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SIGNIFICANCE AND EXPLANATION

Let A be a square matrix. The permanent p(A) of A is basically the
determinant of A where all the summands appear with + signs. T.2 notion
p(A) arises naturally in many combinatorial settings where a count of the
number of systems of distinct representatives of some configuration is required.
In this paper we establish lower estimates of the right order for the permanents of
doubly stochastic matrices. Recall that A is called a doubly stochastic matrix
if all the entries of A are nonnegative and each row and column sum of A is
equal to 1. Doubly stochastic matrices appear frequently in probability and
combinatorics. The result established in this paper will have various applica-
tions in combinatorics and probability, in particular to Latin squares and

block designs.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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A LOWER BOUND FOR THE PERMANENT OF A DOUBLY
STOCHASTIC MATRIX

Shmuel Priedland'

1. Introduction.

Let A be an n x n matrix (ai )n. The permanent of A is defined by

31
z n

(1.1) p(a) = n a
oes, i=1 io(i) '

where Sn is the symmetric group of order n. Let Qn be the set of all doubly stochastic

matrices, that is, the set of all n x n matrices A satisfying

n n
(1.2) G 20 F w.w o ow.wX Ysdden
i3 PO

It is conjectured that any doubly stochastic matrix satisfies the inequality
(1.3) p(A) > ni/n"

with the equality holding only for the matrix Jn all of whose entries are 1/n. The problem
of finding the minimum of p(A) on the set Qn goes back to van der Waerden [6]. In fact
the inequality (1.3) is commonly referred as the van der Waerden conjecturé. This conjecture
is known to have applications to certain combinatorial problems. In this paper we establish
the inequality

(1.4) pa) > e, Aaen .

Recall that by Stirling's formula n!/nn ~/2Tn e ". The previous lower bound known
before was 1/n! . See [3] for the proof of this result and for the survey of the main re-
sults achieved in connection with the van der Waerden conjecture. Our starting point is the

inequality due to T. Bang [1]
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(1.5) p(a) ;p(AQJm)l m

n
~n
-

which holds for any non-negative A. Here by B ® C we denote the tensor product of

matrices B and C. Most of the paper is devoted to the proof of the equality

/Ml =n

(1.6) lim p(A @Jm)1 e ’

mre

for any n x n doubly stochastic matrix A. Clearly in view of (1.5), the equality (1.6)

implies the estimate (1.4).
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2. Preliminary results.
Let 0 ¢ Sn. Define
n
(2.1) Pa = “a(i)j)l .
By on . . denote the set of all matrices a with integer coefficients such that a/m is
.
an n x n doubly stochastic matrix:
n
(2.2) . TP {a]a (ag))r 84 €Z, a/me Q) .

From the classical Birkhoff theorem (e.g. [4]) it follows that

m
(2.3) a=J P , act .
k=1 %% e

Following T. Bang (1] we bring a formula for the permanent of A @ J-.

Theorem 2.1. Let A be an n x n matrix. Then

2n n o
(2.4) U TRICEL i B Y .i’/uun !
nt aed i1

Proof. Consider a term in p(A @ J.) . It is of the form

m Inl acu 5
i,jm1 13

(2.5)

Clearly, each a is a non-negative integer. Consider the rows i, m#i,...,(n-1)m+i. These

ij

n a n
rows contribute to the product (2.5) the term m " 1 a “. Therefore, i a . =m In
ij ij
=1 j=1

n
the same way one shows that Z G,y =m. Thus, (a, )" € ¢ _. vice versa, suppose that

j=1 3j ij1 n,m
a e .n,n' Then (2.3) holds. Let us view A ® J, as a block matrix
(2.6) A®I_ = ()", AL =nlA L,)=1,....m

n 1j ll ij L 4 gebey L

afe
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In the block Arr take a product m I ais ()" By multiplying all these terms “o-
i=1 ¥ o
gether one obtains the expression
Spm Y
(2.7) m )| n io (1)
r=1 i=1

In view of (2.3) the expression (2.7) is equal to (2.5). We now compute the coefficient of

the term (2.5). That is we are looking for the number of different ways to pick up ele-

T

ments an/m,...,ann elements ann/m from the matrix A @ Jm such that any two elements are

not on the same row or column. We call such a choice an admissable choice. Let us label
(a,.)

