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H 
_Preface

This report is the result of my investigation of the finite-

element method, with a quadratic interpolation function, for solution

of the one-dimensional transient heat conduction equation. Although

order of accuracy improvements over the linear interpolation formulation

did not materialize, the results achieved were significant in that they

were previously postulated, easily accounted for by elementary

mathematical analysis, and verified the accuracy of solution by

finite-c lenient s. Failure to achieve greater accuracy was a function

of the solution method; solution improvement by quadratic interpolation

requires special treatment of the internal nodes and time domain.
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Dr. Bernard Kaplan of the Air Force Institute of Technology for his

guidance in my performance of this thesis, and to Dr. W. Kessler of

the Air Force Materials Laboratory for sponsoring this research project.
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of the Air Force Institute of Technology, for their technical advice
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typing achievement.

Finally, I wish to express my gratitude to my wife, Linh, for her

invaluable moral support and insistence to maintain a proper perspective

in the accomplishment of this continuous work.

ii 

- —_ _ _ _  — 

~~~~~~~~~~~~~~~~~~~~~ 

-,
~~

. 
~~~~~~~~~~~~~~ -~~~~—--- ~~~~



Contents

Page

Preface ii

List of Tables v

Abstract vi

I. Introduction 1

Background 1
Problem 2
Scope 3
Assumptions 3
Approach 4

II. Theory 5

The Physical Problem 5
Finite Element Background Theory 10
Finite Element Problem Approach 13
Quadratic Finite Element Application 17

( Quadratic Solution Interpretation 45
Error Analysis 46
Stability Analysis 49

III. Procedure 59

General Approach 59
Computer Application 62

IV. Results 65

Stability Analysis 65
Error Analysis 65
Plots 69

V. Conclusions and Recommendations 74

Conclusions 74
Recommendations 78

Bibli ~~raphy 80

Appendix A: The Analytical Solution of the Primary Problem 81

Appendix B: Elementary Variational Calculus Review  85

Appendix C: Derivation of Quadratic Constants 90

iii

T w— -
:. .. ~~~~~~ :.; ~~~~~~~~~~~~~~~~~ ~~



( Page

Appendix D: Assembly Theory for Matrices 92

Appendix E: Derivation of the Truncation Error for the Finite-
Element Formulation 97

Appendix F: Treatment of Internal Nodes for Static Problems 102

Appendix G: Comparison of Linear and Quadratic Factors and
Equivalence of Linear and Quadratic Interpolation
Function Analysis 104

Appendix H: Computer-Generated Plots of Results 110

Appendix I: Alternative Formulation of the Time Response 164

Vita 169

(

iv

_ _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~ 

- 

- I 

- 
_ _ _



List of Tables

Table Pa~~~

I Oscillation and Instability Limits By Eigenvalue
Definition 51

II Oscillation and Instability Limits for the Fourier
Modulus in the Finite Element Method 54

III Oscillation and Instability Limits for the Fourier Modulus
in the Finite Difference Formulation 56

IV Oscillation and Instability Limits for the Fourier Modulus
in the Finite Element Method and Quadratic System 58

V Error Cordparisons for the Various Methods for 0 = .08
and p=l .0 66

VI Error Comparisons for the Various Methods for 0 = .04
and p = .5 67

VII Error Comparisons for the Various Methods for 0 = .16
and p=2.O 67

VIII Discretization Error Ratio Comparison for the Optimum
Implicit Scheme 70

D-I System Numbering - The Correspondence Between Local and
Global Numbering Schemes 93

D—II Relationship Between Local and Global Elements of Matrix ~ 95

G—I Equivalency of Optimum Alpha Values For Quadratic and
Linear Interpolation Functions 109

I

V

I 
_ _  

_ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



I
AFIT/GNE/PH/78D- / 6~

Abstract

The one-dimensional transient heat conduction equation, with

Dirichlet boundary conditions, is solved by the method of finite-

elements, employing a quadratic interpolation function. The numerical

solutions are investigated with respect to accuracy and stability,

and compared to like results attained by the method of finite-

differences, and the finite—element method with linear interpolation.

The version of the finite-element method used was based on a

variational principle which is stationary in time; the temporal

behavior of the differential equation is treated with a finite—

difference apprcximation. This method is equivalent to the method

of Galerkin, called the ~4ethod of Weighted Residuals. The inherent(
discontinuity between the initial condition and boundary conditions

was accounted for by substituting the exact analytical solution at

the first time step and numerically computating from there. An

equivalency relationship between the two finite-element methods is

shown to exist. The finite—difference version of the Crank—Nicolson

method is found to be more accurate than the finite-element version;

for the fully implicit method, the opposite is found to be true.

In the optimum implicit method, both finite-element solutions are

shown equivalent to the finite—difference solution for a Fourier

modulus of one. For other values of this parameter, the finite-

element solution is more accurate.
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AN INVESTIGATION OF THE METHOD OF FINITE ELEMENTS

WITH ACCURACY COMPARISON S TO THE METHOD OF FINITE DIFFERENCE S

FOR SOLUTION OF THE TRANSIENT HEAT CONDUCTION EQUATION

USING OPTIMUM IMPLICIT FORMULATIONS

I. Introduction

Background

Most engineering problems reduce to finding solutions of

mathematical problems. Specifically , one translates a physical

phenomenon into a differential equation, the solution of which

yields the unknown value. Although analytical solutions are exact

and desired, factors such as mixed geometry and computer limitations

often prevent the application of analytical techniques. If one is

willing to accept certain inaccuracies to be explained later,

numerical techniques can be reasonably employed to obtain the

desired solutions.

An accurate numerical technique is the method of finite—

elements, in which the problem is recast as an integral to be

minimized. Exactly, the finite-element method converts the original

partial differential equation into a variational integral which

must be minimized. The solution of the original partial differential

equation is employed in this minimization process. A resultant

set of algebraic equations is then solved by digital computer. S

Anyone familiar with the method of finite—differences should already

note certain operational analogies, the main difference in the two

1
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techniques being that, in finite—differences the solutions are

evaluated at the nodes, while in finite-elements, the solutions

are taken along the nodal intervals as well.

One problem suited to the application of finite-element

procedures is that of transient heat conduction. The irregular

geometry involved in the study of temperature variation and control

in such pieces of hardware as jet engine burner baskets and rocket

nozzles necessitates the use of numerical procedures to attain data

such as required by the Air Force Materials Laboratory.

There exist several schemes to the finite-element solution

of the transient heat conduction problem. These approaches include

the Crank-Nicolson method, the Euler method, and che fully implicit

method. Recently , Martin (Ref 7:52) developed an “optimum implicit

method” which was shown to be the most accurate approach for his

problem. Basically, the Martin method is a finite-element procedure

in analogy to the Crandall method (Ref 3:318-320) of finite—

differences.

Problem

The primary objective of this project was to solve the one-

dimentional transient heat conduction problem, with a known

analytical solution, using modifications of the Martin solution by

the finite-element method. A quadratic interpolation was used and

accuracy and stability comparisons made to Martin ’s linear interpola-

tion solutions. Comparisons of accuracy and stability to the Crank-

Nicolson finite—difference solution were also made, where instability

2
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is defined as the tendency for oscillation errors of the numerical

technique to grow unbounded , thus destroying that solution.

Scope

The problem analysis included a comparison of the Crank-

Nicolson finite—difference and finite—element methods, using a

quadratic interpolation function in the latter; a comparison of

the Crandall optimum implicit finite-element method (Martin, linear)

to the optimum implicit method using a quadratic interpolation

function; and, a comparison of the Crank-Nicolson and optimum

implicit methods where both employed quadratic interploation

functions.

Assumptions

Three assumptions of note are: (1) the physical properties

of the material of interest do not change in time or space; (2) no

heat generation occurs within the material; and (3) the application

of a constant dimensional mesh spacing to the numerical calculation

is satisfactory for heat conduction problems.

Assumption (1) is justified in that unchanging material properties S

is a usual design feature. Assumption (2) is valid because there

would be no difficulty should a heat generation factor exist. Such

a term could be added to the given equation as long as it was

constant with respect to time and space. Assumption (3) is the

greatest limitation on applicability because not all problems have

the same geometry and thus the same mesh spacing. For this one-

C dimensional problem, the assumption is valid if no inhomogeneities

3
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I

exist in the material.

~~proach

Basically, greater accuracy for the finite-element solution

of the transient heat conduction problem was attempted by using a

quadratic interpolation function and employ ing the various schemes

noted earlier. The major obstacle was to apply the finite-element

theory to such a function and to derive the basis for the finite-

element numerical formulation. The second major problem was to

derive the optimum implicit theory for its application. Finally ,

computer programs were written to perform the comparisons mentioned.

(
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I

II. Theory~

The Physical Problem

The transient heat conduction equation is a specific form of

the general linear second order partial differential equation -

Au + Bu + Cu + Du + E u  + F u = G  (1)xx xy yy x y

where the discriminant , B - 4AC , equals zero. This also

establishes the equation of interest as parabolic (Ref 2 :97 ) .  The

terms A through G are constants for functions of x and y only.

The transient heat conduction equation states that the overall

S change in the internal energy of a. system is equal to the beat gain ,

plus internally generated heat , minus heat loss . As time

derivatives, the equation states

= + - (2)
stored in gen out

These terms can be replaced by rate equations. Of interest

here is the conduction rate term

4 = -kA~~ (3) 5

5

5 ~~~~~~



where

4 = rate of heat flow in the x direction

k = coefficient of thermal conductivity

A = area normal to the x direction through which

heat flows

T = temperature

x = space variable

and, the heat storage term

~
3store = pVc~~~ - (4)

(
where

U rate of heat storagestore

P density

V = volume

c — specific heat

t time

C
6

I
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uni t of

~~~~

Distance into wall ÷

rigure 1. A Unit of Volume From a Wall with Large
Dimensions in the y and z Directions.

Figure 1 (Ref 7:7) indicates that

aT (kAaT/ax]~~~~ (kAaT/axj
PCAj~ = ___________________________ S (5)

for no internal heat generati on. As x goes to zero , the standard

parabolic heat equation is attained as

pcA~~ — 
~~ (kA~
!~J (6)

where, if p , k , and c are spatially constant with constant S

(
~ 

cross—sectiona l area , the attained result is

7
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The physical problem of note is completed by applying initial

and boundary conditions. For purposes of this study, Dirichlet

boundary conditions are used, where the function itself is specified

at the boundaries. The exact problem considered is that of a

parallel sided plane wall, infinite in all directions normal to the

direction of heat flow. The wall is heated until a steady state

temperature of 1000° F is attained throughout the continuum , and

then cooled to a continuous temperature of 00 F. The boundary

conditions for a wall of length x , 0 to L are

T(0 ,t ) = T(L ,t) = T
~ , T > 0 (8)

The initial condition is -

- T(x ,t) = Ti ‘ 
t = 0 (9)

and T~ are the specified boundary and initial conditions of 
S

00 F and 1000° F , respectively.

S 
Without loss of generality , the problem can be normalized to

— (10)

8
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where the corresponding boundary and initial conditions are

u(o ,8) = u(l,O) = 0 , 0 > 0 (11)

and

u(~ ,0) = 1 , 0 = 0 (12)

and where x is normalized position , @ is normalized time , and

u is normalized temperature.

(
u(~ ,0) = 1

S 

u=0

0 1

Figure 2. A Schematic Diagram
of the Problem.

Figure 2 shows the normalized problem . Of immediate concern

is the obvious discontinuity between the initial condition and the

( boundary conditions . Discussion of this dilenmta will be postponed

until later .

9
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Because the numerical solutions will be compared to the exact

analytical solution , this exact solution must be found. Separation

of variables yields

— 4 — (2n— 1)ir ] 2 0u(x ,8) = 
‘~ (2 n—l) ir  sin ( (2n —l ) wx]e (13)

m=l

The complete derivation is in Appendix A. Martin verified this

problem (Re f 7:13) and discussed the truncation error of its computer

solution (Re f 11:660) . Figure 3 depicts the exact analytical

solution.

Finite Element Background Theory

Unlike the finite—difference method , which envisions the

solution region as an array of grid points , the finite—element

method envisions the solution ragion as built up of many small,

interconnected elements. A finita—element model of a problem gives

a piecewise approximation to the governing equations. The basic

premise of the finite-element method is that a solution region can

be analytically modeled or approximated by replacing it with an

assemblage of discrete elements. That is , the finite—element

discretisation procedures reduce the problem to one of a finite

number of unknowns by dividing the solution region into elements

and by expressing the unknown field variable in terms of assumed

approximating functions within each element (Ref 5:5—6) .

The approximating interpolation functions are defined in terms

of the field variable values at the nodal points. The nodal

10
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values of the field variable and the interpolation functions for

the elements completely define the bahavior of the field variable

within the elements. S

The finite-element approach can be formulated in several ways, S

three of which are mentioned here . The most elementary approach

is the direct approach. This procedure requires little mathematical

manipulation and is used extensively in structural mechanics . Its

main contribution to the heat problem lies in its reliance or~ matrix

algebra and the formation of stiffness matrices. These matrices

are employed in this thesis and discussed later.

The second appraoch, also employed in this thesis, is the

mathematical or variational method. The variatio.~al basis dictates S

the criteria to be satisfied by the element interpolation functions.

This method is one of several used to solve continuum problems . S

In the classical variational formulation, the problem is to f ind

the unknowh function or functions which extremize or make stationary

a functional or system of functionals subject to the same given

boundary conditions. This procedure is equivalent to solution of

a system of differential equations because the functions that satisfy S

the differential equations and boundary conditions also extremize S

the functionals (Re f 5:67) . Of course , the problem must be posed

in variational form. Creation of the variational statement will be

discussed in the following section .

Tu e third approach is a particular form of the Method of

Weighted Residuals , called Galerkin’s Method. It is a general

method used to formulate the finite-element equations without any

12
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reliance on classical variational principles. In fact, this is its

main advantage. Generally, the method requires an assumption about

the general behavior of the ~Iependent field variable. This approxima-

tion is substituted into the original differential equation, and

any residual error made to vanish over the average. The resultant 
S

equations are now solved to yield the approximate solution. Martin

(Ref 7:123—126) showed this method to be equivalent to the method of

variations. S

Whatever method or combination of methods is selected, Huebner

reduces the finite-element procedure to the following steps, defined

in the text (Ref 5:7—9):

(1) Discretize the continuum.

(2) Select interpolation functions.

(3) Find the element properties. -

(4) Assemble the element properties to obtain the
system equations . -

(5) Solve the system equations.

(6) Make additional computations if desired.

Finite Element Problem Approach

General Approach. Myers (Ref 8:321—322) notes that, while in

finite—difference theory the main concern is the approximation of

derivatives by dif ferences , the main concern of finite-elements

involves the three concepts of minimization of functions, variational

calculus, and, if necessary, the approximation of integrals.

Minimization of functions involves the elementary process

( 
of taking a derivative and setting the result equal to zero. Also

13
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I
quite elementary and well—known is the approximation of integrals

by such procedures as the trapezoid rule or Simpson ’s rule. In the

finite—element method, the ~problem to be solved is cast as an

integral to be minimized. A numerical approximation of the integral

may be used to obtain the solution. The principles of variational 
P

calculus are briefly reviewed in Appendix B, in that this method -

is of primary use in the solution of the given problem.

Background. The method of approach is based on the variational

principle as mentioned earlier and as used by Myers (Ref 8). The

finite—element procedure is illustrated by.solving the problem of

concern directly. In review, note that the physical problem was

stated in normalized form as

(
(10) .

~~ H

u(0,e) = u( l ,8) = 0 , 8 > 0 (11)

u(x ,O) = 1 , 0 = 0 (12) 5

where x = x . The finite-element method begins with a variational

statement of the problem rather than the differential equation.

Theref ore, the variational statement corresponding to Equations (10) 
5

through (12) must first be found .

To find this variational statement , it is noted that the

( functional to be minimized is of the form (Ref 7:118—122) :

14
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I(s) = f [F(x ,ü,~~)] dx (14)

where ü represents a set of possible functions which satisfy

Equation (14), as explained in Appendix B. For some fixed point

in time

ü(x) = u(x) + ~v(x) (15)

Chain rule differentiation of Equation (14) yields

(16)

Differentiation of Equation (15) into

= v(x) , and, 2~. = F (17)

when substituted into (16) and then integrated by parts yields S

= J
1

[~~~
v(x) _ v(x)~~~

(
~~_)]dx (18)

At the minimum point, ü = U and ~ = 0 and

— 0 (19)
( an

J 

5 
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For this last equation to be valid , the bracketed expression of

Equation (18) must hold for any arbitrary v(x) which satisfies

the boundary conditions. This results in the Euler-Lagrange

equation

- = 0 (20)
au ax tau

\ X

By comparing this equation to Equation (10) rewritten as

(
~~
)

