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ABSTRACT

The study of steady fluid flow through porous media leads to the
consideration of elliptic free boundary problems in the unknown function
"piezometric head". An integration along the vertical direction transforms
these free boundary problems into variational (or quasi-variational)
inequalities, which are easier to study both from the theoretical and from

the numerical point of view.
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SIGNTFICANCE AND EXPLANATION

A typical free boundary problem involves motion of a fluid in a region,
the boundary of the fluid being unknown and having to be determined as part
of the solution. Problems of this type involving flow of fluids ir porous
media have important applications in ground water management, 0il reservoir
technology, and seepage of water through dams. Apart from certain special
cases that can be solved analytically, computational methods for solving such
problems have usually involved a laborious trial and error procedure - guess
the position of the free boundary, and improve the guess by iteration.

In 1971, Baiocchi showed that many of these problems could be reformulated
as variational inequalities. The use of variational inequalities (variational
problems where the solution is subject to inequality constraints) and their
generalization, quasi-vafiational inequalities, has led to profound develop-
ments, such as existence and uniqueness proofs for several classical free
boundary problems, as well as for many new problems, and also very effective
numerical methods. The advantage of the method from a computational point of
view is that the position of the free boundary appears automatically in the
calculation, without the need for guessing and iterating. These developments

are surveyed in this report.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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FREE BOUNDARY PROBLEMS AND VARIATIONAL INEQUALITIES

*
C. Baiocchi

Part 1. The simplest type of free boundary problem. i

Let us consider the following problem: '["D' V
PROBLEM A. Given: UNRBNOU J

n JUSTIFICATL 5
(1.1) D: a bounded smooth domain in ®, | meranesed
(1.2) f, g, y: smooth functions on 5; Y <g on 23D. BY 1
BSTRIR oL e

We look for a couple {Q, u} such that: __D_” C_:W
(1.3) Q@ is an open smooth subset of D, { l
(1.4) u is a smooth function on @, | ‘!
(1.5) -Au=f in Q, ‘ I SR )

(1.6) u=g on 23NN 3D,
(1.7) u=y and Vu=Vy on 302 N D.

Problem A is the simplest f.b.p. (free boundary problem): on a domain Q whose
boundary is partially unknown we must solve a problem with too many conditions (see (1.7)) on
the unknown part of 23Q.

Remark 1.1. Condition (1.7) is equivalent to:
(1.7') v =y and g—: = %& on 3 ND (7:; denotes the outward normal derivative).
Remark 1.2. A very similar problem is the one where, instead of just one function g, we

prescribe a couple {91,92} and a partition of 3D, {31D, 32D}; then we replace (1.6) by:

9g

du 2

.6' - — o —
(1.6') u 9, on 310“30; 3v 3y 0 azbﬁﬂ.

Remark 1.3. Under suitable assumptions on the data, the maximum principle will imply that:

(1.8) u>y¢y 4in Q.

If we denote by U the function defined by:
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: (u(x) for xeR ,
(1.9 u(x) =/ ; )
lg(x) for x e D\ T ,

we can reformulate problem A in the following form:

PROBLEM B. Given D, f, g, ¢ as in (1.1), (1.2), we look for u such that

(1.10) u is smooth in D 382 in D i
(1. 2Y) u=gqg on 3 ,
*’Settinq Q= {x ¢ DI ulx) > v(x)} we
(1:12) \
| have =-Au = f in @ . i

As a physical situation which leads to mathematical problems of this typme let us consider
an elastic membrane above a region D C R2 which is stretched along 9D at the height 1
z = g(x,y), subjected to a system of vertical forces F = f(x,y) and forced to stay above an ob-
stacle z = ¢(x,y); let C be the "contact region" and Q2 be the complement of C in D, say ]
Q =D \ C; then, assuming that the membrane is homogeneous and with unitary elastic coeffi-
cient, the shape z = u(x,y) of the membrane at the ecuilibrium position must satisfy problem 4
A (or problem B).
Remark 1.4. Problem A, as well as problem B, does not contain all physical conditions which
must be imposed; we will come back to that point in a moment.

