substitute into (3.16). We do this in the next section.

We note here that it is possible to do the averaging using a different

averaging operator and to obtain the same dispersion relation. |f we define
< >' as the horizontal X - average over distances o such that

{<<of<<-;7£

L
e £ F 7 a jé_-J’ £ dx

<Mu,?
MU-m

then we obtain the equations Lum

and L‘-"r

/
provided g4 << T

and the dispersion relation remains identical.

4. The Stability Criterion
We solve (3.14) and (3.15) for A, to F; and substitute in (3.16), using

yn <<.7% . We retain only the lowest order term in gL that multiplies each

coefficient. Then

c 2\ . K
(Lw+puﬂu54+3kh3~ﬁC)=ZEKY;SKB(“Ufzé)

. K
-ﬁqNC(tw+—£)~Ax> (4.1a)
PRWES = e ['¢
Uw+Kﬂf)B¥EkA=—£;¥ naﬁc~%(fw+%f)
cwar Bl o X gt g Ts
fB((..u.w e')\”+ - [ = )”Apsz\lf/\y) (4.1b)
Wy g ) ¥ —-SlkA: - M;\:,/t(- S,_aq B-{é (tw+ 2—%)
Cl(iws 82 )t ¢ 2% f$%3£=)+ «T)fw%Z\ (41¢)
tC | ((w+ %s (¢ i e gy T, / Jdc
where
\, K\ [ » X e e KK~
P= (Lun-% ) uLf'l{)(\wa-c“{)“’ L\»Uﬁ&d—rl -/38,) - L{z’.

e \

)
Ky,

Kz - ( (wy . 'BS
R - ‘Cw*—l)(Lw+%)+—f\‘;—f3AéK1 '\/,é“_;:_ -

6. 28 (TR L 2Lk, r o9 (et k) cr (D0 kg 0, Y)

\ 8 1 b
-2 gl Bfz) o T o qihn (85 ol )

K¢ K%/
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The condition for (4.1) to have a solution, for A, B, and C, is that the

-

determinant of its coefficients is zero. We make the assumptions Y >¥ <, and

U SYKg s which are reasonable for most fluids. Then we find to order AA that

. . Kg i< %
R [—cw‘}u"~w’/,a“ufzrualk"xT,u-FT.)-v—{j—I,u*h ]

% 30 pand 3 —_ .
W it a, AR, Mok Ta (\“FC)‘Q *9 ot T (F-T)
3 ' ¢* 7 “

m
iy
p 2 2 v S ’k‘s

r Lokt T (R 20 T FQ-0) ] [ -

’-R 2 quh‘ 2 "
pe N W = Lw
2 Q(M,__g) .HNT_)Iw "« T, (1-FT) +

+ LTy (F-1)

+ .L}‘Q-/E_ \‘*_ SA‘P ( dT K =
-2lw —’:,Lj"“Tz;('f“Fc)( ()e gc("T (F“))‘)
(wgRr*S i

{ ooy Ty g zx 2 2w g
T 2(we —'-'-)(:.wf-h-‘-) L R ‘K’i; (F-1- s o Ty (F N+ < U FT)
Lwo(Tg (,:-Z‘))] = © (4.2)

£ and T = —& .
“-FT ta! kT

Now, if we want a solution of (4.2) with @ =0 (1), but not o (1,

then the only solution is found to be

k* > (4.3)
e 32 (2Ta- B8+ am
This gives a wave oscillating at the buoyancy frequency. It is necessary to re-

tain the small quantity g;izin (4.3) in order to consistently apply the condi-

tion /,u<<~‘2— . The condition for instability is that for (cl’)do . We then

find that the system is unstable if

(Fg‘ Fr) (
V(=T /35,

—cos™ O rq+5p) > (9" + X [F-1)(I-Frp*) (4.4)

-
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where

>0 - m*
and

PR 20(l+t)(l:-f)

g X (1+T)IF-D(1-FT)-w(F-T)

e 2(“’”“*6\-(1-4:1‘)+e(E-t.'~xd(l~Ft‘)+bj”,.(;,t)h.

$=AC+ X (I+TUF-NU-FT™) ~=(~FTIE (F-1)+d(F-T)
tbh-x {1+ T)-FT J(F-0).

with

o UF- = X (F-1)0-FT)U 4T D T)p x *(1-F T *

b= C(F-1)-x0U=-FT)

e 2 2CUSNH(F-DIa-F L)

d s C(F-NF-T)=2T(F-D(-FD)va U-FTY

e = ULF-0"e X (1-FTYU-FT ) .2 x TCF-1)(1-FT)

§ = (0T (F-DF-CY =16 T(FV(~FT) =6 (F-T )(1- FT)# 0k 1-FT)

he gT (Fa1? 43X (F-1)U-FT )%= X(1-FT)[I0T(F-1
+G(-FT) =10 (F-TIU-FC)+3 (F-T)"]

In the stability criterion (4.4) there are two independent numbers, X

5 . s - T
and cos™ O , which we are free to choose. The smallest value of 'v(otT, 357

to give instability will obviously occur when cos 20— | This implies

2
-/Z—, ¢<} . The dependence of the stability criterion on X is somewhat com-
plicated. In fact, (V'ﬂll +5p) and(% +)((I' ))(;-—FT)P ) are both quintic
polynomids in X . Since -ﬁ—,<<\ and —->7| ,J(( e ) may range from

zero to plus infinity.

If we let X— o0 in (4.4) then we find it reduces to the very simple

Fg —~ Fop
condition that there is instability if v(«Ts —ﬂS\ > —‘é- independent of
Fand T . Now we wish to know if there are any circumstances in which we can

find the system unstable for lower values of ‘\’_CE‘IT%S—)

For salt fingers of heat and salt, l&scékf so T <<, If we make this
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approximation in (4.4) we find instability if
LBy, [n‘(F-\%x(4F+3)+F(F-nuf-‘-;o)]
VT,
> x*(F-1)+x(2F = 2F¢1)+ F2(F-1)

It can be shown analytically that the minimum value of the stability criterion

= |
occurs for Xx—> oo and the system is unstable if 7)‘;?7' > 3"
z

The problem of salt fingers in salt and sugar is more complicated since

K
sz = O(1). We considered this case numerically. For salt and sugar
1 E
and it has been found experimentally that-?i 0.90 + 0.01 (Stern and Turner
1969. We put these values in (4.4) and investigated how it behaved as a func-

tion of x. The conclusion was that the minimum value again occurred for X — co.

Thus we find that any system of salt fingers is unstable to large scale

wave perturbations if

R F; >

O, SRR (4.5)
Y(«Te- RS J

Having obtained this result it is possible to trace the problem backwards in
order to determine which terms affect the final result. When we do this we
find that the Reynolds stress in the momentum equation (4.la) is negligible.

However, in the heat and salt equations, we find that the two forcing terms
A

N
-"Wsmzx-g—z and :{-cos —E— —g—g—'and equivalent terms from the salt equation are both

important in determining the stability. Consequently, it is not correct to

assume that the flux remains constant in the salt fingers.

There are solutions to (4.]) other than (4.3). Another solution was in
fact considered, namely
W= Hut (4.6)
For this solution the real and imaginary parts of the frequency are of the same
order and it was thought that this solution might prove to be more unstable than
the wave perturbation which oscillates at the buoyancy frequency. This was not,
however, found to be the case. The system is apparently always stable to per-

turbations of this frequency.

