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We consider the recent algoritﬂms fér computing fixed points or zeros of
continuous functions from (éﬁ) to itself that are based on tracing piecewise-
linear paths in triangulations. We investigate the possible savings that arise
when these fixed-point algorithms with their usual triangulations are applied
to computing zeros of functions f with special structure: f is either linear
in certain variables, separable, or has Jacobian with small bandwidth. Each of
these structures leads to a property we call modularity; the algorithmic path
within a simplex can be continued into an adjacent simplex without a function
evaluation or linear programming pivot. Modularity also arises without any
special structure on f from the linearity of the function that is deformed to
£
N

n the case that f is separable we show that the path generated by
Kojima's algorithm with the homotopy H2 coincides with the path generated by
the standard restart algorithm of Merrill when the usual triangulations are em-
ployed. The extra function evaluations and linear programming steps required

by the standard algorithm can be avoided by exploiting modularity.
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SIGNIFICANCE AND EXPLANATION

Problems of solving systems of equations in»several variables arise fre-
quently in applied mathematics - in solving discretized versions of boundary
value problems, in optimization and in economics. A class of algorithms for
such problems has been developed in recent years based on tracing piecewise-
linear paths in a triangulation of the domain of interest. These algorithms
are generally called fixed-point algorithms because they guarantee convergence
when seeking a fixed point of a continuous function from a compact convex set
into itself. Besides strong global convergence properties, these algorithms
possess quadratic convergence to a solution given sufficient smoothness condi-
tions.

The main drawback of these algorithms is the large number of function
evaluations required compared to other methods that may not be as robust. Here
we alleviate this problem by showing how to exploit special structure in the
function f whose zero is sought - either linearity in certain variables,
separability, or having a Jacobian matrix whose nonzero entries are concentrated

around the diagonal.
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EXPLOITING STRUCTURE IN FIXED-POINT COMPUTATION

Michael J. Todd

1. Introduction.

We consider fixed-point algorithms [2,3,4,5,10,15,18] for computing a zero of a contin-
uous function £ : R" + R". Such algorithms deform a simple function fo : A" > R" into f
or into a piecewise-linear approximation to f and trace the zeroes of the resulting homotopy.
Our aim is to see how such algorithms can exploit special structure in f and fo.

While our approach is valid for other algorithms, in particular the homotopy method of
Eaves [2] and Eaves and Saigal [4] and the algorithm of Garcia [5], we shall confine ourselves
to the restart method of Merrill [10]. Here fo is an affine function with a unique zero at
xo. say. Consider the homotopy h : R" x [0,1] ~» R" defined by h(x,t) - tf(x) + (1-t)f°(x).
Let T be a special triangulation of R® x [0,1); that is, all vertices of T lie in
R" x {0,1}. Next let £ be a piecewise-linear approximation to h with respect to T. In
other words, £ agrees with h on the vertices of T and is affine on each simplex of T.

Merrill's algorithm traces the piecewise-linear path of zeroes of £ starting with the
known zero (xo, 0) . Under certain conditions, this path ends at a point (xl, 1) and x1
is thus a zero of a piecewise-linear approximation to £. For details on this path tracing,
see Merrill [10] or Todd [18]. One can then restart the algorithm with a special triangulation
T' of smaller mesh and a new function fo whose unique zero is xl.

Suppose the algorithmic path meets an (n+l)-simplex o = (yo,...,yn+1) of T. Then
within thislsimplex the path is linear. Assume that as the path is traced one encounters the

face of o opposite ;j. The algorithm requires that we find the (n+l)-simplex o' of T

on the other side of this face, i.e. o' = (;o,...,;d-l, Qj, ;j+1"..'—n+1) &€

o' ¥ 0. We
next compute E(Qj) and hence the algorithmic path within o'. Our interest is in the case
where ¢ is affine in o v 0'; hence 1(93) and the algorithmic path in o' can be pre-

dicted from information known at o - indeed the path in o' is merely an extension of the

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National
Science Foundation under Grant No. ENG76-08749.
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straight line path in 0. In this case we say £ is modular at ;j with respect to O.

In section 2 we describe two triangulations of R® x [0,1] commonly used in fixed-point

computation, for which modularity is easily exploited. In terms of these triangulations the

definition of modularity takes an especially simple form reminiscent of the definition of modu-
larity for functions on a lattice. In section 3 we show how modularity follows from three
structures on f: 1linearity in certain variables, separability, or the property of having a
Jacobian with small bandwidth. Section 4 describes how we exploit modularity in the restart
algorithm.

Sections 5, 6 and 7 discuss further the special structures above. In section 5 we show
how linearity arises naturally in the zero finding problem (or, more generally, complementarity
problem) arising from a nonlinear programming problem. Section 6 contains the surprising re-
sult that Kojima's algorithm [8] for the separable case using his homotopy Hz generates a
path identical to that of the standard restart algorithm. The extra linear programming pivots
and function evaluations required by the latter may all be avoided by exploiting modularity. 4
Finally, section 7 discusses how function evaluations can be reduced if the Jacobian of f has

small bandwidth - our approach here follows Curtis, Powell and Reid [1].
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2. Triangulations.

