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In this paper we construct an interpolation map from C (

)
into L (Rk) (polynomials of total degree < n) whose existence

and uniqueness was proved by P. Kergin.
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SIGNIF ICANCE AND EXPLANATION

Polynamial interpolation to a.univui.ate function is a thoroughly studied
subject and when properly executed provides a nuiner:l.cally efficient means of
approximation.

“"\9 Very little seems to be known about polynomial interpolation of multi-

variate functions. However, Kergin recently established the existence and

uniqueness of a natural extension of univariate interpolation to a multivariate

setting. In this paper we provide a formula for Kergin interpolation. This

VRIS )

formula is based on the Newton form for univariate polynomial interpolation.

g The error in approximating by Kergin interpolation is also obtained in a
g convenient form which allows us to assess the quality of this scheme. In
i

L %: particular, we establish that Kergin interpolation converges for analytic
’i functions of several variables. é_
:: There seems to be a close connection between Kergin interpolation and the
multidimensional B-spline introduced by de Boor. In univariate approximation
" B-splines play a central role in both the theory and numerical application of
:

spline functions. An extremely useful numerically stable recurrence formula

for univariate B-splines is known and widely used. We provide here a similar

formula for multivariate B-splines.

R O R G O SR BT

Foge - k-
The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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A CONSTRUCTIVE APPROACH TO KERGIN INTERPOLATION IN Rk

Charles A. Micchelli

In his recent doctoral thesis P. Kergin [3] introduced a novel method of interpolating
smooth functions of several variables. In this note, we give an explicit representation

for Kergin's interpolation scheme.

We let T () denote the space of polynomials of total degree <n and c ™ (&¥)
be all functions with n continuous derivatives on Rk.

Kergin proves the following
Theorem. Given any xo,.. .,xn € Rk , not necessarily distinct, there is a unique linear

‘
map P : c(n) - " with the property that for every f ¢ C‘n', every homogeneous differ-

ential operator q of order £, O < £ <n, and every subset J c {0,1,...,n} with card

J = 2+1 there exists a point x in the convex hull {lej € J} such that qPf(x) = qf (x).

Pf necessarily interpolates f at xo,...,xn as may be seen by choosing g¢= 0.
If a point is repeated with some multiplicity then all the derivatives of Pf agree with
f at that point with the same multiplicity. 1In particular, when all the points coincide

xi = xo then Pf is the Taylor polynomial of f at xo '

PEOO) = £) 4D £ + .+ D 0" 060
nl 0
X=X X=X
In this formula, D Of is the directional derivative of f in the direction x-xo.

For the general form of Kergin's map we use the notation

0 1 n
o 2 = [fvgx +vx o+ v, X av,...av

X secesx) sn
where

- n

S = (v = (vo,...,vn)|vj 10, (X,Vj =1} .
We will show that Kergin's map is given by
1) PE(x) = £(x0) + J o 4. { D geeeD o ,f

0 _1 x-x 0.1 n, x-x X=X
[x ,x7) (2,8 seees’ )

This formula implies that Kergin's map for the points xo,... ,xn is obtained by adding

n-=1

to the map corresponding to the points xo,...,x the expression

/ D geeeD _af.

(’0’ A "n] X=X X=X

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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‘ This property is reminiscent of Newton divided difference expansion for polynomial
interpolation in one variable. As we will see this similarity is not accidental as the
proof of (1) is based on Newton form for polynomial interpolation.

Along with formula (1) we also have available a convenient expressicn for the error

in approximating by Kergin's map, namely,

() PE(x) - £(x) = / B e B

| [x,xo, o ,xnl He® e

This use ful formula makes it possible to obtain error estimates for approximating by
Xergin's map. For instance, since the volume of s is 1/n! we have

I pE-£l < Gormiag in*aP_ /P

L™ (K) |u?-n+1 L (K)

where ‘1—,+%- 1, K=convexmull '] 0 <3 <n) and 4 (K) = diameter of Kk in %
Thus if F is a bounded linear functional on L™ (K) which annihilates LS (Rk) then :
n+l
| @a(x))
; lee| <uet e L LA
; L (K) |af=n+l  L7(K)

- a quick ("constructive") proof of the Bramble-Hilbert Lemma.

