
P AD—A063 985 WISCONSIN UNIV—MADISON MATHEMATICS RESEARCH CENTER FIG 9/2 ‘N.THE AUGMENT PRECOMPILER As A TOOL FOR THE DEVELOPMENT OF SPECIA——ETCIU)OCT 78 F D CRARY , .J V YOKE DAAG29—75—C—0021j
UNCLASSIFIED MRC TSR I892 NL

I END—
0 A T

4~J9

Is
._____ 1


~~~~~~~~ .

00 
~
‘
~
) ~ GMENT~~~ Eca4pILER

— FOR THE ~ EVELOPM~2IT OF

~ PECIAL PURPOSE ARIT~*iE’rIC ~ACKN ES0

(3 F: D./c~~~ Y~~~~~ J. M ./YobeJ

Mathematics Research Center ID D C
Universit y of Wisconsin—Madison IJ ~a~tE1fl rr’?
610 Walnut Street - 31 1919

dison , Wisconsin 53706

~~ ~~ / ‘t L c

Received Octobe r 13, 1978

, , ,.-r . /
\ —

~~~~~~ / :~~
‘ ‘

.~~, • 1 . _ (~_c ’ ~ ~
-

~~) ~~~~ ¼ ~
—

-
~~~~: ~~~~~~~~(

~L L~\ ~ R C— I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

\ Apprsvsd fir pu blic rs lsass
- •—~~~~~~~~~~~~~~~~~~ Dis tribvt i~~ enlimi t•d

4
Spon sored by

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park
North Carolina 27709

7 ~ 
.

~ I 
___

~~~~~~~~ ~~~~~~~~~~~~~~ ... ~~~~~~~~~~~~~~~
—= ==.--.

-
~~~~

--
~

.-—.--—— 
.~



UNIVER SITY OF WISC ONSIN — MADI SON
MATHEMATICS RESEARCH CENTER

THE AUGMENT PRECONPILER AS A TOOL FOR THE DEVELOPMENT OF
SPECIA L PURPOSE ARITHMETIC PACKAGES

F. D. Crary ( 1) and J .  M. Yohe (2)

Technical Summary Report # 1892
October 1978

ABSTRA CT

We discuss the use of a FORTRAN preoospiler in the development of packag-
es for nonstandard arithmetics. In particular , the use of the FORTRAN preco.—
piler, AUGMENT , renders the source code more lucid , reduces the rnaber of
lines of code in a nonstandard arithmetic package , facilitates modification ,
and amel iorates the problems of transporting such a package to another host
system.

AMS( MOS) Subject Classification: 68A10

Key ~~rds: Pre coapiler
Nonstandard arithmetic packages
Portable software
Software development
Software modification

Work Unit Number 8 ( Computer Science)

( 1)  The Boeing Company
Seattle , Washington

(2) Math ematics Resear ch Center
University of Wisconsin - Madison
Madi son , Wisconsin 53706

Sponsored by the U. S. Army under Contract No. DAAG2 9—75—C-002~ .

___________ ‘3 - — -~~~ -—— -~~~~~~— —U - —---
~~~~~~~

--
~~
— — —— — — -—— - —— —

— -

SIGNIFICANCE AND EXPLANATION

The AUGMENT preoo.piier for FORTRAN (7) is th. moat recent and moat ver-
satile in a series of FORTRAN preocspiiera which have been developed at the
Mathematics Research Center , University of Wisconsin — Madison, over the past
decade . Originally, the preoo piler concept was envisioned as a means of
simplifying the use of special—purpose arithmetic packages, such as multiple
precision arithmetic or interval arithmetic , in the research environment .

In recent years , however, AUGMENT has come to play a central role in the
development of special—purpose arithmetic packages as well as in their use.
Briefly, one may ~rits the majority of the modules of a package in terms of
one or more nonstandard data types , later using AUGMENT together with a few
primitive modules to bind these data types to specific representations. This
technique enhances the clarity of the code, reduces the number of lines of
code in the package (in moat oases), facilitates modifications (such as in-
creasing precision), and amel iorates the problems of transporting such a pack-
age to other host systems.

In this paper , we discuss the advantages of this technique , and ilium—
trate with examples taken fro. the INTERVAL arithmetic package developed by
the second author (19) . In particular , we indicate how the interval arithme-
tic package was modified in the space of approximately one week to produc. a
package for triplex interval arithmetic (13, and we also discuss the nature of
the modifications that will be necessary to produce a multiple precision in-
terval arithmetic package based on the multiple precision arithmetic package
of Brent (2]. Application of this technique to a variety of situations will
be apparent.

The responsibility for the wording and views expressed in this dssoriptivs
summary lies with MRC , snd7t ith the authors of this report.

. ,~ — - — .- - --- .-----.-
— ~~~~~~~~~~~ --~~fl ~~-’--~~,— - r -~~~~ - . I -~~~~~~~~~Y - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~

THE AUGMENT PRECOMPILER AS A TOOL FOR THE DEVELOPMENT OF
SPECIAL PURPOSE ARITHMETIC PACKAGES

F. D. Crary and J. M. Yohe

1. Introduction

With decreasing hardware costs and increasing processor speeds , the cost
of software development is becoming more and more a function of personnel
cost. Furthermore, with the explosion of applications of digital computers,
an ever—higher percentage of user s place implicit trust in the software they
use to support their applications. Today, a computer system is regarded by
most users not as an empty box which must be programmed to solve even the sim-
plest problem , but rather as a hardware/software combination which can be used
to solve their computational problems . Indeed , many users probably do not
know —— and care less —- where the hardware leaves off and the software be-
gins.

For these reasons, it is essential to supply the user with reliable,
well—doc umented software packages. It is no longer profitabl e, or even feasi—
b].e in many cases , to re-invent support software . The considerations of effi—
ciency on a particular system have all but been erased by the increasing cost
of highly competent per sonnel and the decreasing cost of hardware . Whereas
twenty years ago code that wasted machine time could not be tolerated for man y
applications, we have now com e to the point that code which wastes personnel
time can not be tolerated.