(1) 15y (k)

: e e ietalg @, S fi ik e
uiJ elements alj/m by alJ /m, ,alj /m Assume that for alj > 1 the element a1J /m

(1 <k < uij) sits in the row i + p(k,i,j)n and the column 3j + v(k,i,j)n in the matrix

AQ® Jm. We assume that no two elements are placed in the same position. Let us call such a
choice of positions a configuration. Two configurations considered to be equal if for each

. >3 a0 1k« ..
S i R |

the positions of the elements aig)/m coincide. Given a con-
figuration one obtains a distinct confirguration by interchanging rows (columns) i and j,
where i = j (mod n). It is easy to see that one can obtain any admissable configuration from
a given configuration by interchanging appropriate rows and columns. Obviously, the rows
(columns) i, i+n,..., i + (m-1)n (1 £ i < n) can be interchanged in m! ways. Thus accord-
ing to what we proved one has (m!)2n distinct configurations. Let us go back to the problem

of determining the number of different ways to pick up the aij elements aij/m for

i,j=1,...,m (an admissable choice). Clearly any configuration gives rise to an admissable

n
choice. We claim that to any admissable choice correspond n a,.! distinct configuration.
i,j=1
Indeed, for this choice, we have uij(z}) places occupied by aij/m. In these uij places
(a,

)
1
we put a;j)/m,...,aij i3 /m. This can be done in aij! ways. Thus, to the given admissable
n
choice correspond n aij' distinct configurations. Obviously, to two distinct admissable
i,3=1

choices correspond distinct configurations. This demonstrates that the number of different

ways to pick up “ij elements aij/m, i,j=1,...,m, from the matrix A ® Jm' such that
n
any two elements are not on the same row or column, is equal to (m!)zn( n aij!)-l. The
i,j=1 .

o
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proof of the theorem is completed.

The permanent of a non-negative matrix can be estimated in terms of the permanent of

A [l

Theorem 2.2. Let s be a positive integer and m = 2%. Then for any non-negative square

matrix the following inequality holds

(2.8) p) > o 31" . |
Proof. We prove first the inequality (2.8) for m = 2. From (2.4) it follows i
n °ij
(2.9) pA®J) = J n a,. . .1
AR S
n,2 '
On the other hand
2 Z n n i
(2.10) p(a)© = n a, m a 5 i
U.nesn e io (i) jum in(3) ",
Let a € On’z. According to (2.3) a = P, + pn. Thus !
n n n °ij 3
(2.11) n a T a = 0 a . {
i=1 io(i) ot In(3) e ij 2
i
o %5 2 :
Therefore, the coefficient of the term i aij in p(a) is a positive integer. The H
i,j=1

coefficient of this term in p(A ® Jz) never exceeds 1. This establishes the inequality
(2.8) for m = 2. Now the general case easily follows by induction. Indeed, suppose that
(2.8) holds. Then

/2m

(2.12) paoa) x )™ cpaea)™ cpm .

It is left to note that the tensor product is associative and
(2.13) Jn ] "2 = 32' .

End of proof.

Let A be an n x n doubly stochastic matrix. Suppose that the van der Waerden !

wSa
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conjecture holds. Then

1/m

/™ 5 {(nm) 1/ (nm ™) : 3

(2.14) p(A ® mel

In what follows we estimate p(A ® Jm) from above.

Lemma 2.1. Let A = (aij)'; be a non-negative matrix. Then
mp" " T m
(2.15) pA®I) <ibe B (] ag )t
m i=l j=1
Proof. Consider the expression {
n = n B.
(2.16) ¢t} a; )" = mt ) 1 aij’/sjz :
j=1 81+...+Bn=m j=1
n i3
choosing Bj = aij' j=1,...,n, we get that the coefficient of the term n aij 3 in the
i=1
n
expansion (2.16) is m!/ I a,.!. Expanding the expression
=1 7
n n n
(2.17) bl po(] a 0"
: . S T R 1 R
n @,
i we see that the term ' 1 ai. J, a € On m’ appears in (2.17) with the coefficient
3 1,4m D , .
[ mp® " -1
£ e n (ui.!) . As the expansion of the term (2.17) contains only non-negative terms
i m i,j=1 ;
from the identity (2.4) we deduce the inequality (2.15).
f
Thus, if A is a stochastic matrix the inequality (2.15) implies
§
i 1/m
E | (2.18) pa @)™ < (mna™

Note that if A = Po then the equality sign holds in (2.18). Recall the well known Stirling
formula (e.g. (2, p.52])

n —n Oy/12n
(2.19) n! = /2lnne e ’ 0<9n<1 . ?
Thus, if the van der Waerden conjecture holds by combining (2.14) and (2.18) with the

Stirling formula we obtain r

-6-




/m -n
=e

(2.20) lim p(A ® Jm)l
m>e

for any doubly stochastic matrix A. We shall prove the equality above in the next section,

without assuming the validity of the van der Waerden conjecture.

established in view of Theorem 2.2 one deduces the inequality
-n

(2.21) p(A) >e ", A€ Qn .