~~~~~~~~~~(~~
) =

~~~~ 
(21)

it is noted that

a= Cu) (22)

and

au H .— = — (23)axx

Integration of both Equations (22) and (23) yields, respectively

F — 

~~~ 
(c) + f ( U )  (24)

I ’  
-
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and

(u) 2
F = + g (u) (25)

The functions f and g are found by comparing these last two

equations. The functional, F , is

F = (ui) + 
(

~~
)2] (26)

The desired variational statement to the differential equation is then

= 
~ l~~ 

(u2) + 
(
~~)2] 

dx (27)

Quadratic Finite Element Application

Finite Element Formulation. With the variational statement

established , the finite-element formulation can be started to obtain

S an approximate solution for the temperature as a funct±on of x

Figure 4 shows the physical problem and displays an appropriate 
S

finite—element arrangement for solution of Equation (10). In the

figure, the interval is divided into S elements (5 6) , with

N nodes (N = 7) . The exact solution is best considered as

a continuous line running from the origin to the last node. For

example, see Figure 3.

17
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u

S 

(4 )

~NODES 
~ x

1 2 3 4 5 6 ELEMEN TS

Figure 4. Finite Element Arrangement
for Solution of Eq. (10).

The integral of Equation (27) is evaluated by breaking it up

into E subintegrals over each of the E elements. For example,

I = 1(1) + ~
(2) + ... + ~ (e) 

+ + ~ (E) 

~~~~~~~ 

(28)

where the integral I~~ over a typical finite—element (e) is

given by

1(e) i i+l~~~ 
(u

(e))
2 

+ (au(e))2] dx (29)

Equation (27) may be written, therefore, as

18
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- 

1(u) = ~ 
1 
[a
~~ (E))

2 

+ (30)

For simplicity, Equation (30) may be divided as

1 / (E)\2

‘1. 
= 4~ 

~~~ ) dx (31)

and

‘2 = ~ 
1 a dx (32)

An extensive algebraic procedure is performed in Myers (Ref 8:334—339).

The following formulation is developed using the matrix procedures of

that same source. Note that the elements are represented by e

e = 1 to E , and written as superscripts Ce) The nodes are

represented by i , i = 1 to N , and written as subscripts 
~

As observed, the integral to be minimized is a function of the

nodal temperatures , that is

I = I Cu1
, U2 ~

• • U , ~~~ %) (33)

To find the minimum, I is differentiated with respect to the nodal

temperatures and set equal to zero. If

19
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U
1

U2

CE) 
= 

5

UN

then , for minimization

dl 
d11 d12

d
(E) — 

(5) + 
~E)

The problem is depicted in Figure 5, in which the interval is

divided into E elements, each considered separately, as for example ,

the temperature distribution of the element between nodes i and

i + 1 . It should also be noted that it is here that the quadratic

interpolation is introduced and depicted by the curve of alternating

dots and dashes . If the node i + 1 is defined as node j ,

then the imaginary node of the quadratic function may be defined

as k and inserted as depicted .

(
20
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U

~
(e)

eth element

1 2 3 1 k i+1 ..*— NODES

- Figure 5. Arrangement of the Elements

Quadratic Interpolation Function. Although linear interpolation

functions are easiest to mathematically formulate, greater accuracy

can be expected by employing higher order element interpolations.

The first higher order element is formulated by placing an interior

node between the exterior nodes and employing a quadratic interpolation

function as shown in Figure 5. Polynomials are most widely used as

the interpolation functions because of their mathematical simplicity.

For example, in the one—dimensional problem of this thesis,

a general nth-order polynomial may be written as

( _  

21
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Cx) = 

i=0 
(36)

where the number of terms in the polynomial is T~~
1
~ = n + 1

(Re f 5:13 1) . Whereas for the linear case, the polynomial is

written as

P1 
(x) = a0 + a1x - (37)

S 
the quadratic polynomial is

P2 Cx) = a + + a
2

X (38)

Huebner (Ref 5:79-81) lists requirements for the application of

interpolation functions. These requirements, called compatibility

and completeness , stem from the need to ensure that Equation (28)

holds and that the approximate solution converges to the correct

zolution when an increasing number of smaller elements are used .

Quadratic Matrix Formulation. With the internal node required

of the first higher order quadratic interpolation function,

Equation (34) may be written as

(
22
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u1 S
S 

U 2

u.
3.

(E) 
= 

~~ :;

U
N

The derivative of 1
(e) 

with respect to u is a column matrix

that is mostly zero because 1
(e) 

depends only on the particular

Uj  U~ , and U . . If the horizontal position5 of U
k 

is

assumed midway between u~ and u .  , then its x location is

defined as

x~~+ x  - S

xk = 2 
(40)

Instead of differentiating the elemental integrals with respect

to each component of ~
(E) 

, a matrix is defined by

(
23
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0 0

1 0 0 ith row
D(e) = (41)

0 1 0 kth row

0 0 1 jth row

0 0 0

and used as follows:

dl E dI Ce)

= ~ (e) 
(42)

du e=l du

and

dl S dI Ce)

(E) 
~ ~(e) 

~~ 
5 

( 43)
du e 1  du

where 1
(e) 

is the portion of I. defined on the eth interval,

(ik) and (k,j) . Also , it is important to note that for the

quadratic function

(
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U .

Ce) 
= 

~ 

(44)

That is, for a particular-element, e , the quadratic

temperature distribution equation is given as

Ce) 
= c1~~ + c2~~~~x + 0

(e)
~ 2 (45)

where the temperature at each exterior node is defined by

Ce) = c 
(e) + c Ce) + c 

Ce) 2 (46)
U 1 2 1 3 . 1

and

(e) + c2~~~ x . + c3~~~ x~ 2 (47)

By Equation (40.) ,  the temperature at the imag inary node location

can be written as

Uk — 0 (e) 
+ 0 (e) (x i +

_
X

i) + 
(e) (x i + x

i)
Z 

(48)

In the continuing matri formulation , written in moderate

- detail because of- its absence from other literature , ~ (e) may

( be written

- ¶ . ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



= 
T 
c
(e) (

where

L l x x ~~~J (50)

and S

Ce) S

c1

~
(e) 

= c2~~ - 
(51) 

S

Ce) S

c3
(

These coeff icients, Equation (51), are found by solving Equations (46),

(47), and (48) simultaneously to yield (see Appendix C) 
-

Ce) 1 2 2c1 
= 

~ 
((x~x+x~ )u~

_4(x jx~
)u
k 

+ (x
i
x .+x . )u .) (52) -

= 
~ç~

- (_ (x
i
+3x

~
)uj+4(x j+x

~
)u.K 

— (3x
i

+x
j
)u
j
] (53)

— :a~ 
(2u . — 4U

k 
+ 2u~] (54) 5 5 -

where for all intervals assumed equal 
5

( (bIX) 2 — Cx~ — X
j
)2 (55)
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The coefficients are eliminated by substituting Equation (45)

into Equation (44). The result is 
‘ 

-

Ce) 
= 

T R
(e) (e) (56)

where

r (x.x .+x .2) -4(x .x .) (x.x .+x .2)
1 ) )  1 ]  ]

~~
) l  S

—(x .+3x.) 4(x.+x~) _ (3x
~
+x
~
) (57)

[ 2 —4 2

Also, it is noted that

(.

= 
(e) —l - (58)

where
I .

Ce)

~
(e) 

= Ce) 
5 5 

- L
By next taking the following derivative

a Ce) 
= ~~T R

(e) Ce) (60)

( 
S

27

* 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~-E~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--



where ¶ 

1

T 
= 

a (~T) = [O l 2 x ] (61)

and substituting it into 1 Ce) 
, the result is

‘1 
= 

~~~~ 
(T R

(e) Ce))2 dx (62)

is then differentiated with respect to u~~ to yield (Ref 7:41)

Ce)
d11 

= 
X ( T 

R
(e) (e)\ d f T R

(e) (e)\ dx (63~
du~~ x

~ 
\ — ~ 

— — 1du (e
~ \~

x — — 
/

(

S or

::~ 
= ~~~ 
(
~~T RCe

))
T 

(
~~T RCe) Ce)) dx 

- 

(64)

where the order of the scalar terms 
~~ 

~~~ Ce) ) has been

rearranged. Because

(A B)
T Br ~ (65)

that is, the transpose of the product of two matrices is the

product of the transposes in the reverse order , and because

28
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Ce) (e) are independent of x and can be removed fromR and u

the integral, Equation (64) is equivalent to

dI Ce) 
T

dU
Ce) 

= RCe) T 
dx R(e) Ce) 

(66)

It is now necessary to perform the operations indicated by

the last equation. Taking the bracketed product yields 
S

o~

.J 1’ L o l 2 X J dx = 0 1 2x dx (67)

7x 0 2x 4x2

X
i 

- 5 

x
i

Performing the integration over each term and factoring out

x = x . - x = x .. yields3 i 3.)

10 0 0

h i px p~
T dx = x.

]X
i 

— —  

[0  

1 

— 

(x
i
+xi) 

- 

(68)

0 (x
1
+x~) ~(X j

2+xjxj
+x

i~
)
)

Next , the pre-multiplication by R C
~~
T 

is performed to yield
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0 —~x (5/3x
1
2_4/3x

~
x
~
_l/3x

~
2)

0 0 (_4/3x
1
2+8/3x

1
x~
_4/3x

3
2) (69)

0 ~x (—l/3x .2—4/3x.x .+5/3x .2)

which, by extracting Cx . — x .) from all terms of the third column

is simplified to

0 -l —l/3(5x.+x .)

0 0 = R Ce)Tf T dx (70)

( 0 1 ~-(x .+5x .)

Finally, the post-multiplication of this result by RCe) is

performed to yield

—8 1

R (e)
Tf 

~l ~~ T dXR (e) = —8 16 —8 (71) 
.

~~. S

X
i H

1 —8 7

- 30
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I

or

— a

7 —8 1

Ce)

= —8 16 —8 
Ce) (72)

1 —8 7 5

By defining the element stiffness matrix (also called element

conduction matrix (Ref 8:352) as

— U

7 —8 1

~
(e) 

~
.fr —8 1.6 —8 (73)

1 —8 7
•

Equation (42) may be written

d11 = ~ ~(e) K
(e) Ce)

du e=l

or

dI
1 = ~ D

(e) 
K
(e)T CE) (75)

dii e l

(
31
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Strang and Fix (Re f 10:55) verif y this result without justification.

Further defining K as a global stiffness matrix

e=l 
D (e) (e) D Ce) T ( 76)

and substituting it into Equation (75) yields

dI
1 CE)
CE) 

= (~~)
du

Equation (43) is now approached in a similar manner . If the

elemental representation of Equation (32) is differentiated by

( Leibnitz ’ rule for differentiation of integrals, the result is

‘2 

~~~~~~~~~~~~~~~~~~~~~ C~ dx (78)
x
i

or

1
(e) = 1 ci 

X
j (‘P RCe) Ce))

2 
dx (79)

X
i

The derivative of this last equation is taken as follows to yield

(Ref 8:355)
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H

_ _ _ _ _  = 

~~ 

(T RCe) 
Ce)) (~T R

Ce))
T 
dx (80)

or

Ce)
_____ = 

ci R
(e)T (~ ~~

‘P dx R~~~ 
Ce) (81)

Again, it is necessary t~ perform the operations indicated

by the last equation. Taking the bracketed product yields

j

,x
, ~~~ L1 x x2j 

/I

x

J [l :: X

3] 

dx (82)

Performing the integration over each term yields

(x . -x .)  ~~(X . 2_x 2 ) 1(X~~~-x~~~)

S 

1

X. 

dx = 
4x

1

2 x
1
2 

4X
:

3_x
j
3 

~~~~~~~~~~~~~ (83) 
1-

f  
4CX 1

3—x~
3 

~ (X~
k_x

i
k) ~ (x~

5_x .5)

(
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If each term is factored with an (X . -x .)  term and this term
3 1

further factored from the entire matrix as tx , the result is Equation (84)

1 1Cx . +x .)  ~ (x . 2+x . x . +X . 2 )
2 ) ~. 3 j  j i  ‘

tx ~-(x . +x .)  ~~(x . 2+x .x . +x. 2 ) - !(x 3+ xx  2+x 2x + x 3 )3 j  1 3 j  j
~~~~

i 4 j  j i 3 1 1

~~(x.2+x.x.+x .2) i(x.3+x .X .2+x .2x .+x .3) ~ (x. +x . 3x .+x .2x .2+x.x.3+x .
L
)

3 j  J i ,  4 j  j i  j , ,  5 ]  3 1 3 1 .  3 1

Next, the pre—multiplication by is performed to yield Equation (85)

X. 2-2x.x . +x. 2 x. 3-2x . 2x . +x .x . 2 9x.~~-l6x . 3x . +4x . 2x . 2+4x .x . 3 -x.~1 1 ) ]  1 1 3 ] . ) 1 1 )  1 3  1 )  3
6 6 60

2x . 2 —4x .x . +2x . 2 x . 3 —x . x . 2-x . 2x . +x . 3 3x .~~-2x . 3x . —2x . 2x . 2-2x . x . 3+3x .~_L 1 ~~) 3 1 1 ]  1~~J 3 i. i. 3 1 ]  1 3  j
tx 

3 3 15

S 
x .2-2x.x.+x .2 x .2x .—2x .x .2+x .3 -X k+4x .3x . +4x .2x .2_l6x .x .3+9x .

&
1 1_) 3 1]  1 ]  ~~ i 1 ]  3 . ]  1 ]  3

6 6 60

I 

-

~~~

which, when each term is factored with an (x
1-x3

)2/3 and this factor

removed from the matrix as Ctx)2/3 , the result is that

~ 

* -. =
. 