These considerations have led to an increasing emphasis on transportable
software. If development costs can be incurred just once for a package or
system tha t will work correctly and accurately on a broad spectrum of equip—
ment, users are willing to tolerate a reasonable amoun t of inefficiency in re-
turn for the convenience of having the development work done for them and the
confidence that they can place in a quality product.

Increasingly, it is becoming pract~cal to build on existing software
rather than to develop new packages from first principles, even when the ex-
isting software might not be just exactly tailored to the application in ques-
tion. For example, as we shall discuss later in this paper, it makes sense to
base a multiple precision interval arithmetic paokage on Brent’s excellent
multiple precision arithmetic package ((2)) rather than to develop a new mul-
tiple precision package which implements the required directed roundings. The
needed modifications can be introduced via a very few new modules , leaving the
bulk of Brent’s software development work intact.

In order to make the best use of existing software, one must have the
tools to make its incorporation in new programs reasonably easy, and one must
adopt a design philosophy which will make the use of both the tools and the
exist ing software natural and uncomplicated.

In this paper , we describe one such tool —— the AUGMENT precompiler for
FORTRAN ((7]) —- and illustrate a design philosophy which has proved to be a
reasonable application of the above criteria . Brie fly, we advocate the ab-
straction of the data type representations to the max imum possible degree in
the design and implementation of software packages , and subsequent application

Sponsored by the United State a Army under Contract No. 0AAG29-75-C-0024.

_ _ _ _ _ _ _ _ _ _ _ _ _

- - ——-—-- -.--..- ~~~~ --————- —~~ -~ — — -—- -~~~~-~~-— - -~~
- --~~~

--— - -- -— —--

-- --

~

~~—‘ - - — —- —- —.~~~~~~————--- -.

of the AUGMENT precompiler to bind the data type representations and extend
them throughout the package.

W illustrate this philosophy with examples drawn from the interval
arithmetic and triplex arithmetic packages developed by the second author.

We also give an indication ot several other applications of AUGMENT
whioh , while not necessarily employing this philosophy, serve to indicate the
breadth of possible applioations of AUGMENT .

In Section 2, we describe the AUGMENT precompiler briefly. This is done
for completeness; although the AUGMENT preoo.piller is described extensively
in (7] and in (5, 63, the present paper requires that the reader have at least
a basic understanding of what AUGMENT is and what it does . In Section 3, we
discuss the concept of abstract data types . In Section 14 , we show how AUGMENT
was used in the development of the interval arithmetic package and l.a Section
5 we indicate how this design philosophy has facilitated modifications to the
interval arithmetic package. In Section 6 we give some brie f examples of 0th—
er applications of AUGMENT. Section 7 summarizes the paper .

H

I

- 2 -

-~
——.——.—--- —- - - — - — — - ------— - - - — - .

________ ~~~~

- - - - -.~~~~- - _ _

2. Brief description of AUGMENT

AUGMENT is a program which allows the easy and natural use of nonstandard
data types in Fortran. With only a couple of exceptions, it places nonstan-
dard types on the same basis as standard types and allows the user to concen-
trate on his application rather than on the details of the data type implemen-
tation.

AUGME NT gains its power and ease of use through several aspects of its
design .

(1) Its input language is very much like FORTRAN. The only changes are the
addition of new type names and operators, and the ability to define “func-
tions” naming parts (“fields”) of variables which may appear on either side of
the assignment operator. Thus it is very easy to use——much easier than learn-
ing the calling sequences of a package of subroutines.

(2) AUGMENT is extremel y portable. Since it is written in FORTRAN, AUGMENT
can be impl emented on almost any computer (this should be qualified by saying
tha t adequate memory must be available——one attempt to implement AUGMENT on a
DEC PDP— 1 1 was unsuccessful because of the limited address apace) . The
machine—dependencies of AUGMENT are concentrated in eight subroutines which
can be implemented in less than 200 lines of (machine—dependent) FORTRAN.

(3) AUGMENT ’s output is standard FORTRA N which makes it suitable as a
cross—precompiler ; that is, the AUGMENT translation may be performed on one
(large) machine and the results compiled on or for some other machine which is

f unable to host AUGMENT. This was the approach taken when the interval arith-
metic package was impl emented an the PDP— 11.

There are three major steps in the use of AUGMENT:

Specification of the nonstandard data type
Binding to a representation (implementation)
Application

As is readily seen , the first two steps may be very easy or may be skipped en-
tirely in cases where appropriate researoh and development has already been
per formed . We give a brief sketch of these steps below ; the remainder of the
paper illustrates them in some specific oases.

SDecification. The whole process begins with the speoifioation of the
properties of a nonstandard type . The specification will need to consider the
following questions:

What information will the user see?
• What operations will be made available?

How will this type interact with other types?

In many cases , the answers to these questions will be available in prev ious
research or obvious from the nature of the new type . For ex ple , a multiple
precision floating point type should parallel the standards as much as possi-
ble . In other cases, considerable research may be needed and even an appeal
to per sonal preference (there are at least two distinct schools of opinion on
the proper way to define comparison in interval arithmetic) .

— 3 —

- ~~- -~~~~~ -~-~~~~‘ ~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ -

‘- *- - ——————— —- — ..•- — - . ~d .&..d S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Se S~ia~... - .r r- --- u-~ -- ,- - — — — — —

AUGMENT gives little assistance to this part of the process . The speci-
fications will be guided by the applications envisioned by the person prepar-
ing the new type , by the operations known or felt to useful in manipulating
the type , and esthetic considerations such as consistency with similar types
(it any) already exist ing in Fortran or previous extensions.

