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PASSIVE SONAR BEARING ESTIMATION
IN THE PRESENCE OF HIGHLY
ANISOTRGFIC NCISE
FI1ELDS

By L. R. Howell

The problem of sonar bearing estimation in the presence of highly
anisotropic noise fields is examined for both conventional and optimal
array processors. In some situations, the presence of one or more (high
level) interfering noise source precludes bearing estimation by coniven-
tional, non-adaptive array processors. However, in some target tracking
problems (e.g. TMA) the performance loss due to noise anisotropy is not
total. 1in the context of such problems, the effects of multiple, uni-
directional interferers on the conventional, split-beam tracker and the

maximum likelihood estimator are investigated for linear receiving arrays.

K

The performance of the maximum likelihood (ML) estimator is charac-~

terized by the Cramer-Rao variance bound. A new result is obtained for this
bound which is valid for arbitrary spatial noise distributions. Expressions
for the split-beam tracker (SBT) output mean and variance are derjved for
the nolse model of interest. From these expressions, approximate thecret-
fcal measures of the bearing estimation bias and standard deviatipn errors
are developed. Further statistical measures of the SBT hias and standard
deviation errors are obtained from a digital simulation of the split-beam
tracker. The effects of the degree of nolse anisotropy on the ML and SBT
performance measures Are assessed for parametric variations in the aniso-

tropic noise component. The numerical results illustrate the cogplex




behavior of random and bias errors with variations in the number, separa-

tion, and position of interfering noise sources when such interferers are

neither coincident nor totally resolvable. As might be expected, anisotropic

noise components at remote target-to-interference separations are shown

to have little effect on either estimator. For mean separationg less than
about two resolution beamwidths, the standard deviation of error for the
ML and SBT processors is primarily dependent on the spatial disgribution
of interference power in the vicinity of one beamwidth separatiop from the
true source bearing. The relative degradation of the SBT processor over
the ML estimator is similarly dependent. Multiple interferers bias the
SBT estimates in the direction of the mean interference bearing with the
pecak bias error occurring for approximately one resolution beamyidth
separation between target and closest interference. Variations in signal-
to-noise ratio and array size are also examined. Multiple integrfering
noise sources do not affect the functional SNR dependence of the selected
performance metrics. A dramatic decrease in SBT bias error for all levels
of anisotropy is observed as array size increases. The standard deviation

of error also decreases with array size with the rate of decregge lower for

larger numbers of interferers.
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1.1 - Objective

Due to its crucial role in "target" localization, bearing estima-
tion is the primary post-detection, sonar-array processing task. The
bearing estimation performance of optimum and sub-optimum array pyocessors
is ch] known (see references [19], [27], and [32]) for the case of a
random plane wave signal corrupted by Gaussian noise which is isotropic
and uncorrelated. In many applications, however, it is inevitable that
the array processor will encounter anisotropic noise fields containing one
or more directional sources of interfering noise. It is the purpose of

this research to investigate the effects of a highly anisotropic noise

tield on bearing estimation by optimum and sub-optimum array processors.
A highly anisotropic noise field i1s defined as containing both mulgiple,
unidirectional noise sources which are target-like in nature and ap addi-
tive Isotropic noise component which may or may not be spatially correlated.
The scope of this study 1s limited to sonar processor structures
which are of a frozen design, i.e. non-adaptive. In essence we ar@ assum-
ing that target bearing is the only pertinent, unknown parameter. This
iimitation sidesteps the problem of defining a suitable methodology for
cstimating the noise field parameters (e.g. the Widrow [35]) Griffiths [11]
or Kelliher [10] algorithms for optimum processing and MacDonald's [18] sub-
optimum processors) and the associated problems of convergence rates and
sensitivity to mismatch of assumed and actual parameters (see Cox [7] and

Kooij [17]).
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1.2 = Rackground

Early studies of bearing estimation performance [4], [14], [31]

P addressed cases of signals known exactly except for random or unknown non-
E random parameters. Brennan (4], for example, assumed a known sigpal with

| random phase, obtained the Cramer-Rac bound on the mean square error of

any unbiased estimator and compared it with the performance of a pub-
optimal, amplitude-comparison, monopulse processor. Significantly, he
demonstrated the efficiency of this sub-optimal estimator for large signal-
to-noisc ratios. The applicability of these and other early invesgtigations
Is limited to environments that can adequately be modeled as isotropic,
spatially uncorrelated Gaussian noise. In a later study, Seidman [27]

cxamines several error bounds on the performance of known signal-random

phase bearing estimators. 1In addition to the Cramer-Rao bound, Seidman
obtains the Ziv-Zakai bound on the performance of any arbitrary estimator
and a modified form of the Ziv-Zakai bound which offers a larger perform-
ance bound on the maximum-likelihood class of estimators. He provides an
vxcellent analysis of the source bearing regions over which these bounds
are and are not the greatest lower bounds and those regions where they

are Invalid. Additionally, the low SNR threshold below which the Cramer-
Rao bound 1is inapplicable is presented along with some effects that array
pseometry has on these bounds. However, Seidman also restricts his analysis
to independent, homogeneous white Gaussian noise.

MacDonald and Schultheiss [19], in a comparative analysis of
optimum (maximum likelihood) and sub-optimum processors, extend the bear-
ing estimation problem to broadband signals and noise. They bound the
performance of the maximum likelihood estimator by the Cramer-Rao bound

and derive an approximate expression for the rms error of an idealized

——
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split-beam tracker. MacDonald and Schultheiss also invoke a spatially

incohercnt background noise model. These authors emphasize the effects
of array size and geometry on the svlit-beam tracker performance relative
to the Cramer-Rao bound. Specifically, it is shown that the split-beam
tracker achieves the lower bound for a two hydrophone array while for a
large number of uniformly spaced hydrophones its performance 1s degraded
by approximately YV 4/3 . Furthermore, the performance of a multi-sensor
array whose geometry places ) of the elements at each end of the grray
achieves the bound exactly, assuming the noise remains independent at
every hydrophone.

In reality, isotropic noise fields exhibit some degree of spatial
correlat fon, not only for special array geometries such as MacDonald and
Schulthceiss [19] suggest, but also for uniformly spaced arrays whose hydro-
phone scparation is small relative to the smallest wavelength of interest
(e.g. Jacobson [15)). Miller [22] investigates the effects of noise corre-
lation on correlator and delay-sum processors for the case of knowyn signal.
Miller obtains the maximum-likelihood bearing estimates from the qutputs of
these two processors and concludes that the delay-and-sum processor per-
forms s]lightly better over most broadside bearings., Witt [36] alsp exam-
ines the effects of spatial correlation. He assumes the interelement noise
correlation is linear and extends over at most two adjacent hydrophones.
The performance of two types of multiplicative array processors is-analyzed
from several theoretical error measures and from the results of twp com-
puter simulations. Each of the performance measures analyzed indicates an
Increase in standard deviation of bearing estimation error and a shift, or
blas, in the direction of the array steering angle. Witt concludeg that

the sum-and-correlate estimator is generally superior to the monopulse




¢stimator over the range of noise correlations examined. Wirtt alsc
1eferences some additional studies which compare optimal and/or sub-
optima! processor performances in isctvopic but correlated noise fields,

ln many operational situations, it is impossible to describe the
noise cross-covariance properties at the hydrophone array as simply corre-
lated aud isotropic. For example, a noise field containing many ynidirec-
tional, interfering noise sources appropriately describes some high shipping
density areas (¢.g. the Mediterranean Sea). Also, transitting meychant or
milltary vessels present a sonar observer with multiple, tightly grouped
interfering noise sources of, possibly, similar characteristics. Similar
highly anisotropic noise models are appropriate for sonar observation of
control led-access areas such as harbors and channels. One can also en-
vision several geophysical problems wherein multiple directional noise
sources are likely to interfere with source bearing estimation.

Such highly anisctropic noise fields have naturally received much
attention in the area of adaptive array processing. In general, the design
of adaptive array processors begins with limited assumptions of the signal
and noisce statistics and seeks to estimate the unknown parameters and track
any subscquent changes in them. When the estimated parameter set is
sufficiently "close" to the true parameter values, one is assured that a
chosen cstimation criterion (e.g. maximum likelihood or minimum-mean-square-
crror) is essentially satisfied. Questions of adaptive array perfgrmance
commonly address the rate and integrity of convergence of the parameter
estimates and the sensitivity to mismatch between the assumed parameters
and their actual values.

Static, or fixed design, array processors whick are based gn exact

a priori knowledge of signal and anisotropic noise, while impossible to
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implement, do provide insight into the asymptocic performance of success-
tully adaptive implementations. Hence, there is a motivation to determine
the effects of highly anisotropic noise on static, "optimum" bearing esti-
mator structures. On the other hand, sub-optimum prccessors are often
intentionally designed to operate in isotropic noise environments and are

commonly of a static, or fixed, design. Operational situations which

violate these assumptions of isotropicity motivate analyses of anisotropic
noise elfcects on sub-optimal processors. In spite of these motivgtions,
there are, to our knowledge, only a few analytical studies of the effects
of anisotropic noise on the bearing estimation performance of optimal and
sub-optimal processors.

Tn a broad study of the maximum likelihood estimator (ML) and two
interfercnce-nulling split-beam trackers (SBT) MacDonald [26] conducts a
performance analysis of noise fields containing a single, directional inter-
ference in addition to isotropic background noise. The signal, naise and
interference processes are defined by a set of non-random parameters.
MacDonald presents a lengthy, theoretical derivation of the Cramer-Rao

bound on ML performance and approximate expressions of bearing estimation

variance for one pre-beamforming and one post-beamforming, interference-
nulling, SBT processor. To facilitate analysis of these somewhat compli-
cated expressions, MacDonald restricts his attention to cases of lpw signal-
to-noise and high interference-to-noise ratios. He shows that these assump-
tions lead to a strong dependence of the CR bound on target-to-interference
separation and number of hydrophones. The input-nulling (pre-beamforming)
sub-optimal processor can effectively eliminate interference effecfs except
for very small separations (less than one beamwidth) where it loses all

capability to estimate source bearing. The output-nulling (post-beamforming)




processor, on the other hand, provides satisfactory performance at small
separations but performs much worse than the input-nuller at separations
preater than about one~beamwidth. There is no discussion of rhe nature of
the bias crror from these two sub-optimal processors which would quite
possibly be significant at the SNR and INR levels studied. MacDonald
recommends that the problem of multiple, directional noise sourceg be
addresscd in future investigations.

Cox [7] treats the problem of angular resolution of two closely
spaced sources by conventional and optimal array processors. Resolution
problems seek to determine the angular separation at which an observed
phenomenon is known to result from two sources rather than one. Cox shows
the resolution power of the optimal processor to be about three times better
than that of the conventional processor for the classical Rayleigh resolu-
tion Limit and high SNR. Cox indicates that high SNR levels are required
for the resolution of two closely spdaced interferers. This is a reasonabie
result since one would expect to be able to accurately estimate the bearing
of a single, low-level source long before being able to resolve tyo closely
spaced sources at the same bearing.

McGarty [21] considers a special case of noise anisotropy which
includes multiple, directional noise interferences. 1In the context of
air~tratfic control, he investigates the effects of multiple, narrew-band,
zero-mean Gaussian interferences on maximum likelihood estimation. This
probiem allows McGarty to describe the unknown interference parameters
as random variables. In particular, he assumes that the interference
bearings are uniformly distributed in azimuth over the interval[} -%—. —%—]
around broadside, and shows the resulting spati2zl noise correlatiop matrix

to be a rcal, Toeplitz matrix of zero-order Bessel functions. Hence, he
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addresses a special case of noilse anisotropy which reduces to the well

known "flatland" or cylindrically isctropic noise model [15], [17]. McGarry
derives the Cramer-Rao bound for narrowband, isotropic but spatially corce-
lated, white Gaussian noise which is then applicable ro his assumed noise
model. Although the bourd requires numerical inversion of the noise corre-
lation matrix, it is greatly simplified for this special case. The maximum
likelihood estimation performance is seen to rapidly deteriorate for target
bearings away from broadside. Even at broadside bearings, the performance

is heavily dependent on interference-to-signal power. It is shown in

chapter 2, however, that errors exist in McGarty's expression for the Cramer-

Rao bound.

1.3 - Approach

The effects of highly anisotropic noise fields on source bearing
estimation by optimal (ML) and sub-optimal (SBT) array processors are
assessed from the behavior of several performance metrics subject to para-
metric variations in the directional-interference component of the acoustic
field at the face of a hydrophone array. The directional interference com-
ponent of the total noise field is defined by three parameters -- the number,
mutual separation and bearings of the interferers. The detailed heghavior
of the bearing estimation performance metrics is examined for a figed,
baseline set of signal and array parameters followed by a restricted analy-
sis for extended SNR and array size parameter values.

Chapter 2 discusses optimal ot maximum likelihood bearing estima-

tlon and its performance characterization in terms of lower bounds on the

e e P T -




estimation error. The Fisher-Dugué-Cramer-Rao (*DCR)! bound is chosen as
an appropriate performance measure of the maximum likelihcod estimator.

A mathemat{ical model of the signal-plus-noise-plus~-interference acoustic
field-of-interest at the hydrophone array is then presented. Subgeguently,
a theorelical expression for the Cramer-Rao bound is derived as a function
of the inverse, total-noise, covariance matrix.

Iln chapter 3, the split-beam tracker is presented as a copventional
sonar processor designed for maximum performance in spatially incqherent
noise fields. Given the signal-noise-interference model of chapter 2,
theoretical expressions for the mean and standard deviation of the processor
output are derived as functions of the array steering angle and the method
of extracting source bearing from the SBT output is discussed. This
chapter also derives an approximate, theoretical expression for the variance
of the SBT bearing estimate.

As is often the case with analytical studies, it is difficuylt or
impossible to obtain, under the necessary controls, pertinent fileld data
for comparison with the approximate, theoretical results. A succegsful,
alternative approach to field experiments is the exercise of a computer
simulation of the appropriate array processor and its received acoystic
t{felds (e.g. Witt [36]). Chapter 4 describes a digital computer simulation
of the SBT bearing estimator which is developed to provide additional meas-
ures of sub-optimal processor performance in highly anisotropic noise fields.

The SBT simulation algorithm is discussed along with the methodology employed

'This bound 1is usually referred to as the Cramer-Rao bound al-
t hough, as pointed out by Van Trees [33], it was originally formulaged by
R. A. Fisher and proven by D. Dugué. With due respect to Mssrs Fisher and
hugué, we too shall hereafter refer to the FDCR bound as the Cramere~Rao
or CR bound.
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tv generiate samples of the input signal-plus-noise-pius-interference

processes. An algorithm for estimating the source bearing from a zero-
ciossing in the simulation output is also developed.

fhe effects of multiple, directional nolse sources on passive bear-
fng estimation are examined in chapters 5 and 6 in terms of the parametric
bchavior of the Cramer-Rao bound, the approximate, theoretical SRT error
m-trics and the statistical measures of the simulated SBT performgnces.
The total directional interference is defined by three parameters -- 1) the
number of interferers, 2) the angular separation between adjacent inter-
tcrers and 3) the mean bearing of the interference cluster. In chapter 5,
a fixed baseline set of signal and array parameters 1s defined and the
rcsults of an extensive evaluation of the performance metrics derived in
chapters 2, 3, and 4 is conducted. In chapter 6, the effects of extending
the baseline values of SNR and array size are examined for a more restricted
parametric variation of the total interference field.

Chapter 7 summarizes the research, presents its conclusions and

ofters recommendations for future research on related problems.




CHAPTER 11
OPTIMUM BEARING ESTIMATION

As applied to parameter estimation, the term "optimum' implies that
a properly formulated parameter estimate results in the satisfactjion of
some pre-sclected performance criteria. For example, consider Bayesian
estimation of random parameters. Here, one selects a cost functiqn and
defines the optimum estimate as that parameter value for which the total
risk is minimized. 1In source bearing estimation problems, we are interested
in unknown but non-random parameters. In such non-Bayesian estimation tasks,
the method of maximum likelihood (ML) is an attractive approach. Very
slmply, one selects as the ML estimate that parameter value which would
most likely have resulted in the observed data set. In other words, the
Ml estimate is the parametric location of the peak of the conditional prob-
abllity density function p(ﬁ I b) where'ﬁ is the observed data set and b 1is
the parameter-of-interest. Specifically, the ML estimate is the gplution

of the likelihood equation

S {ne@ i) | . =0 (2-1)
b=bML

which occurs at the largest local maxima of p(§'| b) [33]. Equatipon (2-1)
is similar in form to the maximum a posteriori equation in Bayesian esti-
mation. Indeed, the maximum a posteriori probability estimate is equal tao
the ML estimate when the amount of information known about the random param-
eter s negligible (i.e. infinite variance; completely unknown parameter).
Conscequent ly, maximum likelihood estimation has an intuitive foundgtion in

Bayesian estimatlon theory.

10
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The appeal of maximum 1likel thood estimation lies largely with
sceveral asymptotic properties that it possesses. These properties, which
apply in the limit as the number of independent observations increases,
state that the maximum likelihood estimate is 1) asymptotically upbiased,

2) asymptotically efficient and 3) asymptotically Gaussian distributed [33].
An efficient estimate is simply one whose variance achieves the Cramer-Rao
lower bound. One can also show that any arbitrary, unbiased estimgate which
is ¢fficient is identically the ML estimate [33]. Consequently, it seems
reasonable to refer to maximum likelihood estimation of non-random parameters
as "optimal" estimation. We shall subsequently use the two terms inter-
changeably. It is now of interest to address the performance of the optimal

estimator.

