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Preface

This independent study began as an effort to codify the basic

nuclear effects on the TI-59 calculator. Fallout was the first subject

of in-depth study with the WSEG/NAS modified fallout model selected for
codifying. Critical analysis of the model revealed major deficiencies
in fallout prediction capabilities. The deficiencies appeared to be
related to inaccurate cloud parameter data used in empirically fitting
the original model. With improved cloud information available, such as
from the DELFIC prediction model, it was decided to refit the model's
calculational algorithms and compare the new results to the original
model as well as to the DELFIC model. The comparative model analysis
confirmed that the low yield capability of the WSEG model is significant-

5; ly improved by the ccrrected geometry. All work with the TI-59 project

' was terminated.

a This author gratefully appreciates Professor C. J. Bridgman, thesis
advisor, for his catalytic role in prompting the in-depth study of fall-
out which resulted in these findings. Thanks are also extended to Dr.

i ?;‘ Kathy S. Gant and the Solar and Special Studies Section, Oak Ridge
National Laboratory, for providing a copy of the FORTRAN version of the

WSEG/NAS model.
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ébstract

The analysis of residual radiation from the detonation of nuclear
weapons has resulted in a number of nuclear fallout prediction models.
The most widely used of these is the WSEG (Weapons System Evaluation
Group) fallout model which is a series of empirically based analytical
algorithms. This study modifies three of the empirical parameters which
control the transport and deposition of the fallout for the WSEG model.
These three are the height of the center of the nuclear cioud, the
cloud's vertical thickness, and the cloud's horizontal radius. In the
original model, these parameters were empirical fits to data from four
of the early nuclear test shots. This study updates the parameters by
using more recent and thorough experimental data and by using information
from the Department of Defense Fallout Prediction System (DELFIC Com-
puter Model),

The cloud center'’s heigiht is updated from:

44.0 + 6.1 1nY - .205 (lnY + 2.42) |1nY + 2.42] (€W

Hc(KFT)

y 2 3
1 'y
HC(KFT) 50.7 + 20.4 log1 Y + 3.50(]oglOY) + 2.40(‘0g101, +

0
o.eoclogloy)4 (2)
The Gaussian spatial activity distribution of the original WSEG
model is retained. However, both the vertical and horizontal standard
deviations are modified. The vertical standard deviation is changed
from oy = 0.180 H, to oy = 0.125 H . The horizontal standard deviation,
Ogs is multiplied by a yield dependent adjustment factor, AK, where

9
AK = 0.90 - 0.40 log, ¥ + 0.30(log V) + O.lO(logloY)3 (3)

Inserting the modified cloud parameiers into the WSEG model results
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in significantly improved fallout predictions below 500 kilotons yield
when DELFIC is used as a standard of comparison. Above 500 kilotons,
predictions from the updated model do not differ significantly from

the original WSEG model.
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AN IMPROVEMENT TO THE WSEG FALLOUT

MODEL LOW YIELD PREDICTION CAPABILITY

I. Introduction

An important aspect of military strategy and civil defense planning
is the prediction of fallout from nuclear detonations. Current limita-
tions on atmospheric nuclear testing preclude developing predictions
based on experimental results under typical battlefield conditionms.
Therefore, a number of empirically based fallout models have been devel-
oped. The most widely used of these is the WSEG fallout model which is
updated in this study.

As early as 1965, it was recognized that the WSEG model tends to be
overly pessimistic in predicting casualties from residual nuclear radia-
tion. Two factors, inaccurate cloud geometry and the use of the Way-

E Wigner T"l'2 approximation for the decay of the fission products, were
recognized as contributing to the overprediction of fallout by WSEG
(Ref. 1:9,207).

More recently, Norment has suggested that the deficiencies of the

model are primarily due to errors in the activity deposition rate

function, g(t). In addition, he points out that the cloud's altitude

and geometry are not consistent with updated data. The WSEG nuclear

? cloud is too low and too small in radius at low yields. This results
in fallout contour patterns which are too narrow with excessively high
concentrations of activity too close to ground zero. That is, the
isodose contour lines are longer and narrower than those observed in

test shots and those predicted by sophisticated fallout models such as




DELFIC. It is in the low-yield range that these weaknesses in the WSEG
model are most apparent. (Ref. 2:84-90;3:29)

This study has applied corrected cloud geometry to the WSEG model.
The corrected cloud is higher and thinner than the original ./SEG cloud.
Also, it is significantly larger in radius at low yields. Since the
deposition rate functiom, g(t), is dependent on cloud geometry, it also
has been improved. The improvements made to the model are validated by
comparison to the DELFIC model.

The comparisons show that the improved model is much more consis-
tent with DELFIC results than the original model is. This is a signifi-
cant improvement since Norment, in a recent evaluation of fallout models,
concluded that DELFIC has the best prediction capability for six test
shots considered (Ref. 3:6).

For the reader not familiar with the parlance of fallout, a list of
abbreviations and terms common to fallout literature is provided in

Appendix A.
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II. The DELFIC Model

up to 50 kilotons yield. (Ref 3:6)

phere for mid-latitude, spring/fall conditions.

(4
rates (DH+1

The Department of Defense Fallout Prediction System (DELFIC) is
widely recognized as the most credible fallout prediction model. How-
ever, a widespread lack of understanding of the model, combined with its
requirements for large amounts of computer central memory and computa-
tion time, tends to inhibit its use. Appendix B provides supplementary
information on DELFIC for the reader not familiar with the model.

Norment, in a comparative model analysis using data from six test
shots, recently concluded that DELFIC conforms to experimental data
better than any other prediction model. It was therefore used as a
comparison standard in this study. Direct test data was not used in

this effort. Norment's evaluation found that DELFIC is most accurate

A simplified set of environmental conditions was established for
obtaining all data extracted from the DELFIC and WSEG models. DELFIC

was used with Nevada test site soil and with the U.S. Standard atmos-

A ground roughness

factor of 0.5 was used for all accumulated dose comparisons. A steady
15 mph wind was used at all altitudes. No wind shear was used. The
contour width plots presented give the normalized unit reference dose

) without terrain shielding or instrumentation factors. All
contour length plots use the ground roughness factor of 0.5 and give
dose accumulated to either four or twenty four hours. All comparisons
use a 100% fission device detonated at the surface. No percentage

figure of accuracy is assigned to the three models.




