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THE RELATION BETWEEN STATISTICAL DECISION THEORY
AND APPROXIMATION THEORY

* * &
Bernard Harris and Gerhard Heindl

Technical Summary Report #1890
October 1978

ABSTRACT
This paper extends previous results by the first author (see for example,

"Mathematical Models for Statistical Decision Theory" in Optimizing Methods

in Statistics, J. S. Rustagi, Ed., Academic Press, 1971).

The approximation theory model describes a class of optimality principles
in statistical decision theory as follows. Let S be the risk set of a
statistical decision problem, that is, S = {R¢(e)) 0eOB, pe ¢} where ¢ is
the collection of randomized decision procedures, © is the parameter space
and Rw(e) is the risk function of the statistical decision procedure ¢. We
interpret S as a set in the normed linear space L. Let v = v(68) satisfy
v(6) < R,(6) for all v € ¢ and all 6 € ©. Then S, € S is said to be
(v,L) optimal if ”so - vl < l|s - v|| for all se s.

It is easily seen that many well-known optimality principles of statistics
are of this type, such as Bayes rules and minimax rules.

In this paper, characterization theorems for this class of optimality

principles are given.
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SIGNIFICANCE AND EXPLANATION

This paper provides basic results for the problem of decision

making under uncertainty, Such problems arise in virtually every

ety

area of human endeavor, such as the social sciences, biological

sciences and physical sciences.

This paper characterizes optimality principles in decision
theory by reformulating them as problems in approximation theory.
Connections can be made between "best" approximations and "best"
decision procedures. It is shown that many results in approxima-
tion theory have interpretations as results in decision theory,

and conversely many results in statistical decision theory can
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‘ be reformulated as results in approximation theory.
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'R is a family of extended real valued functions of 6, 6 € ©., It will be assumed that

THE RELATION BETWEEN STATISTICAL DECISION
AND APPROXIMATION THEORY

Bernard Harris. and Gerhard Heindl'*

1. Introduction and Summary. The purpose of this paper is to further explore the

relationship between statistical decision theory and approximation theory initially
presented in B. Harris [S]. As indicated there, many results of approximation theory,
when suitably modified, have interpretations as results in statistical decision theory. 3
Conversely, many results of statistical decision theory are also capable of reformula- :
tion as results in approximation theory.

In this paper, some results of app: oximation theory will be modified, reformulated
and reinterpreted as results of statistical decision theory.

Let © # ¢ be a given set with elements 0. Further let ¢ be a non-empty family
of probability measures defined on BD' a o-algebra of subsets of a set D. Thus,
we are given the family of measure spaces (D,BD,w) v € &. For each v € &, let R

be a mapping from © into the extended real numbers. Let R = {Rw. ¢ € 9}, that is,

Rw (6) is uniformly bounded from below. In other words, there exists a real number M
such that

(1) Rw(e) >M, for all vye ¢ and all 6 € © .

In addition we also require that R be a convex set, that is, for every pair of func-

tions R_,R

1 zei? and every A, 0 <A <1,

RX(I.Z) = XRI + (1 - )‘)R2 e RN
In the usual terminology employed in statistics, © is the parameter space and 6

is called a parameter. R is the risk set of a statistical decision problem and Rw

is called a risk function. The reader is referred to standard treatises on statistical

decision theory, such as D. Blackwell and M. A. Girshick [1] or T. S. Ferguson [4] for
a detailed description of the manner in which the risk set is determined by a statistical

decision problem.
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' | Within the framework described above a statistical decision problem may be

described as follows. The statistician selects a ¥ € ¢ and the performance of the

¥ that he selects is described by the risk function Rw. Consequently optimality in
statistics may be roughly described by the intuitive statement; "¢ is optimal if
R' (8) is as small as possible". However, in general, there is no wo € & such that
R'O(O) < n’(e) for all © and all ¢ € ¢. Coaseguently, there is no single optimality
principle which enjoys universal acceptance. In a previous article on optimality
principles in statistics, Harris [5] proposed a class of optimality principles called
(v,L) optimality, which we will now define.

