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ABSTRACT

The study of steady fluid flow through porous media leads to the

consideration of elliptic free boundary problems in the unknown function

“piezometric head”. An integration along the vertical direction transforms

these free boundary problems into variational (or quasi—variational)

inequalities, which are easier to study both from the theoretical and from

the numerical point of view.
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SIGNIFICANCE AND EXPL ANATION

A typical free boundary problem involves motion of a fluid in a region,

the boundary of the fluid beinq unknown and having to be determined as part

of the solution . Problems of this type involvinq flow of fluids in porous

media have important applications in ground water management, oil reservoir

technology, and seepage of water through dams. Apart from certain special

cases that can be solved analytically , computational methods for solving such

problems have usually involved a laborious trial and error procedure - guess

the position of the free boundary, and improve the guess by iteration.

Tn 1971, Baiocchi showed that many of these problems could be reformulated

as variational inequalities. The use of variational inequalities (variational

problems where the solution is subject to inequality constraints) and their

generalization , quasi—variational inequalities, has led to profound develop—

Inents, such as existence and uniqueness proofs for several classical free

boundary problems, as well as for many new problems, and also very effective

numerical methods. The advantage of the method from a computational point of

view is that the position of the free boundary appears automatically in the

calculation, without the need for guessing and iterating. These developments

are surveyed in this report.

The responsibility for the wording and views expressed in this descriptive
suninary lies with MRC , and not with the author of this report.
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FREE BOUNDARY PROBLEMS AND VARIATIONAL INEQUALITIES

*c. Baiocchi

Part 1. The siuq lest type of free boundary problem.

Let us consider the following problem :

PROBLEM A. Given:

n Ju~1~F L~(1.1) D: a bounded smooth domain in R , 
.—--.--.

(1.2) f, g, 4,: smooth functions on D; 4, < g on ~D.

We look for a couple {~ , u } such that: 
r 1~CIAL

( 1.3) (~ is an open smooth subset of D,

(1.4) u is a smooth function on ~7,

(1.5) —du f in ~) , — .

(1.6) u — g on ~D 
(~ aD,

(1.7) u — 4 ,  and Vu — V$ on ~f l f l D .

Problem A is the sisplest f.b.p. (free boundary problem): on a domain ~) whose

boundary is partially unknown we must solve a problem with too many conditions (see (1.7)) on

the unknown part of ~().

Remark 1.1. Condition (1.7) is eaujvalent to:

(1.7’) u — * and — on ~~ (~I D (~~~
-. denotes the outward normal derivative).

Remark 1.2. A very similar problem is the one where, instead of just one function g, we

prescribe a couple {g
1

,g
2

} and a partition of ~D, {a1
D, a2D}; then we replace (1.6) by:

~
(1.6’) u — g

1 
on a1D r a  ~~~~~~~~~~~ on a 2D r ~n.

Remark 1 • 3. Under suita ble aseuuçtions on the data, the maximum principle will in~ 1y that:

(1.8) u~~~ 4 in 5.

I f we denote by ~a the function defined by :

*• Mat hema tics Research Center, Univer sity of Wisconsin-Madison , Madison , WI.
Psrma n.nt address: Uni versity of Pavia , Ita ly. Expanded version of an invited talk at the
StAll 1978 spring ma.ting in Madis on .

Sponsored in part by the united stat .. Army under Contract Mo. DAAG29-75-C-O024 and in part
by the Natio nal Science Foundation under Gr ant No. l~~S78—OO843.
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‘u (x) for x
(1 . 9 )  u ( x )  ~~

j

‘~~(x) for x [) \ J

we can reformulate problem A in the fo1lowin~ form:

PROBLEM B. Given I) , f , q ,  ~ as in (1.1) , ( 1 .2 )  , we look for u such that

(1.10) u is smooth in D U 4 in 0

(1.11) u q on ~D

( sett ing ~ = {x D~ u (x) -~ (i(x) } we

( 1.12)
have -t~u = f  in c~ .

As a physical situation which leads to mathematical problems of this tyne let us consider

an elastic membrane above a region D C R 2 which is stretched along ~D at the height

z = g(x,y), subjected to a system of vertical forces F = f(x,y) and forced to stay above an ob-

stacle z = 4,(x,y); let C be the ‘~contact region’ and Q be the complement of C in 0, say

0 \ C; then, assuming that the membrane is homogeneous and with unitary elastic coeff i-

cient, the shape z = u(x,y) of the membrane at the eouilthrium position must satisfy problem

s A ( or problem B ) .

