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ABSTRACT

We consider the minimization of a function which is the maximum of a

finite number of smooth but nonlinear functions. It is well-known that

the minimax problem of this type connects naturally to a nonlinear program.

Through this connection the effective quasi-Newton method becomes appli-

cable. We show that this approach is valid and the resulting method has

global convergence properties. 
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1

SIGNIPICM4CE AND EXPLANATION

Minimax is an important princip le in optimal selection of parameters

in the processi ng of empirical data and abounds with app lications in
• Economics, Statistics , Engineering and many othe r areas . The type of

minimax problem considered here is to minimize a function which is the

max imum of a finite number of smooth but nonlinear functions. Becaus e

the maximum function is usually not smooth , most optimi zation techniques

are not sui table for hand ling it. However, by transforming the problem

into a equivalent nonlin ear program the efficient quasi-Newton method

becomes applicable . This work shows that this approach is valid arid

effective

The remponsibility for the wording and views expressed in this descriptive
s~~~~ry ii•a with NRC, and not with the author of this report. _ L
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ON THE VALIDITY OF A NONLINEAR PHOGRAt*IING
METHOD FOR SOLVING MINIMAX PROBL~ 4S

Shih-Ping Han

1. Introduction

We are dealing the following minimax problem

minimize ~ (x)
(1.1) xeR’~

where ~~(x) — sax {f
i
(x)} and are continuously differentiable real—valued

i—i... .,m

functions defined on Rn. The function ~P is usually not dif ferentiable at a solution

point; therefore, most unconstrained optimization methods are no longer appropriate for

handling it. But, Problem (1.1) can be put into the following equivalent nonlinear

progranining form

minimize n
n+l(x,fl)IR

(1.2)
s.t. f .(x) < fl i 1,... .m

Hence , for solving the minimax problem (1.1) it seems feasible to use an effective non-

linear programsing method to solve (1.2). A purpose of this paper is to demonstrate

how the successful quasi-Newton method described in 13 , 4, 81 can be so used. The

special structure that Problem (1.2) is linear in the variable n should be exploited.

But , with this being done , the global convergence theorems in (31 can no longer apply

hers. We show in this paper that the resulting method is still a valid one and global

convergence is still achievable.

We describe th. method in Section 2. Section 3 is devoted to the justification

of our approach. The global convergence theorem for the method is given in Section 4.

sponsored by the Unit.d States Army i~~der Contract No. DAAG29-75-C—0024.



2. The Method

We are content with finding a stationary point of Problem (1.1), by which it is

meant a point. x say , in R
n that satisfies the condition

( 2 . 1 )  sin {~~‘ ( ~~,d )  11d11 2 1) ~ 0

where ~~ ( ;d) is the directional derivative of ~ at ~ in the direction d.

clearly, Condition (2.1) is a necessary condition for the point x to be a solut ion

of (1.1) and it will be reduced to the condition V~ (x) 0 when in 1. Let

1(x) {i : f (x) — ~ (x )} and l.t be called active at x if i e  1(x). It is

known (2 , for instance ) that x is stationary if and only if there exists an rn—vector

v such that

(2.2)  (a) 
~ 
;
1
vf
~
(X) 0

(b) ~~~v~~— 1

(c) v > O ;

(d) v~~ — O  if i j l ( x )

Notice that Condition (2.2 ) is just the X~arush-Xt~in-Tucker condition of the nonlinear

pro gra ing prob lem ( 1 . 2 ) .

The proposed method is an iterative proces s. At the k-th iteration we have an

estimate Xk 
of a solution and have also a sc*ler 

~k 
which is a predicted opt imal

value of the objective function ~~~. To constr uct new estimates x.~~1 
and we

solve the following quadratic program

2 3 
minimize ~ dTBkd +6( . 
(d,6 )eR”~~

s.t. 
~~~~~ 

+ Vf i
(X.~

) Td 
~ ‘~k + 6 i — 1,.. ., m

Here, Bk 
is a positive definite nxn matrix, preferably a good approximation to the

Hessian ~ ~~
2f~ () of the Lagrangian of (1.2) and updated by Powell’s scheme (91

i.l
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let (d
~a~
6k) be a solution of (2.3). Then we set (*k+l .flk+l) — 

~‘k ”~k~ 
+

whsre Ak is the stepsize determined by doing an exact line-search in the direction

(dk .6k
) on the function B defined by

N
(2.4) e(x,n) — ~ + ) max{f

i
(x) — Ti, O}

i—i

that is,

e(xk+l.nk+l) — 
O~~~l~~~~ 

+ 
~~k ’~ k +

It is merely for si~~ licity that we conside r the exact line—search here. An analysis

of s~~~ inexact lisa—search is possible and will be very similar to the one given in

151, where the deter mination of the stepaite 1k is based on the objective function

~ instead of 0 • There are some advantages to use the function 8 because it

takes into consideration some inactive functions 
~~~~~ 

while the function ~ gives

bias cc~~letely to the active ones.