- 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



x . (9x . 2+2x . x . —x . 2 )
2: ....~~. 

1 1 ] ]

R Ce)Tf ~~T dx = : Cx .+x .) 
(3x .2+4x.x.+3x .2) (86)

1 
x . 9x. 2+2x .x . -x .2 )

2: 3 1 3 1
2 2 20

Finally, the post-multiplication of this result by is

performed to yield

2 - l  -½

R(e)TJ~~~~~P
T dXR

(e) = tx 1 8 1 
(87)

X i —½ 1 2

or

- 2 1 -½

dI Ce) 
S

dU Ce) 1 8 1 - (88)

S -½ 1 2

(

—
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- 

S -- - ________ ___________ --

~~~~~~ ________



By defining the element mass matrix as

r2 1 -½

M Ce) 

~~~~~ I i  
8 1 (89)

L-½ 1 2

and employing Equation (88), Equation (43) may be written

= 

e~ l 
D (e) d 

(M (e) D
(e)T (E)) (90)

( in analogy to Equation (75). Also, since M(e) and D
(e)T are

independent of 0 
-

= 
e~l 

~~~ ~~~ (91)

Further, in analogy to Equation (76), a global mass matrix may

be defined as

H ~ ~~(e) M Ce) 
D

(e) T (92)
c—i

which , if substituted into Equation (91) , yields

( 5
~
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d12 d E
CE) 

= 
~~~~~ ~~~ 

)
) 5 (93)

du

The process of minimization is now employed by setting the

derivative, dI/du~~ , equal to zero:

d
(E) = + = 0

or

K
(E) 

+ M d 
Cu CE)) = 0 - (9 5)

This equation, also derived in Strang and Fix (Ref 10:243), may

be written as

(u~~~) = - ~~~
CE) - - (96)-

and represents a system of ordinary differential equations for

the nodal temperatures as functions of time. At time zero, the

initial temperature distribution is given which is substituted into

the right side. The system of equations is then solved directly for

the initial time derivatives necessary to m!nimiz-3 I at that instant.

S These derivatives are then used to move ahead in time (Ref 8:404).
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-5- 5

;

If the number of elements , E , is large , the system may be

solved using finite—differences to approximate the time derivative.

Myers states three schemes, the Euler explicit scheme, the Crank—

Nicolson scheme, and the fully implicit scheme, which may be used

in this finite difference application. Martin applies these methods

directly to the system of equations (96) and notes that there exists

a general scheme to accommodate the methods (Ref 7:47—49). This

scheme is given by

CM + Kat6)Cu )k+]. = CM — K(l—a)t0) (u(E))k (97)

where

(
tO = change in time

= temperature at time step, k+l

= temperature at time step, k

a = method designation parameter; that is:

a — 0 for Euler, a = .5 for Crank-Nicolson,

a — 1 for fully implicit. -

If the matrices A and B are defined by

A — M+K c*tIO (98)

and

B — H — X(1—a)AO (99)
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Equation (97) may be written

~ (
CE))k+l = !. (CE))k (100)

The matrices A and B may now be generated as

2 1 —½ 7 —8 1

A = 1 8 1 + —8 16 —8 (101)

—½ 1 2 l —8 7
• U .

and S

2 1 —½ 7 —8 1

B 1 8 1 — 
C1
;
~~t0 —8 16 —8 (102)

—½ 1 2 1 —8 7
• a - a

S I -~~~

which, when the Fourier modulus

P — 
(~~)2 

(103)

is defined and applied, become S

C

A ‘ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~



I

2+35ap 1-4Octp -½+5ap 
— 

S

A = 1—4Oap 8+8Oap l—4Oap (104)

-½+5ap l—4Oap 2+35ap

and 
-

2—3 5( l— c c)p  l+40 (l—a)p — ½— 5C 1— a)p 
— 

S

B = l+40(l—a)p 8—80(l—a)p l+4OCl—a)p (105)

—½—5C1—a)p l+4OCl—cc)p 2—35(l—a)p

The matrices (104) and (105) are similar to each other and

similar to their linear counterparts depicted in Appendix G for S
the case where the interval has been divided into three elements

and four external nodes. Note that p is as given by Equation (103),

and not by Equation (50).

Assenbling the matrices for the quadratic case , three elements

and four external nodes, yields

(

1 1  . 

40

S 

p - -~~~~.~ 4~~~i - ~ ~~
‘- - ~~a



( 
.

243 5ap L-4O~!p —~~ ~‘~p a 
- 

o a o u1 
k+I

1—4o~’p 8eo 1~ 1-EXIp 0 0 0 0

-¼+~-c’p I-40~zp 447~~p 1.-4 up —‘a+~j zp 0 0 5
3

o a J. 4cflp O+80 p l-40~p 0 0 U
4

o 0 -¼,~c’p 1—4 0~zp 4+7 Xlp l-4O~j’ -~,+~ ap U
5 S

o 0 0 0 l-4O czp 4+OO w l-4Cclp 0
6

O 0 0 0 —I~.5ap l-4O~p 2+~ &~p U
7

2— 35p(1-a ) 1+40p( 1-cl) -~-5p Ci-a) 0 0 0 0

( 1+40p( 1-a ) 8— BOp ( 1-X) 1440p(1-a ) 0 0 
• 

0 0

— 
-4-Sp(1—a) 1+40p( 1—a ) 4—7O p(1-o ) 1+40p(l-a ) —½— Sp (i-a ) 0 0 

-

o - 0 1+40p( 1—U) B—BOp(1-- Q ) 1-. -.Op(t--a ) 0 0 
- 

u 4
o 

- 
0 .4-5p( 1—a) 1+40p(1—G ) 4—70p(1--U ) 1+dOp(l -O ) — ½— & p (i-o ) (106)

o o 0 0 - 1+40p(1-a) 4-SOp(X-- Q ) 14-40p U-a )

o 0 0 
- 

0 —½—Sp(1--a) 1+40p(1—0 ) 2-35p( 1-a )

‘ S

where u
2 

, u4 
, u

6 represent the solutions at the internal

nodes . Because of the constant temperature condition on the

bound aries , and since , except for the first instant in time , the

- imposed boundary temperature is zero , the matrice s become

(
- 
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-5

— ‘ k+l -
1 0 0 0 0 0 0 u

1
0 a22 a 0 0 0 0 u

2
0 a

32 
a
33 

a
34 

a
35 

0 0 u
3

0 0 a43 a44 a45 0 0 -S U
4

0 0 a53 a54 a
5 

a
56 

0 u
5 

S

0 0 0 0 a65 a66 0 U
6

0 0 0 0 0 0 1 u
7

S I

1 0 0 0 0 0 0 U
8

( O b  b 0 0 0 0
22 23 2

= O b  b b b 0 0 U32 ~~ ~~ 35 - (107)
0 0 b43 b

44 b45 0 0 U
4

0 0 b
53 - b5~ 

b55 b
56 

0 u
5

0 0 0 0 b65 b66 0 u~~

0 0 0 0 0 0 1 uB
— 

S

where the lower case letters represent the value at the indicated

S position in A or B . Matrix assembly theory is given in Appendix D.

Optimum Implicit Conditions. For this system of equations , an

optimum a parameter representation can be found in analogy to the

derivation of the linear optimum a equation attained by Martin and

42
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shown in Appendix G. This quadratic derivation, depicted in Appendix E,

is also determined by finding the truncation error across two

connecting elements using a Taylor series expansion. It should be

noted that the expansion is now a ten point representation, based on

the five point rows of the matrices A and B , each point being
considered an integral node , and separated by t~c . If a is

chosen according to the formula so derived, that is

1 1
ci = 3- C 2— i— )  (108)

then the resulting expression in Equation (107) is fourth order

accurate at the nodes. The truncation error at these locations is

proportional to (~ x)~’ . The Euler, Cra~ik-Nicolson, and fully

implicit schemes are only second order accurate.

Appendix E also considers a truncation error expansion about the 
S

internal node of an element as based on the three point rows of the

matrices A and B . The resulting expression indiöates that for

this quadratic approach, only second order accuracy is attainable

within an element. For second order accuracy, Appendix E states that

(160) (109)
p = 0

or , if a is chosen according to this equation , the resulting expression

in Equation (107) is no more accurate than the other schemes just

mentioned.

- 
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The dilemma posed by Equation (109), that is, of lesser accuracy

for solution by quadratic interpolation function than by linear

interpolation function , can be eliminated by treating the internal

node problem. One possible course of action would be to reduce

the system matrices of this time dependent problem to matrices
‘-‘S

representing only external nodes and corresponding temperatures,

in analogy to the method of “ static condensation” summarized in

Appendix F.

A more direct method of elimination would be to treat all nodes

as external nodes . The derivation leading to Equation (108)

indicates that the order of accuracy attained by employing the

quadratic interpolation function is equal to the order of accuracy

attained by using the linear interpolation function. This fact

tends to indicate that, as such , the quadratic approach is equivalent

to the linear approach. Appendix G verifies this hypothesis by

displaying the equivalence of quadratic and linear alphas. Appendix G

also contains the linear optimum alpha equation and the linear

matrices A and B corresponding to Equation (106). The following

sections are based on this equivalance, which states that for this

problem approach, the quadratic interpolation function solution may S

be found as equal to the corresponding linear solution across an

interval Ax/2 . That is, the linear solutions of double the

number of nodes are equivalent to the quadratic solutions of the

original mesh spacings.

- 44
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I

Quadratic Solution Interpolation

The failure of the quadratic approach to achieve greater than S

fourth order accuracy ~as predicted by Martin as due to the nature of

the solution approach. That is, by the Method of Weighted Residuals,

even though the spatial variation has been handled by quadratic

interpolated finite—elements, finite—differences were employed for

the time variation as indicated in Equation (96). This factor and

others are discussed in Appendix I. The following paragraphs

discuss a variation of the quadratic derivations leading to greater

accuracy of the equivalent linear solutions without applying smaller

mesh spacings. S

If the internal nodes were not considered in the derivations

leading to the quadratic optimum alpha, the result would be

1/1 l\
a = 

~~~~~~~~ 
(110)

where the Fourier modulus is now defined as S

tO 4 tO= (~~\2 = 
[C~~)~] 

(111)

(~2) S

That is, the quadratic modulus , now interpreted as four times the

linear modulus , when substituted into Equation (110), yields optimum

alpha values of one—fourth the value found by the corresponding

application of Equation (108). This is logical , because at any

(

S node , the particular point of solution can be found to be a function

of ap or -(a) (~ O) . If alpha is decreased to one—fourth its S

_____
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original value, the modulus, or here for fixed position, the time

increment, must be cubed. 
S

The implementation of these factors into the linear interpolation

approach, that is, the employment of Equation (ill) and the

equivalent alphas of Equation (110), yields more accurate results

for the selected original cases of p = .5 and p = 2.0 . For

the case p = 1.0 , for which the alphas are , in fact , equal , the

results are of equal accuracy. The results section and Appendix H

display these findings.

Error Analysis

Background. One basic objective of this project was to compare

the finite—element solutions using a quadratic interpolation

function versus the solutions attained by using a linear interpolation

function. To make this comparison and the other comparisons

mentioned in the introduction, the quadratic function solutions must

be attained and compared to the previously attained linear function S

solutions, and exact analytical solutions. Relative error magnitudes

between these methods, and within a method for differing alpha

parameters, were used to complete the accuracy study of this thesis.

The stability study is discussed in a later section.

General. In the finite-element method, there are two ways to

improve the accuracy of the approximate solution. The first way is

to decrease the nodal interval, b.x , analogous to the ordinary

finite—difference approach. The second way (this thesis study) is

to apply a higher order polynomial approximating function. By its

46
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nature, any error in the finite—element method must be measured

over the entire interval and not just at the nodes.

Three error norms were chosen , as for the finite—difference

linear approximation study (Ref 7:54-59) , by which to complete the

accuracy portion of this project.

Finite Element Error Analysis. The first measure of error is

the pointwise or discretization error. It is defined as the

difference between the exact analytical solution and discrete

approximate solution at the node points. Alien to the concept of

finite—elements, which attempts to minimize the error everywhere

in an element, this error can be estimated in the pointwise sense

by treating the individual equations in the system (107) as if they

were simple difference equations.

Also, it is noted that the pointwise error is composed of a

round-off error and truncation error. Within the limits of stability ,

the latter is the much larger of the two and the pointwise error S

is considered to be the truncation error. This truncation error,

defined as that which results from elimination of the higher order

derivative when Taylor’s series is used to approximate a differential

equation, is derived in Appendix B for the ith equation in the system.

It applies to all nodes of a Dirichlet problem and is found to be 
S

e
~ 

(it~x,kAO ) = (lOP_l5czP_ 14) C~x)
2 

~~~~~~~~ + 0(Ax ) k (112)
ax x i 1~x

S - O=k~O

47

____ ____ ___________________________ I________ - S S S___ S5__ — — “.~~ 
*i—tI . - - r ~5-S — S~_~-5 - - - — _____ 

— 5—-- - ~•pI7~’_ .4ø• A -A



S The second error measure is the discrete Tchebycheff norm , or

the maximum error between the exact solution and the finite-element

solution at any node. It is estimated by Equation (107).

