
AD *063 965 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F~ G 12f1EXPLOITING STRUCTURE IN FIXED—POINT COMPUTATION. (U)
AUG 78 M J TODD DAAG2 9—75 — C—O024

UNCLASSIFIED MRC TSR I8S7 NL

0

I I
! END

37 9



1//5) A1w~

M c ~~~~hn~~~~~~~m~nery fr 1867 7

~~~~~~~~~~~~~~
_ _

/0 
Mich~~~~~~/T~~~ J

LB~14
~~~~~~~~~~~~~~~~~~ ~~~~~~

Mathematics Research Cente r
University of Wisconsin—Madison t~610 Walnut Street ‘ —~~~~~~

Madison, Wisconsin 53 706 ~ ~ \\

(Received July 5, 1978)

Approv ed for public release
Distribution unlimited

Sponsored by

U. S. Army Research Of fic. and Nat ional Scienci Foundation
P. 0. Box 12211 -~~ Washington, D. C.
Research Triangle Park 

~~~~ 
j 20550

North Carolina 27709 ~~ ‘

_ _ _ _ _ _ _ _ _ __ _ _ _  -

~ 

_ _ _ _ _

-— — 
- . 

—



F. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -~~~~~~~~-—.-.-.— .-
~

— 
- ~ .- ~~~~~~~~~~~~~~~

• — ...~~ . .,.. ____ _ _

UNIVERS ITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

EXPLOITING STRUCTURE IN FIXED-POINT COMPUTATION
Michael 3. TOdd

Technical Summary Report #1867

August 1978

& ABSTRACT
U .. 

~
, - .

~~

[ We consider the recent algorithms for computing fixed points or zeros of

continuous functions from R’~
’ to itself that are based on tracing piecewise—

linear paths in triangulations. We investigate the possible savings that arise

when these fixed—point algorithms with their usual triangulations are applied

to computing zeros of functions f with special structure: f is either linear

• in certain variables, separable, or has Jacobian with small bandwidth. Each of

these structures leads to a property we call modularity; the algorithmic path

within a sinçlex can be continued into an adjacent simplex without a function

• evaluation or linear programming pivot. Modularity also arises without any

special structure on f from the linearity of the function that is deformed to

~Xn the case that f is separable we show that the path generated by

Kojima’s algorithm with the homotopy H2 coincides with the path generated by

the standard restart algorithm of Merrill when the usual triangulations are em-

ployed. The extra function evaluations and linear programming steps required

by the standard algorithm can be avoided by exploiting modularity .
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SIQ~IFICANCE AND EXPLANATION

Problems of solving systems of equations in several variables arise fre-

• quently in applied mathematics - in solving discretized versions of boundary

value problems , in optimization and in economics . A class of algorithms for

such problems has been developed in recent years based on tracing piecewise—

linear paths in a triangulation of the domain of interest. These algorithms

are generally called fixed—point algorithms because they guarantee convergence

when seeking a fixed point of a continuous function from a compact convex set

• into itself. Besides strong global convergence properties, these algorithms

• possess quadratic convergence to a solution given sufficient smoothness condi-

tions.

The main drawback of these algorithms is the large number of function

evaluations required compared to other methods that may not be as robust . Here

we alleviate this problem by showing how to exploit special structure in the

function f whose zero is sought — either linearity in certain variables ,

separability , or having a Jacobian matrix whose nonzero entries are concentrated

around the diagonal.
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EXPLOITING STRUCTURE IN FIXED POINT COMPUTATION

Michael J. Todd

1. Introduction.

We consider fixed—point algorithms [2,3,4,5 ,10,15,18] for computing a zero of a contin—

uous function f Rn -, R~. Such algorithms deform a simple function f° R~ + Rn into f

or into a piecewise—linear approximation to f and trace the zeroes of the resulting homotopy.

Our aim is to see how such algorithms can exploit special structure in f and f °.

While our approach is valid for other algorithms, in particular the honotopy method of

Eaves [21 and Eaves and Saigal [4 1 and the algorithm of Garcia [5] , we shall confine ourselves

to the restart method of Merrill [101 . Here f0 is an af fine function with a unique zero at

x0, say. Consider the homotopy h R~ x [0, 11 -* R~ defined by h(x ,t) — tf(x) + (l—t)f0(x).

Let T be a special triangulation of Rn x (0,1]; that is, all vertices of T lie in

R~ x {O,l). Next let 9. be a piecewise—linear aoproximation to h with respect to T. In

other words, 9. agrees with h on the vertices of T and is af fine on each simplex of T.

Merrill s algorithm traces the piecewise—linear path of zeroes of 9. starting with the

known zero (x0, 0). Under certain conditions, this path ends at a point (x’, 1) and x1

is thus a zero of a piecewise—linear approximation to f. For details on this path tracing,

see Merrill (101 or Todd (181 . One can then restart the algorithm with a special triangulation

T’ of smaller mesh and a new function f° whose unique zero is x1.

Suppose the algorithmic path meets an (n+l)—simplex a — ( yO ,~~• • , yn h i ) of T. Then

within this simplex the path is linear. Assume that as the path is traced one encounters the

face of a opposite ~~~~~. The algorithm requires that we find the (n+l)—simplex a’ of T

on the other side of this face, i.e. a’ — 4
0,~~. ~~~~~~~~~~~ ~~~~ , ~~~~~~~~~~~~~~~~~ € T, a’ * a. We

next compute 9.(~i) and hence the algorithmic path within a’. Our interest is in the case

