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Preface

This report is the result of my investigation of the finite-
element method, with a quadratic interpolation function, for solution
of the one-dimensional transient heat conduction equation. Although
order of accuracy improvements over the linear interpolation formulation
did not materialize, the results achieved were significant in that they
were previously postulated, easily accounted for by elementary
mathematical analysis, and verified the accuracy of solution by
finite-elements. Failure to achieve greater accuracy was a function
of the solution method; solution improvement by quadratic interpolation
requires special treatment of the internal nodes and time domain.

I would like to express my appreciation and gratitude to |
Dr. Bernard Kaplan of the Air Force Institute of Technology for his
guidance in my performance of this thesis, and to Dr. W. Kessler of
the Air Force Materials Laboratory for sponsoring this research project.
Also, I am deeply grateful to Drs. John Jones and David Hardin, also
of the Air Force Institute of Technology, for their technical advice
on many special occasions, and to Sharon Gabriel for her precise
typing achievement.

Finally, I wish to express my gratitude to my wife, Linh, for her
invaluable moral support and insistence to maintain a proper perspective

in the accomplishment of this continuous work.
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Abstract

The one-dimensional transient heat conduction equation, with
Dirichlet boundary conditions, is solved by the method of finite-
elements, employing a quadratic interpolation function. The numerical
solutions are investigated with respect to accuracy and stability,
and compared to like results attained by the method of finite-
differences, and the finite-element method with linear interpolation.
The version of the finite-element method used was based on a
variational principle which is stationary in time; the temporal
behavior of the differential equation is treated with a finite-
difference apprcximation. This method is equivalent to the method
of Galerkin, called the Method of Weighted Residuals. The inherent
discontinuity between the initial condition and boundary conditions
was accounted for by substituting the exact analytical solution at
the first time step and numerically computating from there. An
equivalency relationship between the two finite-element methods is
shown to exist. The finite-difference version of the Crank-Nicolson
method  is found to be more accurate than the finite-element version;
for the fully implicit method, the opposite is found to be true.

In the optimum implicit method, both finite-element solutions are
shown equivalent to the finite-difference solution for a Fourier
modulus of one. For other values of this parameter, the finite-

element solution is more accurate.
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AN INVESTIGATION OF THE METHOD OF FINITE ELEMENTS

S

WITH ACCURACY COMPARISONS TO THE METHOD OF FINITE DIFFERENCES
FOR SOLUTION OF THE TRANSIENT HEAT CONDUCTION EQUATION

USING OPTIMUM IMPLICIT FORMULATIONS

I. Introduction

Background

Most engineering problems reduce to finding solutions of
mathematical problems. Specifically, one translates a physical

phenomenon into a differential equation, the solution of which

{
i
1
|
yields the unknown value. Although analytical solutions are exact F
and desired, factors such as mixed geometry and computer limitations |
often prevent the application of analytical techniques. If one is
willing to accept certain inaccuracies to be explained later,
numerical techniques can be reasonably employed to obtain the ‘
desired solutions. g
An accurate numerical technique is the method of finite-
elements, in which the problem is recast as an integral to be 4 i

minimized. Exactly, the finite-element method converts the original

partial differential equation into a variational integral which

must be minimized. The solution of the original partial differential

equation is employed in this minimization process. A resultant |
set of algebraic equations is then solved by digital computer.
Anyone familiar with the method of finite-differences should already

note certain operational analogies, the main difference in the two
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techniques being that, in finite-differences the solutions are
evaluated at the nodes, while in finite-elements, the solutions
are taken along the nodal intervals as well.

One problem suited to the application of finite-element
procedures is that of transient heat conduction. The irregular
geometry involved in the study of temperature variation and control
in such pieces of hardware as jet engine burner baskets and rocket
nozzles necessitates the use of numerical procedures to attain data
such as required by the Air Force Materials Laboratory.

There exist several schemes to the finite-element solution
of the transient heat conduction problem. These approaches include
the Crank-Nicolson method, the Euler method, and che fully implicit
method. Recently, Martin (Ref 7:52) developed an "optimum implicit
method" which was shown to be the most accurate approach for his
problem. Basically, the Martin method is a finite-element procedure
in analogy to the Crandall method (Ref 3:318-320) of finite-

differences.

Problem

The primary objective of this project was to solve the one-
dimentional transient heat conduction problem, with a known
analytical solution, using modifications of the Martin solution by
the finite-element method. A quadratic interpolation was used and
accuracy and stability comparisons made to Martin's linear interpola-
tion solutions. Comparisons of accuracy and stability to the Crank-

Nicolson finite-difference solution were also made, where instability

N - ——




is defined as the tendency for oscillation errors of the numerical

technique to grow unbounded, thus destroying that solution.

Scope

The problem analysis included a comparison of the Crank-
Nicolson finite-difference and finite-element methods, using a
quadratic interpolation function in the latter; a comparison of
the Crandall optimum implicit finite-element method (Martin, linear)
to the optimum implicit method using a quadratic interpolation
function; and, a comparison of the Crank-Nicolson and optimum
implicit methods where both employed quadratic interploation

functions.

Assumptions

Three assumptions of note are: (1) the physical properties
of the material of interest do not change in time or space; (2) no
heat generation occurs within the material; and (3) the application
of a constant dimensional mesh spacing to the numerical calculation

is satisfactory for heat conduction problems.