Binding (I.olementation ). The binding of the abstract specification of
the new type to a representation usable through AUGMENT is by means of a “sup— . 

- 

-

porting package” of subroutines and functions , and through a “description
deck” which tells AUGMENT about the supporting package. In this effort , the
implementor must consider the conventions expected by AUGMENT in terms of ar-
gument number and order . These conventions are treated at length in the AUG—
MENT User Documentation (5].

In addition to this, there may remain basic questions of representation .
For example , the data structure which the user sees may not necessarily be the
beat way to implement the type . Suppose that the new type is specified
abstractly as a linear sorted list into which the user may insert and retr ieve
items . In this case , it might be much more efficient to implement as a binary
tree wi th balancing and threading properties appropriate to the expected uses .
The user might well remain ignorant of the underlying implementation and see
only the linear sorted list. —

Very often AUGMENT can be used to assist in the binding process . It may
often be the case that only a few of the routines in the supporting package
require knowledge of the binding. For example , if a new arithmetic type (such
as multiple precision) is being implemented , then only the basic arithmetic
and conversion routines would require knowledge of the underlying representa—
tions. The mathematical functions (SIN, ABS, etc) could be written using AUG-
MENT and be representation independent. This would make it easier to
relisplenent the package with, for example , a different precision. In fact,
this has been done with the interval arithmetic packages as will be described
later in the paper.

ADolication. The application of AUGMENT to preparation of a program
which uses one or more nonstandard data types is by far the easiest part of - •

the process. In fact , AUGMENT was designed so this would be the case. Given
that the supporting package(s) , description deck(s) , and adequate documenta-
tion have already been prepared , the use of the package( s) through AUGMENT
consists of just four steps: 

-

L (1) Write the program using the new operators and functions.
~~~~~~~~~~

- (2) Supply AUGMENT with your program and the descript ion deck(s) .
(3) Compile AUGMENT ’s output with the system FORTRAN compiler.
(14) Link—edit and run .

Since AUGMENT checks for as many errors as it can, it is usually unnecessary
to examine the FORTRAN translation . However , we suspect that most users will
wi sh to examine the output at first to convince themselves that AUGMENT does
produce correct code. This desire would be expected to diminish as confidence
grows (after all , how often does the normal user examine the output of the
system compilers?).

— ‘ 4 —

~—
_ - -

~~~~~~
—

— - - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~ --- -r-~~~ ~~~~~~~~~~~~~~~~~~~~ 
_ _ 

~~~~~~ ________ 
-- -

~~~~~



~~~~~~~w~~~~~- • - __ •__ — ,- —-—- ---- •_- ••

~~~~

---

~

__—•—-- —•--- • - —--——_ - •

~~~

- ------ -- —--

3. Abstract data types

In the planning of most computations , we do not explicitly consider the
architecture of the computer that will be processing the program or the ape—

- • cific representation that it will assign to real numbers, for example. In
writing the code , however , most languages require that we make decisions early
in the coding about such questions as precision , data representation, and so
forth. This is not ordinarily onerous, since we are usually somewhat limited
in our selection of data types anyhow, and certain variables naturally invite
representation as integers , others as “REAL” variables , and yet others as DOU—
BLE PREC ISION . We put the word “REAL” in quotes because we feel tha t thi s is
an unfortunate choice f o r reference to a single-precision approximation to
real numbers.

It is not unusual for per sons trying to run a program written for a
long—word machine on a short—wo rd machine to experience problems related to
precision . The reason for thi s is that they have come to depend on a large
number of significant digits , a large exponent range , or both ; the algorithm
taxes the ability of the short—word machine to handle the problem . In such
cases , the programmer is not really interested in what the data type is
called , so long as it is an accurate approximation to the abstract mathemati-
cal system to produce valid results. Nevertheless , the user caught in such a
squeeze must usually declare all of the former “REAL” variables to be DOUBLE
PREC ISION .

AUGME NT has a feature which will aid a person caught in such a trap ; it
can be instructed to convert any REAL variable to DOUBLE PRECISION. While
this feature may save many hours of drudgery for the person who has a require-
ment for such direc t conversion , it is only a hint at what we have found to be
one of the major attractions of AUGMENT in writing special—pur pose arithmetic
packages: the ability to use abstract (unbound) data types throughout the ma-
jority of the programming, binding the data type to a specific representation
only in the instructions to AUGME NT and in a few primitive modules of the
package.

Thus , for example , one might write a package using the data type ETHEREAL
(Ex press THEoretical REA LS will do , if you must have an expansion for the ac-
ronym) , later instructing AUGMENT to convert ETHEREAL to REA L, DOUBLE PRECI-
SION , MULTIPLE PRECISION , or what have you. Other data types may then be de-
fined as vectors or matrices of ETHEREAL numbers , and AUGMENT will be able to
allocate the proper amount of space when it knows the binding of ETHEREAL .
Moreover , the routines which manipulate the arrays of ETHEREAL numbers may all
be written in terms of operations on ETHEREAL numbers; again , AUGMENT will put
everything right at preoompile time.

The following sections will illustrate this philosophy with concrete ex—
amples.

— 5 —

L ~~~
-