In one dimension it is known that polynomial interpolation to a function which is

analytic in a sufficiently large region containing the interpolation points converges : {
geometrically fast (as the number of points increase) to the function. Formula (2)
provides us with a means to extend this result to higher dimensions. We will show that if
Q= {x= (xl,...,xk)llle <1} (the unit cube in RX) and £ is a function on C"(Q)

which has an analytic extension to the polydisk D(p) = {z = (zl,...,zn)Hzil < 2p+1}

T P

p>1, then for Kc Q

g

papes

: k-1
E (3) heg - £1 . <3 k) LEL P
f L (Q) p" P
(it seems to matter here that Q is a cube rather than a parallelepiped).

Clearly, formula (1) shows that P is a continuous map on c(n) (K). FKergin proved

that wvhen k <n and the points xo,...,x" are in general position, i.e. every subset
of k+1 points of {xo,...,xn) form a simplex of dimension k then P is a continuous
map on ck-l (nk). This fact is not obvious from (1). However, we will show by elementary

means that when xo,... ,:n are in general position and q is any differential operator

2=
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of order <n , the linear functional

@ re - / at, tec®
0 n
[x ,...,x)
has an extension as a bounded linear functional on C(k.n (Rk). In the case k=1 such an

extension is given by the Hermite-Genocchi formula for the divided difference of a func-

tion,

(s) [ o RIS T I R

[xo, e ,xn] 3

see Norlund [4, p- 16] (subscripts will be used for scalars, real or complex). Our remarks

concerning this aspect of Kergin's map leads us directly to some simple properties of multi-
dimensional B-splines introduced by Carl de Boor in [2]). Needless to say, there are many
intriguing questians still to be settled concerning these B-splines.

Returning to formula (1), our first task is to provide its proof. As we said earlier

the Newton form for the polynomial of degree n which interpolates f at xo,...,xn

(1) pfx) = f(xo) + (x-xo) lxo,xllt + 0. # (x-xo)...(x-xn_l)[xo,...,xnlf
is the basis for the proof of (1). It is also well-known that the remainder formula for

polynomial interpolation is given by

(2*) pf(x) - £(x) = (x.xo....,xnlt .

To verify that Pf satisfies the property of Kergin's theorem we first observe that for the

function f£(x) -e’“'x) =g(A+x), into (1) gives Pf(x) = pxg(l-x) where ail the polynomial of
0 n 10 11.
degree < n which interpolates g at A°x ,...,A°x . Now, let J= {x ",...,x ") bea

subset of {xo,....x"} and q a homogeneous differential operator, of order L then

; [‘H‘ = 1% un " / g A

[x o,...,x "] (Aex o....,A-x "l
; i

i "q(u)u-x1°....,xox %9

i i
1" %unnex %,..., A

[ )
lpxc
- f qPf .
i i
[x o,...,x "J

Since (o“.xlaenk} spans a dense subset of ¢’ (R*) we have shown tnat




/ q(f-pf) = 0 , £ ec(R)

; i
[x o,... X "]
and thus P is the Kergin map.
The proof of (2) follows from (2') in a similar way.

For the proof of (3) we require Cauchy integral formula in Ck, see Bockner and Martin

1, p. 331,
b (x) = al i f(z)ag
k +1 +1
(2wi) o e (xl-cl)“.l. ...(xk-(k)ok
x = (xl....,xk), g = (cl,...,l;k), al = all akl -
P alal
p* = - |a| = ¥ oeeo *
uul . a " 4 %
1 vee 0%y
ana e, is the contour {z| |2] = 2p'+1} where 1 < p' < p. Thus we have
(] 3,k al
|Df(x)|i(2) mlﬂb(p), x€Q,
and since
Ip see D fll
x—xo x-x" L7(Q)
n
< lxdx'_l iy 10%m e
=0 L |a[=+1 L (Q)

