AD=A063 984

UNCLASSIFIED

WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 12/1

ON THE VALIDITY OF A NONLINEAR PROGRAMMING METHOD FOR SOLVING M==ETC(U)

OCT 78 S HAN DAAGZQ-TS-C-OOEQ
MRC-TSR=1891

END
DATE
FILMED

7[3




ADAQ63984

-t

---.v&s-..

DDG FILE CoPY,

@

MRC i'rechm.cal b/unlnary Report,\1891

ON THE XALIDITY OF A NONLI
ROGRAMMING METHOD FOR SOLVING
HINIHAX BROBLEHS. ¥ i

v
Shih-Plng Han
2O) “Ping/ts

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

October 1978 Lib YD/’\ A\2 o r!'— /w’

(Received August 16, 1978)

AN \

e st
% _— - —

M'.a‘..—.‘_“-.--

Approved for public release
Distribution unlimited

Sponsored by

U.S. Army Research Office
P.O. Box 12211

Research Triangle Park 32 _Z ;)OO

North Carolina 27709
79 01 30

SRS

P




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

. ON THE VALIDITY OF A NONLINEAR PROGRAMMING
METHOD FOR SOLVING MINIMAX PROBLEMS

. Shih-Ping Han

Technical Summary Report #1891
October 1978

ABSTRACT

We consider the minimization of a function which is the maximum of a
finite number of smooth but nonlinear functions. It is well-known that
the minimax problem of this type connects naturally to a nonlinear program.
Through this connection the effective quasi-Newton method becomes appli-
cable. We show that this approach is valid and the resulting method has

global convergence properties.
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SIGNIFICANCE AND EXPLANATION
Minimax is an important priﬁciple in optimal selection of parameters

in the processing of empirical data and abounds with applications in
Economics, Statistics, Engineering and many other areas. The type of
minimax problem considered here is to minimize a function which is the
maximum of a finite number of smooth but nonlinear functions. Because
the maximum function is usually not smooth, most optimization techniques
are not suitable for handling it. However, by transforming the problem
into a equivalent nonlinear program the efficient gquasi-Newton method
becomes applicable. This work shows that this approach is valid and

effective.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON THE VALIDITY OF A NONLINEAR PROGRAMMING
METHOD FOR SOLVING MINIMAX PROBLEMS

shih-Ping Han

1. Introduction
We are dealing the following minimax problem

minimize ¢ (x)

(1.1) xeR"

where ¢ (x) = max {f, (x)} and fi" are continuously differentiable real-valued
i=l,...,m

functions defined on Rn. The function ¢ is usually not differentiable at a solution

point; therefore, most unconstrained optimization methods are no longer appropriate for
handling it. But, Problem (1.1) can be put into the following equivalent nonlinear
programming form

minimize n

(x,n)e Rn+l

(1.2)
s.t. fi(x) n I R AR

Hence, for solving the minimax problem (1.1) it seems feasible to use an effective non-
linear programming method to solve (1.2). A purpose of this paper is to demonstrate
how the successful quasi-Newton method described in [3, 4, 8] can be so used. The
special structure that Problem (1.2) is linear in the variable n should be exploited.
But, with this being done, the global convergence theorems in (3] can no longer apply
here. We show in this paper that the resulting method is still a valid one and global
convergence is still achievable.

We describe the method in Section 2. Section 3 is devoted to the justification

of our approach. The global convergence theorem for the method is given in Section 4.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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2. The Method

We are content with finding a stationary point of Problem (1.1), by which it is

,..<.4...__,

meant a point, x say, in R" that satisfies the condition
(2.1) min {¢*(x;d) : ||a]|,=1} g0,

where ¢'(x;d) is the directional derivative of ¢ at x in the direction d.

Clearly, Condition (2.1) is a necessary condition for the point X to be a solution

of (1.1) and it will be reduced to the condition Up(x) = 0 when m = 1. Let

‘ I(x) = (i : £.(x) =¢(x)} and let f be called active at x if ie I(x). Itis
known [2, for instance] that x is stationary if and only if there exists an m-vector

v such that

m
(2.2) CYI) Giw (x) =0 ;
i

i=1
m -

(b) 2 v, =1 ;
% i
i=1

(€ v20;

(@) ‘-’1’° if if I(x)

Notice that Condition (2.2) is just the Rarush-Kuhn-Tucker condition of the nonlinear

programming problem (1.2). ‘

The proposed method is an iterative process. At the k-th iteration we have an

estimate x, of a solution and have also a scaler " which is a predicted optimal

k
value of the objective function ¢. To construct new estimates xk+1 and “k+1 we

solve the following quadratic program

minimize % dTBkd +5
(@, 8)er™!

(2.3)

T
s.t. £ x) +VE(x)Acn 46 i=l...m.

