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\ ABSTRACT

We prove the global existence (in time) for any solution of an abstract
semilinear evolution equation in Hilbert space provided the solution satisfies
an energy inequality and the nonlinearity does not exceed a certain growth rate.
When applied to semilinear parabolic initial-boundary-value problems the result
admits also the limiting growth rates which were given by Sobolevskii and Friedman,
but which were not permitted in their theorem. The Navier-Stokes system in two
dimensions is a special case of our general result. The method is based on the
theories of semigroups and fractional powers of regularly accretive linear
operators and on a nonlinear integral inequality which gives the crucial a-priori

estimate for global existence.
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SIGNIFICANCE AND EXPLANATION

Semilinear parabolic initial-boundary-value problems occur very often in appli-
cations. Typical examples are the basic equations in hydrodynamics (Navier-Stokes

system), heat conduction, and reaction-diffusion processes.

Given any initial value (i.e. an initial velocity field, an initial temperature
distribution and so on) the parabolic partial differential equations describe the
evolution of this initial status in time under certain time independent boundary
conditions. If these equations are linear they do not allow a "blowing up" of the

solutions in finite time, thus describing the process for all time in the future.

If there are nonlinear terms, however, a typical phenomenon is the possibly non-
global existence of a solution - the solution may exist only for a certain finite

length of time. This can be seen already with simple examples in ordinary differen-
tial equations.

In addition to the partial differential equation, however, there often exist
upper bounds for the energy of the system, which is expressed by an energy inequality.
Such an energy inequality will suffice to assure the global existence for solutions
of ordinary differential equations. The situation is different for partial differ-
ential equations of parabolic type: a partial derivative (with respect to the space
variable for instance) might blow up without increasing the energy to infinity. If
this happens the solution ceases to exist. This phenomenon in hydrodynamics, for

example, is called "turbulence" and it is not yet completely understood.

If, however, in addition to an energy inequality certain growth conditions on
the nonlinearity are fulfilled, such a blowing up as described above can be excluded.
A well known example is the Navier-Stokes system in two space dimensions. 1In this
paper we give a general theorem which improves the known results since it admits also
the limiting growth rates which were not allowed to be assumed under similar conditions

so far. The Navier-Stokes system in two dimensions is a special case of our general

result which allows many other applications. ot ]J
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lies with MRC, and not with the author of this report.

sttt S



T i———

GLOBAL SOLUTIONS OF SEMILINEAR EVOLUTION EQUATIONS

SATISFYING AN ENERGY INEQUALITY
Hansjorg Kielhofer

Introduction

A well known functional analytic approach to semilinear parabolic initial-boundary value

problems of the type

a
+ N
u, z a (t,x)Dau

5 £(t,%,D; u,...,Dy u) in (0,M) X @, 0<T <= Qc K
|a|<2m 1 [

(0.1) B,u=0 on (0,T) X232, j=0,.c., m=1 ,
u(0,x) =u°(x) in @ ,

is briefly described as follows:
The unknown solution u(t, ) = u(t) is considered as a curve in some appropriate space E
of functions on . As such it is to satisfy a corresponding initial value problem in E:

g_: + A(t)u = F(t,u) ; t e (0,1
(0.2)
u(0) = “0 .

By A we denote the family of linear differential operators which for t ¢ [0,T) is given

by

(0.3) i A(t)

) a“(t,x)ba s
|a|<2m

The boundary conditions are replaced by the condition
(0.4) u(t) e D(A) , te (O,T) ,

where D(A) denotes the time-independent domain of definition of the family A.
Parabolicity means that this family A is uniformly elliptic on every closed interval

[0,'1'0] c [0,T), and the semilinearity is expressed by the fact that

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
Deutsche Forschungsgemeinschaft.
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(0.5) F(t,u) = £(t,x,Dz 4,...,Ds u)
Y Yo

is of lower order then A(t), i.e. [y | < 2m - 1.
s

In Section 2 we shall render our assumptions on A, F, and the boundary conditions

Bj much more precise.

Of course, the notion of a solution is different for problems (0.1) and (0.2), and, in
general, the solutions are not equivalent.

A solution of (0.1) is called a classical solution if all derivatives occuring in the
partial differential equation exist in the classical sense and are continuous in (0,T) x Q.
and the equation, the boundary conditions, and the initial condition are fulfilled pointwise.

A solution of (0.2) is called a strict solution if du/dt exists in the strong topology
of E, if u(t) is in the domain D(A) for all t € (0,T), if all terms in the differen-
tial equation are continuous on (0,T) (in the strong topology of E), and if u is also
continuous at t = 0 and fulfills the initial condition. (This definition tacitly implies
that the nonlinearity F makes sense for all u in the domain D(A)).

From the point of view of existence of solutions it is desirable to be able to show
that a solution of (0.2) is in fact a classical solution of (0.1). This turns out to be the
case if the data of problem (0.1) are smooth encugh (see Section 2).

The local existence theory for problem (0.2) is quite analogous to that of ordinary
differential equations in finite dimensional spaces. Although unbounded operators are in-
volved in equation (0.2), they disappear if it is rewritten as a Volterra integral equation
in some appropriate subspace of E (which is the domain of some fractional power of A).
That integral equation, however, has a weak singularity.

The main tools of this approach are the theories of semigroups and fractional powers
of linear operators. Among many others who made considerable contributions to these theories
we want to mention T. Kato and P. E. Sobolevskii who were in turn influenced by K. Yosida
and M. A. Krasnosel'skii respectively.

Our approach is closely related to Sobolevskii's article [23] (see also Friedman's

book [7]). For the applications he chose E = Lp(n) where Q has to be bounded. If Q

2=
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is unbounded we refer to [12], [13]. Ir addition to E = Lp(ﬂ) we also chose the Holder
space E = Cf(ﬁ) where the star indicates some decay for |x| + o which is weaker than that
in Lp(Q) (see Section 2). Thus solutions of (0.2) can be found which are not necessarily
in Lp(n). (In addition to that, the CM-approach immediately gives, by definition, classi-
cal solutions.)

In complete analogy to ordinary differential equations the local solutions of (0.2)
don't necessarily exist on the whole time interval (0,T). By a continuation argument, global
existence follows from an a-priori estimate of the solution u(t). But in contrast to the
finite dimensional case an a-priori bound in E won't suffice in general to guarantee global
existence. (For a counter-example see [15], p. 39. Unfortunately this example doesn't fit
into the framework of this paper since the boundary conditions depend on the time t.) Thus,
in addition to an a-priori bound in E, certain growth conditions on the non-linearity are
required.

The first general results in this connection are due to Sobolevskii [24] and Friedman
[6]:

Theorem 0.1. Assume that for some 1 < g < = every solution of (0.2) satisfies

"u(t)lqu(Q) £ C(To) on [0,T0] c [0,T) and the nonlinearity satisfies
£ r,
(0.6) |£(t,x,D~ u,...,D~ w| <ca + z b~ u] ™) , where
N Y k=1 Yk
(0.7) r Ai._(n_/q_)_g R(Hx,) s

< -
< |y |+ /e
K

Then any solution of (0.2) in Lb(n) (for some p > n) exists on (O,To]. (Observe that

any solution of (0.2) in LP(Q) for some p >n actually is in Lq(ﬂ) for all g < =.)

The method of their proof can't be generalized to allow a growth rate e R(|§K|).
(See the proof of Theorem 2.2.) The key point is to obtain an a-priori bound in a norm which
is strong enough to estimate the nonlinearity. Thus the semilinear problem can (formally)

be considered to be a linear equation with a bounded inhomogeneity.
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The cases of Theorem 0.1 most often used in applications are g= 2 and gq= . Whereas

the latter applies essentially only to second order equations (maximum principle), an |
Lz-a-prlori bound can be obtained in a reasonably large class of problems of arbitrary order
2m. A sufficient condition is given in, e.g., [24], [6]:

(0.8) Re £(t,x,D= u,...,D- Wi <alul?+b , ab>0 ,
Y1 Xg LE i

provided Re(A(t)u,u) > 0. (Here and in the following ( , ) and || H denote the scalar
product and norm in L2(9)-)

It is much more general to give (0.8) in the form which it is needed in:

(0.9) Re(£(t,x,D~ u,...,D. u) ,u) < a||u||2 +b
3 Ty ¥

for all u ¢ D(A) and (t.,x) ¢ [O,To] x Q.
One of the best known examples where (0.9) is fulfilled is given by the Navier-Stokes
system written as an evolution equation (0.2) in a suitable Hilbert space E c LZ(Q) (see

[22), i, (8.

It is also well known that any strict solution exists globally provided it
is a plane flow (n = 2). But since the nonlinearity in this case has the form uDlu
(D1 is a first order differential operator) and R(0) = 3, R(1) = 3/2 for n=2,q = 2,

this global existence result is not a consequence of Theorem 0.1.

