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ABSTRACT

We prove the global existence (in time) for any solution of an abstract

semilinear evolution equation in Hu bert space provided the solution satisfies

an energy inequality and the nonlinearity does not exceed a certain growth rate.

When applied to semilinear parabolic initial-boundary—value problems the result

admits also the limiting growth rates which were given by Sobolevskii and Friedman,

but which were not permitted in their theorem. The Navier-Stokes system in two

dimensions is a special case of our general result. The method is based on the

theories of semigroups and fractional powers of regularly accretive linear

I operators and on a nonlinear integral ineciuality which gives the crucial a-priori

estimate for global existence.
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SIGNIFICANCE AND EXPLANATION

Semilinear parabolic initial-boundary-value problems occur very often in appli-

cations. Typical examples are the basic equations in hydrodynamics (Navier-Stokes

system), heat conduction, and reaction-diffusion processes.

Given any initial value (i.e. an initial velocity field, an initial temperature

distribution and so on) the parabolic partial differential equations describe the

evolution of this initial status in time under certain time independent boundary

conditions. If these equations are linear they do not allow a “blowing up” of the

solutions in finite time, thus describing the process for all time in the future.

If there are nonlinear terms, however, a typical phenomenon is the possibly non-

global existence of a solution - the solution may exist only for a certain finite

length of time. This can be seen already with simple examples in ordinary differen-

j tia]. equations.

In addition to the partial differential equation, however, there often exist

upper bounds for the energy of the system, which is expressed by an energy inequality.

Such an energy inequality will suffice to assure the global existence for solutions

of ordinary differential equations. The situation is different for partial differ-

ential equations of parabolic type: a partial derivative (with respect to the space

variable for instance) might blow up without increasing the energy to infinity. If

this happens the solution ceases to exist. This phenomenon in hydrodynamics, for

example, is called “turbulence” and it is not yet completely understood.

If, however, in addition to an energy inequality certain growth conditions on

the nonlinearity are fulfilled , such a blowing up as described above can be excluded.

A well known example is the Navier-Stokes system in two space dimensions. In this

paper we give a general theorem which improves the known results since it admits also

the limiting growth rates which were not allowed to be assumed under similar conditions

so far. The Navier-Stokes system in two dimensions is a special case of our general

result which allows many other applications.
D O H  ~~

The responsibility for the wording and views expressed in this descriptive s~nmnary
lies with MRC, and not with the author of this report.
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GLOBAL SOLUTIONS OF SEMILINEAR EVOLUTION EQUATIONS

SATISFYING MI I~NERGY INEQUALITY

Ransj~~rg I(ie1h~ fer

Introduction

A well known functional analytic approach to semilinear parabolic initial-boundary value

problems of the type

u~ + ~ a5 (t ,x)D . .u f ( t , x , D.. u D~ u) in (O,T) X 0, 0 <  T < ~~ , 0 C

I~~I~ .2m ‘V 1 ‘V i

(0.1) B~u 0 on (0,T) x ~O, j  0,..., m — 1

u(O,x) u0(x) in 0

is briefly described as follows:

The unknown solution u(t, ~) = u(t) is considered as a curve in some appropriate space E

of functions on 0. As such it is to satisfy a corresponding initial value probl~ s in E:

+ A(t)u F(t,u) , t € (O,T)

(0.2)

u(O) —

By A we denote the family of linear differential operators which for t € (0,T) is given

by

(0.3) ACt) ~ a&(t,x)D_

I&Ii~
The boundary conditions are replaced by the condition

(0.4) u(t) € D(A) , t € (0,T)

where D(A) denotes the time—independent domain of definition of the family A.

Parabolicity means that this family A is uniformly elliptic on every closed interval

c ~0,T), and the samilinearity is expressed by the fact that

Sponsored by the United States Army under Contract No. DAAG29—75-C—0024 and by the
Deutsche Forschw~gsgemeinschaft.
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(0. 5) F ( t , u )  = f ( t , x, D— u , . . . , D- u)
‘Vi

is of lower order the n A C t ) ,  i . e .  < J 2in — 1.

In Section 2 we shall render our assumptions on A, F, and the boundary conditions

B , imach more precise.

Of course, the notion of a solution is different for problems (0.1) and (0.2), and, in

general , the solutions are not equivalent.

A solution of (0.1) is called a classical solution if all derivatives occuring in the

partial differential equation exist in the classical sense and are continuous in (0,T) x ~~,

and the equation, the boundary conditions, and the initial condition are fulfilled pointwise.

A solution of (0.2) is called a strict solution if du/dt exists in the strong topology

of E, if u(t) is in the domain D(A) for all t € (0,T), if all terms in the differen—

tial equation are continuous on (0,’r) (in the strong topology of E), and if u is also

continuous at t — 0 and fulfills the initial condition. (This definition tacitly implies

that the nonlinearity F makes sense for all u in the domain D ( A ) ) .

From the point of view of existence of solutions it is desirable to be able to show

that a solution of (0.2) is in fact a classical solution of (0.1). This turns out to be the

case if the data of problem (0.1) are emooth enough (see Section 2).

The local existence theory for problem (0.2) is quite analogous to that of ordinary

differential equations in finite dimensional spaces. Although unbounded operators are in-

volved in equation (0.2), they disappear if it is rewritten as a Volterra integral equation

in some appropriate subspace of S (which is the domain of some fractional power of A).

That integral equation , however, has a weak singu larity .

The main tools of this approach are the theories of semigroups and fractional powers

of linear operators. Among many others who made considerable contribut ions to these theories

we want to mention T. Kato and P. 5. Sobolevskii who were in turn influen ced by K. Yosida

and N. A. Krasnosel ’skii respectively.

Our approach is closely related to Sobolevski i’S article [23] (see also Friedman’s

book [7 1) .  For the applications he chose 5—  L CD) where 0 has to be bounded . If 0

— 2—

— —  — —. . _
~L ~~

- — — — -- -- --



- 

- 

-
~::~:• ~~

- — --~~~~~~~~~~
-
~~~~
----

~ ~~~~~~~~~~~~~~~~~~~~~~~~
— -

~~~~
-----

~~~~
--- 

is unbounded we refer to [12] , [13] . In addition to E = L (D) we also chose the H~lder

space E = C~ U~) where the star indicates some decay for lx~ + ~ which is weaker than that

in L CD) (see Section 2). Thus solutions of (0.2) can be found which are not necessarily

in L CD). (In addition to that, the Ca—approach immediately gives, by definition, classi-

cal solutions.)

In coir~ lete analogy to ordinary differential equations the local solutions of (0.2)

don ’t necessarily exist on the whole time interval (0,T) . By a continuation argument , global

existence follows from an a-priori estimate of the solution u(t). But in Contrast to the

finite dimensional case an a-priori bound in E won ’t suffice in general to guarantee global

existence. (For a counter—example see 115) , p. 39. Unfortunately this example doesn’t fit

into the framework of this paper since the boundary conditions depend on the time t .)  Thus,

in addition to an a—priori bound in E, certain growth conditions on the non—linearity are

required.

The first general results in this connection are due to Sobolevskii [24] and Friedman

(6):

Theorem 0.1. Assume that for some 1 < q < ~ every solution of (0.2) satisfies

It u Ct )  
“ L ~~ 

< C(T 0) on (0
~

TO J C (O ,T) and the nonlinearity satisfies
q

£ r
(0.6) f(t,x,D_ u,...,D. u)j < C(l + ~ D_ u~ 

K
) , where

11 ‘V i 
— ,c= I. ‘V K

(0.7) r < 
2m + (n/q) — R ( I ~ I)

‘c jy~~~+ (~/q) 
K

K

Then any solution of (0.2) in L CD) (for some p > n) exists on (0,T0]. (Observe that

any solution of (0.2) in L~(D) for some p > n  actually is in L
q(D) for all q < — .)

The method of their proof can ’t be generalized to allow a growth rate rK

(See the proof of Theorem 2.2.) The key point is to obtain an a—priori bound in a norm which

is strong enough to estimate the nonlinearity . Thus the semilinear problem can (formally)

be considered to be a linear equation with a bounded inhomogeneity.

—3—
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The cases of Theorem 0.1 most often used in applications are q — 2 and q — ~~ . Whereas

the latter applies essentially only to second order equations (maximum principle), an

L2—a—priori bound can be obtained in a reasonably large class of problems of arbitrary order

2m. A sufficient condition is given in, e.g., 124], 16]:

(0.8) Re f(t,x,D. u,... ,D- u)~ < alu I
2 

+ b , a,b > 0
‘VI. ‘Vi

provided Re(A(t)u,u) > 0. (Here and in the following C , ) and fl denote the scalar

product and norm in

It is much more general to give (0.8) in the form which it is needed in:

(0.9) Re(f(t,x,D.. u,...,D.. u) ,u) < a I l u I I 2 
+ b

‘V i ‘V t

for all u € D (A ) and (t,x) c EO,T0
] x 12.

One of the best known examples where (0.9) is fulfilled is given by the Navier—StOkes

system written as an evolution equation (0.2) in a suitable Hilbert space E C L2
(D) (see

(22), (11), (8]).

It is also well known that any strict solution exists globally provided it

is a plane flow (n = 2). But since the nonlinearity in this case has the form uD1u

(D
l 

is a first order differential operator) and R(0) = 3, R(1) — 3/2 for n = 2, q — 2,

this global existence result is not a consequence of Theorem 0.1.

Where does the additional information come from? It conies from an energy inequality

(0.10) - IIu(t) 11 2 
+ Re f (A(s)u(s),u(s)ds < C(T0

) on [0,T
0
]

(The constant C(T0
) depends also on other data of the problem like the initial condition,

external forces, the domain 12 and so on. But we consider these quantities to be fixed.)

Such an energy inequality (0.10) is valid for the Wavier-Stokes system. We emphasize

that in most cases where an L2-a—priori estimate is obtained also an 
energy inequality is

valid . (It certainly is under the assumptions in (24] , j6].) Therefore it is more natural

to assume (0.10) instead of only IIu(t) Il < C(T
0
).
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The first general global existence theorem for plane flows, after the pioneering work

of J. Leray in the ye~rs 1933-34, was given by 0. A. Ladyshenskaja in 1958 (14]. We formally

sketch her proof from the point of view of possible generalizations. Let E be the closure

in L2(fl) of all smooth solenoidal Cdiv u = 0) vector-valued functions with compact

support in 12 and let P be the orthogonal projector on S. Then A = - PA can be given

a dense domain, generalizing homogeneous Dirichlet boundary conditions, such that it is a

positive self-adjoint operator in E. The nonlinearity is given by

F(t,u) — - P[(u~V)u1 + g(t), where g comes from the external force. With these definitions

we are led to the abstract initial value problem (0.2) in E. In view of the self—adjointness

we have (Au ,u) = 11A 1’2u112 .
After differentiating the equation with respect to t and scalar multiplication by u

~

Ladyshenskaja obtains

(0.11) 4~ 
IIut II2 + lIA ”2ut 11 2 

= — ((u
~
.V)u,u

~
) + (q

~~
u

~
)

where div u — 0 is used. Since JIu 11
2 

< C~ u jiVu is valid in two dimensions,
4 )

she has the estimate

( (U
t 

‘V) u ,u )  < cju ~ It ll~’ II Il~~ II

and so

~ IIu~ll2 + 2 IlA~
’2ut II2 !. C2 IIA ”2uII 2 IIut II 2 

+ lIA ”2u~II2 + IN~II2 + II9~li2

This implies, in view of (0.10) • a bound on llu~
(t) j~ on (0,T0

]. (We used the equality

Ilvull — Ilk”2u 11 .)  The original diff erentiated version of the energy inequality (0.10).

na.ely

(0.12) (u
~
.u) + IIA ”2u11 2 

< aflu fl
2 
~ b on (0,T0)

finally implies an a—priori estimate of IIA 1’2u(t) I1 which is strong enough to guarantee

the global existence of the strict solution of (0.2).

Looking toward generalizations we first observe that the self-adjointness of A is not

necessary for her proof. Furthermore it applies to any nonlinearity which satisfies an esti-

mate like

—5—
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(0.13) Re( F(t,u(t)), u
~
Ct)) < CCTQ) (1 + IIut (t) 11 2 

+ IIA ”2u(t) t I 2 IIut (t) 11 2 
+ 11A 1”2ut 11 2

for all u(t) such that jiuCt) < C(T0
) on [O ,T0

]. (Observe that in the case of the

Wavier—Stokes system an estimate like (u
~.v)uII < Cjjvu fl jjvu~~ is not true in two dimen-

sions.) The assumption (0.13) refers to the total derivative of F with respect to t and

thus to the partial derivatives of f, if F is given by (0.5). A closer analysis shows

that it allows growth rates equal to R (Iy~ j) - 1 for the derivatives of f with respect to

D- u, provided Ii,~l < m. Adding sign-conditions on the derivatives of f, even bigger

growth rates can be admitted. In this connection we refer to the results of (191 , [20]

whose approach is in this spirit, but different in so far as they impose a sign-condition on

a primitive of f which must not depend on a derivative of u or on (t,x) explicitely.

In case of the Wavier-Stokes system the estimate (0.13) on the derivative of F does

not influence the quadratic nonlinearity -P((u.V)u]. But, however, it requires additional

regularity of the external force g, namely € L2((0.T),E) .

In the year 1959 Sobolevskii (22] gave a global existence proof without requiring any

differentiability of g. Since our results are closely related to Sobolevskii’s approach

we also briefly sketch his proof. First of all he established the estimates

(0.14) IIA~ P[(u.V)u] < C(n) jA~~~
2
~~~uIj jA~~