where I is af fine in a u a ’; hence 9.(ç .i) and the algorithmic path ii~ a’ can be pre-

dicted from information known at a — indeed the path in a ’ is merely an extension of the

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the Nationa l
Science Foundation under Grant No. ENG76-08749.
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straight line path in a. Zn this case we say & is modular at with respect to a .

In section 2 we describe two triangulations of R1
~ x 10,1) commonly used in fixed—point

computation, for which modularity is easily exploited . In terms of these triangulations the

definition of modularity takes an especially simple form reminiscent of the definition of modu-

larity for functions on a lattice. In section 3 we show how modularity follows from three

structures on 9.: linearity in certain variables, separability, or the property of having a

Jacobian with small bandwidth. Section 4 describes how we exploit modularity in the restart

algorithm.

Sections 5, 6 and 7 discuss further the special structures above . In section 5 we show

how linearity arises naturally in the zero finding problem (or , more generally , complementarity

problem) arising from a nonlinear progrmtsning problem. Section 6 contains the surprising re-

sult that Koj ima ’s algorithm [8) for the separable case using his bomotopy H
2 generates a

path identical to that of the standard restart algorithm. The extra linear programming pivots

and function evaluations required by the latter may all be avoided by exploiting modularity.

Finally, section 7 discusses how function evaluations can be reduced if the Jacobian of f has

small bandwidth — our approach here follows Curtis, Powell and Reid (11.

—2—
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2. Triangulations.

For simplicity we confine our attention to triangulations with grid size 1. When used in

fixed—point computation, these triangulations are generally scaled and translated in their

first n coordinates. Identify Rn x (0,1) with (x € R’~~~l 0 < < 1). Removal of the bar

from a vector in R~ x (0,1) denotes its projection into Rn. Let u1,... u~~~ be the unit

vectors in R~~
1, so that u1 are the unit vectors in R~.

Now let y e R~ X (0) have y. an integer for 1 < i < n. Let w be a permutation of

(1,2,... ,n+l}. Then k
1(y,w) denotes the simplex (~~~~ , . .  . ~~~~~~~~~ , where

—O — —i —i—l ....~~( j )
y y ; y  — y  + u  , l < i < n + l  . (1)

The special triangulation K
1 

is the set of all such k
1
(y,w)’s [18, chapter III).

Next let y e ~~ 
X to) have y

~ 
an odd integer for 1 < i < n. Let w be a permutation

of {l,2,. . . ,n+l} and let s € Rn X {i} be a sign vector — s~ — ±1 for 1 < i ~ n. Then

denotes the simplex ~~~~~~~~~ ~~~~~~~~~ where

Y Y + S (i)U~~~~ 
l < i < n + l . (2)

The special triangulation J1 is the set of all such j1(y,
iT,s)’s (18, chapter tIll.

The property that allows us to eff iciently exploit structure in these triangulations is

that each vertex of a simplex differs  from its predecessor in just one coordinate . We always

assume the vertices of a simplex in K1 or are ordered as above to simplify the use of

this property .

Let a — ~~~ ~~~~~~~~~ € T, T — K1 or 
~l ’ and suppose that we wish to know y i so that

when replaces in a, another simplex in T results. (We say is the replace-

ment for in a.)  Consider first K1. We have

0 fl+1 —O —l , ,—1 —n+l
j 0 :y  — y  -y  + y , a — y ,...,y ,y

O < < n+1 : — — + ~~~~~~ a’ — ~~~O , • • • , ~~ i , • • • , ~~~ t+]
, (3)

•n+l —n —n+1 —0 , ~n+1 —O —n.j~~~n+l:y — y  — y  + y , a — (y ,y ,...,y ’

-3-
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In each case, we list the vertices on the right in the natural ordering given by (1).

Now consider We have

0 < j < n+1 : — ~~
—l 

— + ~~
+1 (4)

j — n+l : ~
n+l 

— 2? —

In each case, the natural ordering in (2) is unchanged — we have a ’ = 4~
,. .. ,y~ ,. . . ,?~ >

For these triangulations, modularity takes an especially simple form. First let T =

Suppose 0 < j < n+1. and let h — IT ( j ) , i — ir(j+1). Then = + ;h, ~~
+l 

—

4 + ~~, and y~ — ~~~l ~ It is easy to see that & is modular at with re-

spect to a if n+l ~ {h,i} and either w~~ (n+1) < j and

f(yi~ l + Uh) + f(y~~~ + ui) — f(yi~ l) + f(~ i l  + uh + ui) (5)

or w~~(n+l) > j and (5) holds with 9.0 replacing f .

The similarity of (5) to the condition for modularity for a function defied on a lattice

prompts our nomenclature. (The condition given above is almost necessary as well as sufficient

for modularity . Any modularity with j  € (0,n+1} or n+l € {h,i) can only be due to a for-

tuitous relationship between f and f 0 .)

Now suppose T — If 0 < j < n+l, a sufficient condition for modularity is similar to

that given above with and s1u1 replacing ~
h and u~ in (5) . Now suppose j  — 0

and let i — w ( l ) . If i — n+1. then is the only vertex of a in R~ x to ) .  Thus the

end point (x’,l) has been found and no function evaluation or linear programming pivot is re-

quired . Hence suppose i 4 n+1. Then 9. is modular at in a if 9.

— ui) + f°(y° 4 u~) — 2f°(y°) . (6)

Finally , ~~ — fl+1 let h — iUn+1) - since is to be removed , ~~ can assume h * nf l .

Then & ii modular at yn in a if f

f ( y fl+1 
— u~ + f(~

fl+lf uh) — 2 f ( y~~
1) . (7)

—4—
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- Henceforth , for simplicity in notation we deal only with the case that T - K
1
. The

corresponding results for are immediate. As we shall see, there are advantages to -