Assumption (1) is justified in that unchanging material properties

is a usual design feature. Assumption (2) is valid because there
would be no difficulty should a heat generation factor exist. Such
a term could be added to the given equation as long as it was
constant with respect to time and space. Assumption (3) is the
greatest limitation on applicability because not all problems have
the same geometry and thus the same mesh spacing. For this one-

dimensional problem, the assumption is valid if no inhomogeneities

-




exist in the material.

Approach
Basically, greater accuracy for the finite-element solution
of the transient heat conduction problem was attempted by using a
quadratic interpoclaticn function ané employing the various schemes
noted earlier. The major obstacle was to apply the finite-element
theory to such a function and to derive the basis for the finite-
element numerical formulation. The second major problem was to
derive the optimum implicit theory for its application. Finally,

computer programs were written to perform the comparisons mentioned.
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II. Theory

The Physical Problem

The transient heat conduction equation is a specific form of

the general linear second order partial differential equation

Auxx + Bu + Cu + Du + Euy + Fu = G (1)

where the discriminant, B - 4AC , equals zero. This also
establishes the equation of interest as parabolic (Ref 2:97). The
terms A through G are constants for functions of x and y only.

The transient heat conduction equation states that the overall
change in the internal energy of a system is equal to the heat gain,
plus internally generated heat, minus heat loss. As‘time

derivatives, the equation states

= + -
Ustored Uin gen Uout (2)

.
Ce
.

These terms can be replaced by rate equations. Of interest

here is the conduction rate term

. - o ﬂ
q kAax (3)
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where

and, the heat storage

where

Ustore 7
p =
: v =
c =
t =

st aw “vimse terapeda. o e

T e

rate of heat flow in the x direction
coefficient of thermal conductivity

area normal to the x direction through which

heat flows
temperature

space variable

term
. s a'r |
ustore P ot (4)

rate of heat storage
density

volume

-

specific heat

time
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Figure 1. A Unit of Volume From a Wall with Large
Dimensions in the y and z Directions.
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pehae

7:7) indicates that

[kAaT/ax]x+Ax = [kAaT/Bx]x

Ax

for no internal heat generation. As x goes to zero, the standard

parabolic heat equation is attained as

T
Dclsz

where, if p , k

? T
7= KAy

and c¢ are spatially constant with constant

cross-sectional area, the attained result is

(5)

(6)
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The physical problem of note is completed by applying initial
and boundary conditions. For purposes of this study, Dirichlet
boundary conditions‘are used, where the function itself is specified
at the boundaries. The exact problem considerea is that of a
parallel sided plane wall, infinite in all directicns normal to the
direction of heat flow. The wall is heated until a steady state
temperature of 1000° F is attained throughout the continuum, and
then cooled to a continuous temperature of 0° F. The boundary

conditions for a wall of length x , 0 to L are
T(O,t) = T(L,t) = T ¢« T>0 (8)
The initial condition is
T(x,t) = T s t=0 : (?)

Tg and '1‘i are the specified boundary and initial conditions of

0° F and 1000° F, respectively.

Without loss of generality, the problem can be hormalized to

2

g—‘; - e (10)
ax?
8
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where the corresponding boundary and initial conditions are

(o, )

u(l,o)

]
o
-

6>0 (11)

and

u(x,0) 8 =0 (12)

]
(=
~-

and where x is normalized position, 6 is normalized time, and

u 1is normalized temperature.

u=0 A

Figure 2. A Schematic Diagram
of the Problem.

Figure 2 shows the normalized problem. Of immediate concern
is the obvious discontinuity between the initial condition and the
boundary conditions. Discussion of this dilemma will be postponed

until later.




Because the numerical solutiors will be compared to the exact
analytical solution, this exact solution must be found. Separation

of variables yields

. [2n-1)7] 26

u(x,8) sin [(2n-1)Tx]e

& 4
= b -
m=1(2n 1)m

The complete derivation is in Appendix A. Martin verified this
problem (Ref 7:13) and discussed the truncation error of its computer
solution (Ref 11:660). Figure 3 depicts the exact analytical

solution.

Finite Element Background Theory

Unlike the finite-difference method, which envisions the
solution region as an array of grid points, the finite-element
method envisions the solution region as built up of many small,
interconnected elements. A finitz-element model of a problem gives
a piecewise approximation to the governing equations. The basic
premise of the finite-element method is that a solution region can
be analytically modeled or approximated by replacing it with an
assemkblage of discrete elements. That is, the finite-element
discretization procedures reduce the problem to one of a finite
number of unknowns by dividing the solution region into elements
and by expressing the unknown field variable in terms of assumed
approximating functions within each element (Ref 5:5-6).

The approximating interpolation functions are defined in terms

of the field variable values at the nodal points. The nodal

10
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Figure 3. Analytic Solution of the Problem.
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values of the field variable and the interpolation functions for
the elements completely define the bahavior of the field variable
within the elements.

