UNCLA	SSIFIED	SEP 1	78 N D	GRAHN			BELFIE SBIE-A	LD D-E1001	.52		NL		
			1		" water hard a second	Æ I							
and an and a second	Elizabete Elizabete Elizabete Elizabete							RYNELPISMI: MULTIANSI MULTIANSI MULTIANSI MULTIANSI MULTIANSI MULTIANSI MULTIANSI MULTIANSI		aniene-			
1													The second secon
-		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC											
											l induted	and a second sec	historia
					i i i i i i i i i i i i i i i i i i i			A CONTRACTOR	to be lational	iter to a			

14) REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DCEC-TN-8-78 46	1	S: TYPE OF REPORT & PERIOD COVERED
WIDEBAND TEST AND EVALUATION FIN	AL REPORT	Technical Kote (Final)
	C	6. PERFORMING ORG. REPORT NUMBER
(10)	and the second	\
N. D. Grahn, Major		8. CONTRACT OR GRANT NUMBER(+)
J. W./Vest		
PERFORMING ORGANIZATION NAME AND ADDRES Defense Communications Engineerin	ss Contou	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Switched Networks Engineering Div 1860 Wiehle Ave., Reston, VA 220	ision, R500	N/A .
1. CONTROLLING OFFICE NAME AND ADDRESS		A AFRONT DATE
Same as 9	(1)	115 September 078
		(12)910
4. MONITORING AGENCY NAME & ADDRESSI dillo		15. SECURITY CLASS (of the report)
N/A (18) SBIE (19)	AD-E100152	UNCLASSIFIED 154. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)		L
		-**4
A. Approved for public release;	distribution unlin	
	distribution unlin	nited.
		DDC
A. Approved for public release;		
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern		DDC
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A		
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES	od in Block 20, il dilloroni iro	
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A	od in Block 20, il dilloroni iro	
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES Review relevance 5 years from sub	nd in Block 20, il dillorent (re	DDC Report) JAN 30 1979 HIGIGIGIIIIIII B
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES Review relevance 5 years from sub 9. KEY WORDS (Continue on reverse side if necessary Wideband Speech Coders	mission date.	DDC Report) JAN 30 1979 HIGIGIGIIIIIII B
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES Review relevance 5 years from sub 9. KEY WORDS (Continue on reverse eide if necessary	mission date.	DDC Report) JAN 30 1979 HIGIGIGIIIIIII B
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES Review relevance 5 years from sub 9. KEY WORDS (Continue on reverse oldo if necessary Wideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing	mission date. and identify by block number Speech Codir	B D D C Report JAN 30 1979 ISISISITIS B
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES Review relevance 5 years from sub 9. KEY WORDS (Continue on reverse olde 11 necessary Wideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing Performance Evaluation 9. AESTRACT (Continue on reverse olde 11 necessary	nd in Block 20, it different in mission date. and identify by block number Speech Codir 407 4 and identify by block number)	DDC Resport) JAN 30 1979 ISTSTSTTTST B Test Conditions 519
A. Approved for public release; 7. DISTRIBUTION STATEMENT (of the obstract entern N/A 8. SUPPLEMENTARY NOTES Review relevance 5 years from sub 9. KEY WORDS (Continue on reverse olde 11 necessary Wideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing Performance Evaluation 9. APSTRACT (Continue on reverse olde 11 necessary The performance of seven wide	mission date. and identify by block number) Speech Codir 407 and identify by block number) band (16 kb/s or c	DDC Response JAN 30 1979 JAN 30 1979 JAN 30 1979 B A B A A A A A A A A A A A A A
A. Approved for public release; A. DISTRIBUTION STATEMENT (of the obstract entern N/A a. SUPPLEMENTARY NOTES Review relevance 5 years from sub a. KEY WORDS (Continue on reverse olde 11 necessary Wideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing Performance Evaluation a. ADSTRACT (Continue on reverse olde 11 necessary Modem Testing Performance of seven wide evaluated for comparison of recen- based on the continuously variabl	mission date. and identify by block number) Speech Codir 407 band (16 kb/s or g tly developed spee e slope delta (CVS	DDC Report JAN 30 1979 JAN 30 1979 JAN 30 1979 JAN 50 1979 B B B B B B B B B B B B B
A. Approved for public release; A. DISTRIBUTION STATEMENT (of the obstract entern N/A a. SUPPLEMENTARY NOTES Review relevance 5 years from sub a. KEY WORDS (Continue on reverse side if necessary Wideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing Performance Evaluation a. ASTRACT (Continue on reverse side if necessary Mideband Test & Evaluation Deformance Evaluation ADDEM Testing Performance of seven wide evaluated for comparison of recen- based on the continuously variablat at 32 kb/s was superior to the ot	mission date. and identify by block number) Speech Codir UO7 and identify by block number) band (16 kb/s or g tly developed spee e slope delta (CVS her coders at 16 k	DDC Report) JAN 30 1979 JAN 30 1979 JAN 30 1979 JAN 30 1979 B Solutions 519 greater) coders was tested and ach coders with speech coders SD) algorithm. The CVSD coder sb/s. Under nontactical condi-
A. Approved for public release; A. Approved for public release; DISTRIBUTION STATEMENT (of the obstreet entern N/A a. SUPPLEMENTARY NOTES Review relevance 5 years from sub A KEY WORDS (Continue on reverse olde 11 necessary Wideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing Performance Evaluation C. ASTRACT (Continue on reverse olde 11 necessary Modem Testing Performance Evaluation C. ASTRACT (Continue on reverse olde 11 necessary Modem Testing Performance Evaluation C. ASTRACT (Continue on reverse olde 11 necessary Modem Testing Performance of seven wide evaluated for comparison of recen- based on the continuously variablat at 32 kb/s was superior to the ot tions on some tests the APCQ spee- Under tactical conditions the CVS	mission date. mission date. and identify by block number, Speech Codir UOT and identify by block number, band (16 kb/s or g tly developed spee e slope delta (CVS her coders at 16 k ch coder was super	DDC Report) JAN 30 1979 JAN 30 1979 JAN 30 1979 JAN 30 1979 B Solutions 519 greater) coders was tested and ach coders with speech coders SD) algorithm. The CVSD coder (b/s. Under nontactical condi- rior to the CVSD at 32 kb/s.
A. Approved for public release; A. Approved for public release; DISTRIBUTION STATEMENT (of the obstract entern N/A S. SUPPLEMENTARY NOTES Review relevance 5 years from sub Mideband Speech Coders Wideband Test & Evaluation Speech Coder Performance MODEM Testing Performance Evaluation Destract (Continue on reverse edde (I necessary Mideband Test & Evaluation Destract (Continue on reverse edde (I necessary Deformance of seven wide evaluated for comparison of recen- based on the continuously variablat at 32 kb/s was superior to the ot tions on some tests the APCQ spee	mission date. mission date. and identify by block number, Speech Codir UOT and identify by block number, band (16 kb/s or g tly developed spee e slope delta (CVS her coders at 16 k ch coder was super	DDC Report) JAN 30 1979 JAN 30 1979 JAN 30 1979 JAN 30 1979 B Solutions 519 greater) coders was tested and ach coders with speech coders SD) algorithm. The CVSD coder (b/s. Under nontactical condi- rior to the CVSD at 32 kb/s.

TECHNICAL NOTE NO. 8-78

WIDEBAND TEST AND EVALUATION

FINAL REPORT

RE: Classified reference, distribution unlimited-Ne change per Ms. Bennett, DCA

Prepared by:

o N. D. Grahn, Major o J. W. Vest o W. L. Belfield

Approved for Publication:

MARTIN A. THOMPSON

Chief, Switched Networks Engineering Division

FOREWORD

The Defense Communications Engineering Center (DCEC) Technical Notes (TN's) are published to inform interested members of the defense community regarding technical activities of the Center, completed and in progress. They are intended to stimulate thinking and encourage information exchange; but they do not represent an approved position or policy of DCEC, and should not be used as authoritative guidance for related planning and/or further action.

Comments or technical inquiries concerning this document are welcome, and should be directed to:

> Director Defense Communications Engineering Center 1860 Wiehle Avenue Reston, Virginia 22090

Witte Section
Bufi Sections (1) ED (1)
H
HAVADARDET CODES
IL and/or SPECIAL

TABLE OF CONTENTS

		rage
I.	INTRODUCTION	1
	1. Purpose	1
-	2. Scope	1
	3. Test Conditions	2
	4. MODEM Testing	3
п.	BACKGROUND	4
	1. Narrowband Consortium T&E	4
	2. Performance Evaluation	4
	3. Test Procedures	5
III.	TECHNICAL DISCUSSION	6
	1. Comparisons of Speech Coder Performance	6
	a. Optimal Conditions	6
	b. Background Noise Conditions	7
	c. Transmission Bit Errors	8
	d. Audio Input Level	9
	e. Tandem Configurations	9
	f. Summary of Results	10
	2. Intelligibility and Quality Test Scores	. 11
	a. Codex CVSD-B	11
	b. Codex ARC	11
	c. Codex ADM	11
	d. Schilling CVSD 16 kb/s	12
	e. Schilling CVSD 32 kb/s	12
	f. Svlvanja APCO	12

111

TABLE OF CONTENTS (CONT	(מיז
	Page
g. LOG CVSD	12
IV. CONCLUSIONS	13
APPENDIXES	
A MODEM Performance Tests	4-1

-

iv

LIST OF ILLUSTRATIONS

.

Figure	Title	Page
1.	NOMOGRAPH TO CONVERT FROM COMPOSITE ACCEPTABILITY SCORE TO PERCENT USER ACCEPTANCE	14
A.1	MODEM TEST CONFIGURATION	A-2

LIST OF TABLES

Table	Title	Page
I.	MATRIX OF CODERS VS TESTS PERFORMED	15
п.	NEUMAN-KUELS ANALYSIS OF SYSTEM DCT SCORES FOR 6 MALE SPEAKERS WITH OPTIMAL CONDITIONS	16
ш.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH OPTIMAL CONDITIONS	17.
IV.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 2 FEMALE SPEAKERS WITH OPTIMAL CONDITIONS	18
۷.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH OPTIMAL CONDITIONS	19
VI.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH OFFICE NOISE	20
VII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 3 MALE SPEAKERS WITH OFFICE NOISE	21
VIII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 FEMALE SPEAKER WITH OFFICE NOISE	22
IX.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH OFFICE NOISE	23
X.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 2 MALE SPEAKERS WITH ABCP NOISE	24
XI.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 3 MALE SPEAKERS WITH ABCP NOISE	25
XII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 2 MALE SPEAKERS WITH HELI NOISE	. 26

Table	<u><u> </u></u>	itle	Page
XIII.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH HELI NOISE	YSTEM DAM SCORES FOR 3 MALE	27
XIV.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH .1% BER	YSTEM DRT SCORES FOR 2 MALE	28
XV.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH .1% BER	YSTEM DAM SCORES FOR 2 MALE	29
XVI.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH .1% BER	YSTEM DRT SCORES FOR 1 FEMALE	30
XVII.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH .1% BER	YSTEM DAM SCORES FOR 1 FEMALE	31
XVIII.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH 1% BER	YSTEM DRT SCORES FOR 2 MALE	32
XIX.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH 1% BER	YSTEM DAM SCORES FOR 2 MALE	33
XX.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH 1% BER	YSTEM DRT SCORES FOR 1 FEMALE	34
XXI.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH 1% BER	YSTEM DAM SCORES FOR 1 FEMALE	35
XXII.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH 6db INPUT	YSTEM DRT SCORES FOR 1 MALE	36
XXIII.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH 6dB INPUT	YSTEM DAM SCORES FOR 2 MALE	37
XXIV.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH 6dB INPUT	YSTEM DAM SCORES FOR 1 FEMALE	38
xxv.	NEUMAN-KUELS ANALYSIS OF SY SPEAKER WITH -12dB INPUT	YSTEM DRT SCORES FOR 1 MALE	39
XXVI.	NEUMAN-KUELS ANALYSIS OF SY SPEAKERS WITH -12dB INPUT	YSTEM DAM SCORES FOR 2 MALE	40
XXVII.	NEUMAN-KUELS ANALYSIS OF SI	YSTEM DAM SCORES FOR 1 FEMALE	41

vi

Table	Title	Page
XXVIII.	NEUMAN-KUELS ANALSYIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH -20dB INPUT	42
XXIX.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH -20db INPUT	43
XXX.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH -20dB INPUT	44
XXXI.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH 2X TANDEM	45
XXXII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH 2X TANDEM	46
XXXIII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 FEMALE SPEAKER WITH 2X TANDEM	47
XXXIV.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH 2X TANDEM	48
XXXV.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH 3X TANDEM	49
XXXVI.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH 3X TANDEM	50
XXXVII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH 3X TANDEM	51
XXXVIII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH 5X TANDEM	52
XXXIX.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH 5X TANDEM	53
XL.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH 5X TANDEM	54
XLI.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH LPC INTO W	55
XLII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH LPC INTO W	56

vii

Table	Title	Page
XLIII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 FEMALE SPEAKER WITH LPC INTO W	57
XLIV.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH LPC INTO W	58
XLV.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 MALE SPEAKER WITH W INTO LPC	59
XLVI.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 2 MALE SPEAKERS WITH W INTO LPC	60
XVII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES FOR 1 FEMALE SPEAKER WITH WINTO LPC	61
XLVIII.	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES FOR 1 FEMALE SPEAKER WITH W INTO LPC	62
XLIX.	RANKING OF 16 KB/S CODERS FOR MALE DRT	63
L.	RANKING OF 16 KB/S CODERS FOR MALE DAM	64
LI.	RANKING OF 16 KB/S CODERS FOR FEMALE DRT	65
LII.	RANKING OF 16 KB/S CODERS FOR FEMALE DAM	66
LIII.	DRT SCORES OF CODEX CVSD SPEECH CODER	67
LIV.	DAM SCORES OF CODEX CVSD SPEECH CODER	68
LV.	DRT SCORES OF CODEX ARC SPEECH CODER	69
LVI.	DAM SCORES OF CODEX ARC SPEECH CODER	70
EVII.	DRT SCORES OF CODEX ADM SPEECH CODER	71
LVIII.	DAM SCORES OF CODEX ADM SPEECH CODER	72
LIX.	DRT SCORES OF SCHILLING CVSD SPEECH CODER 16 KB/S	73
LX.	DAM SCORES OF SCHILLING CVSD SPEECH CODER 16 KB/S	74
LXI.	DRT SCORES OF SCHILLING CVSD SPEECH CODER 32 KB/S	75
LXII.	DAM SCORES OF SCHILLING CVSD SPEECH CODER 32 KB/S	76
LXIII.	DRT SCORES OF SYLVANIA APCQ SPEECH CODER	77

Table	Title	Page
LXIV.	DAM SCORES OF SYLVANIA APCQ SPEECH CODER	78
LXV.	DRT SCORES OF LOG CVSD SPEECH CODER 16 KB/S	79
LXVI.	DRT SCORES OF LOG CVSD SPEECH CODER 32 KB/S	80
LXVII.	DRT SCORES OF GENERAL DYNAMICS CVSD SPEECH CODER	81
LXVIII.	DAM SCORES OF LOG CVSD SPEECH CODER 16 KB/S	82
LXIX.	DAM SCORES OF LOG CVSD SPEECH CODER 32 KB/S	83
LXX.	DAM SCORES OF GENERAL DYNAMICS CVSD SPEECH CODER	84
A.I.	4.8 KB/S TEST RESULTS	A-3
A.II.	7.2 KB/S TEST RESULTS	A-4
A.III.	9.6 KB/S TEST RESULTS	A-5

ix

I. INTRODUCTION

1. PURPOSE

The purpose of the wideband test and evaluation was to determine and compare the performance of certain wideband speech coders. Wideband refers to a transmission data rate of 16 kb/s or greater. It was desired to evaluate the performance of recently developed wideband speech coders and compare them with speech coders based on the continuously variable slope delta (CVSD) algorithm. Improved wideband speech coders have potential application to the Defense Communications System. The test conditions represented a wide range of operating environments similar to those of the Narrowband Consortium T&E [1]. Speech coder performance was measured with respect to speech quality and intelligibility. The overall performance of the speech coders was compared and the sensitivity of the speech coders to various operating conditions was evaluated.