2ujj , 0 < fl <

Using Heinz’ inequality for fractional powers of self-adjoint operators he proved (0.14) re-

placing P. by — ~ and cancelling the projector P. In this case he expressed (— A)~~~~

in terms of the Green’s function of the first boundary value problem for the Laplacian, which

finally led to the desired estimate. Note that (0.14) is not valid for n — 0. continuing

he used the Volterra integral equation related to (0.2):

(0.15) uCt) — e~~
t
u0 + ~~e

(t_5)p (s,u(s))ds

From (0.15) he derived two estimates:

-6—
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(0.16) jjA 1”4u(t) < + ( t )  + C ( l / 4 )  Cf IIA~
”4u(s) 11 2 0A”2u(s)lI 2ds)1~

2

(0.17) lA~
’2uCt) It < *(t) + ~(l/4) f (t—s) 3”4IlA~~

4u(s) II lIA ”2~
1(5) lids

where

•( t )  — llA~
’4u0ll + h A 1”4 ~ e~~Ct_5)g(s)ds~

$( t)  — 11A 1”2u0l1 + tIP.1”2 S e tS)g(s)dsjI

Assuming only g € L2C(0,T), 5), in view of the energy inequality , the relation (0.16) im-

plies an estimate on IIA”4uCt) ll which, via (0.17), finally gives the desired bound for

llA ’~
2
u(t) j. (For the most general assumptions on u

0 and g allowing (0.15) to be solved

globally see Ill), [8).)

Since no compactness is used, Sobolevskii’s as well as Ladyshenskaja ’s proofs hold also

for unbounded domains. The conditions on g which imply that u is actually a solution of

the initial value problem (0.2) or moreover a classical solution can be found in [8).

The key of Sobolevskii’s proof - besides the remarkable estimates (0.14) — is the in-

equality

(0.18) lIP.”2 ~~~~~~~~~~~~ < (f ~lg (s)ll 
2ds)1”2 for all g € L2((0,t), 5)

Since A is a positive self—adjoint operator (0.18) is simply proved by considering

+ Au — g, u(O) — 0, and multiplying the equation by Au.

A generalization of the global existence result sketched above to non-seif-adjoint

operators A requires an inequality analogous to (0.18). In 127] Sobolevskii states for

operators A generating an exponentially decreasing analytic semigroup the following in—

equal ity

— 7 —
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(0. 19) II? e~~
(t 5)g sd s Ij 112 

< c(f lk(~
) lI2ds)~ ”2 ,

where h u ll 112 = (I IIAe~~~u I I
2
ds)”2. At that time only the estimate IIA ’Vu lI c c II u I t 1,,2

for 0 < y < ~~
- was known to him. To prove the equivalence of the norms 11A 1”2.hI and

II 11 1,2 the following techniques are used: First of all D(A1”2) is an “interpolation

space” (or “intermediate space” or “espace de trace”) between D(A) and S (with equivalent - •

norms), provided A is “regularly accretive” (see 1161). The different notions of inter-

mediate spaces are equivalent and the norm II jj 1,2 is equivalent to one of these norms

(see (51 , chap. III, Theorem 3.5.3). Unfortunately Sobolevskii gave no proof of (0.19), so

we shall not use it.

The goal of this paper is to generalize Sobolevskii’s global existence result to a class

of abstract semilinear evolution equations in Hilbert space admitting an energy inequality.

We allow A to depend on the time t and A C t )  is regularly accretive (and not necessarily

seif—adjoint) for fixed t. (These operators are the appropriate generalizations of self-

adjoint operators since they arise in “variational problems”; see Section 2.) Since we don ’t

use an inequality like (0.18) or (0.19) we give a different proof to estimate jjA
1
~
’2u(t) j~.

Whereas all results described so far are obtained using linear differential inequalities

(Ladyshenskaja) or integral inequalities (Sobolevskii , Friedman) , we derive the crucial esti-

mate for IIA~
’2uCt II by a nonlinear integral inequality (see Leimna 1.2).

When applied to semilinear parabolic problems our results improve Theorem 0.1 allowing

for f also the limiting growth rates r~ — R(jy~ I), provided q — 2 and <m . Thus

the Navier—Stokes system in two dimensions is no longer a special or “singular” case but em-

bedded into a general Theorem.

Our results will also improve Theorem 11.1 in (281 with respect to the assumptions on

the nonlinearity and initial conditions. Since our notion of a solution is stronger than

that in (28 )  we require, however, Holder continuity of the inhomogeneity but we admit a

non—square integrable singularity at t = 0. (Theorem 1.1 in (28) is a consequence of

_ 

-8-  
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Sobolevskii s result: indeed , the same simple argument which proves (0.18) in the case of a

- 
positive self-adjoint operator also shows the inequality

T t 
- 

T
-~ . ( 0 . 2 0 )  f hA l e ~~~ 5)g(5)ds j~2dt 

~~. I hg(s) lI
2ds

• 0 0 0

- Thus, for any u
0 

€ D(A 1”2 ) the solution of (0.15) in the sense of (22]  or (8), (11) is

actually a strong solution in the sense of (282 satisfying an a—priori estimate as indicated ‘ -

in (28), Remark 1.1.

In Section 1 we prove the abstract result in Hilbert space. Applications and possible

generalizations will be given in Section 2.

We want to express our gratitude to A. Pazy for many helpful discussions which led to

the final assumptions on A(t).
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Section 1

The goal of this section is to formulate and to prove Theorem 1.1 which states the main

result for the initial value problem (0.2) in a Hilbert space H (by c1
,c2,... we denote

positive constants depending on quantities as indicated.)

Let V C H be two Hu bert spaces with scalar products C 
~m ’ 

) and norms II th e’
II II respectively. (The subscript m arises from the applications in Section 2.) We

assume that V is dense in H and that the embedding is continuous.

Let A = (ACt) , t € (0,T) 1, 0 < I < , be a family of closed linear operators satisfying

(Al) The domain D(A) C V C H of ACt) is time independent and dense in H;

(A2) Re(A(t)u,u) > c
1(T0

) h l u hl ~ — k Ih u II 2

for all t s (0
~
T0
] C j0,T], u € D(A) , and with c1

(T
0) 

> 0, k > 0;

(P.3) (A(t)u,u) < c
2(T~) II u hI~

f o r  all t € (O,T
~
J , u € D(A), and some c

2(T0) 
> 0;

(P.4) P(A(t)) ri (A € 5, Re A ~ 0) ~~ 0

for all t € (0,1), where P denotes th~ resolvent set;

(A5) there exists a HUbert space Y C H such that

(U V is a closed subspace of IY,H]
112 

(the interpolation space of order 1/2

between Y and H ) ,
a a

(ii) DCA) C Y ,  D(A Ct)) c y for all t e I0,T), where A (t) is the adjoint

of ACt) ;

(We can replace (P.5) by

*
(AS)’ D(A ( t i )  — D(A) for t € (0,T).)