For simplicity we confine our attention to triangulations with grid size 1. When used in

fixed-point computation, these triangulations are generally scaled and translated in their

first n coordinates. Identify R" x [0,1) with {x e Rn+1|0 s ;n+1 < 1}. Removal of the bar :

from a vector in R" x [0,1] denotes its projection into R. Let ut,...,u"'! be the unit

+
vectors in R 1, so that u:l',...,un are the unit vectors in R".

Now let y € R® x {0} have y; an integer for 1 < i <n. Let 7 be a permutation of

{1,2,...,n+1}. Then kl(;,n) denotes the simplex (;O,...,;"ﬂ‘), where

;0 =i ;i-l + G‘"(i)

=y;y = el i <sntl o (1)

The special triangulation l-t is the set of all such kl(;,w) 's [18, chapter III].

1
Next let y ¢ R® x {0} have y; an odd integer for 1 < i < n. Let 7 be a permutation
of {1,2,...,n+1} and let s ¢ R" x {1} be a sign vector - ;i =#1 for 1 <i <n. Then

jl(;.i.;) denotes the simplex (;o,...,_yﬂ+1) , where

=i —i-1 —m(i)

-0 - =
S s T + s )Y + 1 <1< n+l. (2)

The special triangulation J. is the set of all such jl(;nl,;)‘s [18, chapter TIII].

1
The property that allows us to efficiently exploit structure in these triangqulations is

that each vertex of a simplex differs from its predecessor in just one coordinate. We always

assume the vertices of a simplex in il or Jl are ordered as above to simplify the use of
i

this property.

Let 0 = (;o,...,;ﬂ*l) €T, T= K, or J and suppose that we wish to know ;'j so that

1 g
when 9’ replaces ;j in o, another simplex in T results. (We say §j is the replace-

ment for ;j in o0.) Consider first K We have

s
& = - +1 -

j-O:yO-;’“u §°+y1, a'-(yl,...,;n ,yq

7 e o s Gt (3

~n+l -0

;Oo a' =y IY:---J;15 .
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In each case, we list the vertices on the right in the natural ordering given by (1).

Now consider 31. We have

0 =0, .-
Jom=00 yo sioyi &2y
ocgem:gd =y toP ey )
Sapl i e e

In each case, the natural ordering in (2) is unchanged - we have 0J' = (;0,...,§j,...,;“'1)

For these triangulations, modularity takes an especially simple form. First let T = il'
- ;g-l + o =5+l _

Suppose O < j < n+l and let h = w(j), i = w(j+l). Then vy~ = e Y
_y'j'l + ;h + -‘:;1' and ;J = ;3-1 + -\;‘i It is easy to see that £ is modular at ;j with re-
spect to o if n+l ¢ {h,i} and either 7 Hntl) <3 and

P L e R R S T N e I R R (5)

or n-l(n+1) >3j and (5) holds with fo replacing f£.

The similarity of (5) to the condition for modularity for a function defied on a lattice
prompts our nomenclature. (The condition given above is almost necessary as well as sufficient
for modularity. Any modularity with j € {0,n+1} or n+l ¢ {h,i} can only be due to a for-
tuitous relationship between f and fo.)

Now suppose T = 31. If 0 < j < n+l, a sufficient condition for modularity is similar to

that given above with ;huh and 's-iui replacing uh and u

and let i = 7(1). If i =n+l then y° is the only vertex of o in R" x {0}. Thus the

= in (5). Now suppose j =0

end point (xl.l) has been found and no function evaluation or linear programming pivot is re-
quired. Hence suppose i % n+l. Then & is modular at ;o in o iff
Oy - ul) + 20+ uh) = 26209 . 6)

1

Finally, if j = n+l 1let h = m(n+l) - since ym is to be removed, we can assume h ¥ n+l.

1

Then & is modular at y"'' in o iff
f(Ym-l > uh) & f(yn+1+ uh) % 2f(yn+1) ? N
-4~
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Henceforth, for simplicity in notation we deal only with the case that T = il' The

y are immediate. As we shall see, there are advantages to 31 -

in particular, since fo is affine, (6) always holds. From now on, we shall also abbreviate

corresponding results for J

"2 is modular at -y‘j with respect to o" by ";j is modular in o" with 2 understood.
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3. Examples of Modularity.

Here we show how modularity follows from three special structures on f£. In addition,
modularity arises naturally from the linearity of the artificial function fo.