2.1 - Pexformance of the Maximum Likelihood Estimator

The direct approach to a performance analysis of any arbitrary array
processor requires that one first obtain theoretical expressions of the pro-
cessor output in terms of the assumed input signal plus noise plus inter-
ference parameters. One can then, in theory, apply a parameter estimation
algorithm (e.g. the bearing of the peak processor output) and obtain ex-
pressions for the estimation bias and variance errors. This direct approach
i1s somewhat naive for all but the simplest processors. In particular, the
solution of the maximum likelihood equation (2-1) is all but intractable.
For ML e¢stimation, alternative approaches to performance analysis have
included use of simplifying assumptions and theoretical approximations [13]
(5], numerical solutions of equation (2-1) [9], and the fortuitous, a priori
sclection and analysis of a processor structure which can subsequently be

proven cfficient [12]. However, even thece approaches have addressed the

S — L oTREE 1 = e
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more tractable isotropic noise problem and/er small (two hydrophcne)
arcays.

An indirect approach to performance analysis of bearing estimators
develops aathematically tractable lower bounds on the estimation error
achievable by the processor of interest. This approach provides a per-~
formance metric which can be evaluated and, of course, for efficient
estimators it reflects the actual performance. Two primary considerations
govern the choice of an error bound in a processor's performance {n any
particular problem. The first consideration involves problem depandent
quest ions such as: 1Is the parameter estimate to~be-bounded biased or
unblased? Will the estimation error be confined to a localized region of
the parameter space or must global errors also be considered? Secondly,
one obtains the best indication of actual processor performance by studying
the behavior of the greatest, applicable lower bound and hence seeks to

define such a measure.

Unfortunately, the most widely applicable error bounds do not
usually prove to be the largest lower bounds for specific problems, 1In a
study of narrowband signals in isotropic, white Gaussian noise, Sejidman [27]
evaluates such a bound -- the Ziv-Zakai bound. He defines this boynd as a
lower bound on the average mean square error for any estimator without
restrlictions on estimation bias or ambiguities. Seidman also presents the
well known Cramer-Rao bound and a modification of the Ziv-Zakai boupd which
fs applicable only to the maximum likelihood class of estimators. For the
bounds Seidman analyzes, one can see that there are trade-offs to be made
prior to sclecting a particular bound as the performance metric of optimal
cstimat ion.  For example, at broadside source bearings the Ziv-Zakai bound

may be unnccessarily conservative while for bearings approaching endfire the

i . AP



ML Ziv-Zakai bound becomes ineffective and the CR bcund asymptotically

approaches infinity. Since the CR bound applies to ilocal or small-variance
errors it Is also shown to be inapplicable for small SNR. Although much

is to be gained computationally from analyzing error bounds rather than
actual processor error, it is apparent from Seidman's work that ope must
careful ly select the most appropriate bounding metric. It is alsp noted
that other bounds with attractive properties (e.g. the Bhattacharyya and
Barankin bounds [33] and the J-divergence [25], an information-theoretic
distance measure) seem almost as impractical to manipulate as true, bearirg-
estimation error expressions.

In this research, the bearing estimation performance of the optimal
processor under varying degrees of anisotropic noise corruption is evaluated
in terms of the parametric behavior of the CR bound. As mentioned above,
the advantages of employing a bounding-type metric, in general, and the CR
bound in particular are its computational simplicity and even its mathe-
matical tractability relative to both other bounding metrics and the actual
M, error expression. It is also believed that the CR bound is especially
reflective of the ML estimator performance for the problem of interest. We
are primarily interested in source bearing estimation errors arisipg from
target tracking situations. Hence, we are interested in true source bear-
ings at or near array broadside and expect to avoid the asymptotic growth
of the CR bound near endfire bearings. Furthermore, since we have chosen
to study the effects of anisotropic noise on operational, sub-optipum
processors as well as the optimum structure, it is reasonable to restrict
our attention to low, interference-to-noise ratios (INR=0.1) and mgderate-
to=high signal-to-noise ratios (0.5<SNR<2.0). We have some assuragpce in

this casce of avoiding problems with the low-SNR threshold of the CR bound




|27] aud, according to El-Behrey and MacPhie [9], might even expect the ML
estimate to be efficient in this application. We shall also assume in this
rescarclh that the optimal estimator iz unbiased. As a final motivation for
selectling the CR bound as the sole, optimum—-processor performance metric,
we recall the asymptotic efficiency and unbiasedness of the ML estimate.
We can thus expect the CR bound to very adequately reflect the performance
of the optimal estimator.

In the following section, we develop a mathematical model of the
acoustic field at the face of the array. In section 2.3 we derive a new
expression for the CR bound on the bearing estimation variance applicable

to arbitrary, anisotropic noise fields.

2.2 - Recedved Signal, Noise and Interference Models

In target tracking applications of sonar array processors, the
received acoustic field at the face of the array is generally assumed to be
the sum of a stationary, Gaussian, unidirectional signal process, g(t, GT),
and a corrupting (e.g. self noise, ambient, shipping), Gaussian nojse proc-
0SS, nu(l), which is possibly spatially anisotropic. In this study na(t) is
the sum of M mutually independent, unidirectional, Gaussian interferences,
lm(t. Um), and an independent, isotropic component, n(t), also a Gaussian

nolse process. Hence, the total field at the face of the array is

M
x(t) = s(t, 04) + n(t) + ] i (e, 8) (2-2)
m=1
where “T is the source bearing and Om the mth interference bearing. Gen-

erally, o distant, interfering noise source 1m(t, em) will be non-stationary
due to its relative motion and/or effects of the propagating medium, Al-

though In certain cases it is feasible to mathematically model such poise
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processes [29], it is beyond the scope of the present study. Consequently,
all ol the Gaussian processes in the model (2-2) are assumed to be tem-
porallyv statlonary.

Several simplifications of equation (2-2) arise from the assumption
that all directional processes originate in the far field of the array.
With the possible exception of tow-ship radiated noise, this is a quite
reasonible assumption for target tracking applications. This assumption
allows us to neglect all amplitude gradients across the array resplting
(rom the propagating components and thus reflect the directionaliry cof
target and interferences by relative propagation-time delays between hydro-
phones.  Furthermore, we can model an equi-phase contour of the propagating
componcnts as a plane wavefront. The output of each element of a hydro-
phone array is simply a phase delayed version of equation (2-2) and, for the

(@E sensor, can be written as
M m
xp(t) = s(t = Ap) + mp(e) + ] 1 (¢ - 8p) (2-3)
m=1

vhere AY is the source delay time at the @EE phone and 6? is the Qsh inter-
lerence delay time at the KEE‘phone, both relative to an arbitrary reference
point along the array. Figure 2.1 illustrates the acoustic situatjion mod-
vled by the hydrophone outputs in equation (2-3) for the case of a uniformly-
spaced, linear array. Without loss of generality, we can define hydrophone

number 1 as the phase reference and obtain the following phase delays at the

£th hydrophone:
(- 1)d
A( s Gt cos OT
g (2-4)
6? - - 1)d - cos 6 m®ly 25 weesl
c m

-
».‘
e » - . °

s T il “‘_“:1 P ““;“" S



Figurc 2.1 - Signal, Noise, Interference and Array Geometyy
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vhere d is the hydrophone spacing, ¢ is rhe speed ¢f sound in the sea
(5000 rt/sece), UT is the true target hearing, M ic the number of direc-

tinnu] interferences, and Gm is the mth interference bearing.

In general, the isotropic noise component at the £th hydrophone,
"E(t)’ is spatially correlated. Since previous investigatlons [22], [36]
have addressed the effects of isotropic noise correlation and singce our
main Interest lies in the effects of multiple interferences, n (t) is
assumed to be spatially uncorrelated and also homogeneous for the remainder
of this research.

The signal-plus-total-noise field output from each hydrophone is
observed by either optimal or sub-optimal processor only during the finite
t ime-intcerval [0, T]. Each hydrophone output assumes the characterization
of equation (2-3) over the T-second observation interval.? If one allows
the uniform, lincar array to contain L hydrcphones, then the total array

output waveform can be simply expressed in vector from as:

_{(t) = [xl(t), X (t)s «oos ﬁ(t)] (0<t<T) (2-5)

Lquations (2-3), (2-4), and (2-5) along with the aforementioned simplifying
assumptions define the observed signal-plus-total-noise process for which
the optimal and sub-optimal bearing estimation performance metrics will be

developed.

“Although we shall assume the hydrophone outputs, xz(t) to be con-
tlnuous tor all time regardless of observation interval size in order to
tactlftate Fourfer Series representations, Bangs [2] notes that precise,
alternat¢ representations also exist when xe(t) is assumed to vanigh outside
the [0, T] observation interval.
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2.3 - the Cramer-Rao Bound?

It is well konown [33], {21], (i8] that the Cramer-Rao (CR) lower

bound, -ER g »oon the variance of any unbiased estimate of source bearing is
2 ’ o
1

2 B
“éR 0 e E [Q—‘:' e(;lﬁ,ﬁ]‘ {2-6)
R, 0 362 j
T
where UT is the unknown source bearing,

AN
x is the observation vector,

S -
f(xloT) is the log-likelihood ratio of x given €, and,

T
li[-] denotes statistical expectation with respect to the
-~
data vector x.
-
Evaluation of equation (2-6) first requires the generation of Z(xleT) which

in turn is defined as

A oo ’P(—;ls + N, 91)
t(x[o,) = log A(xIOT) = log l g

= (2=7)
p(x{N)

where p(ils + N, OT) is the probability density function (pdf) of the data
glven that a signal at bearing OT occurs in addition to the noise yhile
p(iIN) i+ the pdl of the data given that only noise occurs. Since the
component s of x (see equation (2-3)) are sums of real Gaussian, rapdom noise
processcs, X will be a real vector Gaussian random process and £(§]eT) in
(2-7) tollows directly upon the determination of the mean vector, E, and
covariance function, K(t - uv), of the data vector.

Generation of the log-likelihood ratio is, however, facilitated by
a reformalation of the data vector §(t) into a characterization that is
orthogonal in the temporal dimension. For time-stationary processes, the

'See footnote 1, page 8.
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rourfce nerics of x(t) over the finite interval [0, T] is such a character-

N
izatton. The €uh component of x(t) is defined as
Bl e ot
X((t) =7 z Xl(jwk) e (2-8a)

k=-x

T -jmkt
where X,Gud = [ x,(0)e de k= ...,-1,0,41,... (2-8b)

o
are the Fourier coefficients of xz(t) and where W = Z% k is the Fourier

conjugate frequency variable. If the signal-plus-total-noise pragess is

bandlimited to ', = % 21

8 7 N then the series in equation (2-8a) spans only

those discreet frequencies (2N 4+ 1) within [-wN,+wN]. Furthermore, since
x?(L) is a real function of time, the Fourier coefficients defined by (2-8b)

are conjugate symmetric, i.e.
. c
XF(Jmk) = Xg('jwk) k =0,1,...N
Consequent ly, (2-8a) can be rewritten as

+jwgt
Re {xt(j“’k) e

he Fouricer characterization of the observed data vector can now he ex-

o~z

2
%, (t) = —
{¢ 1 K

0
pressed as the following N x L dimensional, complex vector in the Fourier

domain:

X:) A [x1 (Jwg)seee .xL(jwo) X1 (wy)yens .XL(JGH) o -XL(ij)] (2-9)

where X((imk) is given by (2-8b) and the '"prime" superscript, ', denotes the
vector Lranspose.

It Ls conceptually straightforward to evaluate the CR bound for the
observation vector in (2-9) by the substitution of equations (2-3) and (2-8b).

The end result is a theoretical expression which reflects the depepdence of

FI‘

——eee———
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the CR bound on the slgnal, noise, and interfereunce parameters. Such an
approach was followed by Machonzald [18] for the case of a single, broadband,

plane wave fnterterence. The algebraic manipulations required to effect

this appreach for a single interference are quite complex and lengthy. Pre-
liminary attempts to follow this approach for the case of an arbitrary number
of multiple interferences have confirmed MacDonald's predictions that such

a theoretical derivation is essentially intractable (even for two inter-
terences).  Consequently, we have chosen to follow McGarty's [21] approach
which is a mathematically feasible one but obscures the explicit roles

played by the interference parameters since it requires the numerical in-
version of the noise-plus—-interference spatial correlation matrix at each

and cvery frequency, W - In other words, the isotropic and anisotropic

noise components in equation (2-3) are lumped together into a single noise
component "a,f(t)’ The log-likelihood ratio and, subsequently, the CR bound
arc derived in terms of the inverse of the covariance matrix of ;;(t). The
evaluatfon of the bound, discussed in chapters 5 and 6, requires the numerical
inversion of this total noise covariance matrix. Although numericgl matrix
inversion is a costly operation, !t will be seen that the noise coyariance
matrix Is a complex, Toeplitz matrix for which faster inversion algorithms
(c.g. 130]) exist.

The derivation of the log-likelihood ratio I.('iDleT) for Foyrier
characterizations of stationary data (e.g. equation (2-7)) is strajght-
forward [21], [32]. Such a derivation using our notation is presented in
appendix A for convenience. The final result is the following expression

for the log-likelihood ratio:
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t( ‘\ I“')k ()1 (lb( . )+ o (uu ) ¥ (w ),\N (w )a(w )a (u \& (wk) X(w )} (2-10)
TS(mk)
where oé(wk)

L+ TG Sa (0K (u)ale,)

T is the total observatiou time,

S(wk) is the signal power spectral level at frequency Wy »

o A
X(mk) is a vector of the L components of X, (equation (2-9)) |

corresponding to frequency Wyes
1
-1

- -\k 2
EN (mk) = [E{N(wk)N (mk)}]is the inverse of the correlation

matrix (zero-mean noise processes) of the Fourier f

characterization (at wk) of the total-noise
component n (t).
’
?(wk) is the phase delay vector of the signal process with -

-
£th component of a(w,) being,

@ - 1d
(&4

k

af(mk) = exp {- jmk cos GT:, =20 ey
fn(-) is the ratural logarithm, and * denotes the conjugate,

transpose vector operation.

Substitution of equation (2-10) into equation (2-6) vields,

3 J2 -
FERgER P N 1
orioy T 7Y a2 “"o'%’]
T
Izq E{QZ—C Xwole |4~ (2-11)
= - w -
& 2 i i T]
=0 | deZ

where fi(x(mi)loT) is the quantity in braces in equation (2-10). Note that
-l

”T enters equation (2-10) only through the signal phase delay vector, a(wi),

and always appears as cos (OT) rather than OT. If we let u = cos (ST) it

can be shown [5], [20] that a relation exists between the variance bound
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on ”T given by (2-11) and a variance bound on u(oéR u) which for the approx-
’

imately broadside bearings, (0T = 90) involved in target tracking, is

52
s Ny

- T P )
CR’eT sin? 8§ (2~121

T
Since the partial derivatives cequired by (2-11) are much easier to obtain

when taken with respect to uw rather than eT, we shall develop an expression

ol

LNy i)

Lor and invoke (2-12) to obtain the CR bound on the variance of source
hearings.
We can, for simplicity, drop the explicit reference to the frequency

- -~
dependence of the component terms of Zi(X(wi)IGT), and write the log-

Iikelihood ratio for the ith frequency as

s o%
e, = £, (X))o = en(—Ts-> + a2 XK 3K ¥ (2-13)

where the definitions of t%e RHS terms of (2-13) follow (2-10). 1t is
interest ing to note that thé\likelihood ratio for the ith frequency given by
(2-13) is almost ?dentical to McGarty's [21] result for narrowband processes.
lis narrowband result differs from our single-frequency result in that he
assumes the number, amplitude, frequency, and bearing of each inteyferer to
be random variables. He further assumes specific pdf's for these parameters
which in turn result in a real, Toeplitz correlation matrix (EN in {2-13),
however, is complex) coﬁprised of zero-order, modified Bessel functions.

In essence, his assumptions define a special anisotropic noise model equiv-~
alent to the well-known "flatland" or cylindrically isotropic noise model

(s, (7). -

. Y Y -3
0 - o A U - NN <~ -




Differentiating (2-13) once with respect to uy, we obtain
ot 3 z 3o, Y A
i ; I' M - S o) .
i i ol & X X -
i = {n ('I‘ 3. 8 Ky & a (2-14)
+ 7&2‘: =1 2 p, -1 2 2% =1 2 M -] a:l\
OTbuENxx a+cTa§NXX5N -S—P
N
From the definition of a,
da 2 2
= 1Ya . =
oa = —j £ 1) Xxp (—Ju(———m \1}
oM Je 1 c
o A
= -jur‘"‘*—*—(e 3 e (a),
so thar
A
aa ! -A
S—U = (—Jur—c—) * diag (0,1,2,...L-1) a (2-15)
=N
= A a
where the matrix A is
A= (-iw _d_) S
A J c diag (0,1,2,...L-1) (2-16)
Also
N
N-aa* & -a) * g (A )*
du dn ) ~— =@
cae) ' % %
b (:'\_ a =a 3 (2-17)
where A % is the conjugate transpose of A defined in (2-16). The following

propertics exist for the matrix A:
L
A= A
A= -ax
Lot e IR A S
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Differentiating (2-14) with respect to p yields,

e -2 2.2
081 a2 Iy O & 1 33%x 1A
= 1 a X X a

o = R 5 &
97 TanZ ™ \15)7 9u? LW KN
., i
+26“'i‘—‘*A*_1k\-}:*_1-=+zd°-r_\*.1il4* A S
T : au ? & K Aa
& o2 D % *A* o ? ﬁ* =1 = 02 % 1 A S % _i n -
ora AA EN a+ T @ XX AAa
, >k k _] 2k _] -3
+ 202 a AKS XX Aa (2-18)

Evaluat ion of the statistical expectation of (2-18) requires knowledge of

A %
the expoctation E {X X ; . Substitution of (2-3) and (2-8b) into (2-9)

vields
o = | N =\ M -
X =X (jmi) = s(jmi) a+n (jwi) + z im (jwi) bm
m=1
-\ pus §
= s(jwi) a + n, (jwi) (2-19)

= §
where H(iml), n(imi) and 1m (jmi) are Fourier transforms of the signal,

nolse, and interference processes respectively,

« - 1)d

Bm = exp {— juy - + cos 6 } is the phase dglay
vector of the mth interference, and
]il(jm) is the Fourier transform vector of the total
corrupting noise process.
Assuming, the signal, noise and interference processes are bandlimited and
assumfng T s much larger than the correlation time of these procegses, the

cxpectation required by (2-18) 1s expressable in terms of the powep spectral

densitics of the component processes [3] as:




L m=1 ‘
L ¢ M od =3 &
=TSaa +TNI+T) I bb
= m mmnm
m=1
. —‘A* N,
=TS aa + EN (2-20;

vhere S, N, and Im are the signal, noise, and mth interference pawer spectral
densitices at the implied frequency, and

M
K.,=TNI+TJ] Ib b* is the covariance matrix of the
N = ‘mm om

total noise field at the implied frequency.