5. Discussion
Having obtained the condition (4.5) for instability, we will now compare
it with some laboratory experiments. The first, and most relevant experiment we

shall consider is that of Stern and Turner (1969). They use salt and sugar rather

il i i s
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than heat and salt as the two diffusing substances as it is experimentally sim-
ple. We shall still however refer to them as heat and salt. They make a very
deep layer of fresh water with a uniform temperature gradient T; > 0 and surface
temperature T (o). Another very deep layer of uniform temperature T@+AT
and salinity 4S8 is then placed above the first layer. The density of the upper
layer is less than that of the lower, soo(AT>/3AS. Salt fingers form at z - 0
as soon as the two layers are formed. The system is shown diagrammatically in
Fig.l.

S ||T

Fig.1 Fig.2

If the experiment is repeated, but with a smaller value of T, , and the
same values of AS and &4 T , then initially the salt fingers form as in Fig.l.
However, after a short time the fingers between 2=0 and 2=-H become unstable
and give way to a well-stirred convective layer, which is maintained by the flux

through the salt finger layer at 2 =0 . This is shown in Fig.2.

If the temperature gradient Tz is reduced further the layer below
2=-H can become unstable. By suitable choices of the parameter AT ,AS and
Tz it is possible to obtain several convecting layers, each bounded above and be-
low by a relatively thin layer of salt fingers. Layers like these have been ob-
served in the ocean by several authors (e.g. Tait and Howe (1968, 1971) and Howe
and Tait (1970)).

In order to compare this experiment with the theoretical stability cri=~
terion, it is necessary to know the salt flux, F; , through the fingers. There

is a fairly well-documented relationship between F; and &S (Turner 1967)

Fs % C(ﬂAS)“/B

» " . : K
The number C in the relationship may vary with TL and 22: . For heat and salt
T
experiments Turner (1967) found C = 10~ cm/sec when fg%dg = 2. with C decreasing

only slowly as?%%% increased. For the salt and sugar system Stern and Turner
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(1969) found C = 1072 cm/sec from an experiment with %;;I = 1.05. Lambert and
/
Demenkow (1972) found C = 0.5 - > 0.75 1073 cm/sec from an experiment with
AT

NS

A% = 1.25. Thus for salt and sugar the salt flux changes quite considerably

~ $d _7_- 1 -‘i’__éj.-
343 and the salt flux is reduced for larger values of 385

lationship (5.1) to Stern and Turner's (1969) experiment, using their value of

Applying the re-

> F -
C =102 cm/sec, we find that if s - Fq o2 2.8 the system is unstable and
E.f viotT;-yss;)
Z 2. ~ ].2 the system is stable. Considering the uncertainties

V@T-AG

in the experiments the value for instability of about 2 is close enough to the

that if

theoretical 1/3 for the instability which is observed to be the collective in-
stability.

The second experiment we shall consider isolates the thin salt finger
layer that exists between two convecting regions. A very deep layer of uniform

AT

tempearture T, + £~ and salinity S, R is placed above another deep layer of

‘lsh rlen

temperature T * .QLT and salinity S,- The system is shown in Fig.3.

o transifion vegion

{ﬂ]} <« salt finqer fayen

Vo

Large scele €¢nv¢¢f«nn < Fig. 3
Linden (1973) performed this experiment using heat and sugar and he found values
Fs -Fy
of -7;7 35 y ranging from 0.2 —> 1.9 in the salt finger layer. The fingers

g ~Fy
y(“ T’.-ﬂ -sa )

should be less than 1/3. The fact that the value actually obtained is close

are observed to be stable thus the theory of 8 4 predicts that

to 1/3 suggests that the region may actually be marginally stable. Lambert and
Demenkow (1972) performed this experiment wuth salt and sugar. They found, using
=3 -
a mixture of theory and experiment, that ?ﬂiﬁf?7??b ~ 2 x 10 2 for their ex
periments. This suggests that their salt finger region is very stable. The
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reason it is so stable is probably that they did their experiments at compara-
of

tively large values °f;£§§" which reduced the salt flux through the fingers,
so making them more stable.

More recently some experiments have been done by Linden (1978) in which
he set up a region of linear salt and sugar gradients of a fixed thickness. He
let this region develop in time and he found that, in some circumstances, the
region became unstable. The region developed convection regions separated by
thin salt finger layers. There is some difficulty in applying the theory to this
experiment as the temperature and salinity gradients are changing as the exper-

iment proceeds. However, if we take initial values, we do find that

Fs -Fr >

?L O(TZ —'/3 St %
be unstable.

1/3 is an approximate measure of whether or not the system will

So we see that the results of the experiments are not in disagreement
with the stability theory. We have shown here that the two-dimensional salt

B
fingers will be unstable if _§H§Fﬁ£%§§:3 > 1/3. The main result of this study

is that it has shown that the collective instability can be put on a firm foot-
ing, and does not have to rest on shaky physical assumptions. Before this in-
stability is fully understood it will be necessary to look at the energetics of
the process, in order to see where the energy that drives the large scale motion
is coming from and whether this instability increases or decreases the heat and

salt fluxes through the system.
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MEAN FIELD EQUATIONS FOR CERTAIN MOMENTS OF THE MAGNETIC FIELD

Glenn R. lerley

Introduction

A great deal of work in dynamo theory has centered on the kinematic
problem of identifying classes of fluid motion that may generate magnetic
fields and it is now well-known that helical homogeneous isotropic turbulence
can do so. Kraichnan and Knobloch have separately shown that for a turbulent
velocity field with large scale persistent helicity fluctuations but zero net
helicity, the mean magnetic field may be negatively diffused to small spatial
scales. Equilibration of the magnetic field requires solution of the fully
interacting dynamical problem and not surprisingly, much less can be said
about this. In the first part of this paper we find the kinematic mean field
equation for the Lorentz force with the motivation that in the weak field re-
gime the results may suggest an iterative scheme for finite amplitude equili-
bration although it is important to bear in mind as Kraichnan has noted that
it may be the fluctuations of the Lorentz force that are important or as Knob-
loch has mentioned, that the magnetic helicity may play a significant role in

suppressing helicity in the velocity field.

In the second part of the paper we consider the Lagrangian evolution
equation for the magnetic energy and conclude that kinematic considerations

alone result in magnetic energy being concentrated in large scales even in
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the instance that the mean magnetic field is negatively diffused.

Lorentz Force

For a stochastic differential equation of the form (suppressing spatial

dependence)

m  [ErLELw] Feefiw)=0

where bar denotes mean, and prime denotes zero mean fluctuations; the exact
solution for the mean field f(t) may be written (Knobloch 1977), assuming
f* (o) = 0, as _ _ MY ¢

[Tat—* L (&) # (8l S dt<l (Blexp, {- S{, dt u, (t t.)

o

(2) (LAY UG b u, (B, e 0 (69 FCED.

Uy satisfies the equation[gag‘* T (t)] Uo(t0)=0Owith Uy(0,0) = 1. The sub-

script '"0'" on the exponential denotes a time ordered product (latest time to

the left) in the expansion, and A is an operator which takes the average of

everything to the right. |In the limit of short autocorrelation time I.e.
LB U@)> ¢ U (e)lice)> S (e-t")

we have

3) S Iy =< l®> TEE®.
The result may also be obtained from first order smoothing.