(P.6) IIA t,u — A(t2)ulh < c3(T0)(IIA(s)u hI + h I u hl iI t 1—t21°,
for all t

1
,t
2
, s € (0,T

0
1, u € D(A), and some c3

(T0) 
> 0, 0 < a c 1.

-10—
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We collect some consequences of these assumptions. First of all, in assumption (P.2)

we can assume without loss of generality that k — 0 by simply adding ku on both sides of

equation (0.2). Then assumptions (Al) to (P.4) imply that for any fixed t s (0,1) the opera-

tor ACt) is regularly accretive in the sense of (9], (16) (see the arguments in Section 2).

Thus -ACt) generates an analytic semigroup e 1P
~
t) 

i >0, on H. This result,

which is due to Kato (91 , is a consequence of the following more general lemsa:

• Lemma 1.1 Let B be a closed operator with dense domain D(B) in H. Define

S(B) — (hI u tI ~~(Bu ,
u ) ,  0 * u € 0(B)) C S

Then :

( i )  If dist(A ,S(B)) > 0 then B - Al is injective and has closed range. (I denotes the

identity, dist the distance from I to S(B).)

Cii) Let P
0 be a component of the complement of the closure 5(8) in S with the pro—

• party P
0 Ii P (B) * 0. Then p

0 
C P(B) and moreover

(((B — XI)~~~(( < dist(A,S(B))’ for all A e

We give a proof of Lemea 1.1 which we owe to P.. Pazy in the Appendix.

Now, by (P.2), (P.3), we have for t €

c2(T0)c1(T0)~~ 
Re(A(t)u,u) > hIm(ACt)u,u) I

• which implies that

S(A(t)) — (A € (I, —0
~ 

erg A < o,} for some 0 < 01(10) <

Choose 
~l 

< 

~2 
< and set

S — ( A € s, —e 2 -c a r g l < e 2 )
02

Let p
8 

be the complement of . Then there exists a constant c4 — C4 (e~ I such that
• 

. 2 2

distCl, S(A(t))) > c CT )IA I for all t a 10.T~). A4 0  2

—11—
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By assumption (P.4) we have P(A(t)) a p9 * 0, hence by the previous lemma -A(t) is a
2

generator of an analytic semigroup on H (see e.g. [7]).

By adding ku on both sides of (0.2 ) , where k ‘ k + d, we can assume without loss 
. -

of generality that

(1.1) hIe
_T1

~
(t) II < c5(T0

)e~~
t
, t ‘ o ,  ~ € b0,T0] d > 0

Thus 0 € P(A(t)) for all t € I0,T) and assumption (P.6) implies

(1.2) IhA(t 1)A~~(t2) II < c
6
(T0)

(1.3) II ACt 1) — A (t
2) )A 

1(s)II c c
7(T0

) 1t1—t2 1 °, t1,t2,s € t0,T~) .

properties (1.2) — (1.3) suffice to show the existence of a “fundamental solution”

U(t,s), 0 < s < t < 1
0 of the linear homogeneous equation + P.(t)u 0. tJCt ,s) is a

family of bounded linear operators defined on H which is continuous with respect to t and

a in the strong topology of L(H,H), the space of bounded linear operators f rom H into

H. Furthermore U(t,s) has the following properties:

(1.4) U(t,s) + A ( t ) U ( t , s) — 0 , 0 ~ s < t < To

(1.5) U(t,s) is continuous in L(H,H) for 0 < a < t <

(1.6) tJ(t,t) — I

(1.7) 
- 

U(t,s)U(s,-t) — U(t,-r) , 0 < < a < t < I0

• (1.8) lint Il~~(U(t+h , t)u — u) — (—A(t)u)lh — 0 , u € D(A)
h+0

For a proof of the existence of U(t,s) and of the properties listed above we refe r to

• (23) or (7].

In view of (1.1), fractional powers of A(t) can be defined for each t € (0,?) as

follows;

—12—
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(1.9) A ’V(t) — r ( ’V ) ’ 7e
_TA(t)

T’V_ldT, ‘V > 0

(1.10) A’V (t) — (A ’V(t))~~~, D(A’V (t)) — R(A ’V Ct))

where R(A ’V(t)) denotes the range of the everywhere defined operator A ’VCt). For

0 < B < ‘V < 1 these fractional powers satisfy the inequality of moments (or interpolation

inequality):

(1.11) IhA ~~t u lh < c
8

(T
0,B,’V) hlP. ’V ( t ) u hl B

~”V II u hT  — ( 0/’V) , u € DCA ’V(t)), ~ €

where A0(t) = I by definition.

Furthermore, as regards the seinigroup and the fundamental solution, the following esti-

mates are valid:

(1.12) IhA ’V (t)e TA(t) II ~ cg(T0,’V
)e~~

T
~~’V , t > 0, t a (O ,T

o]

(1.13) lhP.’V(e)u(t,s) II < c
10 (’r0 , ’V) (t_s) ’V, 0 < a ~ t < To’ B a (0.To)

(1.14 ) hhA ’V(t)u(t,s)A~~(s) II < c
11(T0,’V,B) 

(t_s)~~ ’V , 0 < a < t < 1o 0 < B ~ y ~ 1 + a

where a is the H~lder exponent in (P.6) or (1.3). Analyzing the method of construction of

U(t,s) we get the following estimate

(1.15) IIA’V (s)U(t,s)uhh 1c i2 (To,y,n)(t_s)
’V
~~ II P.~~(s)uIl , U € H

0 < 8 < t < T~ , 0 
~~. ‘V < 1, 0 < 

~ U

Finally we shall need

(1.16) IIA ’V Ce) (U Ct+h, s) — U (t , s ) ) A ~
8 (s) -c à,3 (T0,y, B)h ’V (t_s) 6 6

0 < ~ < t < t + It ~ 
To , 0 < y < 1, 0 < B < iS < 1 + a, 0 < iS — ‘V < 1

• For all details we refer again to 123] or 17].

Definitions (1.9), (1.10) do not exclude a time dependence of the domains D(A’V(t))

for 0 ~ c 1. But a remarkable result of Xato (10], generalizing the Heinz inequality,

—1 3—
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applies to our case: Properties (Al), (1.2) together with the regular accret iveness of

ACt) ( maximal accretiveness in 110)) imply that the domains D(P.’V(t)) are actually inde-

pendent of t and that

(1.17) lhP.’V Ct1 A t 2) hi ~~ c14(T0,’V) , t1
,t2 

€ (O,T~]

holds for all ‘v a (0,1]. Therefore we shall write D(P.’V) for D(P.’V(t)). Furthermore, under

• the assumptions (AS) (or (AS )’) the domain D(A1”2) can be given explicitly:

(1.18) D(A1”2) = V .

1~reover

(1.19) c15(10) hhA
”2 t)uhl c (h u ll < c

16
(T
0
) ihA ”2Ct)u ht , ~ -c

as shown by Lions (16], who strongly used xato’s result mentioned above. (It is not tOO

difficult to prove a continuour embedding DCP.’V) c V for ‘V > ~~
-. The delicate problem is

to prove that ‘V — ~~
. is admitted also. There the regular accretiveness is needed.) Lions

showed that D(A’V) is an interpolation space between D(P.) and H. We shall use this later

in Section 2.

In view of (1.17) we can derive from (1.14)

(1.20) (lP.’V (e)u(t,s)P.~~(8)(t 
- c c

17(10,Y,
B)(t-5) 8 ’V , ~~ 10.;]

and finally (1.15) implies the estimate

(1.21) hiP.’V (e)uCt,s)uhh ( c18CT0,Y,T1) (t~s)
’V ”hlA~~ (O)U)l

for u a H, B a I0,To]~ 
0 < ‘V < 1, 0 < n < a

We are now ready to formulate our assumptions on the nonlinearity F. At first sight they

might look artificial, but they are motivated by the applicatio ns ( see Theorem 2.1) .

Let F: (0,1) x D(A’V ) -‘ H, ~~. 
y < 1, be an operator which we decompose as

P(t,u) — F0(t ,u) + 9(t). We assume that g € C 1((O,T),H) for some 0 < a
1 
< 1 , which

— 1.4—
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means that g is uniformly Holder-continuous on any closed interval 1t0
,T
0) c (O,T). The

behaviour of g for t + 0 is described in the following assumptions. By I t0 ,T0J we

always denote an arbitrary closed interval contained in C 0 ,T) , *1~~1 2~~~•~ are positive