in particular, since f0 is af fine , (6) always holds. From now on, we shall also abbreviate

“I is modular at with respect to a” by “~~~ is modular in a” with & understood.

—5—
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3. Examples of Modularity.

Here we show how modularity follows from three special structures on f .  In addition,

modularity arises naturally from the linearity of the artificial function f 0.

3.1. Linearity. Identify R~ x with R~, where p+q — n, and suppose f is such

that f(v,w) is af fine in w E for each fixed v R!. Section 5 gives an application of

such a problem to nonlinear programming. We then have

Lemma 3.1. Suppose a — (
O

, • • •, ~~~~~~~ ) — k1(y , n ) ,  and f is as above . Then is modular

in a if 0 < j  < w~~~(n+1) — 1 or if i11(n+l) < j c nfl and both h — ir(j) and i — i t(j + l )

are greater than p.

Proof. If j < ir~~ (n+1) - 1 then n+l ~ (h , i} and 7(1(n+l) > j. Thus we only need to check

that (5) holds with 9.0 replacing f. But this follows from the linearity (in the af fine

sense) of f°.

If j > ii~~ (n+1) then again n+l ~ {h,i} and we must verify (5). But the projections of

yi~ l, ~i—1 + ~h, yi~
l 

+ ui and yi~ l + ~
h 

+ u~ on their first p coordinates are the same. •

Hence (5) follows from the linearity of f in w for fixed v.

Note tha t (6) also holds if f0 is af fine, and (7) holds if h > p. Hence the use of

allows additional exploitation of linearity .

3.2. Separability. The function f is called separable if there exist functions

fi : R -~ R~ , 1 < i < n, such that f(x) — Z~
f
~
(x
~). Special algorithms to compute zeroes of

such functions have been studied by Koj ima 18] . One of these will be discussed in section 6.

Lemma 3.2. Suppose a — 4°,.. •,~~~l) — k
1G,w) and f is separable. Then is

modular in a if 0 < j < ir~~(n+l) — 1 or ~~
1(n+1) < j < n+1.

Proof. For the first case the reasoning follows that in lemma 3.2. Suppose
—l1~ (n fl) < j < n+l and let h — 1T(j)  and i — w(j+1). We must check (5). Consider the

equation

fm ( (y i~~ + nh)) •4• fm((yj~ l 4~ u
i

) )  — f m (y J~1) + fZfl ( (y i_ l  
+ uh + ui)) .

For m 4 {h,i) all four terms are equal and the equation is valid. For in — h, the first and

-6-
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last terms are equal and so are the middle two - again the equation is valid . Similarly, it

• holds for in — i. Summing over in gives (5).

3.3. Functions with small bandwidth. Suppose the pth component function f~ of f de-

• pends on X
q 

only for Ip-qi < k. Then we say f has bandwidth 2k-i. If f is continuously

differentiable and its Jacobian matrix has bandwidth in , then so does 9..

Lemma 3.3. Suppose a = 4° , ... ~~~~ — k
1(y,n) and f has bandwidth m. Then is

modular in a if 0 < j < i(1(n+1) — 1 or if w~~(n+1) < j < nfl and I w ( j )  — w(j+l)~ >m .

Proof. We only need to verify (5) for h—il  > m. For each 1 < p < n, the pth com-

ponent function f is affected by at most one of and xi . Hence (5) is valid for f~

since the terms are equal in pairs. Since p was arbitrary the lemma is proved.

Section 7 discusses further how the occurrence of modularity can be promoted and function

evaluations circumvented when f has small bandwidth.

—7—
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4. Exploiting Modularity.

L t  a — ~~~~~ ~~~~~~ be a simplex of K 1 
encountered by the algorithm, and for each

j let a1 € R~~
1 be the column vector (1, L(j7)). Then a was generated because some face

of a , say that opposite ~~, was known to contain a zero of 9.. If B is the matrix

0 k—i k+l n+l • —l
[a , . . . , a  , a , . . . , a 1, then there is a solution z > 0 to Bz = u . (In fact, to cir-

ctm%vent the problems of degeneracy, we will onl~, 7enerate this face if B
1 has lexicograph-

icafly nonnegative rows • For simplicity , however , we assume nondeqeneracy throughout - we

suppose B is nonsingular and the first column of its inverse is positive.)

We also have available to us the inverse B 1. The analysis below assumes that B ’ is

available explicit ly . It is possible, however, to assume that we use the product form of the

inverse and still exploit modularity.1 A factored form of the inverse, such as S — LU, is

not suitable for the use of our ideas .

The standard restart algorithm then proceeds as follows. Let b = B 1u
1, = s~~a

k and

find j such that a. > 0 and b
1
/a

1 
— ntin{b /a la > o}. Here and throughout this section,

E and a have coordinates indexed 0,...,k-1, k+1,...,n+1, to correspond to the indices of

the columns of B. Then the other face of a containing a zero of & is the face opposite

Make a linear programming pivot step to obtain B 1 where B is the basis obtained from

• B by replacing a1 with ak. Then find the replacement for V1 in a,  compute

and introduce a1— (l , &(y1)) into the basis B, continuing the process.

Now suppose that is modular in a. Then we can save a function evaluation since

a1 — a1’  - a~ + a1
~~
’. However we can do more - we need not make the pivot step to obtain B

1.

Indeed, suppose first that j ~ (k— i, k+1). Let = ~~~~~~~~~~~~~~~~~~ a~~
l,...,a

nhi
l be

the basis obtained from B by replacing a1 with ~~~~ . Then the inverse of can be obtained

from B 1 as follows. The (j +c)-th row of B~~ is the (j+c)th row of ~-1 plus the jth

row of B~~~, t — ±1. The jth row of B~~ is the negative of the jth row of B~~. All

these relationships follow trivially from the equation — a1
~~~ - a