Here, Bk is a positive definite nxn matrix, preferably a good approximation to the

Hessian 2 5v2fi(§) of the lLagrangian of (1.2) and updated by Powell's scheme {9}
i=1

i




s

Let (4,,8,) be a solution of (2.3). Then we set (xkﬂ'"kﬂ) = (xon) + lk(dk.Gk),
where lk is the stepsize determined by doing an exact line-search in the direction
(dk.ék) on the function © defined by
; m
(2.4) 8(x,n) = n+ J max{f, (x) - n,0} ;
i=1

that is,

e(ﬁ(ﬂ'"kﬂ) = o:i:le (:5‘ + Adk,nk + xck) :

It is merely for simplicity that we consider the exact line-search here. An analysis
of some inexact line-search is possible and will be very similar to the one given in

[S), where the determination of the stepsite ) is based on the objective function

k
¥ instead of 6. There are some advantages to use the function 6 because it
takes into consideration some inactive functions f i’ while the function ¢ gives
bias completely to the active ones.

The method described above is essentially an application of the method in (3] to
Problem (1.2) with its special structure being taken into account. The problem con-
sidered there is the general nonlinear programming problem

min g(x)

(2.4)
s.t. fi(x) <0 i=1,...,m

and the subproblem to be solved in each iteration is the quadratic program

T 1.1
nnn Vg(xk) a+ 3 d Akd
&R
(2.5) T
s.t. f‘(xk) + Vfi(&) d<o0 i=1,...,m.

The stepsizes are determined by the exact penalty function

m
pi(x,a) = g(x) + a Z max{f, (x),0} .
i=1 5

When .x’x 2 xTAkx 2 yx'rx for some positive numbers § and y and for each k and
%, and when the Lagrange multipliers of (2.5) are uniformly bounded by a in the

o-norm then it is shown in [3]) that any accumulation point of the generated points

a3e
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{:1} is a Kuhn-Tucker point of (2.4). Because Problem (1.2) is linear in n, hence
the quadratic program (2.3) should preserve this property. Though we usually require
the matrix Bk to be positive definite, Problem (2.3) is no longer a positive definite
quadratic program in the space Rnﬂ. This makes the global convergence theorems in
(3] not applicable here. Some justification of our approach becomes necessary and will

be given in the following sections.




3. Validity of the method

In this section we justify our approach. For simplicity we drop the index k

from (2.3) and for any point (x,n) in Rn“' and any nxn matrix B we consider

the following quadratic program

ninimize = a'Ba + &
n+l
(3.1) {3,600 R

s.t. fi(x) + Vfi(x)Td el 8 5 Y T G e

Because the constraints are linear any solution of (3.1), (3,3) say, is a Karush-

Kuhn-Tucker point of (3.1) and, hence, there exists an m-vector v such that

m
(3.2) (@ Bi+ ) VVE (x) =0 ;
1 1
i=1
? =
(b) v, =1 ;
i=1

(© £,00+9 0@ +8, i=1...m;
(@ v>0;

- 2 T-
(&) v, =0 if £ (x) +VE (x)°d<n+ 3 .

We first show that the method is well-defined in the sense that a search direction
can always be uniquely determined in each iteration.
Theorem 3.1. Let (x,n) be any point in Rnﬂ and let B be a positive definite
nxn matrix. Then there exists a unique solution (3,3) of the quadratic program (3.1).
Furthermore, x is a stationary point of (1.1) if and only if d=0 and § =¢(x) - n.
Proof. To show the existence of a solution for (3.1) we first note that its feasible
region is obviously non-empty. Because of the convexity we only need to show that the

objective function is bounded below in the feasible region. This can be done by

considering the dual problem




PRI 5o e

max f(x)Tv - % vTVf(x)B-l'Vf(x)Tv

veRm
m
s.t. Z vi Lt R
i=1
v>0.
=

Clearly, the dual problem is also feasible. Therefore, it follows from the duality

theorem [7] that the optimal value of (3.1) is finite and, hence, a solution exists.
Let (3,3) be a solution of (3.1). We want to show that (3,8) is the only one.

From a result in [6, Corollary 3.6] the solution (d,8) is unique if a’ea > 0 for

any non-zero vector (4,8) in RM'1 satisfying

(3.3) @ da+s<0,

(b) Vfi(x)Td s § for each i€ J,

where J = {j : fi (x) + vtJL (x)Ta =n +08) . Because B is positive definite we only
need to show that if (d,8) satisfies (3.3) and d = 0 then § must also be zero.
Note that it follows from (3.2.b) and (3.2.e) that the index set J can not be empty.
Therefore, if d = 0 and if (4,8) satisfies (3.3.b) for some i in J then § > O.
But, from (3.3.a) and d = 0 we also have § < 0. Hence, § = 0 and the uniqueness
of the solution is proven.

The second part of the theorem follows straightforwardly from (3.2) and the

uniqueness of the solution. Q.E.D.

It may be worthwhile noticing that the solution vector d is independent of the
given value n. Therefore, a bad estimate in n should usually not spoil

a good estimate in x.
The search direction (d,8) is not only well-defined but also useful because it

is descent for our optimality function 6. Before giving this result we note here
that the symbol 6'(x,n;d,8) denotes the directional derivative of 6 at (x,n) in

the direction (4,6).

