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ii ABSTRACT

In this paper wa construct an interpolation nap from C ~~ (Rk )

Into w (Rk ) (polynomials of total degree < n )  whose existence

and uniqueness was proved by P. Kergln.
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SIGN]P ICANCE AND EXPLANATION

1~ Polynomial interpolati on to a univariate function is a thoroughl y studied

7 subject and whe n properly executed prov ide s a numerically efficient means of

approximation.

Very little seems to be laiowe about polynomial in terpolation of multi-

variate functions. However , Kergin re cently establishe d the existence and

uniqueness of a natural extension of univariate Interpolation to a inultiva riate

sett ing. In this paper we prov ide a form ula for Kergin interpolation . This

formula is based on the Newton form for univariate polynomial inte rpolation .

The error in approx imat ing by Ker gin interpolation is al so obt ained in a

convenient form which allows us to assess the qualit y of this scheme . In

part icular , we establish that Kergin interpolation converges for analytic

functions of several variables.

The re seems to be a close connection between Kerg in interpolati on and the

multidimensional B-spline Introduced by de Boor . In univariate approximation

B-splines play a central role In both the theory and numerical applicat ion of

spline fun ctions. An extremely useful numer ically stable recurre nce formula

for univ ariate B-splines is kn owe and wide ly used. We provide here a similar

f ormula for multivariate B-spllnes.

j .

F
The responsibility for the wording and view. e~~ reased in thi, de scriptiv e sumeary
lies with NRC , and not with the author of thi s repor t .
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• . A ~~NSTRU~ UVE APP~ )?CR TO 1~ PGIN D~~ERPOLATICt~ IN

Charles A. )Iicchelli

In his recent doctoral thesis P. rargin t31 introduced a novel method of interpolating

smooth functions of several variables. In this note , we give an explici t representati on

for Kergin ’ s interpolati on scheme.

N. let ir (Rk ) denote the space of polynomial. of total degree < n  and ~ ~~ (Rk )

be all functions with n continuous derivatives on Rk.

• Kergin prove s the following

Theorem. Given any x° .. . ,x~ E , not necessarily distinct , there is a unique linear

c -. with the prope rty that for every f c C every homogeneous differ-

ential operator q of orde r £ , 0 < £ < i t , and every subset .1 c (0 ,1, . . .  ,n )  with card

.7 — £+l there exists a point x in the convex hull (x~ Ii  c .7) such that qP f(x) qf (x) .

Pf necessarily interpolate s f at x° . . .  ,x’~ as may be seen by choosing L = 0.

If a point is repeated with some multip licity then all the derivatives of Pf agree with

- 

- 

f at that point with the same mult iplicity. In particular, when all the points coincide

x~ — x0 then Pt is the Taylor polynomial of f at x°

Pf(x) — f(x0 ) + D
x_xO f (x °) + •.. ~~ D~~~ 0f ( x 0) .

In this formula , D 0f is the directional derivative of f in the direct ion x-x°.

Per the general form of ra rgin ’. map we use the notation

0 ff — f f(v ~x° + v1x1 + ... + v i?)dv 1... dv
- (x , . . . ,x J

where

S~ — (v . (v0 , . . .  ,v )  > 0 , 
~ 

v~ — 1)

N. will show that X.rgin ‘a map is given by

(1) Pf (x) — f(s°) + f D 0f + .. .  + - J 0 ~~~~~ 1f.
0 1 x x  0 1 it x—x x—xLx ,x Ix ,x , . .  ., x I

“

~ Thi s formula i~~li.s that K.rgin ‘S map for the point. xe,. . .  ,x~ is o~~ained by adding

to the map corresponding to the point. xe,. .  . ~~~~ the expression

J D 0 . . . D fl_i f .
o a x-x s-s

X , . . .  ,X j

~ icmsor d by the United States Ar~~ under Contract No. DAA~~9-75-C-O024.
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This property is reminiscent of Newton divided difference expansion for polynomial

interpolation in one variabl e. Al we will se. thi . similarity is not accidental as the

proof of (1) is based on Newton form for polynomial interpolation.