~~~~~~~~~~~~~
-

~~~~~
-
~~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~~


14~ The use of AUGMENT in the construction of the INTERVAL package

The Interval Arithmetic Package described in (18] was motivated by inter-
est in interval. arithmetic on the part of several other universities with dif-
ferent computer systems. This interest was sparked by a project sponsored by
the U. S. Army Corps of ~~gineers Waterways Exper iment Station , Vicksburg ,
Mississippi ; this project included implementation of interval arithmetic on
various computer systems and comparison of the performance of the various sys-
tems.

The previous interval arithmetic package at the Mathematics Research Cen-
ter (12] had been developed in the early 1970’s, and was quite dependent on
the UNIVAC 1100 series architecture. Extensive reprogramming would have been
necessary for each new system , and it was therefore decided to rewrite the
package for greater portability.

The revised package needed to be flexible enough to accommodate a wide
variety of differen t computer architectures ; indeed , since we wished to make
the package adaptable to nearly any host environment , we wanted to leave the
representation of intervals and interval endpoints arbitrary throughout the
bulk of the package. But because of FORTRAN ’ s popularity for scientific coin—
putation , it was the language of choice for implementing the package. Need—
less to say, ANSI standard FORTRAN does not have the flexibility we needed in
order to accomplish the goals we had set .

We wanted to make the interval arithmetic package easily accessible from
the user ’s point of view. This naturally led us to design the package to be
interfaced with AUGMENT: indeed, this had been done also with the previous
interval arithmetic package . But the requirements for flexibility and trans-
portability led us to conclude that the package itself should be written with
the aid of AUGMENT.

Before we discuss the role of AUGME NT in the implementation of the pack-
age , it would be appropriate to include a very brief description of interval
arithmetic. The interested reader can find more details in [18] or (11].

Interval arithmetic is a means for bound ing the error in computation by
oaloulating with pairs of real numbers , the first member of the pair being a
lower bound for the true result , and the second an upper bound . The founda-
tions for interval mathematics have been carefully laid by Moore (1 14] , Kulisch
(11], and others , so interval mathematics is on firm theoretical ground.
There are olosed—fbru formulae tbr evaluating operations and functions on the
space of interval s, so that computation with intervals is reasonably straight-
fo rward .

In machine interval arithmetic , one naturally represents an interval as a
pair of approximate real numbers. Ck~e must then determine what approximation
is to be used for real numbers , and develop the necessary software to evaluate
the mathematical functions on these representations of real numbers. In most

• cases , the existing hardware/software systems are not adequate , for one impor-
tant reason: in order to preserve the in tegrity of the interval , calculations
involving the lower bound , or left endpoint of the interval , must be rounded
downward ; those Involving the upper bound (right endpoint) must be rounded up-
ward . No production system tha t we know of provides these roundings.

— 6 —

• =11’ im~~~~’~—~~~
—-— - - - - _______

.~~~~~~~~~ ~~~~~~~~~~~~ ~~~ - - — -
-

- - -—~~
------ --- - - - -—- — •— — -

Thus , in designing this package, we were faced wi th two problems: defi-
nition of an appropriate system of real arithmetic approximation , and defini-
tion of the interval arithmetic operations based on that approximate real
arithmetic system.

The design of the arithmetic primitives for the approximate real arithme-
tic was relatively straightforward ; we used the algorithms given in (17). The
special functions posed more of a problem: straightforward evaluation v ’
these functions can lead to unacceptably wide intervals. We decided to evalu-
ate these function s in higher precision , and use information about the
inherent error in the higher precision procedures before rounding the results
in the proper direction to obtain the desired real approximation.

In order to preserve the desired degree of flexibility, we introduced the
nonstandard data type EXTENDED to designate the higher—precision functions ,
and the nonstandard data type BPA (mn emonic for Best Possible Answer) to des-
ignate the approximation to real numbers used for the interval endpoints. The

• nonstandard data type INTERVAL was then declared to be a BPA array of length
2.

• The BPA portion of the package was then written in terms of BPA and EX-
TENDED data types wherever possible. In only a few cases was it necessary to
bin d SPA to a standard data type in the package modules: such functions as
the replacement operator obviously need to be bound to a standard data type to

• avoid recursive calls. There were sixteen (out of 117) modules in this portion
of the package tha t seemed to require such binding .

• We illustrate the implementation of the BPA portion of the package with
the SPA square root routine. The COMMON block BPACOM is used to communicate
the desired round ing option to the SPA routine and to commun icate any errors

• (via the variable BPAFLT) to the calling routine . ACC is an integer variable
which indicates the number of accurate digits in the EXTENDED routines. The
statement H = ER implicitly invoices the oQnversion from EXTENDED to BPA, which
includes addition or subtraction of an appropriate error bound and rounding in
the specified direction.

SUBROUTINE BPASQT(A, B) BPA1O32O
C H SQRT(A) BPA1O33O
C NO ERRORS POSSIBLE EXCEPT SQUARE ROOT OF A NEGATIVE NUMBER , BPA 103140
C WHICH RESULTS IN BPAFLT BEING SET TO 18 5PA10350

COMMON /BPACOM/ OPTION , BPAFLT , ACC , RDU , RDL , RDT , BDN , RDA BPA 1O3 6O
INTEGER OPT ION , BPAFLT , ACC , RDU , RDL , RDT , RDN , RDA BPA 1O37O
COMMON /BPACON/ ZR O , ONE , 0*1, TWO, P102, P1, SPAMNB, BPANXB BPA1O38O
BPA ZIlO, ONE , 0*1, TWO, P102, P1, BPAMNB , BPAMXB BPA 1O39O
COMMON /BPAACC/ IACC(2~$) , LNACC , LGAt C , SNHACC , TNHACC , EXPMXA , BPA1OJ400

1 EXPMNA , FRACBD , MAXINT BPA1O J4 1O
INTEGER IACC BPA1OI42O
SPA LNACC , LGACC, SNHACC, TNHACC , EXPI4XA, EXPMNA , FRACBD , MAXINT BPA1OI43O
BPA A , K BPA 1O1I I4 O
EXTENDED EA , ER BPA 1OI45O
IF (A .LT . ZRO) GO TO 900 BPA1O146O• EA = A BPA 1O147O
ER SQR T (EA) BPA 10~480
ACC = IACC(50) BPA 1OI49O
R = ER BPA1O500
RETUR N BPA1O51O

— 7 —

— — —— -~---~~ ‘-

- -
—-- ~~~~~~~~~~~

_ _

900 BPAFLT = 18 8PA 10520
R ET URN BPA 1O5 3O
END BPA1 O 5II O

The INTERVAL portion of the package was then written in terms of INTER-
VAL , BPA , and EXTENDE D data types . In this portion of the package , only the
BLOCK DATA module , the error—handling routine (which depends on internal rep-
resentation to some extent) and a routine which unpacks Hol].erith strings are
system—dependent .

• The following interval square root routine illustrates the implementation
of the interval portion of the package . The COMMON block INTCOM is used for
communication with the error—handling routine INTRAP. INTFLT indicates wheth-
er an error has occurred and , if so, its nature; ID is a code number designat-
ing the routine which is calling INTRAP; and TA, TB, and TR contain the argu-
ments to and the result of the calling routine, respectively. Since the data
types and numbers of arguments differ for different routines, INTRAP is given
(in another COMMON block) the information necessary to decode the contents of
TA , TB , and TR properly. Since we do not know a priori which of INTERVAL or
EXTENDED may require the greatest amoun t of storage space , we resort to the
EQUIVALENCE statement to ensure that enough storage is allocated for these
three variables, regardless of the data type of the variables they may be re-
quired to contain. Note that before invoking the SPA square root routine (im-
plicitly, twice; once for the right endpoint, or SUP, of the interval, and
once for the left endpoint, or INF, of the interval), the variable OPTION Is
set to specify the desired directed rounding (RDU for upward directed
rounding , and RDL for downward directed rounding). After the computation Is
complete , INTFLT is set to indicate which faults, if any, have occurred, the
variable ID is set to 19 (the code for the square root routine), and INTRAP is
called to process any error that may have occurred. Finally, the result is
stored and a return to the calling program is executed .

SUBROUTINE INTSQT(A, B) INT1B600
C R = SQUARE ROOT OF A (MONOTONE FUNCTION) 1NT18610
C TNE ONLY FAULT WHICH CAN OCCUR IS THE ATTEMPT TO TAKE THE INT 18620
C SQUARE ROOT OF A NEGATIVE NUMBER . THIS WILL BE DETECTED 1NT18630
C IN BFASQT. 1NT186140

COMMON /BPACOM/ OPTION, BPAFLT , ACC , RDU, RDL , RDT , RDN , RDA 1NT18650
INTEGER OPTION, BPAFLT , ACC, RDU, RDL , RDT, RDN, RDA 1NT18660
COMMON /INTCOM/ INTFLT, ID , TA , TB, TR 1NT18670
INT EGER INTFLT , ID • INT18680
INTERVAL TA , TB, TB 1NT18690
EXTENDED TAE , TEE, TRE INT18700
EQUI VALENCE (TA , TA E) , (TB , TE E) , (TB , TRE) 1NT 18710
INTERVAL A , R 1NT 18720
TA = A 1NT 18730
OPTION = RDU 1NT187 140
SUP(TR) = SQRT(SUP(TA)) INT18750

• OPTION a RDL 1NT 18760
INF (TR) = SQRT(INF(TA)) INT18 770
INTF LT = BPAFLT INT 18780
ID = 19 1NT 18790

-
:~ CALL INT RAP INT188 00

R a TR 1NT 188 10
RETURN 1NT 18820
END 1NT 18830

— 8 —

- -- •I~ •~- -_•
.
~~-•

• •

~~ ‘~~~~j_~ 1]~J~ L ~~~~~~~~~~ ~~~~~~~

Appropriate description decks were then prepared for AUGMENT , binding thenonstandard types EXTENDED and SPA to representations in terms of standard da-ta types (INTERVAL remains declared as a BPA array of length 2) . The entirepackage was then processed using AUGMENT to extend these bindings throughoutthe package.

In order to adapt the resulting package to a different host environment ,or different precision , or both , one writes the necessary primitive routines ,adjusts the declarations in the desoription deck as necessary , and reprocessesthe package with AUGMENT . That this procedure is effective is attested to bythe relative ease with which this package was adapted for use on the IBM 370 ,Honeywell 600, DEC—10 , PDP— 1 1, and CX Cyber systems .

— 9 —

a- - -

• • • -~~~~~~~~~~~~--- ~~~~~~

_
~~~~~ 

