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ABSTRACT

*
Let X be a vector lattice Hilbert space with dual X . Let M be a con-

* *
tinuous linear mapping of X onto X . Let p, gqe X with p > 0. We consider

the relationship between the linear complementarity problem: Find x € X such

that x > 0, Mx + g > 0, (x, Mx + gq) = 0, and the linear programming problem:

/ Find x € X which minimizes (x,p) subject to x > 0, Mx + g 2 0.
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SIGNIFICANCE AND EXPLANATION

Many free boundary problems in the areas of fluid mechanics, porous flow,
elasticity, and plasticity can be formulated as linear complementarity problems in
which a differential equation (ordinary or partial) must be solved subject to the
inequality constraint that the solution be non-negative; roughly speaking, at any
point the solution must either be zero or satisfy the differential equation. We
study linear complementarity problems which can be reformulated as linear programs
in which a linear functional must be minimized subject to inequality constraints.
The reformulation of linear complementarity problems as linear programs offers
two advantages:

(i) It suggests alternative numerical methods of solving the problems.

(ii) For the problem of a cavitating journal bearing, which is used as an example,
the linear program requires the minimization of a linear functional which is
proportional to the load borne by the bearing, so that the linear program
has a physical interpretation. It is possible that the linear programs for
other problems will also have physical interpretations, though this will

have to be determined in each case.
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EQUIVALENCE OF LINEAR COMPLEMENTARITY PROBLEMS
AND LINEAR PROGRAMS IN VECTOR LATTICE HILBERT SPACES

C. W. cryeru'z'a) and M. A. H. Dempster“)

1. Introduction
The linear complementarity problem in real n-dimensional Euclidean space R® is: Find
x € R® such that x20, x +q >0, and xT(Hx -q) = 0, where M is a given real

n x n - matrix and q is a given vector in R". The linear programming problem in " is:

Find x € R® which minimizes pTx subject to x > 0 and Mx + g 2 0, where M is a
given real n X n matrix and p and q are given vectors in Rn.

Mangasarian [1976] showed that, under certain conditions, each solution of the linear
programming problem in R® is a solution of the linear complementarity problem in R".
Mangasarian [1977, 1977a)] has subsequently extended this work. Related work is due to
Cottle and Veinott [1972), More [1971), Tamir [1973], Cottle, Golub, and Sacher [1974],
Cottle and Pang [1976, 1976a], Pang [1977].

Quite independently, and often not very explicitly, the relationship between certain
infinite-dimensional linear programming problems and linear complementarity problems has
been noted (Moreau [1971], Durand ([1968), Lewy and Stampacchia [1969], Stampacchia [1965],
Lions and Stampacchia [1967]).

Here, we consider extensions of some of the results of Mangasarian to infinite-dimen-
sional spaces. Apart from their intrinsic value, our results provide useful ways of inter-
preting, analysing, and solving, linear programming problems and linear complementarity
problems arising in physical situations.

The paper is organized as follows. In section 2 we dispose of some preliminaries. In

section 3 we introduce the linear program (LP), the dual linear program (LD), and the least

(1)
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element problem (LE). In section 4 we introduce the linear complementarity problem (ILC),

the variational inequality (VI), and the unilateral minimization problem (or quadratic pro-
gramming problem) (UM). In section 5 we discuss the relationship between the linear program,
the least element problem, and the variational inequality. In section 6 we discuss in detail
a one-dimensional problem. Finally, in section 7, we apply our results to the problem of

lubrication cavitation in journal bearings.
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2. Preliminaries
*
X denotes a real Hilbert space with norm |[|+|| and dual ¥ = X . The evaluation of
a continuous linear functional £ ¢ x' at a point x € X is denoted by (x,%).

It is assumed that X is partially ordered by a vector ordering >. Let
P={xeX: x>0}

Then (Kelley and Namioka [1976, p. 224)) P is a convex cone in X with vertex at the

origin: that is, P+ Pc P and )P c P for all non-negative real ). We assume that P

is closed. x>y iff x -y > 0, that is, x -y € P.

L] L]
The dual cone P c X is defined by
L ] * * ]
P =({x €X : (x,x)20 for all x ¢ P} . (2.1)

L] * *
We write x >0 if x € P . Since P is closed it follows from the Hahn-Banach theorem
* *
that x > 0 iff (x,x ) 2 0 for all x. € P.
It is also assumed that X is a vector lattice (Kelley and Namioka [1976, p. 229]).

That is, for all x,y € X, there exists a unique element sup(x,y) € X such that

sup(x,y) > x and sup(x,y) > y; furthermore. if 2z € X satisfies z > x and z >y then

1 § z > sup(x,y). The assumption that X is a vector lattice has the following consequences.
For all x,y € X there exists a unique element inf(x,y) such that x > inf(x,y) and

y > inf(x,y); furthermore, if z ¢ X satisfies z < x and z <y then =z < inf(x,y). If
x >y then sup(x,y) = x, and if y > x then sup(x,y) = y; since sup(x,y) is unique, it
follows that if x>y and y > x then x =y. For every x € X, x = sup(x,0) - inf(x,0)
so that X =P -P. If O=x+y where x,y ¢ P then x =y = 0; thus 0 is an extreme

point of P, that is, P is a pointed cone.

* * * *
M: X+Y =X denotes a continuous linear transformation with adjoint M : Y -+ X

defined by
* * *
(X, My ) = (Mx, v ) . (2.2)
Associated with M we have the continuous bilinear operator a : X x X » ll defined by

~a(vyu) = (u, Mv) (2.3)




a is symmetric if a(u,v) = a(v,u), and coercive if

a(x,x) > a"x"z & (2.4)

for some real strictly positive constant o and all x € X.