Where does the additional information come from? It comes from an energy inequality

) -
(0.10) : llue) ||? + Re [ (A(s)u(s),u(s)as < C(T) on [0,T] .
0

(The constant ClTo) depends also on other data of the problem like the initial condition,
external forces, the domain R and so on. But we consider these quantities to be fixed.)
Such an energy inequality (0.10) is valid for ;he Navier-Stokes system. We emphasize
that in most cases wherean Lz-a-priori estimate is obtained also an energy inequality is
valid. (It certainly is under the assumptions in [24], [6].) Therefore it is more natural

to assume (0.10) instead of only [lu(t)|| < clTy).
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The first general global existence theorem for plane flows, after the pioneering work
of J. Leray in the yeirs 1933-34, was given by O. A. Ladyshenskaja in 1958 [14). We formally ; 1
sketch her proof from the point of view of possible generalizations. Let E be the closure

in Lz(Q) of all smooth solenoidal (div u = 0) vector-valued functions with compact

support in Q and let P be the orthogonal projector on E. Then A = - PA can be given

a dense domain, generalizing homogeneous Dirichlet boundary conditions, such that it is a 4
positive self-adjoint operator in E. The nonlinearity is given by

F(t,u) = - P[(u*V)u] + g(t), where g comes from the external force. With these definitions
we are led to the abstract initial value problem (0.2) in E. 1In view of the self-adjointness
we have (Au,u) = "51/2“”2. ‘
After differentiating the equation with respect to t and scalar multiplication by u,

Ladyshenskaja obtains y

3 4 2 ) 5 T S : :
(0.11) g5 lu li*+ ||la u |l (G *Du,u) + (g ) i

| g where div U = 0 is used. Since ”ut”L4l9) < Cllutll ”V“t” is valid in two dimensions, 1

she has the estimate

"

(- Duu) < Cllu |l fIva]l o]l -
and so i

d 2 1/2 2 I - 2 1/2 2 2 2 | ¢
ae Mu ™+ 2[a7 %0 )17 < T IA™ %al| S llug |7+ A7 50 )17+ g™+ (191 - &

This implies, in view of (0.10), a bound on ||ut(t) || on [0,Ty). (We used the equality ;

! "Vu” = ||A1/2u||.) The original differentiated version of the energy inequality (0.10), ’

i | E
namely
(0.12) (u, ou) + ||A1/2u||2 < a||u||2 *b on (0,7 ,

finally implies an a-priori estimate of || Al/zu(t)” which is strong enough to guarantee
* the global existence of the strict solution of (0.2).
Looking toward generalizations we first observe that the self-adjointness of A is not

. necessary for her proof. Furthermore it applies to any nonlinearity which satisfies an esti-

mate like
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d ~ 2
(0.13) Re(gr F(t,u(e)), u (t)) <t + flu ) [I° + [la

for all u(t) such that |lu(t)|| < c(r)) on [0,T ). (Observe that in the case of the
Navier-Stokes system an estimate like "(ut-v)u|| < C||wu]| "vut” is not true in two dimen-
sions.) The assumption (0.13) refers to the total derivative of F with respect to t and
thus to the partial derivatives of £, if F is given by (0.5). A closer analysis shows
that it allows growth rates equal to R(I;KI) - 1 for the derivatives of f with respect to
D;‘u, provided l;xl < m. Adding sign-conditions on the derivatives of f, even bigger
growth rates can be admitted. 1In this connection we refer to the results of [19], [20],
whose approach is in this spirit, but different in so far as they impose a sign-condition on
a primitive of f which must not depend on a derivative of u or on (t,x) explicitely.

In case of the Navier-Stokes system the estimate (0.13) on the derivative of F does
not influence the quadratic nonlinearity -P[(u-V)u). But, however, it requires additional
regularity of the external force g, namely g, € L2((O,T).E).

In the year 1959 Sobolevskii [22] gave a global existence proof without requiring any
differentiability of g. Since our results are closely related to Sobolevskii's approach

we also briefly sketch his proof. First of all he established the estimates

(1/2)-nu” llAl/zu”,

(0.14) A" pru-wul]| < c(m||A o<n<s .

Using Heinz' inequality for fractional powers of self-adjoint operators he proved (0.14) re-

placing A by - A and cancelling the projector P. In this case he expressed (- A)-"

in terms of the Green's function of the first boundary value problem for the Laplacian, which
finally led to the desired estimate. Note that (0.14) is not valid for n = 0. Continuing

he used the Volterra integral equation related to (0.2):

t
(0.15) u(t) = e-Atu + f e-A(c-S)
0

o F(s,u(s))ds .

From (0.15) he derived two estimates:




t
. (0.16) 1aY%e) || < ocer + caazar (f Iat%uis |12 )12 2uis)]| 222
0
| : J
b & (0.17) 1aY2ue) || < vee) + cazay [ (e-"4 a2 %uie) || |2 %u(s) [|as :
‘ ()
where
t
Sit) = ||A1/4u°|| e ||A1/4 I e-A(t-s)g(s)dsll !
0 ]
1/2 172 § -ace-e)
veer = a5 |l + a7 [ e gisrasfl .
o}

Assuming only g € Lz((O.T). E), in view of the energy inequality, the relation (0.16) im-

pPlies an estimate on "Al/4

”AI/Z

u(t)|| which, via (0.17), finally gives the desired bound for

u(t)||. (For the most general assumptions on u, and g allowing (0.15) to be solved

0
globally see [11], [8].)
Since no compactness is used, Sobolevskii's as well as Ladyshenskaja's proofs hold also

for unbounded domains. The conditions on g which imply that u is actually a solution of

the initial value problem (0.2) or moreover a classical solution can be found in ([8].

The key of Sobolevskii's proof - besides the remarkable estimates (0.14) ~ is the in-

P W Sy R A ST VRS

equality

t t
©.a8) a2 [ P ggas) < (f llgtll Zan? for an1 g e 10,0, B . j
0 0

Since A is a positive self-adjoint operator (0.18) is simply proved by considering

] g% 4+ Au = g, u(0) = 0, and multiplying the equation by Au.

A generalization of the global existence result sketched above to non-self-adjoint ’
operators A requires an inequality analogous to (0.18). In [27] Sobolevskii states for

operators A generating an exponentially decreasing analytic semigroup the following in-

equality




/2

. 2. %
(0.19) < c(f |lgts) ||"as) :
0

Ilf e-A(t—s)
0

g(s)ds||1/2

-As /2

L
where "u”l/2 = (% ||ae u”zds)1 . At that time only the estimate |AYu|| < cllully/,

172
A" |

for 0 <y < i was known to him. To prove the equivalence of the norms and

2
the following techniques are used: First of all D(Al/z) is an "interpolation

I llys
space" (or "intermediate space" or "espace de trace") between D(A) and E (with equivalent
norms), provided A is "regularly accretive" (see [16]). The different notions of inter-

mediate spaces are equivalent and the norm is equivalent to one of these norms

I 1ly,2
(see [5], chap. III, Theorem 3.5.3). Unfortunately Sobolevskii gave no proof of (0.19), so
| we shall not use it.
The goal of this paper is to generalize Sobolevskii's global existence result to a class
of abstract semilinear evolution equations in Hilbert space admitting an energy inequality.
We allow A to depend on the time t and A(t) is regularly accretive (and not necessarily

self-adjoint) for fixed t. (These operators are the appropriate generalizations of self-

adjoint operators since they arise in "variational problems"; see Section 2.) Since we don't

1822

e

use an inequality like (0.18) or (0.19) we give a different proof to estimate u(t) || .
E Whereas all results described so far are obtained using linear differential inequalities

(Ladyshenskaja) or integral inequalities (Sobolevskii, Friedman), we derive the crucial esti-
1/2

r

mate for ||[A™/“u(t)|| by a nonlinear integral inequality (see Lemma 1.2).
When applied to semilinear parabolic problems our results improve Theorem 0.1 allowing

for f also the limiting growth rates r_ = R(|§K|), provided q = 2 and |;K| < m. Thus

the Navier-Stokes system in two dimensions is no longer a special or "singular" case but em-

LRS00 (RN SR

bedded into a general Theoren.

Our results will also improve Theorem II.1 in [28] with respect to the assumptions on
the nonlinearity and initial conditions. Since our notion of a solution is stronger than
that in [28] we require, however, Holder continuity of the inhomogeneity but we admit a

non-square integrable singularity at t = 0. (Theorem I.l in [28] is a consequence of




Sobolevskii's result: indeed, the same simple argument which proves (0.18) in the case of a

positive self-adjoint operator also shows the inequality

T t T
(0.20) [ lIaf e g(s)as||at < [ |lats) [|%as .
0 0 0

Thus, for any u_ € D(}\l/2

o ) the solution of (0.15) in the sense of [22] or [8], [l1] is

actually a strong solution in the sense of [28]) satisfying an a-priori estimate as indicated

in [28], Remark I.l.

In Section 1 we prove the abstract result in Hilbert space. Applications and possible

generalizations will be given in Section 2.

We want to express our gratitude to A. Pazy for many helpful discussions which led to

the final assumptions on A(t).




Section 1

The goal of this section is to formulate and to prove Theorem 1.1 which states the main
result for the initial value problem (0.2) in a Hilbert space H (by € rCpre-. we denote
positive constants depending on quantities as indicated.)

Let V C H be two Hilbert spaces with scalar products ( , ) , ( ,) and norms || || .
” || respectively. (The subscript m arises from the applications in Section 2.) We
assume that V is dense in H and that the embedding is continuous.