III. The WSEG/NAS Fallout Model (Ref. 2;45)

The version of the WSEG model used is the WSEG-10/NAS modified fall-
out model as provided to Oak Ridge National Laboratory by Leo A. Schmidt
of the Institute for Defense Analysis. To simplify and clarify the
nomenclature, the model is referred to simply as WSEG throughout this
report, WSEG, in its various versions and forms, nhas been in use by
analysts for many years. Although its results can be in error due to
deficiencies in the model, systems analysts persist in using the model
because of its computational ease and simplicity.

The WSEG model is structured around an empirically based deposition
function, called g(t), which represents the rate of deposition of fall-
out activity on the ground as a function of time. This function can be
conceptualized in the following way. Consider a nuclear surface burst
which results in a cloﬁd of fallout particles, assumed to be micro-
spheres, at an altitude well above the ground. The center of this cloud
is located at an altitude Hc' This altitude is determined by the
weapon's total yield. Consider a no wind condition so that the cloud
remains étationary over the burst point. The following four paragraphs
present the circumstances and processes which are assumed in describing
the transport and deposition of the fallout by the WSEG model.

The fission product radiation and unburned fuel were fully vapor-
ized at the instant of burst and began resolidification into fallout
particles as the cloud rose. The resulting solid particles will have
some distribution of sizes from a few microns to several hundred microns
in radius., The actual distribution depends on the type of soil which

was vaporized and on the weapon's total yield. The total radioactivity




contained in and on these fallout particles is determined primarily by
the weapon's fission yield.

Some of the particles will fall while the cloud is still rising.
This is known as stem fallout and is not treated by the WSEG model. The
model transports and deposits local fallout which is roughly 80% of the
activity in the cloud. The remaining 207%, consisting of the smallest
particles, becomes world-wide fallout. For this local fallout, the
source normalization factor, NF, used by WSEG is 2 x 106 roentgens/hr/
fission megatron/st mi2 normalized to one hour after detonation. This
value includes both fission and induced activity. For bursts above
the surface of the earth, the activity is adjusted by the fr;ction of
the fireball's lower hemisphere which intersects the surface.

The various size particles will fall from the stationary cloud with
different terminal velocities, raining on the ground below at varying
times. It is clear that there is some function, g(t), which describes
the deposition rate of radioactive material on the ground. This rate of
material deposition does not include the effects of radioactive decay.

L decay rule.

Decay effects are applied by using the Way-Wigner T

The concept of a deposition function, g(t) can be extended to the
real situation with wind. When wind is applied, the larger particles
reach the ground somewhat downwind from ground zero while the smaller
particles are carried to greater distances downwind from ground zero
before they hit the ground. Nonetheless, the function g(t) still
describes the rate of arrival of activity at surface level as a function
of time.

It is clear that this function g(t) is dependent on the height of

the cloud, H., and on the vertical distribution of activity about Hg.




The size distribution of particles and the activity distribution with

various sizes also influence g(t), as do the density and viscosity of

. the atmosphere between the cloud and the ground. Rather than attempting

to calculate g(t) from all these factors, WSEG, using four of the early
nuclear test shots, approximates g(t) empirically by the following
equation,

g(t) = %c exp - (:rt-c) (4)

where Tc is empirically fit as:

T = 1.0573203 [32 8 - 2.5C92T [1- 0.5 exp - s i
(60) (25)
where
H_ = 44.0 + 6.1 1nY - .205 (InY + 2.42) |InY + 2.42| (5.a.)

The g(t) function is easily transformed to a distance function g(1l) by

applying the effective wind, EFW.

8D = L ew - (1/1) (6)
where
L, = EFV.T_ and 6f°° g(1) dl = of°° g(t) dt (6.a.)

The activity within the nuclear cloud is assumed to be a Gaussian
distribution in space. This distribution is supported by early test
data. The limits of the distribution are defined as being four standard
deviations in extent both vertically and horizontally. The density
function p describes the distribution where DWD is distance from ground
zero along the effective wind vector, referred to as the hotline, CWD is
distance crosswind from the hotline, and H is activity altitude.

+ cup?
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Oos OH, and H, determine the initial dimensions of the cloud. The
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original empirical fits found these parameters to be:

o (st.mi) = exp [[0.70 + 20X - 3.25/(4.0 + (1n¥ + 5.4)%) ] (8)
H (KFT) = 44.0 + 6.1 1nY - .205 [1nY + 2.42 7] [InY + 2.42] (9)
Oy = 18 H_ (10)

After extensive calculus and empirical adjustments, shown in part

result.

" in the WSEG report, downwind (fd) and crosswind (fc) transport functions

(L, * DWD)

f, = WeNFeFeg(l)+9d (11)
d oot
(Stny
£o=__1  exp-% (G )z (12)
(21[)150'(: (a20c )

W = Total yield in kilotons

NF =

Source normalization factor of 2000 r/hr/kt/st mi2

F = Fission fraction of the device

AF =

g(1)
d(x)

L =

(!1=

o 2
c

S =
c

This

.
P

Fraction of the fireball's lower hemisphere intersecting the
earth's surface

= the deposition function

= the cumulative normal function of (x)

N 2.4

(Lo + 20d )
=2 2 2 2 2
=0, (Lo + 8 S, )/(Lo 42 o, )

1/[1 + (.001 B, EFW) /o]

Pt R | 2 2 2l

=0, +L 8w +204) 0.%) + 1 (04T 0580 + L4

a3 %2
((DWD + 2 od)LoTcpoc)
Wind shear component
model uses a wind shear over the vertical extent of the cloud.




The shear component (Sc) is the change in the wind component normal to
the effective wind within the cloud divided by the cloud thickness. It
is entered in mph/kft of cloud thickness. No downwind shear is used in
the model.

The normalized unit reference dose rate, in rcentgens per hour, at
the point (DWD,CWD), is the product of the downwind and crosswind

transport functions.

DH+1(DWD,CWD) =g aE (13)

The T_l'2 decay approximation is applied to the activity in its transit

downwind.