We will sometimes impose the following conditions upon a and M:
Condition S. If r ¢ X. and u,v € X are such that
a(u,y) 2 (y,xr) and a(v,y) 2 (b, x) for all y € P,
and if w = inf(u,v), then
a(w,¥) > (¥,r) for all ¥ € P. D

Condition 2. If u,v ¢ P satisfy inf(u,v) = O,

then a(u,v) < O.

(=]
* *
P and q denote elements of X . We assume throughout that p ¢ P . We will some-

time assume that p is strictly positive, that is, if x ¢ P and (x,p) = 0 then x = O.

Since

a(u,¥)- (b,r) = (Y, Mu - r) , (2.5)

Condition S may be rewritten as follows: if Mu >r, Mv > r, and w = inf(u,v), then
Mv > r. If -M is the Laplacian operator \72 and r =0 then Mu > 0 means, in an appro-
priate sense, that -u is subharmonic. In this case, Condition S reduces to the well-known
fact that the infimum of two superharmonic functions is superharmonic. There is, therefore,
a close connection between some of the present results and the theory of subharmonic func-
tions (Rado [1972), Brelot [1945, 1965], Stampacchia [1965], Littman [1963], Moreau [1971]).

In the case when M is a square matrix, Condition Z is equivalent to the requirement
that the off-diagonal elements of M be non-positive - that is, that M is a Z-matrix
(Fiedler and Ptak [1962]). There is, therefore, also a close connection between some of the
present results and the theory of M-matrices and _z-natricel (Plemmons [1976]). Condition 2
was implicitly used by Stampacchia (1969, p. 151) with the conclusion af(u,v) <0 replaced
by a(u,v) = 0.

conditions S and 2 are not equivalent because, as shown in section 2.1, the necessary

and sufficient conditions for Conditions S and 2 are not equivalent in the case of

matrices. However, we do have

ol




]

e st Bt

IS S—

Theorem 2.1
Let a be coercive and satisfy Condition Z. Then a satisfies Condition S.

*
Proof: Let u,ve X and r ¢ X satisfy a(u,y) 2 (Y,r) and a(v,y) 2 (¥,r) for all

$ > 0. We wish to show that if w = inf(u,v) then a(w,¥) 2 (y,x) for all ¢ 2 0. To do
so, we modify an argument of Stampacchia [1965, p.205].

Introduce the set U c X which consists of all f € X satisfying ¢ 2W. U=P+w
is closed and convex. From the fundamental theorem on variational inequalities (Stampacchia

{1964])) we know that there exists n € U such that
a(n, z-m) 2¢(z=-n, r), (2.6)

for all z € U. In particular, choosing z = n + y, we see that a(n,y) > ()
for all ¢ 2 0. The theorem will therefore be proved if we can show that n = w.

Set f = inf(n,u) ¢ U. From (2.6) with z = g,

a(n, £ -n) 2« -n, ry . (2.7)

On the other hand we know that n-%>0,u=-¢%¢2>0, and inf(n-¢%, u-23g) =

inf(n,u) - £ = 0. 1Invoking Condition Z we see that
a(g, £ -n) =afu, L -n) +a{(g -u, g -n ,

=a(u, £ -n) +a(u-2%, n-17g) ’ (2.8)

<a(u, £ -n ,

25T ne Xy -
Combining (2.7) and (2.8) we find that

a( -n, L =-n) g0 .

Since a is coercive it follows that { = inf(u,n) = n, so that n g u. Similarly n g v.

Hence n g inf(u,v) = w. But n e U so that n 2 w. We conclude that n = w.
8]

In the case when M is a real square matrix, it is readily shown from Theorem 2.1.1
below that if a is coercive and satisfies Condition S then a satisfies Condition Z. We

do not know whether this is true in general.

We now give three examples of spaces and operators fitting into the above framework.




2.1 Example 1

- * n
let X=Y=X =Y -R;ll-(m1

j) an n x n real matrix; and p = (pi), q= (qi),
n-vectors. Let P be the set of vectors in R® with non-negative components, so that P
is closed and P‘ = P.

P has the additional important property that it has non-empty interior.

Clearly, Pp is strictly positive iff p; 0 for all i.

It is readily seen that Condition Z is satisfied iff lij 0 for i#j (that is,
M is a Z-matrix).
Theorem 2.1.1: Condition S is satisfied iff every row of M has at most one strictly posi-
tive coefficient, that is, HT is pre-leontief (Cottle and Veinott ([1972, p. 244]) .
Proof: We first observe that HT is pre-Leontief iff each row k of the inequality
Ma > r can be written in the form

er
+ . (P TR (*)
j=1 33

cu >r
ss= "k

where d 3 20 for all 3j; S 2 O: and where the dependence upon k of o and 4 3 has

been suppressed.