The generalized mean error (also estimated by Equation (107)]

is the last error measure emp1oy~d. It indicates whether or not a

higher or lower order of convergence would be noted for the first

interior node, compared to the convergence at all of the nodes .

The generalized mean error consists of the sum of the absolute

values of the discretization errors at each non-zero node. It

- 
compares the pointwise error at the first interior node, x = .1

to the error at all the nodes. S

- Equation (112) can be used to ascertain the order of accuracy S

I of the Crank-Nicolson, optimum implicit (Crandall), fully implicit,

and explicit finite—element schemes. For the quadratic Crank—

Nicolson equivalent, a = .6666 , and

e (it~x ,kt~O) = ( !~.‘~ (j ~~) 2 La + 0(Ax)~ + ... (113)
t ~~ l 2,  2

\ ‘ 3x x i ~x -

O=kAO

or second order accurate. For the optimum implicit scheme,

a = (2—l/4p)/3 , and

e~ 
(iAx ,kt~O) = 0 (1~x)~ + ... (114)

( 
or fourth order accurate. For the explicit scheme, a = 0 , and
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S e Cit~x ,kAO ) = (lop — A~.) C z~x) 2 ~_a + 0(~x)~ + ... (115)
S t 12 ax 2 x~ i~x

O=k~8

or second order accurate. Finally, for the pure implicit formulation,

a = 1  , and

e (iM,k~O) (- 5p - (~ x) 2 
~~~ + 0(~x)~ + ... (116)

S / 3x x=xtx
O=k~O

or , also second order accurate . Only the optimum implicit scheme

is fourth order accurate with respect to truncation error.

Stability Analysis S

S General. The stability analysis is derived from a consideration

S 
of the round—off error , that error inherent in computer operations

due to the finite number of significant figures it can manage. The

error in the solution is the thing of interest. If the magnitude of

the difference between the exact numerical solution and the truncated S
numerical solution grows exponentially as the calculation proceeds,

0
S then the numerical scheme is termed unstable.

The basic approach is to write Equation (107) in terms of error

vectors (Ref 7:62—65) where tho vector e represents the round—off

error , and e1 represnet s the new error af ter solution of the set

of equations . With this ,

I -
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(117)

or

= C~~~ (118)

—l •where C = (A B) . By expanding in terms of the elgenvecotrs,

, of C , then

= c.$. (119)

where c
~ 

is a constant and ±.~ 
is the ith eigenvector of C

By the definition of an eigenvalue, Equation (117) is written

= ~ c . A .~~~ (120)
i=l

where is the ith eigenvalue of the matrix C . Likewise,

= c.~~.l ~ c . A. 2
~~ - (121)

i=l

and , after k canputat ions S

( e I ~~~~~~~ (122)

_ _ _ _ _  ~~ S 
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This demonstrates that the eigenvalues of the iteration matrix ,

C , determine the growth or decay of round-off errors. This

procedure is summarized in the following Table I.

TABI~E I

Oscillation and Instability Limits
By Eigenvalue Definition

Eigenvalue Condition of Eigenfunction

A > 1 Steady , unbounded growth , of same sign.

O > A > 1 Steady decay, of same sign.

—l < A < 0 Steady decay, alternating signs (stable

- 
oscillations).

A < —l Steady growth, alternating signs
(unstable oscillations).

Finite-Element Analysis. Employing the given boundary conditions,

Equation (107) is written 
S

- 
A~~~

1 
~~ k (123)

ithere the first and last equations have been dropped and the number

of unknowns reduced by two. Because of the requirements of the 
S

equivalency argument, A and B are taken as in Equation (G-3) ,

tridiagonal in form , and as shown in Equation (124) .
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a a

o o

0 b a

O a b a (124)

a b 0

a 0

The eigenvalues of such a matrix are given by

An = b + 2a cos 
(~~ i)  

, n = 1,2 ,.. .N (125)

where N is the matrix order (Re f 9:65) . Also , the eigenvalues of

the iteration matrix, C = A 1B , in Equation (123) are given by

(A
8
) 

S 

-

(Ac) = 

~~A~fl 
( 126)

If Equation (125) is substituted into Equation (126) for the S

limiting case of N -~~ , for which

lint cos
(~~~j~~ = — 1 (127)

/

the result, called the critical or minimum eigenva lue , is found to be

(
-5
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(A ) — 
l+l2ap 

(128c — 
l—12(l--a)p

This is the equation derived by Martin in his study of

finite—element solutions by linear interpolation. Therefore, the

same oscillation and stability limits of that approach apply here

and are shown in Table II and Figure 6. For quick reference,

Table III and Figure 7 show these limits for the finite-difference

formulation. S

It would be interesting to note the stability and oscillation

limitS if the direct quadratic approach could be used. Ignoring

the error of that approach, the quadratic system matrices were

written in a modified condensed form , analogous to tha€ of Appendix F.

This modified condensation was nothing more than condensi’ig both sides

of Equation (106) , holding the system constant in time. Assuming

such a time constant system could represent this transient problem

at successive isolated moments, the critical eigenvalue was found S

to be 1~

(Ac) — 
2-15(l a)p (129) 

-

S

The stability and oscillation limits are presented in Table IV.

In general, these data show that solutions attain3d by this quadratic

approach would be more restrictive in the oscillation limit for the
(

optimum implicit scheme.
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TABLE II S

Oscillation and Instability Limits for

the Fourier Modulus in the

Finite-Element Method .

S Crank- Optimum Pure
Limits Euler Nicolson Implicit Implicit

Oscillation -

Limit , p < x - Never
.08333 .16667 .33333for no

( Oscillates
oscillation S

Stability S S

Limit, P < X Always Always Always
for a .16667

st able Stable Stable 
- 

- 
Stable

scheme -

p

(
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TABLE iii S

Oscillation and Instability Limits for

the Fourier Modulus in

the Finite-Difference Formulation .

- 

S 
Crank- Pure-

Limits S Explicit Crandall Ni colson Implicit

Oscillation Limit, -

No
p < x 0.25 .3333 .5 -

for no oscillation S 
Oscillations

Stability Limit, - S

Always Always - Always
p < x  0.5

for stable scheme Stable - Stable Stable

- 
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TABLE iv 
-

- 
Oscillation and Instability Limits for

the Fourier Modulus in the

Finite-Element Method

and Quadratic System S

Crank- Optimum Pure S

Limits Euler Nicolson Implicit Implicit

Oscillation
NeverLimit, 

~ < ~ .13333 .39999 .31999
for no Oscillates

oscillation -

Stability S

Limi t , p < x
Always Always Always

for a . 26666
stable Stable Stable Stable

scheme S
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t

III. Procedure

General Approach

Initial Phase. Phase one of this thesis project began with a

thorough study of finite-element theory, especially the calculus of

variations. Also studied were the theory of heat conduction and the

applicability of the finite-element procedure to this problem. Finite-

difference theory was reviewed. A literature search was initiated

and discussions conducted with several faculty memebers to ascertain

the best approach for attacking this relatively unfamiliar problem.

Meyers (Re f 8) was the primary text employed during the study, and

although of an introductory level, proved the best source for procedural S

comparison. Huebner’s text (Re f 5) was valuable in later portions

of the project.

Second Phase. Phase two was started by examining the thesis

proposal and determining how best to complete the proposal objectives.

It was noted that this project was basically one of comparison; that is, 
S

to compare the finite—element results attained here using a quadratic

interpolation function, to those attained previously (by Martin) using

a linear interpolation function . The primary problem then was twofold;

a quadratic analysis procedure had to be derived, something not visible

in detail in the available literature, and this analysis applied to

the same heat conduction problem in a manner that accurate comparisons

could be made . The comparisons had to be as analogous as possible

since errors in the results were assumed to be functions of truncation

and round-off.
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The greatest results, at least in theory, to allow an analogous S

approach , were the derivations of the system matrices, A and B

and the truncation error e
~ 

. Because of this truncation error S

analysis , the finite-element equations could be treated as difference

equations to yield order of accuracy and optimum a values . Just as

for the linear case, accuracy of O(~x)~ could be attained, and a

theoretical expression for a , dependent only on the Fourier modulus,
p , was achieved.

Also initiated during this phase was the reprograzruning of

Martin’s finite-element method to handle any variations created by

the quadratic interpolation functions.

Third Phase. The third phase was the actual study of the error

and stability in the quadratic finite—element formulation. Theory

and procedures for this study are noted in the appropriate locations

of Section II and Section IV.

One factor that hindered a good error analysis, most

obvious by noting Figure 3, was the discontinuity between the initial

condition and boundary conditions. Several methods of handling this

problem are referred to by Martin (Ref 7:72). Because the elimination

of this discontinuity was not the primary goal of this thesis, the

problem was by-passed by substituting the exact analytical solution

at the first time step, a procedure similar to that suggested by

Smith (Re f 9:48—49) . In effect , this transformed the original problem
- 

into a new problem in which no discontinuity existed between the initial

condition and the boundary conditions.

(
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Of course, the dominant factor in viewing the error and 
S

stability analysis was the noted equivalance of the chosen quadratic S

approach to the linear approach. This factor affected all the

procedural phases.

Fourth Phase. Phase four was the actual comparison of results

as mentioned previously. B~sically, greater accuracy was originally

expected by using a quadratic interpolation function. Results using

this function and the linear function were compared. for selected

values of the Fourier modulus, p , since both the linear and quadratic 
-

optimum a values were functions of this parameter only. The same 
S

appropriate mesh spacings were also used.

Error and stability definitions are those mentioned in

Section II. Also employed for graphical depiction and comparison of 
F

error was the discretization error ratio (DER), defined as the ratio of

the discretization error incurred when one subdivision of the space 
-

domain is used , to the error at the same point when the number of -

nodes has been doubled (Ref 7:84—85). DiscretiZation error is

basically composed of truncation error and round—off error, the latter

factor approaching dominance as 1~x is made smaller.

S 
Discretization error ratio can best be understood in the 

-
~

following sense. If the error for some norm is given by

e = ~ (A x) 2 (130)

then the result of decreasing the interval size by a factor of 1/2 will be
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e1 ~1
(~ x) 2 

- F
e
½ 

= = 4 

- 

( 131)

Similarly, the effect of halving the interval size when the error

is given by

e = ~(~x)
1’ (132)

is

( 

= 
½~~~) 

16 

- 

( 133)

Thus, a discretization error ratio of 4 indicates O(~x)
2 accuracy;

a DER of 16 indicates O(~ x)~ accuracy. S

Selected for comparison were the error and stability results

attained in the computations leading to the presentatjons of DER versus

TIME for Fourier modulus values of .5 , 1.0 •
, and 2.0 , and 

S

a values of the Crank-Nicolson, optimum implicit, and fully implicit

schemes.

Computer Application S

Computer. The computer system used for this project was designed

by Control Data Corporation, CDC . It consists of input and output

( devices , peripheral processors, and two central processors which

operate in parallel , the CDC 6613 and CDC CYBER 74. Each has
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131,000 60—bit words of central memory. Magnetic disc and drum

storage were used as temporary storage devices.

Computer Programs. The major computer program employed was a

modification of Martin ’s program for solution by finite-elements.

Actually, two major modifications were required. The first was to

allow solution of the linear interpolation problem by a general library

subroutine matrix solver. This oroblem, which involved symmetric

tridiagonal system matrices, was originally solved by the Thomas

method. Since the quadratic interpolation problem was not tridiagonal,

this modification was required to maintain continuity in the error and

stability analyses. The library subroutine, LEQT1B, factors the system

matrices (A) into the L-U decomposition of a rowwise permutation

of A , and then solves the system.

The second modification was to rewrite the program to

formulate the system matrices representative of the quadratic

interpolation function. A ne%- subroutine was generated to create

these pentagonal matrices . The same matrix solver mentioned above

was also used here.

Because the point of interest of this investigation was the

behavior and accuracy of the finite-element solution as a function of

S the parameter a , no effort was made to compare costs and run times

for the two interpolation approaches or the various schemes within

each. Figure 8 is a flow chart of the finite—element approach used.

Based on previous knowledge and as implied above, only option (OPT) one

was used. Several other programs were also used for plotting purposes

and to assist in the stability analysis.
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Figure 8. Finite Element Computer Program Flow Chart
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IV. Results S

Stability Analysis S

The results of the stability analysis are shown in Tables II

and III and Figures 6 and 7. These are the same results found by

Martin, since the failure of direct quadratic application to yield at

least fourth order accuracy required the use of a linear interpolation 
S

based on equivalence of alpha values. Basically, it should be noted

that the stability curves of the finite—difference and finite—element

optimum implicit schemes coincide; and, that while for finite—differences

the optimum implicit scheme is less stable than the Crank-Nicolson

scheme, in finite-elements this situation is reversed. As before, S

the finite-element method is more restrictive with respect to stability

in the general sense.

Error Analysis

The theory leading to this error analysis is presented in that

chapter. Basically, this analysis is just a comparison of accuracy as

specified in the thesis objectives. Plots verifying these results,

- here presented in Tables V through VII, as well as plots displaying

the accuracy found by direct application of the quadratic formulation ,

are found in Appendix H. It should be noted that the tabular values

specified as optimum quadratic and identified by a “Q” are those

found by applying the equivalent linear optimum alpha values of quadratic

interpolation as found with Equation (110). It should also be noted

that Table V is based on a 20 interval space domain, while Tables VI

and VII are based on 40 interval space domains.
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For all tables, the following abbreviations apply:

CN = Crank-Nicolson Method

01 = Optimum Implicit Method

Fl = Fully Implicit Method

FD = Finite Differences

FE = Finite Elements

L = Linear

Q = Quadratic

TABLE V

Error Comparisons for the Various

Methods for 0 = .08 and p = 1.0

Method Pointwise Error Maximum Error Generalized
x = .1 at Any Node Mean Error

cN—FD —3.0351 x l0~~ 8.5043 x l0~~ 5.6708 x i0~~
cN—FE—L 3.2920 x l0 ” 8.8078 x l0’~~ 5.9831 x l0~~
CN—FE—Q 3.2920 x l0~~ 8.8078 x l0~~ 5.9831 x l0~~

OI—FD 1.4103 x lO~~ 2.~ 640 x l0~~ 1.5280 x l0~~
OI—FE—L 1.4103 x 1O~~ 2.1640 x i0~~ 1.5280 x l0~~
OI—FE—Q 1.4103 x l0”~ 2.1640 x l0”~ 1.5280 x lO’~

FI—FD —2.2702 x l0~~ 5.8835 x lO~~ 4.0493 x l0 2

FI—FE—L — 1.6021 x l0~~ 4.2338 x l0”~ 2.8906 x 10—2
FI—FE—Q —1.6021 x lO~~ 4.2338 x 10~~ 2.8906 x 10—2
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TABLE VI

Error Comparisons for the Various

Methods for 0 = .04 and p = .5

Method Pointwise Error Maximum Error Generalized
x .1 at Any Node Mean Error

CN—FE—L 2.1667 x 2.9165 x l0~~ 1.5362 x lO~~
CN—FE—Q 2.1667 x l0’~ 2.9165 x l0~ ’ 1.5362 x lO~~

OI—FE—L 1.89648 x i0~~ 2.32381 x 10—6 1.39456 x lO~~
OI—FE—Q 1.89605 x l0~~ 2.32323 x 10— 6 1.39429 x 10~~

FI—FE—L —4.3141 x lO~~ 5.8037 x l0~ ’ 3.0579 x l0~~ 
- 

S

FI—FE—Q —4.3141 x l0~~’ 5.8037 x l0 ”~ 3.0579 x l0~~

TABLE VII

Error Comparisons for the Various -

Methods for 0 = .16 and p = 2.0

Method Pointwise Error Maximum Error - 
Generalized 

- 
S

x = .1 at Any Node - Mean Error

cN—FE—L 6.6945 x 1O~~ 2. 1656 x lO’~ 1.3675 x lO~~ S

S cN—FE—Q 6.6945 x l0~~ 2.1656 x l0~~’ 1.3675 x lO ’~

OI—FE—L 1.59502 x lO~~ 5.14685 x 10-6 3.25294 x lO’~
0I—FE—Q 1.58979 x l0~~ 5.12994 x 10—6 3.24226 x l0’~ S

FI—FE—L —7.1636 x l0~~ 2.3172 x l0’~ 1.4632 x 10—2
FI—FE—Q —7.1636 x 10~~ 2.3172 x l0~~ 1.4632 x 10—2
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Table V shows th-at for the optimum implicit scheme the error

values are identical . The fact that the linear finite—element errors

equal the quadratic finite—element errors is understandable since

both approaches involved th€ same alph a values for the Fourier modulus

of one. Tables VI and VII indicate a small increase in the accuracy

of the optimum implicit schemes when the equivalent alpha to the

quadratic approach is employed , as previously discussed. The Crank—

Nicolson and fully implicit schemes show no changes when this technique

is used . The overall result is as predicted by Equation (112) ; that is ,

that fourth order accuracy is only possible for this quadratic approach.

With the slightly greater accuracy just mentioned, the results

may be stated in the following manner. The optimum implicit methods

for both finite—differences and finite—elements, for p = 1.0 , yield
the same accuracy as found by Martin. Assuming this arg’iment to be

S true for all values of the Fourier modulus in the linear domain , then

the quadratic finite-element solution employing the equivalent linear

alpha value (OI—FE-Q) is more accurate than the finite—difference

solution for values of p other than 1.0 , or , rather , for solutions

for which the quadratic optimum alpha does not equal the linear

optimum alpha. The finite-difference Crank-Nicolson scheme is more

accurate than its finite—element version, but for the fully implIcit

scheme, the opposite is true. The optimum implicit finite—element

scheme is always more accurate than the Crank—N icolson finite—element

scheme.

S 
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Plots

General. The plots are presented in Appendix H in the order of

sections discussed here, and display the discretization error ratio

as a function of time. The first section presents those figures

(H—l through H-12) associated with the finite-difference method

solution of the problem. Section two contains the figures (H-13

through H-24) associated with the linear finite-element solution. It S

will be noted that, if the quadratic solution is considered to be S

that of double the number of nodes, then each even numbered figure of

this section can be considered to be the more accurate solution

representation to its linear counterpart as given by the odd numbered 
S

figures. - S

Section three presents those figures (H—25 through H-36) which

represent the finite—element solutions attained when Ax/2 is S

incorporated into the quadratic formulation after the system matrices -

are formulated . It will be remembered that this process was

accomplished so that a quadratically determined equivalent alpha

could be applied to the system without considering the internal node. 
S

The accuracy of these plots, entitled “Quadli,” is noted to be S 5

slightly greater for appropriate values of the Fourier modulus. 
-~

For these first three sections, the figures for p = .5 are - 

S

not shown for the sake of brevity and to avoid redundancy. However, S 

S

actual DER values are displayed in Table VIII for selected times and 
-

serve to verify the theory leading to Tables V through VII and

Figures (H-l3) through (0-36) . -

- 
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TABLE VIII -

Discretization Error Ratio Comparison

For the Optimum Implicit Scheme

DER - DER
Method Modulus/Time Maximum Error Generalized

at Any Node Mean Error

FE—L 1.0/.04 15.1029 15.2466
FE—Q 1.0/.04 15.1029 15.2466
FE—L 1.0/.08 15.4987 15.6123
FE—Q 1.0/.08 15.4987 15.6123

FE—L .51.02 14.5045 15.2072

FE—Q .5/.02 14.5061 15.2088
FE—L .5/.04 15.4714 15.6005

S FE—Q .5/.04 15.4743 15.6028 
I

- 

FE—L 2.0/.08 15.0418 - 15.1991
FE—Q 2.0/.08 15.0662 15.2327
FE—L 2.0/.16 15.6262 15.6250
FE—Q 2.0/.16 15.6648 - 15.6636

S The fourth section presents those figures (0-37 through 0-48)

which display the less than second order accuracy attained for direct

quadratic solution when Equation (109) is not accounted for , and the

second order accuracy attained when it is taken into consideration .

A Fourier modulus of one was chosen for this display . S

(
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I
Section I Results. This section gives the results of the problem

as solved by the finite—difference method. Figures (H—i) through

(0—12), as annotated for the cases of p = 1.0 and p = 2.0 , show

that for each error norm, the fully implicit and the Crank-Nicolson

methods approach second order accuracy, while for the optimum implicit

method, with the value of alpha as determined by Crandall (Ref 3:319),

fourth order accuracy is approached. For p = 1.0 , a
~~~ 