Let L be a normed linear space with a partial ordering. Assume that for
0<x<y, x,ye¢ L, we have ||x“ < ||y|| We refer to this property by saying that
the space [ is endowed with a monotonic norm. Let SL =R N L, that is, the restric-

tion of the risk set to those elements with finite norms. To avoid trivial situations,

we will assume that SL # ¢. Let v be a distinguished point in [ satisfying

Vv <R, i.e., Vv = v(0) f_RV(O) for all ¢ € ¢ . The partial ordering in [ will

be defined as the partial ordering on the risk functions nw(e) induced by admissibility. 1
Thus we identify the points s in SL with the risk functions, so that s, < 52 . {
|
means R (8) <R (68) for all 6, where $§ is identified with R and s is 1
LY -, 1 ¥y 2 |
identified with R . Similarly, s, < s, means R_(8) <R (6) for all 6 and |
¢, a2 ¢y = e, |
there exists a 00 € ® such that Rwl(eo) < sz(eo). Thus, v < R insures v < SL . ‘
Then, with this identification, we say that S (equivalently wo) is (v,L) |
F optimal if ||s0 -v|]l < |ls-v| for all se Sy

It is easily seen that appropriate specifications of v and L give rise to
various standard optimality principles of statistical theory, such as Bayes rules,
minimax rules and minimax regret rules. Specifically, let v =v(8) =M and let <
be a specified prior probability measure. Then, if we take L = L1 (X,Bx.'r) , that is

the space of T-integrable functions, then the assertion that S, is (v,L)optimal is equivalent |
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to the assertion that s, is Bayes against T. One can provide the following intuitive
justification for the notion of (v,[) optimality. Since the partial ordering on [

has been identified with admissibility, one can say that s is "at least as good"”

1
as s, whenever §) s, and s "is better than s," whenever 8, < 5;- The set
SL represents the totality of decision procedures to be considered by the statistician.
Thus v < R says that v is "at least as good" as any alternative available to the
statistician. Hence v should be regarded as an ideal decision procedure. Naturally
v need not be in SL,- v should be regarded as what you would do if you were able

to, such as if you had "perfect information". Hence, it is natural to seek to come

as clpose to v as possible and thus the idea of minimizing the norm from v to S..

L
The distagce from v to SL may be regarded as a measurement of the "uncertainty”.

In approxypation theory a point x and a set S in a normed linear space [ are
specified. Sy € S\\is said to be a best approximation to x from the set S if
Isy = xll < |ls - x|| for a1l s e s. Inmany applications S is a linear subspace
of L or a convex set in L. Extensive discussions of the theory of best approxima-
tions may be found in R. B. Holmes [7) or I. Singer [10]. However, if we add the
additional conditions that [ has a partial ordering and a monotonic norm and that
v < S, where S is a convex set, then this becomes precisely the notion of (v,L)
optimality in statistical decision theory. Thus (v,L) optimality may be interpreted
as best one-sided approximation from a distinguished point to a convex set in a normed
linear space with a monotonic norm.

We now show how methods of approximation theory may be used to obtain characteriza-

tions of (v,L) optimality.

2. Characterization of (v,L) optimality. 1In this section we present some theorems

which characterize (v,L) optimal decision procedures.
Theorem 1. Let L #* {0} be a partially ordered normed linear space of real valued

functions of 0, 6 ¢ 6,equipped with a monotonic norm. Let S be a given convex set
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in L and let veé L with v <S. Then 5,¢ S is (v,L) optimal if and only if
.

there is a linear functional L € L*, the topological dual space of L, such that

) L]l =1, (2) Le k*, the Qual of the positive cone K in L, (3) L(sy) < L(s),

ses, (4) L(so -v) = ||s0 -vll.

Proof. Sufficiency. ||so -v| = L(sy - V) < L(s - V) <|ltll Is- v| =|ls - v|| for

every s € S and hence S, is (v,L) optimal.

Necessity. K is a non-empty cone with 0 as vertex. We first show that K#L.
If K=1{0}, then K=K and K#* L since L # {0}. If K # {0}, then there exists
an x >0, x # 0. Now if K = L, we must have -x € K and there is a sequence {yk}

with ykio for all k and limyk--x. Then O:xix'&-yk and
k-

o <{lxl| <llx + yk”. k=1,2,... . Since 1liml||x + Yk” =0, we have ||x]|=0 anda x =o.
ko

We now divide the balance of the proof into two parts, treating separately the
cases ve S and v S.

o+ Then since K # L, there is a linear

functional L€ L*, L# 0 such that L(x) > 0 for all x € K. Without loss of

If ve S, then “"‘50"’0 and v = s

generality, we can set ||L]|=1. Then for every se€ s, s - S;=8-v>0 and
s -ve KC i, which implies L(s - v) > L(so - v) =0; hence L(s) > L(so).