T

First let us assume that M is pre-Leontief and that Mu > r, Mv > r. Then inequality

(*) holds for u, and a similar inequality holds for v. Since c!j 2 0 we have that if

w = inf(u,v) then

cw = inf(csu', csvs) v

n
r, + ] 4, influ,v) ,

v

SN deisy
n
- tk + jzl djvj 0

so that Condition S is satisfied.
Now let us assume that Condition S holds but that HT is not pre-Leontief. Then there
is arow k of M with at least two positive coefficients, L and mne Say. Thus, the

k-th 1row of the inequality Mu  r takes the form

-6-




n
™kss = Tk T MU =1 l“k:j“:] .
js, t
and a similar inequality holds for v. Set u, = l/l!lk': ug = -l/nkt’ LT 2“3’ Ve T 2“1:'

and uj = vj = 0 otherwise. Finally, set w = inf(u,v) and

n n
r,=minl § mou , §J m v] ,
3 gey 22 L) e
for all j. Then Mu 2F and Mv > r. But,
n n
1 w o= u + v, + ¥ (URER
gx K hes o Ree L Sy
- l‘k -1, j”'t

80 that the inequality Mw > r does not hold.
m]

In conclusion, we note that if the problems in Examples 2 and 3 below are discretized,
the resulting finite difference or finite element matrices usually satisfy Conditions S and

z.

2.2 Example 2
Let X = u;(n), where Q is a bounded domain (open connected set) in Rn, and uém)

is the Sobolev space of once-differentiable functions vanishing on 3R (Adams [1975)).

* -
Then Y =X =H l(m. Let M be the linear self-adjoint operator,

3
(Mu) (t) = -] —=—(a
3t 4y

(t) g%L(t)) cE% S (2.2.1)
i

with coefficients a, j(t) which are continuously differentiable, where the indices i and

j are sunmed from 1 to n. It is assumed that -M is uniformly elliptic, so that

Ta 08 2alel? , tea (2.2.2)

for all £ = (61) ¢ R®, and some constant q > O.
Every x € n;

representations of x differ only on a set of measure zero. We write x > 0 if x(t) 3 0

has a representation as a measurable function x(t), and any two such

a.e. (almost everywhere). P = {x € X : x 2 0} is clearly convex.
z 5




To show that P is closed, let {xn} be a sequence of points in P which converges

to x ¢ H(];. Then xn(t) converges to x(t) in Lz(ﬂ). from which it follows that

xn(t) + x(t) a.e. Hence, x(t) > 0 a.e. so that x € P.

H‘])' is a vector lattice: if x,y € H(l, then the functions
sup(x,y) (t) = sup(~(t), y(t)), , teQ ,

(2.2.3) { 1
inf(x,y) (t) = inf(x(t), y(t)), , teQ ,

are representations of elements in H;.

Hl(ﬂ) is a vector lattice, and their proof can be readily adapted to the present case.)

(Lewy and Stampacchia [1969, p. 169] prove that

Another very useful property of Hg is that if x € H; and F is a measurable subset

of Q on which x(t) is constant then (Lewy and Stampacchia [1969, p. 169]),

[ lgraa x(t)|%at = 0 . (2.2.4)
3

As defined in (2.2.1), the operator M can only be applied to functions u which are

twice differentiable. Let a:Hé x H; = Rlbe the symmetric coercive bilinear operator de-
fined by ;
atuw) = f a (0) 22 ar . (2.2.5)
B e
We extend the domain of definition of M by regarding M as the mapping from X = Hé to

* -
its dual space X = H - defined by

(v,Mu) = a(u,v), for all u,v € Hl

o - (2.2.6)

The standard theory of elliptic operators allows us to assert that M is uniquely defined
by (2.2.6) and that M is a homeomorphism of X = Hg onto X = H ! (Lions and Magenes
[1972, p.207]). In particular, M is an open mapping.
Theorem 2.2.1

M satisfies Conditions S and 2.

Proof: To prove Condition 2z, let u,v ¢ P and inf(u,v) = 0. Let u vanish

on FcQ and v vanishon G c Q. Then, using (2.2.4), we conclude that




atuw) = If a0 B2,
2

at, Btj
du_ 3v 3u_ v
-2], (t)——'"'-"dt"' Iﬂ-(t)_"_dt'o E
> ij 3t1 Btj GoF ij Bti atj

so that Condition 2Z is satisfied.

(a)

(b)

2.3

Stampacchia [1965, p. 205] proves that Condition S is satisfied.
O

*
We conclude by making some additional remarks about inequalities in X and X .

let x ¢ H;(n). Then x > 0 in the sense of Hl(n) if there exists a sequence

{wm} of functions wm € C1(5) which satisfy ¢m(t) 2 0 in Q and which converge

to x in Hl(n) (Lewy and Stampacchia [1969, p. 155]). If x 2 O in the sense

of nl(n) then it follows immediately that x(t) > 0 a.e. . Conversely, let x € Hg(ﬂ)
satisfy x(t) > 0 a.e. . If X denotes the extension of x to R® obtained by set-
ting %(t) = 0 for t ¢ 0, we know that & ¢ H (") (Adams [1975, p. 57)). The
averaged functions ih are smooth and non-negative, and they converge to X in

2 (R") (Adams [1975, p. 521). 1If ¢h=§h|n then ¢, +x in @, and we can

h
conclude that x 2> 0 in the sense of Hl(n). We have thus shown that if

X € Hg(ﬂ) then x > 0 in the sense of Hl(ﬂ) iff x(t) > 0 a.e. . This is of im-
portance to us because Stampacchia and his colleagues use > O in the sense of Hl(Q).
£ re H-l is non-negative then there exists a non-negative Borel measure U

such that

W,r) = jw du
Q

for every ¢ € C;(Q) (Schwartz [1973, p. 29]). This is a very elegant charac-
terization of non-negative functionals; unfortunately, it is difficult to apply
because its use involves measure theory.

Example 3
This example is the special case of Example 2 when Q = (a,b) < Rl.