というのであるので

2. SCOPE

A complete set of tests was performed for seven different speech coders. Each coder was an implementation of a specific speech coding technique. These algorithms are continuously variable slope delta (CVSD) modulation, adaptive delta modulation (ADM), adaptive residual coding (ARC), and adaptive predictive coding (APC). In the following sections each device is briefly described.

a. <u>CVSD-B COD 16</u>. This CVSD speech coder was designed and built by Codex Corp. The algorithm was designed to produce optimal speech quality under conditions of bit error rates less than 5%. The operating data rate was 16 kb/s. A detailed description of this device is contained in the Codex final report [2]. An analysis of the performance sensitivity of the CVSD speech coder with respect to the algorithm parameters is presented in the report [3].

b. <u>COD ARC 16</u>. This speech coder was designed and built by Codex Corp. The algorithm is based on adaptive residual coding (ARC). The operating data rate is 16 kb/s. A detailed description is contained in [2].

c. <u>COD ADM 16</u>. This speech coder, which was also designed and built by Codex Corp., is based on the adaptive delta modulation (ADM) algorithm. The operating data rate is 16 kb/s. A detailed description is also contained in [2].

d. <u>SCHIL 16/3</u>. This CVSD speech coder is based on the so called Schilling algorithm. The operating data rate is 16 kb/s. The bandwidth of the audio output filter is approximately 3 kHz. e. <u>SCHIL 32/4</u>. This device is similar to the coder described above except that the operating rate is 32 kb/s and the audio bandwidth is 4 kHz.

f. <u>SYLM APCQ 16</u>. This speech coder was implemented on the Sylvania Programmable Signal Processor. The coding algorithm was designed by GTE Sylvania and is based on APC with an adaptive multilevel quantizer. The operating data rate is 16 kb/s. A detailed description of this speech coder is contained in the Sylvania final report [4].

g. LOG CVSD 16. This device is based on the CVSD algorithm and was built by General Dynamics. The operating data rate is 16 kb/s.

3. TEST CONDITIONS

The speech coders were evaluated with respect to simulated operational conditions. These conditions are divided into the following groups:

a. <u>Optimal Condition</u>. This condition is intended to represent an ideal operating environment with an input speech signal having a high signal to noise ratio and low distortion level. In addition, there were no transmission bit errors and an attempt was made to adjust the audio input level to an optimal setting for each speech coder.

b. <u>Acoustic Background Noise</u>. Test tapes were used which contained speech data recorded under conditions of acoustic background noise. These tests included three acoustic background noise conditions: (a) office noise, (b) airborne command post (ABCP) noise, and (c) helicopter noise.

c. <u>Transmission Bit Errors</u>. This test condition consisted of injecting bit errors into the transmission data stream. The probability of the occurrence of a bit error is based on a normal distribution. Bit error rates of 1% and 0.1% were used. Bit errors were produced by an error generator that produced a pseudo-random binary sequence.

d. <u>Dynamic Range</u>. The audio input level of the speech coder was adjusted in order to measure the effects on the performance of the coder. Measurements were made to determine the optimal audio level of each speech coder and this was defined as the reference level of 0 dB. To test dynamic range, performance was evaluated for audio input levels of +6 dB, -12 dB, and -20 dB.

e. <u>Tandem Operation</u>. This test condition was designed to measure the performance of speech coders in multiple link configurations and in tandem with a narrowband speech coder. Multiple link tandem tests on two, three, and five-link configurations were performed. The operation of each speech coder in tandem with a linear predictive coder (LPC) was tested. The LPC speech coder was operating at a data rate of 2.4 kb/s.

4. MODEM TESTING

.

1 .

٠.

1

)

1

1

1

)

1

.....

A set of tests were conducted in order to evaluate effects of processing MODEM link signals with a CVSD speech coder operating at 32 kb/s. The results of this testing are discussed in Appendix A.

II. BACKGROUND

1. NARROWBAND CONSORTIUM T&E

In May 1976, the final report of the Narrowband Digital Voice Consortium was published. The objective of the consortium was to recommend a narrowband speech algorithm that could be adopted to satisfy operational needs of DoD for secure voice on narrowband transmission media such as HF radio, switched telephone networks, and satellites. Equipment from the following generic classes of voice processors designed for narrowband channels were tested and evaluated:

- o Adaptive Residual Coder (ARC)
- o Adaptive Predictive Coder (APC)
- o Linear Predictive Coder (LPC)
- o Channel Vocoder (CV)
- o Hybrid Speech Coder (TRIVOX).

The test program was managed by the T&E Subcommittee under the chairmanship of DCA and was for the most part performed at the DCA Hybrid Simulation Facility with NRL performing the HF and simulated satellite test. Performance evaluation was performed using both intelligibility and quality tests. Intelligibility was measured using the Diagnostic Rhyme Test (DRT) and the Consonant Recognition Test (CRT). Quality was measured using the Paired Acceptance Rating (PAR). The narrowband voice processor operated at data rates from 2.4 kb/s to 9.6 kb/s. The LPC-10 algorithm was recommended in the Consortium final report as the DoD standard for narrowband speech processing.

2. PERFORMANCE EVALUATION

The wideband speech coder performance evaluations were based on intelligibility and quality tests. The Diagnostic Rhyme Test (DRT) has been found to be a reliable procedure for measuring word intelligibility [5]. The DRT was used for the wideband evaluations, and these scores can be compared with the results of the Narrowband Consortium T&E [1]. The DRT does not necessarily give a valid measure of the overall performance of a speech coder. Specifically, high DRT scores do not necessarily imply high user acceptance. For this reason speech quality evaluations were also conducted.

The purpose of the quality evaluations was to determine the overall user acceptance of the speech quality of each coder. The Diagnostic Acceptability Measure (DAM) was the procedure selected to accomplish the quality evaluations [6]. The DAM is an evaluation method designed to eliminate many of the inconsistencies associated with the Paired Acceptability Rating Method (PARM) that was used in the Narrowband Consortium T&E. Both the DAM and DRT employ listeners who record subjective responses for evaluation. Therefore, there is a significant degree of error associated with each method; the DRT scores generally have a smaller standard error than the DAM scores.

Evaluation results should be interpreted carefully with the knowledge that user preference is difficult to quantify. Corresponding to each DAM score is an equivalent PARM score so that these results can be compared with the Narrowband Consortium T&E. Figure I is a plot that shows the estimated relationship between DAM scores and user acceptance.

3. TEST PROCEDURES

The speech data that was evaluated according to the intelligibility and quality tests was stored on audio magnetic tape. These tapes were prepared in the same laboratory facility used for the Narrowband Consortium T&E [1]. A description of the test facilities is contained in the Consortium Final Report. As in the Narrowband Consortium T&E, the magnetic tapes were given to Dynastat Corp for intelligibility and quality evaluations.

III. TECHNICAL DISCUSSION

1. COMPARISONS OF SPEECH CODER PERFORMANCE

The results of the intelligibility and quality tests were analyzed to determine the statistical significance of differences in system DRT and DAM scores. As in the Narrowband Consortium T&E, the Neuman-Kuels test [7] was used to rank systems and estimate the statistical significance of system scores. The results are grouped according to test conditions. The test results are displayed in the form of a table containing a matrix which is used to compare a set of speech coders under a given operating condition. Alongside the matrix are listed the speech coder mean score, standard error, names, and identification numbers. Above the matrix is shown the system identification numbers. The systems are ranked in order of decreasing test scores. The system rank order corresponds to the matrix row number. The numbers in the matrix above the main diagonal are the differences between system mean scores; the (i,j) element, where j is greater than i, is the difference in mean scores between the system ranked i and the system ranked j. For example, in Table II, the number 1.6, row 2 and column 4 is the difference between the score 93.4, of the system ranked number 2 (CVSD ARC 16).

The Neuman-Kuels test is a systematic procedure for determining the statistical significance in the difference between these mean scores. Below the main diagonal are numbers that represent the confidence levels of the difference between system mean scores. For example, a confidence level of 0.99 implies that the probability is 0.01 or less that the system scores are samples from the same probability distribution. Therefore, the confidence level is 0.99 that the difference in scores is statistically significant. The (i.j.,) element, where i is greater than j, is the confidence level corresponding to the difference in scores between the system ranked i and the system ranked j. The scores were evaluated for three confidence levels, 0.99, 0.95, and 0.90; no entry in the matrix indicates that the confidence level is less than 0.90. For example, in Table II, the confidence level of the difference in mean scores between COD ARC 16 and SCHIL 32/4 is 0.99; between COD ARC 16 and CVSD B COD 16 it is 0.90; and between COD ARC 16 and SYLM APCQ 16 the confidence level is less than 0.90. This implies that there is not a high level of confidence that the mean scores of CVSD B COD 16 and SYLM APCQ 16 are significantly different.

a. <u>Optimal Conditions</u>. Table II shows the DRT scores and statistical test results corresponding to six male speakers under optimal conditions. As noted previously, optimal conditions correspond to a quiet acoustic background with no transmission bit errors. As expected, the test results show that the performance of SCHIL 32/4 was better than all the other speech coders operating at 16 kb/s. It can also be seen that this superior performance is statistically significant. The LOG CVSD 16 was significantly poorer than any other technique on this test. Based on the performance of this technique under the other conditions tested and on the DAM score for optimal condition, this score is 15 points lower than expected. This low score is attributed to a misadjustment in the input audio level which is particularly critical for this technique. Lower than expected DRT scores also occurred with LOG CVSD 16 for test conditions of 1% BER and LPC into LOG CVSD 16.

It can be seen from Table II that the results of the Neuman-Kuels analysis can be used to group the test results in terms of statistical significance. Examination of the first column of confidence levels in Table II indicates that the difference between the score achieved by SCHIL 32/4 and the other techniques is great enough to indicate a true difference in performance. Examination of the second column in Table II indicates that the difference between the score achieved by CVSD B COD 16 and SYLM APCQ 16 is not great enough to indicate a true difference in performance (first entry in the column is blank). Differences in score between CVSD B COD 16 and the remaining techniques, however, are great enough to indicate a true difference in performance as indicated by the presence of the confidence level scores. The statistical significance of the differences in the scores for the remaining techniques can be determined by examining the remaining columns in a similar fashion.

Table III shows the DAM results corresponding to two male speakers under optimal conditions. The correspondence between the DAM scores and estimated user acceptance can be found in Figure 1. It can be seen that SCHIL 32/4 had the highest overall score and SYLM APCQ 16 had the best score among the 16 kb/s coders.

Table IV contains the DRT results corresponding to three female speakers. CVSD B COD 16 and SYLM APCQ 16 had the best DRT scores among the 16 kb/s coders. Table V contains the DAM results corresponding to one female speaker. It can be seen that based on this test the DAM scores are divided into two groups. SYLM APCQ 16 and SCHIL 32/4 are in the first group and the remaining coders are in the second group.

In summary, under optimal test conditions the Sylvania APC algorithm (SYLM APCQ 16) had the best overall performance of the 16 kb/s algorithms.

b. Background Noise Conditions

(1) Office Noise. Table VI contains the DRT results for one male speaker under conditions of an office noise environment. It can be seen from these results that several 16 kb/s coders performed as well as SCHIL 32/4. Table VII contains the DAM results corresponding to three male speakers.

7

Table VIII contains the DRT results corresponding to one female speaker. In this test COD ADM 16 scored as well as SCHIL 32/4. In Table IX the DAM results corresponding to one female speaker are given.

(2) <u>Airborne Command Post Noise</u>. The DRT and DAM results for airborne command post background noise are shown in Tables X and XI respectively. These results are based on male speakers, and it can be seen that the scores are generally several points lower than the scores for office background noise.

0 .

0

O

0

Ċ

1

3

(3) <u>Helicopter Noise</u>. Table XII contains the DRT results for male speakers under conditions of helicopter background noise. It can be seen that the DRT scores are considerably lower than those under optimal conditions. In addition, the statistical test showed that there is no significant difference between any of the systems including SCHIL 32/4. Table XIII contains the results of the voice quality analysis for three male speakers. These scores are quite low, indicating a very small percentage of user acceptance. Also, it can be seen that there is no significant difference in DAM scores except for CVSD B COD 16 which had the lowest score.

c. <u>Transmission Bit Errors</u>. Tests performed under conditions of transmission bit errors are valuable because the corresponding results indicate the expected speech coder performance on actual transmission media. Most transmission media degradations can be shown to correspond to certain transmission bit errors. These bit errors can be divided into two categories, burst errors and normally distributed random errors. The test results of this report are based on random errors derived from a normal probability distribution.

(1) <u>BER of 0.1%</u>. The performance of speech coders such as CVSD whose design is based on delta modulation does not degrade significantly under conditions of relatively high transmission bit error rates. Table XIV shows the DRT results for male speakers corresponding to a BER of 0.1%. For all the speech coders, except LOG CVSD 16, there is only a small difference in DRT scores compared with optimal conditions. Table XV contains the DAM results for male speakers. These results are also similar to those for the optimal conditions. Tables XVI and XVII contain the DRT and DAM results respectively for female speakers. These results indicate that SYLM APCQ 16 performed better than all other 16 kb/s speech coders under this BER condition.

(2) <u>BER of 1%</u>. Table XVIII contains the DRT results for male speakers under conditions of 1% BER. The CVSD B COD 16 performed as well as SCHIL 32/4 in this test. Table XIX contains the speech quality test results for male speakers. Tables XX and XXI contain the DRT and DAM results respectively for one female speaker. The DAM results indicated no statistically significant difference between systems for the female speaker.

d. Audio Input Level

Ð

0

1

n

(1) 6 dB Input Level. Speech intelligibility and quality tests were conducted to measure the performance sensitivity of the speech coders with respect to audio input levels. In a realistic operating environment audio input levels will not necessarily be adjusted for optimal performance due to such factors as variability of speakers and microphones. Consequently, it is useful to have an indication of the performance sensitivity to audio levels. Table XXII contains the DRT results corresponding to one male speaker and an audio input level 6 dB above the estimated optimal level. Because these results represent one male speaker, it is not meaningful to compare them with the results of Table II which represent six male speakers. However, the large difference in the DRT score of LOG CVSD 16 indicates that the audio level for the optimal condition test was not set properly. Generally the DRT scores are high with no statistically significant difference between systems except for SCHIL 16/3 which was ordered with the lowest score. The speech quality test results for male and female speakers are shown in Tables XXIII and XXIV respectively. In these tests the user preference for SYLM APCQ 16 is approximately the same as for SCHIL 32/4.

(2) <u>-12 dB Input Level</u>. Table XXV shows the DRT results for one male speaker corresponding to an audio input level 12 dB below the estimated optimal level. Table XXVI shows the DAM results for male speakers. In this speech quality test SYLM APCQ 16 and CVSD B COD 16 performed as well as SCHIL 32/4. In Table XXVII it can be seen that for one female speaker SYLM APCQ 16 performed better than all other speech coders with respect to speech quality.

(3) <u>-20 dB Input Level</u>. Table XXVII contains the DRT results for one male speaker under conditions of an input level 20 dB below the estimated optimal level. Tables XXIX and XXX contain the DAM results for male and female speakers respectively. It can be seen that on the speech quality tests the performance of SYLM APCQ 16 is superior to all other speech coders.

e. <u>Tandem Configurations</u>. Tests were conducted to determine the performance of speech coders in certain tandem configurations. A single transmission link is defined as two identical speech coders connected together such that there is an analog to digital conversion followed by a digital to analog conversion. Multiple tandem links are defined as several single links of identical speech coders connected in series. A wideband-narrowband tandem is the series connection of a single wideband link and a narrowband link.

(1) <u>Multiple Links</u>. Tests of multiple link tandems were conducted for two, three, and five links. Tables XXXI and XXXII contain the DRT and DAM results respectively for male speakers under the condition of two links in tandem. For female speakers the DRT and DAM results are shown in Tables XXXIII and XXXIV respectively.

ŧ

The DRT and DAM results are shown in Tables XXXV and XXXVI respectively for male speakers under the condition of three links in tandem. Table XXXVII contains the DAM results corresponding to one female speaker. It can be seen that the performance of SYLM APCQ 16 was the lowest of all speech coders tested.

Table XXXVIII contains the DRT results corresponding to five links in tandem for one male speaker. In this test the performance of CVSD B COD 16 was superior to the other 16 kb/s speech coders. Tables XXXIX and XL show the results of the speech quality tests for male and female speakers respectively. It can be seen that speech quality is degraded significantly under conditions of five links in tandem.