.• _  — -::~~~~~~~ :T~~ ::iLT~r~~~:~
_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- ••_ - .- _ -•- - •.-_- -. -_ -• - . - - • _ - - _ - _ - _-—-~~~~~~___ J_~~~
— -

~~~~~~

~~~~~~~~~~~~~~ • -
~~~~

-• • - • -~~ - ~~~~~-~~ MM • - —- .• -

5. Adaptations of the INTERVAL package:

We discuss two adaptations of the INTERVAL package : the first of these
is the creation of a package to perform Triplex arithmetic, and the second is
a package to perfo rm interval arithmetic in multiple precision.

—

A. The TRIPLEX package:

Triplex is a varian t of interval arithmetic in which a main , or “most
probable” , value is carried in addition to the endpoints. In West Germany,
which could be regarded as the focal point of work in interval mathematics ,
triplex arithmetic is widely used in preference to ordinary interval arithme-
tic .

0t~e of the visitors at the Mathematics Research Center was a Professor
from the University of Karlsruhe , West Germany , who wanted to have access to
triplex arithmetic dur ing his appointment at MEC. We decided to see how dif-
ficult it would be to modify the INTERVAL package to perform triplex arithme-
tic.

The difference between triplex and interval arithmetic is conceptually
quite simple: at the same time one computes an operation or function on the
interval endpoints, using the Interval mathematics formulas , one evaluates the
same operation or function on the main values, using standard real arithmetic,
rounding the results to the nearest machine number. Assuming that the real
arithmetic is reasonable , the main value will always be a point in the inter—
val given by the endpoints.

The task before us , then , was to add code to all of the interval routines
to compute the main values, rename the modules of the package , adjust the for—
mats to accommodate the third value , and , of course , change the representation
of intervals to accommodate the main value.

•
- The addition of the extra code was straightforward and ordinary; we sim-

ply added the appropriate lines of code to each routine to compute the main
value. We should note , however , that this did not disturb the existing code ,
inasm uch as storage and retrieval of the endpoint values had already been de-
fined not in terms of first and second array elements in the interval number ,
but rather in terms of the field functions INF and SUP respectively (AUGME NT
allows the use of such field functions, even when the host FORTRAN compiler
does not).

The modules were renamed by suitable use of a text—editing program on
the INTERVAL file . Each INTERVAL routine began wi th the prefix INT ; we wanted
the triplex routines to have the prefix TPX . We simply instructed the editor
to find all occurrences of IN? which were not part of the words INTEGE R ,

• PRINT , etc . and change them to TPX.
-

- The represen tation problem was handled simply by changing the word INTER-
VAL in the type declaration statements to TRIPLEX . No other changes were nec-
essary in the bulk of the routines, since AUGMENT automatically extended the
new bind ing throughout the package . The only plaoes where hand coding was re-
quired were the few primitives (such as the replacement operator) where we
needed to handle triples (or portions of them) rather than pairs. Again , some
of these are obviously necessary to define basio operations .

— 10 —
.