Now suppose v £ S. Then ||s0 -vll=a>0. Let B(v,d) ={x€ L :|lx-v|<a)
and let S={s+x:s€s, xe K}. § is obviously convex since S and K are
convex. Then for z € S, there exists s € S and x > 0 such that
0<s-v<s-v+x=z-v. Hence |[|s - v| <|lz - v|] and z ¢ B(v,d). Consequently,
§ N B(v,d) =¢ and there exists a separating hyperplane for S and B(v,d). That
is, there exists an L € L. and a real constant c¢ such that L # 0 and

L(x) < c, x € B(v,d)
{L(z) >c, ze€e.S .
€ B(v,d); also s_€¢ S and SC §. Therefore

0 (]
L(s) >c for all se€ S and L(so) = ¢, establishing L(s) 5L(so). For x € KX,

Further, we can set ||L|| = 1. Clearly s

s, +x¢ S and hence L(s) + x) > L(s)), which implies L(x) > 0.




Finally, for any z with |lz|l <1, |lv + 4z - v|| = allz]| <4 so that
v + dz ¢ B(v,d). Consequently, L(v + dz) < L(_so) = ¢. Similarly L(dz) < L(so - v)

and thus L(z) < d-ll.(so - v). Hence |zl 1d-1L(s° = v) and d < L(sy -V

PR AN SR I

s ”L" "lo- v|| = 4, establishing the theorem.

A special case of Theorem one is a well-known result in statistics and is given

. S

by the following corollary.

Corollary 1. Let © be a compact Hausdorff space and let S = {Rw(e), ¢ € ¢} be a

3Py

convex set of continuous functions of 6, uniformly bounded from below. Then 80 € S

AT

is minimax if and only if there exists a least favorable distribution and s

To 0

P g is Bayes against 15"
Proof. Let [ = C[S]' the space of continuous real valued functions on © with
lI£]| = sup |f(6)| for fe L. Then L. is isometric to the set of regular countably
additi\er:eut functions on the sets of the Borel g-algebra of © (see N. L. Dunford

*
and J. T. Schwartz (3], p. 265.). For Le L , ||L" is the total variation of the

YA R I AL SRR AT

set function L. Specializing Theorem 1 to this case, the conditions

L > 0 and |IL]l = 1 establish that L is representable by a probability

measure T, on ©O. L(so) < L(s) implies that s

o is Bayes against T

0 o’

I.(so -V) = ”’0 - v" insures that T, is the least favorable distribution.

0
Remarks. Many other well-known results for minimax decision procedures are obtainable

LA a2 NI TN Y

as immediate consequences of Theorem 1. It is also well-known that when © is not
compact, a minimax decision procedure may exist and there may be no corresponding
least favorable distribution. This is a consequence of the nature of the topological
dual space L. in this case. Namely, the topological dual is a set of finitely

additive set functions rather than countably additive set functions.
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The next theorem provides a characterization of (v,L) optimality in terms of the E
o * * »
extremal points of the intersection of the unit ball in L with K , where K

is the dual of K.
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As before, S is a convex set in L, a partially ordered linear space ¥ {0}
of real valued functions of 6 provided with a monotonic norm. Let v € L satisfy
*
v <S and let d = inf {||ls - v||}. The closed unit ball in L will be denoted
* L 4 .gs * *
by S and 8. =8 N K . That is, s, is the set of positive linear functionals
with norm not exceeding unity.
Then, we have the following theorem.
Theorem 2. Sy € S is (v,L) optimal if and only if for every s e S there exists

s : *
a linear functional Ls €L with the following properties:

(1) ||Ls|| =1, (2) L_ is an extremal point of S:. (3) L_(s) > L (s;),
@ Lysy - v =|lsy - vl .
Proof. Sufficiency. For every s e€ S, ||so -v| = Ly(sy = V) < Lg(s - v)

<z ll s vl =1ls - vl
Necessity. Assume By vy Then since S. is weak' compact (by Alaoglu's
theorem) and K. is weak* closed, it follows that S: is weak' compact. Also s:_
is convex. By the Krein-Milman theorem S: is the weak' closure of the convex hull
of its extremal points. Let E(S:) denote these extremal points. By Theorem 1, S:
contains an L with ||L|| =1 and therefore E(s:) contains an L with ||L|| = 1. :
Also ;.(s ol , I:(l -v) >0 for all se S, since v < S. Thus for every s ¢€ S,
it suffices to set L_ = E.
Now assume s, #v. Let A= {L e s:_ : L(sy = v) = ”’0 - v||}. By Theorem 1,

* *
A # ¢. Further, A is a weak compact convex extremal subset of s+. For fixed

se€ s, let B = {Le A: L(s - so) = sup L(s - so)}. Obviously, By is a non-empty
1£A
*
convex weak compact extremal subset of A. Thus there exists an extremal point L8

of Bs which necessarily is an extremal point of A and consequently an extremal

point of s:. Then, by Theorem 1, there is an L in A such that L(so) = inf L(s)
sesS

and therefore 0 < L(s - so) < sup L(s = so) =L.(s - s, establishing the theorem.
LeA
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The third characterization theorem uses the notion of a Kolmogorov fundamental
system, which we denote by K-system.