Let us consider the analogous one-dimensional problem with the simplest assumptions on }
the data; say the problem of an elastic string of length &, fixed at its endpoints, stretched }

upon an obstacle z = ¥(x) (the string is supposed weightless and no forces act on it); see !

Figure 1.1 for which D = ]0,4] and Q = ]0,B[ U ly,&[.
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z-u(xl—"/ z = u(x)
ﬂ”- o - N
(0,0)| o (2,0) 7x
/
z = y(x)

Figure 1.1: An elastic string stretched over an obstacle.

In the picture is drawn the true physical solution, which can be obtained geometrically by
drawing the straight lines from (0,0) and (1,0) tangent to 2z = $(x); however it is easy to
see that, if | meets horizontally the x-axis at the point a, another (non physical) solu-
0 for 0 <x<a .
tion of problem B is given by u, (x) =(¢(x) for a < x <« v .
\u(x) for vy « x - ¢
the set 2 being now 10,a[ VU )y,t[.

In order to see what type of physical condition we neglected (o probies A we have ssoen-

!
tially three ways, which lead to three equivalent (and well posed! | Sethemet el ook less

lst way: Minimum energy principle. Let K be the set of all “sdmissibio’ il igurat Loms of

"finite elastic energy" in the Sobolev space u'(m;
(1.13) K= {vix,y) € ul(m: veg on W v ¥
and let J(v) be the energy associated with v:

(1.14) J(v) = % [] 19v|%amay - [] € v amty
D b

then the equilibrium shape u must satisfy:
(1.15) GeEK; I <V ¥Yvek |

and (1.15) is a well posed problem (minimum of a quadratic coercive functional on a non empty

closed convex set).

'
) we come back to the general two-dimensional problem

L
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2nd way: Virtual work principle. Let us define, for any u,v:

(1.16) a(u,v) = [[ Yu-vv dxdy ; L(v) = [[ £ v dxdy
D D

Remark that a(u, u-v) and -L(u-v) are the work of the elastic forces (resp. of the forces
f) in order to pass from the configuration u to the configuration v; then the equilibrium
shape u must satisfy:

(1.17) ae K a(u, u-v) < L(u-v) vveK

(1.17) is a variational inequality, which has a unicue solution (STAMPACCHIA's theorem, see
[38]; in our present case the result is quite obvious because of the symmetrv of a, namely
a(u,v) = a(v,u) v u,v); we can remark that (1.17) is the EULER inequality of (1.15), so that
problems (1.15) and (1.17) are equivalent.

3rd way: Balance of forces and reactions. Let us denote by u(x,y) the reaction of the ob-

stacle; we must have u = —Au = £, so that:
(1.18) ~pu>f in D ,

(because y must be upward directed) and

(1.19) support (-Au ~ £) C {(x,y) ¢ D| ulx,y) = Vv(x,y)} ,

(because we can have reaction just in the contact region); to (1.18), (1.19) we must obviously

add u ¢ K. The problem in this formulation is often written:

(1.20) U e Hl(D) $ U = g ‘on +ab

(1.21) U>y; -Au > f; (G~y)(-AU - £) =0 in D ;

but this is a heuristic formula, the product (u-y)(-Au ~ f) having no meaning in general; on
the contrary @ ¢ K and (1.18), (1.19) is a well posed problem (it is very easy to show that
it is equivalent both to (1.15) and to (1.17)).
Remark 1.5. From (1.18), (1.19) we get opviously (1.12); the reverse implication is in general
false, as we showed by the one-dimensional counterexamyle; in particular it was the strenath-
ened form (1.18), (1.19) of (1.12) which was needed (compare with Remark 1.4).

In order to see that the (unique) solution of the variational inequality (1.17) solves

problem B we still need a "reqularity" result: in (1.10) we did not svecify how smooth u
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must be, but problem A suggests that along 32 N D u and ¥ and their gradients must agree;
now, from u > ¢ and the definition of 0 (see (1.12)) it is clear that, if ¢ 1is a C1

function, this agreement will hold if for instance we have:
(1.22) The solution @ of (1.17) is ¢l .