3.1. Linearity. Identify R x R? with Rn, where p+q = n, and suppose f is such
that f(v,w) is affine in w € R? for each fixed v ¢ RE. Section 5 gives an application of
such a problem to nonlinear programming. We then have
Lemma 3.1. Suppose 0 = (;0,...,§n+5 = kl(;;n), and f is as above. Then ;j is modular
in ¢ if 0 < j < w-l(n+1) -1 orif n-l(n+1) < j <n+tl and both h = n(j) and i = m(j+l)
are greater than p.

Proof. If j < n M(n+l) - 1 then n+l ¢ {h,i} and = l(n+1) > j. Thus we only need to check
that (5) holds with fo replacing f. But this follows from the linearity (in the affine
sense) of fo.

It 3> n-l(n+1) then again n+l ¢ {h,i} and we must verify (5). But the projections of
yj'l, yj'l + o, yj'1 +ul ana yj-l +u + ul on their first p coordinates are the same.
Hence (5) follows from the linearity of f in w for fixed v.

Note that (6) also holds if fo is affine, and (7) holds if h > p. Hence the use of

J. allows additional exploitation of linearity.

1

3.2. Separability. The function f is called separable if there exist functions

g :R+R", 1 <i<n, such that f(x) = Eifi(xi). Special algorithms to compute zeroes of

such functions have been studied by Kojima [8]., One of these will be digcussed in section 6.
Lemma 3.2. Suppose o = (;0,..‘I;n+1) = kl(;;n) and f is separable. Then ;ﬂ is

1

modular in 0 if 0 < j <7 (n+l) - 1 or 7 Linel) < j < n+l.

Proof. For the first case the reasoning follows that in lemma 3.2. Suppose
7" 1(n#1) < J <n+l and let h = 7(§) and i = 7(§+1). We must check (5). Consider the
equation

T TR (0 2 T B IE Ao B (0 el SR S R S

fFor m ¢ {h,i} all four terms are equal and the equation is valid. For m = h, the first and

-fe
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last terms are equal and so are the middle two - again the equation is valid. Similarly, it
holds for m = i. Summing over m gives (5).

3.3. Functions with small bandwidth. Suppose the pth component function fp of f de-

pends on xq only for |p-q| < k. Then we say f has bandwidth 2k-1. If f is continuously
differentiable and its Jacobian matrix has bandwidth m, then so does f.
Lemma 3.3. Suppose 0 = (;0,...,;“+1) = kl(;,w) and f has bandwidth m. Then ;j is

modular in o if 0 < j < 7 l(n+l) -1 or if w l(n+l) < j < n+l and |m(§) - m(3+1)| > m.

Proof. We only need to verify (5) for |h-i| >m. For each 1 <p<n, the pth com-
ponent function fp is affected by at most one of X, and X . Hence (5) is valid for fp

since the terms are equal in pairs. Since p was arbitrary the lemma is proved.

Section 7 discusses further how the occurrence of modularity can be promoted and function

evaluations circumvented when f has small bandwidth.
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4. Exploiting Modularity.
POl X :
Let o= (y ,...,¥ be a simplex of Kl encountered by the algorithm, and for each
j let aj € Rn*l be the column vector (1, 2.(;3)). Then 0 was generated because some face

of 0o, say that opposite ;k, was known to contain a zero of 2. If B is the matrix

[ao,...,ak-l, ak+1,...,an+1), then there is a solution z > 0 to Bz = ;l. (In fact, to cir-
cumvent the problems of degeneracy, we will only generate this face if B-l has lexicograph-

ically nonnegative rows. For simplicity, however, we assume nondegeneracy throughout - we

suppose B is nonsingular and the first column of its inverse is positive.)

We also have available to us the inverse B-l. The analysis below assumes that B-l is

available explicitly. It is possible, however, to assume that we use the product form of the

inverse and still exploit modularity.l A factored form of the inverse, such as B = LU, is

not suitable for the use of our ideas.

The standard restart algorithm then proceeds as follows. Let b = 8-1;'1, a = B-':l'ak and

find j such that ;j >0 and b j/;j = min{gr/;r[;r > 0}. Here and throughout this section,

b and a have coordinates indexed ©0,...,k-1, k+l,...,n+l, to correspond to the indices of

the columns of B. Then the other face of 0 containing a zero of £ is the face opposite

_j

y’. Make a linear programming pivot step to obtain 5-1 where B is the basis obtained from

3

B by replacing a 2

with ak. Then find the replacement 93 for ¥° in o0, compute R,(;'j)
and introduce ;j =1, !L(§j )) into the basis ﬁ, continuing the process.
Now suppose that _ydj is modular in 0. Then we can save a function evaluation since
~3 j-1 3j j+l ’ ~=1
a’ = a - a + a . However we can do more - we need not make the pivot step to obtain B .
' a ~ - 4+ +
Indeed, suppose first that 3 & {x-1, k+1}. Let B = ‘[ao,...,aj,...,ak 1, ay 1...-,an 1) be

the basis obtained from B by replacing aj with Qj. Then the inverse of B can be obtained

from B L as follows. The (j+e)-th row of 8™l is the (j+e)th row of Bl plus the jth
sowof B-), ¢ = 1. The jth rowof B 1 is the negative of the jth row of B 1. All
these relationships follow trivially from the equation ;j = aj-l - aj + ajﬂ'. Similar changes

are made to a and b. The total work involved is 2n + 6 additions and n+3 sign changes.