A subset T of s' is said to be a K-system if T is veak. closed and if for
all xe€ K, theset T ={Le€T:L(x= [Ix||}# ¢. This leads to the following
theorem.

Theorem 3. So € S is (v,L) optimal if and only if, for any K-system T, for every

s € S there is an L e Tso-v with L_(s) > Lg(sy) .

Proof. Sufficiency. For s € S and L e '1‘8 e with Ls(s) 11.8(30), we have

lsg - vl = Ltsy = v) <Lts = v) <]|s - v].

*
Necessity. Now assume s_. is (v,I) optimal and s e S. Since Ta £ is weak

9 0
compact, there is an Ls € Ts e such that Ls(s - so) = 3 sup L(s - so). The

2 LeT

8y~
theorem will be established if we can show that sup L(s - so) e o 0. Therefore
LeT
8,V

assume Y < 0. Let H = {Le€ T: L(s~ sp) 2 0}. For Le Toy

L(s0 -wv) <L) Ilso- vl i”so - v| 5_||s = v” = L(s - v). Thus for such L, L(s) > L(so)

*
and Ts-v C Hs, insuring that Hs # ¢. Further, Hs is weak compact and hence

there exists an L; € Hs such that L;(s0 -v) = sup L(s

-v) =a. Now L(s—so) <0
UH'

0
3 n
for all L € 'rso_v, consequently '1"0_v H. = ¢, Therefore for L € H.,

L(s, = V) < l!so - v|l ana a < Hso -v|. also s# s, since otherwise we would

have L(s - s ) =0 for all L € L., but for L€ T » L(s - 8 ) < 0. Therefore
0 so-v 0

there exists a positive number t with t < min{l, ("so- vl - a.)/"s- 30"). Since

(1 - t)s°+ts -veK and (1 -t)s°+ts¢ S, it follows that there is an I.ll T

with L ((1 - t)s; + ts - v) = la - t)s) + ts - "||l||'° -v|. L, ¢ H, since

Li(sy = v) +tL (s -8) <a_ +tl(s=-8) <a + t|s- soll <o i, - vl| - o,

= Ilso - v||, a contradiction. Further, L, isnotin TN H:; since

Ly(sy = v) + ti(s - 8,) < L (s, = V) i"‘o - v||. Thus assuming Yg < 0 leads to a

contradiction.




Remarks. The methods used in the proofs of Theorems 1 and 2 have been substantially
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‘ influenced by the work of F. R. Deutsch and P. H. Maserick [2]. The results contained P

%
|

therein are similar to standard theorems of approximation theory, but with one
significant difference. As a consequence of the assumption v < S, the characterizing
linear functionals are positive linear functionals. Theorem 3 is an adaptation of
results of V. N. Nikolskil [9, 10) and was reported by G. Heindl in [6].

We conclude this section with a result, which is elementary, but nevertheless
appears to be new. This gives a simple relationship between (v,L) optimality and
admissibility.

Theorem 4. If s_e€ S is the unique (v,[) optimal decision procedure, then s_ is

[s] 0
necessarily admissible.

Proof. Assume s, € S is (v,L) optimal and inadmissible. Then there exists an

s, €S with s <s . Consequently, 0<s -V <s -V and ||sl - vlli”so -v]. i

Hence, s, is also (v,L) optimal. Thus (v,L) optimality and inadmissibility

implies non-uniqueness.

3. Concluding Remarks. The above paper constitutes an attempt to utilize some recent .

mathematical developments in formulating notions of statistical optimality. It is
hoped that this will provide insight into statistical theory and the essential -

differences between various statistical philosophies.
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3 T a set in the normed IMe%ES& L . Let v=v(0) satisfy v(6) én\w( )

§ : for all ¢ € » and all @ _ . Then s_. € S is said to be (v,L)
optimal if (Is - vl <ls - vi) for all s ¢ S. SN USRS PR

It is easily seen that many well-known optimality principles of
statistics are of this type, such as Bayes rules and minimax rules.

In this paper, characterization theorems for this class of
optimality principles are given.
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