The finite-element approach can be formulated in several ways, \
three of which are mentioned here. The most elementary approach
is the direct approach. This procedure requires little mathematical 4
manipulation and is used extensively in structural mechanics. Its

main contribution to the heat problem lies in its reliance on matrix

ahe

algebra and the formation of stiffness matrices. These matrices
are employed in this thesis and discussed later. 1
The second appraoch, also employed in this thesis, is the 1
mathematical or variational method. The variational basis dictates iJ
the criteria to be satisfied by the element interpolation functioas.
This method is one of several used to solve continuum problems.
In the classical variational fcrmulation, the problem is to find
the unknown function or functions which extremize or make séationary i
a functional or system of functionals subject to the same given
boundary conditions. This procedure is equivalent to solution of'
a system of differential equations because the functions that satisfy i
the differential equations and boundary conditions also extremize '
the functionals (Ref 5:67). Of course, the problem must be posed
in variational form. Creation of the variational statement will be
discussed in the following section.
The third approach is a particular form of the Method of
Weighted Residuals, called Galerkin's Method. It is a general

method used to formulate the finite-element equations without any

12




reliance on classical variational principles. In fact, this is its
main advantage. Generally, the method requires an assumption about
the general behavior of the‘aependent field variable. This approxima-
tion is substituted into the original differential equation, and

any residual error made to vanish over the average. The resultant
equations are now solved to yield the approximate solution. Martin
(Ref 7:123-1265 showed this method to be equivalent to the method of
variations.

Whatever method or combination of methods is selected, Huebngr
reduces the finite-element procedure to the following steps, defined
in the text (Ref 5:7-9):

(1) Discretize the continuum.
(2) Select interpolation functions.
(3) Find the element properties.

(4) Assemble the element properties to obtain the
system equations. i

(5) Solve the system equations.

(6) Make additional computations if desired.

Finite Element Problem Approach

General Approach. Myers (Ref 8:321-322) notes that, while in

finite-difference theory the main concern is the approximation of
derivatives by differences, the main concern of finite-elements
involves the three concepts of minimization of functions, variational
calculus, and, if necessary, the approximation of integrals.
Minimizatién of functions involves the elementéry process

of taking a derivative and setting the result equal to zero. Also

13
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quite elementary and well-known is the approximation of integrals

by such procedures as the trapezoid rule or Simpson's rule. In the

finite-element method, theiproblem to be solved is cast as an

integral to be minimized. A numerical approximation of the integral

may be used to obtain the solution. The principles of variational

calculus are briefly reviewed in Appendix B, in that this method . i

is of primary use in the solution of the given problem.

Background. The method of approach is based on the variational i
principle as mentioned earlier and as used by Myers (Ref 8). The
finite-element procedure is illustrated by.solving the problem of | 1
concern directly. In review, note that the physical problem was

stated in normalized form as

3%u £ au ;
x2 3 i
q
w(0,8) = w8} = 0 , 0 (11) 4
u(x,8) = 1 , 6=20 (12)

where x = x . The finite-element method begins with a variational

statement of the problem rather than the differential equation.

Therefore, the variational statement corresponding to Equations (10) (
through (12) must first be found.
To find this variational statement, it is noted that the

functional to be minimized is of the form (Ref 7:118-122):

14




~ 1 dia ’ 1
1@ = [ [F(x,8,59] ax (14)
0 b ]

where 11 represents a set of possible functions which satisfy
Equation (14), as explained in Appendix B. For some fixed point
in time

u(x) =  ulx) + nv(x) (15)

Chain rule differentiation of Equation (14) yields : 1

1 ’ u ' ‘
T _ 9F 3l , OF x] 4
m {) [aﬁ an * au an | & (16)

Differentiation of Equation (15) into

ol
. _ — . 2 X b
an ™ v(x), and, n =5 (17)
when substituted into (16) and then integrated by parts yields ol
31 lrap 3 [oF
s g [sa-v(x) - V(x)s; (53;)] dx (18)

At the minimum point, @i =u and n=0 and

I
m "0 (19)

- S
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For this last equation to be valid, the bracketed expression of
Equation (18) must hold for any arbitrary v(x) which satisfies
the boundary conditions. This results in the Euler-Lagrange

equation

F _ 93 f3F \ _
Ju 9x aux

By comparing thisbequation to Equation (10) rewritten as

a_u. - i. a—u = 0
36 ax \9x

it is noted that

a0
3m -~ 36 W
and
e o 2B
ou 9x
x

Integration of both Equations (22) and (23) yields, respectively

3 fu?
F = 56-(?) + f(ux)

16
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(22)

(23)

(24)

”~

—

—




.

e R, T - e e B

and

(u)?

+ g (u) (25)

The functicns f and g are found by comparing these last two

equations. The functional, F , is
F = l[i (uz) + _322] (26)
219¢€ 9xX

The desired variational statement to the differential equation is then

1

e 2L i 3‘1\2]
I-2£[-'<)—0(U)+<3x} ax (27)

Quadratic Finite Element Application

Finite Element Formulation. With the variational statement

established, the finite-element formulation can be started to obtain
an approximate solution for the temperature as a function of x .
Figure 4 shows the physical problem and displays an appropriate
finite-element arrangement for solution of Equation (10). In the
figure, the interval is divided into E elements (E =6) , with
N nodes (N =7) . The exact solution is best considered as

a continuous line running from the origin to the last node. For

example, see Figure 3.

17
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0 1 A 4 k 6 'NODES
1 2 3 4 S 6 ELEMENTS

Figure 4. Finite Element Arrangement
for Solution of Eq. (10).