Vice versa, (2.21) implies

/m _ -n

(2.22) p(A ® Jm)1 e X

Combining (2.22) with (2.18) we obtain again the equality (2.20).

valence of the relations (2.20) and (2.21).

-F=

Of course, once (2.20) is

This manifests the equi-




3. The main result.

Lemma 3.1.. Let n and r be fixed positive integers. Then there exists two seguences of
<

positive numbers {cm}:, {Gn}1 tending to zero such that for any non-negative r integers

satisfying the equality

E (3.1) k1+...+kr =m

the following inequality holds

3 o (nkl)!i..(nkr)!

(3.2) A T L %
m

m nm
4 e T S G S R

n n
(k!) ...(kr!)

Proof. According to Stirling's formula (2.19)
/3 e 3326 2 5y x /o T2y

for any j > 1. Without loss of generality we may assume that

LS ki, 2= 0,8, Ko =0, E=lgHl, o8
g | 1
Thus
nkl+1/2 nks+1/2
(nkl)!...(nkr)! 3 (nkl)!...(nks)! 3 (nkl) ...(nks) N
n n n n- ¥ s n(k,+1/2) n(k _+1/2)
i (kl!) "'(kr!) (kll) ...(kS!) ((zn)(n 1)/2en) (kl) 1 "‘(ks) s :
; (3.3)
E arnts/2 p  mn+s/2
s PV T e )

The last part of the above inequality follows from the obvious fact

s S
Kyeookg 5_[(k1+..+ks)/s] = (m/s) .

We also have

-8=




J nkl+1/2 nk5+1/2
(nkl)!...(nkr) ! > e (nkl) ...(nks) >
n n — n(k. +1/2) n{k_+1/2)
(kll) ...(kt!) (2m (n-l)s/2(k1) 1 "'(ks) s
(3.4)
esnmn+s/2 esnmn-»s/z

(n-1/2 = (n-1)/2

[(2H)sk1...ksl {(2m 5 (m-s+1) ]

Here we used the inequality

k,...k_ > (m=-s+l)
1 § =

since kl,...,ks are positive integers which sum up to m. Clearly the relations

n1+s/2nm es/nmn1+s/2nm

(n-1) /2nm

{3.5) lim = lim
meo [e"(2Mm/s) (PTL/28/MR e (2m) S (mes+1) )

-0

prove the lemma.

Lemma 3.2. Let PyreccsPp be non-negative integers such that

(3.6) pl-O»...«"pr =nm .

Then there exist non-negative integers Qyre--qy with the following properties

(3.7) q1+...+qr =m ,

(3.8) lpj - nqjl LIy s LS

and

(3.9) (nm) ! < (/n e (nm) ¢ :
pll o .pt! \[%]) (nql) foew (nqr) !

Proof. By rearranging the indices we may assure that

pjt 0(mod n), J =1,...,k ,
(3.10) :
PjE O (md n), Jj=%k+l,...,r .

In case that k = 0 (3.9) is trivial. Assume that Xk > 2. Without loss of generality we

e




T

R —— L

assume that

(3.11) P, <P, -
Let =
(3.12) P = nql + tl' p, = n(q1+1) - tz, 1os tl' t2 < W n

Suppose that

(3.13) €2y

Then

i pllpzl 3 (nq1+1)...(nq1+t1)
(nql)l(p2+t1)! [n(q1+l)—t2+1]...[n(q1+1)-(t2—t1)]

Noting that the function (nx+a)/(nx+b) is increasing on (0,®) if 0 < a <b we obtain

tp.! !
Sk ( !))%(pzn):i( sy tlr t cnl/(:> :
T B R 1
Recalling the well known inequality
7/
— n -1
1 [21 5
! one deduces '

(3.16) 1/(p,tp,1) < (:)/(nql)! T
3
2

Let

SR

A ——

(3.17) p; = pj+2, J=1,...,k=2, pﬁ_l = p2+t1, pi = nq,., pi = pj, 3= k+l,..r .

.;‘.,
1

According (3.1€, we proved

(3.18)




In case that "2 < tl' we replace pl:—l and pl“ given by (3.17) by and n(q1+1)

Pt
respectively and (3.18) is still valid. Note that pi+...+p;_ = nm and at most k-1 numbers
out of pi,...,p; are not divisible by n. Continuing the procedure above we obtain the in-

equality (3.9).