1 + ~~~~~~ Similar changes

are made to a and b. The total work involved is 2n + 6 additions and n+3 sign changes.

am grateful to Professor Romeab Saigal for this suggestion .
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Note that the first column of 8 1 is not positive - its jth entry is negative. How-

ever, since a. was positive, it is now negative; if we express u1 in terms of B and ak,

and increase the weight on ak, the weight on a3 increases to zero and beyond. We nay there- •
.

foresimulate the entry of the column a1 into the basis B by entering ak into the basis B.

We therefore recompute the minimum ratio min (b
r/ar/ar 

> 0) .  Notice that only two of

these quotients (corresponding to r = j—1 and r = j+1) have changed. Suppose the minimum

ratio occurs for the index j ’. If is not modular in the new simplex

= ~~~~~~~~~ we perform a normal pivot step, replacing a1 with ak. If, how-

ever. is modular in a’ and j ’  4 {k-l , k+l) we may perform the same trick again. Hence

several pivot steps may be saved (or rather, replaced by trivial pivot steps requiring minimal

arithmetic) if several modular vertices are encountered .

We must now deal with the case where j e tk—l , k+l}.
1 Suppose j — k-i. Then 8 1a~ =

8 lak 2  — B lak l + 5~~a
k 

= ek_ 2 
- e

k_l 
+ a , where e1 denotes a unit vector with coordinates

indexed 0,. ..,k—1, k+l n+l and ith coordinate equal to one. We now want to express u1

- 0 k—2 -k—i k nfl — 0 k—2in terms of a ,...,a , a , a ,...,a , or equivalently, b in terms of e ,...,e

i + e~~~
2 

- ek-l ~~~ , e~~
i,...,e

n4i. Suppose the appropriate weights are X
0
,...,A~~1. Then we

have

ai (A k_ l + A
k
) ~ , i 4 { k — 2 , k — l }

~k—2~~k—l 
+ Ak) + A

k l  + 3’k—2 = bk 2  ; (8)

Sk_l Uk_1 + Ak) Ak l  = bk l

We know a nonnegative solution with A k_i = O ( A
k — bk_l/ak_l) and we want to increase Ak l .

Notice that a.
~~1 

is positive, since j k-i was chosen in the minimum ratio test. Hence

A A k l  + Ak increases with Xk l~ 
from the last equation. Rewriting (8) we obtain

a A + A bi , i 4 { k— 2 , k—l)

~ ak l
) A + A

k 2  thk~~2 + bk l )

~~k—l 
— 1)A + A

k bk_i

‘The rest of the section is very technical. The reader may skip to section 5 without loss of
continuity.
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We now use (9) to perform a minimum ratio test to determine which vertex next leaves the

current simplex a ’ . If this leaving vertex is ~~~~ we find the bend of non—unit columns

in the representation of the current basis in terms of B widening. Let us therefore progress

to the general case , where ~~~~~ . . ,~~ have been replaced (in that order) by ~~~~~~~~~~~~~ . ,j ~~,

—k-l —k- 2 —r -k-l -k-2 -rand y , y ,... .y have been replaced (in that order) by y , y ,. . . ,y . Of course,

when any such is replaced , we assume that it was modular in the current simplex, or the

• process terminates.

We therefore want to express b in terms of the columns of

0 r—l — r—i k—l — k—2 k—i — — k+2 k+1Ic ,. .., e , a+e — e ,... ,a+e — e , a, a+e — e
(10)