Let A= {A(t), t € 0,7}, 0 <T <®, bea family of closed linear operators satisfying
(Al) The domain D(A) € Vc H of A(t) is time independent and dense in H;

2 2
(a2) Re(a(t)u,w) > c (1)) [lullZ - xllull

for all t e [0,T0] c [0,T], u € D(A), and with c,(Tj) > O, k > 0;

2
@3 |awuw] < ey llully

;f for all t € IO,TOJ, u € D(a), and some cz(To) > 0;

(M) P(A(t)) n{A e @€, Re A <0} # 2

for all t ¢ [0,T), where P denotes the resolvent set;

(A5) there exists a Hilbert space Y ¢ H such that

DRR—————,

(i) VvV is a closed subspace of [‘I,H]l/2 (the interpolation space of order 1/2
between Y and H),
*
(ii) D(A) < ¥, D(A.(t)) cy for all t e [0,T), where A (t) is the adjoint

of A(t):;

(We can replace (A5) by

(A5)' D" (£)) = D(A) for t e [0,T).)

R

a
@) |lacepu - A(tz)u“ < ca('l‘o)("A(S)u” + ||u||)|t1-tzl ;

for all t,,t,, s ¢ [O.Tol, u € D(A), and some c,(T,) > 0, 0<ac<l.

1

=10~




We collect some consequences of these assumptions. First of all, in assumption (A2)
we can assume without loss of generality that k = 0 by simply adding ku on both sides of
equation (0.2). Then assumptions (Al) to (A4) imply that for any fixed t ¢ [0,T) the opera-
tor A(t) is regularly accretive in the sense of [9], [16] (see the arguments in Section 2).

Thus =-A(t) generates an analytic semigroup e-TMt),

T >0, on H. This result,
which is due to Kato [9], is a consequence of the following more general lemma:

Lemma 1.1 Let B be a closed operator with dense domain D(B) in H. Define

S(B) = {"un-l(au,u). 0#ueD@Blcl .
Then:
(i) If dist(A,S(B)) > 0 then B - AI is injective and has closed range. (I denotes the
identity, dist the distance from A to S(B).)

(ii) Let Po be a component of the complement of the closure S(B) in € with the pro-

perty P, n P(B) # . Then P, € P(B) and moreover
e - catseusen™ foran aep, -

We give a proof of Lemma 1.1 which we owe to A. Pazy in the Appendix.

Now, by (A2), (A3), we have for ¢t ¢ [O.To]

ey (e, (1) ™! Re(A(tIu ) > |In(At)uw |

which implies that

S(A(t)) ¢S, = {\e@ -6, <arg) <6} for some 0 < p,(Ty) < L

6 2

1 1

Choose 91 < @, < L and set

20
502 ={)eC -6, < arg ) < 92) .

Let 0 be the complement of EO . Then there exists a constant cy = c‘(ozp such that
2 2

dist(X, S(A(£))) > ¢, (T)|A| for all t e 10,7 )/ X e "oz .
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By assumption (A4) we have P(A(t)) n Pe # @, hence by the previous lemma -A(t) is a
2
generator of an analytic semigroup on H (see e.g. [7]).
By adding ku on both sides of (0.2), where k >k + d, we can assume without loss

of generality that

(1.1) o™ || < cgrpe™®, 120, £ e tOT, a0

Thus 0 ¢ P(A(t)) for all t ¢ [0,T) and assumption (A6) implies

21
(1.2) Haepa™e )l < egtzy

=1 o
(1.3) lacey) - ace a1l < eqtrp) It -¢,1%, t.t,08 € 10,11 .

Properties (1.2) - (1.3) suffice to show the existence of a "fundamental solution"

o of the linear homogeneous equation g% + A(t)u = 0. U(t,s) is a

family of bounded linear operators defined on H which is continuous with respect to t and

u(t,s), 0 <s <t <T

s in the strong topology of L(H,H), the space of bounded linear operators from H into

H. Furthermore U(t,s) has the following properties:

(1.4) g% u(t,8) + X(t)U(L,8) =0 , O<s<tc? ,
(1.5) é% u(t,s) is continuous in L(H,H) for 0 <s <t < To
(1.6) U(t,t) = I

(1.7) ' u(t,s)U(s,t) = U(ter) . O<T<S<t<T, .

(1.8) :Ii: ||-,1; (U(t+h, t)u - u) - (=A(t)u)}l =0 , ueD(A) .

For a proof of the existence of U(t,s) and of the properties listed above we refer to
(23] or (7).
In view of (1.1), fractional powers of A(t) can be defined for each t ¢ [0,T) as

follows:

-12-




(1.9) A7) = rip 7t { o TRLEL el Y50,
)
(1.10) AV = @ Yent, o)) = ra V)

where R(A_Y(t)) denotes the range of the everywhere defined operator A-Y(t). For
0 < B <Y<l these fractional powers satisfy the inequality of moments (or interpolation

inequality) :

@an [l < cgerg. 8 [ @ull ¥Vl BY, w e paYen, ¢ 0,1

where Ao(t) = I by definition.
Furthermore, as regards the semigroup and the fundamental solution, the following esti-
mates are valid:

-TA(t) ” =Y

(1.12) ||a¥()e :cg(ro,v)e"“r »T>0, teloT) .

(1.13)  flaY®yuce,s) | (T (t-)™Y, 0 < s <t <7, 8el0T) |,

£%0'%

(T v B (-5, 0<s <t <

Y -8
114 AT wue,sn s || < ey o

o’ 0O<B<y<l+a ,

where a is the HOlder exponent in (A6) or (1.3). Analyzing the method of construction of

U(t,s) we get the following estimate

(1.15) f|a¥(s)ute,s)ul| < €15 (Tgr¥em) (t-8) Y A" s)ul|l, u e H ,

Ox8<ctclrOcy<l;0cnca

Finally we shall need

(1.16) AY(0) (Ut+h, s) - U(t,sNA B(s)|| < & . (T ,v,BnS Y (e-0)B78 |
-— 0

13¢
0O<s<tc<t+hc< TO’ 0<y<1l, 0<B<8§<1l+a, 0<8=-y<1l .
For all details we refer again to [23] or [7].
Definitions (1.9), (1.10) do not exclude a time dependence of the domains DAY ()

for 0 < y < 1. But a remarkable result of Xato [10], generalizing the Heinz inequality,

~13-
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applies to our case: Properties (Al), (1.2) together with the regular accretiveness of
A(t) (= maximal accretiveness in [10]) imply that the domains D(Ay(t)) are actually inde-

pendent of t and that

(1.17) I epa™ eIl < e (Tem o £t

14'%0 1'%2 € IOrTO] .

holds for all Yy € [0,1). Therefore we shall write D(AY) for D(Ay(t)). Furthermore, under

the assumptions (A5) (or (a5)') the domain D(Allz) can be given explicitly:
(1.18) pa’?) =v .
Moreover
1/2 1/2
(1.19) o5 1AM 2 0rull < llull, < ¢ vy la 2erall, € € 10,1

as shown by Lions [16], who strongly used Kato's result mentioned above. (It is not too

difficult to prove a continuous embedding D(AY) cv for ¥ > %. The delicate problem is

to prove that Yy = % is admitted also. There the regular accretiveness is needed.) Lions :
showed that D(AY) is an interpolation space between D(A) and H. We shall use this later

in Section 2.

In view of (1.17) we can derive from (1.14)

(1.20) \h"(e)u(c,sn'e(ewu < €y9{Tpe Y8 ™Y, 8 0,7

and finally (1.15) implies the estimate

(rLy,m (t=9) UM AT ol

Y
(1.21) fIaY ®uce, sl < gty

|A

for ueH, 6¢ [0,Tyl, 0 <y < I, 6sn<ao

| A

We are now ready to formulate our assumptions on the nonlinearity F. At first sight they
might look artificial, but they are motivated by the applications (see Theorem 2.1).
Let F:(0,T) x p(aY) > H, % <y <1, be an operator which we decompose as

a
Flt,u) = Fo(t,u) + g(t). We assume that g € C 1((O.‘r).n) for same 0 < a, <1, which

-14-
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means that g is uniformly Holder-continuous on any closed interval [to,Tol c (0,T). The
behaviour of g for t + 0 is described in the following assumptions. By [to,Tol we
always denote an arbitrary closed interval contained in (0,T), vl.wz,... are positive
functions in C([0,=), n;) . “1'"2"" are positive functions in cC([0,T), !&), 6 is any

fixed time in ([0,T), and M is any positive number.
(FO) Re(F,(t,u), w < qc, (T)[lull? + e ot ,7) u]|?
Qs e e - 1770 m 19°70'"0

for t ¢ [to,TO], u ¢ D(A), where cl(To) is the constant in (A2) and 9 < 1;
Y
(FL) [[Fo(t,w || < epo(tq, T, (|[aY@)ulD

for t e [to,Tol. u e DAAY);

Ny 2(1-n°)
(F2) ||a (e)Fo(t,u)lliul(t)"u”n vy (lalh

+€

for t ¢ (0,T), u ¢ D(AY), and some 0O GG nin(a,%ox ||g(t)|| = O(t:_1 ) for t ¢ 0,

where ¢ > 0 is arbitrary;
- 8
(F3) |2 @)F (e, | < €51 (Egr T ¥y (A" (B2 ul])

for t ¢ [to,To] and for all < B <y where n = n(B) satisfies a relation

N =

n=1-p8 for some p > 1;