The matrix Ky is the covariance matrix whose inverse must be computed numer-

ically in evaluating the CR bound.

The straightforward, although quite tedious, substitution of equation

(2-20) into equation (2-18), yields

2 2
g0l oz o or), (2 )aw tams
aZ V7~ au S du 1 g EN " ;¥

|
' " [(1*-l_s (_x*-l _-\) 5 .s**_x_sZI ’
T + 2TSoT'(e 1Ky a) 1 K Aa ] |a A Ky al f
2 b
Ax[ % -1 1 1A fops 097 ‘
”[é * Xy A]a'(?g ‘o'a) |
2 *[*_1 S B O .S 1 '
. +osy A WK + K 5}a+a A Ky +1_(NA]Aa\

| Details of the above derivation are carried out in appendix B. Equation
(2-21) is an expression for the ith additive component of the negative in-
; verse of the CR bound and is valid for any plane wave, unidirectional,
Causslan signal and any corrupting Gaussian noise field with arbitrary

-1
spatial power-distribution defined by EN . Since (2-21) is valid for any
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arbitvary, complex covariance matrix it is, to our knowledge, an original
result.  McGarty's comparable, narrowband result [21, eqn. 38] which is
valid only for real inverse covariance matrices, is equivalent to the

tirst lour terms of (2-21). Not only is equation (2-21) more geperal

than his result, it can be shown that, under his assumptions, Mc@Garty's
result is in error. Since his EN-I is a real, symmetric matrix and A = fé*,

McGarty's result requires that the last three terms of our equatjon (2-21)

vanish as a consequence of the following equality:

* -1 -1
A Ky Tk A =0 (2-22)

where O denotes the null matrix. However, observe that

v -1

X * -1 * =
A Ke=@Q ) K V=K A)- Ky A" .

-1
1t is casy to show that the matrix product EN A is symmetric if and only
-1

ir EN is a diagonal matrix. Hence, the inequality in (2-22) and McGarty's

expression for the CR bound are invalid under the governing assugptions.

However, if the sole source of noise is the uncorrelated component, the : |
cquality (2-22) would, of course, hold. 1In cases where (2-22) dqes hold,
not only do the last three terms of (2-21) vanish, but, as we shall see,
the first two terms of (2-21) also vanish.
Kquation (2-21) still requires evaluation of the derivatiyes of
04. Using the chain rule of differentiation, it is easy to obtaip the

following expression for the first derivative of 0% with respect to u:




likewise, it is straightforward to obtain the second derivative:

* -1

7 o o)k % * 1 -1 1> - % -1
R S O DR V-V
i

2
+ 2(02)? l:* [5*5;1 + Ky A] ?% (2-24)

2
a

)
i

Now, observe that the first two terms in (2-21) can be written as:

2 2.2
a? ¢ 0T ax -1 g
BF(VnTS oz f K e of
2.2 2\2 2.2
% @B g 2)n O
oZ 37 T @HZ \ow LS oZ g u?
2
1 | 3% [¥s
" | 5 - (5 SE

The substitution of equations (2-23), (2-24), and (2-25) into equation (2-21)

yields,
l(‘g}rz l’i; = —Ts; a *A* [5*5;1 + 5;15]§\+ o [5*5;1 + 5;1_4] A a ;
+ 21502 :'au [_&*l_(;‘l + _lgNlé] ';2- (o%)zg-; “@*5;% 5;15} S‘fz




For notatlonal simplicity, define an L x L matrix G as:

4 L el
S=A K +K A (2-27)

Substituring (2-27) into (2-26) and combining terms yields,
2 2
b‘-@—-— t’.i'= (0%—Ts)za AG
{32 1
Zs_l * -_\'2 ok 18 - =
- 2 ; 2 i 7
(oT) 'a G d‘ + 2TSog, {Re [(a X a) - (a KWAAa)

._s**_l_sZ'

+|a£\'__lgNas

< mEElE e cn|e i Aan-E tuaid ]
= .aT"a ENa) el a AAa-a GA
Sk x ] 2} gk 2 2
+ |a A Ky al (- %0,1. a Ga } (2-28)
where we have used the facts that
* % * o
A" ca=G'caaw
, Sk 1 0
’ 2 = el s
and (0,[, S) oF TS a _l%q a c (2-29)

We can now use equations (2-11), (2-12) and (2-28) to obtain the

following final expression for the Cramer-Rao bound on the variancg of any

unhiased estimator of source bearing:

A% _1a 2 * el A%k =&
2 — 2 2 ) ‘ [ o ]
ICR, 0 sin BTZ [2 TScT‘(a ENa) Re | a %éga aGaAa
T i=0
"
Aok o1 4 2] Ax a2
+ laAK al (- }0,%8 ga:]l (2-30)

where cach variable within the summation is dependent on the implied fre-

quency o, and where G is defined by equation (2-27) and the definjtions

ol the remaining quantities follow equation (2-10).

Recall from the previous
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discussion that the tractabllity of (2-30) arises from our willingness to
vumericatly invert the noise covariance matrix, EN’ at each of the N compo-
nent froequencies.  The explicit definition of 5&1 in terms of our noise model
tollows cquation (2-20) above. 1t is again mentioned that "fast" inversion
algorithus exist which exploit the Toeplitz property of KN' In pgrticular,
when numerical inversion of EN is required in this investigation, we shall
cuploy the algorithm developed by Trench [30].

MacDonald [18] was able to derive a theoretical expressiog for
the CR bound when the degree of anisotropicity is limited to a single plane
wive interferer. MacDonald's interest, though, is in the effects of a
single, dominant interference on a weak source. Since our result in equation
(2-30) i entlrely general, it is of interest to compare its behavior with
MacDonald's theoretical results. Specifically, he presents the behavior
of a normalized CR bound for an interference-to-noise ratio of 1.0 and
I.(S/N)-- 1, where I. is the number of uniformly spaced hydrophones. Figure
2.2 compares equation (2-30) with MacDonald's un-normalized result for
variable target-to-interference separations and for the parameter yalues
used an this study. Although, for the parameters of interest, there is
only a minimal bearing estimation capability, figure 2.2 does show excellent
agreement between the two expressions for the CR bound. MacDonald indicates
that he has ignored some oscillatory terms in his graphical presentation
ol the bound. He assumes these terms are negligible due to the high INR,
low SNR condition. Hence, the oscillatory behavior of our result (equation

(2-30)) in figurce 2.2 is to be expected.
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CHAPTER IT1

SUB-OPTIMUM ESTIMATION: THE SPLIT-BEAM TRACKER

In general, one is attracted to sub-optimum implementations of para-
meter estimators by their potential economic benefits. Of course such
implementations are usually realized at the expense of degradations in

estimator performance. In passive-sonar bearing estimation problems, an

Intuitively logical approach is the extraction of source bearing ipformation
from the travel-time delay measured at the peak of the cross-correlation
between two spatially separated receivers. Carter (5] gives a detailed
discussion of this sub-optimum technique for a generalized class of cross-
correlation processors. A popular extension of this approach to multiple

hydrophone arrays is the split-beam correlator, or tracker [2], [18], [19],

i [36]. This processor has the intuitive appeal of a cross-correlation type
3 bearing estimator and, under certain circumstances, it can rival the per-
r formance of the optimum estimator [19]. For these reasons, we have chosen
the split-beam tracker as a representative, frozen-design, sub-optimal

bearing cstimator. 1In later chapters, we analyze the dctailed cffacts of

highly anisotropic noise on the split-beam tracker.

In section 1 of this chapter, we define the split-beam tracker (SBT)

i and briefly discuss its operation. In section 2, we derive an expression
for the SBT output in terms of the array input waveforms and calculate its
mean and variance. In section 3, an approximate expression is developed
for the variance of bearing estimates generated by the SBT for the particu-

r lar slgnal-noisc-interference model defined previously in section 2,2,

31
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3.1 - The Split-Beam Tracker

A block diagram of the SBT array processor is shown in figure 3.1.
The lincar receiving array consists of L, uniformly spaced hydrophones
(mutual separation of d feet). The direction of maximum array sepsitivity
(i.e. its steering angle) is controlled automatically or manually through
the selcection of the L time-delays, t1,, ..., T The array outputs are then
split in half and summed to form the left and right half-beam sigpals yl(t)
and y,(t). The left half-beam output yl(t) is phase shifted 90° by time
differentiation. Both signals, y](t) and yz(t), are then passed through
identical filters with transfer functions |H(jw)|2?, multiplied together,
and Intcegrated for T seconds. The processor output, z(a), is finally
operated upon by a null detector to obtain the target bearing estimate, 5.

The 90° phase shift of one split beam output (y,(t)) results in a
mean processor output equal to zero when the array is steered exactly on
target. In the absence of the 90° phase shift, the correlation, z(a), of
the two split-beam signals would be a peak rather than a null whep steered
at the target. As the array steering angle, a, is swept through 180 degrees
by adjusting the delays (Tl, o ey rL), the mean processor output for a
single signal in isotropic noise would increase from near-zero to a posi-
tive peak-level just prior to crossing zero at ¢ = OT followed by a negative
pcak and a subsequent return to zero-level. A nominal, mean SBT output
for steering angles in the region of 0-180 degrees is shown in figure 3.2,

The task that the estimator (or null detector) must perform to
obtaln an Individual bearing estimate is not quite as simple as mjght be
inferred from figure 3.2. Since the integrator output, z(a), is g random

process, the source bearing estimate, 6, will be a random variable. Conse-

quently, in practice, the algorithm not only estimates the angular location

e e e VoS
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of a particular zero-crossing, it also decides between multiple zero-
crossings and discriminates between positive and negative-sloped zero-
crossings.  In theory, however, we can develop expressions for the SBT out-
put wean and variance and analyze its bearing estimation performance with-
out actually confronting these problems. We demonstrate this in the

remaining sections of this chapter.

3.2 - SBT Output Mean and Variance

We apain assume that the hydrophone output signals xl(t), asiery xL(t)
are band-1limited, zero-mean, Gaussian processes. The outputs of the two

split-beamformers in figure 3.1 are simply

L/2
¥, kel = § % (et gl (3-1a)
£=1
and
L
¥,(8) =} x (& +1,) (3-1b)
K=L/2+1

where the stecering  delays Tp are given by

Te = @ -1) - (—%—) cos o - (L -1) ° Gf}d cos a (3-1c¢)

and where d is the hydrophone separation,

¢ is the speed of sound in the sea, and

@ is the steering angle of the array's main response axis.
Since individual SBT bearing estimates are constructed solely on the basis
of information contained in a T-second history of yl(t) and yz(t). we can
characterize them by their Fourier series representations:

N Jw, t
y, () = (=) ] Y, Gu) e K (3-2a)

1=-N
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T ’i'ukt
where Yi(jhln) = f )’i(t) e de i=1, 2 (3-2b)
0

and ZmN is the total bandwidth of the processes. Equations (3-la, b, c)

and (3-2a, b) detine the split-beam vutput signals in terms of the L hydro-

phone input-signals.

The unsmoothed processor output z(t,a) is

z(t,a) y;(t) s y;(t)

N +jw, t N +jw_ t
Ay oy k)l ¥ ys m
(e dmon )G Lo )

n

Since the transfer function of a time-differentiator is Ht(jm) = jw, the

unsmoothed processor output can be written as

N

N +i( + )t
] : ; : Wg © Wy
2(t, ) = o 5 5‘ (ka)"(lwk)Y](ka)H(jwm)Yz(jwm)e (3-3)
k==N m=-N
F The output of the SBT integrator is simply
)
z (1) = (f) z(t,®)dt
N N +j(w, + w )t
L e % .. : A . J
= ) ) e HUe)Y Gu)BGe)Y,Ge) [Te™ © ™ ae  (3-4)
3 k==N m=-N o

Now, if the observation time T is much larger than the correlation time of

the band-limited input processes, the integral in (3-4) approximates the
Kronccker delta; that is

1T +Hi(w, + w )t
e KB b e Té, (3-5)
,=Mm

O

wvhere T is the observation interval, and

k = -m

6k,—m

it
lo

k # -m

: PO v ——— 6—‘
LA-—-. b s B S o s e T s [
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Hence, cquation (3-4) and (3-5) can be combined to give, as the SBT proces-
SO out pul,
5 2
2, 0) = = | N(jwk)' HGu) | Y Gu)Y, Guy) (3-6)

where * here denotes the complex conjugate.

“rom equation (3-6) it is an easy matter to generate the mean SBT

output caipression:

v 00 - he (= L? Gu) TRGu) 17N Ge)Y," Gu) |
% ) 'ldo f T k;—Nka juy i Ju )Y, Gy f
b e
e ’Tké_rgmk) IH('](“k)I EE ) - e

(:I:,(mk) is the cross-power spectral density between y,(t) and Y1 (t) at the
f requency w - Since the frequency summation in (3-6) is symmetric about
N = 0, we can replace Glz(“k) by its odd component (wk also being an odd

function),

-jw, T
onp_ ;C‘?(mk){= obD_ :[T R, (1) e e dT;
“k k {o .

- _jjT Ry, (1) sin wtdt
o

12 be; !
& |('12(“’k)\

so that (3-7) becomes
: N 2 \
2 (0) = -kZ_Nmk]H(jmk)] Im ]clz(mk) ! (3-8)

provided the obscervation interval T is large.

-y e
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From (3-9), we can also obtain the mean square value of the SBT

oul put:

N

* 1 ¥ > 2 2
108 {Zu((t) zo((l)} = =5z 1 ) fjmk) (-J u)m) IH(jwk) ‘ IH(jmm) I
k=-N m=-N

x Et(l(jmk)Y:(jmk)Y,;(jwm)Yz(jwm)]] (3-9)

It is known [18], that the following identity exists for the expectation of

the product of complex, Caussian random variables required by equation (3-9):

!‘Y (jw )Y*('u )Y*(jm )Y, Gw )) = E‘Y (Gw )Y*('w )' E‘Y*( )Y, ( )l
\ lll‘kPJ‘kl szm,$ lle 2Jk, 'ljmmzjmm’

+

E}Yl(jwk)YT(jwm% E=Y;(jmk)yz(jmn);

b * *
Etfl(jmk)Yz(Jmm): E}Yz(jwk)Yl(jwm)g
(3-10)

e

The tirst term of (3-10) is simply the product of the cross-power spectral

density at two different frequencies, i.e.

o * . .|* '\_2 % ‘
L}Y](jmk)Y](Jmk): BN GuGupl = Te ), w6, W) (3-12a)
Relative to the second term of (3-10), consider the following:

—j(wkt - qmu)

* . N
E:Yl(iwk)Yl(jwm : = IT dt I1 du F;yl(c)yl(u):e
o o

~jw, T -j(w, - w )u
IT d1R]l(1) » k fT & k m du
o o

= T Cl 1 (lnk) ék,m

-




assuming T is large. Thus, the second term in (3-10) becomes,

: * by -
h:Yl(jmk)Yl(jmm); BV Y, Gu)Y, Gugd = T 6 ()6, (w8 o (3-11b)

Also consider:

-j(wkt+ wmu)

[fae [T au E‘)’l(t)yz(u)‘ e

. | :
E Yl(Jmk)Yz(me)‘ |

-jwkr T e-j(wk + wm)u

= fT dtR,, (1) e du
o ' o
-5 Glz(wk)ﬁk,-m

Conscquently, the last term of (3-10) can be written as,

b i | ely* * . 2 *
El ](]mk)Y?(jmm) E Y2(jwk)Yl(jwm) = T Glz(mk)Glz(mm)Gk’_m

- J
(3-11c)
s0 that, upon substitution of (3-10) and (3-1la, b, c) into (3-9), the mean

square SBT outp -t becomes,

* 1 N N 2 2 2 *
kb := . Z L G i) [HGw) | [HGw) | ;T 6)2(w )6, (w )

\
' k=-N m=-N

2 2 *
+T °11(“k)c22(“k)6k,m + T Gl2(wk)G12(wm)6k,—m=

N 2 . N 2 *

g 2 Y N 2 4 *

+k=-ka|u(jmk)| Gy (w622 (w,) +kz_§—wk)lﬂ(jwk)| Gy2(w )62 (-w,)
(3-12)

From cquations (3-7) and (3-8) it is obvious that the first term of (3-12) H

. — o Bt e
Is cquivalent to z-z = z. 2, Therefore, we can write the following ex-

pression for the variance of SBT output;
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] o i 2
Czu(u) =kl-Nmk|H(J“\() . 'G“(mk)Gzz(mk) - Glz(wk) f * * {3-13)

MacDonald and Schultheiss [19] have previously developed similar

cxpressions for the SBT output mean and variance given by equations (3-8)
and (3-13).