An effective biological dose is also defermined. This dose, which
is assigned a multitude of names in the literature, will be referred to
as simply the biplogical dose. The dose calculation assumes that ten
percent of the dose received is not repairable and that the remaining
ninety percent is repairable with the damage decaying over a thirty day
time constant.

The biological dose is approximated from the following expression.

s i T 2
~ . 1a 1a
Bio Dose ¥ exp - {.287 + .52 1In el e .4475 1n S1.6) } (14)

T, is the average fallout arrival time. The expression is obtained by
integrating the unit reference dose rate from the time of arrival.

ey t e -1.2 o L -1.2
D(t) = 10% {a DH+l T dt + 90% %aDH+1 T exp

{(30 DAYS) (t-T)} dt (15)
Four Fortran subroutines for the WSEG fallout model are reproduced
in Appendix C. No main program or provisions for constructing contours

are provided since each user's requirements are unique. No conversion




to the metric system is made and the subroutines are presented in their

received form. The model's outputs are stored in an array as follows:
ARRY(33) is biological dose; ARRY(34) through ARRY(39) relate to special
military requirements; ARRY(23) is fallout arrival time; ARRY(32) is 5H+l'
Additional user instructions appear as comments in each subroutine.

In this study, the three empirically determined parameters are re-
computed on the basis of more complete experimental data and on DELFIC
calculations to update the information from the original four early test
shots. These three are: H., the height of the cloud's center; oy, the
vertical standard deviation of the activity distribution in the cloud;
and 0,, the initial value of both 94 and 0, which determine the hori-

~zontal extent of the cloud.

New values for these three parameters are developed in Part IV.

The effects of these new values on the WSEG model are presented in the

comparative model analysis of Part V.
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IV. Improvements to the WSEG Fallout Model

Previous evaluations of fallout models have recognized that the
WSEG nuclear cloud's height and dimensions are inconsistent with infor-
mation which is more complete and current than the four early test shots
used to empirically fit WSEG (Ref 1:93; 3:29). In addition, Norment has
recently proposed that the deposition rate function, g(t), requires up-
dating (Ref 2:86). In the original WSEG-10 report published in 1959,
Pugh and Galiano stated that their empirical values are based on limited
data and that they should be revised when improved information becomes
available (Ref 5:;17). However, except for a minor adjustment to the
empirical T, in a WSEG-10 supplement, this author could locate no
correction or refinement to the values assigned to the empirical para-
meters in the original repori. Therefore, this study updates the cloud
parameters by using moré current information.

Four different sources of information for the cloud parameters
were evaluated for ﬁse. Recognizing the merits and limitations of each
source made it necessary to quantitatively evaluate each parameter from
each source independently.

The first set of cloud parameters chosen for evaluation were the
values of the original WSEG model. Although the cloud was known to be
too low and dimensionally in error, it was selected as a basis of com-
parison for all parametric changes.

The second source of cloud information was data from a series of
reports following completion of all atmospheric testing. These reports
were prepared by the old Defense Atomic Support Agency (DASA). Many of

the cloud parameter curves in these reports are simple empirically

vy




based extrapolations using power functions of yield. Much of the data
is based on visual observations. All data used from these reports was
extracted from Ref 2 by Norment. For simplicity, all information from
these reports will be called DASA data.

The third source of cloud information used was Effects of Nuclear

Weapons, ENW (Ref 6:431). The ENW cloud parameters result from an
empirically based atmospheric model.

The DELFIC model was the final source evaluated for use. The
recently revised Atmospheric Sciences Associates' version of DELFIC was
used for all DELFIC information appearing in this study. All dose and
dose rate predictions by the original and updated WSEG modelé are com-
pared to DELFIC predictions.

In selecting the best parametric fits, the most emphasis was placed
on the range of accumulated dose from approximately fifty rads to about
two thousand rads. This range is important to the user studying the
multiple burst scenario as well as to the civil defense planner involved
in shelter studies. The stem fallout predictions of DELFIC were ignored.
Prediction curves in the region of lethal prompt effects were also
ignored. All study was limited to the range of yield from one kiloton
to thirty megatons. The low-yield region of highest DELFIC credibility
was studied most closely.

The Cloud Thickness Correction

The original WSEG model uses a cloud thickness of 40y where oy =
0.180 H.. Norment has recently recommended that a oy = 0.125 H, would
be more consistent with experimental data from DASA (Ref 2:84). Cloud

thickness, using both 0.125 H, and 0.180 H_, was plotted versus yield

for the ENW and WSEG models' cloud heights. DELFIC thickness from the
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cloud rise module was also plotted on these same graphs which appear as
Figures 1 and 2. Observe the exceptional agreement, using .125 H,, for
all three curves at the lower yields. The original WSEG value of 0.180
He is not consistent with either DELFIC or ENW models. Although the
0.125 H, value is recognized as an improvement to the original value of
.180 H,, both values will be evaluated in correcting the other parameters.

The Cloud Height Correction

In empirically determining the height of the cloud center, Pugh
and Galiano used the base of the visual cloud as the center of the active
cloud (Ref 5:24). This is now known to be too low. The top of the WSEG
cloud is 1.36 H., using oy = 0.180 H., and 1.25 H_ using the improved
oy = 0.125 H.. These are plotted in Figures 3 and 4 respectively. Also
plotted are the DELFIC, DASA, and ENW cloud tops. Several test shots'
visible tops are also included (Ref 1:85). Since these shots in the IVY
series were under atypical conditions, with coral and water drawn into
the cloud, they are presented merely for informative purposes (Ref 1:85).

Note the tendency.for the visually based DASA cloud top to be
excessively high at most yields. Up to about five megatons, the DELFIC
and ENW models' cloud tops agree exceptionally well. Above that,
DELFIC's cloud top exceeds all other predicted and observed tops. This
excessive cloud height is consistent with Norment's finding that DELFIC
Qnderpredicts activity at the higher yields (Ref 3:5). This divergence
of DELFIC's cloud top, as well as its thickness, at the higher yields is
due to the DELFIC cloud rise module's treatment of the vertical extent
of the cloud as a point within the atmosphere. The known tendency of
the WSEG cloud to be low is most apparent only at the higher yields when

the top, rather than the center, of the clouds are compared.
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Based on the preceeding discussions and on Figures 3 and 4, it
initially appeared that the ENW model cloud top provides the best cloud
top information., Before this was adopted for use, however, the DASA,
ENW, and original WSEG cloud tops were tested in the model. They were
tested using both 0, of .180 H and 0, of .125 H .