()%™ 5

Ia

- |u|-n+1 D(p)’
(3) follows from the observation that
: k-1
< I lalt = me1)1 J 1 < (ne1)y dB2K)
|a|=n+1 |a|=n+1 |a=n+1 &, (k-1)1

s n+l

and that the vol = 1/(n+l)}

In one dimension, polynomial interpolation at any (triangular) sequence of points is
bound to diverge for some continuous function while for interpolation at the zeros of the
Chebyshev polynomial convergence holds for lip 1 functions. It would be interesting to
extend these results in Rk for Rergin interpolation.

We now turn to the matter of extending the linear functional defined in (4).

We begin by observing that
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Lf = / Dt . feC (K

[xo, L
has an extension as a bounded linear functional on C(K) if and only if y is in the

vector space generated by xl-xo,... ,xn-xo. The necessity of this condition is a conse-

quence of the following: Suppose A € Rk and ) 1 xj

1wt fix).= a0 B, g(8x+x) then |Lg| = [8]|y<r| while W€l _ =1. Ths X1y
1 0 0 L (K)
and we conclude that y is in the span of X - x ,...,x -=x . If on the other hand,

-xo, j=1,...,n. Given any 6 € R,

n 3 o
Y'Zl(x-x)thenfot §=1
s=1 3

LE = 1-k+1

y-xtx-xo, e A-xn]g

n
= i-k+1 Z a A'(xj-xoik-xop-ux'xn]g
=

n
. gy aj{uox°,...,x-x"‘,x-xj*’l,...,x-x"]g I A TN T
i=1
and we get
n
(6) / Dyf-Zaj( oz - ' S
lxo....,xn! L (xo,...,xj-l,xjﬂ,...,xn] [xl,...,x“)

& (Rk) this formula provides the

extension of L to C(K). In particular, if for n > k {xl-xo,...,xn-xo} spans R*

Again, since {eil-x“ ¢ &%} spans a dense subset of C

then L is a bounded linear functional on C(K) for all vy .

If the points xo,...,xn are in general position then the above observation extends
L
by induction to show that for any yl,...,y" € Rk £<n, n>k and qz(x) =1 yi *x
i=1
the linear functional

[a,f
L
[xo, ces ,xn]
has a bounded extension on Co‘-l) (Rk). Since any differential operator of order <n

is a sum of q, the linear functional given by '(5) has a bounded extension on ¢ 1) (&¥),

n
One may easily verify that, in general, if q= J 9y . 9 a homogeneous polynomial

i=0
of degree j , f qf has a bounded extension to C“')

0 n
£ JIPREN e |
AL zj-zo y J=1,...,n it follows that gq A\ = ... = (A) = 0. wWhether or not this
141 U

(K) then whenever

condition is also sufficient for the boundedness of J/ af  has not been settled.
(x0 pese ,xnl




Finally, we conclude with some remarks on the multidimensional B-splines introduced

in [2). It is not hard to see that if xl-xo,... ,xn-xo span Rk then there exists a d

function H(xlxo....,xn) such that

) IE: = Jeeomx|x®, ... Max .

[xo, AT ,xn]

Note that the expression on the left is an n-fold integral over the simplex & while

0 _1
the right hand expression is a k-fold (k < n) integral over the convex hull of x ,x ,...,xn.

0

Repeated application of (6) implies that if x ,xl,...,xn are in general position then

0 f p'f = f DY £ (x)M (x|x°,...,xn)dx ' |a] = n-k+1
n
x ,...,x] K

is a bound linear functional on C(X). Moreover, it is a sum of integrals of £ over
hyperplanes formed by subsets of k points of xo,...,xn. Thus M is a polynamial of
total degree < n-k in every region bounded by such hyperplanes and globally has n-k-1
continuous derivatives on K, facts already mentioned in ([2}.

A formula for M(x), which reveals its geametric interpretation, may be obtained by
*1ifting" the points xo,...,xn into R . We let io,...,in be any vectors in R such
that ijl x ™ x)  and that the simplex g determined by these points is of dimension n.