Along wit h formula (1) we also have availabl e a convenient expres sion for the error

in approximatin g by Yargin ’s map , namely,

(2) Pf (x) — f (s) — f 0 o ~~ nt
0 n x—x s—s(x ,x ,. . . ,z I

This use ful formula ashes it possible to o~~ain error estimates for approximating by

Kergin ’ S map. For instance, since the volume of is 1/ni we have

II pt—ft c —~!~~(d (x))~’~~( )~ fl1~it f)1P ) l/P

L (X) 
— (n+l)i q loI.n+l L (X)

where + — 1 x — convex hull {5i I 0 
~~ i ~~• 

i t)  and dq (X) — diameter of K in

Thus if F is a bounded linear functional on L~ (K) which annihilates w~ (R
k) then

(d (K) )n+l

I~f I < HF9 
q 

~ Y ND 0fl~ )l~”1~
— 

L (K) ~~~~~~ I~~1..n+l L” (K)

- a quick (“constructive”) proof of the ma ~ible-Hilbert Lemma.

In one dimension it is knoen that polynomial interpolation to a function which is

analytic in a sufficiently large region containing t)m interpolation points converge s

geosetrically fast (as the number of points increase ) to the function . Formula (2)

provides us wit h a means to extend thi s result to higher dimensions. N. will show that if

Q — {x — (z
l, . . . , xk ) l i x j l <1) (the unit cube in R

k) and f is a function on

which has an analytic extension to the polydisk 0(p) — {z — . , z~~ ~~ 
< 2p+l }

p > 1, then for x c Q

k-l
(3) flpf — 

— 
< ~ 

(n t-k) 1
~~~D(L (Q) pit P

— (it seems to matter here that Q is a cube rather than a parallelepiped).

Clearly , formula (1) shows that p is a continuous map on c (X) . Fa rgin prove d

that when k c n and the points ~0, ~~~ are in general position , i.e. every subset

of k+1 points of (~ O ,~~~• 15
fl

} form a siaplex of dimension k then P is a continuous

map at c~~~ UI~ ) .  Thi. fact is not obvious from (1). However, we will show by elementary

means that when zn , .. .  ,x~ are in general position end q is any differ ential operator

—2—
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of order < n , the linear fun ction al

(4) Pt — I ~t , f i c ~~~(X)
0 itLx ,. . . ,z 3

has an extension as a bounded linear functional on C ~~~ (Rk). In the case k—l such an

extension is given by the Iisraite-Genocchi formula for the divided differenos of a func-
tion,

(5) J f~~ — ~~~~~~~~~~ c K
(*

0
I~~ • •  ~X I

see Norlund 14 , p. 163 (mibecripts will be used for scalars , real or c~~~ lex) . Our remarks
concerning thi s aspect of Kergin’ s map leads us directly to some simple prope rties of multi-

dimensional B-splines introduced by Carl de Boor in 123 .  Needless to say , there are many
intriguing questions still to be settl ed conosrn ing these 3-splines.

Neturn ing to formula (1), our first task is to provide its proof. As we said earlier
the Newton form for the polynomial of degree it whiCh interpolates f at 

~~~~
‘

(1’ ) pf (x) — f (s
e

) + (x_x
o) (x0,x1Jf  + ... + 

~~~~~~~~~~~~~~~~ ~~~~n—l ’ ~~~~~~
is the basis for the proof of (1). It is also well-knoist that the remainder formula for

polynomial interpolation is given by

(2 ’)  pf (x) - f(s ) — (x ,x01 . . . , x ) f
To verify that Pt satisfies the property of Kergin’ s theorem we first observe that for the
function f(s )  — e ~~~~~ g(~~.x) , into (1) gives P t (s) — pxg(A .x)  where ~~ is the polynomial of

i idegree < i t  which interpolates g at .5O 
~~~~ iSow, let J~~ ~~~~~~~~~~~ t ) be a