We do not include any sure operator T (tj; thus molecular diffusivity is
ignored. Moffatt has questioned the convergence of the coefficients in the ex-
pansion of Eq.(2) in this circumstance and the point is not fully resolved. For
the Lorentz force the operator L' is a fourth rank tensor obtained from the in-

duction equation.
W) =% By = -d: (Vi8-8 v))

7
where B = B;(xt). Writing the same equation for By = E&(xzt) , multiply-
ing the first by B; , the second by Bj we find

e i s
where Ljkmn™ = Sam Sk (Vidi+ Ve O )+ SimOin (S V5 )+ J;n J'En (Fgr Vi )+
Thus Eq.(3) becomes

(6) a%'\' BBy = S L jkma (£ Lmnpq (£} > T<Bp B>

The result is
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-g—t {B;iBx'd=n (90 +3020)¢B; B 7 + 2 Mim (313’ (B; Ba’?)
(7) —"(;E'Lrnj ¢ <BmBK‘)‘°<1 EL'mK 9; (BJ Brnl7‘(am"2[k\) oL <Bé' Bt

.(am'z;:)a:<l3,,fs.z>.(az7;,"),3»(03I Bu2 4200, 3 ;) { B; B’ D= (3¢ M) B B

where

/3) va (x t)\/ (x t)d‘t 4"‘ (l i ) gan,. ,(o(oru\an,“ K®

and r = IK = XL X is the Taylor microscale.

u? is the mean square velocity.

Now we operate with all on both sides obtaining:; (dropping primes on

B and its derivatives)
0 [5e 0 VDB By e dta £ [€3,,0 By~ <Gy m Bz 5]
7‘ux< BJ':': B"n Z’)‘%“’ Ejml <B( Bﬂ,iwh‘(' % [é(‘snm J"_“* J.‘@}' Jt.m\l -2 a‘;" é‘jm]\' 3 B“-"‘>

L, £ el o e
r;qz.&mm. \/3(;8{,,.'") , (.e" “nfc‘,mL“{) 2&&’5\m6£<8j;m,3:)
"""zi«:m:)<‘3m,i Bn,e)'G‘zgtn'la((fifsm,le)f liot,_géum <BJ"‘: Dm,[>

ol ﬁ',irtu <Bm 8n,ﬁu>f 2722 dm' 3, M5} 413, B3, )
- [ (i S i) -2 600V LBy B,

+ “;T:i[ 7(80 it 66 60V 2 6 51| < B, Bai?

T O P
-2 [Q(d”a”m, 8 6my) -2 4, cm 85k ]<Bi By g )
Now things are simplified by contracting both sides with 8,(,,,,_ ﬁrémto form

\Bx(7x%0B)) on the left-hand side. It may be noted the terms in w!/2* give rise
to a contribution

U L<Bx (v 13>>]+2 V< BY).

The o, terms give , Ux<Bx(VxB)?, and the term 2(8 Om' OL M jx) vanishes
upon contraction of the indices. The contribution Z<B™> may be eliminated
using the operator[at (Aa+n 9*)] which annihilates <B*) (, a result pre-
viously found by Knobloch (Knobloch 1978 a). The final answer may be written

~Z
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o a 1 £
%'(%Nw‘ﬂé““z?v - 5r<un oy
(10) %f(w‘?—-g-rch)vx] {Bx (T%BI=0.

We note there are two modes for the Lorentz force where the second is
strikingly like the o -effect generation of the mean field <[B). At this order

the following equations are also satisfied:

<R
(1) [a%‘"(:‘g‘f“‘") s LT VY] ima-vwv} ",

It is instructive to plot the growth rates of the above moments at wave vector
k and the mean magnetic field at k/2 as a function of k for a state of maximum

helicity.
N

<87, {87
Grgurh vate "A L7

.5 ; .5 (AK) :6 >

{Bx0xn)®

L <8*», {B-VxB7, LCxVxB7,

The following features should be noted: for(AK) £ .504 the variance of |
the mean field grows faster than the field itself. Thus it no longer makes
sense to identify the real field with the mean field. For AK > 2V3  the
mean field decays which is also uninteresting. Finally only for .504<AK<1.608
does the Lorentz force grow, for 1.608<AK< 2/3 Kkinematic results indicate de-
cay of the Lorentz force (as well as the magnetic helicity for (2 K) > 1

For a general spectral distribution of { B> in k space the picture is unclear

but it seems quite plausible that there is still a range of A K in which the
growth of £ ﬁ:>can only be limited by fluctuations of the Lorentz force at
least initially. |

- -~ |

Interestingly, if one calculates <B?> X (VX < B?) the result is:
2 = A
Lexp(-4T<ury X¢)B*(k,0) k.
This is obtained from the exact solution of the Rourier transformed dynamo
-

equation with the condition that B’ (F;,O) =0 . In this case a growing Lo-

-, S,
rents force arises solely from < B'x (¥ x B)), the nonzero average of the pro-

duct of fluctuating fields.
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Mean Square Magnetic Field

T UA—

For the induction equation
(12) 9, B; (Rot)= -3, (v, (£,t) B; (X, £)-Bj (X, t)v; (X, 1)

in an incompressible fluid one may write the exact Cauchy solution

(13) BL(;,t;:M»_t/BJ.(a»,O)
daj
where

ax (At o 2§:(&8)

X! &,0)zQy and 3&“ = {y ’aa.j

§Z Qi,t) = (i,t)— a;, the relative displacement of a fluid particle
starting at 5 at t = 0.
- -
For the convection of the quantity B((X,f) GJ(X,t) it is easily shown
that the solution is simply the product of the Cauchy solutions

(W) B (X1)B;(t)= 2 24 B (3,0) B, (3.0)-

= ¢
If we expand each factor on the right-hand side about X , then

(15) 9% g (3o). 2% S5y % G BB, o
L g (3,0)~ 525 B lX,0) < 3 e S (%,0)
o g Bi a"Bm(;Z 0)
2 Yy V' Bam  FY DX,

L > 3 ox; 0xj - = ox; dx; J
06) B (1,08 (A7)~ 22 S5 B (X,0) B,(X.0)- §, 525 94 2

861"\ 3&.,,,
- " dx; d% 4 . FBulx.0 3By (%0)
(B (X,0)Bn(X,00) + ¥ gk " X 3:4_" {Bm(x,o)%"a(x_) B, (x,0) ;f"‘ax -

OQm

aBm

(X,0) ax 284 (x,0)

Now we average both sides assuming statistical independence of the field at
= 0 from all realizations of the velocity field for t = 0. The assumption

of homogenelty and isotropy allows us to write, for example,

< aam aun > A Sim ‘{m + B dejbvan * Cdin Eivn,

and after contraction of indices i, j and n, m, we find
% \*
= L e iy .
(H+36“‘C) 3<(aam/ >
In this fashion we evaluate all the terms involving moments of the
velocity field. Finally Eq.(16) is contracted with a factor of cf}J . The

result may be written as

s —— , il
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(17) <B%i‘,t)):J.<(?_’i§_)‘><s‘(i,o>>+,‘~,-[z<(£ )‘(‘}’f ’)

w
Aaan J daj

~ LB (ZE))] 943 (B, (30) B (%,0) >

oy
% da;j

—<§ ]vx <B (X o))* l—3<gx 34

To estimate the time dependence of the coefficients we assume (c.f.