The method described above is essentially an application of the method in (31 to

Problem (1.2) with iti special structure being taken into account. The problem con-

sidered there is the general nonlinear prograneiing problem

mm g (x)
(2 .4)

s.t. 
~~~~ 

< 0 i —

and the subproblem to be solved in each iteration is the quadratic program

mm Vg(x.~) Td + f d~’A~d

(2 .5) Ts. t. + Vf j (x
k

) d < 0 i — l,...,m

The stepsizes are deter mined by the exact penalty function

p(x ,u) — g(x) + a I
i—i

*en ,zTx > xTji.~x > yx~x for some positive n~~~ srs B and y and for each k and

x and when the Lagrange multipliers of (2 .5)  are uniformly bounded by a in the

-morm then it is shown in (31 that any accwnilat ion point of the generated point.

—3—
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{zk } is a Euhn—Tucker point of (2 .4) . Because Problem (1.2) is linear in n, hence

the quadratic program (2 .3 )  should preserve this property. Though we usually require

the matrix B
k 

to be positive definite, Problem (2.3) is no longer a positive definite

quadratic program in the space R~
’3 . This makes the global convergence theorems in

[31 not applicable here. Some justification of our approach becomes necessary and will

be given in the following sections.
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3. Validity of the method

In this section we justify our approach . For sieplicity we drop the index k

from (2.3) and for any point (x,ri) in R”~~ and any nxn matrix B we consider

the following quadratic program

l Tminimize d 3d + 6
n+l

(3 1) (d , 6) C R

s.t. f
i
(
~
c) + Vf

i
(x) Td < n + 6 i • l, .. ., in

Because the constraints are linear any solution of (3.1), (d,~ ) say, is a Karush-

Kuhn-Tucker point of (3.1) and, hence, there exists an rn-vector V such that

in

(3.2) (a) 3d + ) v .Vf . (x) = 0
i—i 1 1

n
(b) ~

i—i 1

(c) f. (x) + Vf . (x)Td < n + ~~, i =

(dl v > 0 ;

• (e) v . — 0 if f Cx ) + Vf . (x) T~ < r~ +1 i 1

We first show that the method is well—defined in the sense that a search direction

can always be uniquely determined in each iteration.

Theorem 3.1. Let (x,n) be any point in R’~~~ and let B be a positive definite

nxn matrix. Then there exists a unique solution (d , 6) of the quadratic program (3.1).

Furthermore, x is a stationary point of (1.1) if and only if 6 — 0 and 6 — p( x )  - n.

Proof. To show the existence of a solution for (3.1) we first note that its feasible

region is obviously non-empty . Becaus e of the convexity we only need to show that the

objective function is bounded below in the feasible region. This can be done by

considering the dual problem



-~ ——.• — -— -. -•

~1

sax f (x ) Tv — f vTv f ( x ) B~~ v f ( x) Tv
aveR

s.t. 
i—l 

v~ — 1 ,

v > 0

clearly , the dual problem is also feasible. Therefore , it follows from the duality

theorem (71 that the optimal value of (3.1 ) is finite and, hence, a solution exists.

Let (d ,~~) be a solution of (3.1). We want to show that (Li) is the only one.

From a result in (6 , Corollary 3.6] the solution (Li) is unique if dTBd > 0 for

any non—zero vector (d ,6) in R~~
’ satisfying

(3.3) (a) a
Td + 6 0

(b) ~~i
(,t)Td < 6 for each i i .1

where 3 — {j fi(x) + Vf j (x) T~ — i~ + . Because B is positive definite we only

need to show that if (d ,6) satisfies (3.3) and d — 0 then 6 must also be zero.

Note that it follows from (3.2.b) and (3.2.e) that the index set 3 can not be ~~~ty.

Therefore, if d • 0 and if (d,6) satisfies (3.3.b) for some i in 3 then 6 > 0.

But, from (3 .3 .a )  and d — 0 we also have 6 < 0. Hence , 6 — 0 and the uniqueness

of the solution is proven .

The second part of the theorem follows straightforwardl y from ( 3 . 2 )  and the

uniqueness of the solution. Q.E.D.

It may be worthwhile noticing that the solution vector 6 is indep endent of the

given value ii. Therefore, a bad estimate in ~ should usually not spoil

a good estimate in x.

The search direction (d , 6) is not only well-defined but also useful because it

is descent for our optimality function 0. Before giving this result we note here

that the sywhol 0 ’ (x ,~~;d, iS) denotes the directional derivative of e at (x,n) in

- -
~~~~~ 

the direction (d, 6 ) .