The integral of Equation (27) is evaluated by breaking it up

into E subintegrals over each of the E elements. For example,

(2)

E
I = 3 + I + "+ I(e) 4O I(E) = Z I (28)
e=1
where the integral I(e) over a typical finite-element (e) is
given by
i+l
@ _ 1/ %1 (@)? 3u(e) 2]
1 2{ [ae (u ) + {5 ax (29)

Equation (27) may be written, therefore, as

18




1 (E) 2 (E)\2
w - 3] B L (),

For simplicity, Equation (30) may be divided as
1 (E)>2
e du
E, = 2{ (ax ax (31)
0
and
1 2
- Lo B e
I, = 2{)’ = (u ) ax | (32)

An extensive algebraic procedure is performed in Myers (Ref 8:334-339).
The following formulation is developed using the matrix procedures of
that same source. Note that the elements are represented by e ,

e'= 1l to E , and written as superscripts (e) . The nodes are
represented by i , i =1to N , and written as subscripts §

As observed, the integral to be minimized is a function of the

nodal temperatures, that is
3 = I (ul, u, u, . uj, uN) (33)

To find the minimum, I is differentiated with respect to the nodal

temperatures and set equal to zero. If

19
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Al (34)
YN-1
N
then, for minimization
d—Iua) . d_Ii-E) i :"I_fs) s
du du du

The problem is depicted in Figure 5, in which the interval is
divided into E elements, each considered separately, as for example,
the temperature distribution of the element between nodes i and
i+1 . It should also be noted that it is here that the quadratic
interpolation is introduced and depicted by the curve of alternating
dots and dashes. If the node i + 1 is defined as node j ,
then the imaginary node of the quadratic function may be defined

as k and inserted as depicted.

20
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Figure 5. Arrangement of the Elements

Quadratic Interpolation Function. Although linear interpolation

functions are easiest to mathematically formulate, greater accuracy

can be expected by employing higﬁer order element interpolations.

The first higher order element is formulated by placing an interior

node between the exterior nodes and employing a quadratic interpolation

function as shown in Figure 5. Polynomials are most widely used as

the interpolation functions because of their mathematical simplicity.
For examplé, in the one-dimensional problem of this thesis,

a general nth-order polynomial may be written as
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n
P (x) = ] ax (36)

where the number of terms in the polynomial is Tn(l) =n+1

(Ref 5:131). Whereas for the linear case, the polynomial is

written as

P, (X) = a, + ax ‘ (37)

the quadratic polynomial is
P, (x) = @ + a,x + oa.x? (38)

Huebner (Ref 5:79-81) lists requirements for the aﬁplication of
interpolation functions. These requirements, called compatibility
and completeness, stem from the need to ensure that Equation (28)
holds and that the approximate solution convergésrto the correct

solution when an increasing number of smaller elements are used.

Quadratic Matrix Formulation. With the internal node required

of the first higher order quadratic interpolation function,

Equation (34) may be written as
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5
Y2
u,
i
u® - (39)
The derivative of I(e) with respect to u is a column matrix
that is mostly zero because I(e) depends only on the particular
u o '.1k , and uj . If the horizontal pOSltJ‘.Ol’I'Of uk is
assumed midway between u i and uj , then its x 1location is
defined as
X, + x, : .
x = e (40)

Instead of differentiating the elemental integra.ls with respect

to each component of u (E) , a matrix Q(E) is defined by

23

o~ ————




 —— —

0 0 0 ’
( 1 0 0 ith row
P_e) = (41)
0 1 0 kth row
0 (0] 1 jth row
(o} 0 0
and used as follows:
(e)
dIr E dI
1 (e) 1
po R iy i
du e=1 du
}
and
(e) ' b
dI2 - % (e) d.Iz (43)
&) 2 @ < '
du e=1 du :

where I(e) is the portion of I. defined on the eth interval,
(i,k) and (k,j) . Also, it is important to note that for the

quadratic function
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'
u,
” }
' - )ukz | (44)
u,
j

That is, for a particular element, e , the quadratic

temperature distribution equation is given as

= © + e, ® #* ¢ x2 (45)

(e) = ¢ + c x,  + ¢ x, 2 (46)
u, ;

and

(e) (e) (e)x + c x.2 (47) il

By Equation (40), the temperature at the imaginary node location

can be written as

+ x x, +x,\2
(e _ . (e (o) (*i j) (e (*i**y
uy ¢ + e, ( 3 + ey 3 (48)

In the continuing matriy formulation, written in moderate
detail because of its absence from other literature, u(e) may

be written

25

dlar Crigmertvigeds o em




where

and

These coefficients, Equation (51), are found by solving Equations (46),

(e) _ 2? (e
2? = |1x x2 ]
cl(e)
E}ez 2 c2(e)
c3(e)

(47), and (48) simultaneously to yield (see Appendix C)

‘cl(e)

(e)

(e)

1

X k

1
x2

[2ui - 4uk + 2uj]

&)~

where, for all intervals assumed equal

. g - 2
(Ax) (xi xj)

- —— t —_——

LRt el e iRy P »

e

pi e Py
B2 [(,xixj+xj )ui 4(xixj)“ + (xixj X, 1ujl

Tz [—(xi+3xj)ui+4(xi+xj)uk - (3xi+xj)q ]