Kraichnan 1976b) 2. Y7 ox, X
(17a) §=%25 and e, S W

where (W‘s) =1 and (W;) >). That is, the displacement is the sum of small
displacements from a large number, N, of independent eddies while the diagonal

component of the strain is the product of N independent strains again from in-

dependent eddies. Using the fact that SE
2%, (24
-—-—" 15‘:1 + .
oay day

we see that

(&= b+ 57 <5

The second term however must vanish by homogeneity and diagonal compo-
nents of the strain must therefore average to one. The model above reproduces

this result as

<_°7_‘1.> (ll.»,) {w,

and the fact that the W's are fluctuating quantities implies <_VJ"> The same

reasoning |mpl|es off diagonal components might be represented as where {Ug) =0
ensuring (f > a.

It is by no means clear that <JJ;'> is less than one, however, we assert

that it is plausible that

<wa Yy > (Ug

which condition will allow us to neglect off-diagonal contributions in (17).
From the assumption that the displacement in each eddy is independent of the

strain a coefficient of the form
B*u *
I (52)
may be written as 9<(§)(a*n)>f,g<(§)(&"1)>.

The term £ E“ a& ) e a¢ i > must by isotropy have k = j and thus becomes

3B (32) > +6 <8 (5%

ox,

) » where we have used the equivalence of
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i
{(S, )y ( o ) > with ((E ( axt) >. It is now apparent that the last two

terms in (17) may be written as
[«51)1(;4—:,')1}*“@ av.)>] (B(x,0) +[0] 8 3, BB, (X 0>

Observe that off-diagonal terms make a positive definite contribution to the
diffusive term (which as noted above we will neglect), while the coefficient
of the mixed derivative term vanishes given the independence of displacement
and strain. In the instance of negative diffusivity of the mean magnetic field
this is invalid but we appeal then to the assertion that {w.*) 2 < U,'> for

the neglect of the last term.

From (17a) we estimate that

N
b (B < (5T

day
” v - X
We claim l-aa-I%Ht where Us and £, are characteristic velocity and

length scale of the eddies thus
ox l)
sl e
where o( is positive definite since in <w5’> >0 . Similarly a term

<<§ )"' Bx is proportional to v < (%, T“’s &

reflecting linear growth in time. Terms proportional to N2 here vanish as they

<§,sws><§c> »

We need <'(§;Y'( g:' )1 which is easily seen to be
I N=1

N < (§z‘)"w,*> A V- S E

Collecting our results we obtain:

(18) <BMF, D)~ B (X, 00+ Bre tura BT (X 01>

involve averages like

In the case of a uniform field, By, the second term vanishes and we see asym-

ptotically iy
£ [43 (x; ) >

]:o(t
Be

#ich is confirmed in Kraichnan's numerical experiments for several prescrip-

f the turbulent field. Differentiating the equation above we find
5B B0 ¢ (B ot Bt) e*t T2 LB (X, 0))

]
%, - -t
g 118) to find < B(X%0)> in terms of <B (X ,t)> we obtain

2 e (B RE)) » BUKBYK, >
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e 2
where(@ is a positive definite constant(<\(§lﬁ) W; )) - In the presence of

strong persistent large scale helicity fluctuations Kraichnan argues (Kraidh-
nan, GFD 1978) (; f <)X1 o ot

3(4—[

since even though sequential realizations of the velocity field are completely
uncorrelated, the negative correlation of large values of g‘ with large values
of the strain makes probable an even more negative correlation in the next inter-
val. In a fluid with zero net helicity then R (t)<~% and negative diffusion

obtains. In these same circumstances we conjecture
d% >
\(§)(0u‘)>()€/3t

While the matter of the exponent is uncertain, /49 is surely positive definite
thus positive diffusion of the mean square magnetic field obtains even in the
instance of negative diffusion of the mean field and possibly the diffusion of

¢ B is greatly enhanced.

The conclusion is that from kinematic considerations alone the magnetic
energy is always in large scales prompting us to note that the contribution
of <B' B> to < B*> completely dominates that of { 3><B) when the latter is
negatively diffused.

Finally we note that in reproducing the mean field approximation to the
mean square field in terms of the Eulerian velocity Keller has shown that there
is a difficulty of a rather general nature connected with the fact that an equa-
tion like (17) is not valid for t -» oo , in particular we have

2 BURD> = (1+ STWH ) <B* (X, 0) 7+ 5 T <u*» v < B¥,0) 7,
and differentiating we see

3¢ (B A )y = ST B (X,0D+ LT uy v (X,0)) -

To reproduce the first order Eulerian result for all t we need to obtain

(B"()?, )y ~<BY(x,0)) from the inversion. This does not obtain for t—eo .

CONCLUSIONS

For further exploration we ffel it would be useful to examine
-
BX (VX B
| <Bx(0xB)I*

to see under what circumstances the mean Lorentz force dominates the fluctua-

ting Lorentz force although it would perhaps be most useful to do this in a

Lagrangian framework as was done for < 3% . As to the applicability of (10)
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we expect for realistic turbulence the coefficients may be radically changed

by renormalization but there is at present no means to explicitly calculate
appropriate values even given the exact form of higher correction terms. Thus
in a pragmatic sense we feel that the development of the formalism for large
molecular diffusivity, while not completely straightforward, might be more use-

ful for quantitative applications in appropriate physical systems.

The sensitivity of the results to departures of the turbulent field from
homogeneity or isotropy is not clear although the length scale of inhomogeneities
is an important consideration. This problem is naturally of some interest in

regard to dynamical interactions and warrants further investigation.
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ON TURBULENT EKMAN LAYERS -
THE EFFECT OF FINITE ROSSBY NUMBER ETC.
Shigeki Mitsumoto

1. Introduction
The Ekman layer is the lowest part of the troposphere, or the upper part
of the ocean, in which the flow is under the simultaneous influence of pressure,

Coriolis, and frictional forces, which are equally dominant.

For the theoretical study of the turbulent Ekman layer flow, or in gen-
eral, of the boundary layer flow, the greatest problem is the turbulent mixing
process by small scale motion. This is so complicated that meteorologists or
oceanographers in their search for a suitable scheme have chosen to paramet-
ize it with some mean field values, relating the Reynolds stress with the shear
of the mean velocity by an 'eddy diffusivity' Km as © = Agn é%é. A variety of
parametization schemes have been suggested, which resulted in a variety of theo-

ries for the Ekman layer.

For example, in his study of atmospheric turbulence, Ellison (1956)
assumed that Km is proportional to height and obtained the vertical wind pro-

file in the Ekman layer.

However, the assumption of eddy diffusivity itself has been questionable;
according to some observational data, it is sometimes found to be negative or
even infinite. Some alternate methods, with not too much sophistication to
apply to the actual situation, but based on more physically reasonable con-

siderations, has been sought.

Malkus (1978) presented quite a unique method to obtain the velocity
profile of the turbulent, neutrally stratified, one-dimensional steady channel

flow, which is based on two simple assumptions; (i) the mean velocity profile

GFD Lecture 1978 (author's notes) c.f. this volume for abstract.
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is free from any inflexion points and (ii) spectral smoothness of the Reynolds

stress. The remarkable point in this theory is that the prodile of the mean

velocity and the Reynolds stress are obtained uniquely without any assumption of
eddy diffusivity.

The object of this study is to apply Malkus' theory to the two-dimensional
turbulent Ekman layer.

Laboratory experiments for turbulent Ekman layers were carried out by

Caldwel et al. and by Kreider (1973). Kreider compares the velocity profile

with some theoretical curves and those obtained in field observation. Among them,

the curve derived from Ellison's theory which is simpler than others, fits Krei-

der's data best. However, Kreider's curve shows dependence on Ry,, the appara-

tus Rossby number, representing the effect of centrifugal force, which is not

considered in Ellison's theory. The experimental curve by Caldwel et al. does

not show the systematic dependence on R,,.