All the properties of Example 2 remain valid. There is one additional property which
is very important: Every x ¢ H;’(a,b) can be represented as a function x(t) which is
absolutely continuqus on [a,b] and vanishes at the endpoints. (Smirnov [1964]).

If x € H‘l)(a,b) then x = Xp v x + x, where X, vanishes outside a neighborhood of
a, Xx_ vanishes outside a neighborhood of b, and X has compact support in (a,b). The

r
averaged functions xl(lh) of x, are smooth, have compact support, and converge to xm,

(h) (h)
" xr to Xy and xt by

first translating and then averaging. If x 20 a.e. then wh = x;h) + x‘:h) + x:h)

as h + 0. We can construct similar approximations x and
con-

verges to x and we see that x > 0 in the sense of Hl(a,b).

-10-




3. The linear program, the dual linear program, and the least element problem.
With the notation of section 2, the linear program (LP) is:

(LP) y Minimize (x,p) subject to Mx + q 20 (3.1)
x€P

The dual program (LDF) which is (formally) dual to LP is:

L
(LDF) Maximize (-q,y ) subject to -M'y' +p 0 , (3.2)
- *
y e
where
"*e - L ] *
B ={y ey vy >0},
(3.3)
* * *® *
={y ey :(J,y)zo for all uepP} .
If x is a solution of LP and y. is a solution of LDF then,
L ] * & *
(X,p) = (~q4y ) = (x, =My +p)+ (Mx+q y )20 , (3.49)

so that the value of LP is always greater than or equal to the value of LDF. In particular,

if (x,p) + (q,y') = 0 for some feasible x and v. then x and y' are optimal. It may,

however, occur that the two values are never equal, in which case there is a duality gap.
Since X is reflexive we know (Dunford and Schwartz (1966, p. 66]) that there is an

isometric isomorphism x which maps X onto x" - y' and which is defined by

L *
(XX ) = (X ,kX) . (3.5)
Let .
¥ =8 . (3.6)
where y ¢ X (not Y), so that
L]
-9,y )= (~y.9) . 3.7

We assert that y. 20 iff y e P. First assume that y ¢ P. Then, for any u'e P'
(y.,u) 3 0, so that y' 3 0. On the other hand, suppose that y' 2 0 but that yg¢ P. Then,
since the singleton {y} is compact and the cone P = {x ¢ X : x > 0} is closed and convex,
these two sets can be separated (Dunford and Schwartz (1966, p. 417]). That is, there

exists a linear functional f ¢ Y and constants ¢ > 0 and c¢ such that

-ll=-

-




(x,£) > ¢ if xepP ,

(y,f£) gc - € .

*
Using the properties of P we conclude that ¢ = 0, so that f € P and (y,f) ¢ -€. But
*
(y.f) = (f,y )2 0, and we have a contradiction.

Finally, for any u ¢ X ,

* * * *
(u, My )= (M1, v ) , (definition of M)

(M, ky) , (equation (3.6)) .,

(3.8)
= (y, Mu) , (definition of k)
= (u, My) ,
where we define the linear operator M : X » X =y by
a(u,v) = (v, Mu) = (u, Mv) . (3.9)

* & L ] - *
Thus, My +pepP iff My +p eP.
* *
Summing up, we see that y satisfies LDF iff y = Ky where y solves:
(LD) Maximize (-y,q) subject to =-My +p > 0 ,
yex Y20 .
and we will take this to be the dual of LP in our further work.

Since X is partially ordered, we may also consider the least element problem (LE):

Find x ¢ P such that Mx+q:0 and x <u for every u € P satisfying Mu + g 3 O.

LE has at most one solution, for if x) and x, were two solutions we would have Xy < x,

and x, < x

2 S % which implies that x, = x

1 2°

In the special case X = Rn, there exists a very satisfactory theory for LP and LD,
and Mangasarian [1976) used this as the starting point for his study of the relationship be-
tween LP and ILCP (the linear complementarity problem). LE has also been studied in the
finite dimensional case (Cottle and Veinott [1972)).

The case when X is infinite dimensional is much more difficult. It is usually assumed,

for example by Ekeland and Temam [1974, p. 66], that the Arrow-Hurwicz constraint qualifica-

tion is satisfied, namely that there exists u ¢ P such that Mu + q is an interior point

-12-
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of P'. an example of Craven [1977, p. 331) illustrates the difficulties which can arise
when P. does not have any interior points and when M is not an open map. Dempster [1975]
develops a general framework for the analysis of LP and LD.

In the present paper we prove the existence of solutions to LP and LE by using the
theory of variational inequalities. We do not prove the existence of a solution to LD,

although in section 6 we give an example in which LD does have a solution.

!
|
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4. The linear complementarity problem, the variational inequality, and the unilateral

minimization problem.

The linear complementarity problem (IC) is as follows: Find x € P such that

(IC) Mx +q>0, (x,Mx +q) =0 . (4.1)

The variational inequality (VI) is: Find Xx € P such that

(Vi) a(x, v-x) +(v-x,q9)320 , (4.2)

for all v ¢ P.

If a is symmetric then the unilateral minimization problem (or quadratic programming

problem) (UM) is: Find x € P such that

(uM) J(x) ¢ J(), for all ueP (4.3)
where

J(u) = a(u,u) + 2(q,u) . (4.4)

The basic result on variational inequalities is due to Stampacchia [1964]): if a is
coercive then there exists a unique solution to VI.

The connection between VI and UM was also observed by Stampacchia [1964): if a is
symmetric and coercive, then VI is equivalent to UM.