Discussion of the form of the split-beam filter transfer func-
2
tiony, lu(jwk)l, is deferred until the end of this chapter. At this point, ‘

we can apply the general expressions in (3-8) and (3-13) to the specific

‘ignal-noise-interference model of interest. Recall from chapter 2 that

the ovutput of the €th hydrophone can be written as

M

m
xp(0) = s(t = 8p) + ny(e) + mzl i,(t = 8p) (3-14) :
“The required spectral densities are, by definition :
; -jw, T
k P
Gy ) =£ Ryj(v) e dr i, 3 =1,2 (3-15)
Y

vhere Ri](1) i8 the correlation function of yi(t) and yj(t + 1) for i, § = 1,2

and where, without loss of generality, we redefined the observation interval
T

T
to be e & T il B

The correlation functions in (3-15) are, by defimnition,

b
Rij(t - u) = L;yi(t) yj(u); - (3-16)

I'tom this definitlon and equations (3-la) and (3-14) the autocorrelation of
'-'l (t) is,

-~y



Ry, (1) = E :yl(t)y,(u){

L L
- 2
- (Zl xz(t + Te)pzl xp(u + Tp)
Lk
) | | ] |
:le g'l E[[s(t ) + rz)S(u - Ap + rp)‘ + Elnz(t)n (u)‘
? Ele (- 6%+t )1 (u- 6"+ 1)l S
m;l l m . £ TZ m N P Tp ‘ ( = )

where we have made use of the fact that the signal, noise and all inter-

ference processes are mutually independent. We can further simplify (3-17)

by writing
L L
z2 2 ‘
Ry, (1) =££1 le g (T = Bp +80) + R (D)8,
. m
] 1 -
+m-2=1 Ry v <8} * &;pm)= (3-18)

where A'=A -1 =L{'—_—M(cose -cos'ill)+-g'—-l-E cos @
2 £ L c T c
1 L =1p
§ =
P 30 L #p
gLy = £ [cos 6 - cos G]+”-(—L——.—l)—d— cos & ]
c m i e

m

Subgtitution of (3-18) into (3-15) yields, after some algebra,

L L
2 2 ‘ -jwk(Aé - A")
G ()= ) 1 Blw) e P N(wy)6
11\ 051 pe1 | Yk k’“Lp
M ~Ju (Ep. = &' )
+] I (w)e B } (3-19)

m=1




where S!nk), N(wk), and Im(mk) are the signal, noise and mth interference

; power spectral densities, respectively, at the frequency w - In a similar
|

1 fashion it is possible to obtain

g L L -ju, (A) - 4'")

Z kL P

: G-‘)z((ﬂk) E lz‘ {S(wk) e + N(wk)GZp

§ Lagtl peshi

i M ~ju (E) - E')

; +1 I (w) e e A (3-20)

The cross-correlation between yl(t) and yz(t) is

R (1) = E:yl(t)yz(u):

L
f ¥ E-_t i
= s(t = 8, + 1,)s(u~4_+ 1) + Ehy(t)n (u)
£=1 pmgri- | £ I A A
¥ | m m
* mzlElim(t S R ER R xp)”
L
| X X
| «f 3 (r - AL +4') + R(T-£'+£')}.
¢=1 p=%+] ss L Py M £m pm
3 Consequently, the cross-power spectral density Glz(“k) is
3 y
XL —ju, (A - A') M -ju, (E% - ' )
: Gp(wy) =] ZLis(wk) i Tuey) e s ")
£=1 p=5+1 m=1
: (3-21)
where Aé, A;. gém’ and g;m are defined as in equation (3-18).

Substituting equation (3-21) into equation (3-8) yields the following
expression of the mean SBT output for the signal-noise-interference model

| of Inter.st:

£ ——— -
T e X o e - T




L
=} el ) )
z (@) = ) w [{H(jw ) _ S(w, ) fsin w (A} - A')
| 0 k=-N X k 0=1 p=% 5 L k\oe P ]
; l
j : : i , : |

Likewlsce. the substitution of equations (3-19), (3-20) and (3-21) into

ML i o ol e

(3-13) yields the following expression for the SBT output variances:

L L
2 N 2 i 2 2 L L —jwk(A' = A')
g (a) = Z w |H(jmk)| > X Z- ) ) S(mk) e P + N(w, )¢
PR Lo SIS
¢ =1 q=1 r=—+]1 s=—1
2 2
M wfur CE* = g% ) ~Ju. (8° - &)
+ 2 Im(wk) e L qm J : S(wk) g T E N(wk)drs
m=1
-
M ju, (! E! J2 L ~ju, (4% - &)
+) Lw)e ©F Si] I Jp Bleye =P 0
i=1 p=l q=§+1
M —jw (6! - g' )2
] 1 Gnye = BOC AR (3-23)

3.3 - Theoretlical SBT Bearing Estimation Variance

I'igure 3.3 shows that the steering-angle (a) dependence of the

theoretical mean SBT output (;é(a) in equation (3-22)) closely iollows the

conjectured a-dependence of the nominal SBT output in figure 3.2. The
effect ol a single, weak interference at 45° is evident in figure 3.3 while
the effect of the target, located at 90°, is most obvious. The linearity
of ZQ (a) over the small angular region about 6> the true source bearing,
provides the basis for a theoretical approximation to the bearing variance,
”1' of the SBT processor. MacDonald and Schultheiss [19] first reported

a straightforward approximation to o

0 that assumes E; (a) is linear over

i
- vem—— — . Ty 4 Py ‘ P— — ‘M .
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at least an o = 2”0 region about Op+ The nature of their approximation can
be clearly seen in figure 3.4, If ;o(ﬁ) is linear for @ in the region

16 L O + Uo] and if @, () is relatively insensitive to changes in ©
(6]
over this region, then the following linear, stochastic model of zo(a) is

valid:

- ~

z (4) = A+ Ba+i -0, <88 to (3-24)

where ¢ Is a zero-mean, Gaussian random variable with variance equal to
o . The estimate 6 occurs at the zero-crossing of zo(a) so that,
V4

O

zo(“)u=6 =0=A+B6+ ¢

From this model, we obtain

THOSLE L
s B B
so that,
[ A
E'()’—O-—— B
and
l") 2— “‘2 —".2
Var 0! = ¢ —Ele 2]
| Q
2
=Ej_c_2%
B
2
(0]
A
= (o]
2
B

Az
Since B = é{% , we obtain the following expression for the MacDonald-

Schulthelss theoretical approximation to the bearing variance of the SBT

processor:

y

e — e =

S
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0.:' ()
z
0
(3, B e o (3-25)
p 31 &
?.l.‘.’.(--.) =
=
3 ,,
I v is unbiased, then 6 = O and (3-25) becomes %
l]; () ;;’
g - e (3-26) ;
Jdz (a) {
WO a=Q i
3 |
B fs biased, but only slightly, then equation (3-26) is still a good E

2
anproximation to 00 . Otherwise, equation (3-25) is more accurate. If,

however, one can assume that ;é («) is linear and oz (o) is almost constant
o cr a larger anpular region about é, then equation ?3-26) is again valid.
I, for example, the true target were located at the bearing ¥ in figure 3.4,
then (3~26) is equally as valid as (3-25) since the assumptions are true for
o (O e

The error metric defined in (3-26), although not as general as that
iv (3-25), Is somewhat simpler to interpret since it decouples the variance
ard bias errors. FEquation (3-26) is the approximate theoretical SBT variance
me trie examined in chapters 5 and 6. The numerator and denominator of

coaatfon (3-26) c¢xist in the form of equations (3-22) and (3-23). Equation

( -22) must be differentiated with respect to a and both equations then

craluated at a o= 8,. Recalling the definitions of Akand ﬁin, the derivative

o' the mean SBT output can be written as,

s T - ar 3 v My o
“. .“‘.-M: i -




48

L
# % I}‘l I it % l}" - j_’_) d(
— " w Y o (HCGe I ] ) ) w e = (gindS(w, ) cos [w, (A} = &)
a kmen K =1 p= ]Z—H ¥ ¥ & (o £ P
]
+ ‘ (.@'_.’._El.d. ( . [N
m= | wk [& s 1m(wk) S [wk(gln EPmS] (3-27)
to evaluite (3-27) at a = GT’ note that
! - A" =0 (3—283)
{ p
and
AR ilL:;Jihi s
£l r,pn z [cos em cos aT] (3-28b)

s0 that cquation (3-27) becomes,

L
N d sin 6, N 2 s8N 2 L :
‘)zn“) - - T Z wklﬂ(jwk)l { Z ZL [(t - p)S(wk)
T ey kel Bk ol
M
+@=-p) | T (w) cos [« - p)si_l] (3-29)
m=1

where we have defined @ = w »%—[cos em - cos eT]. As shown in appendix C,
hw expressing the cosine term in (3-29) as a sum of complex exponentials,

it is possible to evaluate both double summations over the hydrophone indices
(i.e. equations (C-1) and (C-8)) and obtain the following expression for

the denominator of (3-26)

820(11) 3

2 2%, M
mk[H(jwk)I 8 §(w,) -mzl L (w)c ()

& % cos (1%9]}

(3-30)

-d sin 6 N

T
*= O € k=N

—

X [sin(L %) cot(g) - % sin(L%) cot(% . %)

1
4




where

2L Q

sin ("2- =)

('m(""k) S
sin (*’2-)

and

d
o= oy . [cos em - €OoSs ST]

Using the results of appendix C and equations (3-28a, b), it can be shown

that

: N 5 2 3

2 i . L L
=kZ_ka|H(ka)| {7: N (wk) G S(“k)N(“’k)

(1=9T

. M
F + LN(w, ) y
m=1

: in( 5 v L @
l + 4[.21 Im(mk)cm(wk)51n(§—§)] -[ len(wk)cn(wk)cos(i =

2 M 2 L 2
~ (= « —
I (w)C (w) + L S(w) ) I (0 )C (v )sin G 5

A

(3-31)

The final expression for the approximate, theoretical SBT bearing variance
is given by equation (3-26) with its numerator and denominator defined ex-
plicitly by equations (3-31) and (3-30), respectively. This performance
metric will be evaluated numerically in chapters 5 and 6.

l'he bearing variance metric presented above is expressed in terms

of the filter transfer functions, IH(jmk)lz, which are as yet unspecified.
Idcally, one should like to select that filter transfer function which min-
imizes the bearing estimaticn variance. Since the sub-optimal SBT processor
is designed to discriminate only against isotropic, Gaussian noise, |H(jmk)l.
cannot be selected by minimizing the above bearing variance expressions

(equations (3-26), (3-30), and (3-31)) which pertain to a highly anisotropic




noise wodel. However, if we let Im(wk) =0 form=1, ..., Mat all

frequencies, then our bearing variance expressions will reflect a noise
model which is isotroptc. Under this isotropic assumption (3-31) and (3-30)

can be substituted into (3-26) to cobtain:

2 z Nklﬂ(jwk)l ‘Z‘) * (N (wk) + LS((uk)N(wk) )
Ue = .kazN
d sin 6 N 2 2
T L
: ;kiN B0 (5 )S<wk>}z (3-32)

It is known [18], [19] that the bearing variance in (3-32) can be minimized
through a variational calculus approach and results in the following filter

function: S(wk)
e
N= () (3-33)

LS(mk)

In(jwk)lz =
1+
N(w,)
Use of this filter transfer function in the SBT processor shown in figure
3.1 will optimize its bearing estimation performance for a unidirectional,
plane wave, Gaussian signal in isotropic, Gaussian ncise. In the remainder
of this research, when a specific form of the SBT filter coefficients is

required, the filter defined by (3-33) will be employed.
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CHAPTER 1V

DICITAL SBT SIMULATION

This chapter describes a digital computer simulation which was

T

develouped to provide additional measures of the performance of the SBT in
highly anisotropic noise environments. A real-time array processor can be
implemented in either the time or frequency domains. Traditionally, sonar
processors have been implemented in the temporal domain. However, with the
current, sophisticated digital technology, sonar processors are also easily
implemented in the frequency domain.
Discrete models of some temporal operations, such as differentia-
3 tion, .ire unavoidably noisy procedures. However, the equivalent frequency
domain operation is complex multiplication and easily modeled. There
F are also problems associated with digital implementations or simulation
models of array beam steering. Discrete temporal beam steering requires
extremely high sampling rates or the use of complex interpolation algorithms.
[n the frequency domain, beam steering is also a simpler operation. At
. ecach frequency, the input is simply multiplied by a complex-exponential
weighting. The advantages of frequency domain implementations (or simula-

tions) are often completely negated by the added cost and complexity of

the time-frequency transformation. If the input process spectra vary '
considcrably with frequency and exist over a large bandwidth, then even ;
the computational speed of FFT algorithms may fall short of making fre-

quency domain processing attractive.

In section 4.1 below, we discuss the reasons for developing a

frequency domain simulation and describe its operation. Section 4.2

51
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describes the mcthodology employed to generate samples of the desired in-
put, signal-noise-interference processes at each hydrophone. The last

sectlion develops the digital bearing estimation algorithm.

4.1 - Digital SBT Simulation

A block diagram of the complete frequency-domain SBT simulation
is shown in figure 4.1. The simulation performs three basic functions:
generation and FFT processing of the input data sequences, application
of the SBT algorithm, and extraction of the source bearing estimate from
the processor output. The SBT as configured in figure 4.1 is conceptually
capable of processing recorded field data instead cf the T-second long
simulated time sequences, xz(nAt), £=1, ..., L. However, for the purpose
of emulating the SBT processor, observe that if the frequency domain
characterization of the hydrophone outputs could be synthesized directly,
then the costly requirement for a Fourier transformer is eliminated.
Indecd, the linearity of the Fourier transform assures that the Fourier
coefficients will be Gaussian random variables when the hydrophone outputs
are (Gaussian processes. Consequently, the direct generation of the
frequency-domain random deviates is justified. In the next section, we
describe a methodology for generating the Gaussian deviates, xt(jwk),
k=0, 1, ..., N-1, which possess the desired statistical properties.

The hydrophone output sequences of random deviates stimulate the
SBT array processing algorithm which generates an output random deviate
corresponding to the chosen steering angle, a. If the steering angle is
subscquently incremented and the SBT algorithm reapplied a total of ISTEER
times, then the processor output sequence zo(l), z°(2), viney zo(ISTEER) is
generated. The simulated bearing estimates are then formed from these

ISTEER deviates.
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The SBY processing algorithm is simply the ocutput expression
developed In cbapter 3 tor arbitrary hydrophone output weveforms and need
not be discussed In detail again. Specifically, the SBT algorithm is
defined by c¢quations (3-1) through (3-3) and equation (3-6) where the
filter transfer function |H(jwk)‘2 is defined in equation (3-33). Recall
that the utility of the frequency domain processor-simulation arises from
the ease of pertforming the following operations in the frequency domain:
beamsteering, differentiation (or 90° relative phase shift), filtering and
integration.

The third function performed by the simulation is the actual bear-
Ing estimation algorithm. We utilize a linear, null-detection algorithm
which closely follows the one developed by Witt [36]. That is, the bearing
estimate is the angular location of the steepest, negatively-sloped, zero-
crossing of the linear regression of the output sequence, zo(l), sy

zO(ISTEER), on the steering angle sequence o Our algorithm

1* vy Yrerenp’
is detatled in section 4.3.

4,2 - Generation of Input Random Deviates

Before discussing the direct generation of the frequency deviates,
xl(jwk)’ it is of interest to outline the steps required to generate the
time sequences, xz(nAt). Since the noise model of interest contains M-
directional interferences and an uncorrelated, isotropic component, a total
of M+ L + 1 independent sequences of Gaussian random deviates are required.
At each hydrophone, the M+1 sequences associated with the target and inter-
ferences must be time delayed in proportion to their respective bearings.

As mentioned earlier, this time delay insertion requires high sample rates

or interpolation between every adjacent point in each of the L hydrophone
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time scquences. The M + L+ 1 sequences are discrete samples of white,
Gaussian noise processes and must each be filtered to obtain the desired
spectral characteristics. If, for cxample, one restricts his attention to
low=-pass band-limited, white Gaussiau processes, then the spectral
shaping 1s easlly accomplished by a linear-phase, FIR digital filter [24].
Finally, the simulated output signal at each hydrophone is the sum of an
independent noise sequence and M + 1 properly delayed, propagating
(directional) sequences. As indicated in figure 4.1, the input time
sequences must also be pre-processed by the Fourier transformer in order to
stimulate a frequency-domain SBT algorithm. If one intends to stimulate
a time domain algorithm, it has been noted [36] that the input time se-
(quences must be of length greater than T to permit truncation of noisy end-
point values generated by the time-differentiation operation.

1f, as is the case here, one can define the first and second order
signal-plus-total-noise statistics, then it is possible to generate the re-
quired input random deviates through a transformation of zero-mean, unit
varlance random deviates (e.g. [4] and [23]). Our approach closely
parallels that of Franklin [10]. By assumption, the hydrophone outputs
are zero-mean, Gaussian random processes. By design, the hydrophone output
x[(jwk) at frequency Wy and the output Xe(jwm) at frequency w are independ-
ent for Wy # L Consequently, the array response is completely specified
by the KK, L x L dimensional signal-plus-total-noise covariance matrices,

K In other words, for k = 0, 1, ..., KK-1, we have at the frequency Wy

.
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The covariance matrix ESN(mk) is not only Hermitian, it is also Toeplitz

and is defined in equation (3-20) as,

M &

2 Y - % . - S % 1

Kgp () = 18(w) alw) a "(w) + N (0) I+ Tm'zl I () b (w) b " () 7
- — % :!

=TS aa +K (4-1) t

where S, N, and 1 are, respectively, the signal, noise, and interference
N =N

power spcectral densities at wy, a (w ) and b (v ) are the signal and mth

Interference phase delay vectors, T is the observation time interval, and

KN is the noise plus interference covariance matrix at w Since both the

%
propagating and non-propagating components of the received waveforms are

by assumption homogeneous, the signal-plus-total-noise covariance matrix

in (4-1) is a Toeplitz matrix. For simplicity, we drop the frequency index
for the remainder of the derivation.