¥
) Iggea (| < uyco fla @ allv,clull

Y
for t((o:T)lu;D(Al)' YiY1<1'

N, 1-2n, 1-2n,
®) [Ia o) (Bt ay)= Pt | < uyce luy = wyllpclag il Pepclluy D+ Hlull Ceydlug iy

for t ¢ (0,T), u; € p(AY);
(F6) |]E‘o(t1,u1) - Fyltyu,) I <

a
1
(kg ToM e, - ¢ + [1aYe) u; - uy) Jlugtl|aY (o)u

Y
£ eyl | + llaY (@) u, ||

2l 1|

for t e (e, 701, u € DAY, ||AV@u ]l <M 0<a <1

1

-15-
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% Y2 %2
(F7) ""o“l’“ﬂ - Fo(tz,uz)" S (TeeM {]t, - t] T+ lla @@, -u)| %)

Y Y
2 2
for t € [0,7], u, € DA ), lla (e)uill MY Y, <L,

0 <ao,e, <1;

¢
gecC (lO.Tol. H);

¥ Y
(F8) Po(t,u) = G(t,u,u) where G : [0,T) x D(A 2) x D(A 2) > H

satisfies for any M > 0 the following two conditions:

Y
2
(i) ||G(t.ul,v) - G(t,uz.v)” 2 Cpa(ToeM) lla <8 tu; = u,) I

Y2 Y2
for t € [0,T,], lIa “cerugll. lla “orvl] < m

¥ Y
(ii) G(t,u,*) : D(A 2) + H is for any fixed t € [0,T) and u € D(A 2) completely
continuous.
Remark 1: If (F2) and (F5) hold then A (8)F(t,*) can be extended to the whole space
v = p(a”?) so that (F2) and (F5) hold for all u € V.

Remark 2: Obviously (F8) is only needed if a, < 1 in (F7). The reason for (F8) is simply

2
the following: Since we do not assume Lipschitz-continuity, some compactness has to replace
it. But that compactness is only needed with respect to those variables in which ro is
not Lipschitz-continuous. Let for example Po = Pl + P2 where Fl is (locally) Lipschitz
continuous but Fz is not. Then only Pz(t,-) : D(AYZ) + H must be completely continuous.

We shall divide all assumptions on F into two classes:

(1) = {(FO) to (F6)}

(H2) = ((FO), (F2), (F4), (F7), (F8)}.

Then we have

-16=




Theorem 1.1. Let the family A satisfy assumptions (Al) to (A6). The the initial value

problem

(1.22) g% + A(t)u = F(t,u)

u(0) = u,

possesses a global strict solution on [0,T)
for all u, € H if (H1) holds,

Y
for all uo € D(A 2) if (H2) holds. Moreover

y
(i) wu € c([0,T), H) if (H1) holds, u € C([0,T), D(A 2)) if (H2) holds;

(ii) wu(t) € D(A) for all t € (0,T), A(*)u € C ((0,T), H) for same v > 0 ;

(iii) w e Vo.M, Ww.

In case of (Hl1l) or in case of a, = 1 in (H2) the solution is unique on [0,T).

Remark 3: The reason for the difference in the required regularity of the initial condition
in the two cases is the following: Since, in contrast to (F5), the conditions (F7), (F8)

Y
are only local with respect to u, we can't control singularitief of A 2(e)u(t) as t ¢ 0.

In case of assumptions (Hl1) and u, € H we have "u(t)”n =0(t?) as t +o.

Proof: First we locally solve the Volterra integral equation related to (1.22):

- t
(1.23) u(t) = U(t,0)uy + [ Ut,s)F(s,ulsNds .
0

We show that (1.23) has a solution on some interval [o,rll where T, is sufficiently small.

1

Let us assume (Hl). To solve (1.23) we use an iteration method developed by Kato,
Fujita [11], [8), and also Sobolevskii [25]. Therefore we only sketch the procedure.

We define
i
(1.24) SUO,M1, V) = (u e c0,7], V), sup tfluce)]| < =

(O.Tll

«17=
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and

u, (£) = u(t,0)u,

t
u L (8) =) 4 fouu.s.\r(s,un(s))as, n>1l .
‘r} It is seen by induction that
(1.25) u e c(io,m), ) ns((0,7], V)

i for any T > 0. Let q <1 be given. Since

(1.26) tl/zllal/z(e)u(c,o)uon +0 for t+0

(the proof of (1.26) is analogous to that of [81, p. 281, using (1.20)) it follows, again

by induction, that for sufficiently small Tl |

(1.27) max flu (0)|l, sup t1/2||un(t) ly<arn21 .

¢ 10,7, (0,1,

(Observe that we assumed |lg(t)|| = o(t_1+€) for t{ 0.)

Now we define

w = u

a1 l,“l—u“,n_>_1.v10-=u1 ’

and, if q is sufficiently small, it is proved by induction that

1/2 n

(1.28) max [|wn(t) Il sup t llwn(t) ”“| o, P A |

(o,7,) (0,1,] |

for some q2 < 1. This implies that

. !

(1.29) u(t) = limu (6) = [ w (0) g

n>® n=0 |

|

converges in C([{0,T,], H) 0 S((0,7,], V) and that |
(1.30) lim P(t,un(t)) = F(t,u(t)) for any t € (0.1‘1]

n+o

holds.

-18-
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Observing the uniform estimate

1
-3 =0y =l+n
s

2 (o]
(1.31) lute,s)F(s,u_(s)) llg = €5 (Ty) (E=8)

s 21 ,

we can apply lebesgue's theorem on dominated convergence and thus prove that
v € C([O.Tll, H) n S((O,Tll, V) is actually a solution of the integral equation (1.23). We
later show that u is actually a strict solution of (1.22).

Now we assume (H2). To solve (1.23) in this case we use the method of [12], [13]. Again,

we only sketch the procedure. Define the mapping

t
(1.32) V(u,v) (t) = U(t,0)u, + f U(t,s)G(s,u(s),v(s))ds

g

Y
on X X X, where X = C([O.TI], D(A 2). Then, in [12], [13] it is shown that V maps

X x X into X and, for 'rl sufficiently small, it has the following properties (where
Y
|lu lx = max |A 2(0)u(t) || for some fixed 6): There exists an My, >0 such that
(0,71
1

a)  lveay v - vl <aglley = u,llyea; <10 Tl lvlly <mg o

b) V(u,°*) is completely continuous as a mapping X * X for any fixed u with ||u||x < HO'

o lveow|l,a-an™ <m foralr |v]l, <My

(Observe that for property b) no compactness of A Y(t) is needed.)

These three properties a) to c) imply that V has a fixed point u in X:

{1.33) u = V(su for some u e X [lull, <M .

This is a consequence of a more general fixed point theorem due to Darbo. 1In [12]) we gave
a simple proof which applies directly to this situation.

Next we show that the local solutions of (1.23) are indeed strict solutions of (1.22)
on (0.’1‘1].

Consider first the solution u ¢ S((O,Tll, V). This implies that u ¢ c([to.'rll, v)

for any 0 < to < 1'1. In view of (1.21) and (F3) we can prove

-19-



(1.34) ut) e DY) and [[AV(O)u(t) || < e g (ty,T) for all t e [t,,T)].

Indeed, in the first step we derive

(1)

1
29 for o < 8l <1l-n

& &
(1.35) u(t) e D(A 1) and |la *®uw) || <¢c

0

-Nn
This implies that ||A l(e)Fo(t,u(t)) || is bounded, where

(1.36) 1 -p(1 - no) <n =1- 051 <£m

.

1 0

Like in the first step this yields

2)

8
(1.37) u(t) e p(a ?) and [[a 2@u@ || < c}2) for 8 <8, <1-n

g ’

and thus a bound for "A 2(6)P0(t,u(t))|l, where

2
(1.38) l-p(l-no)<n2=1-982<n1.

since p > 1, in finitely many steps we reach “j =0 and Bj+1 can be chosen an arbitrary
number less than 1.
Now we apply (F1), (1.34), (1.16), and formula (2.9) in [23] (or Lemma 14.4 in [7], chap. 2)

in order to derive that u is Holder-continuous with some exponent v > 0:

(1.39) u € c"(lto,-rll, p@a")) .

(The modulus of Holder continuity depends on to > 0, of course.)

¥
The same holds for the solution u e X = C([0,T1], D(A 2)) derived under hypothesis (H2).

Assumptions (F6) or (F7) respectively together with the formula (2.25) in [23] (or (15.12)
in [7], chap. 2) finally yield that u is actually a strict solution with the properties
(i) to (iii) on the interval (O.Tll .

Since u(Tl) e D(A) the local methods described above can a forteriori be repeated for the

integral equation

-20-
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t
(1.40) ult) = U(e, T du(T)) + [ u(t,s)F(s,i(s))as

e

on some interval ['x'l,'rzl. Clearly u is an extension of the solution u of (1.23) to the

interval [0,T2]. and therefore we have a strict solution of (1.22) on [0,T2].

If this process is repeated the sequence Tl' Tz,... might converge to some To < T.
however, 1lim sup "u(t)”m < @, then the solution of the integral equation (1.23) on
tiT
(0]
Y2

can be extended to [0,T°] by assigning an appropriate value u(To) € D(A 7).