H c H c
The Hc for the DASA and ENW cloud tops were determined by setting

the cloud top value for each equal to 1.36 Hc for o, = .18 Hc and equal

H

to 1.25 Hc for ©

H T .125 Hc' All four Hc values were computed and

plotted versus yield. Then, the four were least squares fit to calcu-

lational algorithms. The resultant algorithms are:

DASA DATA, 0, = .18 H
H c

A 2 3
HL(XFT) = 5.0 + 19.1 log Y + 3.40(log, (V)" + 1.40(log, V)" +

.30(10g10Y)4 (16)

DASA DATA, 0, = .125 H_

H
o ' 2 3
HC(KFT) = 57.7 + 20.8 loglOY + 3.70(10gloY) + L.40(log10Y) +

.30(1og10Y)4 (17)

ENW MODEL, oy

= ,180 H
c
2 ‘ 3
HC(KFT) = 46.6 + 18.8 1ogloY + 3.20(log10Y) + 2.20(logloY) +

.60(1og10Y)4 (18)

ENW MODEL, o, = .125 Hc

H
2 3
H (KFT) = 50.7 + 20.4 log,,Y +350 (log; V)" + 2.40(log,,¥)~ +
4
.60(loglOY) (19)
Each of the four Hr values were then inserted into the WSEG model with

the appropriate O+

dna - M




Accumulated doses were calculated using the DASA data and ENW model
H, values with Oy of .125 Hc ard .180 H.. The algorithms were tested
from one kiloton to thirty megatons of yield and compared to DELFIC pre-
dictions. Typical results are seen in Figures 5 and 6. The original
WSEG model is also plotted in those figures. It was observed that as
the yield increased through 500 kilotons, the effects of the changes to
vertical geometry resulted in minimal changes to predictions.

Throughout the yield range considered, the DASA H. algorithm tended
to underpredict close-in activity and overpredict activity further down-
wind., This is consistent with its excessive cloud height in Figures 3
and 4. This finding supports Russell's early work which concluded that
visual cloud observations do not necessarily reflect active cloud para-
meters (Ref 1;93). Therefore, the DASA information was rejected for the
new Hc determipation.

The original WSEG and DELFIC model cloud tops were rejected for use
because of the arguments presented previously.

Throughout the yield range, it was seen that the ENW model's H.
with oy = .125 H, consistently predicted fallout contour lengths which
were shorter, thus conforming better to DELFIC predictions, than did the
ENW model with oy = .18 H,. Thus, the initial conclusion, that using
the ENW model cloud top with a oy = .125 H_, is the best available cor-
rection to the vertical cloud parameters, was confirmed as correcc.

The updated algorithm for the height of cloud center is:

H_(KFT) = 50,7 + 20.4(log,j¥) +3.50(log,o¥)* +2.40(log)¥) > +

0.60(log10Y)4 (20)

The corrected Oy = .125 H,. This corrected vertical geometry was

18
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Figure 5. Isodose Contour Lengths for Oy = .125 H{
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incorporated into the WSEG model.

The Cloud Radius Correction

Since Russell has shown that the visual cloud radius observed in
test shots does not accurately describe the active radius of the cloud,
DELFIC radius was used exclusively in updating the WSEG model's radius
(Ref 1:93). Figure 7 shows stabilized cloud radius versus yield for
DELFIC and for WSEG. The DELFIC radius plotted is the radius immediately
following stabilization of the top in the cloud rise module. Considera-
tion was given to using the latérally stabilized DELFIC radius, but that
radius resulted in insignificant changes to predictions at and below 100
kilotons. Above 100 kilotons, the fallout contours were grossly widened
and reduced in length. Those wider and shorter contours are more con-
sistent with DELFIC results at the higher yields, but DELFIC has been
validated only up to fifty kilotons and is known to under-predict at the
higher yields. In addition, it has been found that WSEG radius is
excessively small only aé lower yields and is adequate at high yields.
Figure 7 shows that the vertically stabilized DELFIC cloud radius used
is in good agreement with that result,

From one kiloton to thirty megatons, a multiplying factor for WSEG
radius was calculated. Multiplying WSEG radius by the factor results in
the DELFIC radius value. This multiplying factor, called AK, was then
plotted versus yield and also appears in Figure 7. AK was fit by least
squares into a yield dependent algorithm.

3

AK = .90 - .40 log. .Y + .30(log,.¥)% + .10(log, .¥) (21)
10 10 10

Multiplying the O, in the WSEG model by AK corrects WSEG radius to agree
with DELFIC radius. Use of the AK multiplying factor results in a maxi-

mum deviation of corrected WSEG radius from DELFIC radius of 16% in the

21
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two megaton region. Higher and lower yield regions remain well below
that deviation.

The data studied in this section and the comparative model analysis
of the following section show that the WSEG model is more sensitive to
changes in horizontal geometry, or radius, rather than to changes in
vertical geometry.

The three empirical changes made to the WSEG model in this section
were incorporated into the Fortran version of the model in Appendix C.

z ! The revised Fortran subroutine FALLY is presented in Appendix D.




T T T e

V. Comparative Mocel Analysis

The original WSEG and corrected WSEG models are both compared to
DELFIC. The twenty four hour, and some four hour, accumulated doses
along the downwind hotline are plotted versus distance. Typical low
and high yield results are seen in Figures 8 and 9. Additional data
appears in Appendix E. Note how the WSEG model's excessively long iso-
dose contours are shortened significantly at low yields. For example,
at 5 kilotons, the 100 rad 24 hour contour line is reduced from 35 miles
downwind for the WSEG model to only 20 miles for the updated model.
This is close to the DELFIC length of 16 miles. When each model's
errors are considered, the DELFIC and updated WSEG curves are in very
good agreement outside of the stem fallout region. This good correlation
between the updated model and DELFIC is observed through the range of
maximum DELFIC validity, one through fifty kilotons. Above that, the
updated and original WSEG models both exceed DELFIC predictions. Note
that in the 100 to éOO kiloton yield range, the updated model lies
between the DELFIC and WSEG predictions. Qualitatively, this compares
favorably to the results of test shot Koon. WSEG overpredicts Koon and
DELFIC underpredicts it (Ref 3:5). 1In general, DELFIC tends to under-
predict at the higher yields. Figures 1 and 5 support this conclusion
when the effects of excessive cloud height and thickaess are considered.