Remark 1.4. Problem A, as well as problem B, does not contain all physical conditions which

must be imposed ; we will come back to that point in a moment.

Let us consider the analogous one—dimensional problem with the simplest assumptions on

the data; say the problem of an elastic string of length t , fixed at its endpoints, stretched

upon an obstacle z = 4’(x) (the string is supoosed weightless and no forces act on it); see

Figure 1.1 for which D = )0 ,L~ and ~) = ) 0 , B (  U l y , L ( .

-2-
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(0 ,0) - - ci B y ( t ,O)

z —

Figure 1.1: An elastic .trinq str.tch.d over an *.tacl..

In the picture is drawn the true physical solution , which can be obtain.d qsoemtr&calIy by

drawing the straight lines f rom (0, 0) and ( t ,0) t anq.nt to a — Cish  Pi~~~vsr it . ..ay to

see that , if 4, meets horizontally the s—axis at the uo~ nt e, anoth., (sen ellysicel) solu-

(0 for O~~~s ’ i

tion of problem B is given by u~ ( x) -~~~~(s) for i a

~u (z) for • I

the set 0 being now 1O,m (  U Jy, II .

In order to see what type of phyu lcal condit~ om em s.q1. ~ t.d . $em A , em ~a=

tial ly three ways, which lead to thr. . .qui vs lant i . i  em I maa~~~~~si em i ~ 
___ 

l

1.t way : MiflimiPi energy principle. Let r he the set ml all - 5~ • ~~~~~~ ~~ • ~ma

“finite elastic en.rgy” in the Sobol.v ~~acs H 1 In) :

(1.13) x — {v (x,y) fl
1(D) , v — q ‘c. a,, . . a’

and let 3(v) be the energy associat.d with v :

(1.14) 3(v) — 
~ Jf I Y v t 2

dady - Jf I . d~~

then the equilibriem shape u emat satisfy :

(1.15) ~ J(i~) 3(v) V . t

and (1.15) is a well posed problem (minimem of a qvadrattc coercive fuactiomal on a man ~~~ty

closed convex ..t).

we come back to the general two-dimensional probl

______________________________ ‘
U

_ _ _ _  - : ~~~~
. -



2n~~~w~~~: Vir tua l  work p~ inciri1~e. Let us define , for any u ,v:

( 1 .16) a (u ,v) = 55 Vu~Vv dxdy ; L(v) 5$ f V dxdy
0 0

Remark that a(u, u-v~ and -L(u-v) are the work of the elastic forces (reap, of the forces

t )  in order to pass from the configurat ion u to the configuration v; then the equilibrium

shape U must sa t i s fy:

(1 .17) a C K; a ( u , u—v) < L (u—v) V V K .

( 1. 17) is a variational inequality , which has a unicue solution (STAMPA CCHIA ’ s theorem , see

138) ; in our present case the result is quite obvious because of the symmetry of a , namely

a ( u ,v) = a(v,u) y u,v ) ;  we can remark that (1.17) is the EULER inequality of (1.15) , so that

problems ( 1.15) and ( 1.17) are equivalent.

3rd way: Balance of forces and reactions. Let us denote by )i(x,y) the reaction of the ob-

stacle; we must have u = —~u — f, so that:

(1.18) - tu  > f in 0

(because u mus t be upward directed) and

( 1.19) support (—M~ — f) C ((x ,y) s Dj i~(x,y) = ~~(x ,y) }

(because we can have reaction just in the contact reg ion) ; to (1.18) , (1.19) we must obviously

add u K. The problem in this formulation is often written:

1 -( 1.20) u H (0) ; u = g on 30

( 1 .21) > 4, ; — A~i > f ; (ü—4,) (—tsiTi — f)  = 0 in 0 ;

but this is a heuristic formula, the product (u..4,) (—Au — f )  havinq no meaninq in general ;  on

the contrary ~i K and (1.18), (1.19) is a well posed problem (it is very easy to show that

it is equivalent both to (1.15) and to ( 1 . 1 7 ) ) .