11 am grateful to Professor Romesh Saigal for this suggestion.

-8-
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Note that the first column of ﬁ_l is not positive - its jth entry is negative. How-

. - o f e . -y A k
ever, since aj was positive, it is now negative; if we express u in terms of B and a,

and increase the weight on ak, the weight on ;J increases to zero and beyond. We may there-

J

fore simulate the entry of the column a into the basis B by entering ak into the basis B.

We therefore recompute the minimum ratio min(s;/;;/;; > 0}. Notice that only two of

these quotients (corresponding to r = j-1 and r = j+1) have changed. Suppose the minimum

L
ratio occurs for the index j'. If ;j is not modular in the new simplex
~9 L'y
o' = (;0,...,y3,...,;n+1> we perform a normal pivot step, replacing a’ with ak. If, how-
5!
ever, ;j is modular in o¢' and jJ' * {k-1, k+1} we may perform the same trick again. Hence

several pivot steps may be saved (or rather, replaced by trivial pivot steps requiring minimal

arithmetic) if several modular vertices are encountered.

We must now deal with the case where j e {k-1, k+1].1 Suppose j = k-1. Then ptal -
B-lak-z - B-lak_l + B-lak = ek-2 - ek-'1 + a, where e denotes a unit vector with coordinates

indexed O0,...,k-1, k+l,...,n+l and ith coordinate equal to one. We now want to express at

k=2 k-1 k n+l = 0 k-2
¢ a

in terms of ao,...,a ¢+ @ jeeegd + Or equivalently, b in terms of e ,...,e ’

= k=2 R=1 =— _K+¥l n+l
e = .

a+ » a, e reees® . Suppose the appropriate weights are xo,...,xn+1. Then we
have
a, A v A +2 =b i ¢ k-2, k-1} ;
Beaaag * A PR R e T B L

- X =b .

ez T A = Ry =B

=1
We know a nonnegative solution with Ak—l = O(Ak = bk-l/ak-l) and we want to increase xk_l.

Notice that ;%_1 is positive, since j = k-1 was chosen in the minimum ratio test. Hence

A= xk-l + Ak increases with Xk-l'

ad+ 2 =b ,i¢ {k-2, k-1}

from the last equation. Rewriting (8) we obtain

~

(A st A+ A =, 4D, ;) . (9)

(ak_1 =1+ Ak = bk-l .

1'rhe rest of the section is very technical. The reader may skip to section 5 without loss of
continuity.
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We now use (9) to perform a minimum ratio test to determine which vertex next leaves the
current simplex o'. If this leaving vertex is ;k-z we find the band of non-unit columns

in the representation of the current basis in terms of B widening. Let us therefore progress

to the general case, where ;k+1"_.';s have been replaced (in that order) by §k+1,...,§s,
and ;k-l, ;k-z'.__';r have been replaced (in that order) by Qk—l, §k-2,...,§r. of course,
_j

when any such y is replaced, we assume that it was modular in the current simplex, or the
process terminates.
We therefore want to express b in terms of the columns of

[eo,...,er-l, P ek-l,...,;¥ek-2 - ek-l, a, e ek+1,...

(10)

..';;es+l ¥ ek+1, es+1"._'en+1) :

If the corresponding weights are A we have

0""'An+1'

ai(xr+---+xs) +A =b,,i¢ {r-1,...,s+1} ;

ar_l(kz+---+xs) + kr-l + Ar = br-l ;
ai(Ar+---+As) + Ai+1 =b,, r<ic<k-l ;

@y = DO Feeeid, ) +a (W 4eeedd) =b ) (11)

ak+1(xr+---+xk) + (ak+1 - 1)(Ak+l+---+ks) = bk+1 $

;i“r""'”s’ i = Ei, k+l < i <s ;

i-1

as+1(kr+-'-+ks) + As + As+l = bs+1 .

Suppose }r is the new vertex and the weight Ar is to be increased. Adding equations

indexed r through k-1, we get (at+"‘+ak_1)(kr+"°+ls) - Xr = (br+ +bk_1)- As we shall
see, the fact that ;r left the simplex implies that (:;+---+;;_1) is positive. Hence we

can increase 1\ = Ar+---+ks instead of Ar. Adding the equations indexed k+1 through s

we obtain

(ak+1+'..+°s)(xr+.'.+ks) ) xs x (bk+1+...+bs) g




Now (11) can be written as ‘ 1
;;x +a = S; o id {x-l,...,841)

L, OO 2 R S o I i

a.A+ 2 =b r<ic<k-l ; ‘

i i+l i
(g y+ta , ~DA+ A =Db , +b , (12)
ad+r  =b ,kHl<ics ;

-(ak+1+‘.'+as)x * xs 3 -(hk+1*...+bs) !