subset of ~~0,••• , x’~j and q a homogeneous differential operator, of order £ then

f qf — i tq (iA) j  g
(t )

i i I0 . . , x (A.x ~~,. • A’x I
10 it— i tq(i~,) (A .x , . . ., A.x jq

1.
— i~~q U A ) ( A . x O ,• ..,A.z

• I qPf .
I i

Lx a,.. ,~~

Since (e~~ ~~A I R k ) spans a dense subset at ~~~~~ we have shoim that

—3—
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J q(f—Pf) — 0 , f ~ C~~~~(Rk )
I

(x o,... ,~~

and thus P is the Nergin map.

The proof of (2) follows from (2 ’) in a similar wey.

For the proof of (3) we require Cauchy integral formu la in Ck, see Bockner and Martin

Cl , p. 33],

D0f(x)  — 
ol j  j  f(r)d~

C
R 

C
R 

(x1—Q °l’1...

— ~~~~~~~ ~~~~~~ — 
~~~~~~~~~~~~ 

,~~~ ), at — a1! % I

01 °k 1

and is the contour (II I l~I — 2p ’+lJ where 1 < p ’ < p. Thus we have

ID°f(x ) i 5~ 
( 3~~k 

(2p) I °E ~~~ D (p ) ’ ~

and since

ID 
~~

. . . D ~~~~~~
s-s x-x L (Q)

< I I  Ix-z 11 ~ I D °fI ,,
t”O £ IaIwe-fl L (Q)

~ 
3~~k —n— l 

~ ~ N f H2 i ci j —n+l D ( p )

(3) follows from the observation that

a! Z loll — (n+l) I ~ 1 (n+ l) l (n+k)

i a i — n+1 lal—n+l IaI—n+i — (k-l) l

and that tim vol 8n+l 
—

In one dimension , polynomial interpolation at any (triangular ) sequence of points is

• boatd to diverge for some continuous functi on while for interpolation at the zeros of the

Ch.bysh.v polynomial convergence holds for lip 1 functions. It would be interesting to

extend these results in KR for Kergin interpolati on.

N. now turn to the matter of extendin g the linear functional defined in (4) .

N. begin by observing that

-4-
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U — f 0 f , f I C~~~~(X)
y

- (x , . . . , x J

I has an extension as a bounded linear functional on C (IC) if and only if y is in the

vector space generated by ~~~~~~~~~ ~~~~~~~ The necessity of this condition is a conse-

quence of the following: Suppose A c KR and A j  ~ J _~0~ j—l , . . .  ,n. Given any 6 £ R ,

let f (s) — e~
6
~~~ — g( 6A x) then ILt I — 16 11y X l while l~fll . Thus A i y

1 0 ~~~ 0 L (K)
and we conclude that y is in the span of S - S ,. . . ,X —x . If on the other hand ,

n
~~ y — a (~i _~0) then for 6 — 1

i—i J

-k+l 0 itU — i y .A ( A . x  ,. .. ~~~~~~~ Ig

— 1
—k+l 

~ a A . ~~~~~~~~~~~~~~~~~~~~~~~

— i~~~
1 

~ a {IA.x0,... ,A .x~ ,A x ~
t-1,. .. ,1~5n 3~~ — 1 A x 1,... ,A•x~Jgj —l

- • and we get

- 
(6) J D f —  Z a (  I f  

- 
— f f  ) -

0 y j .l 0 j—l j+l it 1 it
Lx ,. .. ,x ] Cx ,. • ,x ,x ,. . . ,x ) Ix , - . . ,x ]

Again , since {eiA• x l A  c Rk } spans a dense subse t of C~~ (R
k) this formula provides the

extension of L to C ( K ) . In particular , if for it > Ic {x1-x0
~~ ..  ,x’ _x° span s RIc

then L is a bounded linear functional on C (K) for all y

• If tim points ~0
, • •  5~ are in general position then the above observation extends

