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ABS~~ACT

This paper extends previous results by the first author (see for example,

“Mathematical Models for Statistical Decision Theory” in Optimizing Methods

in Statistics, J. S. Rustagi, Ed., Academic Press, 1971).

The approximation theory model describes a class of optimality principles

in statistical decision theory as follows. Let S be the risk set of a

statistical decision problem, that is, S = {R (O), 8 e 0, ~ € •} where $ i8

the collection of randomized decision procedures, 8 is the parameter space

and R (O) is the risk function of the statistical decision procedure p. We

interpret S as a set in the normed linear space 1. Let v = v(6) satisfy

v(O) < R~ (O) for all ~ e • and all 8 6 0. Then S
0 

E S is said to be

(v ,L) optimal if i
~
s
~ 

— vii ~~. u s  — vii for all s C S.

It is easily seen that many well-known optimality principles of statistics

are of this type, such as Bayes rules and ininimax rules.

In this paper, characterization theorems for this class of optimality

principles are given.
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SIGNIF ICANCE AND EXPLANATION

This paper provides basic results for the problem of decision

making under uncertainty, Such problems arise in virtually every

area of human endeavor , such as the social sciences, biological

sciences and physical sciences.

This paper characterizes optimality principles in decision

theory by reformulating them as problems in approximation theory.

Connections can be made between “best ” approximations and “best”

decision procedures. It is shown that many results in approxima-

tion theory have interpretation s as results in decision theory ,

and conversely many results in statist ical decision theory can

he reformulated as results in approximation theory.

~~~~~~~~~~~~~~~~~~~~~
~~~ ~~~~~~
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The responsibility for the vording and views expressed in this descriptive
summary lies with MRC , and not with the author , of this report .
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THE RELATION BETWEEN SrATISTICAL DECISION
AND APPI~)X fl~ATION THEORY

Bernard Harris
d
~ and Gerhard Xelndl 5

1. Introduction and Susmiary. The purpose of this paper is to further explore the

relationship between statistical decision theory and approximation theory initially

presented in B. Harris (5]. As indicated there, many results of approximation theory,

when suitably modified , have interpretations as results in statistical decision theory.

Conversely, many results of statistical decision theory are also capable of reformula-

tion as results in approximation theory.

In this paper, sone results of app: utimation theory will be modified , reformulated

and reinterpreted as results of statistical decision theory.

Let 9 * ~ 
be a given set with elements e. Further let • be a non-empty family

of probability measures def ined on 8D ’ a a—algebra of subsets of a set D.  Thus,

we are given the family of measure spaces (V
~BD~

P ) .  *p e $. For each ~ e •, let

be a mapping from 9 into the extended real numbers. Let R = (R ~ , ~ e 4), that is,

R is a family of extended real valued functions of 0, 0 e 0. It will be assumed that

• R (6) is unif orml y bounded from below. In other words, there exists a real number M

such that

(1) R~ (0) > M , for all ~ e 4 and all 0 €  0

In addition we also require that R be a convex set, that is, for every pair of func-

tions R
1
,R
2 e R and every A , 0 < A < 1,

R
A
(l,2) AR

1 + (1 — A)R
2 

e R

In the usual terminology employed in statistics, 9 is the parameter space and 0

is called a parameter. R is the risk set of a statistical decision problem and R~

is called a risk function. The reader is referred to standard treatises on statistical

decision theory, such as D. Blackwell and H. A: Girshick (1] or T. S. Ferguson (41 for

a detailed description of the manner in which the risk set is determined by a statistical

decision problem.
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Within the framework described above a statistical decision problem may be

described as follows. The statistician selects a ~ e 4 and the performance of the

‘P that he selects ii described by the risk function R
’P

. Consequently optimality in

statistics may be roughly described by the intuitive statement; “‘P is optimal if

is as all as possible”. However , in general, there is no e $ such tha t

1 (0) 1 (0) for all 0 and all ~p e 4. Co.~sequently, there is no single optimality
‘P

pi’inciple which enjoys universal acceptance. In a previous article on optimality

principles in statistics, Harris t5] proposed a class of optimality principles called

(v.1.) optimality, which we will now define.

Let L be a normed linear space with a partial ordering. Assume that for

0 < x < y, x ,y  € 1., we have l x i i  ~ Ii y ii . We refer to this property by saying that

the space L is endowed with a monotonic norm. Let SL - R (~ L,  that is, the restric-

tion of the risk set to those elements with finite norms . To avoid trivial situations,

we will assume that SL * 4. 
Let v be a distinguished point in L satisfying

v < 1 , i.e., v s  v(0) < R
’P
(O) for all ~ i 4 . The partial ordering in L will

be defined as the partial ordering on the risk functions R
’P
(e) induced by admissibility.