The relationship between VI and IC was noted independently by a number of workers in-
cluding Lions and Stampacchia [1969, p. 172], Karamardian [1971], More [1971). The basic
result, which we prove for the convenience of the reader is:

Theorem 4.1
1C is equivalent to VI.

Proof: Assume first that x solves LC. Then for any v ¢ P

a(x, v-x) + (v-x,q)=(v-x, Mx +q) .,
= (v, Mx +q) 20 ,
so that x solves VI.
Now assume that x solves VI. Then setting first v = 0 and then v = 2x we see

that (-x, Mx + q) 2 0 and (x, Mx + q) 3 0, from which we conclude that (x, Mx + q) = 0.

-14-




But then, .(x.'-x)0(1-8.1)-(%&411)30 for all v 2 0, so that Mx +qa0,
and hence x solves LC.




S. The relationship between the linear program, the least element problem, an linear

complementarity problem.

Theorem 5.1

If a is coercive and satisfies Condition Z, then LE has a solution, namely the unique
solution of VI.
Proof: The proof is a modification of proof of Stampacchia [1969, p. 151] who implicitly

used Condition Z in the special form: if u,v € P and inf(u,v) = 0 then af(u,v) = 0.
Let u be the unique solution of VI so that u € P and

a(u, v-u) + (v-u a0
for all v € P.
In particular, choosing v =u +w for any w € P we conclude that Mu + g > O.
Now let w be any element such that w e P and Mw + g > 0. We assert that w 2> u.
To see this, let [ = min(u,w) € X, so that w=-7 >0 and u - % > 0. Furthermore,
inf(w - g, u - ¢) = inf(w,u) - ¢ = O.

Then
a(u-2%,u-%) = [a(g, T -u) + (Z~-u, q)] - [a(u, T -u) + (Z -u, )] ,

:la(c.c-u)+(c-u.q)] ’

because u satisfies VI. But
a(g, § -u) +(C~u, q)=alw=-g, u-23) + f{a(w, L - n) +( -u, @) ,

a9 7

because the first term on the right is nonpositive by Condition Z and the second term is
nonpositive since Mw + g > 0 and § -u < 0.
Combining the above inequalities we see that a(u - f, u - §) < 0. Remembering that

a is coercive we conclude that u = {. Thus, w % % =u so that u is a solution of LE.
(m]

Theorem 5.2
(i) If x solves LE then x solves LP.
(ii) If a satisfies Condition S and p is strictly positive, then LP has at most

one solution.
-16~




(iii) If a satisfies Condition S, p is strictly positive, and x solves LP then

X solves LE.

Proof: (i) is obvious. To prove (i1), let x, and x, be two solutions of LP. By Condi-

tion s, ¢ --in!(xl.xz) € P satisfies M{ +q 2> 0 and (f,p) 5 (X,,p). Since x is optimal,

{(g.P) = (xl.p) and we conclude that [ = x,. Similarly, ¢ = Xy, 8O that x

1= %y
To prove (iii), let u e P satisfy My - 93 0. Set [ = inf(u,x). Then M. +g2>0

and (L,p) = (x,p) so that Z = x. Hence, U 2>x and x solves LE.
D
Remembering that if a is coercive and a satisfies Condition Z then a satisfies
Condition S (Theorem 2.1) we find that
Theorem 5.3
If a is coercive and satisfies Condition 2, and if p is strictly positive, then LP,

LE, VI, and IC all have the same unique solution.

Theorem 5.4

Assume that x solves VI, that Yy solves LD, that (x,p) + (y,q) = 0, that a is
symmetric and coercive and satisfies Condition 2, and that p + q > 0.
Then Yy > x.
Proof: Set w = inf(x,y). Then
alx -w, x -w =alx -y, x -~ w +aly =w, x - w,
salx -y, x-w) ,
since Yy-=w>0,x-w>0, and inf(y -w, x - w) = 0. But,
alx -y, x-w = a(x, x-~w) -a (y, x - w) ,
= a(x, x-w) -a(x-w,y) ,
= a(x, x - w) + (x - w, - my) ,
= [a(x, x-w) + (x=-w, q)] = (x~-~w,p+q) +

+(x-w,-iy+p)
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The first term on the right is negative because x solves VI. The second term is negative

because p + q € P. and x - w € P. The third term is zero because the equality
0= (x,p) + (y,q) = (x, - My + p) + (y, Mx + q)

implies that (x, - My + p) = 0 and hence, since 0 < w < x, that (w, - My + p) = 0.

Combining the above, we conclude that a(x - w, x - w) <0 so that x = w. Then

y 2 v = inf(x,y) = x.
=]

It may be observed that if x solves LP, y solves LD, (x,p) + (y.q) = 0, and

Y 2 x, then we have that

02 (x, Mx + q) < (y, Mx +q) =0 ;

that is, x solves LC.