R e T o S R TR L
F We now use (12) to perform a minimum ratio test to see which ;j or ;j leaves the
current simplex o'. There are several cases.

Case 1. ;j or §j is not modular in o'. We wish to obtain ﬁ-l, where B is

A= [ao,...,ar-l, ;’,...,Sk'l, ak, ;k+1,...,;s, 35+1,...,an+1] with the column indexcé j re-

moved. We write B = R~j. The columns of matrices of size (n+l) x (n+2) will always be in-
dexed O0,...,n+l; naturally the columns of B are indexed Opeeesd=l, I*+1,...,n*+l.

case 1(a). j ¢ {r-1,...,s+1}. First do a standard linear programming pivot step to obtain

o -

-1 0 n+l ~3 =
A B1 , where Al | SRt ] and B1 - AI . Now note from (10) that A = Al Pkrs' where
} Pkrs is the matrix
Ir~1
I 2
a] wleeeal

‘ i 1 Jevesl 1 Jeess) 1

{ “leeeml -1

T,

——




T s A

Hence B = B, o33, vhere 3 is' 2 with row and column 3j removed. It follows

krs’ krs krs

that B ' = (li“jj)-l 8-1. and it only remains to invert P_32. But this is easily done. Let .
krs 1 krs
ris be the inverse of Pkrs‘ we have ris explicitly as
i o .
{
Ir-l i
1 lessel 1 §
efssasl =f f

|

-1 =1see-1
1 leeoe] 1l

i

~33,-1 ~33 ~=1 ~33 -1 : ==] -1 g
Then (Pkrs) bt ot and thus B = = s B1 . Obtaining B from B1 requires only

(s-r+4) (n+1) additions/subtractions.
Case 1(b). Jj e {r+l,...,k-1}. First do a standard linear programming pivot step to ob-

tain B-l, where Bl = Aij-l. Then an analysis identical to that above shows that

Il, where Q"j’j-l

51 _ o331 i
B ris B ra is ris with row j and column j-1 removed.

Case 1(c). Jj € {k+l,...,s-1}: analogous to case 1l(b).

Chpe LEBS, §g-l. Tat A, W ik e e  a - i e

2
&1, K, .4, then, with B, = a7K, 871 can be obtained from 871

e R
k-1

(r-1)st through (k-2)nd rows to the (k-1)st. Next let B, = A, - we obtain B;
-1

Bl by a standard linear programming pivot step; notice that, from (12), the pivot element

(‘r-l*"'*’k-l) is positive. Now from (10) we have B = Bz -

by adding the

- from

where Dkrs is the matrix

=12~




e e —

lessel 1 leseesl 1
—leeee=] =1

with inverse

—leee-1 1 1

w] =lesce=]
1 leeeel 1

B

-1 -1 -1

Hence we easily obtain B = = Dkrs 52 5
Case l(e). j =k. Let A_ = [ao,...,ak‘l, ak - ak-l, ak+1 - ak-l, ak+2,...,an+1]. Then,

2

-1 1

with B, = A;k, B1 is obtained from B™~ by adding the (k+l)st row to the (k-1)st. Next,

~k=1 - -
let Bz = A2 - since a1 + - 1 is positive from (12), this is a standard linear

programming pivot step. Now B = 52 Ekrs' where Ekrs is the matrix

-13-
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r-1
1 1
1 leesel leseee]l 1
—leeee=]l =3
IIs—k-ll
1 X
with inverse
—; e
Ir-l

1 leesesel =1
=leesee=] 1

-1 =lese-1
1  leeesl 1

8 sl

thus B = £ "} B! is easily obtained.

Case 1(f). j = s. Let A2 = [ao,...,ak-l, ak, ak+l, ak+2 - ak+1,...,as - ak+1, a8+1,...,

n+1]. With Bl = A;k, B;I is obtained by adding the (k+2)nd through sth rows of B-l

a
to its (k+l)st row. Then a standard linear programming pivot step gives us (A;k*l)-l. From
this it is easy to obtain 5-1; the argument is analogous to case 1(d).

(k+2) nd

Case 1(g). Jj = s+l. Analogous to that above; we start now by adding the

through (s+l)st rows of Bl to its (k+l)st row.

We have finally completed the analysis of the nonmodular case. Fortunately, the case re-

maining is much simpler.

~14-




Case 2. ;j or §J is modular in the current simplex o'.

case 2(a). j ¢ {r-1,...,s+1}. 1In the original B, replace aj by ;' = aj-l - aj + aj+1
the update of B-l is trivial. Correspondingly update b and a and return tothe minimum
ratio test of (12) - note that only two ratios have changed.