3

(49)

(50)

(51)

(52)

(53)

(54)

(55)

s




The coefficients are eliminated by substituting Equation (45)

into Equation (44). The result is

(e) _ ET 3(e) 2(e) (o)
where
2 " 2
(xixj+xj ) 4(xixj) (xi.xj+xi )
rl®), L e 4(x,+x,) -(3x.+x.) (57)
= =Z iy S i
2 -4 2
Also, it is noted that
{
E(e) & P_(e)-l 88
where
(e)
pler 2 . (59)
E(e) :
% By next taking the following derivative
(e)
du T _(e) (e)
™ 5‘_ By (60)
(
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where

LERES RS, S
i —ax(g) = [01 2x]

(e)

1 , the result is

and substituting it into I

X. 2
1 i
g0 . 5’{ 3 (Px r(® E(e)) e
i

Il is then differentiated with respect to u(e)
- v

ar, (®

du ’
-_— 1 —_—

or

(e) :
a1 b4 T

3 : :

= - [ (pr 5(e)) (PxT r‘® E(e)) A
" |

where the order of the scalar terms (px Efe) g}e)) has been

rearranged. Because
ap® = B

that is, the transpose of the product of two matrices is the

product of the transposes in the reverse order, and because

28

to yield (Ref 7:41)

1 (T _(e) (e)\_a T _(e) (e)
(o) / (px 5 2 ) (e) (px A ) K
X du —

(61)

(62)

(63)

(64)

(65)




i £
5(e) and E.(e) are independent of x and can be removed from

the integral, Equation (64) is equivalent to

ax ‘® :
% — = E(e) [3p T ax r'® , (e
dg.e x; =

|0

It is now necessary to perform the operations indicated by

the last equation. Taking the bracketed product yields

x] xj
0 0 0 0
1 Lo12x | ax = 0 1 2x | ax
?x‘ 0 2x 4x2
X X,
i ' i

Performing the integration over each term and factoring ocut

X = xj - xi = xij yields
'xj A 0 0 0
PRSes
i 0 1 (xj+xi)
0 (x,+x,) 2(x 24x,x 4, 2)
j Ui 33 19 %

(e)T

Next, the pre-multiplication by R is performed to yield
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= =

= 22 - 2

0 Ax (5/3xi 4/3xixj l/3xj )

i a5 2 - 2
! 0 0 ( 4/3xi +8/3xixj 4/3xj )
0 Ax -1/3x.2-4/3x .x .+5/3x .2
(-1/ xl / x1 3 / xJ )

which, by extracting (xi - xj) from all terms of the third column

is simplified to

(0] -1 -1/3(5xi+xj)
A xj
0 0 -4/38x = gloT B, P T ax
1 2 &
L (o} E(xi+5xj) .
Finally, the post-multiplication of this result by E(e) is
performed to yield
7 -8 1
UY e T P 1
e e
R J/. EE.E_ dxR - 8 16 -8
x5
1 -8 7
E
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or 1

7 -8 11 {
(e)
dI
1 1 (e) i
—_— = -8 16 -8 u (72)
dg(e) 3AMx
1 -8 7 ]
By defining the element stiffness matrix (also called element
conduction matrix (Ref 8:352) as
1
3 3 :
7 -8 1
(e) 1 E
e
K A 7y -8 16 -8 (73)
-8
i “d
Equation (42) may be written
}J
dI E
%E) = 7 B(e) E(e) E(e) (74) ‘
du e=1 P
or
d1 E
TR el i (75)
du e=1
31




Strang and Fix (Ref 10:55) verify this result without justification.

Further defining K as a global stiffness matrix

N
£ A z 2.(e) 5-(e) 2_(e)T (76)
e=1
and substituting it into Equation (75) yields
dar
—& - ku® (77
du
Equation (43) is now approached in a similar manner. If the
elemental representation of Equation (32) is differentiated by
{ Leibnitz' rule for differentiation of integrals, the result is
x
oy . 148 ¢9%  (8).*
3, s Ty - (78)
X
i
or
X
(e) 14 (9,7 _ () (e)?2
I, 269’{ (e R u't)  dx (79)

The derivative of this last equation is taken as follows to yield

(Ref 8:355)
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Sl e i g 4w pes

(e)

U e R
du(e) ae R L
= 1
or
(e)
dI,, = iR(e)TIJp BT
dE(e) dae — x, xTx

T _(e)

(e) . (e)

[}
Again, it is necessary to perform the operations indicated

by the last equation.

x2

Taking the bracketed product yields

Performing the integration over each term yields

(x.-x.)
X,
3 " S
Tdx = e Bop 2
p_p_ 2(xj xi)
Lex 3ex. Y
% C i i
i
33
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Lipe By 8
3(xj xi)

x3 dx

(80)

(81)

(82)