functions in C((0,~ ), 
~~~ 

P1dJ2
,.~~ are positive functions in C([0,T), 

~ +~
‘ e is any

fixed time in (0 ,1) , and N is any positive number.

(P0) Re(P 0 (t ,u ) , u) < qc
1
(T
0)hl u ~(

2 + c19(t
0

,T
0
) (lull 2

for t a [t
0,~~ J , u a D(A), where c1(10) is the constant in (P.2) and q < 1;

(Fl) ((F0(t,u) < c20
(t 0,10)*1(hiP.’V(O)uil)

for t a it 0~;)~ u a D(A ’V ) ;

—rt 2 ( l — ~~ )
(P2)  h A  °(8)F0Ct,u) hi < ~i1(t)  fl u Il 

0 
*2(lh u ih )

for t € (0,T) , u a D(A ’V ) ,  and some 0 < ain(a,~); Iig(t)~h — O(t~~~) for t + 0,

where a > 0 is arbitrary;

• 
(P 3) (( A ~~~( $ ) F 0 (t ,u) II < c21 Ct0,T0)*3(hiP.8(e)ujh)

for t a 1t 0 ,T01 and for all . 9 y where ~ — n(B) satisfies a relation

— 1 — 
~~9 for some 0 > 1;

• ‘V l(P4 ) hi Fdt,u) hI ~~. ~2
(t )  hI P. ( e ) 1h ( * 4 ( h (u(( )

‘V ifor t~~ C 0,T) , u~~~ D (P. ) . ‘V 1 ’ Vl < l
~

(P S) hIP. 0 (9) %(t~~~)- F( t ,u2
) )  II p 3 (t) hh u 1 - u2 hi (hiu 1 li 0$ (Iiu hh ) + ilu2 h h °s2(11u 211))

for t a (0 ,T) , u~ a

Cr 6) hlFo(t 1,u1) — F0
(t2,u2) II •~ .

< c22 Ct 0 ,T0 ,M ) ( i t1 
- t21 ’ + hlP.’V (e)(ui - u2)hl *s()hA ’V (e)ui ht + iIP.’V (8)u211)}

fitr t a (t
0,T0

) ,  u~ C D(P.’V ) ,  h (A’V (eu i fl M , 0 a a1 < 1;
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‘V a
(P7 ) 1hr0(t 1,u1) — P0(t 2,u2)Ih < c23 (T

0
,M){jt

1 
— t 2 h I 

+ hI P. 2 (~)( u 1 — u2
) II 2 }

‘V 2for t~ a IO eTol~ 
ui € D(P. 1 ,  ih ’~ (e)u. ih ~ N, ‘V l ~ 

< 1

0 a a1,a2 < 1;

a
1g a C 

~
10’To1’ H);

(P 8) F0 (t , u) — G (t ,u ,u )  where G : (0 ,T) x DCA ) x D C ?. ) -~ H

satisfies for any N > 0 the following two conditions:

(i) IIG (t,u1,v) — G(t ,u2,v)hh < c24 (T0,M) hiA
’V2 0 (u — u2) U

for t a 10
~

To]
~ hlA

’V2(e)u i l h ,hh A
’V2(e)vlt IN;

‘V2 ‘V 2
( ii) G(t,u, ’) 2 D(P. ) -

~ H is for any fixed t a (0 ,1) and u a D (A ) completely

continuous.

-n o
Remark 1: If (P2) and (P5) hold then P. ( e) F (t ,~~) can be extended to the whole space

V — D(A L’2) so that (P2) and (PS ) hold for all u a V.

Remark 2: Obviously (P8) is only needed if 02 
< 1 in (P7) . The reason for (PB) is simply

the following: Since we do not assume Lipschitz—continuity, some compactness has to replace

it. But that compactness is only needed with respect to those variables in which F0 is

not Lipschit z—continuous. Let for example F~ — F1 + where F1 
is (locally) Lipschitz

‘V
continuous but F2 

is not. Then only P2 (t ,~~) : D(A 2 ) + H must be completely continuous.

We shall divide all assumptions on P into two classes:

(Hi) — ((P0 ) to (F6) }

(142) — ( (P0) , (P2) , (P4) , (P7) , (P8)).

Then we have

-16—
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Theorem 1.1. Let the family A satisfy assumptions (Al) to (P.6) . The the initial value

problem

(1.22) + A ( t ) u  — F(t,u)

• u ( 0 ) = u 0

possesses a global strict solution on (0 ,1)

for all u0 a H if (Hi) holds,

‘V2for all u
0 

€ DC?. ) if (H2) holds . W,reover
‘V 2(i) u € C([0,T), H) if (Hi) holds, u E C ( [0 ,T ) ,  D (A ) )  if CR2) holds;

(ii) u (t )  a D(A) for all t a (0, ?) ,  A ( ’ ) u a C’
~C ( 0 , T) , H) for some V > 0 ;

(iii) U € C~~~((0,T), H).

In case of (141) or in case of 02 = 1 in (H2) the solution is unique on f0 ,T) .

Remark 3: The reason for the difference in the required regularity of the initial condition

in the two cases is the following: Since, in contrast to (P5) , the conditions (Fl) , (P8)

are only local with respect to u, we can’t control singularities of A ( Ø ) u ( t )  as t ~ 0.

In case of assumpt ions (141) and u0 a H we have hiu u hI — OCt 2) as t + 0.

Proof: First we locally solve the Volterra integral equation related to (1.22) :

( 1.23)  u( t )  — U (t , 0 ) u
0 + f t J ( t , s )F (s ,u( s))d s

We show that (1.23) has a solution on some interval (0,T1J where 1
1 is sufficiently small.

Let us assume (Hi) .  To solve (1.23) we use an iteration method developed by Kato ,

Fujita (11), (83 , and also Scbolevskii 1251 . Therefore we only sketch the procedure.

We def ine

(1.24) S((0,T
i
], V) — {u € C((0,11], V), sup t 2

11 u (t ) iI a —}
(0.Ti]

—17—
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and

u1(t) — U(t,O)u0

un+i (t) — u1
(t )  + f U(t,s)F(s,u (s))ds, n > 1

It is seen by induction that

(1.25) Un 
€ C((O,T

1
], H) n S((0,T1

), V)

for any 
~1 

> 0~ Let q1 
a 1 be given. Since

(1.26) t1”2 hh P.~
”2(e)u(t,o)u0hl -

~ 0 for t + 0

(the proof of (1.26) is analogous to that of (8], p. 281, using ( 1.20)) it follows, again

by induction, that for sufficiently small

(1.27) max I h u n(t) hI~ 
sup t1”2hh un(t hh m I q1, n > 1

1O~T~ 1 (0
~

Tl)

(Observe that we assumed l lg(t ) hh — 0 t ~~
’
~~ for t ~ 0.)

• Now we define

• w — u  _ u , n > l , w u ,
n n+ 1 n — 0 1

t 

and , if q1 is sufficiently small, it is proved by induction that

(1.28) max 11w Ct )  I I ,  sup t”2t h w Ct)  II c q~~, n > 0
J0
~
Tl
) ~ (0.TiJ 

n U’

-• for some q2 
a 1. This implies that

(1.29) u ( t )  — lint u (t)  — w (t)
n-~ n 0

converges in CU O,T 1
) ,  H) (‘ S( (0 , T 1] ,  VI and that

(1.30) lint F(t
~
Un
(t)) — F (t ,u (t ) ) for any t a (0th ]

holds.
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Observing the uniform estimate

~~~~~1 - l+fl
(1.31) hiUCt .5)P’(s.%(sfl 11 m 

-a c
25

(11
) (t— s) 2 0 s 0, n > i

we can apply Lebesgue’ a theorem on dominated convergence and thus prove that

e a C ( ( O ,T1] ,  H) n S ( C 0
~

Ti J .  V) is actually a solution of the integral equation (1.23) .  We

later show that u is actually a strict solution of ( 1.22).

Now we assume (142). To solve (1.23) in this case we use the method of (12] , (13) . Again ,

we only sketch the procedure . Define the mapping

( 1.32) V(u , v) (t) — U (t ,0)u
0 + J U(t,s)G(s,u(s),v(s))ds

on X X x ,  where X — CC (0 ,Ti ]
~ 

D IA ) .  Then , in (12] , (13] it is shown that V maps

X x X into X and, for 11 sufficiently small, it has the following properties (where
‘V 2lh u H~ 

— max h i ? .  ( e ) u C t )  II for noise fixed 9) :  There exists an > 0 such that
(0,T

1
)

a) IIVCu 1,v) — V(u2 , v)Ih~ 
< q 3 iIu 1 — u2lI~, q 3 ‘ 1, iIu~I1~, hh v Jh ~ IN 0

b) V( u,~~) is completely continuous as a mapping X + X for any fixed u with i I u i I~ IN 0,

c) hhV (o,v) fl~u - ~ 3
)~~ I N~ for all I I v h h~ ~ 

Ni,.

(Observe that for property b) no compactness of A ’V (t) is needed.)

These three properties a) to c) imply that V has a fixed point u in X:

(1.33) u — V(u ,u )  for some u € x, IIuhl~ 
< N 0

This is a consequence of a more gen.ral fixed point theorem due to Darbo . In 1121 we gave

a simple proof which applies directly to this situation.

Next we show that the local solutions of (1.23) are indeed strict solutions of (1.22)

on (0th ].

consider first the solution u € S((O, 11],  V) .  This implies that u € CUt 0,11], V)

for any 0 a t
0 

a h~. In iiew of (1.21) and (P3) we can prow.
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( 1.34) u ( t )  € D(P.’V ) and II A ’V(e)u(t)II < c 26
(t
0
,T1
) for all t € (t0 ,T1

].

Indeed, in the first step we derive

9 9
(1.35) uCt) € D(A 

l ) and II?. 1( 9 )u ( t )  II I ~~~~ for a a 1 —

—n
This implies that II?. 

1( O)T 0 (t , u(t ) ) If is bounded , where

(1.36) 1 — pCi — n0
) < n1 

= 1 — p8
1 

<

Like in the first step this yields

9 9
( 1.37) u ( t )  a D C?. 2 ) and hh A 

2 ( O ) u ( t )  hi < ~~~~ for 
~l 

-a 
~2 a 1 —

and thus a bound for hI A ~~
2 ( O )p o (t , u ( t ) ) h I ,  where

( 1.38) 1 — 
2 (1 — n0

) -a — 1 — 
°~ 2 

<

Since p > 1, in finitely many steps we reach n~ 
— 0 and can be chosen an arbitrary

number less than 1.

Now we apply (Fl) , (1.34) , (1.16) , and formula (2 .9)  in (23] (or Leimna 14.4 in (7], chap. 2)

in  order to derive that u is H~lder-contifluOus with some exponent ~ > 0:

(1.39) u a C” Ut 0 1T1],  D(P.’V ) )

(The modulus of Holder continuity depends on t0 
> 0, of course.)

‘V2
The same holds for the solution u € x — C([ O ,T1],  D(A ) )  derived under hypothesis ( 142) .

Assumptions (P6) or (P7 ) respectively together with the formula (2 .25)  in 1231 (or (15.12)

in (7], chap . 2) finally yield that u is actually a strict solution with the properties

Ci )  to (iii) on the interval (0,T1]

Since u (T1) a D(P.) the local methods described above can a forteriori be repeated for the

integral equation

-20—
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t
(1.40) uCt) — UCt ,T1)u(T1

) + I U (t , s)P(s,~~(s))ds

• 
T1

on some interval (T
1~
T2]. Clearly u is an extension of the solution u of (1.23) to the

interval (0 ,12], and therefore we have a strict solution of (1.22) on (0,T
2).