At and above 500 kilotons, the predictions of the corrected and
original WSEG models are virtually indistinguishable within the bounds
of model accuracy up to about 10 megatons. Note the effect of the
differences in radius between the original and improved models in the

one to ten megaton range. These radius effects cause the predictions
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of the updated model to exceed those of the original model only in this

area. The sensitivity of the model to radius changes can be seen by
comparing Figure 7 to the Appendix E data and the crosswind comparison
charts of Appendix F. Above 10 megatons, the updated model again tends
to shorten and widen the fallout contours consistent with Figure 7.

The effects of the updated cloud geometry on contour width are seen
in Figures 10 and 11. Additional data is given in Appendix F. Note, in
Appendix F, that the updated model consistently predicts wider contours
than the original model does at.all yields where WSEG has been critiqued
as having contour lines which are too narrow.

At low yields, where DELFIC has been shown to be most valid and
where WSEG has been shown to be most unreliable, the shortened and wid-
ened contours of the corrected model more closely resemble DELFIC pre-
dictions, which have been shown to best model actual experimental data,
than the contours of the original WSEG model do. (Ref 3)

Above 50 kilotons, Auantitative assessment of the improved model is
not feasible due to the lack of test data under such conditions and the
lack of an experimentally validated comparison model at the higher
yields. The divergence of the updated model's radius, and therefore
contour widths, from DELFIC and original WSEG in the two to ten megaton
range is therefore considered as inconsequential when compared to the
confirmed improvements made at the low yields where the improvemeat can

be quantified and validated.
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VI. Conclusions and Pecommendations

By correcting the nuclear cloud's dimensions and height, the WSEG
fallout model's prediction capability at yields below 500 kilotons has
been significantly improved. In this age of radically improved inertial
guidance systems, MIRV for ICBM and SLBM, the extremely accurate cruise
missile, and reduced emphasis on the manned penetrating bomber, it can
be expected that the strategic planner will place future emphasis on
highly accurate, lower yield weapons for optimuwn utilization of his
available throw weight and weapon material. Thus, the improvements made
to the WSEG model are highly relevant to the yield range of most prac-
tical interest. Therefore, the effects of the geometrical changes and
their calculational algorithms to WSEG in the multi-megaton range, which
cannot be quantitatively evaluated by either typical experimental data
or by a verified predicfion model, will be considered as being of merely
pedagogical interest.

The corrected model's improved prediction capability at the low

dose levels, below 500 rads accumulated, is highly applicable to the

e

scenario of many lcw yield, highly accurate weapons detonated in a

target area rather than one or a few high yield weapons. Any over-

prediction, as is done by the original WSEG model, ia the total (from

all weapcns) dose accumulated range of 300 to 600 rads can grossly
exaggerate casualty predictions. Very small, relative, overpredictions
in the LD/50 region around 450 rads accumulated can cause disproportion-
ate overprediction of casualties. Russell has proposed that WSEG, in an
earlier version, could conceivably overpredict fatalities by one to two

orders of magnitude (Ref 1:210).
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This study recommends that users of the WSEG fallout prediction
model make three changes to it. The height of the cloud center, Hg,
should be corrected. The current model's cloud center height is given
by:

H (KFT) = 44 + 6.1 InY - .205(InY + 2.42) [1nY + 2.42| (22)
This should be changed to:

s 2 o 3
HC(KFT) = 50.7 + 20.4 loglOY + 3.50(loglOY) + 2.40\10g10Y) +

.60(1ogloY)4 (23)

This correction is seen as ARRY(3) in Appendix D, the corrected sub-
routine FALLY. The cloud thickness correction is made by changing Oy

from a value of .180 Hc to .125 Hc. This Oy is ARRY(4) in Appendix D.
The radius correction is made by multiplying the 0,, or ARRY (1), by a
yield depeundent adjustment factor, AK in Appendix D.

A% = ,90 = 40 log.-Y * .30Clog. ¥} + .10¢log. 1)° (26) ;
10 10 10 i

By making these three changes to the original WSEG mcdel, the WSEG

user can significanﬁly improve prediction capability below 500 kilotons.

o
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Appendix A
List of Terms and Abbreviations
This appendix provides the reader who is not familiar with the
nomenclature used in this study with a list of common terms and
abbreviations used herein.
I
: AFIT Air Force Institute of Technology
DELFIC Department of Defense Land Fallout
Prediction System
D Unit Reference Dose Rate. Gives
H+1 o ;
activity at detonation plus one hour
counting all fallout that has arrived
at and is in transit to the point of
interest.
ENW EFFECTS OF NUCLEAR WEAPONS, widely used
! reference by S. Glasstone and P. Dolan,
i see reference 6.
ICBM : Intercontinental Ballistic Missile
P IVY Test shot series on Pacific atolls
! LD/50 Exposure level in rads defined as the
level where essentially 1007% fatalities
3 result at twice LD/50 and very few
3 occur at one half the LD/50 dose. |
MIRV Multiple Independently Targeted Re-
} entry Vehicle
NAS National Academy of Science
RAD Radiation absorbed of 100 ergs of
ionizing radiation per gram of absorb-
ing material
! Roentgen Dated term approximately equivalent to
one rad
SLBM Submarine Launched Ballistic Missile
WSEG Weapons Systems Evaluation Group
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Appendix B

The DELFIC Model (Ref 4:9-10)

This appendix is presented to provide the reader unfamiliar with
the DELFIC fallout prediction model with some general information about
the model. Since the model is far too detailed and complex to explain

indepth, the model summary by H. Norment, in Reference 4, is given in

its entirety.