Thus we identify the points s in SL with the risk functions, so that S) 
<

means A (0) < A (0) for all 8, where is identified with R and is
‘P2 ‘P1

identified with R . Similarly, < ~ means R (0) < R (8) for al l 0 and
2 ‘P1 ‘P2

there exists a 0 e 0 such that R (8 ) < R (0 ) .  Thus , v < R insure s v < S
0 ‘Pi e ‘P2 0 — — L

Then, with this identification, we say that 
~~ 

(equivalently ~~) is (v ,L)

optimal if 1s
~
, — v i i  £ ii~ 

— vii for all ~~~€ S~ .

It is easily seen that appropriate spec~if ications of v and L give rise to

various standard optimality pr inciples of statistical theory , such as Bayes rules ,

ainimax rules and minimax regret rules . Specifically, let v — v ( e )  I Pt and let t

be a specified prior probab ility measure. Then , if we take L — L1(Z ,51, r ) ,  that is

the space of t-integrable funct ions , then the assertion that s~ is (v ,L)optiaal is equivalent

—2 —
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to the assertion that ~~ Bayes against r. One can provide the followin g intuitive

• justification for the notion of (v , L)  optimality . Since the partial ordering on L

has been identified with admissibility , one can say that 
~l 

is “at least as good ”

• as whenever 
~1 ~ ~2 and s

~ 
“is better than 

~2 whenever < 
~2 The set

SL represents the totality of decision procedures to be considered by the statistician.

Thus v < R says that v is “ at least as good” as any alternative available to the

statistician. Hence v should be regarded as an ideal decision procedure. Naturally

v need not be ~~ ~~~ 
V should be regarded as what you would do if you were able

• ‘ N~~ , such as if you had “perfect information”. Hence, it is natural to seek to come

as~~~p~e to v as possible and thus the idea of minimizing the norm from v to

The dis~~~~~ from v to 5
L may be regarded as a measurement of the “uncertainty”.

In appr~~~~~tion theory a point x and a set S in a normed linear space L are

specified . S
0 

e 5N~8 said to be a best approximation to x from the set S if

lI~ , — x~ < u s  — xii for all s a S. In many applications S is a linear subspace

of L or a convex set in L. Extensive discussions of the theory of best approxima-

tions may be found in R. B. Holmes 17) or I .  Singer (101 . However , if we add the

additional conditions that L has a partial ordering and a monotonic norm and that

v < 5, where S is a convex sat, then this becomes precisely the notion of (v ,L)

optimality in statistical decision theory. Thus (v,L) optimality may be interpreted

as best one-sided approximation from a distinguished point to a convex set in a normed

linear space with a monotonic norm .

We now show how methods of approximation theory may be used to obtain characteriza-

tions of (v,L) optimality .

2. Characterization of (v,L) optimali~y. In this section we present some theorems

which characterize (v,L) optimal decision procedures.

Theorem 1. Let L * (0) be a partially ordered normad linear space of real valued

functions of 0, 0 a 9, equipped with a isonotonic norm . Let S be a given convex let

• 
--
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in L and let v s  L with v < S. Then S is (v , L)  optimal if and only if

there is a linear fu nctional L e La , the topological dual space of L, such that

(1) II L II — 1, (2) L e K*, the dual of the positive cone K in L,  (3) L(s
0
) < L(s),

e S, (4) L(s0 — v) — its0 
— vii .

Proof. Sufficiency. 118 0 — vii — L(s0 — v) < L(s — v) ~ ii t Il  u s —  vii — u s  — vii for

every s I S and hence s
~ 

is (v,L) optimal.

Necessity. K is a non-empty cone with 0 as vertex. We first show that K * L .

• If K — (0) ,  then K — K and K * L since L * 10). If K * (0), then there exists

an x > 0, x * 0. Now if K — L ,  we must have -x a K and there is a sequence

• with > 0 for all k and lim — -x. Then 0 < x < x + 
~ k 

and

0 < flxfl ’ flx + 
~ k 11’  k 1, 2 ,... . Since in lix + 

~k
1’ = 0, we have i lx J l  — 0  and x = 0.

F We now divide the balance of the proof into two parts, treating separately the

cases v e S and v f

If v a 5, then liv - s~~ — 0 and V — Than since K * L,  there is a linear

functional L a La , L * o such that L (x )  > 0 for all x I K. Without loss of

generality, we can set J J L I J  — 1. Then for every s a s, $ - s~ = s - v > 0 and

s — V a K C K, which implies L(s — v) > L(s0 
— v) — 0; hence L(s) > L(s 0) .