R

Then

vol{u € ofu| ., = x}
= n-k

n! vol o
n

Rk

(8) M(x xo,...,xn) =

(Por k=n, M(x|x’,...,x") = x—ln X,(x) /vol 0). Thus M is (vith a different normalization)
de Boor's multidimensional B-spline (2].

In spite of this formula's attractive geometric content it seems more convenient
to derive properties of M through the defining equation (7). In particular, according to

formula (6)

n
9) Dyn(-lxo,...,xn) = ] a (H(-]xo,....xj-l,xjﬂ',...,xn)-u('lxl,...,xn)}

=1 )

n
Y= X aj(xj-xo) .
3=

when k=1, this formula yields the equation

~6=




»

oy B!

s s

Mx|xg,.o0x ) - u(xlxl_....,xj'i
X =X
n 0

(10) M (x|xo,.. cox ) =

(see [2]) and with the initial condition

1, X <x<x

0 1

M(x|x_ ,x ) =
L x ¢ (%0, )

xl-xo 0,

all the (univariate) B-splines can be generated from (10), A similar remark applies for (9).

In the univariate case, an efficient and numerically stable means of generating B-splines

is available, [2]. The univariate B-spline over its interval of support is a nonnegative
combination of two lower order B-splines, specifically

xn-x I x-xo
— M(x|x ,...,x ) + — M(x A X )
x =% 1 n x =X, le' “n-1

1) (n-1) H(xlxo,...,xn) -

Using the identity

x -z zx,
(12) (x),.ce0x ) = = [z,ﬁ,...,xn_llﬁ [z,xo....,xndl

for divided differences it follows by the line of reasoning used to prove (9) that

a3) u(xlxo,xl,...,:n) =t H(xlxo,...,x""‘,g) + (x-t)n(xlxl,..., o

'2)

zetx’e (a-t)x" .
In the univariate case, it may be easily proved that
a4) mxlxo....,xn.x) - i n(xlxo,....xn) |
and thus (14) with (13) proves (11) by choosing x = t X, + (l-t)xn. In the multivariate
case it is highly plausible that a formula like (14) also holds and this should lead to a
multidimensional version of (11).

The following theorem provides the details for this intuition.

n 3 n
Theorem 2. If x = 2 xjx . i A,-l
3=0 3=0

thenfor n >kl
1

n
n(x’xo,...,xn) «-= ] 2 371 34
i=0

K(xlxo,....x 9oee .’a)

n-k b |
Proof. We divide the proof into several ancillary results. FPirst we require an observa-
tion about divided differences which generalizes formula (12).

i p
tet z= ] Ax, A =1
ju0 3 j=0 3

then




n
(15) (X reeerx JE= ] 2
0 n 3=0

j(z,xo,...,xj_l,xj+1

geoe ,xn]f A

Note that in (15) the order of the divided difference on each side of the equal sign
is the same.
Proof. The right hand side of (15) is a linear functional which agrees with the divided
difference appearing on the left hand side on polynomials of degree n . The support of the

linear functional on the right hand side is contained in {xo,...,xn,z). However, since the

coefficient of f(z) is

h 1
A
j=0 3 (z=x)... (z-xj_l) (z-xj‘_l) )
n
PR M B s % E
(Z'Xo) von (z-xn) JZO Xj (z xj) 0

the support is (xo,...,x“) and thus the identity is proved.
We have already demonstrated in the proof of (9) how identities for divided differences

may be extended to higher dimensions. This same approach applied to (15) yields the identity

n
e =l Je
[801 My ’xn] j=0 0 j-1 xj~|-1

B e ,...,x"]
or equivalently

n
H(xlxo,...,xn) = cyUX H(x|z,xo,... ,xj-l,xj+1,... )
=0 )
(16)
n
j
z = y A X .
j=0 I
The next identity we require is
(17) H(xlx,xo,...,xn-l) o el W) N

n-k

We base the proof of this formula on the following ceneral consideration.