Thus, another purpose of this study is to investigate the effect of finite

Rossby number on the velocity profile and to give a quantitative explanation to

Kreider's results. We do this by extending Ellison's theory to include Rossby

number, since Ellison's curve is most consistent, at least qualitatively, with
Kreider's data.

Il. Basic Equation for the Turbulent Ekman Layer and its Nondimensionalization

The Momentum Equation including Reynolds stress in(vy 9,2) coordinate

rotating with angular velocity SL (= const) is written as follows if we assume}

1. Mean Field is axisymmetric J

2. W = 0 (quasi-two-dimensional)
i
= 3 LSS AT L Dy Y
u—F— v Zﬂv+—‘,~—aTPl‘ Vij‘b

(2.1)

‘A vi,. \“‘..'. »w
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U e ¥ uu“tz,n.unu(ar,,.« = == T-U—;"' é';“:’.“)
= = (2.2)
o L, 9 g ° 7 3
+{r<“ Tz v 5 (vFise “a—,(*f’w’)} =0
where £ 3ok
(t,r) = (@, v)+ (L),
under bar denotes dimensional values,
and F*’.—_ P - '—%‘—-r‘)redr.ced pressure) .
Scaling
It is natural to scale F -"3\ (q_ ) and ?'* in the following way:
Y = L (L: radius of the rotating tank)
(],])i G‘;%:) (G: speed of flow relative to rotating tank)
(g:_":\:_ e (‘;‘;'I‘\, ( the friction velocity U’*E(\;/ Fl)z Sl
= pfLGp*
As for the scaling of Z, two ways are applicable in the present situation.
i) 2 = ( +)) 2 (smooth laminar scaling)
ii) 2 = ';T' = (rough turbulent scaling)

Hereafter, either of them will be adopted according to the occasion.

Then Eqgs.(2.1) and (2.2) are dimensionalized as

(= 9% _ O \_~ oP" i d{uw'w')
Rou"a_%_ r)-'u.-" ar -B o=> *C o
5G4 3 (2.3)
2 V&H SN i 0N
+Re€{ 3r - * ¥ 36 (W)~ At .0
R (g 2_‘_+a_¢1)+a Ba‘fr _E(a*,y 3¢ _ ¢ 3 (v
°NT O r =2t dvr> r 57"";"{)"‘(" 52
; (2.4)
+R°E."i—;:(u_'u-’)+ l %(un)]:o
where
G iy L
Re> 2L’ &z—¢ » Ez T
Cuefficients B and C depend on the z-scaling factor.
e i (R
™ By e /&;.. s - VR
= ﬁ? = o gl v‘) § S
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In the laboratory experiment by Kreider:

1 ! ~¢ e I
Re2 75 s E~pg Bl Re ~107 M~ —

(_})_)"",\, 0.03em, %*.A. [em

Since £ and R, £” are much smaller than other coefficients for both scalings

at least as far as the laboratory experiment is concerned, (2.3) and (2.4) are
reduced to

= Ay o SR d(w’) _

R (u_“:__l'_":. ..U"+"a—r:‘ -‘33?’ +C—%—— ..O (2¢5)
o . av) - T

Ro (& —ar‘“——“r)w—Bf;f « (2w . g (2.6)

Further, nonlinear terms in U~ are linearized in the following way:

(1) Nonlinear terms in (2.5) can be approximated by -R,

&) << |0

(2)

Define geostrophic-cyclostriphically balanced wind speed Lfﬁc as

__R_g_c (U'c-ap* I

o or

or replacing —S%; with geostrophic wind Vg, as

-Roi?l-(ugc—vg)zo. (2.7)

(3) Replace U? by Uge U (Oseen's approximation)

(4) Nonlinear term in (2.6) totally vanishes since
ag_;{_‘_ u;f a( g _.3_)=o it vger= const.

Then (2.5) and (2.6) become

o (A L ur) . (omvge - &
4 o
B:z ‘C d(“l;';u')_u -0 (2-9)

where R-’;%—-R =

$ , and overbars are dropped from the mean velocity

components.

Now that -ﬁ%: no longer appears in the equation, we can regard Y as
constant and identify it with L, so that r= 1. Also uqc is identified with
G, so that Ug¢ = [ . Then RS s R, (2.10)

IIl. Modification of Ellison's Theory

In his theoretical study on turbulent Ekman layer, Ellison (1956) assumed
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— »g O
—-UWw' = Ku 2 22
Vv

~u'w = Ku*® 33 + (K=V0,41 :von Karman's const.)

When this is applied to our basic equations (2.8) and (2.9) they become

d du

_d_e—(z?;) +Q(I+R‘,’)(u-u‘7c):0 (3.1)

o d

o (2 3%) -au-o0 | : (3.2)
where a = WIR——‘,when g:(—%—)hz,andas—k when E:—%—Z,
The solution is easily obtained as

s . QO "
J% + L(U-USC);.A Ho '((L’La Z)‘-) (3.3)

where a‘ = CLJH-R; (3.4). (3.3) is the Ellison's solution when R, =0.

st (r-vg) = AR ((hiaz)h). (3.3")
To apply the same boundary conditions as Ellison does, our solution

(3.3) should be written in the '"stress-wire" coordinate(&', r)which turns
® by « , the turning angle of Ekman spiral, so that

L == U sineX+ U7 cos ok (3.4)
v = acno( + U’smo( (3.5)
(&m Z _.0)
2e0 «
)
o
8 (v)
center
Fig.2
Then, applying Ellison's boundary condition, which is
e *
7
o ° for small z, (3.6)
r=o0

we obtain the solution modified by
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p G-_.'Jﬂc = P(Q)(J’- J’%] E48/s .,

L-ge = (&-ug)r.—‘m’; ~Qn)( - \7-3) Eis., (3.7)

Result

ns 1+R,, CEX%(%})-*— 2L(m2-%)

Na.232

The modified curves of (J’j-l}) :Lr and (& - J’ﬂ) /u.“‘ for R, = 1.0
(Fig.3).

is superposed on Kreider's figures.
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It is shown that the modified curves are in qualitative consistency with depen-

dence of the profile obtained by the laboratory data on Rj (R in his paper).

oa

In addition (3.7) explains the experimental fact that o< increases with
Ro- In Ellison's theory, in which Ry= 0, ¢ would rather decrease with the
K v*

Hf2o’
increase of Rgy,.

increase of which is, in Kreider's data, somewhat associated with the

Note 1: It should be ascertained, of course, that C increases less rapidly with
Ro compared to v?i' , for (3.7) to explain the increase of o< , but Kreider's

data is too sparse to investigate this point.

Note 2: In Kreider's Fig.18 and 19, Ellison's theoretical curves do not seem
to coincide with his data of neitherijj-a.nor VS -V even at the limit of

Roa — 0.

Although U and V itself in the experimental data should coincide with
Ellison's curve since W , Zo , and o are determined so that the profile of
U should match the logarithmic law at the points closest tc the surface ((29)
and (30) in Kreider's), there is no necessity that ug as measured by Kreider
should coincide with Ellison's solution for k%; , which is

wt f "“*+o.232).

¢ = L F
Mg 20" gees

The discrepancy between them is approximately equal to u*

It is one of the demerits in Ellison's theory that the value of geo-
strophic wind speed is given only by the surface values, regardless of the pres-

sure gradient in the mean field.