Case 2(b). j = r-1. Note that (12) then implies that (a__ +**+a _ ) is positive,
thus justifying our claim above (12) that (;;+---+;i_1) was positive at the previous step.
In this case, r is decreased by 1 and we return to the minimum ratio test of (12). Only
two ratios (for r-2 and r) need be calculated.

Case 2(c). j =s. Then s is decreased by 1 and we return to (12) - only the ratios
for s-1 and s+l are updated.

Case 2(d). j = s+l. We increase s by 1 and return to (12). The ratios for s and
s+2 are recomputed.

ad

- e 5
J w30t a3+1- s

Case 2(e). j € {r+l,...,s-1}. The new column, assuming j < k, is a’ = a
Expressed in terms of the basis B, it is B( a+ ej-2 - ej-l + ej - ek-l). It might be possi-
ble to handle this case and derive the appropriate counterpart to (12) to make the minimum
ratio test. On the other hand, the complications of case 1 suggest that we avoid these diffi-
culties. Certainly if case 2(e) occurred several times in succession, the resulting basis would
be very hard to deal with. Hence we suggest ignoring the modularity and returning to the appro-
priate subcase of case 1. At least one pivot has already been saved, and we know ;j.

We now give an estimate of the amount of work that is saved by exploiting modularity. We
suppose that the difficulties of case 2(e) have been surmounted. Our estimate is based on the
measure of directional density of a triangulation, studied in [17, 19]. Given x, d € Rn, let
$(t) = (x+td, t) € R x [0,1]. Let T be a triangulation of R" x [0,1] and Oyr 0, € T
We write %9 % o, if ¢(t-n) € Oyr ¢(t+n) € o, for small positive n, and if the vertex of

o € T} .

2
Then no(nl) measures the number of function evaluations of fo(f) and the associated number

n t
rot in o, lies in R x {i}. Let n =4+ |{t € (0,1)| o, 0, for some o, o,

of linear programming pivot steps. Let Ni(T,d) be the average of n, when x is uniformly

i

distributed in a cube of side 2, for T = il and 31. We then have

-15-
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Theorem 4.1 [19]

~ — + 1
(@ Ny(K ) =] (@ + (d;-17) + ZM -2-|ai-dj|

4 + - 3
() N (R,d) =1+] (@ + (-7 + Zi<j ildi'djl

i

~ 1 + -
(@ Ny @ =L Sta | + (@-D7 + @+n7) + Zi<j 4(|di+dj| + Idi—djl)

= - 1 - * 1 i
(@ N @@ =1+] Ha]+ (a-1)7 + @+ + Zi<j 4(|di+djl + e djl) .

Here, for any real ], A+ = max{0,\} and A = A+ - A. Using the same arguments we can prove
the result below. Of course, since ¢(t) is straight we may call all vertices modular. How-
ever, when we say that so many pivots can be avoided by exploiting modularity, we mean only
those which are guaranteed to be modular by the linearity of fo or the special structure of
£.
Theorem 4.2

(i) By using the linearity of £9, we can avoid zi<j %ldi_djl of the pivots counted in
(a) above, and Ei %1di| + zi<j %(|di+dj| + Idi-dj|) of the pivots counted in (c) above.

1

p<i<j 2

la,| + Lla,+a.| + |d.,-d.|) of the pivots count-
i p<§<j alldg+d, %

(ii) If £ is linear in variables p+l,...,n, then we can avoid )

1
p<i 2

|a.,-a.| of the
i3

pivots counted in (b) above, and |

ed in (d) above.

(iii) If f is separable, we can avoid in (b) and (d) the pivots counted in the sums Z .
i<j

(iv) If f has bandwidth m, we can avoid in (b) and (d) that part of the pivots counted in

the sums 2i<j for which |i-j| > m.

-16~
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5. An example of linearity. |

PV

Consider the nonlinear programming problem of minimizing 6(v) subject to g(v) = 0,

————

where O:Rp -+ R and q:Rp » R arecontinuously differentiable. The problem of finding a
stationary point of the Lagrangian of this program is that of finding a zero of £, where
f(v,w) = (VB(v) + Vg(v)w, g(v)). Here w ¢ Rq - clearly for any fixed v, f is linear in w.

The inequality problem (g(v) < 0) has traditionally been formulated for application of
fixed-point algorithms as a zero-finding problem for a point-to-set mapping defined on RP.

The algorithms converge slowly in this case. If g is affine then the methods of Kojima (7]
and Todd [20] provide fast algorithms.

We are here concerned with the case where g is not affine. For simplicity we consider
only the equality-constrained problem above, but our analysis is easily extended to inequality
or mixed constraints. Two papers have addressed this problem: Kojima [9] and Todd [20]. Both
propose methods that use triangulations of Rp x Rq x [0,1] (explicitly or implicitly) in which
the mesh size for the w variables is large or infinite and does not shrink as the iterations
progress. The reason, of course, is that a piecewise-linear approximation to f with respect

to such a triangulation can be made arbitrarily close to f.