GCeneration of the desired complex vector Gaussian deviate'? first
requires the generation of an L dimensional, complex vector Gaussian variable
; which has zero mean and unit variance. The vector'; is easily constructed
from two real, Gaussian, vector random variables with zero mean and unit

variance. [f the probability density functions of the real, independent,

- - -
[~dimensional vectors u and v are N(0O, I), then by defining

‘ (}-) [GW JI?] (4-")
2/ L

N
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it is apparent that

o
'\‘a
e
"
<

and (-:}'z\i w: = I

A standard DEC system KL-10 library subroutine was used to generate the
zero-mean, unit variance Caussian elements of the vector random variables
a and v.
- —
In general, the vector X is related to the vector z by the follow-

ing transformation:
- - o
X=Cz+u (4-3)

where C is a unique, L x L lower-triangular, deterministic, complex matrix

such that

E }Y Y'*t =c-¢c” (4-4)

Koy =

is known (see equation (4-1)),

and, by assumption, u = E ,X‘ = 0. Since ESN

cquation (4-4) can be solved recursively (Franklin [10], p. 208) for the
clements of the transformation matrix C.

I'he signal, noise, and interference power spectral densities must
be defined at each frequency in order to completely specify ESN' To
facilitate numerical evaluation of both the theoretical and simulation
crror measures, we make the simplifying assumption that the spectral shapes

o! all processes are identical, i.e.

S(w), N(w), Im(w) = (S, N, lm) « G(w) (4=5)




where  , N oand lm in (4-5) are constants and G(w) is a normalized power

spectr | density function. 1In the remainder of this study, we shall
assume an obscrvation interval of T = 0.128 secords and a sampling fre-

quency of 250 Hz. Consequently, the one-sided spectrum G(w) is defined

by 16 .amples at W = ZTH Relch i@ ]2 e e e Furthérmore, we
requir. the low pass spectral sequence, G(wk) to roll-off at 40 dB/octave
and de!ine its 12 dB down frequency to be w;; = ZTﬁ)' 13 = 21 (101.5 Hz).

Figure 4.2 tllustrates the idealistic spectral shape of signal, noise and
1

intertc rence employed in this study. Since the parameters —%—, _ﬁﬂ’ eT,
M, and 9 (m =1, ..., M) are investigated as variables within this study,

m

we have completely specified ESN

(equations (4-1), (4-4), (4-3) and (4-2)) to transform independent, zero-~

and are able to use the above methodology

mean, unit-variance Gaussian deviates into the desired, complex, vector
Gaussion deviates X(jwk) (k =0, 1, ..., 15) from the distribution

N0, K ().

“.3 - Simulated Estimation Algorithm

If, as in chapter 3, we make the assumption that the mean SBT out-
put is 2 linear function of steering angle, (around é), then it seems
reasonable to form an LSE straight line fit to several output points which
encompass a zero crossing and calculate the bearing estimate from this line.
The simulation program calculates "ISTEER" SBT output deviates centered
around the true target bearing, from which the line fit is computed. In
the bascline numerical evaluation that follows, the parameter ISTEER is

ecqual 1o 13. For simplicity, let P = ISTEER in the following derivation.
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Figure 4.3 illustrates the estimation procedure for P hypothetical

simulation output values. The LSE line is defined by

ZLSE(a) = A - Ba (4-6)

-

The bearing estimate, 6, satisfies

2;5g(®) = 0

and is clearly,

g A
b = — (4-7)

The coefficients A and B are chosen to minimize the mean-square-error,

§ & 2
MSE = —— 1 (z - zLSE(“i))

15 2

MSE = —— z, - (A - Ba,) (4-8)

P i i
i=1

By setting the derivatives, with respect to A and B, of (4-8) equal to

zero, A and B are easily found and, upon substitution into (4-7) yield,

o Lzl Teele

(4-9)
z 2y z a, = P Z zjaj

where all summations range from 1 to P. Since we are interested in target

tracking applications, as long as the sector over which the beam is swept

is not unrealistically small, we need not be unduly concerned with multiple

zero-crossings of the simulation output. Consequently, the simulation
program uses all of the ISTEER output values to calculate 6 and requires

only that the slope of zLSE(a) be negative.
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L Previous studies [e.g., 36] have successfully employed similar

| techniques for estimating source bearing from sampled SBT output values.
As discussed in chapter 5, there are potential problems with this type of
algorithm., 1t is desirable to have a large number of beam positions,

ISTEER, as well as having the angular beam-sweep region large relative to

the bearing standard deviation. Otherwise, it is likely that LSE lines
with very small slopes will occur, resulting in unplausible bearing
estimates. In any event, this problem requires larger simulation sample

sizes.
For every parametric combination (SNR, M, L, em, etc.) of interest,

the simulation must be exercised a total of ISTEER x J times, where

REP

! J is the number of estimates per sample and, recall, ISTEER is the

REP
: number of beam positions per estimate. Based on these samples, statistical

measures of the performance of the SBT array processor are defined in the

} next chapter.
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CHAPTER V

NUMERICAL RESULTS - BASELINE

This chapter presents the results of the numerical analysis cf
bearing estimation in the presence of multiple, interferirg noise sources.
The Cramer-Rao (CR) bound derived in chapter 2 is the performance metric
for examining the effects of such interference on the optimal (ML) esti-
mator, which is assumed to be unbiased. For the sub-optimal split-beam

tracker (SBT), bias as well as standard deviation of error is evaluated.

The performance of the SBT is presented in terms of both theoretical
measures of error and statistical measures of the simulated SBT perform-
ance. The SBT performance metrics are described in detail in the follow-
fng section. Section 2 lists the baseline values of the fixed and variable
array, processor, signal, noise and interference parameters. Section 3
presents and discusses the baseline results in terms of the standard
deviation-type error measures while the last section contains the baseline

results in terms of the bias error metrics.

5.1 - SBT Performance Metrics

One theoretical measure of the SBT performance is the approximate
expression of the standard deviation of the bearing estimate derived in
chapter 3, The approximation arose from the assumptions of long obser-
vatlon interval and linear behavior (as a function of steering angle) of
the SBT output. Another theoretical measure of the SBT performance is the
estimation bias or expected value of the bearing estimation error. It is
reasonable to assume that the SBT bias error, unlike that of the maximum

likelihood estimator, will be significant for many target-to-interference
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separations. The bias error, B, is defined as

Boelel . o s y
BRE® -0y =0- 0, (5-1)

where E:*z denotes the statistical expectation, & denotes the bearing

i

estimate and OT is the true value of the target bearing. Assuming the
probability density function of the SBT output, Zs is symmetric about 1its

] mean, thce expected value of the bearing estimate can be calculated from:
‘ "' | =z — = -
E'zo(a, zo(u) ~ 0 (5-2)

where ;U(u) is the mean SBT output derived in chapter 3. The exact solu-

tion of equation (5-2) for 6 is mathematically intractable. A good

approximation of 6 is obtained for forming a least-square-error (LSE)

straight line fit to p values of ;;(a) and solving the result for 6 accord-

T T T AT € Y 5 MY R U AP T A e

ing to c¢quation (5-2). This algorithm is the same one employed to obtain
bearing estimates from the simulated SBT output which was described in
chapter 4. The bias error in equation (5-1) above and the standard devia-

tlon of the bearing estimate given by equation (3-26) are the theoretical

measures of SBT performance which are presented in this chapter. They both
represen! approximations to ensemble averages of bias error and estimation
standard deviation assuming a linearity of the SBT output with respect to
steering angle, a.

I'he relevant statistical measures of the performance of the simu-
lated SPI' processor are simply the sample mean and standard deviation of
the estimated bearings. Samples of sizes from 20 to 60 replications were
generated for the various parametric combinations. Cousistent with the

previous theoretical measure, the sample bias error is presented in this
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chapter rather than the sample mean of the estimated bearing. With the
PO Y
ith bcaring estimate, 61,

chapter 4, the sample bias error is 3imply

generated by the simulation as described in

(5-3)

where N is the sample size. The inherent, statistical uncertainty in the
sample bias is defined by the confidence belt calculated for each sample
bias estimate. If instead of a single sample of size N, a large number of
samples of size N are generated, then one would expect the true population
bias to fall within the sample confidence intervals for (1 - a) percent of
the samples. The confidence intervals presented in these results are com-

puted from [18]

o2 o?
Be " fyer, o ¥— <3< v, Y (5-4)
2 TR
where, Bs is the sample bias computed in equation (5-3),
B is the true, or population bias,
tN—l, %_ is the students t-statistic for N-1 degrees of freedom

and a significance level of a

N is the number of replications per sample (the sampie size,
e.g. 20)

a is the level of significance and was chosen to be 0.10 for
this investigation,

02 1s the sample variance of the estimated bearing as described

below.

+ 'The simulation estimates 6; and the theoretical mean bearing esti-
mate, 6, described previously are computed using the same number of bean
positions for each LSE line fit.
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The sample variance of the estimated bearing is [8],
N N . 2
; A 1
0% ='§%I i 7 ﬁi = X ei) (5-5)
6 (1=1 1=1
The statistical nature of the sample variance or the sample standard devia-
tion, o., 18 also reflected by its confidence interval. This confidence

(8}
interval is calculated from the following expression [8]:

—

uh‘/7—(—“11)—' < g L4, (8-1) (5-6)
o ¥X a o~ o VX

a
N-1,1- 2 N-1, 3
vhere x2 is the chi-squared statistic for N-1 degrees of freedom
N-1

$
and a significance level of a,

N is the number of estimates per sample and,
n 1s the significance level, equal to 0.10.
‘The sample variance computed in equation (5-5) reflects the random varia-

t lon of bearing estimates formed from p values of the simulation output at

{ corresponding values of the array steering angle about the target bearing.
'n other words, the variance in (5-5) is based on p observations of T
r.econds of data. However, the approximate, theoretical SBT bearing

variance described earlier and the Cramer-Rao variance bound derived in
chapter 2 are based on only T seconds of observed data. To facilitate

2 direct comparison between the three variance (or standard deviation)

measures, the quantity

02 = p x o2 (5-7)
6,T ]
P 18 presented as an approximation to the T-second bearing variance of the

ilmulated SBT processor. This type of approximation, suggested by

iwerling (28] and adopted by Witt [36], implies that the angular region
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over which the LSE line fit is made is small enough to assume the points
in the line fit are p independent observations of statistically identical

data.

5.2 - Baseline Parameter Values

The results presented in this chapter pertain to a baseline set
of array, processor, signal and noise parameters. The baseline set of
parameters Is listed in table 5.1. The baseline values in table 5.1 allow
a realistic yet manageable numerical analysis of the effects of highly
anlsotropic noise on passive bearing estimation. It is seen that the only
variable parameters in the baseline study are the number of interferers,
the angular separation between interferers, and the interferer locations

rclative to the array axis.

5.3 - Standard Deviation Results

The numerical effects of a highly aniswtropic noise field are
presentcd in figures 5.1 through 5.5 in terms of the standard deviation
1 ot the bearing error for the baseline case. Later, the bias error of 4
the bearing estimates is presented. The standard deviation of bearing
error or bearing estimate standard deviation is presented as a function
ol the target-to-interference separation which is expressed as the phase

1 difference,

: Y = (wgg -% ) * (cos 8y = cos eI) (5-8)
where WRK =<j%}> + (KK-1) is the highest radian frequency in the

signal and noise bandwidths and,

1 91 is the mean interference bearing of the cluster of 1, 2, or

1 - 4 interferers.




TABLE 5.1

BASELINE VALUES OF ARRAY, PROCESSOR,

SIGNAL, AND NOISE PARAMETERS

PARAMETER

Number of hydrophones
Hydrophone separation
Integration time
Sample rate
Signal-to-Noise ratio
True target bearing

Interference-to-Noise
ratio

Number of interferers
Interferer separation

Interference location

Signal and noise process
bandwidth

Discrete bandwidth

Number of beam positions
per estimate

Angular steering sector
covered

KK-1

ISTEER
(p)

10
20 feet
0.128 seconds

250 Hz

3, 6, 9 degrees

Theoretical: 0-180 degrees

Simulation: 30, 45, 60, 70,
76, 82, 90 degrees

101.5 Hz

13

13

86 - 94 degrees
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Since the standard deviation of error metrics are symmetric about the
zero phase separation, these results are presented as function of |Y|
ratherv than Y.
Figure 5.1 shows the standard deviation of error for the case of
a single plane wave interference. Figures 5.2a, b, and ¢ show the results

for two interferers separated by 3, 6, and 9 degrees, respectively. Like-

wise, figures 5.3a, b, and c show the results for four interferers. Three
peneral observations are readily apparent from these results. First, in
cvery case the standard deviation of error exhibits a different behavior
in each of three segments of the range of |Y| values. For remote inter-
ferers, all three error measures are independent of the target-to-inter-
ference separation |Y|, and only somewhat larger than the standard devia-
tion for isotropic noise alone. For intermediate values of IY[ (approxi-~
mately 0.4 to 1.0), the standard deviation metrics exhibit a peak value
(or a relative maxima). Finally at small separations of target and inter-

ferer, the behavior of the three metrics appears to vary from case to case

as a complex function of MM, A6 and |Y . The detailed behavior of the
standard deviation of error in these three segments will be examined later.

A second general observation is that the Cramer-Rao bound indeed
provides a lower bound on the bearing error except at very small phase
separations (small |Y|), thus illustrating the performance degradation of
the SBT processor over the ML processor. In some cases, at small IYI values,
the theoretical SBT error becomes less than the Cramer-Rao bound. 1In
these regions, the target and one or more interferers are unresolvable by
both MI, and SBT processors. However, the SBT processor essentially ''sees'

a single source of directional noise (with increased level) and a background

noise fleld that is nearly incoherent, or isotropic. As a result of the
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higher apparent signal level, it is seen in figure 5.1 that the SKT

error at small |Y| falls below its own isotropic-noise error level. The
performance of the ML estimator which is bounded by the larger, CR bound
reflects the tacit assumption that the optimal estimator is perfec:ly
matched to, or has perfect knowledge of, the true background noise field.
Hence, the fact that the SBT and ML processcrs are addressing "different"
noise fields at small |Y| values is reflected by the seemingly superior
performance of the SBT processor.

The third general observation is that the bearing error of tre
simulated SBT is, at the chosen confidence level of 0.90, significantly
poorer than the approximate, theoretical SBT bearing error. This appears

true in each of the figures 5.1 through 5.3 at most target-to-interference

separations. The appearance that this difference is almost constant over
all |Y| values is explained by the use of the same set of input normal

deviates for each of the seven target-to-interference separations examined

by the simulation. The difference between the simulation and theoretical
SBT bearing errors occurs consistently throughout the investigation.
Although the exact cause of this somewhat unexpected difference is unknown.
a combination of one or more of the following points is suggested as a
possible explanation:

1) The number of replications (i.e., simulation runs) is small rela- 1

tive to the number of points used in the line fit. The SBT output

values used in the LSE line fit occur in an eight degree segment of
steering angles between 86° and 94°. The true bearing error, which is
estimated by the simulation results, 1s on the order of one to iwo
degrees ~ a significant fraction of the 8° segment of steering angles

forming the line fit. Hence, the number of points used to form each




2)

3)

——— . e e T I——
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estimate and the number of estimates par sample will significartly
affect the standard deviation of estimation error.

The theoretical assumption that the SBT output 1is a linear func!’c
of steering angle is invalid for the 86-94 degree range over which the
simulation forms the LSE straight line fit. Figure 5.4 shows a plon uf
the theoretical SBT output mean, ;;, and standard deviation, o, s 82
functions of steering angle, a, using the expressions derived 12
chapter 3. Notice that in the 86-88 and 92-94 degree regions, the
assumption of linearity is somewhat strained. The nature of this non-
linearity would tend to cause a lower LSE line slope than expected and
thus a higher standard deviation of error.

There are 13 points used by the LSE line fit estimator to obtain
the baseline simulation bearing estimates. Under the assumpticr that
13 T-second observations of statistically identical random data produce
an error variance which is 13 times lower than that obtained for a
single T-second observation, the standard deviation of error has been
multiplied by /13 for presentation in figures 5.1 to 5.3. Here lies
the third possible contributing cause of the difference between simu-
lated and theoretical bearing error. That is, the observations at
13 different beam positions (86° - 94°) may not be statistically
identical, at least to the extent that it is optimistic to assume that
the simulation error variance should be 13 times lower than an "equiva-
lent" T-second error variance. A less optimistic assumption wounld, of

course, result in lower "T-second equivalent" simulation bearing errors

than those presented in figures 5.1-5.3.
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4) The actual observation time of 0.128 seconds is too small for the

approximation, made in the theoretical SBT standard deviation of error

derivation, that the spectral density, X(w), can be expressed as

X (w) = =t . E ‘x(jw) x*(jw)l (5-9)
T ' ’ - /

wherc x{jw) is the Fourier Transform of the signal-plus-noise-plus-

interference process existing in the water at the face of the arrezy.

Recalling the first gemeral observation drawn from the standard
deviation of error results, it seems appropriate to discuss the detailed
el fects of a highly anisotropic noise field in terms of the three levels of
torget-tLo-interference separations -- remote interferers, intermediate or
"reak" interferers, and nearby or coincident interferers. In the inter-
mediate IYl - region, the locaticn of the peak error varies somewhat with
MM and /8. Also, the SBT error and the CR bounds peak at different loca-
tions. For the single interferer shown in figure 5.1, the locations of the
error pcaks are identified with the resolution beamwidths of the SBT and
Ml processors. In a previous theoretical investigation [7], Cox derived
and evaluated an expression for the resolution power of the optimal
(maximum likelihood) beamformer. From his results ([7], figure 4, .. 781)
it is straightforward to determine that the resolution 'beamwidths" (i.e.
rcsolution power in terms of angular separation) for the parameters of
interest are 14.2° for a conventional beamformer and 10° for the optimal
beamformer. From figure 5.1, we see that the peak bearing error occurs
when the target and interferer are separated by a resolution beamwidth.
The results in figures 2 and 3 indicate that for multiple, closely spaced

(¢.g. 3°) interferers, the standard deviation of error peaks when the




mean interference location is approximately one resolution beamwidth f{romw
the target. As the interference separation, A8, increases the !Yi [O8i-
tion of the peak error increases, reflecting the transition tc indepenc-nt
interferer effects at A6 values greater than a resolution beamwidth.