Indeed, if “u(t)"m S pgltiT) on It ,T ), we consider

t
(1.41) u(t) = ue,tdulty) + [ UlE,s)F(s,uls))as .

%

If,

IO,TO)

Now, assumption (F4) (where we can replace Y, by Y. > Y.) together with a generalized
1

2=
Gronwall lemma imply

Y
(1.42) la 2(e)u(c)ll5c29(c0.-r0) on Ity .

This bound, assumption (Fl) or (F7), and (1.16) show that for any sequence tn 4 To {u(tn)}

Y ¥
is a Cauchy sequence in D(A 2) and thus converges to a limit u(To) e D(A 2).

The global existence of a solution u on (0,T) is thus proved if we can derive the

following a-priori estimate for any strict solution:

(1.43) luter ||| < e qtt iTe) on [t,T)

0

where 0 < to < TO <%

Let u be a strict solution on (O,TO). Then by (A2) and (F0) we obtain for ¢t ¢ [to,To)

18 2 2 2 1 2 1 2
53 full® + rRe(A(t)u,u) < g ¢:1(1'°)||n||uI + c)oltg,T) fall® + 5 fall® + 5 llall

d 2 2 2
& Mall? < c2epg + 1l + o)l

P TS pr




These two estimates imply the energy inequality

t
2 2
(1.44) lluer |1° + f [lacs) ||lu ds < °3o(to'To' "u(to) I,

%

llgll Y, te (£, T -
Lz((touTo)pH) 0""0

By (F2) we get for the strict solution on (0,'1‘0):

2(1-n,)

n
0 o |
(1.45) lla (O)Fo(t,u(t))” < €5,(t,,T) [lutt) ||m o EETETY é

31'°0

{ (cy, depends also on llutey || and g) and by (1.19), (1.20), and (1.21) [lu(t) ”m satis- |

fies the integral inequality ‘

(1.46) s i, < exgfiuiey) il +
1
t - -n 2(1-n.) -z
+ c33] fee-ay ° onu(s)”“I O 4 (t-9) 2"9(5) | 1as
t
()

for t e [t,,Tg), where the constants Gor Soy clearly depend on t.,T.. ||u(t°) ||, and g.

The two inequalities (1.44) and (1.46), together with the continuity of [lu(t)||_~on

[ty Ty), and the following Lemma 1.2 imply the boundedness (1.43) of [[u(t) || on [t,.Ty).

e ad

Thus our main Theorem is proved.

Lemma 1.2. Let ¢ ¢ c((o.'ro),n+) satisfy for all to € (O,To)
1 1

t -5 -n i
(1) 0 <w(t) <vl(ty) +f {(t-s) . w(s)zu LU (t-s) 2g(s) }ds for t € [to,'ro), where
ﬁ %o
1
; 0<nc< 3 and g € Lp,loc(‘o"ro)’n+) for some p > 2;
- (ii) v € Lz'loc((opTol:R‘,)-

Then there is a t, ¢ (0.'1'0) such that

1

p{t) < max(l,2¢(t;)) on [t/ Ty) -

The proof of Lemma 1.2 will be given in the Appendix.
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Section 2

Let Qc R' be a domain with sufficiently regular boundary and let A(t) be given

by the differential operator

(2.1) A(t)

a“(t.x)D& . (£X) € 10, x g ,

|&E;2m

n 3 a
~ N 5 ~ ~ 2\ n
where a ¢ NO is a multi-index of length |a| = 121 a, and Dois <Bx ) 3x>

is a derivative of order |a| with respect to the space variable x = (xl....,xn). Since

we want to admit systems of semilinear parabolic differential equations like (0.1), the

a ; . a
a are in general r x r - matrices (a

ix) -

The ellipticity of (2.1) is expressed as follows:

r ~ ~
-1 2 2 o 2m; 2
(2.2) Mty " |E]“"In] < Re E I -D"af e T, < miry) [£] 7]

i, k=1 |a|=2m

for some M(T)) >0 and for all Ee R, neC’, and (t,x) ¢ 10,751 * .

(In the terminology of [18] this is called "strong ellipticity".)

The coefficients a® are assumed to be smooth:

ik
(2.3) % (t,) € @
(2.4) a"i‘k e c(lo,m),d™@) n c"([o.-rol.ctﬁ))

for all TO < T. In view of the conditions on no (see (F2) and Theorem 2.1 below) we

assume nin(%,—%) fa<),

Let the boundary conditions be given by

a,3

(2.5) By = I b ®D; , 0O<m<m-1,3=0...m-1,
|&|<mj

where

~ 2m-m

a,j 3j
(2.6) By €€ (3Q) .
We set H = LZ(Q) and

-23-




e e e 5 L S S e ; — E

(2.7 Va{u]ueﬂn(ﬂ),nju=0,j=0,...,m—1} :

where the boundary conditions are fulfilled in the sense of the trace spaces (see e.g. [17]). f
(Actually, LZ(Q) and Hm(Q) are r-fold products of the usual spaces of scalar complex-

valued functions. We won't denote this difference explicitely.) The space V endowed with
the norm ” llm of Hm(ﬂ) is a Hilbert space. Finally we have ﬁm(ﬂ) cVc Hm(ﬂ), where g
Q) = {u e BND, D;u =0 on 3%, la] <m - 1}. ;

We don't want to give all possible boundary conditions {5j} which imply that assump-

tions (Al) to (A6) on A(t) are fulfilled. First of all we assume that for any fixed
t e [0,T) A(t) together with the boundary conditions [Bj} gives rise to a regular ellip-
h tic boundary value problem in the sense of [3], [4] (for r =1 see also [17]).

If r > 1 this might be tedious to check. Therefore we confine ourselves to Dirichlet
boundary conditions in this case: V = ﬁm(ﬂ). If we take D(A) = Hzm(n) n ﬁm(n) all
assumptions (Al) to (A6) on A(t) are fulfilled.

Indeed, after integration by parts we get (A3) and (A2) is exactly G;rding's inequality
(see (18]). Since the elliptic a-priori estimates are valid in this case (see [4) or [18))

Theorem 12.8 in [3] gives
(2.8) “ullzm < C34(Ty) law) + 2ull , web@, telo,T) .

§ where ) > 0 is sufficiently large.

The formal adjoint A'(t) of A(t) satisfies all conditions to assure inequality (2.8)
with A(t). replaced by A'(t). That means that A(t) + AI as well as A'(t) + AI endowed
with the domain D(A) have closed ranges and thus by the closed range theorem they are
surjective. Thus we have (A4), D(A'(t)) = p(A) for all t (which is (a5) ), and finally
property (A6) follows from assumption (2.4) and the elliptic a-priori estimates which are

uniform on [O,Tol because of the uniform bounds of the coefficients on [O,Tol.

e

If r =1 we can admit a larger class of boundary conditions such that the conditions

on A(t) are fulfilled. First of all, A(t) together with the boundary conditions ({B.}

3

has to fit into the framework of the "variational boundary value problems" as they are
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described in [17], chap. 2.9. We briefly explain what our conditions on A(t) mean:
(A3) says that A(t) defines a continuous sesquilinear form a(t; u,v) on V such that

(for fixed t)
(2.9) a(t; u,v) = (A(t)u,v) for all v € V, u € D(A) .

On the other hand, (A2) with k = 0 implies by the representation theorem due to Lax-
1 Milgram that the form a(t; * , * ) defines a maximal operator A(t) with some domain
D(A(t)) which, due to assumption (A4), coincides with the given operator A(t)(D(i(t)) =
= D(A)). Thus, for fixed t, A(t) is regular or maximal accretive in the sense of [9],
[16].

If the space V is characterized by the given boundary conditions as in (2.7) we have

to assume that

(2.10) {Bj}?:(]). is a "Dirichlet sygtemn of order m

in the sense of Def. 2.1 in [17], chap. 2.2. Then (2.9) is a consequence of Green's formula
(see (2.19) in [17], chap. 2.2), which asserts (A3). The accretiveness (A2) (or coercive-

ness) of the form a(t; * , * ) on V is investigated by Agmon [1l] (see also Theorem 9.3

in [17], chap. 2.9). We don't want to give all his conditions here.

Let A(t) be the maximal operator defined by the form a(t; * , * ), where w.l2.0.g.
k = 0 in the coerciveness inequality (A2). By the regularity results in [18] (observe

especially the remarks on page 668; we assume that the conditions on {B,} required there

]
are fulfilled) it follows that D(A(t)) c Hzm(n) nV for all t. Thus, if we endow A(t) | 3
with the domain D(A) = Hzm(n) nV, weget A(t) = A(t) and A(t) is regular accretive.

Since the adﬁoint of A(t) is defined by

(2.11) a(t; u,v) = (u, A (t)v) forall uevV,veD@AI(t) .

we can apply the same regularity argument in order to derive that

* 2m 5 j
‘ D(A (t)) = D(A) = H (Q) nV for all ¢t. ?
; Thus (Al) to (AS5)' are fulfilled and (A6) follows by the elliptic a-priori estimates

established in [18].