(2) <u>Wideband-Narrowband Tandem</u>. The full-duplex tandem operation of wideband and narrowband speech coders was evaluated. The narrowband terminal was a linear predictive coder (LPC) using ten predictor coefficients and operating at a data rate of 2.4 kb/s. A detailed description of this narrowband speech coder is given in reference [8]. Tables XLI and XLII show the DRT and DAM results respectively for male speakers corresponding to LPC tandemed with the wideband speech coders. These results indicate no significant difference in performance between speech coders except for LOG CVSD 16. Tables XLIII and XLIV contain the DRT and DAM results respectively for female speakers. These results also indicate no significant difference in the performance of the speech coders except for COD ADM 16.

The intelligibility and quality results shown in Tables XLV and XLVI respectively represent the performance of the wideband speech coders • operating into LPC with male speakers. The DRT and DAM results for female speakers are shown in Tables XLVII and XLVIII respectively. Overall, the best performance of the 16 kb/s speech coders was achieved by SYLM APCQ 16.

f. Summary of Results. The results of the statistical analyses show clearly that the Schilling CVSD coder operating at 32 kb/s is superior in performance to the other speech coders operating at 16 kb/s. Certainly this result is expected. In order to compare the performances of the 16 kb/s speech coders, the ranking of each speech coder for each operating condition is presented in Table XLIX. This table shows the relative ranking corresponding to intelligibility tests for male speakers. The ranking is based on the results of the Neuman-Kuels analyses. System scores are grouped according to the 0,90 confidence level and the groups are then ordered. For example, under optimal conditions in Table XLIX, both SYLM APCQ 16 and CVSD COD 16 are ranked in the first group. For the male DRT, the Codex CVSD speech coder has the best scores over almost all conditions. The Sylvania APCQ ranks very high except for the multiple link tandems. Table L lists the ranking of the 16 kb/s speech coders according to DAM scores for male speakers. Both SYLM APCO 16 and CVSD B COD 16 are generally superior to the other speech coders under most conditions. Table LI lists the ranking of speech coders based on DRT scores for female speakers. These results indicate that SYLM APCQ 16 is generally superior in performance to the other speech coders. The ranking of systems according to DAM scores for female speakers is shown in Table LII. These results also indicate that SYLM APCQ 16 is generally

superior to the other speech coders.

3

0

13

*

Certain operating conditions are associated primarily with the tactical communications environment. These are helicopter and airborne command post background noise, high bit error rate, and certain tandem connections. Under the nontactical conditions, the Sylvania APCQ algorithm provides the best performance of the speech coders operating at 16 kb/s. Under the tactical conditions, the Codex CVSD speech coder provides the best performance overall.

2. INTELLIGIBILITY AND QUALITY TEST SCORES

The individual intelligibility and quality test scores are presented in this section so that the performance of each speech coder can be evaluated under all test conditions. These test results indicate how the performance of each speech coder is affected by certain operating conditions and speakers. These results should not be used exclusively to compare the performance of different speech coders. The statistical analyses described in the previous section were performed in order to make such comparisons.

Table II lists the DRT scores obtained for the Codex CVSD B. a. Codex CVSD speech coder operating under the conditions shown. The initials of the male speakers are LL, RH, CH, PK, JE, and BV; the initials of the female speakers are JS, LS, and MP. The standard error of each DRT is shown to the right of the score. For some conditions more than one DRT has been performed, and all scores are listed in the table. These results show that the Codex CVSD speech coder produces highly intelligible speech under almost all operating conditions. Table LIV lists the quality scores resulting from the DAM test. These results indicate that the user acceptance of the Codex CVSD is generally high. However, some inconsistencies in the DAM test are revealed in these results. For example, the scores under 0.1% BER are much lower than under the optimal conditions, although it is known that the effect of 0.1% BER is barely perceptible compared with optimal conditions.

b. <u>Codex ARC</u>. The DRT scores of the ARC speech coder are shown in Table LV. These scores indicate that the ARC algorithm generally produces highly intelligible speech. However, the scores under the optimal conditions indicate that this speech coder is rather speaker sensitive; the DRT scores range from 94.1 to 87.4. The DAM scores of the ARC speech coder are shown in Table LVI.

c. <u>Codex ADM</u>. The DRT scores of the Codex ADM speech coder are shown in Table LVII. These scores indicate that the speech produced by this coder is highly intelligible. The DRT scores under the optimal conditions indicate that this speech coder is speaker sensitive; the DRT scores range from 91.9 to 84.8. The speech quality test scores are presented in Table LVIII. d. <u>Schilling CVSD 16 kb/s</u>. The DRT scores of the Schilling CVSD speech coder operating at 16 kb/s are shown in Table LIX. Additional intelligibility tests were performed with cutoff frequencies of 2.0 kHz and 2.5 kHz for the audio output filter. These scores indicate that this coder generally produces highly intelligible speech. The DAM scores of this speech coder are shown in Table LX.

3

0

0

3

e. <u>Schilling CVSD 32 kb/s</u>. The DRT scores of the Schilling CVSD speech coder operating at 32 kb/s are shown in Table LXI. These results indicate that the intelligibility of speech produced by this coder is quite high. The speech quality scores are shown in Table LXII.

f. <u>Sylvania APCQ</u>. Table LXIII lists the DRT scores of the Sylvania APCQ speech coder. The intelligibility scores are generally quite high. It can be seen that speech intelligibility is reduced significantly under conditions of 5% BER and five links in tandem. The quality scores are shown in Table LXIV. The DAM scores are generally consistent with the DRT scores.

g. LOG CVSD. Tables LXV, LXVI, and LXVII list the DRT scores of LOG CVSD operating at 16 kb/s, LOG CVSD operating at 32 kb/s, and General Dynamics CVSD respectively. The DRT scores under optimal conditions are 10 to 15 points lower then expected. This appears to be the result of improper tape recording levels or malfunctioning recording equipment. Tables LXVIII, LXIX, and LXX list the DAM results of LOG CVSD operating at 16 kb/s, LOG CVSD operating at 32 kb/s, and General Dynamics CVSD respectively. The quality test scores appear to be valid and should give a reliable estimate of user acceptance of these speech coders.

12

1.

IV. CONCLUSIONS

0

0

0

0

1.

200

.

Generally, under optimal conditions, all coders produced speech of high intelligibility. The performance of the CVSD coder operating at 32 kb/s was superior to the performance of the other coders operating at 16 kb/s. Overall, the performance of the Codex CVSD coder was superior to that of the other CVSD speech coders operating at 16 kb/s. Under nontactical conditions the performance of the Sylvania APCQ speech coder was superior to the CVSD operating at 32 kb/s on some tests. Under tactical conditions the performance of the Codex CVSD coder was superior to that of the other 16 kb/s speech coders.

13

TANDEM W INTO LPC	DAM	DAM	DAM	DAM	DAM	DAM	
TANDEM LPC INTO W	DAM	DRT	DRT	DAM	DRT	DAM	DAM
TANDEM 5X - 0% BER	DRT	DRT	DRT	DRT	DRT	DRT	DAM
TANDEM 3X - 0% BER	DRT	DRT	DRT	DRT	DRT	DRT	DRT
TANDEM 2X - 0% BER	DRT	DRT	DRT	DAM	DAM	DRT	DAM
- 20 db INPUT	DRT	DRT	DRT	DRT	DRT	DRT	DRT
- 12 db INPUT	DRT	DAM	DRT	DRT	DAM	DRT	DRT
+ 9 4B INPUT	DRT	DRT	DAM	DRT	DRT	DRT	DAM
1% BEK	DRT	DRT	DRT	DRT	DAM	DRT	
язя %I.	DAM	DAM	DRT	DRT	DAM	DRT	DAM
HELI NOISE	DAM	DAM	DRT	DRT	DRT	DRT	DAM
ABCP NOISE	DAM	DAM	DRT	DRT	DRT	DRT	DRT DRT DRT DRT DRT DRT DAM DAM DAM DAM DAM
OFFICE	DRT	DAM	DRT	DRT	DRT	DRT	DAM
OPTIMAL COND.	DRT	DRT	DRT	DAM	DRT	DRT	DAM
	CVSD B COD 16	COD ARC 16	COD ADM 16	SCHIL 16/3	SCHIL 32/4	SYLM APCQ 16	LOG CVSD 16

TABLE I. MATRIX OF CODERS VS TESTS PERFORMED

•.

.

.

TABLE II.

3

0

0

0

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: 0% INPUT: Odb SPEAKERS: 6 MALE

SYSTEM

SCORES	S.E.	NAME	NO.	41	01	ωI	-1	ωI	~1	9
94.8	.50	SCHIL 32/4	4	/	1.4	2.5	3.0	4.2	5.6	21.7
93.4	.40	CVSD B COD 16	0	.95	/	1.1	1.6	2.8	4.2	20.3
92.3	.20	SYLM APCQ 16	5	66.	10	/	0.5	1.7	3.1	19.2
91.8	.60	COD ARC 16		66.	66.		/	1.2	2.6	18.7
90.6	.50	SCHIL 16/3	m	66.	66.	66.	06.	/	1.4	17.5
89:2	.50	COD ADM 16	2	66.	66.	66.	66.	.95	/	16.1
73.1	. 60	LOG CVSD 16	9	66.	66.	66.	66.	66.	66.	1

.488 8 AVERAGE STANDARD ERROR = NO. LISTENERS

. ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS

-

TABLE III, NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 0% INPUT: Odb SPEAKERS: 2 MALE

*

SYSTEM

.

0

0

0

0

0

0

3

NI	11.2	۲.۲	4.2	0.6	0.6	0.1	1
m 1	11	7.0	4.1	0.5	0.5	/	· .
01	10.6	6.5	3.6	0.0	/		
0	10.6	6.5	3.6	/			
٦l	7.0	2.9	/	.90	.90	.90	.90
ام	4.1	/	.90	66.	66.	66.	66.
41	/	.95	66.	66.	66	66.	66.
2	4	2	-	9	0	e	8
NAME	SCHIL 32/4	SYLM APCQ 16	COD ARC 16	LOG CVSD 16	CVSD B COD 16	SCHIL 16/3	COD ADM 16
<u>S.E.</u>	1.20	1.60	1.20	1.10	0.10	1.30	0.50
SCORES	1.1	57.0	54.1	50.5	50.5	50.0	49.9

AVERAGE STANDARD ERROR = 1.108 NO. LISTENERS = 10

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

17

-

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: 0% INPUT: Odb SPEAKERS 3 FEMALE TABLE IV..

0

0

0

8

3

뼺

AVERAGE STANDARD ERROR = .699 NO. LISTENERS = 8 ABOVE DIAGONAL BELOW DIAGONAL

....

SCORE DIFFERENCES
CONFIDENCE LEVELS

10

à

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 0% INPUT: Odb SPEAKERS: 1 FEMALE TABLE V.

13

0

0

3

.

.

\$

·		SYSTEM								•
SCORES	S.E.	NAME	2	41	lon	-1	0	m	9	21
61.5	2.30	SCHIL 32/4	4	/	1.2	9.7	6.9	12.0	12.9	13.6
60.3	2.30	SYLM APCQ 16	2		/	8.5	8.7	10.8	11.7	12.4
51.8	1.70	COD ARC 16	-	66.	66.	/	0.2	2.3	3.2	3.9
51.6	1.10	CVSD B COD 16	0	66.	66.		/	2.1	3.0	3.7
49.5	1.30	SCHIL 16/3	e	66.	66.			/	0.9	1.6
48.64	1.30	LOG CVSD 16	9	66.	66.			/	/	0.7
47.9	1.50	COD ADM 16	8	66.	66.	•			/	/

۴

1.703	SCORE DIF CONFIDENC
ERROR =	
AVERAGE STANDARD ERROR = NO. LISTENERS	ABOVE DIAGONAL BELOW DIAGONAL

- SCORE DIFFERENCES
 CONFIDENCE LEVELS

......

TABLE VI. NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: OFFICE BER: 0% INPUT: 0% SPEAKERS: 1 MALE

8

0

0

0

D

8

13

.

	o	6.6	6.2	6.2	5.8	3.5	3.5	1	
	~1	3.1	2.7	2.7	2.3	0.0	/	66.	
	ωI	3.1	2.7	2.7	2.3	/		66.	
	01	0.8	0.4	0.4	/	06 .	.90	66.	
	-1	0.4	0.0	/		.90	.90	66.	
	۱a	0.4	/			.90	.90	66.	
	41	/				.90	.90	66.	
	9	4	5	-	0	ß	8	9	
SYSTEM	NAME	SCHIL 32/4	SYLM APCQ 16	COD ARC 16	CVSD B COD 16	SCHIL 16/3	COD ADM 16	LOG CVSD 16	
	S.E.	.50	.50	.50	.60	06 .	6.	1.10	
	SCORES	94.5	94.1	94.1	93.7	91.4	91.4	87.9	

AVERAGE STANDARD ERROR = .750 NO. LISTENERS = 8

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

-

TABLE VII. NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: OFFICE BER: 0% INPUT: Odb SPEAKERS: 3 MALE

8

0

0

0

0

8

0

.

	-verna	STSLEM	
 *			

NI	8.7	4.1	2.5	1.7	1.6	1.6	/
ol	1.7	2.5	0.9	0.1	0.0	1	/
اص	1.7	2.5	.6.0	0.1	/	·	
ml	7.0	2.4	0.8	/	/		
۱م	6.2	1.6	/				
-1	4.6	/					.95
41	/	66.	66.	66.	66.	66.	66.
ଥି	4	-	S	e	9	•	2
NAME	SCHIL 32/4	COD ARC 16	SYLM APCQ 16	SCHIL 16/3	LOG CVSD 16	CVSD B COD 16	COD ADM 16
S.E.	8.	02.	1.30	.60	1.40	.80	.70
SCORES	63.3	58.7	57.1	56.3	56.2	56.2	54.6

٩

R = . 946	= 10
ERROR ==	
AVERAGE STANDARD	TENERS
VERAGE	0. LISI

= SCORE DIFFERENCES
= CONFIDENCE LEVELS

ABOVE DIAGONAL BELOW DIAGONAL

21

à

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: OFFICE BER: 0% INPUT: Odb SPEAKERS: 1 FEMALE TABLE VIII.

6

0

0

0

8

8

								/
	ml	7.8	1.7	3.4	2.8	1.5	/	·
	-1	6.3	6.2	1.9	1.3	/	/	
	ol	5.0	4.9	9.0	/	·		.90
	In	4.4	4.3	1	/		.90	.95
*1	41	0.1	/	66.	66.	66.	66.	66.
	~1	1	-	66.	66.	66.	66.	66.
	2	2	4	2	0	-	6	9
SYSTEM	NAME	COD ADM 16	SCHIL 32/4	SYLM APCQ 16	CVSD B COD 16	COD ARC 16	SCHIL 16/3	LOG CVSD 16
	S.E.	8.	.30	.90	1.30	1.20	06.	.1.30
	SCORES	89.8	89.7	85.4	84.8	83.5	82.0	1.18

AVERAGE STANDARD ERROR = 1.012 NO. LISTENERS = 8 ABOVE DIAGONAL BELOM DIAGONAL

- SCORE DIFFERENCES
 CONFIDENCE LEVELS

22

1

. ..

0.9

2.4

•

8.7

9

8.6

4.3

3.7

TABLE IX.

SYSTEM

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: OFFICE BER: D% INPUT: Odb SPEAKERS: 1 FEMALE

.

\$

.

٠

~1	15.7	10.7	8.5	ו.י	5.9	1.8	1
9	13.9	8.9	6.7	5.3	4.1	/	/
ام	9.8	4.8	2.6	1.2	/	.90	.95
ml	8.6	3.6	1.4	/	/	.90	.95
-1	7.2	2.2	/	·		.95	66.
01	5.0	/				66.	66.
41	/	.95	66.	66.	66.	66.	66.
ଞ	4	•	-	æ	2	2	2
NAME	SCHIL 32/4	CVSD B COD 16	COD ARC 16	SČHIL 16/3	SYLM APCQ 16	LOG CVSD 16	COD ADM 16
S.E.	1.50	1.80	1.50	1.20	2.50	1.30	1.30
SCORES S.E.	67.4 1.50	62.4 1.80	60.2	58.8 1.20	57.6	53.5 1.30	51.7

23

•

1.639 AVERAGE STANDARD ERROR = NO. LISTENERS =

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS .

0

0

13

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: ABCP BER: 0% INPUT: Odb SPEAKERS: 2 MALE TABLE X.

8

.

•

٠

8

SYSTEM

b	11.4	7.4	6.3	5.6	4.2	0.8	1
~1	10.6	6.6	5.5	4.8	3.4	/	1
ωI	7.2	3.2	2.1	1.4	/	66.	66.
ωI	5.8	1.8		/		66.	66.
-1	5.1	1.1	/			66.	66.
01	4.0	/			36.	66.	66.
41	/	66.	66.	. 66*	66.	66.	66.
ଥି	4	0	-	e	2	~	9
	SCHTL 32/4 4	CVSD B COD 16 0	COD ARC 16 1	SCHI& 16/3 3	SYLM APCQ 16 5	COD ADM 16 2	LOG CVSD 16 6
NAME		CVSD B				.70 COD ADM 16 2	
S.E. NAME	.60	.80 CVSD B		1.10	.60	.70	.60

AVERAGE STANDARD ERROR = .747 NO. LISTENERS = 8

ABOVE DIAGONAL BELOW DIAGONAL

- SCORE DI FFERENCES CONFIDENCE LEVELS
 - u .

24

1

-

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: ABCP BER: 0% INPUT: Odb SPEAKERS: 3 MALE TABLE XI.

SYSTEM

0

0

0

-

.

8

12	11.5	6 4.2	2 2.8	1.1 1.7	1 0.7	9.0	/
9	10.8 10.9	3.5 3.6	2.1 2.2	1.0 1.	0.1	/	
ν	9.8	2.5	1.1	/			
-1	8.7	1.4	/				
0	7.3	/	6	6	. 6	6	6. 90
<u>NO.</u> 4	/	6.	6.	6.	. 99	6.	66. 3
) N	4	9	ſ	LO.	en	G	~
NAME	- SCHIL 32/4	CVSD B COD 16	COD ARC 16	SYLM APCQ 16	SCHIL 16/3	LOG CVSD 16	COD ADM 16
	•						
S.E.	. 01.1	.70	.90	1.30	1.40	1.30	.90

AVERAGE STANDARD ERROR =1.112NO. LISTENERS=NO. LISTENERS=RBOVE DIAGONAL=SECORE DIFFERENCESBELOW DIAGONAL=CONFIDENCE LEVELS

-
NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: HELI BER: 0% INPUT: Odb SPEAKERS: 2 MALE TABLE XII.

SYSTEM

8

0

0

8

.

.

.

8

2

12	4.4 4.7	2.0 2.3	1.5 1.8	0.6 0.9	0.5 0.8	0.3	/
-1	3.8 3.9	1.4 1.5	0.1 0.0	1.0	/		:
ام	2.9	0.5	/	/			
9	2.4	/	•				
<u>NO.</u>	4	9	2	0	-	2	
NAME	SCHIL 32/4	LOG CVSD 16	SYLM APCQ 16	CVSD B COD 16	COD ARC 16	COD ADM 16	SCHTI 16/3
	SCHI	90T	SYLA	CVŚ	COD	COD	AUS
<u>S.E</u> .	1.20 SCHI	1.20 LOG	1.30 SYLM	1.30 CVS	1.40 COD	1.00 COD	1 EN SCH

AVERAGE STANDARD ERROR = 1.280 NO. LISTENERS = 8

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

.

26

-

 TABLE XIII. NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH

 NOISE: HELI
 BER: 0%
 INPUT: 0dB
 SPEAKERS: 3 MALE

...

0

0

0

0

13

0

3

	01	10.9	10.0	9.3	0.6	8.9	7.8	1
	10	3.1	2.2	1.5	1.2		/	66.
	-1	2.0		0.4	0.1	1	/	66.
	m	1.9	1.0	0.3	/	/		66.
	~1	1.6	0.7	/	/			66.
¥2	41	6.0	/	·				66.
	ν	/						66'
	9	2	4	2	e	-	9	•
SYSTEM	NAME	SYLM APCQ 16	SCHIL 32/4	COD ADM 16	SCHIL 16/3	COD ARC 16	LOG CVSD 16	CVSD B COD 16
	<u>S.E</u> .	1.10 .	1.00	.80	1.00	1.00		1.50
	21	42.7	8	-	40.8		9	8
	SCORES	42.	41	41.1	40	40	39.6	31.8

.

1.076	SCORE DIFI
10	CONFIDENCE
ERROR =	
AVERAGE STANDARD ERROR = NO. LISTENERS	AGONAL
AVERAGE	ABOVE DIAGONAL
NO. LIST	BELOW DIAGONAL

~

- SCORE DIFFERENCES CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: .1% INPUT: Odb SPEAKERS: 2 MALE TABLE XIV.

SYSTEM

9	10.5	9.5	8.8	8.2	7.7	6.6	/
mΙ	3.9	2.9	1.9	1.6	1.1	/	66.
NI	2.8	1.8	0.8	0.5	/		66.
Ś	2.3	1.3	0.3	/			66.
-1	2.0	1.0	/				66.
0	1.0	/				.90	66.
41	/				.90	66.	66.
2	4	0	-	2	8	ß	9
NAME	SCHIL 32/4	CVSD B COD 16	COD ARC 16	ŠYLM APCQ 16	COD ADM 16	SCHIL 16/3	LOG CVSD 16
Ś.E.	1.00	.50	.80	.80	.50	.30	.90
<u>\$CORES</u>	94.7	93.7	92.7	92.4	6.19	8.06	84.2

28

.725⁻8 AVERAGE STANDARD ERROR = NO. LISTENERS =

n ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS

ġ,

Ģ

3

2

8

8

11

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: .1% INPUT: Odb SPEAKERS: 2 MALE TABLE XV.

SYSTEM

3

G.

23

8

.

.

8

	60	14.7	10.3	6.5	5.4	5.1	3.0	/
	~1	11.7	7.3	3.5	2.4	2.1	/	06.
	01	9.6	5.2	1.4	0.3	/		66.
	ml	9.3	4.9	:	/			66°
	-1	8.2	3.8	/				66.
	ωI	4.4	/	.95	.95	.95	66.	66.
	41	/	66.	66.	66.	66.	66.	66.
	9	4	2	-	e	0	2	9
	NAME	SCHIL 32/4	SYLM APCQ 16	COD ARC 16	SCHIL 16/3	CVSD B COD 16	COD ADM 16	LOG CVSD 16
	S.E.	.90	1.80	1.20	.70	1.20		1.10
	SCORES	61.4	57.0	53.2	52.1	51.8	49.7	46.7

AVERAGE STANDARD ERROR = 1.161 NO. LISTENERS = 10 ABOVE DIAGONAL BELOW DIAGONAL

= SCORE DIFFERENCES
= CONFIDENCE LEVELS

TABLE XVI.

SPEAKERS 1 FEMALE NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: .1% IMPUT Odb SPEAKE

8

3

\$

*

	9	17.7	15.2	13.9	13.4	12.5	10.5	1
•	~1	7.2	4.7	3.4	2.9	2.0	/	66.
	-1	5.2	2.7	1.4	6.	/	/	66.
	mI	4.3	1.8	. 5	/			66.
	١م	3.8	1.3	/			.90	66.
•	01	2.5	/				.95	66.
	41	/	.90	.95	.95	66.	66.	66.
	2	4	0	2	e	-	2	9
SYSTEM	NAME	SCHIL 32.4	CVSD B COD 16	SYLM APCQ 16	SCHIL 16/3	COD ARC 16	COD ADM 16	LOG CVSD 16
	S.E.	.70	.90	.70	.70	1.20	1.00	1.40
	SCORES	95.7	93.2	6.19	91.4	90.5	¥ 88.5	78.0
								30

.977 8 AVERAGE STANDARD ERROR = NO. LISTENERS =

•• 5

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DI FFERENCES
 CONFIDENCE LEVELS

 TABLE XVII.
 NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH

 NOISE:
 QUIET
 BER:
 1%
 INPUT:
 0dB
 SPEAKERS:
 1 FEMALE

0

0

1

3

3

	5
	NO.
SYSTEM	NAME
2	

9	18.4	16.4	13.2	11.2	9.3	1.7	/
N	11.3	9.3	6.1	4.1	2.2	/	66.
0	1.9	1.1	3.9	1.9	/		66.
m	7.2	5.2	2.0	/			66.
-1	5.2	3.2	/			66.	66.
41	2.0	/		.95	66.	66.	66.
νοI	/		.95	66.	66.	66.	66.
<u>8</u>	2	4	-	e	•	2	9
NAME	SYLM APCQ 16	SCH1L 32/4	COD ARC 16	SCHIL 16/3	CVSD B COD 16	COD ADM 16	LOG CVSD 16
S.E.	2.80	1.20	. 80	1.40	.90	1.00	1.20
SCORES	. 5.09	58.5 1.20	55.3	53.3	51.4	49.2	42.1

1.470	SCORE DIF
	D U
ERROR	
AVERAGE STANDARD ERROR = NO. LISTENERS	ABOVE DIAGONAL BELOW DIAGONAL
AVERAG	ABOVE

SCORE DIFFERENCES
 CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: 1% INPUT: Odb SPEAKERS: 2 MALE TABLE XVIII.

20

0

0

13

.

*

.

8

8

9

	10	14.8	13.5	0.11	10.5	9.5	8.4	1
	-	6.4	5.1	2.6	2.1	1.1	/	66.
	νI	5.3	4.0	1.5	1.0	/	/	66.
	mΙ	4.3	3.0	.5	/	/		66.
	~1	3.8	2.5	/	/		.90	66,
÷1	41	1.3	/	5 6.	.95	66.	66.	66.
	01	/	/	66.	66.	66 .	66.	66.
	Ś	0	4	2	e	5	-	9
SYSTEM	NAME	CVSD B COD 16	SCHIL 32/4	COD ADM 16	SCHIL [°] 16/3	SYLM APCQ 16	COD ARC 16	LOG CVSD 16
	S.E.	.50	.80	.40	.00	.80	1.10	1.00
	SCORES	93.1	8.16	89.3	88.8	87.8	86.7	78.3

.

AVERAGE STANDARD ERROR = .780 NO. LISTENERS = 8 ABOVE DIAGONAL = SCORE DIFFERENCES BELOW DIAGONAL = CONFIDENCE LEVELS NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 1% INPUT: Odb SPEAKERS: 2 MALE TABLE XIX.

.

0

0

Ū.

8

3

8

	ωI	10.8	5.4	1.5	1.1	0.1	/
	m	10.7	5.3	1.4	1.0	/	/
	-1	9.7	4.3	0.4	/		
	9	9.3	3.9	/			
	~I	5.4	/	66.	66.	66.	66.
	41	/	66.	66.	66.	66.	66.
	N	4	2	9	-	e	S
SYSTEM	NAME	SCHIL 32/4	COD ADM 16	LOG CVSD 16	COD ARC 16	SCHIL 16/3	SYLM APCQ 16
	S.E.	06 .	.50	0.	1.50	1.00	1.20
	SCORES	50.7	45.3	41.4	41.0	40.0	39.9

1

AVERAGE STANDARD ERROR = .979 NO. LISTENERS = 10 ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS

-

TABLE XX.

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: 1% INPUT: Odb SPEAKERS: 1 FEMALE

0

3

3

.

3

8

	-
	1000
B	
Ш	
5	
S	

9	26.3	24.4	22.0	20.6	17.9	/
-1	8.4	6.5	4.1	2.7	/	66.
~1	5.7	3.8	1.4	/	.95	66.
ωI	4.3	2.4	/		66.	66.
ml	1.9	/	.90	.95	66.	66.
41	/		66.	66.	66.	66.
2	4	e	5	8	-	9
NAME	SCHIL 32/4	SCHIL 16/3	SYLM APCQ 16	COD ADM 16	COD ARC 16	LOG CVSD 16
S.E.	.1.00	06 .	.80	.80	1.10	.90
SCORES	91.5	89.6	87.2	85.8	83.1	65.2

2

AVERAGE STANDARD ERROR = .923 NO. LISTENERS = 8 ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
CONFIDENCE LEVELS

ι

SCORE DIFFERENCES CONFIDENCE LEVELS 1.708 = AVERAGE STANDARD ERROR = NO. LISTENERS = = ABOVE DIAGONAL BELOW DIAGONAL

·....

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH INPUT: 0dB BER: 1% NOISE: QUIET TABLE XXI.

.

3

8

.

.

.

35

COD ARC 16

1.50

38.9

-

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: 0% INPUT 6dB SPEAKERS: 1 MALE 3.2 m 5.6 3.4 3.1 5,1 2.5 2.0 0 e. ٦. 1.9 ~ 9 2.4 2.2 1.7 -1 5 5 · · 4 2 5 0 0 4 CVSD B COD 16 SYLM APCQ 16 LOG CVSD 16 COD ARC 16 SCHIL 32/4 TABLE XXII. NAME SYSTEM 1 . 90 .40 .80 . 50 .90 S.E. SCORES . 6.96 94.5 96.4 94.7 94.4

8

3

8

•

· .

.804 AVERAGE STANDARD ERROR = NO. LISTENERS = ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

•

-

.95

.95

.95

66.

66.

3

SCHIL 16/3

1.10

E. 161

1

		TABLE XXIII.	NEUMAN-KU Noise: Qu	UELS AN	IELS ANALYSIS OF SYSTEM DAM SCORES WITH JIET BER: 0% INPUT: 6dB SPEAKERS: 2 MALE	SYSTEM	T: 6dB	ORES WI SPEA	KERS: 2	MALE
		SYSTEM			ş.,					
SCORES	S.E.	NAME	2	41	lou	-1	мI	0	~I	اف
	1.00	SCHIL 32/4	4	/	1.6	6.0	6.4	7.7	8.2	11.6
	1.90	SYLM APCQ 16	5		/	4.4	4.8	6.1	6.6	10.0
-	.90	COD ARC 16	-	66.	66.	/	4.	1.7	2.2	5.6
_	1.00	SCH1L [*] 16/3	e	66.	66.		1	1.3	1.8	5.2
	.70	CVSD B COD 16	0	66.	66.			/	.5	3.9
52.6	.60	COD ADM 16	2	66.	66.				/	3.4
~	1.00	LOG CVSD 16	9	66.	66.	66.	66.	.95	.95	/

.

4

.

3

8

.

.

•

.

.

.

.

AVERAGE STANDARD ERROR =1.087NO. LISTENERS=10NO. LISTENERS=500 E DIFFERENCESABOVE DIAGONAL=500 F IDENCE LEVELSBELOW DIAGONAL=CONF IDENCE LEVELS

ŧ

											1	
0			10	12.6	9.5	4.9	3.2	2.4	2.2	1		
8	FEMALE		~1	10.4	7.3	2.7	1.0	.2	/			
	S WITH AKERS: 1		01	10.2	۱.1	2.5	8.	/				
	'STEM DAM SCORES WITH INPUT: 6db SPEAKERS:		mΙ	9.4	6.3	1.7	/					•
•	SYSTEM D INPUT:		-1	1.7	4.6	/						
	YSIS OF BER 0%	÷.	Jم	3.1	/	06.	.90	.90	.90	66.	•	
	IELS ANAL		41	/		.95	66.	66	66.	66.		1.853
•	NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER 0% INPUT: 6dB SPEAKERS:		2	4	S	-	e	0	2	9		ERROR =
	TABLE XXIV.	SYSTEM	NAME	SCHIL 32/4	SYLM APCQ 16	COD ARC 16	SCHIL 16/3	CVSD B COD 16	COD ADM 16	LOG CVSD 16		AVERAGE STANDARD ERROR =
	F		S.E.	1.80	3.00	1.60	06.	1.30	. 2.30	1.20		A
•			SCORES	62.8	59.7	55.1	53.4	52.6	52.4	50.2		
									ar I	38		!

•

8

Non-And

.

SCORE DIFFERENCES CONFIDENCE LEVELS

ABOVE DIAGONAL BELOW DIAGONAL

.

. -

38 . .

TABLE XXV.

SPEAKERS: 1 MALE NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER: 0% INPUT: -12db SPEA

8

0

0

.

.

.

:

.