~~~~~~~~~~~~~~~~ 

- • 

~~~~

• •

~~~~~~~~~~ 

-

- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

The triplex square root routine below illustrates the types of changes to
the interval package that were necessary to produce the triplex package:

SUBROUTINE TPXSQT(A , B) 
• 

TPX2005O
C B = SQUARE ROOT OF A (MONOTONE FUNCTION) TPX2006O
C THE ONLY FAULT WHICH CAN OCCUR IS THE ATT~ 4PT TO TAKE THE TPX20070
C SQUARE ROOT OF A NEGATIVE NUMBER . THIS WILL. BE DETECTED TPX2008O
C IN BPASQT. TPX2009O

COMMON /BPACOI4/ OPTION , BPAFLT , ICC, RDU, RDL, RI)?, RDN , RDA TPX2O100
INTEGER OPTION , BPAFLT , ICC, RDU , RDL , RDT , RDN , UDA TPX2O1 IO
COMMON /TPXCOM/ TPXFLT , ID, TA , TB, TB TPX2O 12O
INTEGER TPXFLT , ID TPX2O 13O
TRIPLEX TA , TB, TB TPX2O1J$O
EXTENDED TAE, TEE , TRE TPX2O15O
EQUIVALENCE (TA , TAE), (TB, THE) , (TB , TEE) TPX2O 16O
TRIPLEX A , B TPX2O500
TA = A TPX2O18O
OPTION RDU TPX2O19O
SUP( TR) = SQRT (SUP(TA)) TPX2O200
OPTION = RDN TPX2O21O
MAIN ( TR) = SQRT(MAIN (TA)) TPX20220
OPTION = RDL TPX20230
INF(TR) = SQRT(INF (TA)) TPX202~0
IF(BPAFLT .NE. 0) TPIFLT = 66 TPX20250
ID = 19 TPX20260
CALL TPXRAP TPX20270
5 TR TPX20280
RETURN TPX20290
END TPX2O300

Changing the I/O formats proved to be more time—consuming and error—prone
than all of the rest of the changes put together . This, however , was a me—
chanical task .

The modification of the INTERVAL package to produce a TRIPLEX package was
accomplished in little more than one week of elapsed time, documentation (( 1])
excepted. This measures the time from when we first started modifications un—
til we had obtained a completely successful test run , performed all of the
housekeeping functions , and had the package ready for production use.

B. The t4~ltiple Precision INTERVAL package:

One of the goals of the original design of the INTERVAL package was to
allow for increased precision in oases where that was desired. When the mul-
tiple precision arithmetic package of Brent (2) became available , it was only
natural to consider using that package as a basis for the multiple precision
version of INTERVAL .

• The first step in this process was to develop an AUGMENT interface for
Brent” s package . This we did in collaboration with Brent, and the interface
is written up in (3].

The steps in developing the multiple precision version of the interval
package were:.

— 11 —
• - -~~~

-
~~~~~~

-
~~~

- .- -
~~~~~~~

-
~~

—- — -
~~~~~ ~~~:~~r •- •~ - ~~~~~~~~~~~~~~~~~~ -~~~~•~- • ~~~ - - —‘- -—



r~~~ 
— — - -—-—

~ 
——

~~

- 

~~~~
- - - ----—“

~~~ 
—

_

~~~ ~5~—’~
--—-— ----

~~

- ---

~

- — - - — -

~~

- ---- f l - - - - - -,

I’

1 • Determine the representation to be used for the real approximations .
(Brent’s package allows a great deal of flexibility in this regard.)

2. Write the primitive arithmetic operations, basing these on Brent’s
rout ines, but providing directed roundings (Brent’s package does not
have this capability) .

3. Use Brent’s package as the EXTENDED arithmetic package.

1 . Write the necessary BPA primitives. The real format for BPA numbers
will be closely related to the format of the Brent multiple preci-
sion numbers , but will have fewer digits and smaller exponent range .

5. Write an additional module which will set the necessary constants
based on the run—time precision chosen for the BPA numbers. This
will use features of Brent’s package.

6. Rewrite the description decks as necessary

7. Reprocess the package with AUGMENT.

The development of the multiple precision version of the interval package
took somewhat longer than the developsent of the TRIPLEX package, due primari—
ly to the need to write the BPA primitives (these were the same for TRIPLEX as
for INTERVAL) and the rather extensive forma t changes in the error handling
routine that were necessary to accommodate the flexible representation afford—
ed by Brent’s package .

— 1 2 —
_ _ _ _ _ - • • - - - - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r _
~~~~~