If this process is repeated the sequence T1
, T2~ ... might converge to some T0 

a 1. If ,

however , lim sup 11u t hi~ 
< , then the solution of the integral equation ( 1.23) on I0~

To
)

t+10
‘V2can be extended to (O, To] by assigning an appropriate value u(T0) a DC?. ).

Indeed, if Ilu (t) hh~ I c28
(t 0 ,T0) on [t 0,10

) ,  we consider

(1.41) u ( t )  — U ( t ,t 0)u (t 0
) + I U (t , s) F ( s ,u ( s ) ) d s

t o

Now , assumption (P4 ) (where we can replace ‘V i by ‘V 2 > ‘V l ) together with a generalized

Gronwall lemea imply

‘V(1.42) II ?. 
2 ( 8) u ( t )  II ~ . c29 (t 0 ,T0) on It 0 ,T~ )

This bound , assumption (Fl) or (Fl), and (1.16) show that for any sequence tn + To {u(tn )}• ‘V2 ‘V2is a Cauchy sequence in DC?. ) and thus converges to a limit u(1
0

) a D(A ) .

• The global existence of a solution u on (0,1) is thus proved if we can derive the

following a—priori estimate for any strict solution :

(1.43) IIu t II I c28
(t

0 ,T0
) on (t

0
,T0)

where 0 a t
0 a T0 a 1.

Let u be a strict solution on (O tTo)
~ Then by (A2) and (P0) we obtain for t a [t

0
,10

)

~j 
(lull 2 + Re(P. (t)u,u) I q c1(10)hi uhi~ + c19 t0.T& h u l l 2 + ~ Ih uh l 2 + 4 11911 2

and

~~ 11u11
2 

~ 
2cl9 + u hI u lh 2 + 11911 2
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These two estimates imply the energy inequality

( 1.44) IluCt ) 11
2 
+ J llu s hl~ ds I c30(t01T0

, ?hu t0 Il~ hh~ ll~~( (~~,~~),14)) , t a (t0,T0]

By (P2) we get for the strict solution on (O,T0
) :

—n 2(1—n
(1.45) II ?. °(O)P0(t,u(t))iI 

< c 31
(t o,T0)Ilu (t) lh 0 

, ~ a 1t 0 ,T0
)

(a31 depends also on IhuCt 0 II and g) and by (1.19) , (1.20) , and (1.21) 11u u I’m satin—

fies the integral inequality

(1. 46) fIu (t) ff I c 32 1(u(t 0
) 11m + 

1 1
t — — — n  2 (1— n ) ——

+ c33 
{(t—s ) 2 ° hl u s IL + (t— s) 2 119(s) l1 )ds

for t a (t 0,T0
) ,  where the constants c32

, c
33 

clearly depend on t0,T0 . hhu (to)II , and g.

The two inequalities (1.44) and (1.46) , together with the continuity of lh u ( t  11~ 
on

and the following LeUrta 1.2 imply the boundedness ( 1.43) of (lu(t) II on (t 0 ,T0) .

Thus our main Theorem is proved.

Lasma 1.2. Let ~ € c((0,T0
),P~) satisfy for all t0 a 

(O,T0)

1 1

C i) 0 c~~~(t) <~~~(t 0
) + J { (t— s) 2 ~~(5) 2(1~~~ + (t—s) 2

g(s)}ds for t a (t
0

,T
0
), where

0 <  n < 4 and g Lp,ioc
(( Ot To) t P+) for some P > 2;

(i i) ~ a

~~~~~~ Then there is a t1 € ~
0 ’To~ 

such that

~~ t) < max(1,~ p (t1
)) on (t 1,10

)

The proof of Leema 1.2 will be given in the Appendix .
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Section 2

Let ~ c be a domain with sufficiently regular boundary and let A (t) be given

by the differential  operator

(2.1) A(t) Y a°(t , x ) D _  , (t ,x)  a (0 ,T) x ~-~~~ a
a <2m

where & € ii~ is a multi-index of length ha l = and D& 
(

~~~yzl . . 
.(

~_)~
n

is a derivative of order at  with respect to the space variable x — (x 1, . . ., x ) .  Since

we want to admit systems of semilinear parabolic differential equations like (0 .1) ,  the

a0 are in general r x r - matr ices (ark )

The ellipticity of (2.1) is expressed as follows :

( 2 . 2)  M(T o
) l

l~~I
2Th

I rl I
2 < R e  

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i,k’-l hai ’. ’ 2 m

for some M ( T
0

) > 0 and for all ~ ~ ~~n, n a f r and (t ,x )  a t0 ,To] x ~~ .

(In the terminology of (18] this is called “strong ellipticity”.)

• The coefficients aa are assumed to be smooth:

(2 .3)  a’
~k (t , .) a C~~~(jT)

(2 . 4 )  a~k a C( (0 ,T) ,CU’(fl) ) °

for all To 
< T. In view of the conditions on (see (P2) and Theorem 2.1 below) we

assume min(4 ,~2~) 1 0 1 1.

Let the boundary conditions be given by

(2. 5) 8~ ~ ba’~ (x )D; , 0 1 m~ I m — 1, j  0 m — 1

I I
where

(2 . 6) ~~~~ a C~~~~~~(~ 0)