Actua’ly, a well known result of LEWY and STAMPACCHIA (see [32]) implies that, under reasonable
hypotheses of smoothness in (1.1), (1.2), the solution U of (1.17) has second derivatives
in 1Y) for any q < +»; in particular (1.22) holds and (1.21) has an obvious meaning.
Before discussing a more difficult f.b.p. let us sum up the results of this section: The
LEWY-STAMPACCHIA regularity result is the key for interpreting the solution of a variational
inequality as the solution of a f.b.p.; this was already pointed out in [32], where the f.b.p.
solved by a variational inequality was a problem of lubrication (instead of the problem for
the elastic membrane.)

Historical and bibliographical note. Variational inequalities like (1.17), when we assume

that K is a closed convex non empty subset of a Hilbert space H, a(u,v) = (u,v)H (i.e.,
the scalar product in H) and L(v) = (f,v)H with f e H fixed, give rise to the problem of
the projection of f on H; and the generalizations for L a linear continuous functional
on H, and a(u,v) bilinear continuous coercive and symmetric on H X H are quite obvious.

The generalization to the case of non symmetric a(u,v) (which does not correspond to a

minimum problem) is due to STAMPACCHIA [38] (see also LIONS-STAMPACCHIA (33] for parabolic in-
equalities). The possiblity of interpreting the solution of a variational inequality as the
solution of a f.b.p. was not obvious, and in fact it is strictly connected to the regularity
results; this idea was firstly developed by LEWY-STAMPACCHIA [32], and since then a lot of
papers have been dedicated to the argument; see e.g., [16], [34].

Concerning the problem of regularity for free boundaries, (remark that we did not dis-
cuss the smoothness required in (1.3)) in recent y;ars great progress has been made; see e.g.,
[18l, [29], [30].

For further details on variational inequalities one can see the books [6] (recently

appeared) and [31] (which will appear soon).
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Part 2. A f.b.p. in hydraulics.

Let us consider the problem of a liquid flowing through a porous dam under the following
schematic assumptions: The dam is homogeneous, isotropic, incompressible, with vertical
plane parallel walls, on a horizontal impervious base; the liquid is incompressible; the flow

is irrotational and steady (in particular the heights of the reservoirs in the picture are

constant) .
ANY
E=(0,b) 5 (adb]
air
B=(0,y,) =p(x)
b - 1
water N B //y—
Q el
Yy water e Cf(a,w(a))
CE(c,yz) :[yz water
>
0=(0,0) Az (a,0) x

Figure 2.1: Porous flow through a rectangular dam.

Figure 2.1 shows the cross section of the dam;
D = ]0,al x 10,b[ is the dam,
Q= {(x,y) e D] y < ¢(x)} is the flow region .
We remark that ¢(x) (and in particular the height of the point cw are unknown!) .

Let us denote by p(x,y) the pressure at the (x,y) point of D (the atmospheric
pressure being measured by zero); DARCY's law implies that (assuming unitary some physical

coefficients) if we set:

(2.1) u(x,y) = p(x,y) +y in Q ,
we have

S————
(2.2) velocity = -Vu in @ ,

(we denote by 2 the interior of the wetted region) so that we get for u the following

relations:

ot M




(2.3) Au=0 in Q ,

(because of (2.2) and the incompressibility);

(2.4) %% =0 along OA and along {y = ¢(x)}

(because they are streamlines),

(2.5) u =y, along OB; u = Y, along AC ’

(we assume hydrostatic pressure on OB, AC):
(2.6) u=y along {y = ¢(x)} and along C—c.w ’

(the pressure is atmospheric).

It is obviously a f.b.p.: along the line y = ¢(x) (which is the unknown part of 23Q)
we impose both Dirichlet and Neumann conditions (compare with (1.7') and Remark 1l.1; see also
Remark 1.2 about the condition on OA); the unique (but very important) difference with respect
to Problem A is in the fact that the Neumann condition on the free boundary is ?\; =0 in-

stead of % = %% (remark that now we must choose V(x,y) = y, in order to have u = ¥ on

L]
anp'’,
Remark 2.1. By assuming a little regularity on u (e.g., u e Co(a)) we easily get from the

maximum principle:
(2.7) u(x,y) >y in @ ,

(compare with (1.8)); on the other hand (2.7) means that the pressure must be strictly positive
in Q, which is physically obvious.