Now suppose v 0 5. Then u s 0 - vii d > 0. Let B(v ,d) {x e L : lix — vii < d}

and let S — {s + x : s I S , x a K ) .  S is obviously convex Since S and K are

convex . Then for z I 5, there exists s I S and x > 0 such that

0 < a — v < s — v + x — z - v .  Hence iis - vii < Iiz - vii and z~~~B(v,d). Consequently,

S ( I  B(v, d) —. and there exists a separating hyperplane for S and B (v,d). That

*is, there exists an L I L and a real constant c such that L * 0 and

r L (x )  < c, x I B(v ,d)

5 5$ .

Further , we can set i t L i l  — 1. Clearly s
0
1 B(v ,d) ; also s~ I S and S C S. Therefore

L(s) > c for all a a S and L(s 0) — c, establishing L(s) £ L(80
) .  For x I K ,

4 10 + ~ and hence L(s
0 

+ x) > L(s0
) ,  which implies L (x)  2 0.

• —4—
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Finally, for any z with ii zil ~~. 1. liv + dz — vii  — diI zJI ( d so that

v + dz I B(v ,d) .  Consequently, L(v + da) < L(s0
) — c. Similarly L(d z)  c L(s0 — v)

• and thu s L(z)  < d 1L(s0 - v). Hence iiL ii < d 1L (s 0 
- v) and d < L (s 0 

- v)

I ~ DLII ~~~~~ vii — d, establishing the theorem.

A special case of Theorem one is a well—known result in statistics and is given

by the following corollary .

Corollary 1. Let 9 be a compact Hausdorff space and let S — {R
’P
(e)
~ ‘P ~ $} be a

convex set of continuous functions of e, uniformly bounded from below. Then s~ € S

is minimax if and only if there exists a least favorable distribution r0 and

is Bayes against -r0.

• Proof .  Let L — C
193 , the space of continuous real valued functions on 9 with

l i f i t  = sup i f ( 0 )  i for f I L. Then L is isometr ic to the set of r egular countably
0a9

additive set functions on the sets of the Borel a—algebra of 9 (see N. L. Dunford

and .1. T. Schwartz (33 , p. 265.). For L I  L ,  i lL il  is the total variation of the

set function L. Specializing Theorem 1 to this case , the conditions

L > 0 and t h u  — 1 establish that L is representable by a probability

measure r0 on 9. L(s0) < L(s) implies that s~ is Bayes against T
0
,

L(s0 
— v) — is 0 

— vii insures that is the least f avorable distribution.

Remarks. Many other well-known results for minimax decision procedures are obtainable

as iiisediata consequences of Theorem 1. It is also well—known that when 9 is not

compact , a minimax decision procedure may exist and there may be no corresponding

least favorable distr ibution. This is a consequence of the nature of the topological
*

dual space L in this case. Namely, the topolog ical dual is a set of finitely

additive set functions rather than countably additive set functions.

The next theor sei provides a chara cterization of (v ,L) optimality in terms of the

* * *extremal points of the intersection of the unit ball in L with K , where K

is the dual of K.

—5—
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As before , S is a convex set in L , a partially ordered linear space * (0)

of real valued functions of 0 provided with a monotonic norm . Let v e L satisfy

v < S and let d — inf ( u s  - v i i ) .  The closed unit ball in L* will be denoted

* * ~sIS~~ *by S and S~ — S (~ K . That is, S~ is the set of positive linear functionals

with norm not exceeding unity.

Then, we have the following theorem.

Theorem 2. S
o 

I S is (v,L) optimal if and only if for every s ~ S there exists

a linear functional L5 a L* with the following properties:

(1) iiL5 l i 1, (2) L is an extremal point of (3) L
5
(s) >

( 4) L~~(s~ - v) = h i s 0 
— vii

Proof. Sufficie~~~. For every S I 5, u s 0 — vii — L5(s
0 

— v) ~ L8 (s — v)

~ iiL5il u s —  vii = hi s — vii

Necessity. Assume 
:o 

— v. Then since s is weak compact (by Alaoglu ’s 

*theorem) and K is weak closed , it follows that S~ is weak compact. Also S~
* *is convex . By the Krein-Milman theorem S~ is the weak closure of the convex hull

* *
of its extremal points. Let E(S4) denote these extremal points. By Theorem 1, S4

contains an L with iiL li — 1 and therefore E(S:) contains an t with l i L l i  = 1.

Also L(s - s~ ) — L(s — v) > 0 for all a a S, since v < S. Thus for every s I S,

it suffices to set L5 — L.