-25-




T ——

Remark 4: The problem of coerciveness of a sesquilinear form on V was'considered by
Agmon when V is defined only by p boundary conditions Bj' j=0,...p -1, where
O<p<m If p<m then all functions in the domain of A(t), where A(t) is defined
by a(t, « , ) wvia (2.9), fulfill in addition m - p so called "natural boundary condi-
tions" Nj' j = psece,m =1, of some order between m and 2m - 1. These natural boundary
conditions depend on the form a(t, - , « ) and Bj’ j=0,...,,0 -1, and thus, in general
are not time independent if a(t, * , ¢ ) is not.

( I1f, however, a(- , ) is time independent, all these "variational boundary value pro-

blems" defined by a coercive form a(+ , *) are admitted. Again by the regularity proof

in [18] we get for the domain of the operator A=A

D(A) = azm(n) nVan {ue Hzm(n), Nou=20, j =p,...m=1}

j
*
and for the domain of A defined by (2.11)

*
pa") = w™@) n v {uem™@), Nju=0, 3 =p...m=1}

*
where N_, Nj are not necessarily the same natural boundary conditions.

3

If we choose Y = Hzn(Q). we have
v e H(Q) 1 D p@a") c v
< (Q (YtH=1/2' (A) , < '

so that (A5) is fulfilled in this case.

As indicated already in Section 1, Lions [16]) showed under the assumption of regular
accretiveness that
(2.12) mﬂ)-muLqu P B o
where ([D(A), H]l_Y is the interpolation space between D(A) and H of order 1 -Y.
(If A(t) is self-adjoint (2.12) can be found in (17), chap. 1.2. If A(t) is not self-
adjoint, (2.12) basically results from Kato's generalization of the Heinz inequality (10].)

*
In view of the continuous embeddings D(A), D(A ) ¢ Hzm(n), we get by the interpola-

tion theorem (Theorem 5.1 in [17], chap. 1.5):
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(2.13) pA") < k%@, b"(8)) < H®(D), for s = 2my .

(For the definition of the spaces Hs(n) for real s as interpolation spaces, see [17],
chap. 1.9.)
Furthermore, for the spaces H’(m we have the analogous embedding theorems as for

H-m) with integer m (see e.g. [21]):

(2.14) B c L (@) for pet,s<T .
s U, = n
(2.15) H'(Q) < C(Q) for s>5+py, 0<p<1l .
If s = -2'1, p in (2.14) can be chosen arbitrarily. The norms in Hsm) will be denoted
by | |l,-

After these remarks we are ready to give concrete realizations of the nonlinearity F
satisfying the conditions (Fi).
In general F is given by
F(t,w) = (F(t,u),...,F (t,u) , F(t,u) = Fo(tw) +gt)

g = (91......9') ' gk-qk(t.x) e (E,x) € (0,T) X0,k =1,...,x ,

(2.16) i i
E‘k(t.u) = fk(t,x,D- u 1,...,D. u
0 Y1 Yy

if u'(ul....,ur) ¥

o WE S L

Before stating and proving our main Theorem we remark that without loss of generality we can

restrict ourselves to the case r = 1.

Theorem 2.1. Let the measurable function

£:(0,7) x 2 x¢C'+>¢ satisfy for z e o
L x
(1) [fesiz ez | <uger Iz Sl aE 5—?';"3-- r(]y D
K=]l lYK|+n

for all (t,x) € (0,T) x Q, where By € c(10,T)., R_,_) .
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Then Fo(t,u) given by (2.16) fulfills:
R
1) Condition (Fl) with Y = ?—;{—: ’ Wl (y) = z Yy K. and some constant depending on
k=1

A(t), wy(t) for t € [t,T ] (R = R(IYK|) by definition).

L &-Z(I-no)

g 1 -1 ) L . |
2) condition (F2) with 1-3Y = n, <min(G =), ¥,(y) = .<§1 y :
Hl(t) - c35u°(t).
3) Condition (F3) with n = n(8) = 1 - gy, b= 6= vlsyy,
1 2 £ R-1
4) Condition (F4) with vy, > 53 - Y ), ¥,(y) = g§1y s By (8) = cymo(t).
If moreover
a
1
|

G4) [£(e)x2) - £(8,,%,2) | < cgy (T g () [t -t

for all t) >0, t, € It,,T)], x € Q, lz| <&, hy € L(®, 0<a) <1

(iii) f is differentiable with respect to z and

3 £ r -l
qu(t,x,z)liuo(c) I I=

e 1 *<-rl< 'SR(!;K" s i= 000
k=1

ol
then Fo(t,u) fulfills:
5) Condition (F5) with n3(t) = casllo(t) ’

6) Condition (F6) with V¢

Finally, let instead of (iii) only the following local estimates hold (z = (zl,zz) .

3 2
T (B ,0000,8; Vr B = (2 P I
1 & !.1 3 9.14-1 L

a
1

(v)  [£(e)x,2) - £(t,,x,2) | 5h‘l‘o,ﬁ(x”t1-t2l
M

for t .t € [0,T)), x €q, [z| < W, h,ro §€L@, 0<a <1 3
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) |f(e,x,2) - £(t,x,,2) ] < 'Ero,ﬁ‘*1’ - Ero,n‘*z"

for t e [0,T ), x; €, |z| <M, £ €Ly

'ro,ﬁ

(T :&) lzl - ;1|

(vi) If(t,x,zl,zz) - f(t,x,;1,22)| < C49(T,

for t € [0,T ), x € Q, |zl|, |51|, |z2| <h ;

L =
(vii) |f(t,x,zl,zz) - f(t,x,zl,zz)| <! lg; ﬁ(x)l lzK - le
x-1,1+1 o'

for t e [0,T ], x € Q, 'gl!. |32|' |i2| <M, 0<p <1, g;°'ﬁ

Assume in addition n < 4m. Then Po(t,u) fulfills:

7) Condition (F7) with ﬁ- <Y, <1 and o, =minlp,},

8) Condition (F8).

bound of the function |u(t,x)|, namely |u(t,x)| < M.

Proof: We prove (F2) to (F6) under the assumption r. = R = R(|y,|).

estimates hold a forteriori.

1) Estimate (Fl) is simply a consequence of the continuous embeddings

2) Let v € x.z(m be arbitrary. Then

nO - '"o
[(v, & (OF (c,u) | = [(a* (o), Foltou) |

-y 4 -
(here we used (A Y) = A , which can be seen by definit.on (1.19) and (e )

= Tostg 11

Remark 5: Assumptions (ii), (iv) to (vii) are formulated for unbounded domains Q.

Remark 6: The restriction on the dimension n < 4m is caused by the local character of the

Y
conditions (iv) to (vii). We have to assure that |a 2 (@) u(t) || <M implies a pointwise

If lir.<<ll'< the

(2.13), (2.14).

TA, * -tA*
=e )




T T ——————— RSP —

-n
« 0 1i2e,
< la ‘°"'”r.p(m ""o“’“’"z,q(m Tt N
0 R
2n
< €40(TH) |[V]lug (£) D- u| " p= ¢
40T IVllng(®) I 1Iog IL‘ZRK(Q) : nedmng
2n

2 R,
< (T Ivllug® § v ol 7
a'% I¥llug® § lell " a2 -8 D

2|§‘|+n

where s =m
K

e (We also used that D; is a bounded linear operator from Hs(n)

into Hs-lil(g) for any real s > H]; see [17) Theorem 9.7, chap. 1.9.) Combining these
conditions on the conjugate exponents p and q and taking into account the definitions of

RK and s, Wwe get

(2.17) 2(1-ny) = gk;‘ﬁ- é_‘::_:_ :

Now we make use of the interpolation inequality for the norms in Hs(n) (see [17], chap.

1.9):

2" fall?= 7,

(2.18) ||u||s 2 ¢y, (s0m) |lu 0O<s<m ,

which finally yields

-n 2(1-n,) % R =2(1-n,)
0 0 0
[tvo & T(@F (c,u) ]| < cpq i) [Iv]lug@[lull, .<§1 [lu]] :
Since v is arbitrary (F2) is proved.
2[5, |+n

3) The same argument proves also (F3) (choose . " 2mB -—2;;«—) .

4) By assumption (i) we get




) R -1
legew ] < u (2> D- u D. ul|.©
o o K_Zl I 3 ”LZp(m Il e Iy

O |-
+
Q|-

(@)
2(R -1)q
01 L RK-].
<S4 (Tl g A “todu]] § flullg y Af
k=1

2n 2n
(2.19) 2p < = 2(R -1)q < = %
¥ —n-2(2n'11-lYK|) : e ‘n-2(m-|v,<|)
(If one of the denominators in (2.9) is less than or equal to zero then the conjugate ex-
ponents can be chosen arbitrarily.)

Relations (2.19) yield the condition

(2.20) Vg2 (3-R‘) ¢ K= 1,...,2 ,

N -

which is fulfilled by v, = & (3-y™)). observe that v, < 1.

The proofs of conditions (F5) and (F6) are analogous to those presented here so that we omit
them.
Finally for the proof of (F6) and (F7) we refer to [12), Satz 5.5. Thus Theorem 2.1 is

proved.