6. A one-dimensional problem
We consider a special case of Example 3 (section 2.3): X = H;(O.l’):

; 2
Min(x,p) = [1x(t)dt subject to x(t) 20 a.e.,
0

(6.1)
and Mx +q = -x(t) + (t-1) ;0 ,
with the corresponding dual problem
¢ 2
Max(y,-q) = = [ (t - 1)y(t)at subject to y(t) > 0 a.e.,
0 5 2 (6.2)
-My +p=y(t) +130 .
The inequality -X + (t - 1) 3 O is interpreted in the sense that
2 .
W, M+ q) = [[x(t)é(t) + (t - De(t)lat >0 , (6.3)
0

for all non-negative ¢ ¢ ﬂ;(O,Z), and the inequality y + 1 2 0 is interpreted in the
same way.
This problem was chosen because it is a simple problem with the same general structure
as the problem for a cavitating journal bearing which is discussed in the next section.
There is a straightforward procedure for obtaining possible solutions of such one-dimen-
sional problems; these solutions can then be verified a-postiori. We assume that x(t) > 0 for
O<t<t and x(t) =0 for T <t <2 where t is an unknown constant corresponding

to the free boundary (the point t = 1). If x also satisfies IC then (x, -k + (t - 1)) =0,

0 that -%(t) + (t - 1) =0 for 0 St < T. The general solution of the equation

2+ (t-1) =0 is

x(t) = A + Bt + -:- -1 . (6.4)

Using the conditions x(0) = x(1) = 0 to determine the constants A and B we find

x(t) = t(t -~ 7)[-3 + ¢t + 1)/6 . (6.5)

-19-
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To determine T we note that the condition =-x + (t - 1) > 0 implies that for all

smooth non-negative ¢ € H;(O,z),

2
W, Mx + q) = [ [x ¢+ (t - Dplat ,

()}
;i 2
=[(x¢ + (t - Dylat + [ (£t - )¢ at ,
0 T
. T T . 2
= "']o +[-x + (-1l at+ [ (t-1eat , (6.6)
[ b

2
= x(t-)e(t) + [ (£t - 1w at ,
T

ol

This is only possible if T > 1 (so that t - 12> 0 for t € (7,2]) and x(t-) 2 0. But,
x(t) 20 for t St and x(T) = 0 so x(T-) S 0. We conclude that x(t-) = x(t+) = x(T)
= 0. The condition x(T) = 0 leads to an algebraic equation for T, namely,

X(T) = T(-3 +2T)/6 =0 ;
thus, T=3/2 and

x(e) = t(e ~3/21%6 , 0gtg32 ,

(6.7)
=0 , 32gtg2 ,

is our trial solution.
Using (6.6) and (6.7) we see that x is such that x > 0, x4 (t-1) >0, and
(x, Mx + q) = 0, so that x is a solution of LC. InvoRing Theorems 4.1 and 5.3, we con-
clude that x is the unique solution of LP.
We now consider the determination of y. sh!co (x, y +1) = 0, it follows that
y(t) +1 =0 when x(t) >0, that is, when 0 < t < T. On the other hand, since
(y, =X + (t = 1)) = 0, it follows that y(t) = O when ~x + (t - 1) > 0, that is, when
T <t <2 Weconclude that y(t) +1 =0 for 0 <t <3/2 and y(t) =0 for 3/2 <t < 2.

Solving this boundary value problem we obtain

-20-
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ylt) = t[-2¢t + 3)/4, O st 32 ,

(6.8)
=0 , 3/3 : t : - IS |
3
The condition y 2 0 is seen to be satisfied.
Direct compytation yields 3
2 9 2
(x,p) = [ x(t)dt = === = [ (t - l)y(t)at = -(y,q) . (6.9)
0 128 o

The solutions x(t) and y(t) are plotted in Figure 6.1. We note that vy 2% as

proved in Theorem 5.4.

2
32T
(t)
oy
12T
. q
| 1
” |
] |
0 1 3 3 . 1
2 ) 1 2

Figure 6.1: x(t) and y(t)

It is possible to give two justifications for the free boundary condition x(T) = 0. |
Firstly, if x € H:(o,l), as is often the case, then x(t) is continuous so that
%(t) = X(14) = 0. Secondly, a reasonable interpretation of the condition

-x(t) + (t = 1) > 0 is that

-21-
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X(r 4 At) - x(1 - At)
At

lim -
At+0

+(1’-1):0 .

Since x(t + At) = .0 and x(t - 0) <0, it follows that x(tr - 0) = 0.
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7. Lubrication cavitation of journal bearings

A large number of physical problems can be formulated as linear complementarity problems
in which a differential equation (ordinary or partial) must be solved subject tc the inequal-
ity constraint that the solution be non-negative; roughly speaking, at any point the solution
must either be zero or satisfy the differential equation (Cryer [1977, in preparation],
Duvaut and Lions [1972]). The reformulation of such linear complementarity problems as linear
programs has two advantages: (i) it suggests alternative methods of solving the problems;
and (ii) it sometimes provides a physically meaningful interpretation. As an example of such
linear complementarity problems we consider here the problem of a cavitating journal bearing.

A journal bearing consists of a circular cylinder (the journal) which is rotating inside
a support structure (the bearing). The narrow gap between the journal and the bearing is
filled with a thin film of lubricating fluid. Various geometries are possible. In Figure
7.1 we show a partial journal bearing of finite length. The term 'partial' refers to the
fact that the journal is not completely enclosed within the bearing, and is partially ex-

posed to the atmosphere.




Figure 7.1: A partial journal Bearing
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It is required to determine the pressure x of the lubricant, and the load W borne

by the bearing. Because the gap between the journal and the bearing is very narrow, the

simplifications of lubrication theory can be applied. In particular, it is assumed that the

pressure does not vary across the gap, so that the problem becomes a two-dimensional problem

in the rectangular domain Q = ABCDEF in the 0z -plane (Figure 7.2).