(83)




g e

If each term is factored with an (xj~xi) term and this term

further factored from the entire matrix as Ax , the result is Equation (84) |

« gt
v

po -
1 1 2 2
L —(x.+x, —(x.“+x . x +x,
2(x] xl) 3(xJ xel X, )
1 1. 2 2 1.3 B 3
—(X_.+xX. —(x_.c+x.X, . i =={3, TEX +X. X,
Ax 3(xJ xl) 3(x:l xjxl+x1 ) 4(xJ xei xJ x1 X, )
l-(x.2+x.x.+x.2) l-(x.3+x.x.2+x.2x.+x.3) l-(x."+x.3x.+x.2x.2+x.x.3+x.“)
39 o [ T 43 ji b/ R | 573 A SR e | ajia i 2
Next, the pre-multiplication by Eﬁe)T is performed to yield Equation (85)
— =
x.2-2x . x.+x.2  x,3-2x.2x_.+x.x.2  9x %-1lex, 3x_.+4x, 2x_ 2+4x x_ 3-x "
i b 5 i s 0 i S i75 RIS
6 6 60
2x,2-4x%.x . +2x .2 x,3-x,x.2-x,2x +x.3 3x "%-2x 3x.-2x 2x_ 2-2x x 3+3x_"*
1 i & e : W - i T e e e j
- 3 3 15
}
x,.2-2x % .4+x_ 2 x.2x.-2x.x.2+x.3 -x."+4x.3x.+4x.2x.2-16x.x.3+9x.“
1 c. " [ I 1) J 1 i J i J i3 J
. 6 6 60 i

which, when each term is factored with an (xi-xj)2/3 and this factor

removed from the matrix as (Ax)2/3 , the result is that
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=3
' (9%, 242x . x.-x_2) T
1 i e 5 i
2 2 20
e)T T _ Mx X, “H4X . X . +3x .
B / Py P = 3 2 (x.+x.) > = J
— — i 3j 5
X,
i
X, 9x_.2+2x.%x.-x,2)
1 23 J 1) 1
2 2 20 J
Finally, the post-multiplication of this result by Efe) is
performed to yield
r -
2 -
j 1 1
(eyrf 7 T (e) _ bBx
7 T 5t -
3 S 2
or
2 1
(e)
dE(e) de 15
- 1
35
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By defining the element mass matrix as

2 1 -5
(e) Ax
M A 15 1 8 1
- 1 2|

and employing EQuation (88) , Equation (43) may be written

i IEREE % ple) & (e) ()T (®)
® T A R
in analogy to Equation (75). Also, since gfe) and E(e)T
independent of 6
d12 ' % i
—_— = (e) ,(e) (e)T 4 -, (E)
dg(E) e=1 2 4 2 dae Wl

Further, in analogy to Equation (76), a global mass matrix may

be defined as

(e) D(e)T

=
e
~1
1]
1=

which, if substituted into Equation (91), yields
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- PR Y
au (E) — de6

(g(E))

The process of minimization is now employed by setting the

(E)

derivative, dI/du , equal to zero:

dI 1 2
—_— = —_— + —_— — 0
dg(E) d_u_(E) dE(E)
or
(E) 8 ,((®,
kg™ o+ @) = o

This equation, also derived in Strang and Fix (Ref 10:243), may
be written as

(E) (E) -

) = -

I=
|e

&% (w
and represents a system of ordinary differential equat.ions for

the nodal temperatures as functions of time. At time zero, the
initial temperature distribution is given which is substituted into
the right side. The system of equations is then solved directly for
the initial time derivatives necessary to minimiz2 I at that instant.

These derivatives are then used to move ahead in time (Ref 8:404).
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If the number of elements, E , is large, the system may be
solved using finite-differences to approximate the time derivative.
Myers states three schemes, the Euler explicit scheme, the Crank-
Nicolson scheme, and the fully implicit scheme, which may be used
in this finite difference application. Martin applies these methods
directly to the system of equations (96) and notes that there exists
a general scheme to accommodate the methods (Ref 7:47-49). This

scheme is given by

M + kat8) (uE)HK+L = (M - k(1-0)26) (u(E))X (97)
where ‘
A6 = change in time
(E(E))k+1 temperature at time step, k+l
(EFE))k temperature at time step, k
a = method designation parameter; that is: '

a = 0 for Euler, a = .5 for Crank-Nicolson,
a = 1 for fully implicit.

If the matrices A and B are defined by

A = M + KaA® (98)
and
B = M- K(l-a)A® (99)
. ;

SRl S N s -
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Equation (97) may be written ' |

E(E) k+1

a w®) = B @®)E | (100)

The matrices A and B may now be generated as

P = —
2 T -5 F-,’ -8 1
- Ax alAé -
A = 15 1 8 1 + 5% -8 16 8 (101)
-5 1 2 1 -8 7
= e —— el
and
2 1 =% 7 -8 1
< Ax _ (L-a) A6 50 N
B 15 1 8 1 B 8 }6 8 (102)
b
-5 1 2 1 -8 7

which, when the Fourier modulus : : . !

(103)

is defined and applied, become
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e i
2+35ap 1-40ap -3+5ap
Ax
A = Ig 1-40ap 8+80ap 1-40ap (104)
-5+5ap 1-40ap 2+35ap 1
and ‘
1
2-35(1-a)p 1+40(1-a)p -%-5(1-a)p i 1
Ax -4
B = ig 1440(1-a)p 8-80(1l-a)p 1+40(1-a)p (105) &
-%-5(1-a)p 1+40(1-a)p 2-35(1-a)p
- R

The matrices (104) and (105) are similar to each other and
similar to their linear counterparts depicted in Appendix G for
the case where the interval has been divided into three elements
and four external nodes. Note that p is as given by Equation (103),
and not by Equation (50).