SYSTEM

	~1	15.9	13.4	12.6	9.6	8.7	5.3	/
	91	10.6	8.1	7.3	4.3	3.4	/	66.
	-1	7.2	4.7	3.9	6.	/	.95	66.
	۳I	6.3	3.8	3.0	/	/	66.	66.
	01	3.3	8.	/	.95	.95	66.	66.
	ωI	2.5	/		.95	66.	66.	66.
	٩I	/	.90	.90	66.	66.	66.	66.
	<u>8</u>	4	2	•	e	-	9	2
						COD ARC 16		
	<u>S.E</u> .	60	1.10	.80	.70	1.10	1.20	1.20
	SCORES	95.1	92.6	8.19	88.8	87.9	84.5	79.2

.

. 985 AVERAGE STANDARD ERROR = NO. LISTENERS =

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

•

-

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 0% INPUT: -12dB SPEAKERS: 2 MALE TASLE XXVI.

3

0

0

\$

*

*

.

3

3

13

	~I	13.1	11.0	9.7	5.1	5.0	1.0	1
	9	12.1	10.0	8.7	4.1	4.0	/	/
	-1	8.1	6.0	4.7	.1	/	.95	66*
	mI	8.0	5.9	4.6	/		.95	66.
	41	3.4	1.3		.95	.95	66.	66.
	01	2.1	/		66.	66.	66.	66.
	ν	/		.90	66.	66.	66.	66.
	<u>.</u>	s	•	4	e	I	9	8
SYSTEM	NAME	SYLM APCQ 16	CVSD B COD 16	SCHIL 32/4	SCHIL 16/3	COD ARC 16	LOG CVSD 16	COD ADM 16
SYSTEM	S.E.	1.60 ŞYLM	.90 CVSD B	52.2 .80 SCHIL 32/4	. 90	.80 COD	1.30 L06	1.20 COD

•

40

1.108 10	SCORE DIFFE
<u>n</u> n	8 8
ERROR	
AVERAGE STANDARD ERROR NO. LISTENERS	ABOVE DIAGONAL BELOW DIAGONAL

4

= SCORE DIFFERENCES = CONFIDENCE LEVELS

0

0

0

8

8

3

8

• . ۰. NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 0% INPUT: -12dB SPEAKERS: 1 FEMALE TABLE XXVII.

	~1	12.9	8.9	8.6	5.3	2.0	6.	/
	9	12.0	8.0	1.1	4.4	1.1	/	
	ml	10.9	6.9	9.9	3.3	/		
	-1	1.6	3.6	3.3	/	.90	06.	.95
	41	4.3	۳.	/		66.	66.	66.
	01	4.0	1			66.	6.	66.
	۱م	/	06.	.90	66.	66.	66.	66.
	2	2	0	4	1	e	9	8
SYSTEM	NAME	SYLM APCQ 16	CVSD 8 COD 16	SCH1L 32/4	COD ARC 16	SCHIL 16/3	LOG CVSD 16	COD ADM 16
	<u>S.E.</u>	2.00	1.20	1.80	1.60	.90	. 80	.90
	SCORES	54.9	50.9	50.6	47.3	44.0	42.9	42.0

41

-

1.389 10 AVERAGE STANDARD ERROR = NO. LISTENERS

- . 11 ABOVE DIAGONAL BELOW DIAGONAL
- SCORE DIFFERENCES CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: QUIET BER 0% IMPUT: -20dB SPEAKERS: 1 MALE TASLE XXVIII.

0

0

0

0

0

3

8

		SYSTEM			F						
-	S.E.	NAME	ଥି	41	ol	۶	ωĮ	-1	~1	o l	
	1.30	SCHIL 32/4	4	/	4.7	5.3	7.2	13.5	15.2	17.2	
	1.30	CVSD B COD 16	0	.95	/	9.	2.5	8.8	10.5	12.5	
	1.60	SYLM APCQ 16	2	.95		/	1.9	8.2	6.6	11.9	
	1.30	SCHIL IG/3	e	66.			/	6.3	8.0	10.0	
78.3	.90	COD ARC 16	1	66.	66.	66.	66.	/	1.7	3.7	
	1.40	COD ADM 16	2	66.	66.	66.	66.		/	2.0	
1	1.00	LOG CVSD 16	9	66.	66.	66.	66.			/	

1.276 8 AVERAGE STANDARD ERROR = NO. LISTENERS =

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
CONFIDENCE LEVELS

42

ę

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 0% INPUT: -20db SPEAKERS: 2 MALE TABLE XXIX.

SYSTEM

3

0

0

3

8

.

.

\$

\$

8

:

-1	11.4	3.6	2.4	-	/		
m	11.3	3.5	2.3	/		.91	
41	0.6	1.2	/_			66.	
01	7.8	/		.,90	6 .	66.	
νοI	/	66.	66.	66.	66.	66.	
NO.	2	0	4	3	_	~	
NAME	SYLM APCQ 16	CVSD B COD 16	SCH1L 32/4	SCHIL 16/3	COD ARC 16	COD ADM 16	
S.E. NAME	. 70 SYLM APCQ 16	.90 CVSD B COD 16	1.10 SCHIL 32/4	1.00 SCHIL 16/3	1.10 COD ARC 16	1.10 COD ADM 16	

•

3.6

2.7

5.9

5.0

14.9

14.0

9

2

7.1

6.2

3.5

2.6

6.

6.

6.

66.

66.

66.

9

L0G CVSD 16

1.30

38.3

1.043 10 AVERAGE STANDARD ERROR = NO. LISTENERS = ABOVE DIAGONAL BELOW DIAGONAL

= =

SCORE DIFFERENCES CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: QUIET BER: 0% INPUT: -20dB SPEAKERS: 1 FEMALE TABLE XXX.

8

0

0

8

.

.

8

8

0

0

	9	14.2	7.7	7.0	5.6	3.5	4.	/
	~1	13.8	7.3	6.6	5.2	3.1	/	/
	41	10.7	4.2	3.5	2.1	1	/	
	ml	8.6	2.1	1.4	/	·	.95	.95
	-1	7.2	۲.	/	·		66.	66.
	01	6.5	/			06.	66.	66.
	νI	/	66.	66.	66.	66.	66.	66.
	5	5	0	-	S	4	2	9
SYSTEM	NAME	SYLM APCQ 16	CVSD B COD 16	COD ARC 16	SCHTL 16/3	SCHIL 32/4	COD ADM 16	L0G CVSD 16
	S.E.	2.00	.90	1.40	1.00	.70	1.30	.90
	SCORES	51.1	44.6	43.9	42.5	40.4	37.3	36.9

AVERAGE STANDARD ERROR = 1.240 NO. LISTENERS = 10 ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS .

44

Ö

Õ

3

\$

*

.

*

.

TABLE XXXII.

6.8 2.2 5.7 14.6 5.1 7.7 NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: TANDEM 2X BER: 0% INPUT Odb SPEAKERS: 2 MALE 9 3.5 2.9 4.6 5.5 12.4 5 .95 2.6 9.5 1.7 9. N .95 2.0 8.9 1.1 3 66. 7.8 6. 0 66. 6.9 -1 66. 66. 66. 66. 66. 41 2 5 4 0 3 2 CVSD B COD 16 SYLM APCQ 16 COD ADM 16 COD ARC 16 SCHIL 16.3 SCHIL 32/4 NAME SYSTEM 1 1.10 .20 .70 .90 80. 1.00 S.E. SCORES 58.7. 50.9 49.8 46.3 51.8 49.2 1

AVERAGE STANDARD ERROR = .986 NO. LISTENERS = 10

4

66.

.99

66.

66.

66.

9

L0G CVSD 16

1.10

44.1

46

. ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS

. 4 NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: TANDEM 2X | BER; 0% INPUT: 0dB SPEAKERS: 1 FEMALE 0 0 9. 4.1 0 0 SCORE DIFFERENCES
 CONFIDENCE LEVELS 3.5 N 0 AVERAGE STANDARD ERROR = 1.103 NO. LISTENERS = 8 .95 .95 -1 Ś 0 2 2 CVSD B COD 16 ABOVE DIAGONAL BELOW DIAGONAL TABLE XXXIII. COD ARC 16 COD ADM 16 NAME 0 SYSTEM ., i. 1.10 1.20 1.00 0 S.E. , SCORES ۰. 88.7 85.2 84.6 \$ 1 47 .

0

1

.

.

.

*

\$

:

۰.

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: TANDEM 2X BER: 0% INPUT: Odb SPEAKERS: 1 FEMALE TABLE XXXIV.

SYSTEM

9	12.6	8.1	7.6	6.8	6.7	2.6	/
~1	10.01	5.5	5.0	4.2	4.1	/	-
ωI	5.9	1.4	0.9	0.1	/	·	66.
Ŋ	5.8	1.3	0.8	/			66.
_ 0	5.0	0.5	/			.90	66.
-1	4.5	/				.90	66.
41	/	.95	.95	.95	.95	66.	66.
<u>.</u>	4	-	0	2	e	2	9
NAME	SCHIL 32/4	COD ARC 16	CVSD 8 COD 16	SYLM APCQ 16	SCHIL 16/3	COD ADM 16	LOG CVSD 16
<u>S.E</u> .	2.10	1.20	1.50	1.70	1.20	1.20	.70
SCORES	56.7	52.2	51.7	50.9	50.8	46.7	44.1

1

AVERAGE STANDARD ERROR = 1.432 NO. LISTENERS = 10 ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: TANDEM 3X BER: Odb INPUT: Odb SPEAKERS: 1 MALE TABLE XXXV.

.

SYSTEM

•

۰.

ы	15.2	12.6	11.4	6.5	6.0	3.5	/
9	11.7	9.1	7.9	3.0	2.5	/	.95
~1	9.2	6.6	5.4	0.5	/	'	66.
m	8.7	6.1	4.9	/	·		66.
-1	3.8	1.2	/	66.	66.	66.	66.
01	2.6	/	/	66.	66.	66.	66.
41	/	-	.	66.	66.	66.	66.
21	4	0	-	e	2	9	2
NAME	SCH1L 32/4	CVSD B COD 16	COD ARC 16	SCHIL 16/3	COD ADM 16	LOG CVSD 16	SYLM APCQ 16
S.E.	1.90	1.20	1.00	1.00	.60	.60	1.20
SCORES	94.4	91.8	9.06	85.7	85.2	82.7	79.2

1.147 8 AVERAGE STANDARD ERROR = NO. LISTENERS =

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

.

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: TANDEM 3X BER: 0% INPUT: 0db SPEAKERS: 2 MALE TABLE XXXVI.

	ŝ	17.8	13.7	9.3	6.7	5.6	/
	9	12.2	8.1	3.7		/	66.
	~1	111	7.0	2.6	/		66.
	ы	8.5	4.4	/			66.
	-1	4.1	/	.95	66.	66.	66.
	4	/	.95	66.	.99	66.	66.
	ହା	4	-	S	2	9	2
SYSTEM	NAME NO.	SCHIL 32/4 4	COD ARC 16 1	SCHIL 16/3 3	COD ADM 16 2	LOG CVSD 16 6	SYLM APCQ 16 5
SYSTEM		.90 SCHIL 32/4 4	.90 COD ARC 16 1	1.20 SCHIL 16/3 3	1.10 COD ADM 16 2	1.20 LOG CVSD 16 6	2.10 SYLM APCQ 16 5

	ERENCES
1.299 10	SCORE DIFFERENCES CONFIDENCE LEVELS
ERROR =	
AVERAGE STANDARD ERROR = NO. LISTENERS =	ABOVE DIAGONAL BELOW DIAGONAL
AVERAG	ABOVE

50

•

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: TANDEM 3X BER: 0% INPUT: Odb SPEAKERS: 1 FEMALE TABLE XXXVII.

SYSTEM

8

Q

0

0

0.

0.

0

0

\$

			•			
ы	16.2	6.6	6.3	2.6	1.5	/
ø	14.7	5.1	4.8	Ξ	/	
~1	13.6	4.0	3.7	/		
-1	6.6	0.3	/		.90	.95
ml	9.6	/			.90	.95
41	/	66.	66.	66.	66.	66.
2	4	e	-	8	9	2
NAME	SCHIL 32/4	SCHIL 16/3	COD ARC 16	COD ADM 16	LOG CVSD 16	SYLM APCQ 16
S.F.	1.70	1.40	1.10	2.00	1.00	1.30
SCORES	57.4	47.8	47.5	43.8	42.7	41.2

AVERAGE STANDARD ERROR = 1.458 NO. LISTENERS = 10

ABOVE DIAGONAL BELOW DIAGONAL

= SCORE DIFFERENCES = CONFIDENCE LEVELS

•

SPEAKERS: 1 MALE TABLE XXXVIII. NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: TANDEM 5X BER: 0% INPUT: 0dB S

:

:

Sec.

0

5

8

		30.7	26.8	23.7	4.1	16.1	12.3	1
	lor.	30	26	5	1	Ĩ	12	/
	9	18.4	14.5	11.4	5.1	3.8	/	6.
	ml	14.6	10.7	7.6	1.3	/	.95	66.
	~1	13.3	9.4	6.3	/		360	66.
	-1	7.0	3.1	/	66.	66.	66.	66.
	01	3.9	/	.90	66.	66.	66.	66.
	41	/	.95	66.	66.	66.	66.	66.
	No.	4	0	-	~	e	9	S
SYSTEM	NAME	SCHIL 32/4	CVSD B COD 16	COD ARC 16	COD ADM 16	SCHIL 16/3	LOG CVSD 16	SYLM APCQ 16
	S.E.	1.10	06 .	1.10	.80	1.60	1.40	1.50
	SCORES	93.1	89.2	86.1	8.67	78.5	74.7	62.4

٠

1.233 8 AVERAGE STANDARD ERROR = NO. LISTENERS

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: TANDEM 5X BER: 0% INPUT: Odb SPEAKERS: 2 MALE TABLE XXXIX.

1

٠.

3

8

	ر ای	27.3	18.7	17.5	17.4	13.3	10.8	1
	10	16.5	7.9	6.7	9.9	2.5	1	66.
	~1	14.0	5.4	4.2	4.1	1	/	66.
	ml	6.6	1.3	0.1	1	06.	66.	66.
	01	9.8	1.2	1	/	06 .	66.	66.
	-1	8.6	/	/		.95	66.	66.
	41	/	66.	66.	.99	66.	66.	66.
	<u>.</u>	4	-	0	ю	2	9	2
SYSTEM	NAME	SCHIL 32/4	COD ARC 16	CVSD B COD 16	SCHIL 16/3	COD ADM 16	L0G CVSD 16	SYLM APCQ 16
	S.E.	1.00	1.10	1.10	1.20	1.30	1.30	2.10
	SCORES	52.9	44.3	43.1	43.0	28.9	36.4	25.6

٩

DIF
SCORE DIF CONFIDENC
ABOVE DIAGONAL BELOW DIAGONAL

= SCORE DIFFERENCES = CONFIDENCE LEVELS

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: TANDEM 5X BER: 0% INPUT: Odb SPEAKERS: 1 FEMALE TABLE XL.

2

.

.

.

·	ωI	19.2	17.4	15.5	14.0	11.9	10.3	/
	9	8.9	۱.۲	5.2	3.7	1.6	/	66.
	~1	7.3	5.5	3.6	2.1	/		66.
	0	5.2	3.4	1.5	/			66.
	က၊	3.7	1.9	/			.90	66.
	-1	1.8	/			.95	66.	66.
	41	/			.90	66.	66.	66.
	2	4	-	æ	0	8	9	2
SYSTEM	NAME	SCHIL 32/4	COD ARC 16	SCHIL 16/3	CVSD B COD 16	COD ADM 16	LOG CVSD 16	SYLM APCQ 16
	S.E.	1.40	.90	1.30	1.10	1.30	1.10	2.30
	SCORES	46.2	44.4	42.5	41.0	38.9	37.3	27.0

۲

. .

1.407 AVERAGE STANDARD ERROR = NO. LISTENERS = ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES CONFIDENCE LEVELS = .

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: LPC INTO W BER: 0% INPUT: 0db SPEAKERS: 1 MALE TABLE XLI.

-

5

-

٠

.

.

:

:.

-	-	1	
	J	I	
t	2	l	
>	-	ł	
U	0	ı	

0	11.4	9.3	0.6	8.8	8.7	8.0	/
l ou	3.4	1.3	1.0	0.8	0.7	/	66.
2	2.7	0.6	0.3	0.1	/		66.
-1	2.6	0.5	0.2	/			66.
m	2.4	0.3	/				66.
41	2.1	/					66.
01	/						66.
Ś	•	4	e	-	5	ß	9
NAME	CVSD B COD 16	SCHIL 32/4	SCHIL 16/3	COD ARC 16	COD ADM 16	SYLM APCQ 16	L0G CVSD 16
S.E.	.50	1.00	1.10	1.20	1.10	1.00	1.10
SCORES	88.4	86.3	. 86.0	85.8	85.7	85.0	77.0

•

55

1.023 8 AVERAGE STANDARD ERROR = NO. LISTENERS =

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

ł

NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: LPC INTO W BER: 0% INPUT: Odb SPEAKERS: 2 MALE TABLE XLII.