The effects of increasing the number and mutual separation of
remotely positioned interfering noise sources is summarizea iu figura 5.5,
It is obvious here that the mutual separation of interferers, like their
position or bearing, has no effect on the standard deviation of error
when the target-to-interference separation is large. The CR beund indi-
cates that the ML estimator will also be independent of the aumber of
remote interferers. The simulation and theoretical SBT errors indicate,
however, that the sub-optimal processor performance worsens with increuses
in the number of remote interferers. Since the SBT is designed to discrim-
inate against incoherent noise, it cannot cancel or '"de-emphasize" the
remote interference which in turn increases the equivalent background
noise level. As discussed previously, the simulated SBT bearing error is
significantly higher than the theoretical SBT error. However, its depend-
ence on MM and A6 closely mirrors that of the theoretical measure.

The behavior of the standard deviation of error in the mid or
intermediate range of IYI values 1s shown in figure 5.6. This expresses
the peak error as a function of A8. As one might expect, the peak values
of both the CR bound and the SBT error for multiple interferers approaches
the single-interference values as the mutual separation increases. For
interference separations on the order of two times the resolution heam-
width, multiple and single interferers would yield the same peak values.

The CR bound now shows a slight dependence on number interferers while the
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SBT processor shows a high dependence on number of interferers when thic

separat ion is small.

The diftercnce in the slog-s of the error curv.s in figure 5.6

indicatcs a rapid deterioration in the relative performance (i.e. the rati.

8
—§§I) of the SBT processor as the number of closely spaced interferers

o
CR

increases. MacDonald and Schultheiss [19] have shown that for inccherent
background noise (no interferers) the relative, theoretical degradation

of the SBT processor is

%
0 -
__S.BI = (%) . Q‘-L—L-E-—l-)- (5-10)
“cr

where LL 1s the number of uniformly spaced hydrophones. For the 10-
hydrophone array of interest, this ratio is 1.15. The results in figure
5.1 show theoretical and simulation degradations relative to the CR bound
for a single interferer of 1.23 and 1.47, respectively. For four inter-
ferers separated by three degrees, the relative performance degradation
has increased to 1.69 and 2.39 for the theoretical and simulation measures
respectively. For smaller separations, we would expect larger relative
performance losses. This data represents a very serious degradation in
bearing estimation performance of the sub-optimal processor over the
optimal processor but is not unexpected in light of the sub-optimal pro-
cessor design emphasis on isotropic noise fields.

Figure 5.7 shows the standard deviation of bearing error bhehavior
for coincident target and interference. As noted earlier, the CR bound
appears not to provide a lower bound on the bearing estimation error for
all separations of multiple 1nte¥feters. Since the SBT processor has no
knowledge of any directional aspects of the noise field, an interference

in the proximity of the target is interpreted as an increase in signal
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level. Consequently, the SBT processor sees a target with an effective
signal level higher than the true target level.

Since (he target is coincident with the mean bearing of the inter-
ference c¢luster, the standard deviation of error is seen to increase with
increasing A6 for multiple interferers. One would expect this behavior
for A8 less than or equal to the resolution beamwidths. As A® increases
above a resolution beamwidth, there can be at most one interference within
the beam and the effects of the remaining members of the interference
cluster will decrease. Also, the simulation standard deviation of error
i3 again seen to mirror the theoretical metric but at a somewhat higher

level.

5.4 - Bias Error Results

The mean, or bias, errors determined for the baseline study are
presented in figure 5.8 for a single interferer and figures 5.9 and 5.10
(a, b, and c) for two and four interferers at 3, 6, and 9 degree separa-
tions, respectively. The bias curves in figures 5.8 - 5.10 reflect only
SBT errors since the optimal (ML) estimator is by assumption unbiased.

Several general observations can be made by examination of figures
5.8 - 5.10.

1) The bias error is anti-symmetric about 8, and of significant

T
magnitude over a wide range of target-to-interference separations (Y).
As one might expect, the estimated bearings are biased in the direction

of the interference location.

2) The bilas errors exhibit peaks (relative extrema), whose locations

and widths vary noticeably with number and separation of interferers.

il e b il
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86

For multiple interferers, the peak values decrease with increasing
interference separation while the peak widths increase with increasing
separation.

3) The simulation and theoretical bias errors are in close agreement
for all cases. Unfortunately, this agreement offers no solid clue as
to the source of discrepancy between the theoretical and simulated

SBT standard deviations of error.

The detailed behavior of the absolute value of the peak SBT bias
error as a function of number and separation of interferers is shown in
fFigure 5.11. The close agreement between the theoretical and simulation
bias metrics is apparent in figure 5.11. The bias measures decrease
linearly as A9 increases. The rapid performance degradation of the SBT
processor as the number of closely spaced interferers increases is evi-
denced by the larger negative slope of the MM = 4 bias curve. A similar
behavior was witnessed for the peak standard deviation of error curves
presented in figure 5.6. As with the peak standard deviation of error,
the peak bias error for multiple interferers will approach that for a

single interferer as AB becomes large.
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CHAPTER VI

NUMERICAL RESULTS - PARAMETER EXTENSIONS

The results presented in chapter 5 provide basic insight into the
cifects of a highly anisotropic noise field on bearing estimation by optimal
(ML) and sub-optimal (SBT) processors. In this chapter, added insight into
the eftects of such a noise field is provided by the numeri;al results of
cxtending the range of values of selected, fixed baseline parameters. To
waintain manageability and economic feasibility, only two of the potentially
more interestiong parameters are examined in this phase of the study. The
dependency of bearing estimation performance on received signal-to-noise
(SNR) ratio is presented in section 6.1 with the numerical results for SNR
values of 0.5 and 2.0. The following section presents the results of ex-
tending the array size to 20 and 40 hydrophones (for an SNR of 1.0). Except

as noted in each section, the remaining fixed and variable parameters assume

their baseline values as defined in table 5.1.

6.1 - Uxtensiop of Signal-to-Noise Ratio

This section presents the results of extending signal-to-noise
rtange to 0.5 and 2.0. This SNR range covers many of the situations en-
countered in actual target tracking applications. Although the simulated
bearing error has been consistently higher than the approximate theoretical
crror, its overall behavior as a function of number and location of inter-
lerers is again expected to mirror the theoretical metric. Consequently,
the simnlation was not exercised for interference bearings of 30° and 60°.

The simalation results for the remaining five interferer positions (45°,
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700, 76°, 82°, 90°) are presented in this section. Furthermore, at each
intericrer position the simulation sample size is limited to 20 replica-
tions.  Ne o that throughout the SNR parameter extension, the array size
vemaing at 10 hydrophones.

The numerical results of evaluating the three standard deviation
ol error metrics and the two bias error metrics are presented in figures
I-7 and 8-14, respectively of appendix D. For clarity, the baseline results
at SNR = 1.0 are not repeated in these figures.

Sceveral observations can be made upon examination of the standard
deviation of error metrics in figures D.1 - D.7 regarding the extended
SNR parameter values:

1) Over the entire range of |Y|, the standard deviation of error in-

[}
creases at small signal-to-noise ratios. For the most part, this

phenomena results from the loss in signal power relative to the isotrop-
ic component of the background noise level. Another contribution to
this effect is possible since, even at remote interference bearings,

the total interference power will contribute somewhat to the received
background noise level scen by the two processors.

2) The larger peak magnitude of the standard deviation of error

and (he scemingly superior coincident (|Y| = 0) performance, bv the SBT
processor relative to the CR bound at low SNR, results from a loss in
signal level relative to the received interference power. In other
words, these are phenomena observed as a result of a decreased signal-
to interference power ratio. Observe also that, although the error
peaks are sharper (larger relative to the bound) at SNR = 0.5, their
bearing location (lYl value) remains constant over the SNR range of

values,

T i et .-
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The apparent discrepancy between the theoretical and the simulated
SBT standard deviations of error that was discussed in chapter 5 is
also mai «fest in the results presented in appendix D. It is noteworthy,
however, that the discrepancy worsens significantly around the error
peaks for multiple interferers, particularly when closely spaced. For
example, consider figure D.5 for four interferers separated by 3°.
The simulation errors at |Y| equal 0.355 and 0.618 for SNR = 0.5 have
been adjusted to reflect smaller sample sizes of 18 and 16 replications,
respectively. These sizes result from an after-the-fact rejection of
thrce obviously unacceptable bearing estimates. The small "x" at Y
equal 0.355 and 0.618 indicate that respective error magnitudes of
4.8 and 12.24 degrees were obtained for the original simulation sample
sizes.  The rationale here is that such poor bearing estimates (é = 81.9°,
78.6°, and 75.2°) would be ignored in any automatically or manually
operated bearing estimation system. Furthermore, it is noted that the
full, original sample sizes of 19 and 18 replications at IYI equal to
0.355 and 0.618, respectively, and SNR = 0.5 in figure D.5 are smaller
than the other 20-run samples due to an absence of a zero-crossing by
the simulation output, and hence no bearing estimate, for three simula- {
tion runs.

The unacceptable estimates from some runs and the absence of a zero-
crossing in other runs is a consequence of the simulated SBT output be-
coming non-linear in the 86°-94° region of the LSE line fit. This non-
lincarity is also responsible for the larger discrepancy between the
thcoretical and simulated standard deviations of error at these |Y| - i

values. The nature of this non-linearity is shown in figure 6.1. This

figure shows the theoretical mean and standard deviation of the SBT
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Fig:.re 6.1 - Approximate, Theoretical SBT Mean and Standard Deviation;
SNR = 0.5 with Four Interferers at 76°
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output (equations (3-22) and (3-23)) for an SNR of 0.5 and four inter-—
ferers separated by 3° and centered at a bearing of 76° (]Yl = 0.618).
The: occur.ence of the non-linearity in figure 6.1 for small ;; values
indicates not only a large bearing estimation variance but also an
asvmmetric probability density function (pdf) for éi' The unacceptably
low bearing estimates mentioned previously (81.9°, 78.6°, and 75.2°) are
a consequence of the unusually long "tail" in the éi pdf. As seen in
fiyure 6.1, tﬁe lower one-sigma value of the 61 pdf occurs approximately
8./ below the 86.7° theoretical mean while the upper one-sigma value
occurs only 3.5° above the mean. Hence, while the three exceptionally
low bearing estimates might be unacceptable in an operational applica-
tion, they are statistically valid estimates which are indicative of

a lower SNR limit on bearing estimation by the SBT processor.

Several general observations can also be made from the SBT bias

ciror results presented in figures D.8 through D.14:

SNR variation affects the SBT bias error primarily by compressing
or amplifying the bias error peaks. At low SNR levels (approximately
equal to the interference level) the bias peak has risen to the extent
indicatlve of bearing estimates midway between target and interference.
Thi: is approximately true for SNR = 0.5 in figure D.12. For an SNR
le:  than the INR at close separations, the SBT processor would be, in
esroace, estimating the interference bearing rather than the signal
bei g,

For low bias values such as at SNR = 2.0 and MM = 1, a difference 1in
the theoretical and simulation bias metrics appears. However, at a 90%

con! rdence level we cannot say that this difference is significant. Also
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note that for MM = 4 and SNR = 2.0 (figure D.12) the theoretical and
simulation bias metrics tend to converge as their magnitudes increase.
These twe events might suggest the difference in bias metrics at high
SNR is statistical (i.e. due to a small sample size and/or too few
points in LSE line fit).

3) Recalling the non-linearity of the mean, ;; and standard deviatioa,
a, of Lhe SBT output shown in figure 6.1, one would expect it to
cv?ntuully affect the bearing estimation bias error as it did the stand-
ard deviation of bearing error. Indeed, one observes in figure D.12
that the absolute values of simulation bias error are greater than the
theoretical values for the uncorrected sample sizes (19 and 18 replica-
tivns) at Y = + 0.355 and *+ 0.618. Removal of the three unacceptable
c¢stimates as discussed previously yields simulation bias errors somewhat
¢loser to the theoretical metric. From figures D.5 through D.12, it is
scen that for four closely spaced interferers located within about 20°
ol a 0.5 SNR target the SBT processor is practically useless as a

bearing estimator.

The behavior of the standard deviation metrics as functions of
signil-to-noise ratio can alsc be examined parametrically in each of the
threo previously defined regions of target-to-interference separation, ]Y].
Figure 6.2 shows the effects of increasing the signal-to-noise ratio for
remot e interference bearings (large |Y|). The primary observation from

figure 6.2 is that, except for the simulation error at SNR = 2.0, the

standard deviation of error metrics vary exponentially with SNR. For

tull logarithmic scaled coordinates, it is easy to show that the unscaled

slop - of a straight line is the exponential power of the abscissa which
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governs the variation of the ordinate function. Consequently, we see from

tigure 6.2 the standard deviation of error varies inversely with the square
root ot the fractional signal-to-noise ratio, SNR. This contrascs with
MacDonald's [18] results that the standard deviation of error {remote
interfcrence bearings) is inversely proportional to SNR for conditions of
high INR and low SNR.

The CR bound is seen to be identical for all values of MM and
AV at remote interference bearings. The SBT metrics, while also independ-
cnt of A8, show a slight dependence on the number of interferers present, MM.

The simulation error metric in figure 6.2 appears approximately

constant over the 1.0 to 2.0 range of SNR values, thus indicating a larger
theoretical/simulation error discrepancy than previously identified. This
unexpected behavior is probably indicative of a bearing resolution limit
characteristic of our digital estimation algorithm. In other words, the
simulation random errors at SNR = 2.0 based on 13 T-second observations
(13 beam positions) are not resolvable beyond one-half the angular separa-
iion bctween adjacent beam positions (0.33 degrees). Consequently, the
¢stimation algorithm would yield erroneous results when the true random
crror falls below half the beam position spacing. The relatively small
cample size at SNR = 2.0 (20 replications) would also contribute to this
hehavior. If these theoretical/simulation discrepancies are indeed caused
by the LSE line fit, then hopefully they can be eliminated by proper
selection of the parameters of the bearing estimator. It is clear that
there is room for more investigation into the digital implementation of
hearing estimators which are based on zero crossings of an array processor

outpult.
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Figure 6.3 indicates that the peak standard deviation of error is
also inversely proportional to the square root of the signal-to-noise ratio.
only tue 3° =seporation of multiple interferers is shown in figure 6.3. The
peak crrors for 6 and 9 degree separations are smaller than the 49 = 3°
result s but exhibit similar behavior as SNR increases. The SBT metrics in
i lgurc 6.3 indicate a greater sub-optimal processor degradation as the
numb. 1 of closely spaced interferers increases than indicated by the CR
bound tor the ML estimator. The simulated SBT error appears to behave more
like the theoretical SBT error at the higher, peak error values than it
did 101 remote interference bearings.

For the case of a coincident target and interference, the behavior
of the standard deviation of error metrics shown in figure 6.4 closely
resembies that of the error metrics for remotely positioned interferers
(figure 6.2). Notable differences seen in figure 6.4 are:

1) Generally lower (by 0.3° to 0.5°) SBT standard deviation of

error metrics.

2) The CR bound depends on the number of interferers.

3) The SBT error is not consistently bounded below by the CR

bound.

As a final measure of the SNR dependence of bearing estimation per-

lormance metrics, consider the peak SBT bias errors presented in figure

6.5. The previously noted theoretical/simulation bias discrepancy is again
cvident at SNR = 2.0. This bilas discrepancy decreases as the magnitudes of
cach motric increase. This discrepancy was previously associated with a
hweariny resolution limit of the SBT simulation and the small sample size

4L SNE = 2.0, Of primary importance, however, are the following two

ohgervations:
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1) For I, 2, and 4 closely spaced interferers, the SBT bias error
is inversely proportional to the fractional signal-to-
noise ratio, SNR.

2) The SBT bias errors are directly proportional to the number, MM,
of closely spaced interferers.

These two observations indicate that the peak SBT bias error is, to a good

approximation, inversely proportional to the signal-to-total-coherent-
S

vise level SO BT | )
noitse (8 > (m " I) bzr;;-.‘—. i—
N

6.' - lxtended Array Size

This section presents the results of extending the array size, LL,
to 20 and 40 hydrophones. These results address only the case of a signal-
to noisce ratio of 1.0. Several adjustments to the baseline set of parameter
vialues were necessitated by the extension of the array size. These adjust-
ments are required by the smaller resolution beamwidths obtained with the
larger apertures. For example, since adjacent, resolvable interferers will
atteet the array processors almost independently, it is of little interest
to study multiple, widely separated (much more than a beamwidth) interferers
and since the larger 20- and 40-hydrophone arrays have beamwidths smaller
than 9°, the interference separation parameter assumes only the 3 and 6

deyree values for this portion of the analysis.

A related aspect of the larger array size is the smaller segment
of steering angles over which the SBT output is approximately linear.
Figurcs 6.6 and 6.7 show the approximate theoretical output mean and stand-
ard deviation for array sizes of 20 and 40 hydrophones, respectively. In-
creasing the array size appears to amplify the SBT output extrema and shift

them c¢loser to the zero-crossing and hence decrease the angular region of
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linearity. For this reason, the simulation estimates were formed from
output values in the 88-92 degree region for LL = 20 and in the 89-91 degree
regloo for LL = 40.

The extreme costs associated with exercising the SBT simulation for
large arrays mandate still other parameter changes. The cost of exercising
a digital computer simulation results mainly from processor (CPI') run time
and core memory usage. Figure 6.8 illustrates the time and memory require-
ments lor exercising the simulation on Catholic University's DEC KL-10
computcer.  Processing time in CPU minutes is given by the left ordinate
while memory usage in kilo-core-seconds is given by the right ordinate.

A kilo-core-second is defined as 1024 words of CPU memory used per second

of run time. Figure 6.8 reflects the costs required to obtain 20 bearing
estimates, at 13 beam positions per estimate for a single value of the mean
fntertcrence bearing, BI. The core memory usage and CPU time are respec-
tively about 100 and 9.5 times greater for 40 hydrophones than for 1C hydro-
phones. Due to these higher costs, only nine beam positions are used to
form cach of the 20- and 40-hydrophone bearing estimates. In this investi-
gation, we must, unfortunately, accept the expected increase in bearing
error assoclated with a decrease in the number of points in the LSE line
fit. In subsequent investigations, it might be possible to circumvent this

trade of f by optimizing the simulation scftware programs and by even

employing special, dedicated hardware in some applications.