= .41667

for p = 2.0 , a = .45833opt

Section II Results. This section gives the results of the problem

as solved by the finite-element method , linear interpolation-. Figures

(11—13) through (0-24) , annotated as above , show that for each error

norm, the fully implicit and the Crank-Nicolson methods approach

second order accuracy, while for the optimum implicit method, with

the value of alpha as determined by Martin [Equation (G-5) ] ,  fourth

order accuracy is approached . For p = 1.0 , = .58333 ;

for p = 2.0 , a = .54167 .
opt 

-

Section III Results. This section gives the results of the problem

as solved by the finite-element method , with optimum alphas determined

by quadratic interpolation, Equation (110) . Equivalent linear optimum

alphas were used and applied to the theory leading to the Section II

results to produce Figures ( 11—25) through (0-36) , again annotated as

above . Results are similar to those of Section II, but, except for S

p = 1,0 , a noted increase in accuracy is observed, especially if viewed

in relation to Table VIII. By Equation (111) , for p = 1.0 
‘ 

S

( is annotated .58333. Similarly for p = 2.0 -
, is annotated

.6250. -
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Section IV Results. The results of this section are divided into

two parts and are presented to verify the information presented by ‘ S
Equations (108) and (109). Figures (11-37) th’~ough (11—42) show a

low order of accuracy for direct application of the quadratic formulation

without considering the requirements of Equation (109). For this case

of p = l.C , 
~~~~ 

.58333 as derived by Equation (108). It

should be noted as well that the solutions by the linear Crank-N icolson

alpha value and fully implicit alpha value yield approximately the

same accuracy. The fact that the accuracy observed for a = .58333

is not the greatest of the three schemes is insignificant since no

optimum scheme is really being applied.

Figures (11—43) through (11-48) show the second order

accuracy attained if Equation (109) is accounted for by inserting

a = .66666 at the internal nodes. The accuracy for the optimum

scheme of a = .58333 is noted to be greater than the otheropt

schemes, but again, only seccnd order accurate.

Summary. In all, the plots, and data from which they were

constructed, it should be remembered that the exact analytical

solution was used at the first time step to eliminate the problem of

discontinuity between the initial and boundary conditions. This was

determined by Martin to be the best procedure for handling this

situation. Also, in all the plots, except Figures (11—37) through (11-42) ,

the greatest accuracy was observed for the derived optimum alpha

values. The results of Figures (11-43) through (0—48) , supplemented

by the findings of Appendix I, indicate that the internal nodes must

• 

( 

- be specially handled if fourth order accuracy is to be achieved.
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I
This point should be emphasized in light of the fact that,

even though fourth order accuracy is noteworthy, it is no better

than that attained with the direct linear interpolation approach,

which was also fourth order accurate. It would be logical and less

expensive, therefore, to apply the linear finite-element solution

technique.

Briefly, it was found in theory (Appendix E), and as computa-

tionally displayed by the above Section IV referenced figures, that

despite the more rigorous solution develoimient inherent in the

quadratic interpolation approach, problems introduced by the existence

of the internal nodes prevented direct application of the system

matrices. Indeed, Equation (109) indicated an accuracy less than

fourth order at the internal nodes, a consideration of which allowed

for general second order accuracy.

In this limit of second order accuracy (Table G-I), a direct

relationship was found between the quadratic and linear optimum alpha

values yielding for a particular selection of the parameter p

a value of alpha which gave the same degree of implicitness for

the quadratic approach as for the linear approach. The application

of this fact to the quadratic formulation , therefore, allowed for

the same or slightly greater accuracy over the linear interpolation

formulation at the external nodes, or at every other node, as

displayed by the Section III referenced figures.

S 
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V. Conclusions and Recommendations

Conclusions
S 

Stability Analysis. The equivalent orders of accuracy for the

linear and quadratic finite—element formulations, coupled with the

necessity to handle the quadratic interpolation with an equivalent

linear system to achieve such accuracy , indicates that the quadratic

system may be handled as a linear system of twice the number of nodes.

As such, the general stability results are as before. The finite—

difference method is more stable than the finite—element method.

Error Analysis. This error analysis is based on results

achieved when the discontinuity between the initial and boundary

conditions has been eliminated by substitution of the exact analytical

solution at the first time step. The overall result of this solution

procedure is that for the optimum implicit formulation, fourth order

accuracy is attainable, while for the other schemes studied , only

second order accuracy is possible. For the case where the discontinuity

has not been accounted for, the results are as stated by Martin

(Ref 7:92-95).

0 Specifically, for the optimum implicit scheme, the linear

finite-element errors equal the finite—difference errors for all

values of the Fourier modulus. The quadratic finite—element errors

equal these values for p = 1.0 , but for the other values of the
modulus , an increase in accuracy is noted. The fact that the linear

f inite—element errors equal the quadratic finite-element errors for
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p = 1.0 is understandable since, for this case, both approaches

involved the same optimum alpha value. The errors for solution by S

the Crank—Nicolson scheme, linear finite—elements, equal the errors

for such solution with quadratic finite-elements. The same is true

for the fully implicit scheme. S

Also, for the fully implicit scheme and available data ,

solution by the finite—element method is more accurate than solution

by the finite—difference method. However, for the Crank—Nicolson

scheme, the opposite is found to be true. The opt imum implicit

finite—element scheme is always more accurate than the Crank—Nicolson S

finite—element scheme. 
-

In considering the accuracy comparison just presented, it

should be kept in mind that the overall order of accuracy for both

linear and quadratic finite-element interpolation procedures was

found to be equal. This indicated a possible equivalence of both

methods, or a limitation on the achievement of greater accuracy when S

employing this general solution approach. Indeed, the truncation

error analysis predicted the minimum acceptable fourth order accuracy

only if the internal nodes were accounted for without direct application

as such in the quadratic system. This treatment of the internal nodes

established the basis for the equivalence of the linear and quadratic

5—. 5

‘n. possible method of better handling the internal nodes__ 
•I -. nat  ii~~ the  thres point rows of the system matrices A and

~~ ~a ass the method of splines where every node , or in

- • ..- • . ~~~ld he connected to another knot by an

I
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appropriate function, usually as a minimum , a bi-cubic spline, and

no distinction made between internal and external points. Such a

procedure would establish new system matrices, less sparse, and

containing rows of an equal number of elements.

However, in general, a truncation error analysis using

the elements of these new matrices might not show order of accuracy

improvement, because even though spline theory was used to eliminate

the difficulties in the space dimension introduced by employment S

of the quadratic interpolation function, it still stands that the

time derivatives are approximated by a finite-difference expression

for which no parallel increase in accuracy can be attained by going

to higher order polynomial approximating temperature distributions.

This fact, along with the beliefs of Strang and Fix (Ref 10:244-245)

that the handling of time by methods other than the Galerkin or

variational approach may couple all time levels and destroy the

property of propagation forward in time, tends to indicate that

greater accuracy may not be attainable for this problem approach.

Certainly the equivalency of the linear and quadratic finite—element

optimum alpha f ormulations, in light of Martin ’s observation that

f or this scheme, the linear finite—element method and the finite—

difference method are, in fact, the same (Ref 7 :92) , adds verif i—

cation to these statements.

Two approaches worth considering as feasible alternatives

for handling of the temporal response would be to use spline theory

in the time domain, and the use of a continuous time model. In the

first approach, the theoretical procedures leading to the expression
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of the unknown solution are the same. For space and time , Strang

and Fix (Ref 10:243) give this expression as

N
u(x ,t) = ~ Q . (t ) ~~.( x) (134)

S J

which should be compared with Equation (1-1) . If Q. (t) were now

S represented by a bi—cubic spline, and 41.(x) represented by either S

such a spline or finite—elements, the formulation, although somewhat

unconventional , is free of the difficulties before mentioned , and

promises to yield accuracy of a higher order . -

The second approach is the continuous time model. In

this model , Equation (96) is written as

~~~. (u~~~ ) = — M
_l

K (E) (135)

and solved directly. The space dimension is still discretized and is

represented by the elements of the column matrix , ~
(E) 

. M and K

are as before. It should be immediately obvious that any problems

with the discontinuity between the initial and boundary conditions S

are no longer present. The initial or normalized initial condition

need only be placed in the right side of Equation (135) and the

calculation allowed to proceed. In fact, a hand calculation for the

minimum case of the interval kept as one element with two external

nodes , yields at the centered internal node and a time .01 seconds

S 
later , a temperature value of .9991112 . Comparing this value to

_ 

_ --- - S  ~~~~~~~ -5 S S 

_—~~ - - ~~~_t~~~ _ - - ~~~~~~~~~~~~~~~~~~ -- :~~~~~~. 
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the exact analytical solution for the case of 10 elements, the error

is found to be 7.48 x 10~~ , which is more accurate by an order
of magnitude than the maximum error at any node, any time, any scheme.