L _
~

_ __
~~ 

- - -- - -~~~~~~
--- -~~~~~

-. __  --~~~~~ -4



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~

—

~~

-

~~

-

~

_ -

6. Other applications of AUGMENT

In the foregoing , we have illustrated the flexibility that may be gained
by using abstract data types . We now consider some extensions of this con-• cept , and some other applications of AUGMENT .

a. Recursive data type definitions: The versatility of AUGMENT may not
be readily apparent from the above examples . AUGMENT allows data types to be
defined in terms of one another , and this opens up some unique possibilities.
The first author once used AUGMENT to aid in the writing of a program to sort
information that was stored in the form of trees. Since the data was
multiply—layered, the values of one tree’s nodes would often be other trees.
This problem was addressed by creating two data types: TREE and NODE. One
field of a TREE was the root NODE , and one field of a node was a TREE. The
development of the program using these new data types was stra ightforward .

b. Analytic differentiation of FORTRAN functions: This package, de-
scribed in (10], allows one to obtain the Taylor Series expansion or the gra-
dient of a function which can be expressed as a FORTRAN program . The tech-
nique is shown to be applicable to functions defined in terms of loops and
conditional expressions as well as to the more conventional case of functions
defined by a single FORTRAN statement .

c. Dynamic precision calculations: In certain types of applications,
the precision required for the calculations is a funotion of the data . AJL~Istandard FORTRAN is not an appropriate language for such applications, since
the precision of a given variable is both limited and predetermined. AUGMENT
allows the definition of data types which are lists , however, and by using
this featur e, precision can be determined dynamically. One example of this

• technique is the dynamic precision package of Fullerton (8]; another is the
SAC—i system of Collins and others (n] , which was developed without the aid of
AUGMENT but will , if our in formation is correct , soon be interfaced with AUG-
MENT by another group .

c. Simulations: AUGMENT has been used to simulate one oomputer on an—
other. The technique for doing this is straightforward; one defines a non-
standard data type which represents the simulated machine, and prepares a non-
standard package which copies the arithmetic oharacteristios and data formats
of the target computer . This has been used to provide a means for algorithm
development and word—length sensitivity analysis for airborne computers prior
to their production.

e. Algorithm analysis: AUGMENT can be used to provide information such
as operation counts in the running of programs or portions thereof. One sim-
ply defines a nonstandard data type which, in addition to performing the stan—

-
•

dard operation, increments a counter. Such statistics can be collected for
entire program. quite easily by using the ‘CONVERT feature of AUGMENT , which

-
• allowa one to convert every instance of one data type (standard or nonstan-

dard) to another type; or, by inserting statements to print and reset counters
in the source cods , one can amalyze apeoific portions of the program.

f. I~~~e processing: The picture processing package described in (9] is
probably on. of the most unusual applicatio ns of AUGMENT we have yet seen .
Various nes operators allow th. construction of composite picture. from small-
er pert., and mmthemmtiosl function , have even been defined on type PICTURE.
For emampis, it P is type PICTURE, then SIII(P)”2 would yield a contour plot

— 13 —
—

~~~~~~~~~~~~~~~~ 
—- 

• •~~~~
=_ ---•~• •~~~~~• -——_____&- 



-• -,•~~—- - • ~- •-—---~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——•--- -—~—---- - •~ •

~~

— —•—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
- 
~~~~~~~~~~~~~~~~~~ ~~ —~~~.•,—•• • --- - •

of the intens ity of P, and (SIN(P))**l$ would yield a contour plot with sharper
contours .

The above illust rations should serve to indicate that the role of AUGMENT
in development of mathe matica l software is limited primarily by the user ’s im—
agination .

- • •• •
~~~~,#~~•~‘- , 

— --.---—-—

~~ 

.
~
. ~~~ —

~~ ._ i_ _ • .  • • • _ __ •~~~~~~~i

~~~~~~---~~~~~~- 
L

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



— — - ~~~

I

7. Conclusion:

We have indicated a nuebar of ways in which the AUGMENT preocmpiler for
FORTRAN can be and has been used to aid in the development of mathematical
software . Other appl ication , will undoubtedly be found for this precospiler ,
since it is both versatile and powerful .

Some of the emerging languages in research er*vironeents have some or per-
haps all of the capabilities alluded to In thi s paper. For example, CLU (13],
ALP UARD (16] ,  and EUCLID (15] are capable of handling abstract data types.
But at this writing , such languages ar e largely unavailable to most users.

Perhaps produ ction languages of the future Will include facilities imple-
menting such techniques as abstract data type definition and dyn amic precisi on
determination; we hope so. ~ at at the pr ..ent time , AUGMENT seems to be one ,
if not the only , avenue open to the user who needs this sort of power and
flexibility in his work.