We set H L 2
(~2) and

— 

—2 3—
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(2. 7) V = Cu I u a i-i 5
~~~ , S~u 0 , j  = 0,. .., is — 1)

where the boundary conditions are fulfilled in the sense of the trace spaces (see e.g. (173).

(Actually, L2(0) and ~j
15 (( •

~) are r—fold products of the usual spaces of scalar complex-

valued functions. We won’t denote this difference explicitely.) The space V endowed with

the norm II hi~ of gU’(fl) is a Hu bert space. Finally we have ~~ (0) c V c H~’(Cl ) ,  where

= Cu € H’5 U7) , D-u = 0 on 3)~l , al Im — 11.

We don ’t want to give all possible boundary conditions (5~ } which imply that assuznp-

tions (Al ) to (A6) on A (t )  are fulfilled. First of all we assume that for any fixed

t a (0 ,T) ACt) together with the boundary conditions [B~} gives rise to a regular ellip-

tic boundary value problem in the sense of (31 , (4] (for r = 1 see also (17]).

If r ~ 1 this might be tedious to check. Therefore we confine ourselves to Dirichiet

boundary conditions in this case: V — ~‘~(0) .  If we take DC?. ) = 142m rn> ~ ~(
1U
(ç)) all

assumptions (Al) to (A6 ) on ?.(t) are fulfilled.

Indeed , after integration by parts we get (A3 ) and (A2) is exactly Garding ’s inequality

(see (18]). Since the elliptic a—priori estimates are valid in this case (see 14] or 118) )

• Theorem 12.8 in (3] gives

• (2 .8)  hh u hI ~~ I c34(T0) II (?.(t) + X ) uj h  , u € DC?.), t a (0
~
T0]

• where ) > 0 is sufficiently large .

The formal adjoint A ’ (t) of ACt )  satisfies all conditions to assure inequality (2.8)

with ACt )  - replaced by A’ Ct). That means that ACt) + XI as well as A ’ Ct) + Ar endowed

with the domain DC?. ) have closed ranges and thus by the closed range theorem they are

*
surjective. Thus we have (A4) , D(A Ct)) — DC?. ) for all t (which is (AS) ’ ), and finally

property (A6 ) follows from assumption (2 .4)  and the elliptic a-priori estimates which are

uniform on (0 t10) because of the uniform bounds of the coefficients on (O, T0].

If r — 1 we can admit a larger class of boundary conditions such that the conditions

on ACt)  are fulfilled. First of all ,  ACt) together with the boundary conditions {B~)

h~s to fit  into the framework of the “variational boundary value problems” as they are

—24—
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described in (171 , chap . 2.9. We briefly explain what our conditions on A C t )  mean:

(A3 ) says that A(t)  defines a continuous sesquilinear form aCt; u,v) on V such that

(for fixed t)

(2.9) aC t ;  u,v) — ( A (t ) u , v) for all v a V , U € DC?.)

On the other hand , (A2 ) with k — 0 implies by the representation theorem due to Lax-

Milgram that the form a(t;  , • ) defines a maximal operator A ( t )  with some domain

D (A( t ) )  which , due to assumption (A4) ,  coincides with the given operator A Ct ) (D ( A ( t ) )  —

— D(A)). Thus, for f ixed t , Alt)  is regular or maximal accretive in the sense of (9],

(161.

If the space V is characterized by the given boundary conditions as in (2.7) we have

to assume that

(2.10) ~~~~~~ is a “Dirichiet system” of order is

in the sense of Def. 2.1 in 117] , chap. 2.2. Then (2.9) is a consequence of Green s formula

(see (2. 19) in (17], chap. 2.2) , which asserts (A3) . The accretiveness (A2 ) (or coercive-

ness) of the form a ( t,  , ‘ ) on V is inve stigated by Agmon (1) (see also Theorem 9.3

in (173 , chap. 2.9). We don’t want to give all his conditions here.

Let ACt) be the maximal operator defined by the form a(t: . , • ), where w.L.o.g.

Ii — 0 in the coerciveness inequality (A2) . By the regularity results in [181 (observe

especially the remarks on page 668 ; we assume that the conditions on (B~ } required there

are fulfilled) it follows that D(A(t)) c H2isC()) n V for all t . Thus , if we endow A(t)

with the domain D(A) — H~~ ( 0) n V, we get ACt) — ACt) and ACt) is regular accretive.

Since the adjoint of ACt) is defined by

* *(2.11) aCt; u,v) — (U, A (t)v) for all u € V, V € DC?. (t))

we can apply the same regularity argument in order to derive that
* 2m -

DC?. Ct)) — D(A) — H CD) n V for all t.

Thus (Al) to (A5)’ are i~lfilled and (A6) follows by the elliptic a—priori estimates

established in (181.
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Remark 4: The problem of coerciveness of a sesquilinear form on V was considered by

Agmon when V is defined only by p boundary conditions ~~ j • 0,. . .  ,p - 1, where

0 < p < is. If p a is, then all functions in the domain of ACt), where A Ct) is defined

by aC t, . , . ) via (2.9) , fu l f i l l  in addition is - p so called “natural boundary condi-

tions” N., j — p is — 1, of some order between in and 2m — 1. These natural boundary

conditions depend on the form a( t , • , . ) and B~ . j  — O,...,p — 1, and thus, in general

are not time independent if aCt, ‘ , ) is not.

I f ,  however, aC . , .) is time independent, all these “variational boundary value pro-

blems” defined by a coercive form a(’ , .) are admitted . Again by the regularity proof

in [183 we get for the domain of the operator A — A

D(A) — H~
”(fl) n V n Cu € H~ ” (c)) , N~u — 0, j — p , . . . ln  — 1)

and for the domain of ?. defined by (2.11)

D (A ) — H2is( D) 0 V 0 Cu a 142m (~ ) N;u — 0, j  — p,...,rn — 1)

where ~~~ N; are not necessarily the same natural boundary conditions.

If we choose Y — 1425l(ç))~ we have

~ c ?(o) — (Y ~H11,2 . DC?.) , D(A ) c ~

• so that (AS) is fulfi l led in this case.

As indicated already in Section 1, Lions (16] showed under the assumption of regular

accretiveness that

(2. 12) D (A ’V ) — (D C?. ) , 
~~l ’ V  

, 0 <  V 11

where (DC?.) , is the interpolation space between DC?.) and H of order 1 — ‘V .

(If A Ct)  is seif—adjoint (2.12) can be found in [17] , chap . 1.2. If ACt )  is not self—

adjoint, (2.12) basically results from Kato ’s generalization of the Heinz inequality (10].)

* 2mIn view of the continuous eub.ddings DC?.) , D(7I ) c H CD ) , we get by the interpola-

tion theorem Theorem 5.1 in ( 171, chap. 1.5) :

—26-
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(2.13) D(A’V ) C H’(D) , D(A ’V (O)) c H5 (D) , for a — 21n’V

(For the definition of the spaces 14’(D) for real s as interpolation spaces, see 1173 ,

chap. 1.9.)

Furthermore, for the spaces H’U)) we have the analogous embedding theorems as for

RisCQ) with integer m (see e.g. (21]):

( 2.14 ) H~ (o) c L C D) for p < 
n-2s ‘ ~ < 2

(2.15) H~CD) c C~’C?~) for a ~~
. + p, 0 a p a 1

If s - 
~~
, p in (2.14) can be chosen arbitrarily. The norms in a5 (fl) will be denoted

by

After these r_arks we are ready to give concrete realizations of the nonlinearity P

satisfying the condition. (Fi).

In genera l F is given by

FCt,u) — CF
l (~~,U) , .. ., Fr (~~,U) ) , F (t,u) — F

0(t ,u) + g(t)

g = Cg 1 ,gr ) , g
k 

— gk(t,x) , (t,x) € (0,T) x (2, k — 1,...
(2.16) i i

~~ (t ,u) — ~~~~~~~~~~~ 
1, . . . ,D ~~u & ) , 1 < r , IY KI ~m

if u — Cu , . .., u )

Before stating and proving our main Theorem we remark that without loss of generality we can

restrict ourselves to the case r = 1.

Theorem 2.1. Let the measurable function

f : (0, T) x (2 x t satisfy for z €

(i) h f t.s.z1,...,zt I 1p 0(t) 
~ r

~ 1 I~~,€ < 
4a+n 

—

I~ I+n

for all (t ,x) € (0 ,T) x (2, where € C(j0,T),

—27—
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Then F0 (t ,u)  given by (2.16) fulf i l ls :
£ R

1) Condition (Fl) with ‘V = , *1
(y) = y ~~, and some constant depending on fln , c l

A(t), u0 (t) for t € (t 0 ,T0] (R K — R ( h ’ V~~h )  by definition) .

£ R,~-2 C 1— n )
2) Condition (P2) with 1 - 4~~~~= n~ < minc4, ~~~ — y 0

j 1J1
(t) =

3) Condition (P3) with it — n(8) = I — B y ,  $3 — 

~l ~ — ~—l 
>

4) Condition (P4) with ‘V l 
— ‘V

l) ,  * (y) = ~~y K , p 2 (t ) — c36p0(t).

If moreover

(ii) ~fCt1
,x,z) - f(t 2,x,z)h 1c 37 (t 0,T0)h

~
(x)It1—t2 h

1

for all t0
>0, t1 

€ ft0,T0],x € (~‘ h zh~~L h~~ a L 2 (D ) ,  0 < 0 1 < 1 ;

(iii) f is differentiable with respect to z and

I~~—f Ct ,x,z)l < p 0
(t) 

~ 
, 1 < r < < R(i~€ h) , i = l,...,~

then F0(t,u) fulf i lls:

5) Condition (PS) with p
3Ct) c38p0

(t)

6) Condition (F6) with *5 
— *4

Finally, let instead of (iii) only the following local estimates bold (z • (z1,z2),

— 
z1 — ,g~~ ), z2 — (5t + i,”~~

5t):

- 

1- 
• 

0 -

(iv) If(t1,x.s) — f(t2,x,z) I ~~~~~~~ 1t1—t21 
1

for t
1
,t1 € (o,T0], x € a. IzI I N, hT~~~ € L2 (fl) , 0 < 01 11 ;

—28—
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Cv) hf(t,x1,z) — f(t ,x2,z)~ .~~ ~~~~~~ 
— f

T n
(
~
c2)I

for t € [0 ,T
0
1, xj a ~~ Izi I N, 

~T0 ,N a L2 (D)

(vi) l f (t ,x , z1,z2) — f(t,x,~~ ,z
2
) I < c39

(T
0
,i~) Iz

l 
— ;l h

for t € (0 ,T0], x a a, 12
11, h~~I. 1221 I~~

(vii) I f ( t , x ,2 1,z2 ) — f(t ,x, z’,~
2 ) h  iI ~g~~~(x ) h z~ 

—

for t a (O ,T
0
], x € 

~~, I~~’ - hz2l, I~
2

I < N , 0 <  < 1 ,  g~~~~ E L 2,,(1_~~)((2)

Assume in addition n a 4m. Then F
0(t,u) fulf ills:

7) Condition (Fl) with < ‘V 2 < 1 and 02 — ain{ø
i
}

8) Condition (P8).

Remark 5: Assumptions (ii) , (iv) to (vii) are formulated for unbounded domains 
~~~
.

Remark 6: The restriction on the dimension n a 4m is caused by the local character of the

conditions (iv) to (vii). We have to assure that IIA ’V 2 c e u t I h  IN implies a pointwi.e

bound of the function Iu (t ,x ) I .  namely h u ( t , x ) I  IN .

Proof: We prove (P2) to (P6) under the as.*aptjon r~ = ~~ — R (hc~
p ). If 1 Ir K a the

estimates hold a forteriori.

1) Estimate (Fl) is simply a consequence of the continuous embedding. (2.13), (2.14) .

2) Let v € L
2((2) be arbitrary. Then

— * 

(v , :  0 (e)? (t ,u))~ I(?.* 0 (9)v , F
0Ct,u))I 

—TA * _tA*(here we used (A ‘V) = A* , which can be seen by definit.~n (1.19) and (. ) — e

—29—
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I Ik* °(e)vII IIF0
(t,u) ¶I Lq (52) ~ p + q - 1

I c40(T0) IIv Il p o(t) I IID~ ulI L
K
R ((2) , p = n—4~y;0 

‘

< c41tT0
) IIvIlp o(t)

~~ I1 u II 8
C 

, qR,~ n—2(s —I~~!) 
‘

2I~~I+nwhere a = is 2m+n . (We also used that D.. is a bounded linear operator from

into ~~hI 1~> for any real s > Icl~ 
see jll] Theorem 9.7, chap . 1.9.) Combining these

conditions on the conjugate exponents p and q and taking into account the definitions of

and s
~ 

we get

(2.17) 2(l_y
~0
) — R~ —

Now we mike use of the interpolation inequality for the norms in H5((2) (see [17], chap.

1.9):

(2.18) lI u ll , I c42(s,m) I l u ll  ~ IIu II~ 
(5,’m)

, 0 I~ I is

which f inally yields

2(l—~ ) £ R~ — 2(l
~ n

• Cv , A ° ( O) F 0 Ct , u ) ) I  Ic43 (Tø)IIv II~~
(
~ IIu II~ 

0 

K l  
I I u I I 0

Since V is arbitrary (P2) is proved.

2(~~~(+n
3) The same argument proves also (P3) (choose e~ — 2m~ )

4) By assu~~ tion Ci) we get
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)IF0(t,u) II ~ ~o
(t

~ K~~l 
?ID~~U I I L2 (D) nD~~UIt L;(~~_1)q((2) 

~~ + — I

£ R — l
< c 44 (T0)p~t)~ A 1(e)uII ~ IIuII , j f

(2.19) 2p I n_2(
~~~i

_ 1
~K I) 

2(R~-l)q I n_2 (~_ l~j~ 
. -

•

(If one of the denominators in (2.9) is less than or equal to zero then the conjugate ex-
ponents can be chosen arbitrarily.)

Relations (2.19) yield the condition

C2 .20) ‘Vi >
~~~~

. (3
~ RK) , K l , ... , t

which is fulfilled by ‘Vl — 
~ 

( 3-y~~). Ctserve that ‘Vl < 1.

The proofs of conditions (PS) and (P 6) are analogous to those presented here so that we omit

them.

Finally for the proof of (P6) and (P7) we refer to (123 , Satz 5.5. Thus Theorem 2.1 is

proved.

Condition (P0) on F (t ,u )  is not expressed in terms of the funct ion Z by- the same reasons

we gave in the introduction . This “sign—condition” (p0) ha. only to be fulfilled for u In

• the domain DC?.) which possibly allows integrations by parts. Typical examples are given
by

a r
r K au 4~i—2P( u) = u , 1 a r < —

K nK l  K

when DC?.) ff 2m ((2) n ~15
(fl) or

£
P(u)— — Z u I D = uI h K I ... 2’n 2K 1  ‘VK

for any DC?.) — H~~~(D) n V. In case of the Navies—Stokes nonlinearity the fact that

—31—
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div u = 0 for u a DC?.) is the reason why ( ( u .V )u , u) • 0 for all u vanishing on the

boundary aa.