(-] /P
: x=0 i |
vapor ﬂo |
, |
i - o |
E {
E . o/ > B >
/ 4‘/ / z
= i o guste o
Pl o
; Figure 7.2: The domain @

The lubricant flows in from a reservoir along the entry edge AF and flows out

through the ends ABC and DEF as well as through the exit edge CD. At all these points

the lubricant is in contact with the atmosphere, and if the pressure is normalized so that

atmospheric pressure is zero, then the boundary conditions are that x = 0 on Q. That is,




. (7.1)

1
Xe X=H
0(9)

The lubricant occurs in both liquid and gaseous phases. It is assumed that the lubri-
cant vaporizes when the pressure is zero, so that the inequality x : 0 must be satisfied
everywhere. If the pressure is greater than zero then the lubricant is in the liquid phase
and satisfies the simplified form of the Navier-stokes equations known as Reynolds' equation.
After introducing dimensionless variables, the equation takes the form (Pinkus and Sternlicht

[1961]):

W)y s’y P, i

5 )
b B
where a is a positive constant, and where h = h(6) is a given function which is propor-
tional to the width of the gap.

On the free boundary T, the interface between the liquid and gaseous phases, the

boundary conditions are
x=0, d&/on=0, on T , (7.3)

where 9/3n denotes the normal derivative.

In the engineering literature (Pinkus and Sternlicht [1961]) the problem is formulated
mathematically as a classical free boundary problem: Find x and T such that x satis-
fies (7.2) subject to the boundary conditions (7.1), and (7.3). However, in a large number
of papers in the engineering literature, beginning with the work of Christopherson [1941),
numerical approximations have been cbtained in a completely different way: equation (7.2)
is replaced by finite differences, and the resulting system of algebraic equations is solved
as a finite-dimensional linear complementarity problem (Cryer (1971]) which may be considered

as a discretization of the infinite-dimensional linear complementarity problem
x:O,m+q=0,(x,m+q)-0. (7.4)
We may thus take (7.4) as the starting point for a mathematical analysis of the problem.

The problem is a special case of Example 2 (section 2.2), and it follows from Theorem 5.3
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that there exists a unique solution x ¢ H;(Q) of LP, LE, VI, and LC.

In the engineering literature, there has been scme discussion of an appropriate varia-

tional principle for the problem (Christopherson [1957)). The formulation as a variational

inequality leads to two useful variational principles:

(1)

(2)

Since a is symmetric, the problem is equivalent to the unilateral minimization
problem

Inf J(v) = a(v,v) + 2(v,q) .
v20

For any strictly positive function p(8,z), the problem is equivalent to the

linear programming problem

Min (x,p) = [ x(8,2)p(0,2)d0 Az ,
(1}

subject to x > 0, Mx + q > 0. In particular, if -w/2 < 9' < 9D < ®/2 (see Figures
7.1 and 7.2), then p=cos 6 > 0 and (x,p) is the load W borne by the bearing in
the vertical direction (Figure 7.1). That is, the solution x minimizes the vertical

load.

Acknowledgement

The authors wish to thank Professor O. L. Mangasarian with whom they had many

helpful discussions.

«2%-




REFERENCES

Adams, R. A.: Sobolev Spaces. New York: Academic Press, 1975.

Bierlein, J. C.: The journal bearing. Scientific American, 50-64 (July 1975).

Brelot, M.: Minorantes sous-harmoniques, extremales et capacites. J. de Math. Pures Appl.
24, 1-32 (1945).

Brelot, M.: Eléménts de la Théorie Classique du Potential, 3rd edition. Paris: Les Cours

de Sorbonne, Centre de Documentation Universitaire, 1965.

Christopherson, D. G.: A new mathematical method for the solution of film lubrication
problems. Proc. Instn. Mech. Engrs. 6, 126-135 (1941).

Christopherson, D. G.: Boundary conditions in lubricating films. The Engineer 203, 100
(1957) .

Cottle, R. W., Golub, G. H., and Sacher, R. S.: On the solution of large, structured linear
complementarity problems: III. Technical Report No. SOL 74-7, Dept. of Operations
Research, Stanford University, 1974.

Cottle, R. W. and Pang, J. S.: On solving linear complementarity problems as linear programs.
Technical Report No. SOL 76-5, Dept. of Operations Research, Stanford University, 1976.

Cottle, R. W. and Pang, J. S.: A least element theory of solving linear complementarity
problems as linear programs. Technical Summary Report No. 1702, Mathematics Research
Center, University of Wisconsin, Madison, 1976a.

Cottle, R. W. and Veinott, A. F. Jr.: Polyhedral sets having a least element. Mathematical
Programming 3, 238-249 (1972).

Craven, B. D.: Lagrangean conditions and quasiduality. Bull. Australian Math. Soc. 16,
325-339 (1977). ;

Cryer, C. W.: The method of Christopherson for solving free boundary problems for infinite

journal bearings by means of finite differences. Math. Computation 25, 435-443 (1971).

-28-

A M




Cryer, C. W.: A bibliography of .tree boundary problems. Technical Summary Report No. 1793,
Mathematics Research Center, University of Wisconsin, Madison, 1977.

Cryer, C. W.: A survey of variational inequalities. Technical Summary Report, Mathematics
Research Center, University of Wisconsin, Madison (in preparation).

Dempster, M. A. H.: Abstract Optimization and its Applications. Lecture Notes, Dept. of
Mathematics, University of Melbourne, 1975.

Dunford, N. and Schwartz, J.: Linear Operators, vol. I. New York: Interscience, 1966.

Durand, J. F.: Resolution numérique de problémes aux limites sous-harmoniques. Thesis,
Universite de Montpellier, 1968.

Duvaut, G. and Lions, J. L.: Les Inéquations en Mécanique et en Phvsigue. Paris: Dunod,
1972.

Ekeland, I. and Temam, R.: Analyse Convexe et Problemes Variationnels. Paris: Dunod, 1974.