"DELFIC is a research code which, for practical purposes, is useful i
only to those who have the time and inclination to become deeply invclved |
in local fallout prediction. It is structured in a physically straight-
forward manner such as to include, via use of the best practicable
models, all of the phenomena that are important to the formation and
distribution of local fallout from surface and low airbursts. It is
designed for highly flexible usage.

The code uses a dynamic cloud rise model that produces results
which are demonstrably superior to those produced by conventional means.
This model has the unique advantage of being able to account for the
effects of atmosphere structure on the cloud rise and stabilization.
Thus, it can made credible predictions for locations that are geographi-
cally remote from the test site areas, where all of the observed data
have been obtained. (Examples of important remote areas are northern
Europe and northern Asia.) Activity calculations are rigorously done
such that use of a questionable activity normalization factor (i.e.,
the K-factor) is not required. Also not required is use of a gross-
activity decay equation, such as the conventional t-l'2 law.

Transport can be via time and/or space variant wind fields, or it

34 ;




can follow the practice of all other codes by using a single wind field
that varies only in the vertical. Turbulent dispersion is described in
Appendix A. 4,

Maps of a large number of different properties of the fallout field
can be prepared, including some types that are not available from any
other code.

In ref. 3 we describe two versions of the code: one used by the
Ballistics Research Latoratories (BRL), and an updated, improved version
used by Atmospheric Science Associates (ASA). In the ref. 3 study the

BRL version was used, but here we use the ASA version.

In the ref. 3 study we found that DELFIC provides adequate pre-
dictions for surface and near surface bursts, and we rated it to be the

best of the codes studied."
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Appendix C

Original WSEG Model Fortran Subroutines

ZNE FALLY T4/7% oPT=1 FTN 4.04446 09713

OOOOOOD

- C OR

10

SUBRCUTINE FALLY(YISLP,FISS,H0R,423Y)
TO CCMPUTE THE YIFLDY DFPENDENT 2AAMETERS IN THE WSEG/p/-NAS
FALLCUT HODEL. YIELN IS YTIELD IN MEGATONS, FISS IS FISSIOM
FRACTION, 403 IS HEIGHT OF AURST IN FEFT, ERRY IS AN ARRY OF FORTY
ELEMFNTS USF] TO PRFSERPVE RESULTS OF DJIFFERENT SURKOUTINE CALLS.
SUBRCUTINES SHOULD 3% FALLED IMN JRJFR COF NEW YIELOD, WIND VELOCITY
OR WIND SHEAR, DOWNWIND DISTANCT, AND CRISSWINO DISTANCE.
THE VALUES IN AR?Y (1) TO ARRY(6) ARE FILLED HERE.
DIMFNSION ARRY (1)
XLNY = ALOG(YIELDM)
TEM=XLNY+5.4
TEMP=047040,3333333*% XLNY=3.25/(%.04¢TEM*TEM)
ARRY (1) = EXP(TFuP)
ARRY(2) = ARRY (1) *ARPY(1)
TEMP = XLNY +2.42
IGINAL WSEG/NAS/S/P VEZPSION
ARRY (2) = Lb4.+ 2.1%XLNY =0.205"TEMP*ARS(TEMP)
ARRY (4)=,15%ARRY ()
HCTY0 = ARRY(3)/?5,
HCSIY = ARRY(3)/:0.
ARRY (S)=1,0573202* (12 *HCSTX=2.5*HISIX*HOSIX)I*(1.,0-0.5%EXP (~HCTHWO®
1HCTHC)) :
IF(HC8.6T.0.) GO TO 6
ARRY(€) = 2000000.*FISS*YIELD
RETUF N
CONTINUE
XMHB=180.*(YIEZLD*1000.)%**0. 4
IF(HCB.LE.XMHB)-30 TO 10
ARRY(6)=0.
RETUF N
CONTINUE
TEMP=HOB/XMHE
BF=0.5%(1=TEMP) *(1.-TEMP)*(2,+TEYP) + 0. C01*TEMP
ARRY(6)=2000000.,'FISS*AF*YIELD
RETUPN
END