SYSTEM

:

3

0

0

8

ωI	4.2	2.0	1.3	0.6	0.4	0.4	1
١٥	3.8	1.6	0.9	0.2	0.0	/	/
6	3.8	1.6	0.9	0.2	/		
21	3.6	1.4	0.7	/			
01	2.9	0.7	/				
-1	2.2	/					
41	/						
<u>8</u>	4	-	0	8	9	2	e
NAME	SCHIL 32/4	COD ARC 16	CVSD B COD 16	COD ADM 16	LOG CVSD 16	SYLM APCQ 16	SCHIL 16/3
		1.60 COD ARC 16					1.00 SCHIL 16/3

.

AVERAGE STANDARD ERROR = 1.347 NO. LISTENERS = 10

ABOVE DIAGONAL = SCORE DIFFERENCES BELOW DIAGONAL = CONFIDENCE LEVELS

SPEAKERS: 1 FEMALE TABLE XLIII, NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: LPC INTO W BER: 0% INPUT: Odb

SYSTEM

8

0

0

0

.

:

S	6.6	2.8	2.2	1.3	0.1	1
ωI	6.5	2.7	2.1	1.2	/	·
01	5.3	1.5	6.0	/	·	
4	4.4	9.0	/	·		
-1	3.8	/	·			
~1	/	06.	.90	.95	.95	.95
9	~	-	4	0	e	2
NAME	COD ADM 16	COD ARC 16	SCHIL 32/4	CVSD B COD 16	SCHIL 16/3	SYLM APCQ 16
S.E.	0	.30	1.30	1.10	2.10	1.20
on	9.	-	-	-	3	-

AVERAGE STANDARD ERROR = 1.342 NO. LISTENERS = 8

ABOVE DIAGONAL BELOW DIAGONAL

CONFIDENCE LEVELS

•

I FEMALE			•	•						
SPEAKERS: 1 FEMALE		6	4.7	3.1	2.1	0.8	0.7	0.3	/	
		9	4.4	2.8	1.8	0.5	0.4	/	<i>'</i>	
AM SCORES WI INPUT: 0dB		01	4.0	2.4	1.4	0.1	/	/		
TEM DAM 0%		~	3.9	2.3	1.3	/	/			
OF SYSTEM [BER: 0%		S	2.6	1.0	/	/				
MAN-KUELS ANALYSIS O NOISE: LPC INTO W		-1	1.6	/	/				3	
UELS AN		41	1	/						
NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: LPC INTO W BER: 0% INPUT: 0dB		<u>.</u>	4	-	5	2	0	9	æ	
TABLE XLIV. N	SYSTEM	NAME	SCHIL 32/4	COD ARC 16	SYLM APCQ 16	COD ADM 16	CVSD B COD 16	L0G CVSD 16	SCHIL 16/3	
		S.E.	2.20	1.80	1.50	2.00	1.20	1.50	1.20	
		SCORES	44.0	42.4	41.4	40.1	40.0	39.6	39.3	

0

0

8

.

.

.

•

AVERAGE STANDARD ERROR = 1.667 NO. LISTENERS = 10

ABOVE DIAGONAL = BELOW DIAGONAL

= SCORE DIFFERENCES = CONFIDENCE LEVELS

•

SPEAKERS: 1 MALE NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: W INTO LPC BER: 0% INPUT: 0dB S TABLE XLV.

:

\$

1

-

2
NAME

41	15.2	11.3	10.6	8.2	6.7	/
ωI	8.5	4.6	3.9	1.5	/	66.
~1	7.0	3.1	2.4	/		66.
01	4.6	0.7	/			66.
-1	3.9	/				66.
١م	/	.90	.90	.95	66.	66.
ŝ	2	-	0	8	e	4
NAME	SYLM APCQ 16	COD ARC 16	CVSD B COD 16	COD ADM 16	SCHIL 16/3	SCHIL 32/4
S.E.	.80	.80	.80	1.10	1.40	2.90
SCORES	86.8	82.9	82.2	79.8	78.3	.71.6

.

AVERAGE STANDARD ERROR = 1.500 NO. LISTENERS = 8 ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

59

0	·. ·												
		2 MALE											
0		SPEAKERS: 2 MALE											
\$		S WITH		01	6.3	4.3	3.7	2.4	2.0	/			
		V, SCORE NPUT: (~1	4.3	2.3	1.7	0.4	/				
		TEM DAN		ml	3.9	1.9	1.3	/					
	•	OF SYS BER: (-1	2.6	9.0	/						
•		LPC LPC		ы	2.0	/	·						
		ELS AN		41	/	-				.95			
•		NEUMAN-KUELS ANALYSIS OF SYSTEM DAM SCORES WITH NOISE: W INTO LPC BER: 0% INPUT: 0db		NO.	4	2	-	Э	2	0			
•		TABLE XLVI.	SYSTEM	NAME	SCHIL 32/4	SYLM APCQ 16	COD ARC 16	SCHIL 16/3	COD ADM 16	CVSD B COD 16			
	; ;			S.E.	1.60	1.30	1.00	1.80	.80	1.20			
•				SCORES	47.1	45.1	44.5	43.2	42.8	40.8		•	

AVERAGE STANDARD ERROR = 1.327 NO. LISTENERS = 10 ABOVE DIAGONAL = SCOPE DI

•

ABOVE DIAGONAL = (BELOW DIAGONAL = (

SCORE DIFFERENCES
 CONFIDENCE LEVELS

.

0

0

.

.

* :

•

NEUMAN-KUELS ANALYSIS OF SYSTEM DRT SCORES WITH NOISE: W INTO LPC BER: 0% INPUT: Odb SPEAKERS: 1 FEMALE TABLE XVII.

SYSTEM

S.E.

SCORES

18.3 2 15.1 0 14.4 -8.7 5 1.1 3 41 Ś SCHIL 32/4 NAME

18.3	11.2	9.6	3.9	3.2	/
15.1	8.0	6.4	0.7	/	
14.4	7.3	5.7	/	·	
8.7	1.6	/	.95	.95	66.
1.7	/		66.	66.	66.
/	66.	66.	66.	66.	66.
4	æ	2	-	0	2
SCH1L 32/4	SCHIL 16/3	SYLM APCQ 16	COD ARC 16	CVSD B COD 16	COD ADM 16
1.40	1.50	1.30	1.80	1.80	1.70
82.0	74.9	73.3	67.6	6.99	63.7

4

= SCORE DIFFERENCES
= CONFIDENCE LEVELS AVERAGE STANDARD ERROR = 1.595 NO. LISTENERS = 8 ABUVE DIAGONAL BELOW DIAGONAL
	01	8.3
	ωI	2.2 3.3 5.8 6.3 8.3
	~1	5.8
	-1	3.3
	41	2.2
	IJ	/
	NO.	2
SYSTEM	NAME	SYLM APCQ 16
	SYSTEM	

2.0

3

.

.

.

:

01	8.3	6.1	5.0	2.5	2.0	/
ml	6.3	4.1	3.0	0.5	/	/
~1	5.8	3.6	2.5	/	/	
-1	3.3	1.1	/	/		06.
41	2.2	/	/		\$.95
IJ	/			.95	.95	66.
<u>.</u>	2	4	-	2	e	0
NAME NO.	SYLM APCQ 16 5	SCHIL 32/4 4	COD ARC 16 1	COD ADM 16 2	SCHIL 16/3 3	CVSD B COD 16 0
	1.60 SYLM APCQ 16 5	1.60 SCHIL 32/4 4	1.40 COD ARC 16 1	1.20 COD ADM 16 2	1.10 SCHIL 16/3 3	1.40 CVSD B COD 16 0

.

AVERAGE STANDARD ERROR = 1.396 NO. LISTENERS = 10

ABOVE DIAGONAL BELOW DIAGONAL

SCORE DIFFERENCES
 CONFIDENCE LEVELS

	_		-	_	_		
TANDEM W INTO LPC	2	2	2	2		-	
ТАИДЕМ СРС ІИТО W	-	1	-	1	•	-	2
ABA % 0 - X2 M30NAT	-	2	3	3	•	5	4
TANDEM 3X - 0 % BER	-	2	3	3	•	4	e
TANDEM 2X - 0 % BER	-	-	-		1	-	-
- 20 AB INPUT	-	2	2	-	1	-	2
- 12 46 INPUT	-	2	4	2	1	-	e
+ 9 4 INPUT	-	-	I	2	1	L	-
838 %L	-	3	2	2	1	2	4
938 %L.	-	-	2	e	1	-	4
HELI NOISE	-	-	-	-	1	1	-
ABCP NOISE	-	-	3	-	•	2	3
OFFICE NOISE	-	-	2	2	1	-	S
OPTIMAL COND.	-	2	4	3	1	1	5
	CVSD B COD 16	COD ARC 16	COD ADM 16	SCHIL 16/3	SCHIL 32/4	SYLM APCQ 16	LOG CVSD 16

۰.

TABLE XLIX. RANKING OF 16 kb/s CODERS FOR MALE DRT

3

.

.

)

63

.

	-					and the second	
TANDEM W INTO LPC							
TANDEM LPC INTO' W	-	-	-	-		-	-
TANDEM 5X - 0% BER	-	-	2	-	•	e	2
TANDEM 3X - 0% BER		-	2	2	1	e	2
TANDEM 2X - 0% BER	-	-	-	-	1	2	2
- 20 AB INPUT	2	m	4	m	1	-	2
- 12 AB INPUT	-	m	4	m		-	4
TU9NI 86 8 +	2	2	2	2	•	-	e
1% 858		2	-	2	1	5	2
1% BER	2	2	2	2	•	-	3
HELI NOISE	2	-	-	-		-	-
ABCP NOISE	-	-	2	-	•	-	1
OFFICE NOISE	-	-	2	-	1	-	1
OPTIMAL COND.	3	2	3	3	1	-	3
	CVSD B COD 16	COD ARC 16	COD ADM 16	SCHIL 16/3	SCHIL 32/4	SYLM APCQ 16	LOG CVSD 16

.

١

TABLE L. RANKING OF 16 kb/s CODERS FOR MALE DAM

8

0

0

8

.

٠

: *

:

............

TABLE LI. RANKING OF 16 kb/s CODERS FOR FEMALE DRT

8

3

3

	1					
2	~	~	-		-	
2	2	-	2		2	
Τ						
2	-	2				
Τ						
Τ						
1.	2	2	-	-	2	3
-	-	2	-	1	-	3
2	2	-	3		2	4
-	2	3	3	1	-	4
SD B COD 16	D ARC 16	D ADM 16	HIL 16/3	HIL 32/4	LM APCQ 16	LOG CVSD 16
		1 2 1 - 2 2 2 2 1 2 1 2	1 2 1 - 2 2 2 2 1 2 1 2 2 2 1 2 1 2 3 1 2 2 1 2	16 1 2 1 - 2 2 2 2 1 2 1 2 3 1 2 2 1 2 3 3 3 1 1 1	16 1 2 1 - 2 2 2 2 1 2 2 2 3 1 2 2 2 1 3 3 1 1 2 2 - - 1 1 2 2	16 1 2 1 - 2 2 2 2 1 2 1 2 2 3 1 2 2 2 1 2 3 3 3 1 1 2 1 - - 1 1 2 1 2 - - - 1 1 2 2 16 1 2 1 2 - -

65

.

•

TABLE LII. RANKING OF 16 kb/s CODERS FOR FEMALE DAM

.

COD ARC 16 2 0PTIMAL COND CV3D B COD ABCP NOISE CV3D B COD ABCP NOISE COD ARC 16 2 2 D 1 1 1 COD ARC 16 3 3 13 B COD ARC 16 3 3 13 B COD ARC 16 1 1 1 COD ARC 16 3 3 13 B COD ARC 16 3 3 1 1 B COD ARC 16 1 1 1 1 1 B COD ARC 16 1 1 1 1 1 1 COD ARC 16 1 1 1 1 1 1 1 D 1 1 1 1 1 1 1 1 D 1 1 1 1 1 1 1 1 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
VSD 16 I <td>TANDEM W INTO LPC</td> <td>3</td> <td>1</td> <td>2</td> <td>2</td> <td>1</td> <td>-</td> <td></td>	TANDEM W INTO LPC	3	1	2	2	1	-	
VSD 16 N <td>TANDEM LPC INTO W</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>I</td> <td>-</td> <td>-</td>	TANDEM LPC INTO W	1	1	1	1	I	-	-
No 1	ТАИDEM 5X - 0 % ВЕR	2	1	3	-	.1	5	4
VSD 16 N <td>TANDEM 3X - 0 % BER</td> <td>1</td> <td>l</td> <td>-</td> <td>-</td> <td>1</td> <td>2</td> <td>2</td>	TANDEM 3X - 0 % BER	1	l	-	-	1	2	2
VSD 16 2 2 3 4 2 4 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	TANDEM 2X - 0 % BER	-	1	2	-	1	-	e
VSD 16 1 1 2 2 2 1 <td>- 20 48 INPUT</td> <td>2</td> <td>2</td> <td>4</td> <td>2</td> <td>1</td> <td>-</td> <td>4</td>	- 20 48 INPUT	2	2	4	2	1	-	4
-1 -1 <td< td=""><td>- 12 AB INPUT</td><td>2</td><td>2</td><td>ю</td><td>3</td><td>1</td><td>-</td><td>e</td></td<>	- 12 AB INPUT	2	2	ю	3	1	-	e
22/4 2 3 1 1 3 1	TUGNI 86 8 +	2	2	2	2	1	-	2
Abc0 10 11 8EB Abc0 10 11 12 8EB Abc0 10 10 10 10	1% BEK	-	-	-	-	1	-	-
VSD 16 V <td>A38 %1.</td> <td>3</td> <td>2</td> <td>4</td> <td>3</td> <td>1</td> <td>-</td> <td>5</td>	A38 %1.	3	2	4	3	1	-	5
RC 16 2 1 0FFICE NOISE NSD 16 2 2 1 1 1	HELI NOISE							
RC 16 2 0PTIMAL COND MC 16 2 0PTIMAL COND VSD 16 2 2 VSD	ABCP NOISE							
B COD 16 RC 16 DM 16 16/3 32/4 APCQ 16 VSD 16	OFFICE NOISE	-	1	2	-	1	-	2
/SD B COD 16 /SD B COD 16 00 ARC 16 00 ADM 16 /HIL 16/3 /HIL 32/4 /LM APCQ 16 /LM APCQ 16 /G CVSD 16	OPTIMAL COND	2	2	2	2	.1	-	2
(50 B COD 0 ARC 16 00 ADM 16 01 ADM 16 01 ADM 16 01 ADM 16 01 ADM 16 01 ADM 16 01 CVSD 10 06 CVSD 10		16					16	
00 ARC 01 ARC 01 ADM 01 ADM 01 APC 01 APC 01 APC 01 APC		00	16	16	5/3	14	0	=
U V V V V V V V V V V V V V V V V V V V		8 0	RC	M	16	32	APC	VSC
		8	AC	AO	HIL	HIL	E	5
		S	CO	C00	SCI	SCI	SVI	2

8

*

.

.

:

...

8

TABLE LIII. DRT SCORES FOR DVSD & CODEX 16

92.24.8 91.341.0 £ 1.49.19 LS I 85.9+2.2 84.8+1.3 80.2+1.5 73.0+1.0 11.1+1.1 91.9+1.3 90.5+1.3 84.6+1.2 SP 94.04.9 8 92.7+1.3 86.7+1.8 86.8+1.0 71.1+1.9 78.6+1.5 94.3+1.2 ¥ SPEAKER 91.54.8 ¥ 92.8+1.0 78.9+1.2 89.541.0 93.74.9 3 93.0+1.0 93.2+.6 70.6+1.3 94.4+.8 91.8+.8 87.1+1.3 90.4+.7 91.0+1.2 89.2+.9 88.4+.5 82.1+.8 95.24.7 92.84.9 92.84.5 85.74.9 Ŧ 87.8+1.0 92.4+1.0 89.1+7.7 86.7+1.4 81.6+.8 83.6+1.3 78.8+.9 88.9+.9 84.4+.8 76.2+1.5 81.9+1.1 81.9+1.1 77.1+.8 91.94.9 93.04.9 1 2X CVSD 0X BER 3X CVSD 0X BER 5X CVSD 0X BER LPC --- CVSD 0X BER CVSD --- LPC 0X BER ERROR ENVIRONMENT NOISE ENVIRONMENT 53 BER 105 BER 105 BER 53 55 54 55 77 55 97 05 137 05 137 05 TEST CONDITION DYNAMIC RANGE TANDEM TESTS OTHER TESTS Helicopter Opt 1mm .1% BER 1% BER -12 dB -20 dB Office 8P 9+ ABCP 67

.