1 £ Ic £ iby induction to show that for any y ,...,y e K £ < i t , n > Ic and q (s) • II y • x
I

the linear functional

j q •f$ 0 it

has a bounded extension on C ~~~~ (R1’) .  Since any differential operator of order < i t

-: is a sum of the linear functional given by (5) has a bounded extension on C~
1’

~~~ (KR ) .

• - ~~e may easily verify that , in general , if q — I q
1 

a homogeneous polynomial

of degree j  , f gf has a boatded extension to C (K) then whenever
0 it- Ix , . . .  ,x 3

A j  5j_50 , j —l , .. .  ,n it follows that q~~1(A) — ... — q~ (A ) — 0. lSmther or not this

condition ii also sufficient for tim bowtd sdeess of J qf has not been settled .

• —5—
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Finally , we conclude with some remarks on the multidimensional 5-splines introduced

in 121. It is not hard to see that if x1—x0,. • •5
it_~O span R~’ then there exists a

function M ( x l x ° , ... it
) such that

(7) f f — Jf (x )M(x lx°,... xit )ds
0 it KIx , .. . ,x I

• Note that the expression on the left is an n-fold integral over the si~~ lex S~ while

• the right hand expression is a k-fold (Ic < n )  integral over the convex hull of

I Repeated application of (6) implies that if ~~~~~~~~~ •• , ,? are in general position then

Dit f — f Daf(x)M (xIx
o,... ,x”)dx la l — n—k+ l

is a boun d linear functional on C (K). Moreover , it is a sum of integrals of f over

hyperplenes formed by subsets of Ic points of x°,.. - ,x~ . Thus N is a polynomial of

total degree < n-k in every region bounded by such hyperp lanes and globally has n-k-l

continu ous derivatives on K, facts already mentioned in (2 ) .

A formula for N (s) , which reveals its geometric interpretation , nay be obta ined by

lifting M the points 50 , x~ into Rit . N. let ~0 
•~~ • ,,~~‘ be any vectors in R’ such

that ,
~~~ 

( 
~ - x~ and that the siaplex .~ 

determined by these points is of dimension it.

I K
Then

- vol (u e c lul Ic 
—

• 0 it 1 n-k R(8) M (x x , . . . , X ) — — j -  vol e

(For k—n, M(X IX
o
,.. . ,x~ ) — ~~ X 0(x) /vol O) - Thus N is (wit h a different normaliz ation )

de Boor ’s multidimensional it—spline (2 1.

In spite of this formula ’ s attractive geometric content it seems sore convenient

• to deri ve properties of N through the defining equation (7 ) .  In part icular , according to

formula (6)

(9) 0 )4(.150,•••,5
n) ~ a

y i_ i

n
r j O

• I y —  
~ 

aj
( x _ x ) .

-i
*en k—I , this formula yields the equation

• - -6—
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- M(xlx ,...,x ) - M ( xlx , . . . , x )
- (10) N’ (xj x , . .  ., x ) — 0 n—l £ XI

0 a

(see 12]) and with the initial condit ion -

• ri, x ( x < x .
)I(xfx ,x ) — 

1 0 — — 1
0 1 x1-x

0 t o ,  ~ 4 
~~O ’~~l~

all the (univariate ) B-splines can be generated from (10). A similar remark applie s for (9) .
• 

- 
In the univariate case , an efficient and numerically stable means of generating 3-uplines

• is available , 121 . The univariate B—spline Over its interval of support is a nonnegative

combination of two lower order iS—splines , specifically

(11) (n—i ) M (x~x0,...,x ) — 
~~~~~~~~ 

N(X~~X1
, .. . ,X )  + 

~~~~~~~~ 

N(x Ixl ,. . . , xn_l )

Using the identity

(12 ) 
~~~~~~~~~~~~ 

,x )  — (z, x
~
,... 