Fiedler, M. and Ptak, V.: On matrices with non-positive off-diagonal elements and positive
principal minors. Czech. Math. J. 12, 382-400 (1962).

Jameson, G. J. O.: Topology and Normed Spaces. london: Chapman and Hall, 1974.

Karamardian, S.: Generalized complementarity problem. J. Optimization Theory Appl. 8,
161-168 (1971).

Kelley, J. L. and Namioka, I.: Linear Topological Spaces, second corrected printing. New

York: Springer, 1976.
Lewy, H. and Stampacchia, G.: On the regularity of the solution of a variational inequality.
Communications Pure Appl. Math. 22, 153-188 (1969).

Lions, J. L. and Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, I.

Berlin: Springer, 1972.

Lions, J. L. and Stampacchia, G.: Variational inequalities. Communications Pure Appl. Math.
20, 493-519 (1967).

Littman, W.: Generalized subharmonic functions: monotonic approximations and an improved
maximum principle. Annali Scuola Normale Superiore di Pisa Sci. Fis. Mat. 3 17,

207-222 (1963).

-29-




Mangasarian, O. L.: Linear complementarity problems solvable.by a single linear program.
Mathematical Programming 10, 263-270 (1976).

Mangasarian, O. L.: Characterization of linear complementarity problems as linear programs.
Math. Prog. Study 9, 74-87 (1977).

Mangasarian, O. L.: Simplified characterizations of linear complementarity problems solvable
as linear programs. Technical Report No. 305, Camputer Sciences Dept., University of
Wisconsin, Madison, 1977a.

Moré, J. J.: The application of variational inequalities to complementarity problems and
existence theorems. Technical Report No. 71-110, Dept. of Computer Science, Cornell
University, 1971.

Moreau, J. J.: Majorantes sur-harmoniques minimales d'une fonction continue. Ann. Inst.
Fourier Grenoble 21, 129-156 (1971).

Pang, J. S.: A note on an open problem in linear complementarity. Mathematical Programming
13 , 360-363 (1977).

Pinkus, O. and Sternlicht, B.: Theory of Hydrodynamic Lubrication. New York: McGraw Hill,

1961.

Plemmons, R. J.: A survey of M-matrix characterizations I: nonsingular M-matrices.
Technical Summary Report No. 1651, Mathematics Research Center, University of Wisconsin,
Madison (1976).

Rado, T.: Subharmonic Functions and the Problem of Plateau. New York: Chelsea, 1972.

Schwartz, L.: Théorie des Distributions, revised edition. Paris: Hermann, 1973.

smirnov, V. I.: A Course of Higher Mathematics, vol. 5. Oxford: Pergamon (1964).

Stampacchia, G.: Formes pilineaires coercitives sur les ensembles convexes. Comptes Rendus
Acad. Sci. Paris 258, 4413-4416 (1964).

Stampacchia, G.: Le probleme de Dirichlet pour les equations elliptiques du second ordre
a coefficients discontinus. Ann. Inst. Fourier Grenoble 15, 189-258 (1965).

Tamir, A.: The complementarity problem of mathematical programming. Ph.D. thesis, Dept.

of Operations Research, Case Western Reserve University (1973).

CWC/MAHD/ jvs

-30-




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

. REPORT DOCU“ENTAT'ON PAGE BEFORE COMPLETING FORM
[T, REPORT NUMBER. - GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
#1889 [ |
4. TITLE (and Subtitle) | 5. TvPe oF rePoORT & PEMIOD COVERED

Summary Report - no specific
reporting period

6. PERFORMING ORG. REPORT NUMBER

EQUIVALENCE OF LINEAR COMPLEMENTARITY
PROBLEMS AND LINEAR PROGRAMS IN
VECTOR LATTICE HILBERT SPACES

17, AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s) |
E
C. W. Cryer and M. A. H. Dempster DAAG29-75-C-0024 ral
MCS77-26732
I5. PERFORMING ORGANIZATION NAME AND ADDRESS  RROGRAN ELENENT. PROJECT. 7 ASK
Mathematics Research Center, University of ' TR S W W
s 610 Walnut Street - Wisconsin [mMathematical Programming and
Madison, Wisconsin 53706 Operations Research
11. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
October 1978
See Item 18 below 15. NUMBER OF PAGES
30
T MONITORING AGENRCY NAME & ADDRESS(IT dilferent from Centreliing Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

Tia. %E&A’NFICANOOJ DOWNGRADING
MEDULE

[16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, i ditferent from Report)

18. SUPPLEMENTARY NOTES

U. S. Army Research Office and’ National Science Foundation
P. O. Box 12211 Washington, D. C.
Research Triangle Park 20550

North Carolina 27709
19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Linear complementarity problem; linear program; variational inequality;
lubrication cavitation; partially ordered Hilbert space.
-+

; elewe ~te  of

[
| -.,, -5“1’!“1 (Continue en ¢ side 1t y and identily by block number)|
“ let X be a vector lattice Hilbert space withglual x . Let M be a con-

tinuous linear mapping of X onto x . Let p, q x' with p > 0. We consider
the relationship between the linear complementarity problem: Find x ¢ X such
that x5 0, Mx + g > 0, (x, Mx + q) = 0, and the linear programmin oblem:
Hnd X © X which minimizes (x,p) subject to x@ 0, Mx + q;) 0. \

|~ L element of T L oep=

DD (on'ys 1473  zoimon oF 1 nOV 68 13 OBSOLETE : UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Bntered)

S