- 
— sf1 k+l 5+1 nfl

• . . , a+e — e  , e , . . . , e 3

If the corresponding weights are A 0 ,. .  •~ An+1~ 
we have

a
~~~~~~~~

+A )  + b~~~’ i 4 {r—i ,. . .,s+i.}

a (A +~~•+A ) + A + A — 
~~ 

;
r—l r a r—l r r—l

a.(A +~•.+A ) + A . = b .,  r < i < k—ii r 5 i+1 1 —

— 1) (A f’ . 
~
+Ak,) + a.K l (A k+•

~ + A )  = ; (11)

a
~~ l (A + . . .+A

k ) + 
~~ +1 

- 1) (Ak+l+’ ‘~ + A )  — bk+l

ai r+~~~
+A )  + A i_1 = b~. k+l < I < s

; (A +•~ .+ A ) +A  + A  = bs+1 r S S sf1 5+1

Suppose ~r is the new vertex and the weight Ar 
is to be increased. Adding equations

indexed r through k—i, we get ( a + ~ •~%1~ 
(A f’ . ‘+X ) — A — ~~~~ ~~k—l~~ 

As we shall

see , the fact that 7 left the simplex implies that (& r+~ •+a k i
) is positive. Hence we

can increase A — Ar
+
~ 

•+A instead of A r • Adding the equations indexed k+l through a

we obtain

- A 

~ k+l~~~~~~s
3

I~~ ::it~ lIT •.•



Now (11) can be written as

a . A  + A~~ — , i 4 {r—l,... ,s+l)

r—1 ’”’’’~1c—1~~’ 
+ Ar_i = 

r—l ”
~~k—1~

r c i ~~~k—1 ;

~~k—l 4- a~~1 — l)A + Ak — bk l  + bkfl ; (12)

a1A + X 11 — b 1 1 k + 1 < i ~~~s ;

+ A

(ak+,
+...+a

,)A + A~~1 —

We now use (12) to perform a minimum ratio test to see which or leaves the

current simplex a ’. There are several cases.

Case 1. or is not modular in a’. We wish to obtain B ’, where B is
• - 0 r—l -r -k- l k kfl -s sf1A = [a ,...,a , a ,....a , a , a ,. ..,a , a ,. ..,a ) with the column xnde~cd j re-

• moved. We write B = A 1 The columns of matrices of size (n+l) x (n+2) will always be in-

dexed 0,... ,n+1; naturally the columns of B are indexed 0,...,j—l, j+l,.. . ,n+1.

Case 1(a). j 4 (r—1 ,...,s+1}. First do a standard linear programming pivot step to obtain

B1
1, where A

1 
= (a°,.. .,a~

4-1
3 and B

1 
— A 1. Now note from (10) that A — A

1 ~krs ’ 
where

P is the matrixkm

I ~r—1
1 1

I 1k— r—1 1

— 1 —l’~ •—l

1 1~~ ’~l 1 l”’’l 1

—1...—1 —l

(I s~~~~~

• 1 1

In-s

~ 

~~~~1~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -•
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Hence B — B P~~
1, where p 1

~ is P with row and column j  removed . It fol lows
1 krs krs krs

that B~ — (P~~~)~~ B~~, and it only remains to invert P~~
3. But this is easily done. Let

krs 1 krs

~krs be the inverse of 
~krs~ 

we have 
~~~~ 

explicitly as

• 
I ’m— l i

1 l•~~~~l 1

I’k-r-l l 
—

1 1 1

‘s—k—i

—1 —1•..—1

1 l• • ‘.1 1

1f ~~~ 1[n-s

Then (P~~~)~~ Q~~~ and thus 8 1 
~~~ B1

1. Obtaining 8 1 from B
1
1 requires only

(s-r+4) (n+1) additions/subtractions .

Case 1(b). j € (r+ l , . . . ,k— 1) . First do a standard linear programning pivot step to ob-

tain B1
1, where B

1 
— A~

1 1
. Then an analysis identical to that above shows that

B
1 

— Q~~
’11 B~

1, where Q~~~~~
1 is 

~krs 
with row j and column j—1 removed.

Case 1(c). j € 1k+l,...,s—1}: analogous to case 1(b).

• Case 1(d). 1 — r—l. Let A2 
— Ia

O,...,aZ 2 , ar_i — a~~
3 , ar — a l,...,ak 2  

- a~~
’,

~
k 1 , ~~~~~~~~~~~~ Then , with B

1 
— A ;~

c
, B

_i 
can be obtained from B

••~ by adding the

(r—1) at through (k—2)nd rows to the (k—1)st. Next let B
2 

— ~~~~~ - we obtain B~~ from

3 1 
by a standard linear programming pivot step; notice that, from (12), the pivot element

(&r l 1 
~~k—l~ 

is positive. Now from (10) we have B — B
2 Dkrs~ 

where Dkrs is the matrix

—12—
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I
r—1

Ik-r

1~~”~~i 1 l~~~~~~l 1
• 

—1~ • ..—l —l

I I s_ k_ l i

1 1

I ,
I n-s

with inverse

Ir—1

Ik-r

—l ’”—i 1 1

I ’s—k— l i
—1 —l’~~’—l

1 l••~ • l 1

II
I n—s

Hence we easily obtain — D —l B 1.krs 2

Case 1(e). i — k. Let A
2 — (a0,...,a~~

1, ak — ak~~, a
k
~~ - a~~

1, ~~~~~~~~~~~~~~ Then,

with B1 — A;
k , B

1
1 is obtained from B 1 by adding the (k+1)st row to the (k-i)st. Next ,

let — A;
k
~~ — since ak i  + a~~1 — 1 is positive from ( 12) , this is a standard linear

programming pivot step. Now B — B
2 
E
hr~~ 

where E
k is the matrix

— 13—
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1 1

1k—r—l

1 1• . . .~~ 1~~~~~1 1

—l V ’ • ... ~ —1

I I~ _)
~— ]i 

1 1 

i ‘n—s
with inverse

Fir~1l

1 1 1 —l

—1 —1 1

I 1k—r— 1 I
I ~s—k—1 J

—1 —1• •

1 1•~~ ‘1 1

I

Thus B ’ = E -l B ’ is easily obtained .krs 2

0 k—i k k+1 kf 2 k+l s k+1 sf1
Case l(f). j= s .  Let A2 — (a ,...,a , a , a , a — a  ,...,a — a  , a

Wi th B1 = A~~~, B1
1 is obtained by adding the (k f2)n d through sth rows of B 1

to its (k+1)st row . Then a standard linear programming pivot step gives us (A~~~
1)~~~. From

this it is easy to obtain B
1; the argument is analogous to case 1(d).

Case 1(g). 1 — sf1. Analogous to that above; we start now by adding the (k+2)nd

through (s+1)st rows of B 1 to its (k+i)st row .