IV Application of Malkus theory to the Ekman Layer.

iV-1. Vertical profile of mean velocity in one-dimensional channel flow.
Malkus (1978) derived the vertical profile of the one-dimensional neutrally
stratified steady channel flow velocity with quite a unique method, based on

the following two assumptions.

qp:lﬂ
(i) The vertical profile of the mean "
©
velocity should have no inflexion point, o) )
so that =
PRI gy
d*v or > 0)-
d?‘< o ( (4.1)
or 0L < 2T
{"' ? ?lo_:k—f ———————————— b
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This condition can be expressed in a Fejer's series as

j;{ o I°T, 1(¢>=§§ T g™

(ii) "Spectral Smoothness'' - Spectrhm Ik is supposed to be smoothed in the

sense that (AI) = IM -1,=0 I"/uu for some KV , for which
K il K
T & 2 kv O. (4.2)

-l
These assumptions lead to the result that, for @ >? ky oy

_ﬁ:q 2 LT .E:_'_z._ cosec” i; (4.3)
de* T* o
where i Y
Ur E(-LP a—x')%=con5t (4.4)
Hence Umax -V | L) t
T o L {cauc (—i‘)} (4.5)

This velocity profile approaches the logarithmic law in the lower layer but
becomes & parabatic profile near the center of the channel. The point in this
theory is that the vertical profile of the mean velocity of the neutrally
stratified shear flow is determined uniquely without any assumption of ''eddy

viscosity'.

If we suppose, as Ellison did, that the wind profile in (4.9) should
match the well~known logarithmic profile in the '"matched' or ''overlapping'' re-

gion, which is

y) :i:—-ﬁn -—22;- (k =~ 0.4 :von Karman's const.)
- 3 ° .
]
or, in nondimensionalized form, U< Tk Am @ & const. (4.6)

then, equating the coefficients of £m gof (4.9) for Q<< | with J-" we get

Io = Tk (4.7)
which yields 3
J‘ Uma* = yk’ an (S\.n ‘q-;:) (14.8)

The profile of momentum flux is obtained from (4.3) and the basic equation for

the steady channel flow, which is written in the dimensional form as

-1 d’v o ww')
Rt i

Defining Ur as (4.4) and nondimensionalizing the variables as
U=UrU, Ww'= Ur ww', Z= % )

(4.9) becomes

* + a?‘? (—(A-'W')=-O, (4.10)

i
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© _ UrD
where Re = 3%%; is the stress Reynolds number (= Eg-in Malkus, (1978)).
Likewise, (4.3) and (4.4) are nondimensionalized as
dU . 9 » @ b1t
W 3 - ::I-IT Cosec T ( )
and I-s L
-y z == )
v max s In (SM 2) (’+.12)
Thus, from (4.10), (4.11) and (4.7) the divergence of momentum flux is
d B
Fig. &
quv‘(«}?\“ﬁ
vegion
Sl ki
Suvlace
layer
This relation is illustrated in Fig. (4}, The dotted line that branches off
i d

the curve for-—ﬁz > denotes what should be expected in the furface layer
(o<:? <¢;—l)in which (4.8) is not applicable. The actual boundary conditions

for Reynolds stress should be

'Cn"'Cu_'=—d—°L- (~uw')z 0 at @20, 270

y
and hence 17 a1 A
dod L -,S--—--'w'd a0 414
é(Re dg> '/T>dq> > J‘P(u i { )

Since ) , the thickness of the surface layer is expected to be much smaller
than 71 , (4.14) is approximated by

i
S (—l—d—g;f—.l:-)dQ=o)
)

which yields




e

£ x— agnd (’Jtu ) = (k R’eﬁ').

< R'e d?{mu
Note that & corresponds to the measure of I<;‘ in (4.2)

IV-2 Application to the Ekman flow.
In a first approximate application of these ideas we assume that
(1) The profile of the divergence of momentum flux obtained by Malkus theory
(4.13) is applied to both 3
-a—%— (-— H_v—\'/l) and —ci_dz‘*(‘d )
(ii) The direction of the stress does not change with Z , regardless of the

turn of main flow, so that in the stresswise coordinates

(1) means that the two assumptions in Malkus' theory, (4.1) and (4.2), are
valid for each component of mean velocity, U or V. Modification of I, spec-
trum due to the Coriolis forces is, of course, expected, but will be left for
future study.

(ii) comes from somewhat physical consideration, that the momentum lux is
caused by an intermittent violent penetrative convection which shoots up too

quickly to feel the rotation of earth. Then our basic equations (2.8) and (2.9)

become
gzu; + \(‘l* R;}(U’-Ugc) b E‘Re _,a_(:_;,;_l_):—é Reg._é)l;—_s.'n ) (4.15)
Y w = ~E’Rg —?1\-;0—1—;"—&) =‘£LR¢{'(2~) oS ~ (4.16)
dz*?
1 i )
where ‘F(E) = | b(m—z T;ﬂ—;b—;_ —"—_;-) ‘p\%
b S '——%LT; AU
Dg)’
ra B - SR
ReZ 201 \){ T UT - Ugc
e i
\Q\Strcu

As we did for the solution of the Modified Ellison's equation, turn the coordi-

nates by o< to the stress wise direction.

W 2 ~W 5in o + P eos =
(u: L cos x 4 F5in o
When R; # O it turns out to be quite complicated, but when R, =0 , (4.13)

and (4.14) are transformed to
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IH (T Tge) = ~E"Ref (&) k. 17)
am&’f (U "ujc): o (l‘.lg)
oz 3

-~ e
Uge = Vge sinel, Wac
a #

Ve cosok s
u

Using a complex function w (2)= (L - ‘j‘ﬁ‘)"' '“'U’—U'{jC) and (4.18) are united
into o N
W LW ‘."f Re‘F(Q)Eﬁ(2]~ (14-‘9)
The solution is formally given as
w():4(2)er s B@e " ® . )
X - I=¢ /
where = : 2 (L ({ (4.20)
Alz)s -iglee dz, {
\
- | B ey Az
E{_z)-.-?;\-/&J\!e d2~ /)

Since g(Z) contains cosec2 bZ, this solution cannot be expressed in tabulated
functions. Thus we try to get its approximating solution by an iterative
method.

Defining yz bz, (4.17) and (4.18) become

B it 5 Uﬁj"jc—(}"):—-a cwec‘?-y.c (4.21)
(b’&a', ((}"jc - =0 (. 22)

where

= £ Relb ?R‘T‘g y and Cia-‘-Re%{‘
Expand C;(g) as G%(g) + 80 (g) , where 0, (j) is defined as
4 o % | K o d
(U3e-0 )= Uge (1= 57,
Then from (4.21)

GC [
b*al = -Q.COscc"'cJ*C+ ‘—y?'“('j‘—})
~ -. UV ’ N2
b (g = @ cosecy + Cyy~7)+ 35(y- %)

2 T ~
b, = @ fn(omys £0g- 0% 4 (y-F)s Bilge.

Thus ([, = Uhge + 2, L (sim y)+ TP (4, (4.23)

% \3
where Plyl= ‘_3’371&(5-_’{\ {‘j'-— U'qc)}

Instead of going to further iteration, it would be more helpful to try to
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obtain a consistent set of rough profiles for {z and U satisfying (4.17) and

(4.18) by illustrating the curves of WU , U, " and U"“ with the aid of Uo
in (4.23).
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Rough illustration of curves satisfying (4.17) and (4.18)