In summary , the results achieved and presented in graphical

and tabular form are consistent with the theory derived and the S

overall structure of finite—elements.

Recommendations

The limitation on accuracy presented in thi-s thesis was postulated

as inherent in the problem approach, or more specifically, in the

handling of the time domain by finite—differences after establishment

of the recurrence relation. Any notable increase in accuracy S

requires elimination of the difficulty. The use of a continuous

time model, independent of the requirements to employ the alpha

S parameter , appears to be the easiest immediate solution. Spline

theory could be used to eliminate the problems associated with working

with internal nodes. Of course, splines could also be used in time

as previously mentioned, an approach which would be more lengthy

and difficult since new and less sparse matrices would be created,

but nonetheless, an approach that promises to yield high order of

accuracy without having to eliminate the concept of time steps

inherent in finite—element theory.

The employment of a quadratic finite—element interpolation

function , with its additional internal nodal variables and

correspondingly more complex system matrices , yields accuracy

equal to that of the less exhaustive linear finite—element formulation
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for this general solution approach to the transient heat conduction

equation. Its use, therefore, is not recommended, Also, with

such suggestions considered, the use of finite-element interpolation

functions of an order greater than linear is not recommended without

first appropriately treating the time response .

(

S 

-

79

_____ * ~ ‘ * a



-5

Bibliograp1~y

1. Churchill, Ruel V. Fourier Series and Boundary Value Problems.
New York : McGraw-Hill Book Co., 1969 .

2. Clark, Melville, Jr. and Kent F. Hansen. Numerical Methods of
Reactor Analysis. New York: Academic Press, 1964.

3. Crandall, Stephen H. “An Optimum Implicit Recurrence Formula
for the Heat Conduction Equation.” Q~arterly of Applied Mathematics,
13: 318—320 (1955).

4. Felippa, Carlos A. and Ray W. d ough . “The Finite Element Method
In Solid Mechanics.” Numerical Solution of Field Problems In
Continuum Physics. SIAM—AMS Proceedings, II: 210—252 (1970).

5. Huebner , Kenneth 11. The Finite Element Method for Engineers.
New York: John Wiley & Sons, 1975.

6. Kohler, W. and J. Pittr. “Calculation of Transient Temperature
Fields With Finite Elements In Space and Time Dimensions.”
International Journal For Numerical Methods In Engineering, 8:
625—631 (1974)

7. Martin , Charles R. An Investigation of the Numerical Methods of
S 

- 
Finite Differences and Finite Elements For Digital Computer Solution
of the Transient Heat Conduction (Diffusion) Equation Using Optimum
Implicit Formulations. Unpublished thesis, Wright-Patterson Air
Force Base, Ohio: Air Force Institute of Technology., March 1978.

8. Myers, Glen B. Analytical Methods in Conduction Heat Transfer. S

New York: McGraw-Hill Book Co., 1971.

9. Smith , G. D. Numerical Solution of Partial Differential, Equations.
London: Oxford University Press , 1965.

10. Strang, Gilbert and George J. Fix . An Analysis of the Finite
Element Method. Englewood Cliffs , NJ , 1973.

11. Thomas, George B. Calculus and Analytic Geometry. Reading ,
Massachusetts: Addison Wesley Publishing Co., Inc., 1962.

12. Varga, Richard S. Matrix Iterative Analysis. Englewood Cliffs, NJ:
Prentice Hall , 1962.

13. Zienkiewjcz, 0. C. The Finite Element Method in Engineering Science.
London: McGraw-Hill Book Co., 1971. 

—

( S

80

— 

* 1T ~~~~~~ 
-I,—-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
T;55----

5__ 

~~~



APPENDIX A

The Analytical Solution of the Primary Problem S

The given physical problem in normalized form and appropriate

conditions is

— a,~2 
(A l)

u(x,O) = 1, 0 = 0 (A—2)

u(0,O) = u( l ,.0) = 0, 0 > 0 (A—3)

where x = x  . 
S

By separation of variables (Re f 1:34) , it is assumed that

u(x ,0) = X ( x) ® (0)  . Taking the appropriate partial derivatives

S and substituting into the equations above yields

~~~
- 

S

and 

X = = (A—4 )

x(0) ® (0) = 0 , 0 > 0 (A—5)

and

x(1) Q (0) = 0, 0 > 0 (A—6 )
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where y is a separation constant.

For any 0 > 0

X(O) — X(l) = 0 (A—7)

is the boundary condition and the Sturm-Liouville problem becomes

X~~ — yx = 0 (A—8)

Only for the case y < 0 does a solution exist. If y is assumed

equal to —a2 where a ~ 0 , the solution of (A-8) is

( X ( x) = A cos(ax) + B sin(c&x ) (A—9)

Application of (A— 7) at 0 yields

S A = 0 5 (A—b )

Application of (A—7) at 1 yields

sin(a) = 0 
- 

(A—il) S

That is, for a non-trivial solution, B cannot equal zero.

Equation (A-il) is satisfied by an infinity of a values; however,

by the previous restrictions 
S

(
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a = nir , n = 1,2 ,3,. . .  5 (A—l2)

Therefore, for (A—8) , the eigenvalues are

y = — ( a ) 2 = —( n ~r) 2 , n = 1,2,3,... (A—13)

and the solutions are

X ( x) = B sin(n-irx) , n = 1,2 ,3,... - (A—l4)

The remaining problem

(
— y© = 0 (A—l5)

is solved by integration to yield

S (0) = C
n 
exp (— (nn )203 (A—l6)

By superposition of Equations (A-14) and (A-l6) , the general

solution is :-

u(x ,0) = 
~ 

(B~~C ) sin (nirx) exp (— (n ir ) 20] (A—l7)
n-i

(
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I

The initial condition is now applied in an infinite Fourier

series of Equation (A-l4) to yield

u(x,0) = A sin(n,Tx) . 1 = 1 (A—l8)

Here, theta equals zero and the constants are combined. Equation

(A—18) is a Fourier sine series where it can be shown that (Ref 7:103)

A = —
~~
- [1 — (~l)

hh] (A—l9)

For n = 2m - 1 , the solution, (A—l7) , becomes
(

u(x,0) = 
m=l 

2nt l~~ 
sin [(2m—l ) trx) exp {—[ (2 m— 1) ir ] 2 0} (A— 20)

(
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APPENDIX B

Elementary Variational Calculus Review

A simple problem of variational calculus is to find a function

u(x) that minimizes the integral

L
I = f F(x,u(x),u (x))clx (B—l)

x=0

with the boundary conditions

u(0) = ii (B-2)

and

u(L) = U1, (B—3)

and where u denotes differentiation with respect to x (Ref 8:322—325).

u(x) is found by considering every possible continuous function

that satisfies the bounda ry conditions and selecting the one that

minimizes I. If cfl(x) is called the variation (see Figure B—l),

being zero for the case when I is minimum, then the set of possible

functions is represented by u(x,e) where

~i(x ,e) = u(x) + ~n(x) (B—4) S
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The function r~(x) is restricted to be exact at the boundaries;

that is,

~(o) = ~(L) 0 (B—5)

This restriction insures that

u(o,c) = u(o) and u(L,c) = u(L) (B—6)

C 
S

Figure 5—1. Desired Variational Solution u(x)
and Trial Function u(x,c).
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As mentioned, the function sought is attained from the function

set (Equation (B—4)) for the case of zero variation; or, that is,

C = 0 . The desired value of u(x) is such that

u(x,0) = u(x) (B—7)

Also , the corresponding derivative term of Equation (B—i) is noted as

i~t ( x ,c) = u ’ (x) + cr((x) (B—8)

Next, Equations (B-4) and (B-B) are substituted into Equation

(B—b) to yield

1,
1(C) = f F(x ,u (x ,c) ,~i(x ,c)) dx (B—9)

x=0

where I is a function of e because it is still a parameter

after the x integration. By Equation (5-7) , Equation (B-9)

reduces to Equation (B—b) when c equals zero. That is, 1(c)

is a minimum when c equals zero.

The process of minimization is pursued by employing Leibnitz’

rule and the chain rule in differentiating 1(c) with respect

to e to yield

____ = 1
L 

~ —F (x,u (x ,c),u ( x ,c)) dx (B—b ) Ix=0
(
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and

dI(c) 
= 

L 
~~~~ + dx (B-li)
iau ac ôu 3cx=0 L

By Equations (B—4) and (B-B) , it is noted that

= r~(x) and = ~~ (x) = ~n ( x) (B— l2)

which , when substituted into Equation (B—bb), yields

dI(c) 
= 

~~~~~~~ 

:~(x) + 
3 F d ~ (x)] dx (B-13)

Integration by parts of the second term yields

dI(c) 
= 

~~~~ 

}!. ~(x)dx + 
[

~~~.n ( x~
f
~~~

_ f n ( x) ~~~~~
- 

[~~ j c~x (B-b4)

The integrated term vanishes by Equation (B-5). Thus, upon

recombining the two integrals, Equation (B—b4) becomes

diCe) 
= ~(x) 

- 

~~~~

— 

(~~~
)] dx (5-15)

Setting the derivative to zero for c = 0 yields

(

ii =- u (B-16)
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and therefore

~~~~ 

= n (x ) - 
~

- (
~

-
~
)] dx = 0 (B-17)

Because ii (x) is arbitrary, the term in brackets must be zero

Lo ensure that the integral is zero. Therefore, for I to be a

ininj inun~

- 
~ 

(
~

.-) = 0 (B-18)

The solution u(x) to this Euler-Lagrange differential equation

is the function that minimizes the original integral.

(1
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APPENDIX C

Derivation of Quadratic Constants

The first step in the matrix formulation of the finite—element

procedure is to find the constants, Equations (52), (53), and (54).

The process is tedious and complicated. Several steps of the process

are here presented to assist in understanding the mathematical

sequence employed.

After establishing Equations (46), (47), and ~48) as

representing the nodal temperatures of an element, they are solved

( e) (e) (e) (e)
simultaneously to find c

1 , c2 , and c
3 

. c3 is

first found by writing Equation (48) as

(e) (x
÷x
i) = U

k 
- 

(e) 
(

~
ci~~1)2 (C-i)

and adding Equations (46) and (47) to yield

= c
1~~ 

+ 02
(e) (x~

+x
~
) 
+ 

(e) 
(x 2+x 2 ) 

(C- 2)

Substituting Equation (C-2) into (C-l) for ~1
(e) 

+ c2
(e)(xi~~ i)

and expanding yields

Uj+Uj _2U
k 0 (e) 

- 
(x
i~~

2x
i
x
i
+x

i2)] (C-3)

( which is condensed and solved for ~~
(e) as Equation (54) .
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Next , ~~
(e) is found by subtracting Equation (46) minus

Equation (47) to yield

= 
Ce) 

~~~~~~~ + 
(e) (x . 2—x . 2 ) (c—4)

Substituting Equation (54) into (C—4 ) for c3~~~ gives

(u . -2u +u .)
= 

(e) (x~ —x .) + 2 (x. —x .) 2  (x~2 —x . 2 ) (c—5)

which , when expanded and solved for 0 (e) 
, yields Equation (53) .

Finally, with ~~
(e) and ~~

(e) 
~~~~~~~~~~ c1~~~ is found by

writing Equation (46) for ~~
(e as

cl~~~ u~ — c2~~~x . — Ce) 2 (C—6)

C )  C )  F
and substituting Equations (53) and (54) for c

2 
and c

3

respectively , to yield Equation (52).

(\
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APPENDIX D

Assembly Theory for Matrices

Equation (106) was assembled as representative of the problem

for the case of three elements and seven total nodes, four external.

Certain specific theory applies to the assembly of these matrices

A and B , presented here in s~muuary and treated exactly by Huebner

(Ref 5:43—50). Figure D—l depicts the situation of this case, with

NODES x(
~
) Elements

Figure D-1. Example of One Dimensional Problem of
Three Elements and Four External Nodes.

elesents Q, 0, and (13, and external nodes 1, 3, 5, and 7. It

should be noted that the following procedures, although based on this

simple case , are in principle the general procedures that apply to all
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I

finite-element systems.

The first step is to specify a numbering scheme for the system

shown in the figure. This scheme which relates the local position of

the nodes to the system or global position is illustrated in Table D-I .

TABLE D-I

System Numbering - The Correspondence Between
Local and Global Numbering Schemes

Scheme

Element Local Global

1 1 1

2 2

3 3

2 1 3

2 4

3 5

3 1 5

The next step is to plac e the elessnt subuatrix for element one

into its assembled position . For this elesent~, the local and global

niabering schemes are, by coincidence, the same. That is, for

element one (matrix A )

~~~~~ f 4 
_______



ra11
(l) 

a12
W a13

W 0 o 0 0

= 
a
21~~ a22

W a
23
W a o o a

a31
W a32

W a33
W 0 0 0 0

O a o o o o a
O 0 0 0 0 0 0 (D— l)

O 0 0 0 0 0 0

O 0 0 0 0 0 0

where the superscripts indicate the element number. The second step

is then continued for elements two and three by relating the local and

global elements as depicted in Table D-II and writing the respective

matrices , Equations (D—2) and (D—3) as

0 0 0 0 0 0 0

EA1
(2) 

= : : a
33~

2
~ a3:~

2
~ 

5
35
(2) 

0 0

(2) (2) (2) (D—2)0 0 a 43 a44 a
45 0 0

0 0 a53~
2
~ a54~

2
~ a55~

2
~ 0 0

0 0 0 0 0 0 0

_ o 0 0 0 0 0 0

(
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(
V

0 0 0 0 0 0 0

0 0 0 a 0 0 0

A
— 

— 0 0 0 0 0 0 0

O 0 0 0 0 0 0

0 o o 0 a 
(3) (D—3)

55 a
56 a57

O 0 0 0 a65~
3
~ a66~

3
~ a67~

3
~

(3) (3) - (3 )0 0 0 0 a75 a76 C.77 —

TABLE D-II

Relationship Between Local and
Global Elements of Matrix A

Local Position Global Position

Element Two — Element Three

a11 a33 
a55

a12 a34

a13 a35 a5,

a21 a43 a65

a22 a44 a66

a23 a45 a67

a32 a53 a75

a32 a54 a76

a33 a55 a77

( 
V
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V 

: 1

Finally, A is obtained (as for Equation (106)) by adding

Equations CD—i) through (D—3), representing contributions from each

element. The mathematical statement of this is

= 

e~~ 

EA]
(e) 

= [A] W + (A]~
2
~ + [

~~
•
]

(3) 
+•~~~ (D—4)

where M is the total number of elements. The assembled (A] is then

a11 a12 a13 0 0 0 0

a21 a22 a23 0 0 0 0

(A] = a31 a32 (a
33+a11

) a12 a~3 0 0

0 0 a21 a22 a23 0 0 (D— 5)

0 0 a31 a32 
(a

33+a11
) a12 a13

0 0 0 0 a21 a22 a23

0 0 0 0 a31 a32 a33

The matrix (B] is similarly attained.