We have finally completed the analysis of the nonmodular case. Fortunately, the case re-

maiming is much simpler.

L ___________  
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Case 2. or is modular in the current simplex a’.

Case 2 (a) .  j 4 {r-l , . . ., s+l ).  In the original B , replace a1 by a3 — a~~
1 

— a1 + a~~
1;

the update of B 1 is trivial. Correspondingly update b and a and return tothe minimum

• ratio test of (12) — note that only two ratios have changed.

Case 2(b) . j = r—l. Note that (12) then implies that r-1
4
~~”’ak—1~ 

is positive,

thus justifying our claim above (12) that (a
r
I•• .+a

k i ) was positive at the previous step .

In this case, r is decreased by 1 and we return to the minimum ratio test of (12). Only

two ratios (for r—2 and r) need be calculated.

Case 2(c) . j s. Then s is decreased by 1 and we return to (12) - only the ratios

for s—i and s+l are updated.

Case 2(d). j = sf1. We increase s by 1 and return to (12) . The ratios for s and

s+2 are recomputed.

Case 2(e). j  € (r+1 ,...,s-l}. The new column, assuming j < k, is = ~~~~~~~~ + ~~~~~~

Expressed in terms of the basis B, it is B( + e~~
2 

— e~~
1 

+ e3 — ~~~~~ It might be possi-

ble to handle this case and derive the appropriate counterpart to (12) to make the minimum

ratio test. On the other hand, the complications of case 1 suggest that we avoid these diffi-

culties. Certainly if case 2(e) occurred several times in succession, the resulting basis would

be very hard to deal with . Hence we suggest ignoring the modularity and returning to the appro-

priate subcase of case 1. At least one pivot has already been saved , and we know

We now give an estimate of the amount of work that is saved by exploiting modularity. We

suppose that the difficulties of case 2(e) have been surmounted. Our estimate is based on the

measure of directional density of a triangulation, studied in [17 , 19]. Given x, d € R
n
, let

$(t) — (x+td , t) c x [0,1]. Let T be a triangulation of Rn x (0,1] and a1, 02 € T.

We write a1 02 if •(t—~) c ~~ 
•(t+~) € a2 for small positive 

~~, 
and if the vertex of

not in 0
1 

lies in ~~ x U) .  Let n~ — I + I { t  € (0, 1) 1 01 02 for some O1~ 
02 € T ) I .

Then n0(n 1
) measures the number of function evaluations of f0 ( f )  and the associated number

of linear programming pivot steps. Let Ni(T,
d) be the average of ni when x is uniformly

distributed in a cube of side 2, for T — and We then have

_ _ _ _ _ _
_ L

— —= a.- -—— — ‘ ~~~~~~—— — — — — - ~~~~
-—

~~~~~~~~~~~
‘
~~~~~ ~

‘ 
~~~~~~~~~~~~~~~~~~~~~~~ - 

- 
— — — -~~~
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Theorem 4.1 (191

(a) N0(K1
,d) = ~~(d + (di~

1)
~
) + 

~ , ~I~~—d1I

(b) N
1
(K
1,d) — 1 + I~(d~ 

+ (dj
_l) ) f 

~~~~~

(c) N
0
(J
1
,d) - I~~ 

4( ld~l + (dj
_1)4- + (di+1) ) + I~~~~~~ ~( l d ~+d1I + d.-d .I )

(d) N
1
(3
1
,d) = 1 + 

~i ~
(Id iI + (di

_i) + (d.+1)
4
) + 

~~~~~ ~~ld~÷~~1 + td~
_d

1
l )

Here , for any real A, ~~ — max (0,A} and A A~ - A. Using the same arguments we can prove

the result below. Of course, since •(t) is straight we may call all vertices modular . How-

ever , when we say that so many pivots can be avoided by exploiting modu1ar~~y, we mean only

those which are guaranteed to be modular by the linearity of f° or the special structure of

f.

Theorem 4.2

(I) By using the linearity of f0, we can avoid 
~~~ 

4Id~-d1I of the pivots counted in

(a) above , and 
~ j  4ldil + 

~i<~ ~1Id ~+d1I + Id~—d1I ) of the pivots counted in (c) above.

(ii) If f is linear in variables p+1,. . . ,n, then we can avoid 
~p<i<j 

4Id~—d j l of the 
*

pivots counted in (b) above , and 
~p<i 

4ldi I + 
~ FId~

+d
1 I + Id i_d

i l )  of the pivots count—
p<i<j

ed in (d) above.

(iii) If f is separable, we can avoid in (b) and Cd) the pivots counted in the sums
i.(j

(iv) If f has bandwidth m, we can avoid in (b) and Cd) that part of the pivots counted in