Assembling the matrices for the quadratic case, three elements

and four external nodes, yields

40 :
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.
—~ -

20350p 1-400p -NiEp 0 0 ° 0 run L32
1-400p 8i€Op 1-40ap 0 (4] (4] (4] u,
etap  1-401p 4470ap 1-40ap ~%+sap o 0 u,
[ o 1-402p 8+801p 1-40ap O 0 THA'
0 ] =hesap  1-40ap  4+700p  1-403p -%+Sap ug |
o [} o o 1-40ap 4+801p 1-40ap Y
] (1] (1] 0 =%+Sap  1-40ap 2+3%ip u
o7
k. - \
1
4
i
< - J i
)
!
' '
7]
( Kk
2-35p(1-a) 1+40p(1-a) -%-5p(1-a) 0 o 0 0 v
1
1440p(1-) 8-80p(1-a) 1440p(l-a) o o 0 [ u, |
of %5-Sp(1-a)  1440p(1-a) 4-70p(1-@) 1440p(1-a) -%-5p(1-a) 0 0 uy
[} ) 1440p(1-a) B-BOp(1-@) 1+40p(l-a) 0 0 <u‘\‘
; ] (106)
0 0 4-5p(1-a)  1440p(1-a) 4-70p(l-a) 1+40p(l-a) -%-5p(1-a) u,
o 0 0 o . 1440p(1-a) 4-80p(1-@) 1+40p(l-x) ug ‘
o 0 (] 0 -&-Sp(l..q)' 1+40p(1-a) 2-35p(1-) LHJ ’4

where u2 sy B8 4 ' u6 represent the solutions at the internal
nodes. Because of the constant temperature condition on the
boundaries, and since, except for the first instant in time, the

imposed boundary temperature is zero, the matrices become
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‘optimum o parameter representation can be found in analogy to the

- = k+l !
1 0 0 0 0 0 0 u1
0 0 0 0
O % %y % 1
0 0
(0] a32 a33 a34 a35 u3
0 0 ags a44 a45 0 0 '"u4 t
0 0 agy ag, a55 a56 0 u5
0 0 0 0 agg a66 0 u6
0 0 0 0 0 0 1 u i
L o 7
£
1 (o} 0 0 0 0 0 %
(0} b22 b23 0 0 0 0
= 0 b b b b 0 0
32
33 34 35 (107)
0 0 b43 b44 b45 0 0 ‘
0 0 b53 J b54 b55 b56 0 (4
0 0 0 0 b65 b66 0
0 (0} 0 0 0 0 1

where the lower case letters represent the value at the indicated

position in A or B . Matrix assembly theory is given in Appendix D.

Optimum Implicit Copditions. For this system of equations, an

derivation of the linear optimum a equation attained by Martin and
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shown in Appendix G. This quadratic derivation, depicted in Appendix E,
is also determined by finding the truncation error across two
connecting elements using a Taylor series expansion. It should be
nofed that the expansion is now a ten point representation, based on
the five point rows of the matrices A and B , each point being
considered an integral node, and separated b? Ax . TIf o -is

chosen according to the formula so derived, that is
(2 - —=) (108)

then the resulting expression in Equation (107) is fourth order
accurate at the nodes. The truncation error at these locations is
proportional to (Ax)* . The Euler, Crank-Nicolson, and fully
implicit schemes are only second order accurate.

Appendix E also considers a truncation error expansion about the
internal node of an element as based on the three point rows of the
matrices A and B . The resulting expression indicates that for
this quadratic approach, only second order accuracy is attainable

within an element. For second order accuracy, Appendix E states that

(160) 0 (109)
P
or, if a is chosen according to this equation, the resulting'expression
in Equation (107) is no more accurate than the other schemes just

mentioned.

PO
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The dilemma posed by Equation (109), that is, of lesser accuracy
for solution by quadratic interpolation function than by linear
interpolation function, can be eliminated by treating the internal
node problem. One possible course of action would be to reduce
ths system matrices of this time dependent problem to matrices

2,
rep;esenting only external nodes and corresponding temperatures,
in analogy to the method of "static condensation" summarized in
Appendix F.

A more direct method of elimination would be to treat all nodes
as external nodes. The derivétion leading to Equation (108)
indicates that the order of accuracy attained by employing the
quadratic interpolation function is equal to the order of accuracy
attained by using the linear interpolation function. This fact
tends to indicate that, as such, the quadratic approach is equivalent
to the linear approach. Appendix G verifies this hypothesis by
displaying the équivalence of quadratic and linear alphas. Appendix G
also contains the linear optimum alpha equation and the linear
matrices A and B corresponding to Equation (106). The following
sections are based on this equivalance, which states that for this
probiem approach, the quadratic interpolation function solution may
be found as equal to the corresponding linear solution acréss an
interval Ax/2 . That is, the linear solutions of double the
number of nodes are equivalent to the quadratic solutions of the

original mesh spacings.
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Ouadratic Solution Interpolation

The failure of the quadratic approach to achieve greater than

fourth order accuracy was predicted by Martin as due to the nature of

the solution approach. That is, by the Method of Weighted Residuals,
even though the spatial variation has been handled by quadratic
interpolated finite-elements, finite—differenées were employed for
the time variation as indicated in Equation (96) . This factor and
others are discussed in Appendix I. The following paragraphs
discuss a variation of the quadratic derivations leading to greater
accuracy of the equivalent linear solutions without applying‘smaller
mesh spacings.