. .

		TABLE LIV.		DAM SCORES FOR CYSD B CODEX 16	CYSD B	CODEX 16			
					SPE	SPEAKER			
	TEST CONDITION Optimum	50 GE	LL LL	JE 69.3	E	JS 53.6 5	MS 52.8		
	DIT ENON MATES .15 DER .55 DER 15 DER		2.15 51.2			51.4 45.5			
68	15 BER 55 BER 56 BER 56 BER 104 are	8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.6.9.8 8.0.8.8.8 8.0.8.8.8 8.0.8.8.8 8.0.8.8.8 8.0.8.8.8.8	30.5 30.5 30.5	37.6		45.2 43.1			
	NOISE BACKCOMMU	24.5	24.1	i					
	office ABCP Helicopter	55.9 52.9 30.4		57.8 54.5 32.8	55.1 54.6 31.9	62.4			
	DYNAMIC RANGE +6 dB -12 dB -20 dB	50.0 54.5 45.8	51.3 52.5 45.0		2,2,4	52.6 50.9 44.6			
	I ANDEMS 2X 0 BER 5X 0 BER 5X 0 BER 13X 0 BER 3X .5X BER 7X .5X BER 7X .5X BER 7X .5X BER	888.87.98 88.99 89.99 89.99 80 80 80 80 80 80 80 80 80 80 80 80 80	50.6 59.9 33.8 33.8 33.8 33.6 29.8 45.4 29.8			551.7 23.7 23.7 23.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25			

-								69	8	
		TA	TABLE LV. DI	RT SCORES O	F CODEX AR	DRT SCORES OF CODEX ARC SPEECH CODER	DER			
			,			·				
	-			SPEAKER				•		
•	TEST CONDITION	E	R	СН	ΡK	JE	BV	SL	LS I	đ¥
	Optimum	93.64.7	94.14.7	93.541.1	92.34.7	87.44.8	1.1+9.68	89.641.0	90.4+1.0	89.54.7
	ERROR RATES 1% BER 1% BER 10% BER	92.24.7 85.3 <u>4</u> .9	93.2+1.2 88.0 <u>+</u> 1.7 19.1 <u>+</u> 2.2					90.5+1.2 83.1 <u>+</u> 1.1		
69	NOISE ENVIRONMENT OFFICE ABCP HELICOPTER		94.1+.5 90.8 <u>+</u> 1,3 72.5 <u>+</u> 1.4			86.6 <u>+</u> .6 68.9 <u>+</u>].8		83.5 <u>+</u>].2		
	DYNAMIC RANGE +6db -12db -20db		94.7 <u>+</u> .9 87.9 <u>+</u> 1.1 78.3 <u>+</u> .9							
	TANDEMS 2X 3X	92.41.9	93.1+1.2 90.6 <u>+</u> 1.0					88.7+J.0		
	5X LPC→W M→LPC	83.7+1.5 83.3 <u>+</u> .7.	86.1+1.1 85.8+1.2 82.9+.8					78.6 <u>+</u> 1.3 67.6 <u>+</u> 1.8		

					•	
0						
0 .		•				
•						
0						
	1					
8	JS	51.8	55.3 38.9	60.2	55.1 47.3 43.9	52.2 47.5 44.4 40.4
DER		5	ືອີດ	Q	044	04444
H COL	-					
SPEEC	Æ			59.2 55.0 39.5		
ARC	æ					
CODEX	SPEAKER			58.9 53.7 41.7		
OF OF	S :					
SCORES	E	52.7	52.6 39.5		53.2 48.5 42.7	51.5 50.3 42.6 44.6
DAM SCORES OF CODEX ARC SPEECH CODER		•,	4,0,			
	Ŧ	55.4	53.7 42.4		56.3 46.6 40.8	52.2 55.2 45.9 44.6
TABLE LVI.	B	55	53	58.1 49.1 40.6	56 40	52.2 55.2 45.1 445.1
TABI						
	ION			ROUN	비	
	LIQNO	E	RATES	BACKG	C RAN	× LPC ×
:	TEST CONDITION	Optimum	ERROR RATES .1% BER 1% BER	NOISE BACKGROUND Office ABCP Helicopter	DYNAMIC RANGE +6 dB -12 dB -20 dB	TANDEMS 2X 3X 5X LPC
	FI	0		ZORI		M L SX 3X

ţ									
	;	TABLE LVII.		DRT SCORES OF CODEX ADM SPEECH CODER	X ADM SPEECH	I CODER	•		
TEST CONDITION	E	Æ	8	SPEAKER	JE	BV	SL	LS	£
Optimium	1.49.19	90.6 +1.0	90.4+1.0	90.84.9	84.84.5	86.8+1.0	85.4+1.1	89.54.5 88.241.2	88.2+1.2
ERROR RATE TESTS .1% BER 1% BER	91.4+.7 89.6 <u>+</u> .5	92.4+.6 89.5 <u>+</u> .8					88.5+1.0 83.2 <u>+</u> .7		
NOISE BACKGROUND Office ABCF Helicopter		91.44.9 86.2 <u>4</u> .8 70.841.7	84.5 <u>+</u> .9 72.3 <u>+</u> 1.5		80.2 <u>+</u> 1.4 69.5 <u>+</u> 1.5		8.84.8		
DYNAMIC RANGE +6db -12db -20db	no da 80.9 <u>+</u> 1,6	no data available 0.9+1.6 77.6+1.1 76.6+1.4					73.3+1.6		
TANDEM 2X 3X 5X LPC> W W>LPC	91.1 <u>4</u> .9 -85.24.9 82.3 <u>4</u> 1.1	90.84.7 85.2 <u>4</u> .6 79.8 7 .6 85.7 <u>7</u> 1.1 79.8 <u>7</u> 1.1					85.2 <u>+</u> 1.1 82.9 1 .6 63.7 <u>+</u> 1.7		
					-				

TEST CONDITION

ERROR RATES

.1% BER 1% BER

Optimum

3

.

18

8

51.7	52.4 42.0 37.3	46.7 43.8 38.9 40.1 37.9
51.2 50.1 44.1		
57.5 52.2 40.8		
	50.4 42.8 40.1	49.4 45.7 38.4 47.6
55.1 47.1 38.3	54.9 42.3 38.4	49.0 45.6 45.4 42.9
NOISE BACKGROUND Office ABCP Helicopter	DYNAMIC RANGE +6 dB -12 dB -20 dB	TANDEMS 2X 3X 5X LPC

	•		\$	8	G	0		0	0	G	1 C
		TABLE LIX.	DRT	SCORES OF SCHILLING CVSD SPEECH CODER 16 kb/s	HILLING CV	SD SPEECH C	ODER 16 kb	/s			Well for the property of the
					:						
				SPEA	SPEAKER						
	TEST CONDITION	F	R	В	PK	JE	BV.	JS.	· SJ	MP	1
	*OPTIMUM	90.0 1 .8	90.4+1.1	92.7+1.2	1.1±6.19	88.7+1.3	90.6+1.2	87.9+1.3	85.9+1.2	88.8+1.5	
	ERROR RATE 0.1% BER 1.0% BER	90.1 <u>+</u> .3 88.5 <u>+</u> 1.0	91.5 <u>+</u> .5 87.6 <u>+</u> 1.2					91.4+.7 89.6+.9	•		
	NOISE ENVIRONMENT OFFICE ABCP HELICOPTER	91.4+.9 91.4 1 .6 69.7 <u>+</u> 1.5				84.6+1.8 70.2 <u>+</u> 2.3		82.04.9			and a standard and
73 .	DYNAMIC RANGE +6dB -12dB -20dB	91.3+1.1 88.9 <u>+</u> .7 84.6 <u>+</u> 1.3							`		(Perint de la constantina de la constan
	TANDEMS 2X 3X 4X 5X LPC→ W W→LPC	88.94.7 85.741.0 83.541.0 83.541.0 78.541.6 86.041.1 78.341.4						75.9 <u>+</u> 2.1 74.9 <u>+</u> 1.5			
	OTHER TESTS ** SCHIL 16/2.5 ***SCHIL 16/2.0	90.84.9 90.8 <u>4</u> .9	90.5+.6 89.3 <u>7.</u> 7	92.1+.8 92.3 <u>1</u> 1.1	92.8+.8 91. <u>7</u> 4.6	86.7+.8 88.9 <u>∓</u> 1.3	91.0+1.2 90.6 <u>+</u> 1.0	89.84.7 89.2 <u>4</u> .8	90.1+.9 88.8 <u>+</u> 1.5	91.5+1.3 91.1 <u>+</u> 1.5	
	<pre>*3.0 kHz output filter. **2.5 kHz output filter. ***2. kHz output filter.</pre>	ter.									

0								
8	SCHILLING CVSD SPEECH CODER 16 kb/s	JS	49.5 52.5 56.5	53.3 39.0	58.8	53.4 44.0 42.5	50.8 57.8 42.5 37.4	
•	VSD SPEECH C	RH			56.7 50.0 43.1			4
•	SCHILLING C	JE		•	57.8 51.0 40.5	•		
	DAM SCORES OF	E	50.0 53.1 51.1	51.6		54.9 45.6 41.9	49.8 47.6 41.5 44.1 43.5	
	TABLE LX. D	B	49.9 55.4 53.9	52.5 40.9	0 54.4 38.8 38.8	53.9 49.6 41.9	49.9 48.9 44.4 42.9	
	F	TEST CONDITION	Optimum SCHIL 16/3 SCHIL 16/2.5 SCHIL 16/2.0	ERROR RATES .1% BER 1% BER	NOISE BACKGROUND Office ABCP Helicopter	DYNAMIC RANGE +6 dB -12 dB -20 dB	TANDEMS: 2X 3X 5X LPC W W LPC	

TABLE LATI. DAT SCORES OF SCHILLING CYSD SPEECH CODER 32 kb/s SPEAKER SPEAKER <	8	8	¢	8	0	ο.		0		0	0
SPEAKER SPEAKER ON LL RH CH PK JE BV JS LS 93.04-16 95.84-15 95.44-11.0 94.44-16 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-17 95.44-11.0 94.74-15 95.44-11.0 94.74-15 95.44-11.0 94.74-15 95.44-11.0 94.74-15 95.44-11.0 94.74-15 95.44-11.0 94.74-15 95.44-11.0 94.74-15 95.74+17 95.44-15 95.74+17 95.44-15 95.74+17 95.74+17 95.74+17 95.74+16 97.74-13 95.74+16 97.74-13 95.74+16 97.74-13 95.74+16 97.74-13 95.74+16 97.74-13 95.74+16 97.74-13 97.74-13 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16 97.54+16	1	TABLE LXI.	DRT SCORE	S OF SCHIL	LING CYSD	SPEECH COD	ER 32 kb/s		•	. • •	
SPEAKER LL RH CH PK JE BV JS LS 93.9±.6 95.8±.5 96.9±.7 93.4±1.0 94.4±.6 94.7±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 94.5±1.0 <	•										
Image: Normal and the state of th	TECT CONDITION		3	1	EAKER	1	10		0	5	1
93.9±.6 95.8±.5 96.9±.7 93.4±1.0 94.4±1.6 94.7±1.0 94.7±.7 95.4±1.0 96.6±.8 94.9±1.4 95.7±.7 93.2±1.0 94.7±.6 94.7±.7 95.4±1.0 MMENT 94.5±.5 90.4±.5 90.4±.5 90.4±.5 90.7±.3 97.4±.3 NMENT 94.5±.5 90.4±.5 90.4±.5 90.4±.5 91.5±1.0 89.7±.3 ER 75.1±1.2 74.1±2.1 89.7±.3 91.4±.6 94.7±.3 89.7±.3 B 95.1±.6 91.8±1.3 90.4±.5 90.4±.5 94.5±.6 94.5±.6 94.5±.6 95.3±.8 96.7±.8 95.1±.7 94.8±.7 90.1±.3 93.5±.6 94.5±.5 94.5±.6 95.3±.0 95.3±.0 95.1±.7 94.8±.7 90.1±.3 93.5±.6 94.5±.5 94.5±.6 95.3±1.0 85.9±2.1 95.1±.7 94.8±.7 90.1±.3 93.5±.6 94.5±.5 94.5±.5 94.5±.6 95.3±.1 95.3±.1 95.1±.7 94.8±.7 93.4±.7 93.6±.4 94.5±.5 94.5±.5 94.5±.5 94.5±.5 94.5±.5 94.5±	TEST CONDITION	E	Ŧ	5	X		BV		2	ž	
95.64.8 90.44.994.941.4 91.541.095.74.7 91.541.095.74.7 91.541.0NMENT94.54.5 91.34.790.44.5 74.142.199.74.3 91.4.3ER94.54.5 91.34.790.44.5 74.142.199.74.3 74.142.1ER96.94.5 91.841.390.44.5 74.142.194.45.6 91.84.795.34.896.94.5 95.34.894.84.7 95.14.790.14.3 91.94.794.84.7 91.43.195.34.896.74.8 95.14.794.84.7 91.94.790.14.3 91.94.794.54.6 91.94.7332/395.24.397.14.4 97.14.695.64.4 93.44.793.64.7 93.64.794.54.6 94.54.6	WOWI140*	93.9 1 .6	95.8±.5	6.94.7	93.4+1.0		94.7+1.0		95.4+1.0	6.7+.9	
T 94.5 ± 5 97.3 ± 7 90.4 ± 5 75.1 ± 1.2 90.4 ± 5 75.1 ± 1.2 90.4 ± 5 74.1 ± 2.1 75.1 ± 1.2 75.1 ± 1.2 74.1 ± 2.1 74.1 ± 2.1 90.4 ± 5 74.1 ± 2.1 96.9 ± 5 95.1 ± 6 90.4 ± 6 91.8 ± 1.3 90.4 ± 6 91.8 ± 1.3 95.3 ± 8 95.4 ± 7 91.8 ± 1.3 91.8 ± 1.3 91.8 ± 1.3 $91.5 \pm .6$ 91.8 ± 1.3 $95.3 \pm .6$ 95.1 ± 7 $94.8 \pm .7$ 91.4 ± 1.3 $91.4 \pm .7$ $91.4 \pm .7$ $91.4 \pm .7$ $91.4 \pm .7$ $96.2 \pm .3$ $91.1 \pm .4$ $97.1 \pm .6$ $91.4 \pm .7$ $93.4 \pm .7$ $91.4 \pm .7$ $93.6 \pm .8$ $91.4 \pm .7$	ERROR RATES .1% BER 1% BER	95.6+.8 90.4 <u>+</u> .9	94.9+1.4 93.2+1.0					95.7+.7 91.5 <u>+</u> 1.0	•		
95.3±.8 $\begin{array}{c} 96.9\pm.5\\ 95.1\mp.6\\ 91.8\mp1.3\\ 95.3\pm.8 \end{array} \begin{array}{c} 96.7\pm.8\\ 96.4\mp.4\\ 96.4\mp.4\\ 95.1\pm.7\\ 93.1\mp1.1\\ 86.3\mp1.0\\ 85.9\mp.7\\ 93.1\mp1.1\\ 85.9\mp.1 \end{array} \end{array}$ $\begin{array}{c} 94.8\pm.7\\ 94.5\pm.6\\ 94.5\pm.6$ 94.5\pm.6 94.5	NOISE ENVIRONMENT OFFICE ABCP HELICOPTER		94.5+.5 97.3 <u>+</u> .7 75.1+1.2			90.4 <u>+</u> .5 74.1 <u>+</u> 2.1		89.7 <u>+</u> .3			
95.3 <u>+</u> .8 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	DYNAMIC RANGE +6dB -12dB -20dB		96.9+.5 95.1 <u>+</u> .6 91.8 <u>+</u> 1.3								
93.1 7 1.1 86.3 7 1.0 85.9 <u>7</u> 2.1 96.2 <u>4.3</u> 97.1 <u>4.4</u> 97.1 <u>4.6</u> 95.6 <u>4.4</u> 93.4 <u>4.7</u> 93.6 <u>4.8</u> 94.5 <u>4.9</u> 95.1 <u>4.5</u>	TANDEMS 2X 3X 4X	95.34.8	96.7+.8 96.4+.4 94.4+1.9 95.1+.7	95.1 <u>+</u> .7	94.84.7	90.1±.3	93.5 1 .6	94.5+.5	94.5 <u>+</u> .8	94.04.8	
96.24.3 97.14.4 97.14.6 95.64.4 93.44.7 93.64.8 94.54.9 95.14.5	5X LPC-> W W-> LPC		93.1 1 1.1 86.3 7 1.0 85.9 <u>7</u> 2.1					78.0+1.3 82.0 <u>+</u> 1.4			
	OTHER TESTS **SCHIL 32/3	96.24.3	97.1 <u>+</u> .4	97.14.6	95.64.4	93.4+.7	93.6 <u>+</u> .8	94.5+.9	95.14.5	94.94.9	