Let us reformulate the problem in terms of the pressure p (recall that p is defined
on the whole of S, and vanishes outside -5); we will assume the continuity of p (which is
physically obvious) and the fact (also obvious from the physical point of view) that the flow
has a finite kinetic energy (see (2.9) below).

Problem C. Given a, b, Y0 ¥y with:

. —_—
¢ )Rmrk (with notations of Remark 1.2) that we could choose 3.D = OA; 820 = 3D\OA;

1
9y (x,y) = max(y,,y) on OB; g,(x,y) =b on EF; g, (x,y) = max(y,,y) on AF; and g, :

We have ¢ < g on 3.D (instead of Y < g) but this does not give additional problems.

m
o
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(2.8) az>0; 0c¢< y2 < y1 < b

we look for a function p such that, setting D = ]0,al x 10,b[, and denoting the spaces of

continuous (continuously differentiable) functions on D vanishing on 9D by Co(ﬁ) (Ci(B)),

(2.9) p ¢ co(S) nuto
+ +
(2.10) p(0,y) = (yl-y) ; pla,y) = (yz-y) 1 p(b,%) =@ ,
(2.11) pley) > 0 dn' D
L]
(2.12) plx,y) > 0, y, € 10,y[ imply p(x,y,) > O I

and such that, setting:
(2.13) Q= {(x,y) € D] plx,y) > 0} ,

we have:

[,If V(p+y) *Vv dxdy = 0 ,

(2.14) Q
\ vV e Ci(lo,a[ x R) .

Remark 2.2. (2.14) is the usual weak formulation for:

(2.15) Alpty) = 0 in Q; ﬂgsﬂ =0 on 32N (DU oA

Remark 2.3. The meaning of (2.12) is that the set Q defined through (2.13) (which is open

thanks to (2.9)) must have the form:
(2.16) Q= {(x,y) eD| y < 0x)} ,

for a suitablc choice of ¢; remark however that (2.12) does not impose any regularity pro-
perty for that ¢ (¢ must a priori be just a function lower-semi-continuous because of
(2.9').

We have already pointed out that the double condition on the free boundary (p = 0 and

31%%11 = 0) is different from the one we encountered in problem A and B; now let us point

.
( )This hypothesis is a "regularity assumption” on the set ( defined through (2.13) above;
see also Remark 2.3.

a8=
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out that, if we ask for the treatment of Problem C under the variational inequality form, the
LEWY-STAMPACCHIA Theorem gives a negative answer: if the function p were the solution of
a variational inequality, we would have %% = 0 (instead of ﬂ‘g—?—)- = 0) along f{y = ¢ix)}.
An other way of seeing this is the fact that p cannot have (as required from the LEWY-

STAMPACCHIA Theorem) second derivatives in t4D); in fact, from (2.14), choosing v ¢ C:(D) -

we get:

-Ap = D, X,+ in the distribution sense on D ,
(2.17) e

. where xQ is the characteristic function of Q in D

Let us give the (very simple) proof of (2.17). Equation (2.14) with v € C:(D) gives (we
denote by ( , ) the pairing between distributions and test functions on D; recall that

P = 0 outside Q):

o
[}

/[ Vi(p+y) v axdy = [[ Yp+Vv axdy + [[ Vy-Uv dxdy = ‘
Q Q Q

”DVp-Vv dxdy + f{)xn v dxdy = (-8p,v) + (X, vy) =

[}

(-Ap, V) - (Dyxg, v) = (-Ap - DyXQ’ v) .