If the internal nodes were not considered in the derivations

leading to the quadratic optimum alpha, the result would be

1(1_1
327 %

where the Fourier modulus is now defined as

GEHT | U
X (gjz (8x) 2
2

That is, the quadratic modulus, now interpreted as four times the
linear modulus, when substituted into Equation (110), yields optimum
alpha values of one-fourth the value found by the corresponding

. application of Equation (108). This is logical, because at any
node, the particular point of solution can be found to be a function

of ap or ‘(a)(A6) . If alpha is decreased to one-fourth its
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original value, the modulus, or here for fixed position, the time
increment, must be cubed.

The implementation of these factors into the linear interpolation
approach, that is, the employment of Equation (111) and the
equivalent alphas of Equation (110), yields more accurate results

for the selected original cases of p= .5 and p = 2.0 . For 4

the case p = 1.0 , for which the alphas are, in fact, equal, the
results are of equal accuracy. The results section and Appendix H

|
1
{
display these findings. o 1

1

1

Error Analysis {
Background. One basic objective of this project was to compare 'l

the finite-element solutions using a quadratic interpolation |
function versus the solutions attained by using a linear interpolation
function. To make this comparison and the other comparisons
mentioned in the introduction, the quadratic function solutions must
be attained and compared to the previously attained linear function J
solutions, and exact analytical solutions. Relative error magnitudes
between these methods, and within a method for differing alpha
parameters, were used to complete the accuracy study of this thesis. §
The stability study is discussed in a later section.
General. In the finite-element method, there are two ways to
improve the accuracy of the approximate solution. The first way is
to decrease the nodal interval, Ax , analogous to the ordinary
finite-difference approach. The second way (this thesis study) is

to apply a higher order polynamial approximating function. By its
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nature, any error in the finite-element method must be measured
over the entire interval and not just at the nodes.

Three error norms were chosen, as for the finite-difference
linear approximation study (Ref 7:54-59), by which to complete the
accuracy portion of this project.

Finite Element Error Analysis. The first measure of error is

the pointwise or discretization error. It is defined as the
difference betﬁeén the exact analytical solution and discrete
approximate solution at the node points. Alien to the concept of
finite-elements, which attempts to minimize the error everywhere

in an element, this error can‘be estimated in the pointwise sense
by treating the individual equations in the sfstem (107) as if they
were simple difference equations.

Also, it is noted that the pointwise error is composed of a
round-off error and truncation error. Within the limits of stability,
the latter is the much larger of the two and the pointwise error
is considered to be the truncation error. This truncation error,
defined as that which results from elimin&tion of the higher order
derivative when Taylor's series is used to approximate a differential
equation, is derived in Appendix E for the ith equation in the system.

It applies to all nodes of a Dirichlet problem and is found to be

2
(10p-15ap- -3) (bx) 2 3—‘21 + 0(Ax)"
ax  |x=iAx
8=kAO

et (iAx,kA8)
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The second error measure is the discrete Tchebycheff norm, or
the maximum error between the exact solution and the finite-element
solution at any node. It is estimated by Equation (107).

The generalized mean error [also estimated by Equation (107)]
is the last error measure employed. It indicates whether or not a
higher or lower order of convergence would bé noted for the first
interior node, compared to the convergence at all of the nodes.

The generalized mean error consists of the sum of the absolute
values of the discretization errors at each non-zero node. It
compares the pointwise error at the first interior node, x = .1 ,
to the_error at all the nodes.

Equation (112) can be used to ascertain the order of accuracy
of the Crank-Nicolson, optimum implicit (Crandall), fully implicit,

and explicit finite-element schemes. For the quadratic Crank-

Nicolson equivalent, ¢ = .6666 , and
2
e  (ibx ka®) = (—%)(M)Z au + 0(Bx)" + ..o
3x?2 [x=ibx !

6=kA®

or second order accurate. For the optimum implicit scheme,

a = (2-1/4p)/3 , and

e, (ifx,ka8) = 0 (Ax)% + «..

or fourth order accurate. For the explicit scheme, a =0 , and
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2

e (iAx,kA6) = <%Op - %%) (8x) 2 A + 0(Ax)" + ... (115)
t x? |x=iAx
=kAO

or second order accurate. Finally, for the pure implicit formulation,

a=1 , and

2
o Uhixsg) = =50~ 22 Noamz o2 + 0(AX)" + ... (116)
t 12 2 s
ox x=iAx
0=KkAO

or, also second order accurate. Only the optimum implicit scheme

is fourth order accurate with respect to truncation error.

Stability Analysis

General. The stability analysis is derived from a consideration
of the round-off =rror, that error inherent in computer operations
due to the finite number of significant figures it can manage. The
error in the solution is the thing of interest. If.the magnituce of
the difference between the exact numerical solution and the truncated
numerical solution grows exponentially as the calculation proceeds,
then the numerical scheme is termed unstable.

The basic approach is to write Equation (107) in terms of error
vectors (Ref 7:62-65) where the vector L represents the round-off
error, and ‘e, represnets the new error after solution of the set

of equations. With this,
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Q-i ., of C , then
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and, after k computations
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