the sums for which l i— il  ~~m.

-
~~~~~~~~
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5. An example of linearity.

Consider the nonlinear programming problem of minimizing 8(v) subject to g(v) 0,

where O:R~ ~ R and g:R~ 
-~ ~~ arecontinuously differentiable. The problem of finding a

stationary point of the Lagrangian of this program is that of finding a zero of f , where

f(v,w) — (V8(v) + Vg(v)w , g ( v ) ) .  Here w c — clearly for any fixed v, f is linear in w.

rh. inequality problem (g(v) < 0) has traditionally been formulated for application of

fixed—point algorithms as a zero—finding problem for a point—to—set mapping defined on R~.

The algorithms converge slowly in this case. If g is affine then the methods of Kojina (71

and Todd [201 provide fast algorithms .

We are here concerned with the case where g is not affine. For simplicity we consider

only the equality—constrained problem above, but our analysis is easily extended to inequality

or mixed constraints. Two papers have addressed this problem: Kojima [9] and Todd [20]. Both

propose methods that use triangulations of R~ x x [0,11 (explicitl y or implicitly) in which

• the mesh size for the w variables is large or infinite and doss not shrink as the iterations

progress. The reason, of course, is that a piecewise—linear approximation to f with respect

to such a triangulation can be made arbitrarily close to f.

Fixed—point algorithms, besides yielding approximate fixed points or zeros, also provide

approximations to the Jacobian of f [16, 13]. The exploitation of this information is the

key to obtaining quadratic or faster convergence — see Saigal [12] and Saigal and Todd (14] .

Unfortunately , the algorithms proposed in (9, 20] do not give good aoproximations to the partial

derivatives of f with respect to the v—variables. Indeed , the approximation to

is the difference between the function values at the two vertices of the final simplex that

differ by ~~~. If ~ is the value of w for these vertices, what is obtained is an approxi-

mation to af(v,~)/av1
, and ~ may be far from the approximate value of w.

We may obtain good approximations to the Jacobian of f by using a fine grid size for the

w variable, as well as the v variables. The disadvantage using the standard restart method

• is the large number of pivots to move from one region of w-space to another. In effect, one

__________- - has a general (p+q ) —dimensional problem. It is g.nerally felt that the gain in smoothness

• c~~~arid to the standard p—dimensional formulation is not worth the corresponding increase in

di.sn.ion.
—17—
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- However, the analysis of section 4 shows that a fine grid size can be employed for the

w variables and most of the work of moving in the w-space can be eliminated by exploiting

modularity. The advantage of smoothness may now compensate for the increase in dimension . In

any case, the results of [12, 14] show that asymptotically quadratic convergence can be achieved

under reasonable conditions; because of linearity in w, asymptotically each iterate requires

only p+l evaluations of VO and Vg.

I
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6. Separable functions.

Recall that f:Rn .,. Rn is separable if there exist f~ :R + Rn, 1 < i < n, such that

f(x) — 
~~ 

f’(x
1). Clearly any linear function such as f0 is separable. Kojima [8] has

suggested two algorithms for computing a zero of such an f — here we restrict our attention

to that using the homotopy H2.

Using f , f0 and the triangulation K1 of Rn x [0,1) we construct the piecewise-linear

function t as in the introduction. On the other hand , for each i, 1 < I < n , we can use

f1 fOl and the triangulation K
1 of R1 x (0,1] to construct i2 (x1,t). Define j(x,t) =

~~

Lemma 6.1. t = I.

Proof. Suppose t(x,t) — a c Rn. Then there are A
0,..

. ~A~~1 and a simplex

a = Cr,. ~~~~~~~~~~~~~~ € K
1 such that (x,t) — ~~~~~ A~ ~~ and

~~~~~A~~f~~~~a

çn+1
L ,0 1

A . > 0, j  =

where f1 = f(yi) if — 1 and f1 = f°(y1) otherwise. Suppose a k1(y,
i). Let

~1 
= { ill  < i < n , w ’(i) < w~~(n+l)) and 12 — {1,...,n)\I1. For i € I~ , define ~~~,

= z~ = + 1, t~ — t~ — 0 and t~ — 1. Also define Ai0 — ~()~ I 0  < j <

~{A
1

Jw
1(i) < j < w~~(n+j)) and A

~2 
— ~~~~~~~ < i < nfl). For i € 12. define

— z~~ = ~~~~, z~ — + 1, t~ — 0 and t~ — t~ — 1. Also define Aio 
= )(x

1 I o  < j <

• ~
{A
1
lw ’(n+i) < j < z~~(U) and 

~
‘i2 

— I~~~hhI
(1) < j < ni-i).

Consider the ith component of (x,t) = 
~~~~ 

A
1 ~~~. Because — for j <

= + 1 for j > w 1(i), we obtain x
1 

= A
io ~ + A i1 ~~ + Ai2 z~. Similarly

t — A~~~
0 
t~ + A~1 t~: + A~2 t~. Now l~t fil — fi(~~) if • 1 and f = f0i

(y~)

—19—
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oth:xwise. Then (13) gives A. ~~ f13 = a, and collecting terms yields 

~~ (X~0g + A .1g + A~2g ) = a, where g = f (z.), g — f (z.) and g = f (z .) if
1=1

t1 • 1, ~~~ = fOi(zl) otherwise. Together with the trivial facts that 
~~~~~ 

A
ik 

— 1, A .~ ~ 0,

this last equation says precisely that t(x,t) = a.

The lemma gives immediately

Theorem 6.2. The path generated by Kojima’s algorithm using homotopy H2 and triangula-

tion X1(J1) for each comPonent coincides with the path generated by Merrill’s algorithm using

triangulation

Of course, many more pivots may be required in the latter algorithm. Indeed, Kojima’s

algorithm works with the linear system

~n ~2 1k
1i=1 Lk,.,o A~~g = 0

A k
Lk,0 ikti 

t

(14)
ç-2
kj c O  ik 1

During a single pivot in (14), it is possible that several X~~~~~
’ S for i € I~

{i ’ l A ~0 < 1 — t) change their relative magnitudes. From the correspondence between A~ ’s

and A
n’s in lemma 6.1, it can be seen that each such change requires a change in the permu-

tation w and hence a pivot in (13).