Remark 1.5. From (1.18), (1.19) we get ooviously (1.12) ; the reverse implication is in qene~a1

false , as we showed by the one—dimensional counterexanr ie; in part icular  i t  was the str onoth-

cried form (1.18) , (1.19) of (1.12) which was needed (compare With Remark 1.4)

In order to see that the (unique) solution of the variational inequality (1.17) solves

problem B we s t i l l  need a “ regular i ty ” r e su l t :  in (1.10) we did not soecify how smooth u

—4—
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must be, but problem A suggests that along l~ 
r D u and 4i and their gradients must agree;

now, from u > 4, and the definition of 0 (see (1.12)) it is clear that, if 4, is a C1

function, this agreement will hold if for instance we have:

(1.22) The solution u of (1.17) is C
1

Actua’ly , a well known result of LEWY and STAX4PACCHIA (see (32]) implies that , under reasonable

hypotheses of smoothness in (1.1), (1.2), the solution ~ of (1.17) has second derivatives

in ~~~~ for any q < + ;  in particular (1.22) holds and (1.21) has an obvious meaning.

Before discussing a more difficult f.b.p. let us sum up the results of this section: The

LEWY-STAMPAcCHIA regularity result is the key for interpreting the solution of a variational

inequality as the solution of a f.b.p.; this was already pointed Out in (32), where the f.b.p.

solved by a variational inequality was a problem of lubrication (instead of the problem for

the elastic membrane.)

Historical and bibliographical note. Variational inequalities like (1.17), when we assume

that K is a closed convex non empty subset of a Hilbert space H, a(u,v) — (u,v)H (i.e.,

the scalar product in H) and L(v) — (f,v)H 
with f ~ H fixed, give rise to the problem of

the projection of f on H; and the generalizations for L a linear continuous functional

on H, and a(u,v) bilinear continuous coercive and sysusetric on if ‘~ H are quite obvious.

The generalization to the case of non syanetric a(u,v) (which does not correspond to a

minimum problem) is due to STAMPACCHIA (38) (see also LIONS-STAI4PACCHIA (33 1 for parabolic in-

equalities). The possiblity of interpreting the solution of a variational inequality as the

solution of a f.b.p. was not obvious, and in fact it is strictly connected to the regularity

results; this idea was firstly developed by LEWY—STAMPACCUXA (321 , and since then a lot of

papers have been dedicated to the argument; see e.g., (16], [34).

Concerning the problem of regularity for free boundaries, (remark that we did not dig-

cuss the sseothness required in (1.3)) in recent years great progress has been made; see e.g.,

1181 , (29), (301 .

For further details on variational inequalities one can see the books (6) (recently

appeared) and (311 (which will appear soon).

—5— 

~~~-- - -- 
_ _ _

_-

- — ~~~~ ~~. ‘ V~~4~~~~1 TEll ~$e*~~~~~1IL.4 .



Part 2. A f . b . p.  in hydraul ics .

Let us consider the problem of a liquid flowing through a porous dam under the following

schematic assumptions: The dam is homogeneous , isotropic , incompressible , with vertical

plane parallel walls, on a horizontal impervious base; the liquid is incompressible ; the flow

is irrotational and steady ( in  particular the heights of the reservoirs in the picture are

constant)

Es (0,b) 
F5(a,b)

air
_____________ 

B a (O ,y 1
)

wa er -

water ~~.

C5(c,y
2
) water

0~(0,0) AE (a,0) x

Fiqure 2.1: Porous flow through a rectangular dam.

Figure 2.1 shows the cross section of the dan;

o = 10,a( x 10,b( is the dam,

{(x,y) € Dj  y ~ ~(x)} is the flow region

We remark that ~(x) (and in particular the height of the point C~ are unknown)).

Let us denote by p (x,y) the pressure at the (x,y) point of D (the atmospheric

pressure being measured by zero); DARCY’s law implies that (assuming unitary some physical

coefficients) if we set:

(2.1) u(x,y) = p(x,y) + y in (2 ,

we have

(2.2) velocity — -Vu in (2

(we denote by (2 the interior of the wetted region) so that we get for u the following

relations:

-6-
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(2.3) d u = 0  in (2 ,

(because of ( 2 . 2 )  and the incompressibility) ;

(2.4) = 0 along OA and along ty =

(because they are streamlines),

(2.5) u = y1 
along OB; u = y2 along AC

(we assume hydrostatic pressure on OH, AC);

(2.6) u = y along {y = ~(x)} and along CCV,

(the pressure is atmospheric).

It is obviously a f.b.p.: along the line y = ~(x) (which is the unknown part of sf2)

we impose both Dirichlet and Neumann conditions (compare with (1.7’) and Remark 1.1; see also

Remark 1.2 about the condition on OR); the unique (but very important) difference with respect

to Problem A is in the fact that the Neumann condition on the free boundary is 0 in-

stead of = (remark that now we must choose $(x,y) y, in order to have u — 4, on

~ D)

Remark 2.1. By assuming a little regularity on u (e.g., u € C0(t2)) we easily get from the

maximum principle:

(2.7) u(x,y) > y in (2 ,

(compare with (1.8)); on the other hand (2.7) means that the pressure must be strictly positive

in (2, which is physically obvious.

Let us reformulate the problem in terme of the pressure p (recall that p is defined

on the whole of D, and vanishes outside (7), we will assume the continuity of p (which is

physically obvious) and the fact (also obvious from the physical point of view) that the flow

has a finite kinetic energy (see (2.9) below). -

Problem C. Given a, b, y
1, y2 with:

~Remark (with notations of Remark 1.2) that we could choose ~1D — OR; ~2
D — ~D\OA;

g1(x,y) = ma~(y1,y) on 08; g
1(x,y) — b on ~~~

‘
; g1(x,y) — max(y2,y) on A?: and 5 0.

We have * ~ g on (instead of * < ~) but this does not give additional problems.

—7—

- -. - - 

- 

___ - 
~~~~~~~~~~~~~~ t ~1 iW~ 1~~h~ ~~~~