—6— 
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Theorem 3.2.  let (z n) be a given point in and B be a positive definite and

syem.tric nxn matrix. Let (~ ,6) be the unique solution of (3.1). Then

-

Proof.  Let I~ • U f i
(x) > n}, I

~ 
— {i f i

(x) — n ) ,  and — U :

Then from a result of Danakin (1) we have

8’ (x ,n:L~ ) — 6 + Z (
i

(
~

d)
~~~ 

— ~) + 
~ 

max (Vfi(z)~~ 
— ~,o}

1~

Bscause (~ ,6) is also a Karush-Kuhn-Tucker point of (3.1) there exists an a—vector ;

such that (3 .2 )  holds . It follows ftc. (3 .2 . c )  that if i 1 I~ then

mex(Vf~ (x)~~ — ~ ,O} — 0. It also follows from ( 3 . 2 )  that

m
0’ (x,n:d ,~ ) — ~~~~~ — ~ vjVf j(x)

T
~ + + ~~ (Vf ~, (x)~

1
~ — ~)

1—1 1+

< _~ T~~ — I V
i
(ó + fl — f .(x)) + 6 + 

~ 
— f

i
(x))

i—l I~

< _~ T~~ + ~ (1 -  ~~) (n  - f~~(x ) )  < _~ T3~ , Q.E .D.
1+

Th. following corollary justifies the use of function 0 as an optimality function

for solving the .inimax problem (1.1).

Corollary 3 .3 .  If (x , f l)  is a local minimun point of function 0 then x is a

stationary point of Problem (1.1) .

Proof. Consider the quadratic program (3.1) with B being any positive definite and

sy~~~tric matrix. Let ~~~ be its solution. The vector must be zero; otherwise,

0’ (x,n,L ~ ) < 0 which contradicts that (x,n) is a local minimun. Hence, the result

follows i ediately from Theorem 3.1. Q.E.D.

V. also observe that both Problem (1.2) and (3.1) satisfy the Arrow-Hurwics-Usawa

constraint qualification (see 7, for instance). From a result in [10; Theorems 1 and 31

the f.asthle regions of (1.2) and (3.1) are stable when they are sobj.cted to small

-

• 
perturbations . This property is very desirable and makes our approach very useful

prattcally.

_ _  _ _  
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



4. Global convergence

We study in this section the global convergence properties of the method. Here

we need a very useful result of Robinson (111 on the stability of quadratic programs .

Actually, ~~~inson considers the stability of a very general class of problems, called

generalized equations by him. The following lemea is a straightforward consequence of

his Theorem 2.

L e a  4.1. Let (x,n) be a point in R~~
1 and let B be a positive definite nxn

matrix, and let (L ~ ) be the unique solution of (3.1). Then there exist constants

A and £ such that for each nxn matrix B ’ and each (x’,n’) in R~~
1 with

:— max ( IIB — 311 2’ II Cx ’ ,n ’ ) — (x ,n) 11 2} £

the quadratic program

am I dTB , d + 6

(d, 6)lR n l  2

s.t. Vf~~(x ’) + f . ( x , ) Td < n ’ + 6 i — 1,...,m

has a unique solution (d ’ , 6’ )  and

ll(~’,6 ’ )  — (d ’ , 6 ’) 11 2 c Xc ’(l — A c ’ ) ’1
(l + II (~~ 11 2)

We now give the global convergence theorem below.

Theorem 4.2.  Let (B
k ) be a sequence of nxn sy~~~ tric matrices satisfying that for

some positive rn~~~ers and B and for each k

B x x < x B .~x~~~ a x x  for any x in R .

Let ((x.~, ‘~k~~ 
be a sequence of point s in ~~~~ generated by th. method from any given

starting point (x0 ,n 0
) and let (x ,n)  be any acctaulation point of this sequence .

Then x is a stationary point of the minimax problem (1.1) .

Pr oofs Without lose of generality we may ass*âe that (x.K~
v
~~

) ( , n) .  By passing to

a sobs.qusnce if necessary , we have a positive definite and sy etric matrix B such

that Bk ~~~ Co~aidsr th. quadratic program

1 

-8-
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(d , 6) eR ”~
1

s.t. fj(~) + Vfi
(~)

T
d < + 6 i — l , . . . ,m

By Theorem 3.1 the quadratic program has a unique solution , (~ ,6) say . If d - 0

then by Theorem 3.1 again x is a stationery point of (1.1) and the proof is done .

If 6 j~ 0 we will deduce a contradiction.

Define a point (~ ,~j) by (c ,fj) — (x ,~~) + A(d,6) where 0 < A < 1 is chosen

so that

— mm 0 ( ~ + ~~~ +
0< A cl

Because Theorem 3 .2  and 6 p~ 0 , the nts~~er y : 0 ( , ~~) — e(~ ,~ ) is positive. By

Lemna 4.1 we also have 
~~k ’6k~ ~ (Li), here again ( ( d

k , 6k
) )  may be only a

subsequence. There fore, there exists an arbitrarily large k such that

• e(x ~ + Akdk ,nk + )L
k & k

)

~ 
O ( X

k 
+ 

~~k ”~k + 
~

6k
)

~ 0(~c,~ ) + 4 ~
<

This contradict. the fact that the sequence (0 (x.X~nk
) } is nonoton decreasing and

> 0(~ ,r ) .  Q.E.D.

The sequence of points can be shown to converge to a solution point when we assune

that the functions are convex. But , from Theorem 4.2  our method should be expected

to work well even when the functions are not convex.

-9- 
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