Condition (FO) on F(t,u) is not expressed in terms of the functijon £ by the same reasons
we gave in the introduction. This "sign-condition™ (FO) has only to be fulfilled for u in

the domain D(A) which possibly allows integrations by parts. Typical examples are given

by
F(u)=2ux—:: ’ 15_:{54':2 ’
K=1 K

when D(A) = HZ™Q) n H™@Q) or

1

L
= -] logul K lem-3

k=1 (3

for any D(A) = Hhm) n V. 1In case of the Mavier-Stokes nonlinearity the fact that
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divu =0 for u € D(A) is the reason why ((u-V)u,u) = 0 for all u vanishing on the
boundary 3Q.

Application of Theorem 1.1 yields global strict solutions of the evolution equation (0.2)
in H = :.z(m where A(t) and F are given by the differential operators described in

Y2

this Section. (For a characterization of the initial value u_ € D(A ) see (2.27) below.)

0
As mentioned in the introduction, however, a classical solution of (0.l) is desired.

We finish with some remarks about how to prove that a strict solution of (0.2) is
actually a classical solution of (0.1). Let us assume for simplicity that the data of pro-
blem (0.1) are smooth (i.e. the coefficients of A(t), Bj' the boundary 232, and f). Let
us further assume that, for fixed t, A(t) together with the boundary conditions gives
rise to a regular elliptic boundary value problem in any space Lp(ﬂ) , P >2, and also in
the Holder spaces <'(Q) for O <y < 1.

By a resolvent estimate due to Agmon [2] -A(t) generates an analytic semigroup in any
me) and, moreover, the family A(t) generates a fundamental solution Up(t,s) in

Lp(ﬂ) with the properties listed in Section 1 (for the details see [7]). The operator A(t)

considered in me) will be denoted by Ap(t).

Let u be a solution in C°((0,T), D(A)) < c’((0,T), HZ™(Q)). By the assumptions on
f given in Theorem 2.1 we have

v

Fo(°.u) € C 1((0.1‘), L (Q)) for some v, >0 ,
2 1

2n (2m+n) . . :
where pl (@m+n) (n-2m) > 2. (If 2m n, pl can be chosen arbitrarily, if 2m > n we

go immediately to the steps described below.) Considering F as an inhomogeneity, the re-
sults in (23], (7] show that u is actually in c’((0,T), DA, M) < cv((0,m, w;“(n)). Re-

1 1
peating this argument we get sequentially

v

Fo(w) € € H((0,m, L (@)
Py

pyn (2m+n)

— Prs1 © Tamen) (n-pkn) 2Ry v

k=1,2,... .
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Obviously we have pjm >n for some j. An embedding theorem due to Morrey, analogous to

(2.15), yields

u e c’((o,m, wg"‘(m) cc’oo.m, @
(2.21) - J
Fo(+o0) € ¢ L(0,m, P@) for some u >0 .

v

We tacitly assumed that g € C 1((0,'1‘). Lp(ﬁ)) for all p > 2. Let us further assume that
v

gecC 1((0,'1‘), c®(Q)). Then the results in [23] (see formulas (2.7), (1.70), (1.71)) yield:

Y,

ga exists in the topology of D(Apo(e)) with Yy * min(vl.u) and

dt

du
at

Y
€ c((0,1), D(Apo(e))) for some fixed © and all p > O.
The embeddings (see e.g. [12], [21])

Yo S n,=
(2.22) D(Ap ®) c Wp(ﬂ) cCl(a) for 2myy >s>=+yp

oS

which are certainly true for sufficiently large p and some small 1y, finally gives

(2.23) A(t)ult) = - :—:u(t) + F(t,u(t)) ¢ cP(@) for fixed t |,

the right hand side being continuous in Cu(ﬁ) with respect to t, Furthermore (2.21)
implies that the boundary conditions are fulfilled by u(t) in the classical sense. Now,
the Schauder estimates for elliptic boundary value problems [3] applied to (2.23) prove
that u(t) ¢ C2m+u(§) which completes the proof that u is a classical solution of (0.1).
(In (2.22) we introduced the spaces w:(n) for real s which, similar to the case
P = 2, are defined as interpolation spaces between w;(n) and Lp(ﬂ), 0 <s < £. The de-
finition is independent of the integer £ (see [21])). For integer s they coincide with
the usual Sobolev spaces, of course. The same holds for the spaces &;(n), s#* L + % .)

An alternate procedure to proof regularity is the following: Once we know that

v
F(s,u) ¢ C 1((0,1‘), Ib‘“)) for some p > E-, we can show by Morrey's embedding theorem that
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F(e,u) € ¢ 2((0,1, cB(@), where

@ = {uec?@, lim |ul| =0l g =anixeR, x| >K} .
Koo Cu(ﬁk)

Now we apply the results in [13], especially Lemmas 6.7 and 6.8, in order to derive that u

is actually a solution of the evolution equation (0.2) in Cl’(ﬁ) which means that u is a

forteriori a classical solution of (0.1).

Possible generalizations

We briefly indicate possible generalizations, especially of Theorem 0.1.

To this purpose we introduce the abbreviations for the norms in the spaces

I,
H:(n) for real s. Clearly || ||p'° = | “LP(Q)°

°
We assume again that Ap(t) with some time independent domain w;"‘(m c D(Ap) < W;m(n)

generates a fundamental solution Up(t,s) with the properties listed in Section 1. Let F

be given by (2.16) where now derivatives up to order 2m - 1 are admitted: |;K| <2m-1.

Theoxem 2.2, Assume that :jz(o,-r) %X Q x c“ + £ satisfies

L b
j K 2m-s+(n/p) ~
W |tz ez | < u(8) l2.] 0 1 cxr <« =R 2 Re|y |, o8)
1 L 0 KZI K K |YK|'3"’("‘/P) K

for some 0 <s <2m (if Hzl + (n/p) < s, x-‘< is arbitrary), j = 1l,...,xr ;

ko L rK-l
(1i) = £ (%2 ,...,2,) | < u (t) z | e d= 1,008
az, 1 L (] K

k=1

for some By € c([o,m., R+) ;

a
1
i) [P gxe - i) | < ogglty Tng(0 [¢) -t |

for all t_>0, t

o € [ty Tl x e |z] <™, hyjelL(@, 0<a <1 ;

i

a =l+y

1 3 s
v gecOM, L (@), ||g(t)||p'o = 0(t Yo vy > 3 -
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Then the initial value problem

du
(2.24) s Ap(t)u = F(t,u)

u(0) = u,

Y
possesses for any u_ € D(Apa(e)) a unique local strict solution in E = Lp(n) (6 is some

(o}
fixed time in [0,T)).

Assume moreover that

(2.25) [luce) IIP's < Cue(tgrTy) ¢ toe I, Tl c (O,m) .

Then the strict solution of (2.24) exists globally on (0,T).

Remark 7: If s =0, u, € Lp(m is possible (73 = Q). For the characterization of the

(o}

initial condition in the case s > 0 we can use the continuous embedding (see [13])

(2.26) %o < b 2() c Wh®) for o> amy, > s
i P P P 3 7
) °2m
If p=2, in viewof H (Q) < D(A) and (2.12), this can be replaced by
°s Y3 s
(2.27) H(Q) cD(A ") cH(Q) for s = 21!73 .
Furthermore, instead of the global assumption (ii), we could also assume local conditions
Y
analogous to (iv) to (vii) in Theorem 2.1. The initial condition must be in D(Ap3(9)) in

this case, where B
2mp
The proof is completely analogous to that of Theorem 1.1 (see also [13]).

Proof: Using the interpolation inequality

e t- t t-)
(2.28) lully, g < cqrllall C72 74 a7/ for 0 cscoce ,

which follows from the definition as interpolation spaces, using the embedding (2.22), we

obtain by assumption (i) for ¢t € (0,1‘0]
Y‘ L r‘-l
(2.29) "ro(t,u) ”p.o < c4g(Ty) "Ap “)“"p,o .21 "u"p'. for some y, <1 .

«38<

<y, < 1. Then the same local and global result of Theorem 2.2 is true.
3




(If P R(l;xl, s), then Yol = 1. Therefore the limiting growth rates cannot be permitted.)

Now, the proof uses the iteration method developed by Kato, Fujita, and Sobolevskii: Define

Y4 Ya 74-v; Y,
$((0,T,1, D(A_"(8))) = {u € c((0,T,], D(A_"(8))), sup ¢t la *®raer || < =}
1 P 1 o P p.0
(o.'rll
F
" S
for some 13 > y3 > T and

ul(t) - Up(tvo)uo ’

=
U (B) = u (e) + ];Up(t,s)l-‘(s,un(s))ds, nom L;2ese s

Using (1.14) (which is also valid in Lp(ﬂ)), the relation

, y' -y '
(2.30) "Ap (eA (e, I S¢olTy) for 0<y' <y, ¢t € (0,7 ,

and the estimate (2.29) yield by induction

Y3 Vs
u, € C((O;Tllr D(Ap (6)) n S((OITllr D(Ap 0))) .

The further proof follows exactly the lines as described in Section 1, since we have by
assumption (ii)
Y4 13 r -1 r.-1
(2.3 [[Fy(tu)) - Fo“'“z’“p,o < 5o (Ty) |IAP (8) (u-u)) ||p'O KZI (||u1||p's + ||u2||p's i s
Ya
The global result follows from (2.29) which yields for ||:\p (8)u(t) ||p o @ linear integral
’

inequality and thus a bound on any interval [to,'rol c (0,T) . Clearly, if the data are

smooth enough, this global solution is a classical solution of (0.1).