It is shown in this rough illustration that {{ profile overshoots ug, , as in

Ellison's curve and in Kreider's experimental curve, and that the profiles for

both (i and U* have one inflexion point, in contrast to the oscillating beha- i
vior of Ellison's solution.

s
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STEADY BUOYANT PLUMES IN A FLUID OF LARGE PRANDTL
NUMBER AND TEMPERATURE DEPENDENT V!SCOSITY

Dean S. Oliver

1. Introduction

Quite often in fluid dynamics the assumption of large Prandtl number,
o = %%_ , will simplify a problem. This is certainly the case in B&nard con-
vection where it allows the inertial terms in the momentum equation to be ne-
glected. Large Prandt! number fluids also seem to be more stable to transi-
tions to time-dependent motions. Yet by changing the problem only slightly to

consideration of laminar convection from either a line source or a point source

the infinite Prandtl number assumption actually makes the solutioﬁ more diffi-
cult. Closed solutions are well~-known for laminar plumes in fluids of Prandtl i
number equal to |1 or 2 (Fujii, 1963), but in the limit of large constant Prandtl

number the equations have only been solved numerically and even then the solu-

tion is much different from the o = 0 (1) solutions.

Still, it is the large Prandtl number case that we expect to be appli-
cable in the earth's mantle and further we believe that the viscosity of the
mantle material is strongly temperature dependent. So whether the interest is
in fast viscous convection applied to the earth (Roberts, 1977) or in the forma-

tion of island chains from discrete plumes in the mantle (Skilbeck, Whiteheat,
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1978) the problem of buoyant plumes in a fluid of large Prandt] number and tem-

perature dependent viscosity should be important.

2. The Plume Equations

In order to study the plume formed above a line source of heat in an in-
finite fluid we use the coordinates shown below. W is the vertical or 2Z-com-
ponent of velocity defined by the direction of the gravitational acceleration

and W is the horizontal velocity component.

In general, the viscosity of the 1 ¥
fluid will be allowed to be a func- W
tion of the temperature. >
L
Fig. |

The equations for the velocity and temperature fields in this problem are;

ow du _ o'W 0y 06 dw
by W s GRS B BX O

J8 () i
e s hy e g AP

X

du , duw .
x o

(V)

20

At jwedx :Fo
20

where Eq.(2.4) states that the vertical heat flux must be constant at all

heights in the plume. The fluid has been assumed to be Boussinesq (except for
the variation in viscosity) and the boundary layer approximation has been made
whereby pressure forces and vertical derivatives are negligably small compared

to horizontal gradients. The conditions justifying the boundary layer approxi-
mation are examined later for each case individually.

It is possible to obtain similarity solutions for the temperature and
the velocity when the viscosity is proportional to a power of the temperature

perturbation. A plume in a fluid of constant viscosity is considered first be-

cause it can be compared to results obtained by others (Spalding, Cruddace, 1961).

The case of viscosity inversely proportional to the temperature is then examined
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because a solution has been found in the large Prandtl number limit.

3. The Constant Viscosity Plume

-9+

If we introduce a stream function, ~f, such that i« :-aj? and W= 77
then Eq.(2.1), (2.2) and (2.4) become

I % Y . ..o, 9%
SN e Jx 3;32"’}9 Ldlee 7 (3.1)
-——Dvr _'.)_9. -— ._a—:t. _(.)__Q. = L’ éﬂ.é_ (3'2)
J 2 axw ix 0Z N ox
2% 4. .
SQ e dr s =R, ., (3.3)

It is quite easy to nondimensionalize these equations such that the

inertia terms are unimportént and the boundary layer approximation is satis-

. : ; L Rmaa
fied. To do this we introduce a Grashof number, & - -—Ti(;{;——,

nondimensional similarity functions, ~b~ and ® , such that

+ix,2) = KGR (8)
o F -/,’QH )
-—J—fc. » (§)

where §= %? G is the similarity variable. Substitution of these functions

as well as

and e (x,z)

into (3.1), (3.2) and (3.3) leads to a set of equations which are identical
to the equations of Spalding (1961) except that the Prandtl number multiplies

different terms.

X T4 [d¥ i1, g &£F (3.4)
v Lér ( df ) +¥% £ ] SR
= % (3.5)
d S 49
T:l—f—. ’I\ 3. a4F>
J’ - o (3.6)
dy

It is now easy to see that the condition under which the boundary layer
approximation is justified is that the Grashof number be much greater than 1.
We can proceed further by integrating (3.5) and substituting the solution for
~I into (3.4).

2 ;
X in(a.g? n®) - (G ine )% n #)]: @'-—,—i%,,ln@ (3.7)

Closed solutions to this equation have been found for the special cases
when the Prandt] number, 0 , is equal to 5/9 and for o = 2 (Yig, 1953).
Numerical solutions for o = 0.01, 0.7, and 10 have been obtained by Fujii

(1962) and the infinite Prandtl number limit was considered by Spalding and

b
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Cruddace (1961). It is the large Prandt] number case which we wish to examine f

here.
We define new variables : Yy
P =-1n®@ () and Z=(—3—(§(—o)) " -
Then Eq.(3.7) becomes e )
L5 g9 s " B

; It is straightforward to show that if P is expanded in a power series of an

unknown small parameter & such that @ = & CP: + g' ‘Pnr ... , the solution

satisfying the boundary conditions is = ~1
-&lli~‘_(,.5_a_‘)+o ¢
where £ has now been absorbed into the constant c . However, near the ori- -

gin where X << | we can presumably neglect the O LQ“) term also. To lowest or- 1
der the constant G is then determined to be « =.ﬁ%;_. If the Prandt! number Ai
is large, this approximate solution is quite good and the temperature drops to
nearly zero a short distance from the plume axis. The lowest order approxima-
tion is

®z0. ep (~ 1 < Q') 1

3@, exp (—- .\&:?_ﬂ_gl) "

This must satisfy the integral condition (3.6). 1f the Prandtl number
is very large than the approximate solution can be used when evaiuating the
integral and the result is

ll
L 2% 2
] Ly (maﬁ‘r)

Putting all the dimensional dependence back into the solution
C = Vs
: g Ls 2 Foocq* 81 \]
x3)={ 1t P 2 L_ .. (_g___ﬂmm_”
N 2 Kmgioomir) FPLTT Uorxy vy 4

which is completely independent of viscosity.

Spalding and Cruddace (1961) arrived at essentially the same approxi-
mate solution for the temperature, but they proceeded further and determined
the velocity profile for the infinite Prandt]l number limit. They also con-
cluded that the results were independent of whether or not the viscosity de-

pends on temperature.