let K be a convex set R® and Y € R™. We form the cone in R'M1 with base K x {0}
and vertex y x {1}, that is,

C = cohull(k x {0} uy x (11,
Then
(18) vol_..C= =2 vor K .
m+l o+l m

We prove this formula by first establishing it for a simplex. If K is the simplex
with vertices yo,...,y- then C is a simplex with vertices yo x {O},...,ym x {0},y x {1}.
The formula for the volume of the simplex K is

hias Al die




o

A B

et R
1
vol K= —
m m! -

and applying this formula to C gives

1 .
v°1m+1 s (m+1)! .
0 m
SR RERNS SR

which readily simplifies to (18).

Now, if Kl and K, are disjoint convex sets then their corresponding cones with the

2

same vertex intersect only at the vertex. Hence (18) extends to any countable union of dis-

joint simplices and in particular for any convex set K .

- - - n-1
To prove (17) we first lift the points xo,...,xn = into Rn § by means of xo,...,xn
and apply the relation (8),
v°1n—k-1{u € 0|u| 5 x}
M(x Ixo,...,xn-l) q _i“ T R
n vol _,

where ¢ is the simplex with vertices io,... ,ﬁn-l. The vector x is now also lifted to
L any fashion to x ¢ 221 404 then we form the cone with vertex  x {1} = X and

base o x {0} and denote it by 0. It is readily seen that the cone with base
{u € 0|uLk-x)x(0} and vertex x is {u ¢ ali“ = x} and thus two applications of formula

(18) gives us
vor . ,{uce alulak = x}

0 n-1
Mix|x ,...,x ).ET W
n
vol . {u e oju = x}

(n-k) i |n"
n! vol o
n

= (n-k)M (xlx,xo,...,xn-l) %

If we now put together formula (16) with (17) when xj =0, J=2,...,n and j ;

x-s-xoxoo xlxl we get




(19) LT P B W T P xlu(xlxo,xz,...,xn),
0 1
X = on + Alx -
With these facts at hand we may now complete the proof of Theorem 2.
n
Suppose we write x = ) ijj
3=0
in thc form
x-(l-x)z+xxn,
n n
n-1 3
z = jzo wx . Asdug =2y 3 =00, 01
Then for every integer £ , with 0 < £ < n-1 we have
(n-k)H(xlz,xo,...,xy'-l,x"u,...,xn)

-1 _2+1

= -\ M (xlxo,...,x P S W xnn(xlg,xo,,.,,xl'l,x“l a-1

vone ek Ve

But according to (16)
n-1

L=
) ulu(xlz,xo,...,x et -M(xlxo,...,xn)
2=0
and hence
n-1
- +
(n—k)H(xIxo,...,xn) = 2 XLH(xIxo,...,x!' l,xl 1,...,xn)
2=0
n-1
0 -1 2+l n-1
+ )‘n [ uzn(xlz.x goieiang X X Pitey s dEa) IS
=0

n-l)

Another application of (16) implies that the second sum above is M(x|x°,...,x and

thus the theorem is proved.

Besides the obwvious integral relation

1 -idex
2ni) X 1{ B
(2ni) R

Mix|x®,. ... x™ = AR e s codXon lgl), gle) = o° ,

L [t 6%=x e 1 O M -x) Jga
(2ni) Rk

A*X  .nd using the Fourier inversion

for M obtainable from (7) by setting f(x) = e’
formula there is also a connection between H(xho,....xn). the Randon transform and the
univariate B-spline.
Recall that the Radon transform is a map of functions f ¢ Ll (Rk) defined for
® euw _, (the unit sphere in R%) and t e¢R by
RoE(t) = [ foaw @) .

Bex=t

«10=-
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The Radon transform also has the characteristic property

I” ®gf)t)g(erat = [ £(x)g(e-x)ax, g €L (R).

g

& s r*
S Thus
g 0
RM( %, x")) () = Me]0 « x0,..., 6 +x")
:' * a striking relationship between univariate and multivariate B-splines.
b
3
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