It should be noted that the internal node s are not added in

the assembly process . This is inherent in the procedure since the

relationship between external nodes is approximated. Only the

external nodes need be added to create the assembled matrix .

(
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APPENDIX E

Derivation of the Truncation Error
for the Finite Element Formulation

To derive the error , the system of equations (107) , written

for the minimum case of two elements, is treated as a set of

difference equations (Ref 7:109—117). The general five point

expression is given by

+ A
2 
(u

i_lIk+i
+u
i~k+l)+ A

3
U
~ k+l +

+ A
lu.+l k+l

= B
luj_l,k 

+ B2 (ui l~k+ui 1k) 
+ B3u

~ k + B2 (u
i+l l k

+ui~ k)

+ Bluj+l,k (E—l)

where , fran Equation (106)

A
1 

= -½+5ap V

A
2 

= l—4Oup

A
3 

= 4+7Oup

B
1 

= — ½— 5(l--~ )p

B2 1+40(1—a)p

and( HB
3 

— 4—70 (l—u)p 
V

— -~ * - ~~~~~~~~~~
- 

- - 

_ _



The subscripts i and k are used to position the nodal

variables at the ten points represented by the terms in Equation (E-1).

The procedure of this appendix is to write the equations of these

nodal variables in a Taylor series centered about Ui k  , and then

to find the truncation error as the difference between the exact

partial differential equation and the difference equation CE-i).

This procedure , outlined by Crandall (Ref 3:319) , may be stated

as

= {~~~[Alu
~ _l ,k+l + A2 

(u
i_l lk÷i

+u
i~k+i) + A3u j k +l

V V 

+.A2(1+1~
:+
~~~

i?k÷
1) + Alul+l k÷l]

— 
~ [Bluj _ l ,k + B2 ( i— i ,k i r k) 

+ B
3
u i k

+ B
2 
(ui+l~~~

hh
i~k) + B

l
u
+l k]

- 
i. (au - ~

2
u)} (E-2)

where

k2 k3Uj ,k+l — U i k  + ku0 + ~~~~

- u20 
+ 

~
-j- u30 + 

... (E—3)
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h2
U = U . ± hu + — u ± ~— u + ... (E-4)i±l,k i,k x 2 2x 3! 3x

and

U
j±l k+l 

= U
jk  

± hu + 112(p4) u2,~ + h 3 (p~4~~ u 3

+ h~(~~ 
+ + U

4x 
± h 5(~~ + + U

5 
+ ... (E-5)

The subscripts here indicate differentiation with respect to the

specified independent variable for the indicated number of times at

the point (i1uc,k1~B) . The terms k and h represent t~6 and

respectively. It is also noted that the last term of Equation

(E—2) equals zero and can be dropped.

By substituting Equations (E—3) through (E-5) into Equation (E-2)

and employing the relations

k = p(h) 2 or 1~O = p(~x) 
2 (E-6)

ue U
2 

CE 7)

U20 
= U02 

= u4 CE-8)

and

( 
U30 

— u202~ — u04 = u
6~
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each power of h may be collected together in the truncation error.

The coefficients of all the odd powers of h cancel to zero. The

coefficients of the even powers of h cancel to zero up to and

including order two . The resulting expression is

e h2 (lop — l5ap — ~~) U4 + 0(h~) (E—lO)

or , the truncation error is of order h2 unless

(lop — l5ap — 4~-) = 0 (B— il)

or

a = 4 (2 — (E—l2 )

This last expression is the quadratic analog to Martin’s

optimum alpha equation. It also indicates fourth order accuracy.

The system of equations (107) also possesses three point rows

based on single elements. The effect of these terms on the system

accuracy can be determined by performing a truncation error analysis

across the elements, centered on the internal node. The procedure

is the same, but now

100
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3 ;

= l—40 p

V A2 = 8+80 p

~1 = l+40 (l—a )p

and

B2 = S 80( l— ~ )p

After substitution, the result is

e~ 
= h (~

2~) u~~ + 0(h 2) (E—i3)

or, the truncation error is of order h unless

(
~~2~

) 
= 0 . (E—l4)

This last expression states that only second order accuracy can

be attained within an element if p is made large. Appendix C

correlates this with the linear optimum alpha equation. It should

be noted here that if p is made large, Equation (E—l2) approaches ‘

a limiting alpha value as does the linear optimum alpha equation.

V 

V 
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APPENDIX F

Treatment of Internal Nodes For Static Problems

Higher order polynomial interpolation functions with their

associated internal nodes can be used to improve the overall field

variable representation within an element. Once employed to attain

the equations or matrices for application o~ the finite-element

method, it is noted that these internal nodes do not connect with the

nodes of other elements during the assembly process. consequently,

the degrees of freedom (here, for example, normalized temperature)

associated with internal nodes do not affect interelement continuity

(Ref 5:155—156) .

Because of this, these internal nodal degrees of freedom may be

eliminated at the element level before assembly to reduce the overall

size of the assembled system matrices. The decision to do this depends

on the nature of the problem and especially on the shape of the element.

This elimination process, called “Static condensation,” (Ref 4:220—221)

is presented here to emphasize the fact that internal nodes need not

be retained after information they supply is ascertained.

For one quadratic element

1~ ~~~~~~~ 

(F-i) 

-

- -~~~~ —k— ~~~~~ 
___________ 

__________—



where u
2 

is the internal nodal degree of freedom and the R’s

represent the corresponding resultant actions. A can be rearranged

and partitioned to segregate this internal value as

(a
~~

] I [a1~ ] {xi } {R1
} 

. = (F—2)
(a 21] [a

fl
) [x 2] (R2]

where {x 1} is a column vector of the external nodal values, and

{R
1
} is the corresponding vector of resultant nodal actions .

Equation (F-2) may be expanded into

(a11] {x 1
} + [a12] (x 2] = {R

1
} (F—3)

(

and

(a
21
] {x

1
} + [a22

] (x 2 J = ER2
] (~~4) 

V

If Equation (F-4) is solved for (R 21 and this result substituted

into Equation (F-3), the result is

[(a 11
] - (a 12] (a 22 ]~~ (a 21)] {x1

} = { R )  - (a 12] (a 22 ]~~ (R2] (F- 5)

which is the condensed system

(Ac] {x1
} — (Re] (F— 6)
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APPENDIX G

Comparison of Linear and Quadratic Factors and Equivalence
of Linear and Quadratic Interpolation Function Analysis

To insure accurate and consistent error comparisons between

the linear and quadratic finite-element forniualtions , where possible,

procedures and derivations of the latter were performed analogous

to those of the former. The following paragraphs list several of

these factors, culminating in a direct relationship and equivalance

between the lincar and quadratic interpolation function alpha values

and solutions.

The quadratic element stiffness matrix and element mass matrix

are given respectively by Equat4.ons (73) and (89) . The corresponding

linear matrices are
‘V 

V

Ii  -11
K Ce) •

~~~ i i (G—l )
— _ Ax 

[_l 1]

and

12 11
X 

(G—2)

The assembled system matrices, A and B , for the quadratic

case of three elements and four exte~na1 nodes, are given by

Equation (106). The corresponding linear system is

V 

~~~~~~~~ 
:.V :  

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
L



2+6ap 1-6ap 0 0 u1

l-6ap 4+l2czp l-6ap 0 u2

0 l—6ap 4+i2ap l-6ap

0 0 1-6ap 2+6ap u4

2—6 ( l— a)p 1+6(1—a)p 0 0 u k
1

l+6(l—ct)p 4—l2(l—ci)p l+6(1—a)p 0 u~ (G—3)

0 l+6( 1—a)p 4—l2 ( l— a)p  1+6(l—a)p U
3

0 0 1+6(1-a)p 2—6 (l-Q)p

For the quadratic case , a truncation error analysis across two

adjoining elements employs the coefficients of Equation (106) and yields

1 1a (G—4)

for fourth order accuracy. The analogous linear truncation error

analysis employs the coefficients of Equation (G-3) and yields

1 3.a i ( l +
~~

—) (G— 5)

for fourth order accuracy.
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Without analogy, the quadratic formulation establishes that

within an element or at the internal node

= 0 (G—6)
p

for second order accuracy.

For both formulations as the value of the Fourier modulus, p

is increased, the accuracy of the finite—element solution decreases.

This is true by definition, since for a selected value of Ax

p is increased by increasing At , or enlarging the element. In

the linear case, as p becomes large, the optimum alpha value

approaches .5 which is the second order accuracy Crank—Nicolson

value . In the quadratic case, as p becomes large, the optimum alpha

value approaches .6666 which is shown in the results section and

Appendix H to also yield only second order accuracy. This is in

agreement with Equation (C—6) which states that second order accuracy

is attainable if p is made large. Appendix H also shows that, if

a quadratic solution employing an optimum alpha of Equation (G-4),

or an alpha of a different scheme , is attempted without considering

the requirements of Equation (G-6) for internal nodes , the result is

less than second order accurate.

Fourth order accuracy can only be expected if the internal nodes

are accounted for without direct application in the solution process.

Appendix F considers one procedure called “static condensation. ” For

this transient heat conduction problem , the interna l nodes can be

treated in a similar manner as external nodes. The following
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paragraphs show that an equivalency relationship exists between the

quadratic aiphas of Equation (G-4) and the linear aiphas of Equation

(G—5) . This equivalen~y indicates that solution by quadratic

interpolation is equal to solution by linear interpolation across an

interval of Ax/2 , and that solution by quadratic interpolation

can be interpreted as more accurate than the corresponding linear

solution across an interval Ax only by virtue of smaller mesh

spacing . That is , at the external nodes, the quadratic solution is

equivalent to the linear solution of twice the number of nodes.

The equivalency between quadratic and linear solutions V
~~~ S

easily found by considering the relationship between the respective

optimum alphas as p is made large. For the quadratic case

(
u r n  a = .6666 (G—7 )

V 
~ large opt,Q

Similarly, for the linear case

lint ci = .5 (G—8) Vopt ,Lp -‘ large

Then

lint a — a — .1666 (G—9)

p ~‘ large opt,Q opt,L

( 
If it is introduced as the parameter defining the p step

increments as the limit is approached , then
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U
opt Q 

- 

opt,LJ 
= nv (G—lO)

where v may be called the ~‘ariation and is that value required

to satisfy Equation (G—l O) as n is increased . As is noted

= 
.16666 

= .04167 (G—il )

The quadratic limit is approached from below in the same

steps as the linear limit is approached from above. Table C—I

displays this and shows that for each quadratic alpha pf Equation

(G— 4 ) ,  the corresponding linear alpha is as derived by Equation (G— 5) .

For example, for step one, n ~ 1 , and nv = .04167 . The

quadratic case then yields

.6666 — (1) (.04167) = .625 (G—12)

vi
while , for the linear case -

.5000 + (u)( .04167 ) = .54167 (G—l3)

The result of Equa tion (G—1 2) is equal to the value derived fran

Equation (G-4) for p = 2.0 . The result of Equation (G-13) is

equal to the value derived fran Equation (G-5) for p — 2.0

( 
V
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TABLE G- I

Equivalency of Optimum Alpha Values
For Quadratic and Linear Interpolation Functions

Quadratic (.6666) Linear (.5000)

n ciopt,Q ciopt,L p

1 .6250 .54167 2

2 .5833 .5833 1

3 .54167 .625 .6666

4 .5000 .6666 .5

It is noted that for the Fourier modulus of one , the optimum alpha

values are , in fact , equal.

The result of Table G-I is that for each attained quadratic

optimum alpha at each node , there is an equivalent linear optimum

alpha which agrees with the value derived by linear interpolation.

Therefore , whether the solution approach be quadratic or linear ,

the degree of implicitness or explicitness as defined by alpha is

the same .
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APPENDIX H

Computer—Generated Plots of Results

This appendix contains the graphical results of this project,

presented as plots of Discretization Error Ratio versus Time, for

selected alpha values of the Crank—Nicolson, optimum implicit, and

fully implicit schemes. Each of the three error norms, before

mentioned , are so displayed.

As in Martin’s study , the pointwise error is measured at x = 0.1

The generalized mean is the sum of the absolute values of the pointwise

errors at nine evenly spaced nodes. It shows the effect of the parameter

a on the pointwise error over the whole interval. The maximum error

at any node, or discrete Tchebycheff norm, shows the effect of this

same parameter on the maximum deviation at any node between the time

solution and the numerical solution .

Discretization error ratio was previously defined . For its

calculation, solutions were attained and compared for space domain

intervals of 10 and 20, and , 20 and 40. On each plot , p = p

is the Fourier modulus and DX represents the space interval Ax

Of course, alpna is the parameter of note, sometimes referred to as the

“degree of implicitness,” because it is the measure of the weight placed

on the temperatures in the new time step of the numerical scheme .

Each section of graphs is introduced with a short descriptive note .

In all graphs, the exact analytical solution has been substituted at

the first time step to eliminate the discontinuity between the initial (

t and boundary conditions. Graphs annotated CDF and CDH are for the
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t

finite—difference cases of p = 1.0 and p = 2.0 , respectively.

Graphs annotated CET and CEY are for the finite-element cases

of p = 1.0 and p = 2.0 , respectively.
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Section I

Results for the Problem Usin9 Finite Differences

This section shows the graphical results for the solution of

the problem by f i nite-differences. Run identifiers are CDF and

CDH

1[~
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I-
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~~ c’J

LU

COC)
1—4

c..J

o V

0
S .  

I I I6~ooo 0.020 0.040 0.060 0.080
T I M E

0X 0.100 RLPHR o 0.416’7
TO; 0.050 £ 0.5000

~ 1.000 
LEGEND; 

+ 1.0000

Fig . H—i. Discret izat ion Error Ratio Versus Time for Selected Aiphas.
The exact solution has been subst i tuted for the numerical
solution at the first time step.
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I CO F—OPT~ I. P f lh lSc Eli .~~ X~ 1.