(2 .8)  a - 0; 0 ~ y2 
- y 1 < b

we look for a func tion p such tha t, setting D = J0 ,a[ x J0 ,b (, and denoting the a’:e; of

continuouS (continuously differentiable) functions on D vanishinq on ~D by C (D)

( 2 . 9 )  p C (D) ~ H~ (D) ,

( 2 .10) p ( O ,y )  (y
1—y)~~

; p(a,y) = (y2
_y)f ; p ( b ,x) =

(2.11) r(x,y) > 0 in D

(2.12) p(x ,y ) > 0, y~ C 1O ,y[ imply p (x,y~) > 0

and such that , setting:

(2.13) (2 = {(x,y) D~ p(x ,y) > 0) ,

we have:

55 V(p +y ) ~Vv dxdy = 0 ,
(2.14)

V V F C1(10 ,a( x

Remark 2.2. (2.14) is the usual weak formulation for:

(2.15) ti (p+y) = 0 in (2; = 0 on ao (~ (0 U OR ) .

Remark 2.3. The meaning of (2.12) is that the set (2 defined through (2.13) (which is open

thanks to (2.9)) must have the form:

(2.16) (2 = {( x , y )  F D~ y <

for a suitablc’ choice of 0; remark however that (2.12) does not impose any regularity pro-
1

perty for that ~ (~~ must a priori be just a function lower—semi-continuous because of

(2.9’).

We have already pointed out that the double condition on the free boundary (p = 0 and

- 0) is different from the one we encountered in problem A and B; now let us point

~ThiS hypothesis is a “regularity assumption” on the set (2 defined through ( 2 . 1 3)  above;
see also Remark 2.3.

-8—

-
~~~~~~~~~~ 

- -

— - &~~~~.



out that, if we ask for the treatment of Problem C under the variational inequality form , the

LEWY—STANPACCHIA Theorem gives a negative answer: if the function o were the solution of

~2. ~(p +y)
a variational inequality, we would have 0 (instead of = 0) along {y =

An other way of seeing this is the fact that p cannot have (as required from the LEWY—

STA?IPACCHIA Theorem) second derivatives in ~~((2); in fact, from (2.14), choosing v €

we get:

( -dp = D~ ~0
, in the distribution sense on D

(2. 17)
~ where is the characteristic function of (2 in D

Let us give the (very simple) proof of (2.17). Equation (2.14) with v s C0(D) gives (we

denote by ( , ) the pairing between distributions and test functions on D; recall that

p 5 0 outside ~7 ) :

O ff  V (p+y ) ’Vv dxdy = ff Vp .Vv dxdy + 55 Vy.Vv dxdy =

(2 12 (2

= 55 Vp .Vv dxdy + 55 X 0 v dxdy (— ~p,v> + ( X
0

, v I
D D 

y y

(—hp, v) - ( D
~~X 12~~ v> (—Ap — DyX0~ 

v>

Formula (2.17) suggests taking an integral of p with respect to y as a new unknown

function, in order to destroy the ‘bad” operator D
y 

acting on X0
; so let us define:

b F ’
(2.18) w (x,y) 5 p(x,t)dt , (x ,y)  € D .

y

Easy canpotations give:
I
~r

(2.19) Aw in 0 ,

b b
w(x,b ) 5 0; w(0,y) — 5 (y1—t)~ dt; w(a,y) = 5 (y2—t)~ dt

y y

w — - 1  on AB 4w = A w - w  — 0  on RB ,yy xx yy

so that , if we denote by g(x,y)  any (smooth) function such that g(x,b) 5 0 ,

-9-
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b b
= I (Y

1 
— t)~~~dt , q (a,y) = 5 (y 2 — t ) ’d t ,  g ( x ,O) linear (so that g(x,O) =

y V

2 2 2
~~~ y

l 
—Y

~~

+ —

~~ 

(a-x)) we get

w = g o n  3D

Nov , r eca l l i ng  ( 2 . 1 2 )  , (2 .13)  and p > 0, we get:

( 2 . 2 1)  w > 0  on 1)

( 2 . 2 2 )  (2 { ( x ,v) € o~ w ( x ,y) > 0)

so that we can renlace (2.19) by:

( 2 . 2 3 )  - —Aw > — 1 : w(—~w -1) = 0 on 13

Now (2.21), (2.22) look like (1.21) with . 5 0, f 5 —1; because of the regularity of g

(whose first derivatives are Li-s~L:z ~o~tinuous on each edge of 13) we can conclude:

Theorem 2.1. There exists a u-.:--:e w 21(D) , with second deHvatives in ~~(fl) Vq <

such that (2 . 2 0 ) , (2 .21 ) , ‘2 . 2 3

This theorem implies t-~at ?r~ h 1s- ’ C has at most one solution; if such a solution exists,

it can be evaluated s tar t ing fror- w and setting 12 defined through ( 2 . 2 2 )  and p defined

through (compare with (2.18)); — -

(2.24) p(x ,y) = - (0  w ) ( x ,y) y ( x ,y) c ~ ;

the main difficulty is the fact that it is not obvious that (7 defined through (2.22) has

the form (2.16) . Actually we can prove that - 12 defined through (2.22) has the form (2.16)

and moreover the corresponding ~ is very smooth; precisely:

(
~ 

€ C~ ([O,a)); ~ is strictly decreasing ; ~ is
(2.25)

Lanaiytic in ]O,a(; ~(O) = y
1; ~

‘(O) 0; ~(a) > y
2
, sp’(a) =

so that we can conclude:

Theorem 2.2. Problem C has a unique solution; the uøper boundary of (7 has the further re—

gularity properties listed in (~ 25).

—10—
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Remark 2.4.  If we ask for further regularity properties of p (which a priori satisfies

just (2.9)) we find :