Fixed-point algorithms, besides yielding approximate fixed points or zeros, also provide

T N YOS et PRI iy it

approximations to the Jacobian of f [16, 13]. The exploitation of this information is the

key to obtaining quadratic or faster convergence - see Saigal [12] and Saigal and Todd [14].

Unfortunately, the algorithms proposed in [9, 20] do not give good approximations to the partial

derivatives of f with respect to the v-variables. Indeed, the approximation to af(v,w)/avj
is the difference between the function values at the two vertices of the final simplex that
differ by Gj. If w is the value of w for these vertices, what is obtained is an approxi-

mation to Bf(v,i)/avj, and w may be far from the approximate value of w.

We may obtain good approximations to the Jacobian of f by using a fine grid size for the 1
w variables as well as the v variables. The disadvantage using the standard restart method

. is the large number of pivots to move from one region of w-space to another. In effect, one

“has a general (p+q)-dimensional problem. It is generally felt that the gain in smoothness

" compared to the standard p-dimensional formulation is not worth the corresponding increase in

dimension.

«7=




However, the analysis of section 4 shows that a fine grid size can be employed for the
w variables and most of the work of moving in the w-space can be eliminated by exploiting
modularity. The advantage of smoothness may now compensate for the increase in dimension. In
any case, the results of [12, 14] show that asymptotically quadratic convergence can be achieved
under reasonable conditions; because of linearity in w, asymptotically each iterate requires

only p+l evaluations of V8 and Vg.
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6. Separable functions.

Recall that f£:R" + R' is separable if there exist £ir > K < i < n, such that
f(x) = Zi fi(xi). Clearly any linear function such as fo is separable. Kojima [8] has
suggested two algorithms for computing a zero of such an f - here we restrict our attention
to that using the homotopy Hz.

Using f, fo and the triangulation K, of R" x [0,1) we construct the piecewise-linear

1
function % as in the introduction. On the other hand, for each i, 1 <i<n, we can use
fl, fo1 and the triangulation il of Rl x [0,1] to construct z‘(xi,t). Define E(x,t) =

zi zi(xi,t). .

Proof. Suppose t(x,t) = a € R". Then there are Xo,...,l and a simplex

n+l

g = (;0’_._';n+5 € il such that (x,t) = z;:g Aj ;j and

n+l =
ek et
n+l
2 =1 13
=0 3 yin

Ay 20, 3 = 04uceentl

J

where fj = f(yj) if ;:+1 =1 and fj = fo(yj) otherwise. Suppose ¢ = kl(;,n). Let

I = {iJ]1 <i <n, 711 < 7 ln+1)} ana 1, = {1,...,aN\1;. For ie I,, define zg = ;g,

1 2 -0 (o] 1 2 -1,

g o8 =y +1, ¢t =t =0 and t, = 1. Also define Aio Z(Xj|0 <j<wm (D},

-1 -1 -1

Ay ® I{le" (1) <3 <m (n+D)} and A, = ):(Ajln (n+l) < j < n+l}. For i e I,, define

6_ 3 =0 o =0 0 QPN x -1
By SRy ™9 B, Ry ¥ 1 Sy 0 and ti = ti 1. Also define *10 Z{leo <3 <m T(n+l)},

Consider the ith component of (x,t) = ;:é Aj ;j. Because ;i = ;2 for j < l-l(i)'
-5 =0 -1 o 0 1 2
Hney +1 for j >m (i), we obtain x; Aio z; + 111 z; + *12 z,. Similarly
0 1 2 R T = | ij _ (0i =3
t= ot e, )+ A, th. Now let el aetgh 1e ¥, =1 am ¢ ;)

-19-
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otherwise. Then (13) gives 2?:; j 22=1 £ = a, and collecting terms yields
n io il ;i S 100 -0d .0 A2t f i
121 (o9 * Xilq +2,,07) =a, where g = f (zi). g " =f(z)) and g

1

» BT § A .
f (zi) i'F

1 il 0i 1 A {ds 2 o
T YolighT = £ (zi) otherwise. Together with the trivial facts that zk=0 Aik o xik >0,

this last equation says precisely that i(x,t) = a.

The lemma gives immediately

Theorem 6.2. The path generated by Kojima's algorithm using homotopy H2 and triangula-
tion il(il) for each component coincides with the path generated by Merrill's algorithm using
triangulation il(sl)'

Of course, many more pivots may be required in the latter algorithm. Indeed, Kojima's

algorithm works with the linear system

n 2 ik
Licy bemo P8 = O
2 X
po ika T F
(14)
2
ko Max = 1
Gpad s A

During a single pivot in (14), it is possible that several Xio‘s for i € I1 =
(i'|kio < 1 -t} change their relative magnitudes. From the correspondence between Aj's

and A‘k's in lemma 6.1, it can be seen that each such change requires a change in the permu-
tation 7 and hence a pivot in (13).