Formula (2.17) suggests taking an integral of p with respect to y as a new unknown |

g function, in order to destroy the "bad" operator Dy acting on XQ; so let us define: 4
b o %
(2.18) wix,y) = f p(x,t)dt , (x,y) e D . L |

¥

Easy computations give:

(2.19) ow = xﬂ i B, }
L b + b +

wix,b) = 0; w(0,y) = | (y,-t)"at; w(a,y) = [ ty~e)7ae ,
& b 4 Y Y

w _=-1 on AB=>w _=Aw-w_=0 on AB ,
Yy xx yy

so that, if we denote by g(x,y) any (smooth) function such that g(x,b) = 0,

o Rl




> i . o L
)
4
b E b ¢ ’
a(0,y) = f (yl - t) dt, g(a,y) = f (y2 - t) dt, g(x,0) linear (so that g(x,0) =
y v }
2 2 2
Y, Yl .,
== = (a-)ll S wetget
2 2a
(2.20) w =g on 3D
Now, recallina (2.12), (2.13) and p > 0, we get:
(2.21) w>0 on D ,
(2.22) Q = {(x,v) € | wix,y) > 0} ,
so that we can replace (2.19) by:
(223} - -0w > -1; w(-Aw -1) = 0 on D .
Now (2.21), (2.22) look 1like (1.21) with . = 0, f = -1; because of the regularity of g
{
(whose first derivatives are Li=s—-itz czontinuous on each edge of D) we can conclude:

Theorem 2.1. There exists a unizis W < Cl(EB, with second derivatives in Lq(D) NG < 4%,
such that (2.20), (2.21), (2.23;, =sli.

This theorem implies that >rztlem C has at most one solution; if'such a solution exists,
it can be evaluated starting fror «w and setting @ defined through (2.22) and p defined

through (compare with (2.18));

(2.24) Plxy) = =(0 W) (x,y)  W(x,y) e D ;

the main difficulty is the fact that it is not obvious that  defined through (2.22) has
the form (2.16). Actually we can prove that Q defined through (2.22) has the form (2.16)
~and moreover the corresponding ¢ is very smooth; precisely:

{ ¢ €C t[0,a]); ¢ is strictly decreasing: ¢ is

(2.25)
(analytic in 10,al; ¢(0) = yp @'(0) = 0; v(a) >y, v'(a) = ~=

o Aty i

so that we can conclude: {
Theorem 2.2. Problem C has & unique solution; the upper boundary of Q has the further re-

gularity properties listed in (Z.25).

ecndee i




Remark 2.4. If we ask for further regularity properties of p (which a priori satisfies

just (2.9)) we find:
(2.26) P, € LYD) ya < +=; P, € L (o

and such regularity is “cgiimal" because actually we have:

(2.27) L ¢ L (D); py 's CO(D) .

Now let us point out a typical computational difficulty which always appears when a
f.b.p. is solved by means of variational inequalities. Many papers and books deal with the
numerical solution of variational inequalities (e.g., see [27]); so that we can assume that

we have constructed a family {wh(x,y)} of functions which, as h + 0, converges in some

h>0
sense, to the solution w(x,v) of (2.20), (2.21), (2.23); setting e.g., ph(x,y) = -Dywh(x,y)

(compare with (2.24)) we will also have p,* P in some sense; but how can we approximate
2 (which is the true unknown of our problem)? The naive idea of defining

e = {(x,y) € D| wp (x,y) > 0} does not work, no matter in what topology w, > w: an obvious

counter-example is given by choosing wh(x,y) = w(x,y) + h (so that w, v in the ¢

topology!) so that @ D. However we can bypass this difficulty by means of the following

hE

theorem.

Theorem 2.3. Let wh* w uniformly; and let eh be such that

gy
€.

(2.28) v e,y o0,

h

Setting Q, = {(x,y) ¢ Dl wh(x,y) > Eh} we have " + 2 from the interior", say = 1limQ

0

h h h

(lim in the set theoretic sense) and Qh CQ for h sufficiently small.

Historical and bibliographical note. Problems like Problem B (perhaps in a less precise form)

are very ancient; apart from some analog solutions (HELE-SHAW model) they were solved numeri-
cally, before the advent of computers, by means of the so called "inverse method" or "hodo-
graphic method"; see e.g., the book [36]. For general problems in hydraulics see e.g., the
books [13], [28], [36]. After the advent of computers a more efficient numerical method has

been proposed; the idea is the following one: we fix an initial quess, y = vo(x) , for the

-11l-
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free boundary; in the corresponding set “0 we solve the problem (2.14) and the two first
relations of (2.10); the solution po(x,y) will not satisfy the condition no(x, ¢O(x)) =0
(otherwise we have already solved our problem!) but we can use the values of no(x, ¢0(x)

in order to modify gb(x) and get a new guess wl(x) (e.g., we could define

wl(x) = wo(x) + po(x, ¢b(x))); a fixed point for the transformation ¢ - ¢ will give the

0 1
solution of our problem. This is just a heuristic approach (e.g., with the formula
¢1(x) = wo(x) + po(x, ¢b(x)) we will never modify the starting value for ¢(a)!) but numeri-

cally it works (for references to this method, and others, see [21]).