Application of Theorem 1.1 yields global strict solutions of the evolution equation (0 .2 )

in H L2
(f)) where A(t) and F are given by the differential operators described in

‘V 2this Section . (For a characterization of the initial value u0 € DC?. ) see (2 .27)  below.)

As mentioned in the introduction , however , a classical solution of (0.1) is desired .

We finish with some remarks about how to prove that a strict solut ion of (0 .2) is

actually a classical solution of (0 .1) .  Let us assisne for simplicity that the data of pro-

blem (0.1) are smooth (i.e. the coefficients of A C t ) ,  B . ,  the boundary ~D, and f). Let

us further assume that, for fixed t, A(t) together with the boundary conditions gives

rise to a regular elliptic boundary value problem in any space L (D) , p > 2,  and also in

the H& ider spaces c~ Cci ) for 0 < < 1.

By a resolvent estimate due to Agmon j2 ] —?. (t) generates an analytic semigroup in any

and , moreove r , the family A C t )  generate s a fundamental solution U~ (t~s) in

with the propertie , listed in Section 1 (for the details see C 7 ] ) .  The operator ACt )

considered in L~ (C2 ) will be denoted by A~ ( t ) .

Let u be a solution in C” ( ( 0,T) , D ( A ) )  c CV ( ( 0, T ) ,  H2is( ( 2 ) ) .  By the assumptions on

f given in Theorem 2.1 we have

“1P0 C • ,u) C C ( ( 0 ,T ) , L (a) )  for some >

• p1

where p1 — (4 a + ) (~~~~~) > 2. (If 2m — n , p1 can be chosen arbitrarily, if 2m > n we

go imeediatàly to the steps described below.) Considering P as an inhomogeneity, the re-

sults in (231, (71 show that u is actually in C”((0,T), D(A )) c C”((O,T), W
2inU2)). Re-

p1 
p1

peating this argument we get sequentially

“1 -

F C • ,u) £ C ( (0 ,T) ,  L ((2) ) , -
0

-
~ 

p n(2a+n)
where 

~k+1 — C4~ +n~~ n—P kn ‘ ~k , k — 1,2,...

— 32—
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Obviously we have Pjis > a for some j. An embedding theorem due to 1brrey, analogous to

(2.15), yields

U € C~((0,T), W~~C(2)) ~ C
V ( ( O , T ) , C~ (~~) )  ,

(2.21) 
—

F0
(.,u) € C ((O ,T), C~ (fl) ) for some p > 0

We tacitly assumed that g € C ( ( O , T ) ,  L ( (2 ) )  for all p ‘ 2. Let us further assume that

g € C 1((0 ,T) , C~ ( T h ) .  Then the results jn [23] (see fo~~~ 1as (2 .7) , (1. 70) , ( 1.71)) yield:

du exists in the topology of DC?. (0) ) with 10 < min( u 1,cs) and

du 10
€ C((O,T), DC?. (9))) for some fixed 9 and all p > 0.

The eimbeddings (see e.g. [123 , j213)

(2.22)  D(A~°( 9 ) )  c W (fl) C C~ (() ) for 2’
~’V O > 5 + P

which are certainly true for sufficiently large p and some small p , finally gives

(2.23) A ( t ) u ( t )  = — ~~~u(t )  + F ( t , u (t ) ) a C~ (?i) for fixed t

the right hand side being continuous in C~ (Th with respect to t . Furthermore (2.21)

implies that the boundary conditions are fulfilled by u(t)  in the classical sense. Now,

the Schauder estimates for elliptic boundary value problems 13] applied to (2.23) prove

that uCt) € C
2is
~~ (cZ) which completes the proof that u is a classical solution of (0.1) .

(In (2.22) we introduced the spaces W~ (fl) for real s which, similar to the case

p = 2 , are defined as interpolation spaces between Wt ((2) and L~ ((2)~ 0 a S a £.  The de-

finition is independent of the integer £ (see [21)). For integer s they coincide with
08 1the usual Sobolev spaces, of course. The same holds for the spaces W (()) , s * £ + — .)

An alternate procedure to proof regularity is ~he following : Once we know that

a C 1((0 ,T) , L ((2) ) for some p > , we can show by l4orrey ’s embedding theorem that
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FC.,u) € C 1((O,T), C~ CTh ), where

C~ (j ~) — {u £ C~~~T ) ,  him Il u ll — 
— 0], — fl {x a X I > K]

K.*— C~ ((2.~)

Now we apply the results in [13) , especially Lenursas 6.7 and 6.8 , in order to derive that u 
-

is actually a solution of the evolution equation (0.2) in C~ (?i) which means that u is a

forteriori a classical solution of (0.1).

• Possible generalizations

We briefly indicate possible generalizations, especially of Theorem 0.1.

To this purpose we introduce the abbreviations II ~~ for the norms in the spaces

for real s. Clearly II 11 p, 0 = II II L~ c2r
°2m 2m

We assume again that A (t) with some t ime independent domain W~ ((2) c D(A~ ) c ~~ ((2)

generates a fundamental solution U~ (t~s) with the properties listed in Section 1. Let P

be given by (2.16) where now derivatives up to order 2m — 1 are admitted: Ic~I s 2m — 1.

Theorem 2.2. Assume that !~:(O,’D) ~ fl x -
~ t satisfies

- 
(i) I f ~~(t~x. z1~~.. .. z~ ) I  < p 0

(t) 
K.l 

1~J 1 I r K 
< = R(I

~~~I, 
s) ,

for some 0 I~~ I 
2m (if 

~~I + (n/p) I~~’ r
~ 

is arbitrary), j — l,...,r

£ r-1
(ii) I~ — f~~(t ,x, z1,.  .. , z~ ) I I p0

(t) 

~ 
K 

~ = 1,... ~t

for some a CUO,T) , R~)

(iii) f~ (t~,
x,z) — f~~(t 2 ,x, z ) I  Ic 45 Ct 0 ,T0 h~ ( x ) I t 1—t 2 I ’

for all t0 0, t~ € (t 0 ,T0] ,  x c (2, IzI I ii, hj  a L~ ((~)~ 0 a a1 1 1

(iv) q C l((O,T), L CD)), II~(t)II~,0 
— O(t )~ 13 >
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Then the initial value problem

(2.24) + A (t)u • F(t ,u)

• u(O) —

13possesses for any u0 £ DC?. Ce)) a unique local strict solution in E = L~(c)) (0 is some

fixed time in (0, T ) ) .

Assume moreover that

(2 .25)  IIu t II~~ I c46 (t0,T
0
) , t a (t 0

,T0] c (O ,T)

Then the strict solution of (2.24) exists globally on (0 ,T) .

Remark 7: If 5 — 0, u0 a L CD ) is possible (13 — 0).  For the characterization of the

initial condition in the case s > 0 we can use the continuous embedding (see (13] )

(2.26) W (ç)) c DCA (0) c W (fl) for a > 2ary 3 > S

If p = 2, in view of H~~~(fl) c DC?.) and (2. 12) , this can be replaced by

0
5 

1~ $(2 . 27) H ( (2 ) c D(A ) C H ((2 ) for s — Zsry
3

Furthermore, instead of the global assumption ( i i ) ,  we could also assume local conditions
13• analogous to (iv) to Cvii) in Theorem 2.1.  The initial condition must be in D(A~ (0 ) )  in

this case , where < a 1. Then the same local and global result of Theorem 2.2 is true.

The proof is completely anal ogous to that of Theo rem 1.1 C see also ( 1 3 ) ) .

Proof: Using the interpolation inequality

(2.28)  II~Il~~ I ~ 1 1 1
— s) / (t—s ) II~ II~t a)/(t—

~
) for 0 1 s a ~ a t

which follows from the definition as interpolation spaces, using the ~~~eddinq (2.22), we

obtain by assumption (I) for t £ (0
~
1
oJ

(2.29) 11r0(t.u ) H~,0 ~ c48(T0
) tlA~~e ;u II ~,0 

K 1  
H~H~~1 for some 14 

C 1 
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(If r — R ( I y l ,  s) ,  then 14
= 1. Therefore the limiting growth rates cannot be permitted.)

Now, the proof uses the iteration method developed by Kato, Pujita, and Sobolevskii: Definu

S ( ( O ,T11, D(A ~~ ( 0 ) ) )  • {u € C ( ( 0 , T1], D(A~~(e))), sup ~~~~~ II A ~~~e u Ct II ~~0 ‘ —

I $for some Y 3 > 1 3 >~~~~~* and

u1
(t) = U~(t~O)u0

u +1(t) — u1(t) + f U ( t , s )P( s , u ( s) )ds , a — 1,2 

Using (1.14) (which is also valid in L~ C D ) ) .  the relation

(2.30) 1Ia (t 1)A 1(t 2 ) I t  I c49(T0) for 0 I Y ’ a y, t~ € (O,T 0]

and the estimate (2.29) yield by induction

u a C ( ( 0 , T1) ,  D(A 3 ( 0 ) )  n S( ( 0 ,T1
) ,  D(A

4
(O ) ) )

The further proof follows exactly the lines as described in Section 1, since we have ~~~ ‘

assumption (ii)

14 t r,~—l r~ —l
(2.31) II F 0 (t , u1) — F0

(t,u2) ‘1 p,0 I c50 CT0
) II?.~ (0) (u

1—u 2
) 11 p , o 

~~~ 

(IIu 1U~,5 + lIu 2II~,5

The global result follows from (2.29) which yields for IIA~~Ceu U i I~ 0 a linear integral

in quality and thus a bound on any interval (t 0 ,T0J c (0, ?) . Clearly, if the data are

smooth enough, this global solution is a classical solution of (0.1).

Theorem 2.2  applies to the situation in (20) where p - 2 and s — m. However, our proof

if considerably simpler since no a-priori estimates of Solonnikov are used. Furthermore, as

long as the function f is locally Lipschit z -contin uous Cse e assumption (vi) of Theorem 2.1

with — z) in contrast to (20) no compactness is needed at all.