However, the path of either algorithm is straight in a piece corresponding to a single
pivot in (14); hence all the additional pivots correspond to modular vertices and can be per-
formed by the techniques of section 4. With the exception of pivots of type case 2(e) of
section 4, we can therefore simulate Kojima's algorithm in a standard restart algorithm - note
that the latter requires only a linear system of order n+l rather than 3n as in (14). of
course, n of the constraints of (14) are of generalized upper bound form.

The theorem also implies that the asymptotic results of quadratic convergence in Saigal

[12), saigal and Todd [14] apply to Kojima's algorithm also. No such results are available

-20-
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for the homotopy H3 [8] - the possibility of acceleration seems a powerful reason for choosing

i H2 over H3. j

A slight modification is suggested for accelerating in the separable case. In the standard

algorithm, having obtained an approximate zero xl, we choose fo to have a zero at xl. We

also translate the triangulation so that (xl,O) is in the center of the face of the starting
1.0 n 1
2n(y kT n

+1) -n+l 1§

simplex (;o....,;n opposite y . This is done by arranging that x

z;:i yj. Then if all zeroes of £ have projections within €/2n (in the 2 norm) of xl,
only n+l function evaluations and linear programming pivots are required to obtain x2; here

€ is the grid size of the triangulation Rl or 31 used. With f separable, it is prefera-

ble to translate the triangulation so that xl = (% - 6)(y0 + yn) + [26/(n-1)]

n-1 j

=1 y where

§ is small and positive. In this case, as long as all zeroes of £ have projections within

R b Ay

(% - 8)e of xl, only n+l function evaluations and "nonmodular" linear programming pivot

steps are required. Many more pivot steps may be needed, but they will all be of the trivial

type considered in section 4. Thus the algorithms can be accelerated more safely in the

separable case.

-21-
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7. Functions with small bandwidth.

Recall that f has bandwidth m = 2k-1 if each component function fi depends on xj
only for |i—j| < k. We assume 6k-4 < n. Functions with small bandwidth arise naturally in
discretizations of boundary value problems (see chapter 1 of [11]). In addition, if f is
"sparse" (i.e. its Jacobian matrix is) we may permute the coordinates of the domain and range
space to attempt to obtain a small bandwidth. See [6] for computational complexity results
for minimizing the bandwidth by such permutations.

Our approach is based on that of Curtis, Reid and Powell [1]. Our aim is not just to avoid
function evaluations but to promote the occurence of modularity. Fortunately these goals
suggest the same strategy.

We would like to encounter simplices kl(;,ﬂ) such that adjacent members of m differ by
at least m. While the algorithm is deterministic, we can at least control the starting simplex.
We choose this to have associated permutation T = (1, m+l, 2m+l,...,2, m+2, 2m+2,...,...,Mm,
2m,...,n+l). Then the first step of the algorithm that does not transfer a vertex from
R" x {0} to R" x {1} or vice versa entails a modular pivot. Indeed, since each simplex
change affects the permutation only by an adjacent transposition, it is likely that several
modular pivots will be encountered.

Under reasonable smoothness conditions on f, we know that asymptotically only n+l sim-
plices will be encountered. These all correspond to kl(;,w). with ® containing the indices
1 through n in the same order as in 7, and n+l moving from the last position to the first.
In this case one can also economize on function evaluations.

Of course, if scalar function evaluations are much cheaper than vector evaluations one may
economize at each step. If ;j is to leave the simplex and be replaced by ;j, then f(;j)
can be obtained from f(yj‘l) or t(yj‘l) by making only the m scalar function evaluations
in which it is know to differ. Frequently, however, economies in common expressions and the
need to control subroutine calls suggest that vector function evaluations are more efficient.

In this case one may proceed as follows.
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Starting with (y ,...,;n 1) = kl(y,ﬂ) we first calculate f(yn+l). I1f, as hoped, ;n

n+l - un(n)) = f(yn-l). Instead we
-1
). This evaluation gives us automatically f(y" (m)

leaves the simplex, it is replaced by ;n: we need f(y

T g

Yreoes

calculate f(y ), £y

f(yn-l). If, as we again hope, y" displaces ;n-l, then we need f(yn-z); but this is al-

ready known. It follows that if the sequence of simplices is as hoped (and asymptotically

=1 -1 -1
guaranteed) we need only evaluate f at yo = y" (1)-1, y" (2) 1,...,yﬂ (mr =2 and yn+1,

a total of m+l function evaluations. In any case, we have not made any extra evaluations.
It is clear that, at a general stage of the algorithm, we may also try to guess the next
few vertices that will be generated and make a function evaluation that will give us the value
of the function at each of these vertices. Also, the more general grouping idea of Curtis,
Powell and Reid [1l] can be exploited in an analogous way - asymptotically only m +1 function

evaluations are necessary each cycle, where here m is the number of groups.
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