L. The Effect of Temperature Dependent Viscosity

The laminar plume for a fluid of large Prandtl number and constant
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Fig.2. Nondimensional velocity distribution about
a line source from Cruddace (1961).

viscosity is characterized by two very different length scales. A thermal bound-
ary layer whose nondimensional width is of the order of the inverse Prandtl num<
ber forces motions in a plume of unit nondimensional width. Spalding and Crad~
duce incorrectly reasoned that since the thermal plume is very thin the same re- | ]
sults hold even when the viscosity depends strongly on temperature. By choosing
a specific temperature dependence for which similarity solutions can be found,

the general effect of variable viscosity can be determined. |If we specify a tem-
-N
perature dependence of the form V =’V°(€}) then the momentum, heat and continuity
(-]

equations are

5 VoW NV, Y "2e
ugy* 3a—=°‘99’v ‘s o "'—'(e,,) S5 o (4.1)
06 ’ |
w 0x ot 3 J\ ax,, (4.2)
Qu , Ow _ 4, |
o - |
ewdx = I3 (4.4) |

-0

Anticipating that for large N the last term in (4.1) may be larger than
the other viscous term, we choose a nondimensionalization which puts a factor of
1/N in front of the viscous dissipation and the inertial terms but makes no ap-

proximation in the equations. These scalings give the following substitutions

6-0,4 " @(f)

where the similarity variable, ':;—-<{;
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The stream function, " , is introduced into Egs.(4.1), (4.2) and (4.4) to elim-
inate the continuity equation, then substitution of the similarity variable, -
reduces the partial differential equations to ordinary differential equations

which, when nondimensionalized, became the following:

EY \Am o valu(eby_s g £F] 0 4 [oedF
"\djkxe}'s//: (No—)r [:‘(dg) J"}‘ d;z] ik -T'd'?[:® 45"} (4.5)
d A . SN d'®
s (O"l"}_ 5 o (4.6)
( .:\i’_}:lL :—l
P aE 13 (4.7)

It might appear hopeless to expect to find a simple solution to this sys-

tem of equations but a solution has been found for the case where the Prandtl

number, 4 = %%— , is large enough that the inertial terms can be neglected. In
the case of N = |1 the equations simplify to

J’.L__O_‘.;'i‘) (4.8

"D"d—;(@ dg* i

P =25 (4.9)

The solution of these equations corresponding to the appropriate boundary

conditions is
=
@ =2/ 7 2 sechu §

and %:—L{a_fanha.g.

Finally, the integral condition (4.7) must be satisfied in order to deter-

mine the constant a.

)(G%%'d §:-8/3.'a.“ﬂechqa. Edf=-1

0 as(zEE)”

When the temperature, velocity, and viscosity profiles are plotted together

on one graph as in Fig.3 it is easy to see why the flow region is only as wide as
the thermal layer. The central core of the plume has a relatively constant vis-
cosity which increases rapidly outside the hot thermal region. Naturally, this

is the region where the motion must be concentrated.

Some interesting observations about the shape of the plume can be made when

the solutions are written in dimensional form.

—
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Fig.3 The nondimensional plume quantities for a fluid
with viscosity inversely proportional to temperature.

g 3 Y% Footg Y
e(x.,=)=2ﬁ“z(€a”oo) :‘-Tmh‘[‘*(v,we. 7]

> ‘/3 FO‘O( yﬁ
Wi\, 2) = 4al (f'—o'(—g‘ sech” [G— ("‘"—ﬂ‘) ‘L"']

eo'\/a \"/oj() 90 g
)
FlaaX?\ ' a
| u{z,!‘)«_—?_(—-‘—-’——e.v‘, ) = tanh[ }
T
! F,lﬂs '1; 2
‘f +-La_1(._6_°_v€_> —2& s:;h [ ]

First, notice that the scale width for both gomponents of velocity and
the temperature are the same. The envelope cf the plume increases in width as
2 Fxg
VoK’ 6,
very slowly as the height increases (and the boundary layer approximation is

the square root of the height but if > > 1 the plume is widening

justified). While the width of the vertical velocity profile is inversely pro-
portional toJJK , the peak amplitude is independent of thermal diffusivity

-
The peak value of the temperature increases as K =

so if the diffusivity is
smaller holding all other parameters constant the width of the plume will shrink

and the peak temperature at any height will increase.

5. The Axisymmetric Similarity Equations

If we consider a point source of heat instead of a line source the equa-
tions are simpler when written in cylindrical polar coordinates. The steady,

asymmetric Boussinesq equations in the boundary layer approximation are

IV A -
w%—i—-ﬁ-u%—g:%%(r%%) (5.2)
%(rw)# -r.i—(ru) =0 (5-3)
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Naturally, we define a stream function, - & , such that u---,'.— %L:and
-&-—a—t . Then if we consider a viscosity V=V, (g; )"N and a vertical heat
flux F. jPO dr, the variables can be nondimensionalized and reduced to

functlons of only one variable in the following way:

6= 34 ® (%)

~+=keF(¢)

g 0&43_"0 Fe )'v/‘i
KAV, Lake,

where

Fs

In the limit( ) = —> oo the axisymmetric equations can be reduced to
(-4

the nondimensional similarity equations given here.

[g@ (T —j-g-”-)]+g® =0 (5.4)
¢¥+ g .siﬁ 2 0. (5.5)

6. The Experiment

We decided to try a very quick experiment to produce a plume in a fluid
whose temperature changed markedly with temperature. A sugar water solution
was chosen because of the availability of sugar. Approximately 20 1bs. of sugar
was mixed with enough water to make three gallons of solution. The specific
gravity of the solution was 1.259 at 24.2°C. A rough approximation for the tem-

perature dependence of viscosity for this solution near 25°C was

iz 20~ . 8{T=25) centistokes

where T is the temperature.

The heater, made by winding nichrome wire around a block, was 10 cm long
and 0.5 cm wide and had a resistance of 37 ohms. It was placed near the bottom
of a plexiglass tank and the output was adjusted to nearly 70 watts which corres-

ponds to Fu = 1.2 cm? OC sec™!.

Figures 4 and 5 are shadowgraph pictures of the plume 15 and 30 seconds
after the heater was turned on.. The dark core of the plume is fluid which is
less dense and therefore has a lower index of refraction. Figure 6 represents
an attempt to determine the velocity distribution across the plume 15 seconds

after heating began. Only qualitative conclusions can be drawn from the experi-

ment. Obviously, it is possible to get narrow, almost vertical plumes in a
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Fig.4 Shadowgraph view of the temperature Fig.5 Fully developed plume at 30 seconds
profile in a developing plume 15 seconds after beginning heating.

after heating began.

Fig.6 Hypodermic needle drawn through the
plume releasing ink to determine the veloc-

ity profile.
heater.

15 seconds after turning on

|
|
?
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fluid with even a slightly temperature dependent viscosity as long as the
suitably defined Grashof number is large enough. The velocity distribution
shown by the ink line in Fig.6 might be far from the actual steady state dis-

tribution because at 15 seconds the plume had still not reached the surface.

7. Conclusions and Remarks

The real hope in studying this problem was that some progress could be
made in understanding the structure of plumes which might occur in the mantle.
The ages of island chains, the regularity of spacing, the direction of propa-
gation and the chemical composition all suggest that the source of the material
is fixed fairly deep in the mantle. If the plume is to have a localized sur-
face expression then there must be some mechanism which keeps the plume from
diffusing greatly as it rises. One explanation is that the upwelling material
is chemically different from the surrounding material, in which case we expect
the types of plumes studied by Whitehead and Luther (1975) to be applicable.
Another possibility however is that the plume materials are chemically identi-
cal but that the viscosity of the plume is lcwer because of the higher tempera-
ture in that region. The real case is probably a combination of these two pos-

sibilities, each approximately valid for different depths.

I might suggest that there are many problems associated with these plumes
that remain to be solved. The instability caused by a shear layer above the
source directly applies to the geophysical problem of hot spots. And even
though the difference may not be great it can be argued that the temperature
dependence chosen in this study is not realistic for geophysical fluids. Finally,
| suggest that this could be a first step towards determining the asymptotic heat

flow behavior at large Rayleigh number in a fluid of variable viscosity.
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