The.transfoxm (2.18) was suggested in [2]); beside the existence and uniqueness result for
the problem it suggested a new numerical treatment (see [20], [8]) which is theoretically
correct and which competes very well with the previous heuristic methods both in simplicity
of programming and in speed of execution.

Thé problem of the convergence Qh »> 2 was firstly solved, in a parﬁicular case,tin
[11]; the general result of Th. 2.3 has been exploited in [12], in connection with a parabolic
f.b.p. (diffusion-absorption of oxygen in tissues). Remark that (2.28) requires the knowledge
of (or an estimate for) the T norm for the error; such an estimate (the best one:

Hw - whll . o(hz_e) ¥e > 0, h mesh~size, for piece-wise linear elements) has been obtained
independettly in [3] and [35]. Some improvements of Theorem 2.3 (say L’ or Hl norms in-
stead of Lan norm) can be given (H. Brézis, personal talk, unpublished). Concerning (2.25), |

. (2.26), (2.27) see [18], [29], [30]. For other related results see part 3 as well as [6] and

its bibliography.




Part 3. Recent progresses and Bibliography.

Because of space restriction I will give a few details just for some other problems of
elliptic type related to hydraulics; however let me point out that transforms like (2.18) have
been adapted to many different problems; e.g., for fluids dynamics problems (flow past a sym-
metric aerofoil; see [15], [16]), for heat-conduction problems (like the classical Stefan pro-
blems; see ([22]), for non-steady hydraulics problems, which differ from both
elliptic problems and parabolic ones (in fact the problem in the interior involves only
space-derivatives, the evolution condition being just on the free boundary) see [41],
and, for more details and references, see the talk of Professor FRIEDMAN [24]).
For a general overview on the class of f.b.p. which, by means of a suitable change of
unknown functioﬂs (like (2.18)), can be translated into variational inequalities see [5] and
the Appendix 4, Voi. II of [6].
Now let me give some more details concerning steady problems in hydraulics: {
A) Variable permeability can be taken into account with some restrictions; e.g., horizontal
layers as well as vertical layers can be studied by this method; see [8], [9], [14].
B) Phenomena like evaporation, or partially pervious bases are studied in [23], [37].
C) Capillarity offers some theoretical difficulties; the corresponding numerical treatment |
seems to suggest that the theory must be correct. See [19].
D) More general geometry can be taken into account; when fhe right wall is vertical we get
(instead of one variational inequality) a family of variational inequalities depending on
a real parameter (the discharge of the dam); the value for the parameter is found by impos-
ing a "iegularity condition” (see {8], [9]). When also the right wall is sloping the pro- &
blem becomes a quasi-variational inequality, i.e., a family of variational inequalities
depending on a functional parameter (see [4)).
E) Three dimensional problems, in the case of vertical walls, do not offer new difficulties;
see [39]; for non vertical walls the corresponding quasi-variational inequality has been
studied in [26].
F) A different way of treating the problem in n-dimensions and with very general geometry has

been proposed in [1]; the method is based on the search for the minimum of kinetic energy

-13-




G)

H)

1)

in a suitable class of supersolutions; the fact that the point of minimum satisfies the
problem is proved by a "balayage" which uses locally the transform (2.18).

Another approach, which leads to a nonlinear equation (instead of a variational inequality)
has been proposed in [42].

Problems of fluid flow through a channel are studied in [40].

Problems for coastal aquifers can also be studied; ln [8], [9) was treated the problem with
vertical cliffs; [7], [10] treat the problem with general geometry and in the presence of
wells sunk into the aquifer and pumping water; conditions which ensure that just fresh water

is pumped, and not the salt water which infiltrates under the aguifer, are also discussed.
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