However, the path of either algorithm is straight in a piece corresponding to a single

pivot in (14); hence all the additional pivots correspond to modular vertices and can be per—

formed by the techniques of section 4. With the exception of pivots of type case 2(e) of

section 4, we can therefore simulate Kojiina’s algorithm in a standard restart algorithm - note

that the latter requires Only a linear system of order ni-i rather than 3n as in (14). Of

course, n of the constraints of (14) are of generalised upper bound form.

The theorem also implies that the asymptotic results of quadratic convergence in Saigal

[12), Saigal and Todd (141 apply to Koj ima ’s algorithm also. No such results are available

—20—
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for the homotopy II~ (8] — the possibility of acceleration seems a powerful reason for choosing

H over H .

A slight modification is suggested for accelerating in the separable case. In the standard

algorithm , having obtained an approximate zero x1, we choose f 0 to have a zero at x1. We

also translate the triangulation so that (x~,0) is in the center of the face of the starting

—0 —n+l —nfl . . 1 1 0 n 1simplex ‘y ,.. .,y > opposite y . This is done by arranging that x = j —(y + y ) + —

~~~ 
y1. Then if all zeroes of I have projections within c/2n (in the ç norm) of x1,

only n+1 function evaluations and linear programming pivots are required to obtain x2 ; here

€ is the grid size of the triangulation K1 or used. With f separable, it is prefera-

ble to translate the triangulation so that x1 = (~~
- — 6) (y0 + yfl) + [26/(n—1)]~~~~ y

J , where

6 is small and positive. In this case, as long as all zeroes of £ have projections within

- 6) c of x’, only ni-i function evaluations and “nonmodular ” linear programming pivot

steps are required. Many more pivot steps may be needed, but they will all be of the trivial

type considered in section 4. Thus the algorithms can be accelerated more safely in the

separable case.

I-
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7. Functions with small bandwidth.

Recall that f has bandwidth in • 2k-i if each cotnnonent function 
~~ 

depends on x
3

only for l i -i l  < k. We assume 6k-4 < n. Functions with small bandwidth arise naturally in

discretizations of boundary value problems (see chapter 1 of [11]). In addition , if f is

“sparse” (i.e. its Jacobian matrix is) we may permute the coordinates of the domain and range

space to attempt to obtain a small bandwidth. See (6] for computational complexity results

for minimizing the bandwidth by such permutations.

Our approach is based on that of Curtis, Reid and Powell (1]. Our aim is not just to avoid

function evaluations but to promote the occurence of modularity . Fortunately these goals

suggest the same strategy.

We would like to encounter simplices k1(y,1T) such that adjacent members of w differ by

at least m. While the algorithm is deterministic, we can at least control the starting simplex .

We choose this to have associated permutation ; • (1, m+l , 2m+l , . . . ,2, m+2, 2in+2 

2m,...,n+1). Then the first step of the algorithm that does not transfer a vertex from

x {0) to Rn X {l) or vice versa entails a modular nivot. Indeed, since each simplex

change affects the permutation only by an adjacent transposition, it is likely that several

modular pivots will be encountered .

Under reasonable smoothness conditions on f , we know that asymptotically only nfl sim—

plices will be encountered. These all correspond to k1(y, w ) ,  with ~r containing the indices

1 through n in the same order as in It , and ni-i moving from the last position to the first.

- In thi s case one can also economize on function evaluations.

Of course, if scalar function evaluations are much cheaper than vector evaluations one may

economize at each step . If is to leave the simplex and be replaced by y1, then f (y 1)

can be obtained from f (y 1
~
1) or f(y u4~) by making only the m scalar function evaluations

in which it is know to differ .  Frequently , however, economies in common expressions and the

need to control subroutine calls suggest that vector function evaluations are more efficient.

In this case one may proceed as follows .

-
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Starting with ~~~~~~~~~~~ k1(y,
1r) we first calculate f(y~~~). If, as hoped, ~~

leaves the simplex , it is replaced by yn; we need f(~n4~ - ~~~~~~ = f(~n l ) Instead we
—l — l —l

calculate f (y ’T (m)_i
) This evaluation gives us automatically f(y~

T (in)
) f(y1’ (m)+l

1

n-i -n —n—i n—2 -f ( y  ) .  If, as we again hope, y displaces y , then we need f(y ); but this is al-

ready known. It follows that if the sequence of simplices is as hoped (and asymptotically

o ~
_l
(l) l ,~

_l
(2) l 11 1(m) —l n+lguaranteed) we need only evaluate f at y = y , y , . . . , y  and y

a total of m+l function evaluations. In any case, we have not made any extra evaluations.

It is clear that, at a general stage of the algorithm , we may also try to guess the next

few vertices that will be generated and make a function evaluation that will give us the value

of the function at each of these vertices. Also, the more general grouping idea of Curtis,

Powell and Reid (1] can be exploited in an analogous way - asymptotically only in +1 function

evaluations are necessary each cycle, where here in is the number of groups.

1 ’
I

I
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ABSTRACT (continued)

eva~Luation or linear programming pivot. Modularity also arises without any
special structure on f from the linearity of the function that is deformed
to f.

In the case that f is separable we show that the path generated by
Kojima’s algorithm with the hc*notopy H2 coincides with the path generated by
the standard restart algorithm of Merrill when the usual triangulations are em-
ployed . The extra function evaluations and linear programming steps required
by the standard algorithm can be avoided by exploiting modularity.
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