Now assume s
~ 

* v. Let A — IL I s: : L(s 0 — v) — is0 
— vfl }. By Theorem 1,

A * •. Further, A is a weak compact convex extremal subset of S
~
. For fixed

s I  5 , let B5 — IL I A : L(s — sup L(s — Obviously, B5 is a non—empty

LEA

convex weak coispact extremal subset of A. Thus there exists an extremal point L

of B3 which necessarily is an extrema l point of A and consequently an extremal

7 point of S~ . Then, by Theorem 1, there is an L in A such that L(s0
) — in! L(a)

and therefore 0 L( s  - < sup L(s — — L5 (s - 

~~~~~~~ 

establishing the theorem.

iaA 

-6-
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The third characterization theorem uses the notion of a Kolmogorov fundamental

system, which we denote by K-system.

* *A subset T of S is said to be a K—syst em if T is weak closed and if for

all x I K, the set T
~ — ( L I  T : L(x) — Ilxil }* ~~~

. This leads to the following

theorem.

Theorem 3. s~ I S is (v ,L) optimal if and only if , for any K—system T , for every

s I S there is an L I T5~~~ with z.~ (s) >

Proof. Sufficiency. For s I S and I T —v with L5(s) > L5(s0
) ,  we have

0u s 0 — v i i  = L(s 0 — v) c L(s — v) h i s  — v i i .

Necessity. Now assume øo is (v ,L) optimal and s a S. Since T5 . ,~ is weak

compact , there is an L5 a T such that L ( s  - — 
- 

sup L(s - The

LI T5

theorem will be established if we can show that sup L(s  - — y > 0. Therefore

assume y5 < 0. Let H
~ 

— {L I T L(s — s0
) > 0). For L I T ,

L(s0 
- v) h l i L l i  u s 0 - vii  h i i s 0 — vii < f l s  — vii — L(s — v). Thus for such L, L(s) > L(s 0

)

and Ts v  C H9, insuring that H5 * ~~
. Further, H8 is weak compact and hence

there exists an W I H5 such that L ’(5 0 
— v) — sup L(s0 — v) — a .  Now L(s — s~ ) < 0

LI H5
• for all L I T -v consequently T5 -v ~ — •. Therefore for L I

0 0

L(s
0 

- v) < i t s 0 
— v i i  and a < lts~~

— v i i . Also a * s~ , since otherwise we would

have L(s — s ) — 0 for all L I £ , but for L I T , L(s — 5,) < 0. Therefore
• so—v

there exists a positive number t with t < min{l, ( u s 0 — v i i  — a~)/il s— s~
iI}. Since

(1 - t)s0 + te — v I K and (1 — t)s0 + ta I S, it follows that there is an L1 
I T

with L1((l - t)s0 + ts - v) —I i (l — t)s0 + ts — vil > 11s0 — vii . L1 0’ H~ , since

• ~
- L1(s0 — v) + 

~~~~~ 
- + tL~ (s — a + t I t s —  5.311 < O~ #Iso — VII —

— is 0 - vii , a contradiction. Furth.r, is not in T ~ H ;  since

• 
L1(s

0 
— v) + tI~ s — 

~~ 
L1 (s0 — v) cD .0 — vii . Thus assuming y5 

0 leads to a

contradiction.

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -
~~~
,--.

~~~~~~~
- ‘•-

~~~~
--  ,--.,-—-•-- .---,- -• -

p~emarks. The methods used in the proofs of Theorems 1 and 2 have been substantially

influenced by the work of F. R. Deutsch and P. H. Maserick (21 . The results contained

therein are similar to standard theorems of approximation theory, but with one

significant difference. As a consequence of the assumption v h S. the characterizing F
linear functionals are positive linear functionals. Theorem 3 is an adaptation of

results of V. N. Nikol’~ikiI (9, 10) and was rep orted by G. Heind l in (6) .

We conclude this section with a result, which is elementary, but nevertheless

appear s to be new. This gives a simple relationship between (v,L)  optimality and

admissibility.

Theorem 4. If a S is the unique (v ,L) optimal decision procedure, then s
0 

is

necessarily admissible. 1
:

Proof. Assume I S is (v,L) optimal and inadmissible. Then there exists an

I $ with 
~l 

< 
~~ 

Consequently, 0 h 
~l 

— V < 
~o 

— V and u s 1 - v ii ~~ is0 
- vii .

Hence, 
~l 

is also (v ,L) optimal. Thus (v ,L) optimality and inadmissibility

implies non-uniq ueness.

3. Concluding Remarks. The above paper constitutes an attempt to utilize some recent . 
-

mathematical dovelopoents in formulating notions of statistical opt imality . It is

hoped that this will provide insight into statistical theory and the essential

differences between various statistical philosophies.

t

-8-
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Abstract (continued) 
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a set in the normed linear a ace L . Let v = v (8) satisfy v (8) R\ (8)
for all ~p E . ) and all ~ . Then s - E S  is said to be (v ,L)
optimal i fj  ~~F T J ) < s — v t  for all ~s ~~S, ~ ~~~~~~~~~~~~~~~~

- -It ~is easily seen that many well-kno’~as optimality principles of
et~atistics are of this type, such as Bayes rules and minimax rules.

In this paper , characterization theorems for this class of
optimality principles are given.
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