-6=
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Theorem 3.2. Let (x,n) be a given point in li“+ and B be a positive definite and
symmetric nxn matrix. Let (3,3) be the unique solution of (3.1). Then

9 (xl“'alz, : = aTuT.

Proof. Let I = {i: £, (x) > n}, {i: £, (x) = n}, and I_={i: £, (x) < n} .

Then from a result of Danskin [1] we have

0 e,mid,8) =8+ (v %a-8) + ] maxive 0% - §,00 .
I

+ IO

Because (3.3) is also a Karush-Kuhn-Tucker point of (3.1) there exists an m-vector v
such that (3.2) holds. It follows from (3.2.c) that if i € Io then
lnx{Vti(x)Ta - 5,0} = 0. It also follows from (3.2) that

m
0 (x,md,8) =3B~ | vurTa+d+] (v, 0% - D
i=1 1
+

m
<-3Ba- ] v@Ean-£00)+8+] (- £ )
i=1 1

+

< am+] oa- \-ri) (- £.)) g -3"83 . Q.E.D.
I

+
The following corollary justifies the use of function 6 as an optimality function
for solving the minimax problem (1.1).
Corollary 3.3. If (x,n) is a local minimum point of function 6 then x is a
stationary point of Problem (l1.1).
Proof. Consider the quadratic program (3.1) with B being any positive definite and
symmetric matrix. ' Let (3,3) be its solution. The vector @ must be zero; otherwise,
0'(x,n;d,8) < 0 which contradicts that (x,n) is a local minimum. Hence, the result
follows immediately from Theorem 3.1. Q.E.D.
We also observe that both Problem (1.2) and (3.1) satisfy the Arrow-Hurwicz-Uzawa
constraint qualification [see 7, for instance]. From a result in [10; Theorems 1 and 3]
the feasible regions of (1.2) and (3.1) are stable when they are subjected to small
perturbations. This property is very desirable and makes our approach very useful

pratically.




4. Global convergence

We study in this section the global convergence properties of the method. Here
we need a very useful result of Robinson [11] on the stability of quadratic programs.
Actually, Robinson considers the stability of a very general class of problems, called
generalized equations by him. The following lemma is a straightforward consequence of
his Theorem 2.

1

Lemma 4.1. Let (x,n) be a point in it and let B be a positive definite nxn

matrix, and let (5,3) be the unique solution of (3.1). Then there exist constants

1

A and € such that for each nxn matrix B' and each (x',n') in R'" with

€' := max{||B' - B||2,|| (x*,n') - (x,n) ||2}< €

the quadratic program
min % a'B'a + &
(@, 8)er™?
-

s.t. Vfi(x') + fi(x')'rd = n' +46 i=1,...,m

has a unique solution (4',6') and

1

@8 - @.60]l,c 2@ -2enQ +| @dlly -

We now give the global convergence theorem below.
Theorem 4.2. Let (5) be a sequence of nxn symmetric matrices satisfying that for
some positive numbers a and B and for each k
BxTx g xTnkx £ ox'rx for any x in R".

1 generated by the method from any given

Let {(ﬁonk)} be a sequence of points in s

starting point (x_,n_ ) and let (x,n) be any accumulation point of this sequence.
0"'0

Then x is a stationary point of the minimax problem (1.1).

Proof: Without loss of generality we may assuhe that (xk.nk) + (x,n). By passing to

a subsequence, if necessary, we have a positive definite and symmetric matrix B such

that .k + B. Consider the quadratic program

NN ——




min % a'Bd + &
(a,8)er™

s.t. £ G0+ v:i(i)Ta <n+é i=1,...m.

By Theorem 3.1 the quadratic program has a unique solution, (d,3) say. If d=o0
then by Theorem 3.1 again X is a stationary point of (1.1) and the proof is done.
If d#0 we will deduce a contradiction.

Define a point (x,i) by (%) = (x,n) + X(d,8) where 0 <X <1 is chosen
so that

8(x,N) = min BO(x + Ad,n + A3) .
0:A:1

Because Theorem 3.2 and d # 0, the number Yy := 0(x,n) - 08(k,A) is positive. By
Lemma 4.1 we also have (dk.ék) + (4,8), here again ((dk,dk)} may be only a

subsequence. Therefore, there exists an arbitrarily large k such that
O(xk+1,nk+1) = e(xk + Akdk,nk + Akck)
sl + Xdk,nk + Xﬁk)
<OGA) + 3y
< 8(x,n) .
This contradicts the fact that the sequence “""x"‘x” is monoton decreasing and
00x, 1oy, > 8(x,0). Q.E.D.

The sequence of points can be shown to converge to a solution point when we assume

that the functions f i are convex. But, from Theorem 4.2 our method should be expected

to work well even when the functions are not convex.
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