顥

IABLE LXII.	DAM SCORES	OF SCHILLING	RES OF SCHILLING CVSD SPEECH CODER 32 kb/s	CODER 32 kb/	UT.	•	
			SPEAKER				
TEST CONDITION	ß	н	JE	RH	SC		
Optimum SCHIL 32/4 SCHIL 32/4 SCHIL 32/3	60.5 61.0 62.3	61.6 64.6 61.7			61.5 61.9 62.7		
ERROR RATES .1% BER 1% BER	62.5 54.4	60.2 47.0			58.5 44.8		
NOISE BACKGROUND Office ABCP Helicopter	60.6 60.2 40.6		67.4 62.8 41.7	61.6 60.8 43.0	67.4		
DYNAMIC RANGE +6 dB -12 dB -20 dB	62.0 52.1 46.4	59.6 52.4 41.9			62.8 50.6 48.7		
TANDEMS 2X 3X 5X LPC — W W — LPC	60.5 57.8 52.1 49.8 46.1	56.8 55.7 48.2 48.2			56.7 57.4 44.0 41.5		

8				1.5					
0	· .		Æ	5.1 <u>+</u> 1.1 <u>5</u>					
0	•		LS	92.24.6					
			SL	90.64.6	91.94.7 87.2 <u>7</u> .8	85.4+.9		75.8+1.2 73.7 <u>+</u> 1.3	
0	I CODER		BV	88.84.7					
•	PCQ SPEECH		JE	91.04.7 88.84.7				58.3 <u>+</u> 2.2	
	SYLVANIA A	SPEAKER	ΡK	92.74.7					
	DRT SCORES OF SYLVANIA APCQ SPEECH CODER	SPEA	CH	91.4+.4				81.1+1.0 71.5 <u>+</u> 1.6	
			RH	94.5+1.0	93.0+1.0 88.5 <u>+</u> .6 63.9 <u>+</u> 1.0	94.1+.5 89.1 <u>+</u> .6 71.7+1.4	96.4+.4 92.6 1 1.1 86.5 <u>+</u> 1.6	90.8+1.2 79.2 1 1.2 62.4 1 1.5 85.0 1 1.0 86.8 <u>1</u> .8	
•	TABLE LXIII.		H.	95.24.6	92.4+.9 87.0 <u>+</u> 1.6			88.2+1.4 85.5+1.0 76.3 <u>+</u> .9	
•	;			-		_			
•	1		TEST COMDITION	OPTIMUM	ERROR RATES 0.1% BÉR 1.0% BER 5.0%	NOISE ENVIRONMENT OFFICE ABCP. Helicopter	DYNAMIC RANGE +6db -12db -20db	TANDEMS 2X 3X 5X 5X LPC→ W M→ LPC KY75→ W (Quiet) KY75→ W (ABCP)	

							13
	•	•					
,	1	İ					
E E	Sť		60.5 40.6 17.5	57.6	59.7 54.9 51.1	50.9 41.2 41.4 43.7	
Q SPEECH COL	RH			57.7 52.9 40.0			
SYLVANIA APC	SPEAKER JE			58.5 51.7 43.6			
DAM SCORES OF BYLVANIA APCQ SPEECH CODER	LL SP	56.1	58.5 36.0 22.7		61.5 55.4 51.3	47.0 39.5 25.5 44.9	
TABLE LXIV. DA	С	57.8	55.6 43.7 21.9	<u>5</u> 5.2 50.1 44.4	56.8 55.6 54.9	45.6 38.5 25.8 46.1 45.2	
TAB	- TEST CONDITION	Optimum	ERROR RATES .1% BER 1% BER 5% BER	NOISE ENVIRONMENTS Office ABCP Helicopter	DYNAMIC RANGE +6 dB -12 dB -20 dB	TANDEMS 2X 3X 5X LPC M W LPC	

-

0	MP 76.7+1.2		
	MP 76.7		
•	LS 74.7+1.2		
0	Sť 71.74.9	78.0+1.4 65.2 1 .9 50.1 <u>+</u> 2.0	
16 kb/s	BV 69.94.6		
SCORES OF LOG CVSD SPEECH CODER 16 kb/s SPEAKERS	JE 65.9+1.7	80.5+.8 70.6 <u>+</u> 1.9	
F LOG CVSD SPE	PK 68.5+.9		
SCORES OF L	CH 77.5+1.3		
DRT	RH 77.7+1.1	84.2+1.0 80.2+1.3 64.2+1.4 87.9+1.1 84.2+1.0 73.8+1.5 73.8+1.5 74.6+1.0 90.9+.7 82.7+6 74.1+1.1 74.1+1.1 77.1+1.1	
TABLE LXV.	LL 73.1+.6	84.1+1.1 76.3 7 .9 59.8 1 1.4	
8			
•	TEST CONDITIONS OPTIMUM	ERROR RATE 1% BER 5% BER NOISE BACKGROUND 0FFICE ABCP ABCP ABCP ABCP 12dB -12dB -12dB -12dB -20dB LPC→W	

			d X	1.148.			 			
6	 		LS LS	1.8+1.2 78						
0			St	81.5+1.2 81.8+1.2 78.8+1.1	51.6+1.5					
0	2 kb/s		BV							
a	r scores of log CVSD speech coder 32 kb/s		JE	77.5+1.4 81.2+1.0						
0	OG CVSD SPE	SPEAKER	РК	79.841.2	•••			>		•
Q	SCORES OF L		G	83.1+1.0						
	TABLE LXVI. DRT		Æ	84.4+.8	71.4+2.2					
8	TABLE		H	85.9+2.0	70.7±1.1	92.3+1.2 85.9 <u>+</u> 1.2				
•			TEST CONDITION	Optimum	ERROR RATE	TANDEMS 5X LPC N				
•					_,	80				

:	TABLE LXVII.		RES OF GENER	DRT SCORES OF GENERAL DYNAMICS CVSD SPEECH CODER	CVSD SPEEC	CH CODER		
				- SPEAKER	æ			
TEST CONDITION	Е	RH	СН	ΡK	JE	BV	JS	LS MP
Optimum 16 kb/s Optimum 32 kb/s	78.5+1.6 87.4 <u>+</u> 1.1	78.9+1.6 85.7 <u>+</u> .9	77.5+1.2 86.6 <u>+</u> .9	71.9+1.8 78.5 <u>+</u> 1.6	67.4+1.7 77.6 <u>+</u> 1.4	71.6+1.7 83.1 <u>+</u> .7	75.7+1.6 81.4 <u>+</u> 1.0	72.8+2.4 74.9+1.3 83.1 <u>+</u> 1.7 79.8 <u>+</u> 1.0
<u>ERROR RATES</u> 5% BER 16 kb/s 5% BER 32 kb/s	68.5 <u>+</u> 1.2 73.8 <u>+</u> 1.1	69.0+.8 76.7 <u>+</u> 1.3				1 1 2	52.5+2.3 58.1 <u>+</u> .9	
TANDEM LPC — W 16 kb/s		75.4±1.3						
				*		•		

			CVSU SPE SPEAKER	uam scukes up Lug CVSU Speech CODER 16 Kb/s Speaker	6 kb/s	
TEST CONDITION	3	E	 JE	RN	JS	
Optimum	52.0 53.4	48.9 51.6			48.6 53.7	
ERROR RATES .1% BER 1% BER 5% BER	45.1 43.6 33.1	48.3 39.2 27.3	•		42.1 40.6 26.7	
NOISE BACKGROUNDS Office ABCP Helicopter	53.8 48.0 37.8		60.8 51.0 38.3	54.0 52.0 42.9	53.5	
DYNAMIC RANGE +6 dB -12 dB -20 dB	50.1 43.7 39.2	48.2 43.4 37.3		i .	50.2 42.9 36.9	
TANDEMS 2X 3X 5X LPC — W	45.8 45.5 37.4 45.6	42.4 53.6 35.3 43.1			44.1 42.7 37.3 39.6	

.

\$

TABLE LXIX. DAM SCORES OF LOG CVSD SPEECH CODER 32 kb/s

.

\$

			SPEAKER		
TEST CONDITION	RH	н	JE	СН	Sť
Optimum	62.1	55.4			56.8
ERROR RATES					
1% BER 54 RFP	45.3 28 0	48.7			61.1
10% BER	18.3	25.5			20.1
DYNAMIC RANGE					
-20 dB	47.2	43.1			43.7
TANDEMS 5X LPC N	44.3 44.1	45.6 48.7			46.3 42.5

TABLE LXX. DAM SCORES OF GENERAL DYNAMICS CVSD SPEECH CODER

0 0

.....

		S	SPEAKER		
TEST CONDITION	CH	Ц	JE	RH	St
Optimum CVSD GD 32 kb/s	61.4	63.8			6a 4
CVSD GD 16 kb/s	53.2	47.6			50.0
ERROR RATES					
.1% BER CVSD GD16	44.4	41.1			42.4
1% BER CVSD GD32	46.4	50.1			45.5
VSD	43.3	39.2			41.7
5% BER CVSD GD32	27.9	30.8			24.8
CVSD	24.6	30.0			24.3
10% BER CVSD GD32	29.2	26.1			21.5
TANDEMS					
3X CVSD GD16 3	39.2	37.7			40.7
	34.6	38.9			38.0
	46.5	46.7			. 40.7

· * .

REFERENCES

 [1] NSA, "Narrowband Digital Voice Processor Consortium Final Report," May 1976 (CONFIDENTIAL)

Ű

0

0

12

- [2] Codex Corporation, Final Report, "Codex Speech Digitizer Advanced Development Model," S. Qureski, DCA Contract DCA 100-76-C-0026, June 30, 1976
- [3] DCA "Performance Measurements of the CVSD Speech Coding Algorithm;" W. Belfield, Technical Note #6-77, August 1977
- [4] GTE Sylvania Inc., Final Report, "Adaptive Multilevel 16 kbps Speech Coder," A. Goldberg, DCA Contract DCA #100-76-C-002, June 14, 1976
- [5] Voiers, William D., Sharpley, Alan D. and Hehmsoth, Carl H., "Research on Diagnostic Evaluation of Speech Intelligibility," Final Report, AFSC Contract No. F19628-70-C-0182 (1973)
- [6] W. D. Voiers, "Diagnostic Acceptability Measure for Speech Communication Systems," 1976 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 204-207, May 1977
- [7] B. J. Winer, <u>Statistical Principles in Experimental Design</u>, McGraw-Hill Book Company, New York, 1971
- [8] Lincoln Laboratory, "Speech Evaluation," Annual Report, Air Force Contract F19628-76-C-002, September 30, 1976

APPENDIX A

MODEM Performance Tests

0

1. <u>Introduction</u>. A set of tests was conducted in order to evaluate the effects of processing MODEM line signals with the CVSD speech coder operating at 32 kb/s. Figure A.I shows the test configuration with the Codex 9600 MODEM. A bit error rate tester (BERT 901) was used to measure bit errors.

2. <u>Test Conditions</u>. The Schilling CVSD Speech coder operating at 32 kb/s was used to process the MODEM line signals. Tests were conducted using different audio bandwidths of the CVSD coder. Tests were also conducted under conditions of transmission bit errors. The Codex MODEM was tested for three data rates, 4.8 kb/s, 7.2 kb/s, and 9.6 kb/s.

2. <u>Performance Measurements</u>. The MODEM performance was measured according to bit errors. In each test the number of bit errors and the number of block errors were determined. A block error is defined as a specified number of bit errors per block of data. In addition, the MODEM indicator light showed the operating condition of the MODEM.

4. <u>4.8 kb/s Test Results</u>. Table A.I shows the measured bit error rates and block error rates for the Codex 4800 b/s MODEM. The error rates are given corresponding to different transmission bit error rates produced by an error generator that introduces bit errors into the CVSD transmission data stream. The cutoff frequency of the CVSD audio filter was varied from 2.0 to 6.0 kHz. A block error is defined as 3 bit errors within a data block of 1000 bits. MODEM performance was satisfactory for transmission bit error rates of 10⁻⁴ and less. However, performance was marginal for a transmission BER of 10⁻³. In this case the block error rate was 0.137 and the MODEM indicator light showed a marginal operating condition.

The results indicate that the MODEM performance is insensitive to the different audio bandwidths of the particular audio filter tested.

5. <u>7.2 kb/s MODEM</u>. Table A.II shows the measured bit error and block error rates of the Codex MODEM operating at a data rate of 7.2 kb/s. These measurements were made under conditions of two different CVSD transmission error rates. The performance of the MODEM was marginal.

6. <u>9.6 kb/s MODEM</u>. Table A.III shows the measured bit error rates of the Codex MODEM operating at 9.6 kb/s. The performance of the MODEM operating at this rate was unsatisfactory.

7. <u>Summary</u>. For satisfactory processing of the Codex 4.8 kb/s modem line signals, the data rate of the CVSD coder must be at least 32 kb/s. The bit error rate of the CVSD data link should be less than 10^{-4} . Operating the modem at 7.2 kb/s resulted in a marginal to unsatisfactory link. Operating the modem at 9.6 kb/s resulted in an unsatisfactory link.

0		•	Luj										
0			MODEM BLOCK ERROR RATE	0	1 4 X 10 ⁻⁴	0	1.2 X 10 ⁻³	1 of MODEM	0	4 X 10 ⁻⁴	0		
8	4.8 kb/s TEST RESULTS		MODEM BIT ERROR RATE	4.7 X 10 ⁻⁵	5.4 X 10 ⁻⁵	7.0 X 10 ⁻⁵	7.5 X 10 ⁻⁵	Marginal Operation of MODEM	3.7 X 10 ⁻⁵	4.3 X 10 ⁻⁵	4.3 X 10 ⁻⁵		
8	TABLE A.1. 4.8 kl		LPF BANDWIDTH (KHZ)	4	4	4	4	4	25	2	9		
*	•		BIT ERROR RATE	0	10-6	10 ⁻⁵	10 ⁻⁴	10 ⁻³	0	0	0		
•		-					 A-3						

A-4

0 0 MODEM BLOCK ERROR RATE 9.9 X 10⁻¹ 9.8 X 10⁻¹ 1 0 8 MODEM BIT ERROR RATE 2.58 X 10⁻² 2.54 X 10⁻² 3.95 X 10⁻² TABLE A.III. 9.6 kb/s TEST RESULTS -. LPF BANDWIDTH (kHz) 3 BIT ERROR RATE 0 10⁻⁶ : A-5

DISTRIBUTION LIST

STANDARD:

. .

0

0

0

-

\$

0

*

2

. .

R100 - 2	R200 - 1
R102/R103/R103R - 1	R300 - T
R102M - 1	R400 - 1
R102T - 9 (8 for stock)	R500 - 1
R104 - 1	R700 - 1
R110 - 1	R800 - 1
RT23 - T (Library)	NCS-TS-1
R124A - 1 (for Archives)	101A - 1

205 - 13

DCA-EUR - 1 (Defense Communications European Area ATTN: Technical Director APO New York 09131)

DCA-PAC - 1 (Defense Communications Agency Pacific Area ATTN: Technical Director APO San Francisco 96515)

USDCFO - 1 (Chief, USDCFO/US NATO APO New York 09667)