(2.26) px 
s ~~ (0) yg < 

~~~~ Py F L (D)

and such regularity is “c~Li.mal” because actually we have:

(2.27) 1 L (D); Py I C0(D)

Now let us point out a typical computational difficulty which always appears when a

f.b.p. is solved by swans of variational inequalities. Many papers and books deal with the

numerical solution of variational inequalities (e.g., see ( 2 7 ) ) ;  so that we can assume that

we have constructed a family {wh(x.y)}h O  of functions which, as h -* 0, converges in some

sense, to the solution w(x,v) of (2.20), (2.21), (2.23); setting e.g., ph
(x
~
y) = _ D

Y
wh (X

~
Y)

(compare with (2.24)) we will also have 
~h 

+ p in some sense; but how can we approxi mate

12 (which is the true unknown of our problem) ? The naive idea of defining

12
h 

= {( ~~,y) € ol wh (x ,y) > 0) does not work , no matter in what topology W
h 

-, w: an Obvious

counter-example is given by choosing w~(x.y) = w(x ,y) + h (so that wh ÷ w in the C

topology)) so that 12
h ~ However we can bypass this d~fficu1ty by means of the following

theorem.

Theorem 2.3. Let w
h 

-
~ w uniformly ; and let be such that

Il w h wll =
L (D)

(2.28) £~~~~ 0 th 
- + 0 . 

- -

Setting 12h 
{(x,y e ol w~ ( x.y) > £

)~
) we have “0

h ~ from the interior ” , say (2 — iim ()h
- h~0

(urn in the set theoretic sense) and 12h 
C (2 for h sufficiently small.

Historical and bibliographical note. Problems like Problem B (perhaps in a less precise form)

are very ancient ; aPart from some ana log solutions (HELE—S HA W model) they were solved numeri-

cal ly , befor e the advent of comout ers, by means of the so called “inverse method” or “hodo-

graphic method”; see e .g . ,  the book (36) . For general problems in hydraulics see e .g . ,  the

books ( 1 3 ) ,  (28 1 , 1361 . After the advent of computers a more efficient numerical method has

been proposed ; the idea is the following one : we fix an initial guess. y — ~0(x) , for the

—11—
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free boundary; in the corresponding set we solve the Problem (2.14) and the two first

relations of (2.10) ; the solution ~0
(x,y) will not satisfy the condition 0

0
(x , ~0

(x) ) = 0

(otherwise we have already solved our problem!) hut we can use the values of o
0(x, ~0

(x))

in order to modify p0 (x ) and get a new guess p
1
(x) (e.g., we could define

= p0
(x )  + p0

(x, p
0
(x))); a fixed point for the transformation 

~0 ~l 
will give the

solution of our problem. This is just a heuristic approach (e.g., with the formula

= p0(x) + p
0
(x, p0(x)) we will never modify the starting value for ~(a)!) but numeri-

cally it works (for references to this method , and others, see (21]).

The transform (2.18) was suggested in [2); beside t~~ existence and uniqueness result for

the problem it suggested a new numerical treatment (see (201 , (8 ] )  which is theoretically

correct and which competes very well with the previous heuristic methods both in simplicity

of prograisming and in speed of execution. 
-

The problem of the convergence 12h 
-
~ ~ was firstly solved, in a particular case, in

(11); the general result of Th. 2.3 has been exploited in (121, in connection with a parabolic

f .b.p.  (diff usion—absorption of oxygen in tissues) . Remark that (2 .28)  r,equires the knowledge

of (or an estimate for) the L norm for the error; such an estimate (the best one:

11w — Whil = a(h 2 F
) ~1r > 0, h mesh-size , for piece—wise linear elements) has been obtained

independently in [3] and (351. Some improvements of Theorem 2.3 (say L° or H1 norms in-

stead of L norm) can be given (H. Brezis, personal talk, unpublished). Concerning (2.25),

- (2.26), (2.27) see (181 , (291 , (301 . For other related results see part, 3 as well as (61 and -

its bibliography.
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Part 3. Recent progresses and Bibliography.

Because of space restriction I will give a few details j ust for some other problems of

elliptic type related to hydraulics; however let me point out that transforms like (2.18) have

been adapted to many different problems; e.g., for fluids dynamics problems (flow past a sym-

metric aerofoil; see (15], (161), for heat—conduction problems (like the classical Stefan pro-

blems; see (221), for non—steady hydraulics problems, which differ from both

elliptic problems and parabolic ones (in fact the problem in the interior involves only

space—derivatives, the evolution condition being just on the free boundary) see (41],

and, for more details and references, see the talk of Professor FRIEDMAN (24]).

For a general overview on the class of f.b.p. which, by means of a suitable change of

unknown functions (like (2.18)), can be translated into variational inequalities see (51 and

the Appendix 4, VOl. II of (61 .

Now let me give some more details concerning steady problems in hydraulics:

A) Variable permeability can be taken into account with some restrictions; e.g., horizontal

layers as well as vertical layers can be studied by this method; see (8], (91 , (141 .

B) Phenomena like evaporation, or partially pervious bases are studied in (231, (37).

C) Capillarity offers some theoretical difficulties; 
- the corresponding numerical treatment

seems to suggest that the theory must be correct. See (19].

D) More general geometry can be taken into account; when the right wall is vertical we get

(instead of one variational inequality ) a family of variational inequalities depending on

a rea l parameter (the discharge of the dam) ; the value for the para meter is found by impos-

ing a “regularit y condition ” (see [8] , [ 9) ) .  When also the right wall is sloping the pro-

blem becomes a quasi—variational inequality, i .e . ,  a family of variati onal inequalities

depending on a functional parameter (see (4)).

B) Three dimensional problems, in the case of vertical walls, do not offer new difficulties;

see (39J ~ for non vertical walls the corres conding auasi—veriat ional inequality has been

studied in 1261 .

F) A different way of treating the problem in n—dimensions and with very general geometry has

been proposed in (11 ; the method is based on the search for the minimum of kinetic energy

—13—
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in a suitable class of supersolutions; the fact that the point of minimum satisfies the

probl em is proved by a “balayage ” which uses locally the transform (2.18).

C) Another approach, which leads to a nonlinear equation (instead of a variational inequality)

has been proposed in (42].

H) Problems of fluid flow through a channel are studied in (40] .

I) Problems for coastal aquifers can also be studied; in (81 , [9) was treated the problem with

vertical cliffs; (7), [10] treat the problem with general geometry and in the presence of

wells sunk into the aquifer and pumping water; conditions which ensure that just fresh water

is pumped , and not the salt water which infiltrates under the aquifer, are also discussed.
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