Lemma 3.3. Let

(3.19) 0<a <a , <..50 <1
Then
$ i -t=lrf a \T? r
(3.20) ! a 4 W (2n-1)" x
3 =ty n
j=1 [5]
(nm) 1 R N
(nkl)l...(nkr)! SR 8

k.+...+k_=m
1 r

Proof. Recall that

r o P P
(3.21) ) ay - ) —:L-)—!—l all.‘,.a iy
j=1 D +,...4p =nm P1'*" Py !
1 r
Consider a term
P P
(3.22) _(nm)! 471 r

.o-n .
pll...ptl 1 r

According to Lemma 3.2 there exist positive integers Qpeecergy such that (3.7) - (3.9)

hold. As °j < 1 we also have

P P —(n-1) ™, T == nq
(3.23) e N T n M Vs 0 e ™ 1...u:qt) 5
So
P P nq nq
_(m)t "1 {nm)t = -(n-l)r_ 1 r
(3.24) pll---p T %1 ”‘“r <[ ]> (nql)l...(nq T % a, ...y v

For a fixed r integers q.,...q. we can have at most (2n-1)° types of r integers
1 r

T




—

PyeeseePy satisfying (3.8). Thus, by using the inequality (3.24) for each summand appearing

in (3.21) we establish the lemma. .

We are now ready to prove our main result.

Theorem 3.1. Let A be an n x n doubly stochastic matrix. Then ? J
(3.25) limpa @) /™= . .
m>

Proof. From the classical Birkhoff theorem (e.g. [4]) it follows that 3

r X

(3.26) e AR R R R IR R T T
. ) o, J 1m
i=1 3 =

Without loss of generality one may assume that {aj}i is a decreasing sequence, i.e. (3.19)

holds. We claim that

nk, nk
a & [0 ] L
2n i
(3.27) pa @ > B ) : e
m k1+...+kr=m (kl!) "'(kr!)

Indeed, let kl....,kr be r non-negative integers which sum up to m. Consider

r
(3.28) B= J kp €9 .
4=1 2 oQ n,m

From the expansion (2.4) for the permanent of p(A ® Jm) it follows that one has a term of

the form -
(3.29) (ml)2n " eij
. e R a /B R
IR S ije
n

Recall that P0 = (sc(i)j)l . So

r
(3.30) By = EZI k!eolmj :

I
(3.31) a,, = a 8 .

ij gy ¥ os(i)j
-12- i




e Qi T T S T

.

T it

e,
Thus, the multinomial expansion of aijlj contains the term
k,6 i k_ & :
i 1 01(1)j X r Or(l)j
1 SHEIE 5
(3.32) (B, )!
ij (klaalli)j)!‘"(kréor(i)j)!

This implies at once that the expansion of (3.29) contains a term of the form

k.8 e k

) )
] f 1 01(:.)3 3 r Or(i)J 5 nk1 nkr
(3 i (m!) n 01 sims (m)! 01 .-.Qt
=41 mn . N Tk Y1... (k8 ¥ g n n
m bog=i 1o (33T Vete (433 m ey ek 1)

As the multinomial expansion of a i3

we obtain the inequality (3.27).
Consider the identity

nkl nkr
“.I. SRRl g (“k],“"‘(nkr)

nkl nk‘r
a

! al cee@

(3.34)

n n
(k].” "'(kr“ (kll) ...(kr!)

According to Lemma 3.1

nkl nkr
PP §

__l__n_r—n:n"m(l-c
(kll) "'(kt”

nm
(3.35) m)

From (3.27) and (3.35) it follows

(.”21: nn-(l-c-)m Z
(3.36) pAa®J) >
. a (mn) L

1

r
Applying the inequality (3.20) and noting that )
i=1

() n"™1-e )™ (n

(3.37) ¥

p(A®J ) >
- ™ (mn) !

Using Stirling's formula and the fact that 1lim €n
mae

-13-

(nkl)l.-.(nkr)l

(nkl)!...(nkr)l

nk nk

PR §

& 1 r
1 r

nk
a 1...u
(nm) !

«+k_=m
r

i3 contains only positive summands from (2.4) and (3.33)

r

1 3
(nkl)!... (nkr) !

°3 = 1 we finally deduce

-1)r -(r=-1)
n )

n

<l51

= 0 we get

(2n-1)"

r




(3.38) lim inf p(A B J ) AW
m>eo

On the other hand the inequality (2.18) implies

(3.39) lim sup p(A @ Jm) i/m < e ™

e

The above two inequalities establish the theorem.

Combine Theorems 2.2 and 3.1 to deduce

Theorem 3.2. Let A be an n x n doubly stochastic matrix. Then

(3.40) pRR)Y S W

We conclude our paper by an application of the inequality (3.40) to the problem of Marshall

Hall (unpublished). The problem is to estimate from below the permanent of 0 - 1 matrix

having exactly three 1 in each row and column. In what follows we consider a larger class

of matrices.

Corollary 3.1. Let & be an n X n matrix which is a sum

That is o belongs to the set 0n 3+ ZThen

(3\"
(3.41) P el

A lower bound known before was n [5].

-14-
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