-36-
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Corollary 2 .3 .  Assume that (2 is bounded and that , instead of (2 .25) , the a-priori bound

( 2 . 3 2 )  11u t II I c Ct 0,?0
) , t a [t0,T0

) c (0 ,7)
C~~(fl) 51

is valid. Then in assumption Ci )  the growth rate

(2 .33 )  r a
K Iy I—p

will suffice to assure the global existence of (2 .24)  in E = L~ (Q)~ where p a = is

sufficiently large.

Proof. For bounded domains we have the continuous embedding

(2.3 4) C~~~2) C W~ (D) for p > S and any 1 < p a —

This follows by interpolation since C1U2) C W’(D) and C°((2)c W~ ((2 ) = L~ ((2) (see [13),

p. 140) .

This Corollary is the main result in a recent paper of W . von Wahl : “Uber das

Gr~sstnz~gliche Wachstwn der Nichtlinearit~ t bei Seinihineare n Parabolischen Gleichungen

Beliebiger Ordnung”, J. Punct. Anal. 27 (1978), 118—135. (He also admits, however,

-
• u0 £ C~ ((2) as initial condition for the corresponding Volterra integral equation when U

is sufficiently small.)

It would be interesting to know, for instance by a counter-example, whether in (2.33)

equality is allowed or not. If not, then the growth rate (2.33) could be considered as best

possible. The same question should be asked for all growth rates given in our paper , of

course. In case of Theorem 2.1, where equality is allowed , the growth rates r~ 
= R

~ 
seem

to be the best possible, in general . In case of Theorem 2.2 , however , we leave it open. It

will be rather tedious to construct counter-examples.

It would also be interesting to know , when a—priori bounds (2.25), (2.32) can be ob-

tained. For (2.25) with p — 2, s — in one answer im given in (191 , (201 . An alternate

method would be using sign-conditions in (0.13) in order to obtain an a-priori bound for

. 37—
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lIut il and thus again (2.25 )  with p = 2 , s — in. Then A( t )  need not be sehf-adj oint and

also derivatives in the nonlinearity could be allowed .

As for (2 . 32) , only the case p • 0 for second order equations ( maximum principle)

covers a reasonably large class of problems . Then the global existence result is included in

Theorem 0.1, of course. It should he mentioned, however , that for p = 0 and second order

equations the growth rate (2 .33 )  is not the best possible since quadratic nrowth in the first

derivative s can be admitted (see (15]) .  For p > 0 the a—priori bound (2.32 )  is more or

less of academi c interest only.
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~ppegdix

Proof of Lenuna 1.1: Let u * 0, U € DCB), and v — I I u II ~~u . Then IlvIl = 1 and

dis t(A , s ( B ))  ~(Bv ,v) — A l  — I((B—A)v,v) I I IhB—A VII
n• iiuii II ( B — A ) u

So B— Al is injective and the range of B— Al is closed provided dist CA ,S(B) ) > 0. If

moreover A € P (B)  then

(3.1) II (B— AI) ~
4 II~~ > dist( A ,S(B))

Consider the set P ( B )  n p
0 * 0. It is clear ly relatively open in P0 . It is also relative-

ly closed in P0 . Indeed , if 1n a P ( B)  0 P0 and A + A a P
0, then dist (A ,S(B) ) > 0.

For large enough n we have dist (A ,S(B))  > ~~dist (A,S(B)) and, again for large enough n,

IA _A
n I a dist (A , S ( B ) ) .  This implies by (3 .1 )  that A is in a ball of radius less than

II (B— A~I)~~Il ~ around A .  Therefore A £ P ( B ) . By the connectedness of P0 it follows

that P C ?. ) 0 P0 — P 0 or p C p (3) . Finally

II rn — AI~~~ I I Idist(A ,S(B))’ for all A € P 0

follows from (3.1) .

Proof of Lenlna 1.2: Because of assumption (ii) for all C
l~ 

C
2 

> 0 there exists a

t1 = t
1(a 1,c 2

) a (T0— c 2 ,T0
) such that

(3.2)  ~~(t1
) 2 

1T =t0 1

Choose

8 2~~~ 1such, that 
~~~~~ ~l 

I

such that 
(~ 

~42 /2)~~ IkIIL(?0_C21T0) + ~~~ ~2 
-n 

I ~~ 
+ - 1)

Define the interval .7 = Ct a (t 1,T0):~~(s) I L  for a € (t 1, t ) },  where t1 — t 1(€ 1,s2
) 

—

and L ip (t 1) .  By the continuity of ~ the interval .7 * 0 is closed in (t 1,T0) .  For

t € J  we have

—39— 
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~ (t) I~~~t 1) + (
~ 
(7
0
_t
1
)
(2_ /2).~ U L C T 0 ,t

1
,T0

) + i~ i~ 
(T
0
-t
1
)2 L

2
~~~~

If ~~(t1) 14  we choose L — 1. By the choice of we have ~P C t )  a L for all t a j

which shows that J is also open in (t 1,70) .  I f ~~Ct 1
) > 4  we choose L — 2’PCt 1) .  By

the choices of £
1 

and £2 
we have again ~(t) 

a L for all t € .7. The closedness and

openness of J in (t 1
,T0

) implies that .7 (t
1,T0

) .

We next present an improvement of Lenmia 1.2 which we owe to L. Cafarelli .

Lemea A.l .  Let P a C((t0,T0
) ,  F~) satisfy

(i) 0 I~~~~~ (t) < C + f Ct-s) 2 
-

~~ ~~C S) 2( l-n) dS
to

for t a (t
0
,T
0
) and some 0 I fl < 4 , C > o

(ii) ~ C L2 ( (t
0
,T0

) ,  ~~~ .

Then ~~(t) I L  on It0
,?0
) where L depends explicitly on C, ~ Ct 0

) ,  II~ I1 L2(t0,T0)’ 
and

n (see ( 3 . 4 ) ) .

(Observe that t0 
is fixed in this lesra.)

Proof: Define the sets A.~ 
— {t a (t

0
,7
0
) ,  2k < ~(t) a ~~~~~~ k — 0,1,... , and for

A £ (0,1) 
~ A 

= € 
~~~~~~ I~~I > A2 2k } ( l A

k i denotes the measure of A.K
.) Because of (i i)

we have

and 

- 

I A k I 2
2k 

I I ~(s) 2ds 
~ Il~II~2 Ct 0,?0)

card(J 1) A  = ~ a ~ IA~l22k < lkIl ~ Ct T ) ll~ lI 2
k€J A kEJ A 2 0 ’ 0

which implies

±i ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ TI
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‘ Ak ’ I PI~~lI 22_2k

card(J1) I II~ II 2 A~ (card (J
~
) denotes the car dinality of .

• 
Now choose

2
1—2~

A a — (—_.~fl)
4 32

(3.3)

— max {~ (ln2)~~~1n ~(t 0
) ,  4(1 + (ln2)~~~ln C ) ,  (1n2)

_l
ln~

16(2 1
~~~~~~~~~~ )

Define the intervals

= (2w’, 2M(v +l) ) , ~ l , . . . . , ( I I ~~~II2
A

h
1 + 1

where (II’P lI 2A~ 1 is the biggest integer I I (~,Il 2 A~~

Then there exists a such that I~, ~ = 0
0

M (v
0
+l)

We claim that there is no t £ (t 0 ,T0) such that ~(t )  > 2

Assume that there are such t ’s. Because of ~(t 0
) a 22M there is a first t1 € Ct 0 ,T

0
)

:- M (~ +1) 
M(v

0
+1)

such that ~(t1) = 2 . By the definition of Ak clearly (t , t1
) C Li Now,

k—O
by (i)

t 1 M C v +1) 11 — — — n  0 —— —ii
2 0 

— ~(t 1
) I C + f (t1—s) 2 . ) 2 C l

~
n) d I C + ~ / (t 1—s) 2

• 

- 

to k=O IL
~

M ( v +1) 1

+ 
~~~ k 0  

22o1~~
1) (l—r ~) 

1Ak 1 2 
—n

Nv0-l “o~~spi t . th. sum into Z + • For the filet sum we have the estimate
k 0

l Ak E 2 —n 
I 11,11l— 2n 2— k Cl— 2 n ) and for the second, in view of I — 0,

—41—
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~~ I A2 -n 
2
-k ( 1-20) Thus we get:

14(V +1) ( ~~~~ I MCv0
+l) ‘

~~

2 0 
1 C + ~ ~( 2 11~~1 1)

l— 2n ~ 2k + (2A 2 )~~~
2n 

~
L K 0  k M ~0

1 M ( V +l)

I C  + 4~~~~ 2n 
~~,~~11 l-2n 2-M 

+ 2A~ 
_n) 2

M(V0+l)a 2

by the choices of A and 14.

This contradiction shows that

M (v +1) ii ii2~ —l(3. 4) ~Ct a 2 0 
1 2~~~1~~ 1 1 + 1)

where A and 14 are given by (3.3).

Remark 9: The assumption that ~ is continuous on (t
0
,T
0
) was only needed to assure that

M ( V +1)
‘P is locally bounded on (t 0,t0 

+ 6) and that the time t1 where ‘PCt 1) — 2 0 for

“the first time” is well defined .

Remark 10: The only property of the kernel which was used in both versions of the lesra is

the estimate

/ Ct 1— s) 2 ds 1 ~~~~ I A I 2 for A C (t 0,t 1
)

Thus the kernel could be replaced by any function k ( t ,s )  in the Marcinkiewicz classes

2 1

(t ,t) — (k(t,):Ct ,t) -‘ ~~~ ‘ If k(t , s)d s I a c l A l 2 fl
}

0 0 A 52

for all measurable A c (t 0 1t ) ,  t a Ct01?0
) being arbitrary.

Remark 11. using L e a  A.1 instead of Lesua 1.2 we get an a—priori estimate of IIu t IJ~ °~
(t 0,T0) depending on t0

, T~, ll~~t (,) 1L~’ 
g, and the constant 030 in the energy inequality

(1.44) . -
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