-4
a

CD.-
4-,

I lIE

~~ERENCE S

0
0

S .  I I I6~ooo 0.020 0.040 C.060 0.080
TIME

0X 0.050 ® 0.4161

Te; 0.025 £ 0.5000

P = 1.000 LEGEND : 
+ 1.0000

Fig. 11- 2. Discretization Error Ratio Versus Time for Selected Alphas .
The exact solution has been substituted for the numerical
solution at the f i r s t  time step .
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I COF— OPT I. 1~RX ERROR ~~Y NODE
a)

I

‘q• .
- 

F
V IFFERENCES

CD

LU

a
0

-4

0
0

S .  I I I -
I

,

6~aoo 0.020 0.040 0.060 0.080
TIME

0X 0.100 RLPHR ® 0.4167

TO; 0.050 
~ 

0.5000

= 1.000 LEGEND; 
+ 1.0000

Fig. H-3 . Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numer.ical
solution at the first time step .
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I C~) F—CP T~ L. ~RX E~~ Or ~ RN Y ,~i~ [1:~c..J
-I

S

CD

~~~~~~~~~~~~~~~~~~~
FERENCES

6~ooo 0.020 0.040 0.060 0.000
TIME

0X 0.050 RLPHR o 0.4167

TO; 0.025 A 0.5000

P 1.000 LEGEND; 
.
~
.. 1.0000

Fig. H-4. Discretization Error Ratio Versus Time for Selected Alphas.

( The exact solution has been substituted for the numerical
solution at the f irst  time step .
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I’ I I

0.020 0.040 0.060 0.080
TIME

DX 0.100 RLPHA o 0.4161

TO; 0.050 A 0.5000

P 1.000 LEGEND; 
+ &.oc oo

Fig . H-5. Discretization Error Ratio Versus Time for Selected Alphas .
( The exact solution has been substituted for the numerical

solution at the f i r s t  time step .
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I—
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6~ooo 0.020 0.040 0.060 0.080
TIME

0X 0.050 RLPH~ ~ 
0.4167

TCa 0.025 
~ 
0.5000

r = 1.000 LE GEND s 
+ 1.0000

Fig. H-6. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substi tuted for the numerical
solution at the f i rs t  time step .
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DX 0.100 
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= 2.000 LEGEND: 
+ 1.0000

Fig. 11-7. Discretization Error Rat io  Versus Time for Selected Aiphas .
( The exact solution has been substituted for the numerical

solution at the f i rs t  time step .
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CbII-Oi’l:L. PTI~~&F~ EPI. X~ .L

S

CD

~~~~~~~~~~~~~~~~ FFERENCE 5

6~ooo 0.040 0.080 0.120 0. 60
TIME

OX= 0.060 RLP NR ~ 0.4583

TO; 0.025 A 0.5000

P = 2.000 LEGEND: 
+ 1.0000

Fig . H-8. Discretization Error Ratio Versus Time for Selected Alnhag.
The exact solution has been substituted for the numerical
solution at the f i rs t  time step .
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Fig. H-9. Discretization Error Ratio Versus Time for Selected Aiphas.
The exact solution has been substi tuted for the numerical
solution at the f i rs t  time step .
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Fig. H-b . Discretization Error Ratio Versus Time for Selected Alphas.
( The exact solution has been substi tuted for the numerical

solution at the first time step . 
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Fig. II-jj. ~:“retization Error Ratio Versus Time for Selected Aiphas.
The exact solution has been substituted for the numerical
solution at the first time step.
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Fig. H-12. Discretization Error Ratio Versus Time for Selected Aiphas .
The exact solution has been substituted for the numerica l

V solution at the f i r s t  time step .
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H

Section II

Results for the Problem Using Finite Elements

and a Linear Interploation Function

This section shows the graphical results for the solution of

the problem by finite-elements, linear interpolation. Run identifiers

are CET and CEY

(
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Fig. H—l3. Di scretizat ion Error Ratio Versus Time for Selected Alphas.
The exact solution has been subst i tuted for the numerical
solution at the first time step .
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Fig. 11—14. Discret izat ion Error Rat io  Versus Time for Selected Alphas .

The exact solution has been substituted for the numerica l
solution at the f i r s t  time step .
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Fig. 11—15. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical
solution at the first time step .
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( Fig. H—16. Discretization Error Ratio Versus Time for Selected Alphas .
The exact solution has been substituted for the numerical
solution at the f i rs t  time step .
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= 1.000 LEGENDs 
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Fig. H—il .  Discretization Error Ratio Versus Time for Selected Aiphas.
The exact solution has been substituted for the numerica l
solution at the f irst  time step .
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( Fig. H—18. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical
solution at the f i rs t  time step .
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Fig. 11—19. Discretization Error Ratio Versus Time for Selected Alphas .

V The exact solution has been substituted for the numerical
solution at the f i rs t  time step .
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TIME

0X 0.050 ALPH A ® 0.5000

TO; 0.025 A 0.5417

P 2.000 LEGEND: 
+ 1.0000

Fig. 11—20. Discret izat ion Error Ratio Versus Time for Selected Alphas .
The exact solution has been subst i tuted for the numerical
solution at the first time step .
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( 
Fig. 11—21. Discretization Error Ratio Versus Time for Selected Alphas.

The exact solution has been substituted for the numerical
• solution at the first time step .
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Fig. H—22 . Discretization Error Ratio Versus Time for Selected Aiphas.
( 

The exact solution has been substituted for the numerical
solution at the f i rs t  time step .
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Fig. 11—23. Discret izat ion Error Rat io  Versus Time for Selected Aiphas.
The exact solution has been substituted for the numerical

- solution at the first time step.
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Fig. H—24. Discretization Error Ratio Versus Time for Selected Aiphas.
The exact solution has been substituted for the numerical

V solution at the f i rs t  time step .
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Section III

Results for the Problem Using Finite Elements

and a Q~iadratic Interpolation Function

This section shows the graphical results for the solution of

the problem by finite-elements, quadratic interpolation , with

equivalent linear alpha values. Run identifiers are CET and CEY

( I
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-

Fig. 11—25. Discretization Error Ratio versus Time for Selected Alphas.
The exact solution has been substituted for the numerical

- solution at the first time step.
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Fig . H-26. Discretization Error Ratio Versus Time for Selected Aiphas. 
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•

The exact solution has been substituted for the numerical
V solution at the first time step . 
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( Fig . 11—27. Discretization Error Ratio Versus Time for Selected Aiphas.
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The exact solution has been substituted for the numerical - —
solution at the first time step. -
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Fig . 11—28. Discretization Error Ratio Versus Time for Seiectel Aiphas. 
V -

- 
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The exact solution has been substituted for the numerical
solution at the first time step.
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Fig. H•~29. Discretization Error Ratio Versus Time for Selected Alphas .( The exact solution has been substituted for the numerical
- solution at the first time step .
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Fig. 11—30. Discretization Error Ratio Versus Time for Selected Aiphas . 
V

V The exact solution has been substituted for the numerical
solution at the first time step .
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Fig. 11—31. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical

- solution at the first time step .
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( Fig . 11—32. Discretization Error Ratio Versus Time for Selected Aiphas . •

The exact solution has been substituted for the numerical
V solution at the first time step. 
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( Fig . 11-33. Discretization Error Ratio Versus Time for Selected Aiphas.

- The exact solution has been substituted for the numerical
solution at the first time step.
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( Pig. 11—34. Discretization Error Ratio Versus Time for Selected Aiphas.
- The exact solution has been substituted for the numerical

solution at the first time step .

148 -

A 
— _____ . 

- 
_ _ _ _ _ _



1~~~E Y—OP T 1. DEN IERtI ERROR 
—

I

U,.—
V.1

QUflOL~~~-I-NT1~~~~

aC .  -

—2•
I—
cc

6~ooo - 0.040 0.080 0.120 0.160
TIME -

DX : 0.100 ALPHA ~ 0s5000

TO ; 0.050 A 0.6250

P = 2.000 LEGENDs 
+ 1.0000 

V

Fig . 11-35. Discretization Error Ratio Versus Time for Selected Alphas .
The exact solution has been substituted for the numerical
solution at the first time step.
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Fig . 0—36 . D4scretization Error Ratio Versus Time for Selected Aiphas . - V

- The exact solution has been substituted fcr the numerical
• solution at the first time step .
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Section IV

Results for the Problem Using Finite Elements

and a Quadratic Interpolation Function

This section shows the graphical results for the solution of

the problem by f i nite-elements, quadratic interplation , direct

application. Run identifier is CET

1 ’  - -

- ‘ I, -
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Fig. 0—37. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical

- solution at the first time step .
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Fig . 0—38. Discretization Error Ratio Versus Time for Selected Aiphas . 
V

- 
V The exact solution has been substituted for the numerical

solution at the first time step.
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Fig . 0—39. Discretization Error Ratio Versus Time for Selected Alphas.
• - • The exact solution has been substituted for the numerical

• solution at the first time step.
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( Fig . 0—40. Discretization Error Ratio Versus Time for Selected Aiphas . - 
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• The exact solution has been substituted for the numerical V

solution at the first time step.
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Fig . H—4i. Discretization Error Ratio Versus Time for Selected Aiphas.
• The exact solution has been substi tuted for the numerical

V solution at the first time step.
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- Fig . 0—42. Discretization Error Ratio Versus T ime for Selected Aiphas.
The exact solution has been substituted for the numerical

- - 

— 

- solution at the first time step.
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Fig. 11-43. Discretization Error Ratio Versus Time for Selected Alphas .
The exact solution has been substituted for the numerical

V - solution at the first time step. -
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Fig . 0—44 . Discretization Error Ratio Versus Time for Selected Aiphas. V

- The exact solution has been substituted for the numerical
V - solution at the first time step.
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Fig. 0—45. Discretization Error Ratio Versus Time for Selected Alphas. 
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The exact solution has been- substituted for the numerical -
- solution at the first time step. - 
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Pig. 0—46. Discretization Error Ratio Versus Time for Selected A].phas.
The exact solution has been substituted for the numerical

- solution at the first time step.
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Fig. h—47. Discretization Error Ratio Versus Time for Selected Alphas .
- The exact solution has been substituted for the numerical

solution at the first time step.
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I.

APPENDIX I

Alternative Formulation of the Time Response

The discussion leading to Equation (110) is concerned with the

fact that the recurrence relation, Equation (97), of the finite—

element formulation is based on finite-differencing the time variable,

Equation (96). According to Zienkiewicz (Ref 13:334—336), a more

stable if not more accurate finite—element solution could be obtained

if the problem were discretized into finite—elements of time as well

as space. This appendix constructs the recurrence relation based on

this concept , and develops a solution equation . It is then shown that

bc4h recurrence relations are equal. - -

As before , the problem is an initial value problem with the initial

normalized temperature defined as U at time, 0 = 0 . The time

interval goes frau 0 to 0 , where 0~ = t~0 . In analogy to

Equation (36), an assumed interpolated form of U defined by its

values at several time intervals may be written as

n -

= ~ N~~(0)u . (I—i ) 
- V

i=0 — -

where N~~(e) are appropriate shape functions or coefficients.

If a linear interpolation is employed , then only n 0 and

n — 1 need be considered. Therefore , in matrix form and following

the procedures of Equation (49) and after

U
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V V 

- - 
- - - - -

= (N
0,N1

] {u}
0

V (1—2)
- 

-

where -

N
0 

= (~0 — 0)/ ~ 0 (1—3)

and

N
1 

= 0/t~0 (1—4)

• 
Taking the time derivative yields

a{u } 1900 aN 1] ~~ J~~o~ 

-

= 
‘ 

~ Tj ({u}~~ 
= ( 1~~l] (1—5)

If Equation (96) is multiplied by N1 and integrated over time,

the result is -

~~~~~~~~~~~~ ~~ 
(NctIPNl

] 1 (MJ 
~~~~!I ~~

o
~)d0 — 0 (z~~6)

which , if Equations (1—2) and (1-5) are appropriately substituted,

beccm~es

165

- - — ‘- — ~~~ _ V  - _ _ _ _- - — -~~~~~~~~~- - - V-— - -~~~~~~ ~~

- ~V -~- ~~~~ _________ ~~~~~~~~~~~~~ •~~~~~•~



~ (
~ ~~~~~~ 

+ 
~~ 

{u}~) 
+ (M] (

~ 
{u}

~ 
+ {u}

l) 
(1-7)

The solution , {u}
1 is then found to be

= (
~ 

~~ + ~ / ~o )_) .
(~ [K] — (14] / ~o) 

{u}~ ( 1—8)

Equation (1—7) is the recurrence relation found by treating the

time variable by finite-elements. It may be rewritten as

- ~ 
M +  

2
K]

(E) 
= [i. M 

1
K]U

(E) 
(1-9)

where the matrix brackets have been dropped for simplicity . This

equation is similar to Equation (97) and may be written

,~ ( u )k+l 
= B (u~~~)

k 
- 

(I-lU)

in analogy to Equation (100) , where

= K (.6666) ~0 (I—il)

- 

- -

s

B’ — M — K (.3333) ~O 
- (1—12)
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I

Therefore, Equation (1-10) may be written

(M + K (.6666) A0) (u~~~)
k
~~ = (14 — K (.3333)A0) (~~~~~~~)

k 
(1—13)

It is noted that Equation (1-13) equals Equation (97) if

a = .6666 . In both the general linear and quadratic formulations,

this value of alpha yields at most only second order accuracy. The

one point of variation is for the Fourier modulus equal to .5

in this case, the linear alpha of .6666 , equivalent to the

quadratic alpha of .5 , yields fourth order accuracy.

The important results of the derivations leading to Equation (1-13)

are as follows:
-

.

(1) The determination of the optimum alpha value is

independent of the treatment of time.

(2) The recurrence relation by quadratic interpolation

equal s the recurrence relation by linear interpolation, and both are

inherently second order accurate in the general scheme of alpha values.

These findings were verified by Köhler and Pittr (Ref 6:625-630) ,

who showed that even if a quadratic , parabolic , time - interpolation

was used , that is,

{u} — (N o (e) ,N
i

(0) ,N
2

(0) ] {u}

(1—14)

- ~~~

no improvement over a linear time element was attained.
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These results axe significant if considering the idea of

employing a high order Padé rational approximation to describe the

temporal behavior of the solution. Varga (Ref 12:262-268) points out

that the Crank-Nicolson method, as well as the forward difference and

backward difference methods,- are in fact, such approximattons. The

derivation proceeding from Equation (1—5) , however, states that as long

as the time domain is handled as in this variational approach, the

previously achieved accuracy order will not be exceeded, which is

logical , since the Padé approximation is merely a rational analog to

its Taylor polynomial. This, however, does not preclude the more

rapid achievement of that accuracy , inherent in operations by Padé

approximation; that is, convergence will occur more quickly.
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