s ———————— A

ooooo ¥

SUBFOUTINE FALLFH(EFH,SC,yARRY)
T0 COMPUTE THE WIMD SPTED OR WIMN) SHEAR EFFECTS IS THE WSEG 10-
NAS FALLOUT MOOFL,
EFW IS WIND VELOZITY TN STATUTE MILES PFR HOURy SC TS WIND SHEAR
IN STATUTE MILES 2F HQUR PECR KILDT0O0T, ARPY IS A STORAGE ARRAY,
THE VALUCS IN ARXY(?) TO ARPRY(13) ARE SUPPLIED HERE.
DIMELSION ARRY (1)
XLO = EFW® ARRY(F)
XLOS = XLOYXLO
SIGUS=ARRY (2)* (X_0S+8.*ARRY (2))/(XLIS+2.*4RRY (2))
ARFY (14) = SORT(SIGUS)
XLS = XLOS + 2.*S1GYS
XL = SQRT(XLS)
ARRY (15) = B./X.
ARRY (7)=ARRY (15) *AR2Y (?)
TMPA = ARRY(£)<“A2RY(4)"SC
TEMP = XLO®*THPA/XLS
ARRY(8) = TEYP*TEMUP
TEMP = ARRY (14) *ARRY(F)FARRY(L)*S5C/XL
ARRY(9) = ARRY(2) +2,*TEMP*TEMP
XLOPS = XLOS + N.2*SIG!S
ARRY (10) = (XLOS # SIFUS)/XLOPS
IF(ATRY(10) .LT.1,002) 60 TO 8
TM = 1./ARRY(10)
GAMMA FUNCTICN 2PPOX HASTINGS 2.156
GAMME=1, +TM*(=0.,575609867 + TM*(0.977&61731+TM¥(-0.52355627+TH«(
10.67399080 + TM*(-0,3272793 + TM*0.0767320€)))))
ARRY (11)=1./(XL*GAMMR)
G0 TC 9
8 ARRY(11)=1,/XL
9 CONTINUE
ARRY (17) = 0.001*ARRY (R)*EFH/ARRY (1)
" ALONE = 1./(1. ¢ ARRY (17))
v ARRY(18) = XLO/ (XL*ALONE*ARRY(14))
ARRY (12) = XLOS *ARRPY(5) *ARRY(Z)/ (XLS¥XLOPS)
ARRY (13) = 0.25 ¢ 2.'SIGUS/XLOPS
IF(EFW.LT.0.000001) GO TO 5
ARRY (16) = 2./EFW
GO TC 6
§ ARRY(1A)=9999389333,
6 CONTINUE
RETUFN
END
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SUBROUTINE FALLOW(OWO, MDCAL,TH2N,ARRY)
TO COMPUTE DOWNWIND DISTANCE EFFEZIS IN THE WSEG 10 - NAS FALLOUT
MODEL .
OHO IS THE DOWNWIND DISTANCE IN STATUTFE MILES, MDCAL = 0-ONLY
WSEG BIO DOSE, 1=-N4ISSC ®=I0 DOSE AT BMRS, 2-ALSU MAX DOSF,
THWPN IS TIWE OF WFA20N DETONATION IN HOURS, ARRY IS A STORAGE
ARRAY .
THE VALUES IN ARRY (20) TO ARRY (1) ARE COMFUTED HERE.
DIMENSION ARRY (1) ,34S1(5)
DATA BHPS(1),07HRI(2), PHRS(3), R4S (L), BHRS(5)/
1 7¢922¢y 5345y 211., 8004/ .
TP=DWD#2.%A2RY (1%)
DHP=ABRS(TP)
TMP = ARRY(15) ¥IHWP
JF(TMP.LE.3.) GO TO 8
DWP=3./ARRY (15)
8 CONTINUE
SIGCS = ARRY (9) # ARRY(7) “DWP + ARRY(8)*TP*TP
SIGC = SART(SIGCS)
TA = ARRY (16)¥0W)
IF(TA.GT.4.) GO TO 11
APPROX HASTINGS P.185 FNMPR CUM NO®
TM = ABS(TA/1.41L213567)
TMP = 1c¢ ¢ TM*(0.2733934TM*¥(0.230333+TM¥ (0,000972¢TM*0.078108)))
THP = TMP *TMP
= 1e=1./(TMP* TMP)
IF(TA .LT. 0) GO TO 6
CUV = 0.5%*(1. ¢ CUP)
60 TO 7
CONTINUE
CUV = 0.5%(1. - CUP)
CONTINUE
ALTHC = 1./(1.+ARRY(17)*(1,-CUV))
GO TC 12
11 ALTWO=1,
12 CONTINUE
ARRY(20)=1./(2.5C0563*SIGC)
THP = ALTWO *SIGC
ARRY (21) = 0.5/ (TMP*TME)
TA = DWD *ARRY(18)
IF(TA.LT.5.) GO TI 14
Cuv=1.
GO TO 15
14 CONTINUE
APPROX HASTINGS P.187 FOR CUM NOR.
TM = APS(TA/1.41L213562)
TMP = 14TM¢ (0,07052307°6L4TY*(0,04228201234¢TM*(0,00927052724TM*

© L 1(0.00015201463+4TH (0,0002765672¢T4#0,0000+30638)))))

TMP=TMP*TMP
TMP=TMF*TMP
THP=TMP*THP
TMP=TMF*TMP

CUP= 1.-1./TMP

IF(TA .LT. 0) GO TO 21
CUV = 0.5%(1. ¢ CUP)

GO TO 22 y
CONTI.NUE . o0 mc‘nCM
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CUV = 0.5%(1. - CUP)
22 CONTINUE

15 CONTINUE
IF(APRY(10).LT.1.00?2) GO TO 17
TMP =(ABS(DWD)®ARRY (14)/8,) **¥ARRY (10)
GO TC 18

17 TMP=ARS(DWD)*ARRY(15)/3,

18 CONTINUE
IF(TMP.LT.30.) GO TD 19

ARRY (22) = 0.
ARRY(23) = 399932,
ARRY (24) = 1.
RETURN

19 CONTJI NUE
GT =PRRY(11)*EXP(-TMP)
ARRY(22) = ARRY(:)*3T*cyy
TMP = ARRY(13) + TP * TP*ARRY(1?)
ARRY(23) = SQRT(TMP)
TMP = ALOG(ARKY(22X)/31.6)
ARRY (24)= EXP(=(0.2374+0,52¥TMP+0, uuu7s*1np'rnb))
IF(MDCAL .NE. 0) GO TO 31
PETURN
31 CONTINUE
THP = ARRY(23)**(=-0.2)
D0 32 J = 1,5
JST = 24 + J
BT = BHRS(J) - THPN
BYT = BT = ARRY(23)
: IF(BTT .GE. 0.) 30 TD 23
‘ ARRY( JST) = 0.
GO TO 32
33 CONTINUE
2Z = 0.5 + 4.5%EXP(=(0.00051 ¢ 0.00025*TMP)*(BTT))
ARRY{JST) =(TMP - (3T#4(=0,2)).%27
32 CONTINUE
IF (MDCAL NE. 1) 50 TO 34
RETUFN
34 CONTINUE
THP = 0.
00 35 K = 1,5
KLK = 24 + K
IF( TMP .GT. ARRY(KLK)) GO TO 35
TMP = ARRY (K LK)
< KVL = KLK
35 CONTINUE
IF(KVL «NF. 25) 30 TO 36
ARRY (30) = ARRY(25)
ARRY (31) = BHRS(1)
G0 TO 39
36 CONTINUE
IF(KVL oNE. 29) 30 To =7

ARRY (30) = ARRY(?3)
ARRY(31) = BHRS(5)
GO To 39

37 CONTINUE . !
ARRY (XKVL = 1) ; |

YM =
Y0 = AKRY (KVL) [
YP = ARRY(KVL + 1)

DELLY = 0.2%* (ALOG(3HRS(5)) - ALDS S

TO = ALOG(AHRS (KVL =~ 2L )) A
DELP = YP - YO

DELM = YO - vy

DELSO = DELP - DELM

DELYC = 0.5%(DELP + DELM)

OT = - DELYO*DELLT/OELSQ

XLT = 70 + OT

ARRY (31) = EXP(XLT)
ARRY(30) = YO - 0.5%DFLYO*DELYO/

33 CONTINUE iR ’
RETUFN ABLE E
FNO PRACTIC :
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OO0 DIOOOHO

SUBRCUTINE FALLCA(CYD,™DCAL,ARRY)
TO CCMPUTE CROSSAIND DTSTANCE EFTECTS FOR THE WSEG 10 =NAS
FALLCUT MONEL ANN 90NUCE FINAL ANSAERS,

CWD IS CROSSWIND DISTANCE TN STATJTE MILES, MOCAL OF 0-ONLY WSEG
BIO POSE, 1-NMCS3C TIME DOSES, 2-A1L30 MEX DOSE, ARRY IS A STORAGE
ARRAY .