Other required parameter changes are the mutual interference
scparal ions and target-to-interference separations that were addressed by
the simulation exercises. Unlike the theoretical metrics, the simulation
error metrics are only evaluated for mutual interference separations of

3" and also for only two separations of target and interference (i.e. |Y|).
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These were the "peak error'" interference separations and the case of
coincldent target and interference. Recall that in the baseline investiga-
tion results for remotely positioned interferers (figure 5.5) the SBT
standard deviation of estimation error is independent of A6 and has a

small linecar dependence on MM. Since similar results are expected for the
extended array sizes, the bearing error for remotely positioned interferers
was only obtained for the MM = 1 case.

To summarize, the theoretical results are presented for A8 equal
31° and 6° while the simulation results are presented only for A6 = 3°.
Furthermore, each simulation estimate for 20 and 40 hydrophones is formed
trom the SBT outputs at nine beam positions spanning, respectively, the
88-92 and 89-91 degree sectors of steering angles. The sample size remains
at 20 runs per sample.

The estimation standard deviation and bias metrics are presented in
figures 1-5 and figures 6-10 of appendix E, respectively. In each figure,
the bascline results for a 10-hydrophone array are repeated for comparison
with the 20- and 40-hydrophone results. An immediate observation from
these figures is the profound effect that the decrease in resolution beam-
width has on both standard deviation and bias error metrics. These effects
are the shift of the error peaks in the direction of the target bearing and
the "oscillatory" behavior of the metrics for multiple, resolvable inter-
ferers. From Cox's previous study of target resolution [7], the optimal
and conventional beamwidths have been computed for the parameters of
intercst and are shown in table 6.1. This table and the results in appendix
E indicate that the standard deviation of errrr peaks for single and multiple,
closely spaced interferers occur approximately one resolution heamwidth

from the target bearing. Widely spaced interferers should affect the ML
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TABLE 6.1

RESOLUT1ON BEAMWIDTHS FOR EXTENDED
ARRAY LENGTHS [7]

Beamformer Resolution Phase 5
Configuration Beamwidth Separation, |Y|
(# Sensors)

10 10° 0.44

Opt imal 20 4.6° 0.20
Beamformer

40 1.96° Cc.09

10 14.2° 0.63

Conventional 20 7.1° 0.32
Beamformer

40 3.55° 0.16

“The tabulated [YI is the phase separation between the target
(at 0, 90°) and an interference cluster centered at one resolution beam-
width to elther side of it.

-




.nd SBT processors independently and result in multiple, equally spaced
jvaks in the standard deviation of error metrics. This "picket fence"
(ffect is Indeed observed in figure E.5 for LL = 40. When each interferer
.cts independently of adjacent interferers, the error metric will be equal
in magnitude and separated by A6. The most remote error peak (i.e. the

largest IYI location) should occur for

_ . A8
01 = o,l, + (BWRES + (MM - 1) 2 ) ’

where “WRHS is the resolution beamwidth. Ideally, these standard deviation
citrema should occur for A6 = 6 and LL = 40 at the positions indicated by
the small arrows in figure E.5. 1t is seen that the actual extrema loca-
tions and the predicted locations (i.e. the arrows) are in excellent agree-
ment for LL = 40 and A8 = 6°. However, A6 is not quite large enough to ,é
produce standard deviation of error peaks of equal magnitudes.

As mentioned earlier, the peak SBT bias error for larger array
sizes (see figures E.5 through E.10) is not only smaller in magnitude but
i#lso occurs closer to the true target bearing. Unlike the standard
dviation metrics, it is quite difficult to perceive the underlying relation-
saip between the location and "shape'" of the peak bias-error and the

it 'solut ion power of the SBT processor. One phenomena worth noting, however,

i i the ¢ffect of very widely spaced interferers on the SBT bias error. The

r solut ion beamwidth of the 40-hydrophone array is small enough to cause
the appearance of multiple local extrema for A6 = 6° (see figures E.8 and
1.10) . These peaks illustrate the "push-pull" effect that directional

noise has on the bearing estimation bilas. As an interferer closes on the

target from remote bearings, the target bearing estimate is increasingly

—— o
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"pulted" or blased, In the direction of the interferer. When the point
of peak bilas (s reached, the interferer is effectively "pushing" the bear-

g estimate back toward the target. In figures E.8 and E.0 each inter-

ferer in the clusters of 2 and 4 interferers are seen to exert a "push-
pull” ¢trect on the bearing estimates as shown, respectively, by the two
and four local maxima (minima for Y<O0). These local maxima indicate that

at some Y-separation each interferer acts as the primary cause of

estimation blas. It is unclear from the magnitudes of these local maxima

to Just what extent each interferer is the primary cause of bias error.
Other than these basic qualitative statements, little can be said concerning
the relatlonship between peak bias error location and the array resolution
beamwidi h.

The simulation standard deviation metric is again larger than the
approximate, theoretical metric. It is also noted that there is some dis-
crepancy between the simulation and theoretical bias metrics for small bias
magnitudes. Tn the previous section, a similar discrepancy occurred at low
hiag magnitudes but appeared to decrease in severity as the bias magnitude
increascd (i.e. figure D.12, SNR = 2.0). It is believed that these dis-
crepancics are similar —— both most likely resulting from the simulation
bearing resolution limit and the small (N = 20) sample size.

We can agaln obtain a better idea of the effects of extended array
size on hearing estimation error by examining the standard deviation of
crror for remote, peak and coincident interferers and the peak bias error
as functions of the array size. The standard deviation metrics for remotely
pogltioned interferers is gshown in figure 6.9 as a function of the extended

range ol array sizes. Since the error metrics appear linear in logarithmic
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coordinates, the standard deviation metrics are exponential functilons of

LI.. Furthermore, the slopes of the theoretical metrics indicate that the
standard deviation of the bearing estimates varies approximately in inverse
proportion with the 3/2 power of array size, LL. On the other hand, the
slope of the simulation metric is -1 indicating a simple, inverse proportion-
ality. Tn a previous paper [19], MacDonald and Schultheiss addressed the

SBT bearing estimation performance in the presence of an incoherent noise
ficld., They indicate that in isotropic noise the standard deviation of

bearing cerror for high SNR will vary as a function of LL—3/2

[19, p. 42,
ecquation 38]. Consequently, since it has been shown that remotely posi-
tioned Interferers have little effect on the estimation standard deviation
(¢.y., sece figure 5.5 and the relative isotropic-noise error magnitudes

Sz dependence indicated by the

in fipgure .1), we must conclude that 1
theoretical metrics is correct and that the simulation metric behavior is
misleading.

Recall that there was an abrupt increase in the simulation-target
discrepancy In section 6.1 when SNR was increased from 1.0 to 2.0 (see
figure 6.2). The behavior of the simulation metric shown in figure 6.9
reffects a similar phenomena, i.e. the larger arrays provide a higher gain,
or coherent signal level, and as before cause a larger discrepancy. The
smaller slope of the simulation metric is attributed to a limit on bearing
resolution by the simulated estimation algorithm. Note that there is a smaller
sample size (20 runs) and fewer beam positions per estimate (9) for LL = 20
and 40 than for LL = 10.

A new twist in the simulation - theoretical discrepancy occurs in

figure 6.10 where the peak standard deviation is shown as a function of
{at

array size. At LL = 20 hydrophones, the simulation metric seems to imply
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1 slope of -1 while at LL = 40 this slope has increased and the simulation
metric essentially mirrors the theoretical trend.
The theoretical metrics are all similar in their LL-dependency,

which has decreased from LI "7 that we observed for the remote inter-
terers Lo LL-]'37 in this case -- a small but notable change. Note also
that the peak error is dependent on number and separation of interferers.
'his contrasts with little or no dependence on MM and A8 shown by these
metric:s for remotely positioned interferers.

For the case of coincident target and interference, the standard
deviation of error metrics are shown in figure 6.11. The CR bound is
again scen to be higher than the theoretical SBT metric for some LL values

and a dJdifference in the slopes of the two SBT metrics is again apparent.

A new observation is the tendency of the standard deviation of error

metrics to increase as the number of closely spaced interferers increases.
For once coincident interferer, the error is proportional to LL“B/2 while
tor 4 "colncident" interferers it is approximately proportional to LL-l.

Thus, there is a slower improvement in estimation accuracy with increasing
array slze for larger number of interferers.
As a final indicator of the effects of anisotropic noise, consider

the behavior of the peak SBT bias relative to array size as summarized

In figure 6.12. These results indicate a large improvement in bias error
for larger array sizes. A fourfold increase in the number of hydrophones
shows that the theore£1c31 bias metrics decrease by factors of between 3
and 5 while the simulation metrics decrease by factors between 9 and 13.
As in the other cases, this theoretical-simulation bias discrepancy is

attributed to the sample size and the LSE line fit.
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Figure 6.12 - SBT Bias Error Metrics;
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CHAPTER VII

CONCLUSIONS

/.1 - Summary

In many source bearing estimation problems, highly anisotropic
nolse fields occur as a rule rather than an exception. Such probliems
penerate interest in the performance of both optimal and sub-optimal, fixed-
deslign, sonar array processors. Non-adaptive optimal processors represent
o design goal while simplicity and economy motivate the use of fixed-design,
sub-optimal processors. Consequently, this research has investigated the
cffects of highly anisotropic noise fields on several performance metrics
for the maximum-likelihood (non-adaptive) estimator and the conventional,
split-beam tracker. This study has addressed target tracking problems
where the signal-to-total-interference ratio is large (S/MI>1) and where

true Larget bearings are approximately broadside.

We have considered the performance of the optimal bearing estimator
from the standpoint of the maximum likelihood estimation criterion. The
performance of the maximum likelihood estimator is characterized in terms
of 2 bound on the standard deviation of estimation error, thus avoiding
problems associated with solutions to the maximum likelihood equation. A
piarticularly pleasing metric for target tracking problems is the Cramer-Rao
hound. Chapter 2 sought to derive a theoretical expression for the Cramer-
Rao bound which Is expressable in terms of the inverse noise covariance
matrix. Although the algebraic inversion of the covariance matrix of

highly anisotropic noise is intractable, numerical matrix inversion algo-

rithms permit evaluation of this expression. The Cramer-Rao bound is derived




for a stationary, Caussian signal and noise model. All propagating compo-
nents of the acoustic field are assumed to be plane wave fronts arising
from sources located in the far-field of the receiving array. The noise
field consists of isotropic, uncorrelated ambient noise and MM directional
interferences.

The effects of the same anisotropic noise field on bearing estima-
tion by the split-beam tracker (SBT) is examined theoretically in chapter

3. The sub-optimal SBT estimates a source bearing from the cross-correlation

lag time of two split beam outputs. The steering angle at which the proc-
essor output crosses zero identifies the bearing estimate. Chapter 3
develops a theoretical SBT output expression and derives further expressions
for the mean and variance of the SBT output. Under restrictive assumptions
on the steering-angle dependence of the SBT output mean and variance, an
approximate expression for the bearing estimation variance is derived.

In the absence of experimental bearing estimation results, a
digital SBT simulation is developed to provide statistical measures -- the
sample mean and variance -- of SBT performance. The SBT is simulated in
the frequency domain to avoid potential problems arising from digital
models of certain temporal operations (e.g. time differentiation). This

approach is facilitated by elimination of the Fourier transformer require-

ment through direct generation of the Fourier random deviates. Conse- {
quent ly, the SBT processor algorithm is available from the results of
chapter 3. The bearing estimation algorithm is configured as the zero-
crossing of the LSE line fit to the outputs at ISTEER beam positions
around the target bearing.
Chapter 5 identifies the CR bound as the sole performance metric

of the optimal (ML) estimator. Also defined are simulation and approximate,




theorctical measures of SBT estimation bias and standard deviation. These

optimal and sub-optimal performance metrics are evaluated for a baseline

set sipgnal, nuise and array parameters. The functional dependence of

the performance measures on target-to-interference separation is presented

for I, 2, and 4 interferers with mutual interference separations of 3, 6,

and 9 degrees. For a more restricted set of interference parameter values,

the performance results are obtained for extehded SNR and array size para-
meters. Chapter 6 presents and analyzes the performance metrics for an

SNR of 0.5 and 2.0 (baseline - 1.0) and subsequently for array sizes of

20 and 40 hydrophones (baseline - 10 hydrophones).

The major contributions of this research are described below:

1) The Cramer-Rao bound on the variance of any unbiased estimator as
derived in chapter 2 is a new contribution to the literature. This
result is applicable to completely arbitrary (complex), total-noise
covariance matrices EN and requires only the assumptions of linear
receiving array and stationary, Gaussian processes. It is thus more
genceral and widely applicable than existing results.,

2) Although it is a fairly straightforward procedure, the extension
of the thevretical and simulation SBT error expressions 1in chapters
3 and 4 to include multiple uni-directional interferers is believed
to be original with this dissertation. These expressions permit further
study into the effects of changes such as in array geometry and degrees
of anisotropy. With slight modification, it should also be easy to
address arbitrary (spatially distributed) interference fields.

3) The numerical results presented in chapters 5 and 6 are, to our

knowledge, the first quantitative study of the effects of multiple
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interterers on passive sonar bearing estimation. Previous known studies
have been restricted to single interferers and a special, random-

parameter, multi-interferer case.

7.2 - Conclusions

The numerical results presented in chapters 5 and 6 illustrate that

performance levels obtainable in the presence of highly anisotropic noise

fields are complex functions of the degree of noise anisotropy. The degree
of noisc field anisotropy ranges between two extremes. At one extreme is
the casc of multiple coincident interferers acting as a single interference
with a level of MM-I. The other extreme is MM, widely separated inter-
ferers cach affecting the estimation performance independently (at different
bearings, of course). The transition between different phenomena at each
extreme accounts for the complex behavior of the bearing estimation per-
formance metrics. Specifically we can make the following conclusions:

i L) All three standard deviation metrics exhibit similar behavior in
~each of three distinct regions of target-to-interference separation.

For remotely positioned interference clusters (figure 5.5), the Cramer-

Rao bound is unaffected by the directional interference thus indicating
a complete interference rejection by the optimal processor. The SBT
interprets an increase in the number of remote interferers as a slight
P Increase in equivalent isotropic noise level. Again, the separation of

interferers is irrelevant. At intermediate separations of the target

and interference-cluster a peak, or relative maxima, is observed for

k all standard deviation metrice. This peak occurs when the target and
closcst interference are approximately one resolution beamwidth apart.

The degradation of the SBT performance over the optimal estimator in




this Intermediate region is primarily affected by the interference
separation, A8 (see figure 5.6). In other words, the performance loss
ot the SBT relative to the CR bound increases dramatically with increases
in the total interference power received from bearings approximately one
resolution beamwidth on either side of the source bearing. When the
tarpet and interference cluster are coincident, the effect of decreasing
interference separation is again dramatic. For small separations, the
SBT interprets an interference cluster in this region as a component of
the source field. The effect is an increase in the received coherent
ficld and a corresponding decrease in standard deviation of error (often
below the CR bound). As A6 increases, the amount of interference power

concentrated one beamwidth to either side of the source bearing increases

and hence the standard deviation of error increaseslas A® increases
(figure 5.7). The same phenomena affects the CR bound but at a slower
rate.

Multiple interfering noise sources bias the source bearing estimates
of the SBT in the direction of the interference cluster. Peak bias error
occurs when the closest interference is within one resolution beamwidth
of the source. Peak SBT bias increases linearly with decreasing inter-
ference separation and appears to be directly proportional to the number
of interferers (figure 5.11).

In the presence of multiple interfering noise sources, the ML and
SBT standard deviation metrics are approximately inversely proportional
to the square-root of SNR (figures 6.2 - 6.4). For isotropic noise,

%

the same (SNR) ° dependence occurs [19] and, hence, the degree of noise

anisotropy is seen to affect only the overall random error magnitude and
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not its functional dependence on SNR. The peak SBT bias error is
inversely proportional to SNR and directly proportional to the number
of closely spaced interferers (figure 6.5). Consequently, the peak
SBT bias is approximately inversely proportional to the signal-to-total-
intcerference ratio, S/MM-I, arriving within a resolution beamwidth of
the target.

The ML and SBT standard deviations of error for multiple, remotely
positioned interferers (like the error for isotropic noise [19]) vary
inversely with 3/2 power of array size (figure 6.9). The peak standard

deviation metrics decrease slower with increasing array size, varying in

-1.37
proportion to LL (figure 6.10). For coincident target and inter-
-3/2
ference cluster, the array size dependence ranges from LL to about

Il

LI, showing a weakening dependence on LL as the number of interferers
incrcases (see figure 6.11). Also, the SBT bias metrics exhibit a
dramatic decrease with higher resolution (larger LL) -- the improvement
being most significant with the larger numbers of interferers.

With few exceptions, the theoretical and simulation measures of
SBT performance consistently exhibit similar behavior although the
simulation standard deviation is typically higher than the theoretical
measure. In those cases where a bias metric discrepancy is suggested,
the simulation bias tends to be lower than its theoretical counterpart.
Four possibilities are suggested in section 5.3 as contributing causes

of this discrepancy.

7.3 - Recommendations for Further Work

A natural extension of this research would investigate the effects

of multiple, high-level interferers and distributed (possibly non-Gaussian),

anisotroplc noise. Since it is apparent that frozen-design, sub-optimal
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processors cannot tolerate nearby high-level interference, nulling or
interterence-cancelling sub-optimal processors and adaptive, maximum-~
likelihood estimators must be examined. Although considerable research
has bcen done on optimal, adaptive estimation, we are aware of only
Machonald's [18] study of sub-optimal processor structures in the presence
of a single, high-level interference. Also of interest is the possibility
of improving processor discrimination against multiple, coherent inter-
ferences (high and low level) with three-dimensional, planar, and non-
uniform linear array geometries. Several authors (e.g. [18], [19], [5])
have cxamined the performance of non-uniform linear (usually symmetric)
passive sonar arrays for the isotropic and single-interference cases.