— 15 —

-  - -• -



~~~~~~~
- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

R EFERENC ES

1. K. Boehmer and J. M. Yohe , A triplex arithmetic package f o r  FORTRAN , The
Un iversity of Wisconsin — Madison , Mathematics Research Center, Technical
Summary Report (to appear) .

2. Richard P. Brent , A FORTRAN multiple—precision arithmetic package,
Assoc . Comput . Mach. Trans . Math. Software ~j  ( 1978) , 57—70.

3. Richard P. Brent , Judith A. Hooper , and J. M. Yohe , An AUGMENT interface
for Brent’s multiple precision arithmetic package , The University of Wis-
consin — Madison , Mathematics Research Center , Technical Summary Report
#1868, August , 1978.

ii. G. E. Collins , The SAC—I list processing system, The University of Wis-
consin — Madison , Computer Sciences Department , Technical Report #129 ,
July, 1971.

5. F. D. Crary, The Augment precompiler I: User in formation , The Univers ity
of Wisconsin — Madison, Mathematics Research Center, Technical Summary
Report #11th9, December, 197k (revised April , 1976).

6. F. D. Crary, The AUGMENT precompiler II: Technical Documentation, The
Un iversity of Wisconsin — Madison , Mathematics Research Center , Technical
Summary Report #1k70 , October , 1975 . 

*

7. F. D. Crary, A versatile precompiler for nonstandard arithmetics, Assoc.
Comput . Mach. Trans. Math. Software (to appear).

8. W . Fullerton, Absolutely portable special function routines, Talk pre-
sented at the NSF/ERDA Workshop on Portability of Numerical Software,
June 21—23, 1976.

9. W. Fullerton , Private communication .

10. G. Kedem , Automatic differentiation of computer programs, Assoc . Comput .
Mach. Trans . Math. Software (to appear).

11. U. Kulisob , An axiomatic approach to rounded computations, Numer. Math.
jj  ( 1971), 1—17.

12. T. D. Ladner and J. M. Yohe , An interval arithmetic package for the UNI-
VAC 1108, The Un iversity of Wisconsin — Mad ison , Mathematics Research
Center , Technical Summary Report #1055 , May , 1970.

13. B. H. Liskov and S. N. Zilles , Programming with abstract data types,
Proceedings of a Sym posium on Very High Level Languages , in SIGPLAN No—
tines j (197’;), 50—59.

- 

J 1’;. Ramon E. Moore , Interval Analysis, Prentice — Hall , Inc., Englewood
Cliffs, NJ , 1966.

15. 0. Popek , J. J. Horning , B. W. Lampeon , ft. London , and J. Mitchell , Notes
on the design of EUCLID , Procee dings of t he AGM Conference on Language
Design for Reliable Software, Raleigh , Nort h Carolina , March 28—30, 1978.

— 16—

_ _ _ _ _ _ _ _ _ _ _
- 

I

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --- - —a-- --—- —
~~~~~~~ _ _*____‘__ - - —  —-—-4



- - — -

~~~~~~

- _

I

16. V. A. Wulf , ALPHARD: toward a language to support structured programs,
Carnegie — Mellon University , Technical Report , April , 197’;.

- 17. 4 • N • Yohe, Rounding. in floating—point arithmetic, IEEE Trans. Computers
~~~ (1973), 577—586.

* 

18. J • M. Yohe, The INTERVAL arithmetic package, The University of Wisconsin
— Mad ison , Mathematics Research Center , Technical Summary Report #1755,
Jun e, 1977 (revised September , 1977).

19. J. H. Yohe , Software for interval arithmetic: a reasonably portable
package, Aasoo . Ccmput . Mach . Trans. Math . Software (to appear).

- 17 —

-
_______________________ — . - - - ——

. 
~~~~~ — -~~~~~~ -— ~~~~~-~~~~~~~~~~-—-~~- — — - - - — -


-— -

*
-~~~~~~~~~~

—
~
_-__m—----- —

— - —---1
SECURITY CLA’SIPICATION ‘ THIS PAGE (tRIo, DM. Inh.A ~

w~ & A j*~~~ READ INSTRUCTIONSI~~~l~Jl~~I ~~~~~~~~~~~~ ~~ ~~~~ ‘~~~‘J ’ BEFORE COMPLETING FORM
I . REPOR T NURS ER 2. GOVT ACCEiSION NO L RECIPIENT’S CATALOG NURSER

1892 1
- ____________________________

0. TITLE (d J.áWl.) I. TYPE OF REPORT S PERIOD COVERED

TI~ AUGM~4T PRECCI4PILER AS A TOOL FOR TEE Summary Report - no specific
• DEVELOPI~~T OF SPECIAL PURPO~~ ARfl~1NETIC reporting period

PAC1~~~ ES S. PERFORMING ORG. REPORT NUMBER

~~. AUtNOR(.~ S. CONTRAC 1 OR GRANT NUM SER(.)

F. D. Crary and J. N. Yohe D AAG29- 75-C- 002 4
”

~~~~~~~

S. PERFORMING ORSANIZATION NAME AND ADDRESS ~~~ 10. PROGRAM £J.EMENT. PROJECT. TASK 
-

Mathematics Research Center, University of ~~ AREA I WORK UNIT NUNRERS

610 Walnut Street Wisconsin #8 Computer Science
Madison , Wisconsin 53706 _______________________
II. COW TROU.IMS OFFICE NAME AND ADDREU $2. REPORT DATE

— U. S. Army Research Office October 1978
P.O. Box 12211 II NUMSER OP PASSI

Research Triangle Park , North Carolina 27709 17
‘s. MONITORING AGENCY NAME S AODRES$(U dlIl.,wt A.. CcnI,.11M4 051..) tO. SECURITY CLAU. (.1 Si. ,~~.l)

UNCLASSIFIED
1$.. DECLAI$IFICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT ~.g ml. u pon)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of IA. ~~.b ct .,Ion.d Si, l ock 20. II dSIlon.,S f t . .  Rip en)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (CentS... an r.von.o .Sd. If n.e...., end IdPnIUI. $y Mock iu..b. r)
Preccanpile r
Nonstandard arithmetic packages

\ 
Portable software
Software development

\~oftware modificat ion
20. A~~~~RACt (Canffi,u. ci, r.v.n.. .i ~~~ If occ.. . v IdIoMSI Op W.ek

We discuss the use of a FORTRAN pz~ecompi1.r in the developaent of packages
for nonstandard arithmetic.. In particular, the use of the FO~~RAN precompiler,
M3GM~ IT , renders the source code more lucid , reduces the number of lines of
code in a nonstandard arithmetic package , facilitates modification , and amelio-
rates the problems of transportin g such a package to another host system.

~~~~~~~ ~~
. , ~~~~~~ 1473 EDITION OF I NOV 51 IS OBSOLETE UNCLASSIFIED

SECURItY CLASSIFICATION OF THIS PAGE (~~ en Don. ~~~~~~~~

I - . -;~~
—

~- ------- .