FOR CUTPUT T4E H + 1 DOSE RATE IS IN ARRY(32), THE WSEG
PICLCGICAL DOSE IS I ARRY(33), THE TIME JF FALLOUT ARRIVAL
AFTEF wsnpon SURST TIMFE IS IN ARRY(23)..

THE NMCSSC BIO NISE AFTER 7,22,53,211, AND 800 HOURS FROH THE
STRAT OF THE TIME AXIS IS IN ARRY(3%) TC ARRY(38). THE MAX
BIOLCGICAL DOSFE IS TN APRY(39) AND THE TIME OF MAX DOSE AFTER
TIME ORIGIN IS IN AR2IY (31),

THE VALUES IN ARIY(32) TO ARRY(33) ARE COMPUTED HERE.
DIMEMSION ARRY(1)

TMP = CWD * ARRY(21)*CWO

IF(TMP GT. 30.) 50 TO 6

FC = ARRY(20) *EX°(-TM9)

ARRY (32) = FC*ARRY(22)

CONTINUE

ARRY (33)= ARRY(32) *ARRY(24)

IF( MDCAL «NE. 0) GO TO 3

RETUFN -

CONTINUE

DO 4 J = 1,5

ARRY(J # 33) = ARRY(32)*ARRY (J * 2%)

CONTINUE

IF(MCCAL «NE. 1) 30 TO S

RETURN

CONTINUE

ARRY (39) = ARRY(20)*ARRY(32)

RETURN

CONTINUE

ARRY(32) = 0.

G0 TO 7 . }5“,

ENO 0

40
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Appendix D

Improved Model Fortran Subroutine FALLY

SUBROUTINE FALLY(YIELD.FISS,»HCByARRY)
TO COMPUTEZ THE YIELO DEPENDENT PARA4EZTERS IN_THZ W3EGJQ/-NuS_
FALLOUT MODZIL. YICLC IS YIELD IN MZGATONS, ¥ISS IS FISSION

FRACTION: HO3 IS HEIGHT QF SURST _IN FEET, ARRY. IS AN A#AY_ OF FORTY _

SUSFKOUTINES SHOULD 3% CALLEI. IN.OKuik CF HNeW YIowDs WIN) _VELOCITY .

OR WIND SHEAR, DOWHNWIND OISTANCE, ANG CXOSSWINO ODISTANCE.

c

c

C.

c ELEMENTS USED TO PHESERVZI RTSULTS C7 CIFFERINT SUBKGUTINE CALLS.,
c

c

c THE VALUES Id ARSY(1) TO.ARRY(£) ARE FILLED HERE._

BIMENSION ARRY (1)
~ XLNY = ALOG(YIELD)

TEM=XLNY +5 ¢ 4

— AK=¢9-e4*ALOGLO(YIELO) 4+, 3¥ (ALQCIALYIILDI I **2 #,1* (ALQGLOCYIFELO)Y

To1%*3,
TEMP=04720+0¢3333333% _XLNHY=3425/0440+TEM®TEH)

ARFY (1) = EXP(TEMP)
ARFEY(L)=AK*ARRY.(1)_  _

ARFY(Z) = ARKY (1) *ARRY(1)
_____ TEMP =_ XLNY +2.42

c IHFROVLD ENW FIT

e _ARFY (3)=5047+20e%*ALOGL0{YIZLO) 434S (ALOGIO(YIELO) ) **2,4244%

. 1(ALOGLI0(YIELU) ) **3 4+ €E¥(ALOGLA(YIELD) ) **4,
L__SIGMA H IS 4125 0F H C

5 ANRY(4)=,1254ARRY (3)
—  __HCTHO. =_AFRYL3) /28

HCSIX = AREY(3) /L8,

o . ARRY(£)=140573203*(12«*HCSIX=245*HCSIX*HESIX) *(10~0e5%ZXP (=HCTHO® _

1HCTHO))
IF{HOS4GTs04) GO TO 6

ARRY (6) = 20000004*FISS*YIELD
- —RETURN__

6 CONTINUE

XMHB= 130.‘(YIELD‘1000 1 ¥*¥0.4 =
IF(HOB,LE.XMHB) GO TO 10
— — ARRY(E)=0,__ =t 2 st

RETURN
—10. CONTINUE

TEMP=HO3/XMHB

AF= O.G*(l.-T_HP)‘(1.-TEHP)‘(".4T‘HP)+0.001’TEMP_“"_V__.NWN________
ARKY(6)=20000004*FISS*AF*YIELD

RETUSN _
ENC
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Appendix E '

Isodose Contour Length Comparisons

The graphs on the following pages plot accumulated dose in rads
versus distance downwind for a number of yields. The original WSEG
model, the updated WSEG model, and DELFIC predictions are presented for
comparison. Isodose contour lengths are easily compared for the three
models by selecting an accumulated dose level on the vertical axis and
then reading horizontally to the right until each of the three curves
is intercepted. The mileage value on the horizontal axis directly
below the intercept point is the maximum length of the contour for that
model. All data is for 100% fission yield devices detonated at the

surface of the earth. The ground roughness factor is .5.

n-ia‘
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Appendix F

Isodose Contour Width Comparison

This appendix presents contour width comparisons between the
original and improved WSEG models and DELFIC for several yields at

selected downwind distances. No ground roughness factor is applied.

T T T T

All data is for 100% fission yield devices detonated at the surface of
the earth. The output plotted is the normalized unit reference dose
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