The methodology of this investigation could also be expanded to
include the effects of multiple, non-stationary interferers and non-
stationary signals. Propagating components are often non-stationary due
to multipath transmissions and platform dynamics. Noise transients and
sonar countermeasures are also sources of non-stationary interference.
Such an investigation might prove fruitful for certain cases of non-
stationarity (e.g. non-stationary noise processes describable as locally
stationary [3]).

The Cramer-Rao bound was derived in chapter 2 under the tacit
assumpt lon that the source bearing was the only unknown parameter in the
signal-plus-noise model. This is, of course, untrue in practice. It
would be interesting to examine the behavior of the CR bound for the case
of multiple, unknown parameters. This is especially so in light of the
sub-optimal processor's assumed ignorance of the directional noise para-
meters. Such an investigation would require derivations (such as in

chapter 2) of the J?2 elements of the Fisher's information matrix [33]
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where 0 is the number of unknown signal, noise and interference parameters.
The CR bound on the variance of any unbiased estimator of the jth unknown
parameter is, by definition, the (jj)th element of the inverse Fisher's in-
formation matrix.

Another possible area of investigation might address active sonar
processor performance in the presence of multiple interferences. Here,
source range and range-rate are also unknown, but required parameters.
Althouph the directional noise sources are commonly signal dependent in
this case (target-like scatterers), sonar countermeasures possibly con-
stitutce signal-independent interference. Background noise transients may

also represent directional, signal-independent interference.




APPENDIX A

DERIVATION OF THE LOG-LIKELIHOOD RATIO

Equation (2-9) defines the Fourier characterization of the total,

recelved data vector as

.
—

xD L [xl(j“’o)’ xz(on): cesy X-L(jwo): xl(jwl). covey xL(ij)] i
(a-1)
T -juw, t
where Xp(Juy) s / xp(t) e 1
0

and xt(t) is the real waveform received by the £th hydrophone over the

dt (A-2)

interval [0, T]. The definition in (A-2) of the components of is as
linear transformations of the real, Gaussian temporal processes suggests
that Xz(jwi) is also a Gaussian random process. The components of i; are
by definition, however, complex random processes. The formal definition
of a complex, Gaussian process [6] requires that (1) the real and
imaginary parts of the complex process be jointly Gaussian and (2) the
covariance matrix of the real and imaginary parts be expressable in an
anti-symmetric, block-matrix form. By the definition (A-2), the real and
imaginary parts of X (jwi) are jointly, Gaussian when xz(t) is a Gaussian
process. The second requirement also follows from the definitions in
(A-1) and (A-2). The interested reader is referred to chapter 2 of the
dissertation of W. Bangs [2] for a detailed proof of the validity of this

requirement. Specifically, Bangs proves that

e ) (B - e =] = R]]
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and

‘ - S} S § -\
E lRe [xD] © Im [xD] = -E{Im [XD] - Re [)%]i
where Re [*] and Im [-] denote the real and imaginary parts and where ib
is defined in (A-1).

=N
Since the data vector XD satisfies the requirements of a complex,

vector Gaussian random process, its pdf can be shown to be [6]

p(‘ib‘up) - (‘n

. N
where XD is assumed to have a zero-mean,

L

P

) gt o g-’x’n *gﬁp'l % ; (a-3)

p=0or1l,
Hl denotes the signal plus noise hypothesis,
H0 denotes the noise only hypothesis,

=i
EH is the covariance matrix of XD under Hp and,
P

|5“ I is the determinant of 5“ s
p p

The covariance matrices are defined as

K - B ] T

where, from (A-1) and (A-2), an arbitrary element of EH is
P
T T -j(w,t - w u)
c b i
E {xm(jwi)xn(jwk)§ Io dt é du ngm(t)xn(u): e - 1

Since x(t) Is assumed to be zero mean and stationary we can define the cross-

correlation between phones as

- . |
Rmn(T) Rmn(t u) E }xm(t)xn(u)

|




"and rewrite (A-5) as

T -Jo,t T -j(w, - wdu
f dTRmn(r) e 3 e A & du
0 0 (A-6)

E :Xm‘j“’i) xgu%)}

When T is much greater than the correlation time of xm(t) then the second
integral in (A-6) can be approximated as T times the Kronecker delta

‘1 1=k

*1ic = lo i4k

and the first integral approximately equals the cross-power spectral

density between the m and nth phones. Hence, we cai write
; Cirs - o
E ;Xm(Jwi) Xn(ka): =T an(wi)dik (A-6)

where an(wi) is the cross-power spectral density at wy .
Equation (A-6) allows us to express the L x N covariance matrix

EHpin the following block-diagonal form

= ==

l.(-l{ ((‘)o) g ses e e 9_
P

'
L [ K, () 0 (A-7)
P ’ P "

. \
0 0 e wy 56 B K (wy)

i X p

where 0 is an L x L null matrix.

' ’A . ’
EH (mi) = E' X(wi) X (wi)‘ is the L x L cross-covariance matrix
P
at the ith frequency, and

2
X(wi) is the vector of L components of XD corresponding to Wy




The block diagonal form of the total covariance matrix in (A-7) is the

objective of the Fourier characterization of the received data given by

equations (A-1) and (A-2).

With fﬁ rewritten in the form
]

i 3 A ! ! A
XD = [X (wo), X (wl), X (wz), Sesini Xk (NN)] (A-8)

and EH in the block diagonal form of (A-7), it is easy to show that the
P

probabilities defined in (A-3) become
AR N ' i A % "=l 2

p(xDle ) =(r 1 IKH (wi)' exp{-) X (w) Ky (w)) X (wg)

9 1=1|""p 1=1 ; ¢ £
(A-9)

The log-likelihood ratio is by definition,

p(—inlﬂl’ BT)

2()%'%) = tn P("fnl'*o)

and upon substitution of (A~9) becomes

N K;;I N =1
£ 8. = &nf 1 J——v£ - 'f*(m)'-li‘(m)-)-(‘*(w)' i.( )
(KD| i) A, %, | 121{ e 5 * T
1

N lKH()'__\* 1 Ak -1
L £n IKHIl X 5“1 X + X EHO X (A-10)

where, for simplicity, the frequency subscripts have been suppressed and the

"prime" notation used in defining the submatrices in (A-7) has been dropped.

Evaluation of the inverse of K, is facilitated by the following
1

matrix identity for matrices of the form

e

ot b e




ey

sl

127

(A-11)

Equation (A-11) is easily verified after a minor amount of algebraic

manipulation. Recall from equation (2-20) that the data covariance under

hypothesis H1 is
Ky =T8S ?': ¢ + Ky (A-12a)

1

and, when no signal is present,

EH = EN (A-12b)
0

where EN is the covariance matrix (at the implied frequency) of the Fourier

characterization of the total received noise vector. Combining (A-11) and

(A-12a),
_14 * = |
=1 -1 TS EN aa EN
My ™ LCT =1
1 1+ TS a §N a
=1 g ol ] =1
=Ky -op K a3tk (A-13)
2 A TS
where 9, = S =T =y
1+TSa K a

Substituting (A-12b) and (A-13) into (A-10), yields

2% L ¢ -14
A - (A-14)




The ratio of matrix determinants in (A-14) 1is evaluated by using

the matrix identity

1 ‘ll

E=lé

and equation (A-13):

| o]
By

e N

(ENI . tﬁu—l - o,i EN- aa _lgN’l l (A-15)

2 N4k =1

ll_- opaa K I

-1

-

L O
The m, n - element of the matrix a a EN is
L -j(m - p)a
A A% =i o pn -
aa EN _— = Z e KN mn =1, 2, ..., L
p=1
L
i = e_j (mA) z e+j (PA) l(an (A—16)
p=1
F where A= uw g’cos 0 k=0,1 N and
b k c T’ » ’ LA L6

KNP“ is the p, n-element of EN-I.
Since the row-index m in (A-16) appears only as an exponent, the deter-
minant in (A-15) can be further reduced, since the addition of 2 constant
times the rth row of any matrix to the sth row of that matrix does not
change the value of its determinant. Hence, if each element of the first
2 A% -j(r - 1)A
row of I - opaa EN is multiplied by -e and added to the

corresponding elements in the rth row for r = 2, 3, ..., L, the following

expression is obtained:




i LRl L 0 e 1
(A-17)
2 L 4ypn)  ps
where Cs = Op Z e KN
p=1
-§(S-1)A

In a similar fashion, we can multiply the sth column of (A-17) by e
and add it to the first column for each s = 2, 3, ..., L without changing

the value of the determinant:

L B 5 3
‘ °| =11 - Z e j(SA)C -e-jACZ -e jA03 oo -e jACL
lEl‘lll s=1 -

0 1 0 oo 0

0 0 1 oee 0

0 0 0 se 0

(A-18)
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Expansion of the determinant down the lst column yields

[%,| L
0l _ 1§ 38

"—‘Hl | s=1 .

2 ¥ L g g
“t~a 11 g8k 43p ps
s T g=1 p=1 =
2 Bk aen -8
-1~ o, 7 ] tip -'SNPS e
s=1 p=1

el (A-19)

Substitution of (A-19) into (A-14) yields the desired expression for the

log-1ikelihood ratio
; |
A N St 2 N O T SR -1 A
; (XT)IOT) . 121 )+ o, X kT 3 Ky x| (A-20)

4 TS
where a_ =

- % -1
1+ TS a EN a

5 = S(wi) is the signal power spectral density at Wy,
l—(N_] is the inverse total-noise covariance matrix at wi,
T is the observation interval,

z—a! is the target delay vector at wi. and

.)E‘ is the L-dimensional received-data vz=ctor also at the frequency Wy

Equation (A-20) appears as equation (10) in chapter 2 of the text.

T - v s - W




APPENDIX B

DERIVATION OF EQUATION (2-21)

The CR bound requires the expected value of the second derivative
of the log-likelihood ratio at the arbitrary frequency i within the band-

A
width of the observation vector random process, X (wi):

2 2 2
2 2
o Po. v 1% s =1
3_5—.1,_32(“_1’_ +—L 3 Ky XX K a
Bu1 oy TS o
2 2
30T A % * =1 4 % =13 30T =N % =l . % =1
+2—= a & EN XX _I_(_N a+2—a EN XX K A
Ju Jyu N
2 ax x x —laagx =14 2 S =1 aoax =1 Y
+o0,a éAENXX l_(Na+oTa Ky XX]_(NA_A_a
i 2 35 x -1 3 3 % -1 =3
opa A K XX K A a (B-1)

™
From equatrion (20) of chapter 2 the expectation of the matrix X ° X is

= TSaa*-i-l(_N (8-2)

=L

‘_\ *' X 3
o L

The expectation of the second term in (B-1) is

2 2 2 2
3 0o - - 90 ) =
—TT:*&IEET(\S(J*;!_(NI-;:sTT:*I_(N [Tsa’i'#& 512’]
u op
Z2 2 2 2
da S % 1 a8 % <1, 90 = % = TR
=TS —p— a _lgN a a 5‘ a+—r—a §N a
ou ou
322
g N\ x -1
=—2'I:a K a (—f%) (8-3)
o T
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The expected value of the sum of the 3rd and 4th terms of (B-1) is

230T —‘*A* -IE‘isi}*'l(—lJ+J* —IE‘T(‘R\*' - 2
el e B e s . B R B
2
ao'[‘ 2k X “lya s =-la L -1 1 2 % -1
=2 — (TSja A ENaasqa+a§N aa K, Aa
ou
A % * -1 3 D% =1 =N
+a A 5“ a+a _IS.N A a
2
23" :(1 = EN—I..\) A*A*EN‘I_“*'J*EN_IA -s]’
=2 —- + TS a a)’ |a a+a a
3 L a
" g
2
W0 rg \o * x -1 = "
’2—(—2—8 A Ky tK A a (B-4)
au a
T
Similarly, we take the expectation of the sum of the 5th and 6th terms of
(B-1):
2% x % "1 |il-\*) -l 2 4% ‘IE‘_\_L*I -1 2
opa A A Ky E) X’_ISN a+o,a Ky lXX‘ENA_A_a
2 *x % Y aagax T1la ax laax -1 &
=0 TS[a &AEN aa EN a+aL(_N aa EN AAa

]
a
|
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®L

*

[
e
(e |

]

1>
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(B-5)

The last term of (B-1), upon taking its expectation, becomes




s 2 ik x - 24a%x % -1
Opld ARy 2 +2o0,a A 'EN

A
T a

(B-6)

Substituting (B-3), (B-4), (B-5), and (B-6) into (B-1) yields, for the

expected value of the second derivative of li’

2 2

2 Mk % 2 as s =1 o
+2Tso.la " A Ky +20, a A K Aa (B-7)

The underlined terms of equation (B-7) can be combined for further simpli-

ficationg

A % % %
TS[a A ARy

21
=0T 2a

Finally, substituting (B-8) into (B-7) yields the desired result --

equation (2-21) in chapter 2.




APPENDIX C

DERIVATION OF CLOSED FORM EXPRESSION
FOR DOUBLE SUMMATION IN EQUATION (4-28)

The first double-summation in equation (4-28) is quickly evaluated

as,
7L 3 L
I 1, @-» =27 2-27
=1 p=§'*1 £=1 p=%+l
L L
2
= %'{ § L-] r +-%}
£=1 r=1
B
3 3
-1 -2--% (c-1)
r=1

A similar, but longer, process is followed for the second double summation

in (4-28):

L L

2 L 2 L o o
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£=1 p=5+1 £=1 p=3+1
I, L
Z 3 WHE-r-2)a -j¢-r-%ia

=%y 7 (F -r —-E) e +e

£=1 r=1

L
-iz @ - - -
i e %Z I_e-!-jm fe jrQ _; ejm I e jrﬂ_%; ejm ]« jrﬂ}
L

r

L
+j50 g & 2
ke 2{2&3&12;5:9 _Zejmxre+jrn_%§ejmze+jm}
£

r L r

= j sin %ﬂ [% e300 ) IR L ) e—jLQ ! re+jrg] - % cos %- Q

% z ejlﬂ Z éer




|
T
i
U
[

where all summation indices run from 1 to-% .

Due to the equality

£0 jm
3{2 ’ (0'3)

there is only.one unique summation in (C-2), for which the following identity

applies:
L
ie j(—+1):z L+2 L_ 8
2 ejlfl= L i s 2 X ej( A ) sin ( 2
¢ 19 sin 2
1-e 2
j(L + 2)
w Ge " (C-4)
where we define,
sin(—-~
: (c-5)

sin (

Substitution of (C-4) and (C-3) into the bracketed term in (C-2) yields,

N
= L+2

4 2)9) S ('%l)*(s_;l)c ¢ (T)“)]
[ b e -2

ac :
=23jcC x (C-6)

L+ 2 L+ 2
= j(—- Q -j( Q
[Z le-jm 2 ejrsz ; jeq yrejm stk 2 ) (jac 2 )
L

From (C-5), it is easy to obtain




(c-7)

e [beoe(} £)- e (8]

Substitution of (C-7), (C-6), (C-5), and (C-4) into (C-2) results in the

following final, closed-form expression for the double summation:
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APPENDIX D

NUMERICAL RESULTS FOR

EXTENDED SNR VALUES

This appendix presents the bearing estimation error results

obtained for extensions of the baseline SNR to 0.5 and 2.0. The three

standard deviation of error metrics appear in figures D.1 - D.7 and the

two SBT bias error metrics appear in figures D.8 - D.1l4 as functions of

the target-to-interference separation Y, where

- ()

T

d

20 feet, ¢ = 5000 ft/sec,

LL = 10 hydrophones, INR = 0.1.

In figures D.1 - D.7 the following legend applies:

e A i

)'(cos eT - cos eI ),

6. = mean interference bearing,
OT = target bearing 90°,

0.128 seconds, KK = 13,

CR Bound on the Standard Deviation of Error of

Any Unbiased Bearing Estimator,

Approximate Theoretical SBT Standard Deviation of
Error,

Simulated SBT Standard Deviation of Error and

90% Confidence Belts (20 replications per sample)

for SNR = 0.5 and SNR = 2.0, respectively.
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The solid line shown in the bias error results of figures D.8 -

N.14 represents the approximate theoretical SBT bias metric while the

gsimulated SBT bias results are depicted as above for the random errors.
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APPENDIX E
NUMERICAL RESULTS FOR
EXTENDED ARRAY SIZES
This appendix presents the bearing estimation error results
obtained for extensions of the baseline array size (LL) to 20 and 40
hydrophones. The three standard deviation of error metrics appear in
; figures E.1 - E.5 and the two SBT bias error metrics appear in figures
E.6 - E.10. The appropriate baseline values of the metrics are repeated
in figures E.1 - E.10 for comparison. The random and bias errors are

presented as functions of the target-to-interference separation, Y, where

2% d
Y= ( T)KK(C)(cos eT - BI),
6_ = mean interference bearing,

1
ST = target bearing = 90°
T = 0.128 seconds, KK = 13,
d = 20 feet, ¢ = 5000 ft/second
SNR = 1.0, INR = 0.1 .
In figures E.1 - E.5 the following legend applies:

CR Bound on the Standard Deviation of Error of

Any Unbiased Bearing Estimator,
_______ Approximate Theoretical SBT Standard Deviation of
Error,

] ] ] Simulated SBT Standard Deviation of Error and
% A and O 90% Confidence Belts for LL = 10, 20, and 40
J J J hydrophones, respectively. For figures E.1 - E.10

the SBT simulation sample sizes are:

153




CONFIGURATION SAMPLE SIZE

LL = 10, MM = 1 60
LL = 10, MM = 2, 4 40
LL = 20, 40 : 20

The solid line shown in the bias error results of figures E.6 ~ E.10
represents the approximate theoretical SBT bias metric while the simu-

lated SBT bias results are depicted as above for the random errors.
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