~~~~~~~~~~~ £s
~
xo~
. . ‘~n—i 1 -

for divided differences it follows by the line of reason ing used to prove (9) that

• (13) M (x t x°,x1,. . .  ,x~ ) — t 14 (515
0
, . . .  ,5n—1

5) + (1—t)M(x~x
1,... ,5f l ]

,5)

S — t + (l-t)xm

In the univariate case, it say be easily proved that

(14) M(sIx
~~
... ‘~n’~~ 

— ~~ 14(xI x0,. , *)

and th*m (14) with (13) proves (11) by dioosinq x — t *0 
+ C1-t)x5

. In the sultivariat.
- 

case it ii highly plausibl. that a form ula like (14) also holds and thi s should lead to a

multidi mensional vers ion of (11) .

The following theorem provides the detail s for thi s intuit ion .

lheoran2. If x . ~ 
A x 3 I

I 3.0 3.0
t U~n!~~ 

n >k +l

14(515
0, , 5n) 

~~~~~~~~ 
I A IUxlx

O
,....z3~~,x

30l....,m
m)

3—0
Proof. N. divide the proof into several ancillary remults. First we require an obeerva-

j  tics about divided differences which gen.raiises formula (12).
- XI a

tat z —  ! A 4x4 , 
~~ 

A
3
.l  -

1 3— 0 ~~~~‘ 3.0
then



-~ r- - .---— - -

(15) (x0, . . . , x j f  . 
~ A

3
(z. x0. . . .~ x3_ 1~x~~ 11. . •  ~x~~)f

Note that in (15) the orde r of the divided difference on each side of the equal sign

is the same .

Proof. The right hand side of (15) is a linear functional which agrees with the divide d

di f ference appearin g on the left hand side on polynomials of degree it . The support of the

linear functional on the right hand side is contained in (x 0 , . .  . , x~ , z } . However , sin ce the

coefficient of f(s) is

1
i (z—x

0
) ... (Z_X

j _j ) 

~~~~~~~

— 1 
~ 

A (z— x ) — O(z-x0) . . . ( z—x ) 
)—~ 

~

the support is {x0,.. . ,x }  and thus the identit y is proved.

We have al re ady demonstrated in the proof of (9) how identities for divided differences

may be extended to higher dimensions. This sane approach applie d to (15 ) yields the identity

it
f f  — ~~~~ A 4 

f f
0 n j—0 ‘ 0 j— l  j+ 1 itlx ,.. . ,x ) Iz ,x , . . .  ,x ,x , . . .  ,x

or equivalently

M ( x l x °, . .  .5
” ) — 

~ A~ M ( x I z ~x°. . ..  ,5 
l 5i+l ,x”)

j — 0
(16)

5—  ~

j—0

The next identity we require is

(17) M( xJx ,s~,...,x
”1 ) — -~~M (xIx°,... ,x

’~~).

We base the proof of this formula on the following general consideration .

Let K be a convex set Ktm and y c ~m
• We form the con e in R~~~

’ with base IC x (01

and vertex y x ( 1),  th at is,

C — cohuli(K x (0) u y x (1)).

1• (18) vol5~1C - 
~~j -  vol5K

N. prove this formula ~~ first establishing it for a simplex. If K is the simpLex

with vertice s y°, . . .  ,ym then C is a simplex with vertice s y0 x (0),.. • ,y” x (0 },y x ( 1) .

The formula f or the volume of the simplex IC is

—8—
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a

I

1 . . .  1

0
y

• 1vol I C - —
ID XII

o n

~
‘m~~~~~~~ ~

‘
tm

and applying this formula to C gives

1 . . .  1 1

0 m
y
l 

- . Y1 Y1

1voi~~ 1 C — (m+l)

• 0 XI
y ... y

0 . . .  0 1

which readily simplifies to (18) .