Theorem 2.2 applies to the situation in [20] vhere p =2 and s = m. However, our proof

if considerably sinplér since no a-priori estimates of Solonnikov are used. Furthermore, as

long as the function f is locally Lipschitz-continuous (see assumption (vi) of Theorem 2.1

with :1 = 2) in contrast to [20) no compactness is needed at all. 13




Corollary 2.3. Assume that Q is bounded and that, instead of (2.25), the a-priori bound

(2.32) [luce) ”c“(m S 6 (£0Tg) » t e [t T ) © (0.1

is valid. Then in assumption (i) the growth rate {

(2.33) ¥ il |
L M

will suffice to assure the global existence of (2.24) in E = Lb(n), where p < ® jsg

sufficiently large.

Proof. For bounded domains we have the continuous embedding
(2.34) M@ « w;(m for w>s andany 1 <p <o .

This follows by interpolation since ‘cl(ﬁ) c w;(n) and c°(§3c Wg(ﬂ) = Lp(Q) (see [13],
p. 140).

This Corollary is the main result in a recent paper of W. von Wahl: "ﬁber das
Grosstmogliche Wachstum der Nichtlinearitat bei Semilinearen Parabolischen Gleichungen
Beliebiger Ordnung"”, J. Funct. Anal. 27 (1978), 118-135. (He also admits, however,

u

o € cu(ﬁ) as initial condition for the corresponding Volterra integral equation when u

is sufficiently small.)

It would be interesting to know, for instance by a counter-example, whether in (2.33)
equality is allowed or not. If not, then the growth rate (2.33) could be considered as best
possible. The same question should be asked for all growth rates given in our paper, of
course. In case of Theorem 2.1, where equality is allowed, the growth rates E. = RK seem
to be the beét possible, in general. 1In case of Theorem 2.2, however, we leave it open. It
will be rather tedious to construct counter-examples.

It would also be interesting to know, when a-priori bounds (2.25), (2.32) can be ob-
tained. For (2.25) with p = 2, s = m one answer is given in [19], [20]. An alternate

method would be using sign-conditions in (0.13) in order to obtain an a-priori bound for
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nutll and thus again (2.25) with p = 2, s = m. Then A(t) need not be self-adjoint and :

also derivatives in the nonlinearity could be allowed.

R

As for (2.32), only the case u = 0 for second order equations (maximum principle)
covers a reasonably large class of problems. Then the global existence result is included in
Theorem 0.1, of course. It should he mentioned, however, that for u = 0 and second order
equations the growth rate (2.33) is not the best possible since quadratic orowth in the first
derivatives can be admitted (see [15]). For u > 0 the a-priori bound (2.32) is more or i

less of academic interest only.




Appendix

Proof of Lemma 1.1: Let u# 0, u e D(B), and v = "ull-lu. Then "v|| = 1 and

dist(A,s(8)) < |(Bv,v) - A| = |((B-D)v,v) | < [ (B-2)v]|

= Null™ M E-nu)l .

So B-AI is injective and the range of B-AI is closed provided dist(A,S(B)) > 0.

moreover A € P(B) then

i

(3.1) |l (8-a1) > dist(A,s(B)) .

Consider the set P(B) n PO # g. It is clearly relatively open

ly closed in PO' Indeed, if An € P(B) n Po and xn + A€ PO’

For large enough n we have dist(kn,S(B)) > % dist(A,S(B)) and, again for large enough n,

IX-XnI < dist(kn,s(a)). This implies by (3.1) that A is in a ball of radius less than

1

"(B-Anl)-ln % around An. Therefore A € P(B). By the connectedness of Po it follows

that P(A) n Po =P  or PO c P(B). Finally

0
Il (8-a1) 72| < daist(A,s(B))"} for all 2
follows from (3.1).

Proof of Lemma 1.2: Because of assumption (ii) for all el. €,

tl = tl(ellcz) € (To-ez.To) such that

(3.2) et e ot
01
Choose 1
€, such that i§%H cl5 & < % ’
1 1
€, such that <% c;z-q)/z)q l|9||Lp(To-;2,T°) : -1—-22—71- =22

Define the interval J = {t e [t;,T)):0(s) <L for s e [t),t]}, where t, =t (¢,/¢c,)

and L > w(tl). By the continuity of ¢ the interval J # g is closed in (tl.To). For

t € J we have

-39~
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in Po.

then dist(A,S(B)) > 0.

€ Po

> 0 there exists a

n
1 08 Sl &
€ =(= % ==
£3 (p q )

It is also relative-
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s

7
+ (Ty-t))

1 1
(2-q) /2)q "g” 2 '"Lz(l-n)
Lp('l‘o.tl,'ro) 1-2n

2
e(E) <W(E)) + (; (T,t,)

s

If ¢(t1) :%— we choose L = 1. By the choice of €, we have ¥(t) <L for all t €J

2

which shows that J is also open in [cl,'ro). If W(tl) 2 L

2 ve choose L = 2¢(t1). By

the choices of el and t:2 we have again ¥(t) < L for all t € J. The closedness and

openness of J in [tl,'l‘o) implies that J = (tl'TO)'

We next present an improvement of Lemma 1.2 which we owe to L. Cafarelli.

Lemma A.l. Let V¥ € c([to,'ro), R+) satisfy

2 2(1-'\)ds

t n
(1) 0<e() <c+ [ (t-s) ¢ (s)

%

for te[to,'ro) and some 0:n<—;-,cz_0;
(i1) v € Lz((tol'l‘o), R+) .
Then ¢(t) <L on [to.'ro) where L depends explicitly on C, v(to). llwlle(to'To), and

n (see (3.4)).

(Observe that to is fixed in this lemma.)

Proof: Define the sets Ak = {t ¢ [to,TO), Zk < o(t) < 2k+1}, k=0,1,... , and for

Ae (0,1) I, = {k € Ny, |Ak| > 12_2k} (|Ak| denotes the measure of A .) Because of (ii)
we have
2k 2 2
[a 27" < [ we)%as < lol|
M B, (6 Ty)
and

2 2
carda@or= Ja< I (A< o]l = flell®
A keJ, ke, * L, (40 Tp)

which implies
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Ial < lloll?272
card(d,) < [lel|2x™" (card(3,) denotes the cardinality of 3,
Now choose
sulii
1-2n
1 ,1-2n
XA '
(3.3)

1-2n
2 -1 1 -1 -1 (1e2]le]])
M = max{3 (1n2)""1n ¢(t)), F(1 + (In2) "1n C), (1n2) l.n( Toah )} :

Define the intervals

I = [2

My _M(v+1)
. . 3 )

v diatlA Tt s,

where [llwuzk-ll is the biggest integer < “‘PHz)‘_l G

Then there exists a Vv_ such that I nJg, =g
0 Yo A
M(v_+1)

We claim that there is no t € [t,,T,) such that w(&) >2 ° .

Assume that there are such t's. Because of ¢(t0) < 22H there is a first tl € (to.'ro)
H("oﬂ) H(vo+1)
such that ¢(t1) =2 . By the definition of Ak clearly ([t _,t,) < v I\( Now,
0’1 k=0

by (i):

t M(v, +1) 1

M(v_+1) 1 - -n o 0 -= -n Al

2 % s ccsf w0 ? we?PMagcce (t,-9) 2 o 2 Mas

to k=0 Ak

H(vo#l) 1 -
2 2(k+1) (1-n) 2 .
LR - ~ kzo 2 Al

mo-l H(vo+1)

We spli. the sum into Z + 2 . For the first sum we have the estimate
k=0 k-mo

n - - -
l&lz < "0"l ny R{3=2w) and for the second, in view of I, 0 o 2,
0
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1 1
= -n S -n
2 -k (1-
|Ak|2 <X 7R L Thus we get:
My.-1 1 M(v.+1)
M(V_+1) 0 = 0
0 = -
2 ccr = Aelel?™® § K @bt ] >
K=0 k=My
0
1 M(v,.+1)
1-2n = Ty 0
4°2 1-2n_-M 2 2
<C+ Tzn'—' ﬁwn 2 + 22 }
M(v_+1)
<2 ©
by the choices of A and M.
This contradiction shows that
H(\)°+1) : 2M("¢“2X-1 + 1)

(3.4) o(t) < 2

where A and M are given by (3.3).

Remark 9: The assumption that ¢ is continuous on [to,To) was only needed to assure that

M(Vv_ +1)
¢ is locally bounded on (to.to + §) and that the time tl where w(tl) =2 9 for

"the first time" is well defined.
Remark 10: The only property of the kernel which was used in both versions of the lemma is

the estimate

3 1
W 2 12 i
);(:1-s) s < 75= |a for Ac (tg,t) .

Thus the kernel could be replaced by any function k(t,s) in the Marcinkiewicz classes

2 1 j
—-n
W2 (¢ ey = k(e (et » R, |[ k(te)as| < e lal? )
0 0 A 52

for all measurable A < (to.t). t e (to.To) being arbitrary.
Remark 11. Using Lemma A.l instead of Lemma 1.2 we get an a-priori estimate of |[lu(t)|| ~on
(t,/T,) depending on t., Ty, Hn(to)”-. g, and the constant c,  in the energy inequality

(1.44).
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