Now, if K1 and K2 are disjoint convex sets then their corresponding cones with the

same vertex i~tersect only at the vertex. Hence (18) extends to any countable union of die-

• joint simplice s and in particular for any convex set K
0 n—I n-i ~0 -n-i

• 
• 

To prove (17) we first l i f t  the points x , . . .  ,x into R by mean s of x , . . .

and apply the relation (8),

vol { u s o l u  = x )
n—k-i Ic0 n—i 1 Kl4(x x ,...,x ) — (n—l)l vol~~ 1O

where a is the simplex with vertices x e, . .  ~n-1 The vector x is now also lifted to

in any fashion to x c and then we form the cone with vertex x x ( 1) = ~ and

• base a s Co } and denote it by 0. It is readily seen that the cone with base

Cu £ oluL~—x )x {0 } and vertex x is Cu E 0 I U I ~k — x} and thus two applicat ions of formula
(18) gives us

- • 
VOl k l ~~ 

C a~u~ Ic — x}
• i O  n—i 1 K

“ ~ — vol ~

voln_k(u ~I u I  Ic — x}
___  

R
itt  ~ol~~it

0 n-i
— (n-k)M (x I x ,x ,...,x )

If we now put together formula (16) with (17) when — 0, j = 2 ,... ,n and

0 1x — z — X0x + A1x we get

—9—

— 
5 
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—
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(19) (n-..k)I4 (xjx °, . . .  ,xit ) — A 0I4 (x( x 1,...,x~ ) + X114(x ( x0,x2 ,... ,x”),

x — X0x 4 A 1x

With these facts at han d we may now complete the proof of Theorem 2.

Suppose we write x - ~
3.0

in thr.. form

it
x ( l — A ) z + A x

it it

z = ~ v x 3 (l—A ~)ii
3 

— A
3 

3 —

Then for every integer & , with 0 < & < n-i we have

(n — k ) M ( x i z ,x°, . . .  ~t l ~~ L+l ,xit )

0 f—i ff1 n 0 f—l f+1 n—i
— (1—A >14 (xix ,...,x ,x ,...,x ) + A M ( x I ~~,x ,...,x ,x , . . .  ,x ) •

But according to (16)

n~l 0 i—i t+l it i 0 it
L u~~It (x l z ,x , . . . ,X ,x ,.. ., x ) — 14(xlx ,...,x

8.0
and hence

n-l
(n-Ic)M(xix°,.. . ,x’~) — 

~~~~ 

A~M (xlx °.. .. ~~~~~~~ .. ,x”)

n—i 0 i—i 1+1 n—l
+ A~ ~ ~~~ M(x t2 ,x ,...,x ,x ,...,x ) .

Mother applicat ion of (16 ) implie s that the second sum above ~~ ~~ ~
0,... 5n

~
l

> and

thus the theorem is proved.

• Besides the obeious integral relation

• M(x l x°, . . .  ,x” ) — 
1 

Ic J ~~~~~~~~~ ., iX.x” J gdA , q(t) . e
t

• (2wi)

— Ic f (iA~ (x°—x),... ,i(A •(x”—x )3gdA
• - 

(2wi)

for N obtainable from (7) by setting f(s) — and using the Fourier inversion

formula there is al so a connection between )4 (x~x°, . ..  ,x”) ,  the Rand om transform and the

umivariate B-.pline .

f Recall that the Radon transform is a map of functions I a ~
) (RIc) defined for

8 a (the unit sphere in RIc ) and t C K by

• Kef(t )  — f f(x)du,~ _1 (x)

—10—
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The Radon transform also has the characteristic property

J (R 8
f) ( t ) g (t )d t  — 5 f (x)g(e .x)dx , g a L (R) .

-—

- Thus

(R
014( .Ix

°,...,x” ) ) ( t ) = N(tIe • x ~

- • a striking relationship between univa r iat . and muitivar iate 9-spines.
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