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• • Introduction

When an optical system is being used, the quality of its per-
formance is always the main concern. The existence of aberration
and diffraction in image formation by mirrors and lenses were well.
appreciated, even back in the 17th century. Rayleigh’s ~)‘Zf limit
and “the Streh.l ratio”are among the most accepted as the creterion
for permissible wavefront errors. However the Strehi ratio, like
the Rayleigh creterion, is only useful for highly corrected system.
In recent years, the application of more sophisticated detectors
has magnified the problem of determining the quality of an optical
system , or system-and sensor combination. The introduction of the

• - concept of transfer function has played an important part in impro-
ving the technique of assessment.

The transfer function is valuable and powerful because it has
many advantages;
1) The validity of using an optical transfer function rests only

on the two simple postulates, superposition and shift variance.
The former is satisfied for the intensity in the image of an
incoherent object, and the latter merely requires that the
form of the image of a point source, that is the point spread
function, be invariant over a small region of the image plane.

ii) The applicability of the transfer function to image formation
is independent of any specific theory of light, of the spectral

• composition of the light, of the shape of the aperture of the
optical system, and also of the type & magnitude of aberration,
provided they are not too large to satisfy the requirement of
the shift invariance.

- 
iii) The optical transfer function may be calculated directly from

the design data of any system, arid it may also be measured
for the system under testing. It has thus made possible the
prediction and checking of the expected image quality.

• ——— 1 ———
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iv) One of the greatest advantages to be gained by using optical
transfer function is that of cascading system elements. This

cascading property permits the lens transfer function to be

• combined with that of the detectors, be it a photographic film,
a image tube or even our eyes. In general, we can simplify the
optical system by considering the cascading process. The system
transfer function may be written as

n
T(R) T1 Tm(R) (1)

1

• where Rz spatial frequency

= m : the mth component in the optical system

*For our specific interest , evaluating the optical system per-
formance characteristic of airbone designators, the optical. sys-
tem may be considered as Figure 1. Because of the linear rela-
tion between each component, the system transfer function is
simply the product of the transfer function of each component.

MTFO

lens

Figure 1 Components of a typical optical system

* This study was funded by US Army Missile Research and

• Development Command, Redstone Arsenal , Alabama.
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This study consists of reviewing the theory , calculation and
measurement o± the transfer function, and is discussed into the
following sequences ;

I. Concepts arid Definations
II. Calculation of Transfer Function

III. Measuring Instruments and Techniques
• The design concept of an optical measuring system is based on

the technical evaluation of the performance of a cassegrain tele-
• scope. The effects on modulation transfer function,due to wave-

front error, image motion and central obstruction when cassegrain
telescopes are used, are examined .

The choice of suitable criteria and method for testing is dis-
cussed. Results and data analysis are given as how to perform
and judge the performance of an optical system based on MTF test
from a simple laboratory alignment.

--- 3 ---
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I. Basic Concepts and Definations

The performance specification of an optical system is primarily
intended to describe its ability to produce an image which will be
a true representation of the object being viewed. The quality of
the image formed by an optical system will be mainly determined by
the following three factors ;

a. aberration in the optical system
b. wave nature of light
c. inaccuracy incurred due to manufacturing processes

When a system design is such that the aberration can be neglected
and the errors of manufacturing are so small that they nearly have
no effect on the performance, the quality of the image formed by
the system is said to be diffraction limited . Thus the image of a
bright point formed by an optical system is not a geometrical point

in the image plane , but a light distribution consisting o± a small
bright core surrounded by a more or less extensive halo. Consider

a lens system which forms images of an incoherently illuminated
narrow slit . In the ideal case , the image would be an exact replica
of the object , as demonstrated in Figures 2a and 2b. This can never
be realized because of diffraction, the best that can be achieved is
the familiar distribution of intensity in Figure 2c. If now there
is aberration the image is much more complex, as illustrated in Fig.

2d.

(a)  (b)  (d)H H II _ 
_

object idea]. image diffra tion asymm~trical
limited image aberration image

Figure 2 Images
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The intensity distribution in the image of a narrow incoherently

illuminated slit is know as the line spread function of the optical
system forming the image. If the slit is replaced by a pinhole, the
corresponding function is referred to as the point spread function.
A sinusoidal target is considered the best, because the image of a
sinusoidal target always has intensity distribution that is sinuso-
idal and similar to the form of the target.

The effect of diffraction is to reduce the amplitude of the image
intensity distribution. If, in addition, a aberration is presented
the amplitude would be further reduced . The amplitude reduction
due to aberration is accompanied by a phase change.

Let us consider a series o±~ sinusoidal targets of varying spatial
frequency but of constant amplitude as subsquent test objects.  If N
is the distance between successive peaks of the target (in millimeter),
the spatial frequency of the target is defined as

R = 1/N cycles/rain (~ )

The images of the above targets will be of reduced amplitudes, and
the corresponding normalized amplitudes , the modulation , can be then
calculated for each spatial frequency . The variation of modulation
with spatial frequency defined its Modulation Transfer Function,i.e.,
MTF . Figures 3 & ~1. give the concept of modulation and typical MTF
curve respectively . If the light distribution in the object and the
corresponding image is analyzed by Foruier Transform, the MTF may be
defined as following,

Fourier Transform of Image Intensity Distribution
MTF = Fourier Transform of Object Intensity Distribution

In the case of a lens possessing aberration, the effect of the lens
system is to cause a reduction in modulation, accompanied by a phase
change. This phase change is spatial frequency dependent, and it
contributes to what is known as the Phase Transfer Function (PTF).
Measurement of MTF and PTF combine to give the Optical Transfer Func-
tion C OT?).

--- 5 ---
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Bm~~ -Bmin
modulation = 

~~max ~min

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iritensit \J \j
1
Bmin 

_ _ _ _ _ _ _ _ _ _ _V ___________________

modulation modulation

ftHJ~IJ Jllt~I~_ _ _ _ _ _ _ _ _ _ _ _ _  

_ R R 2-~~R~~

Figure 3 Concept of Modulation

modulatlo: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

frequency

spatial frequency c/mm

Figure Z&’ Typical MTF Curve
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OTF of an optical system is likely to depend on the following

seven parameters; 1. aperture 2. field angle 3. inclination
of test target ~1. focal setting 5. color balance of illuminate
6. object distance 7. orientation of lens mount.

One of the oldest mer_t function for image quality is Rayleigh’s
twO-point resolution criterion . It stated that two point sources

of equal intensity are resolvable when they are separated by a dis-

tance corresponding to the radius of the first dark ring in the lens

diffraction patterns. Rayleigh’s two-point resolution criterion is

not all adequate for use as merit function for designing telescopes.
iri this study, attempt is made to establish tolerable levels of the

performance suitable for cassagrain telescopes , the design concept
of an optical test system which will allow technical evaluation of

the optical system performance , in terms of its MTF, is introduced.

Theory of Image Formation

The theory of image foruation can be formulated mathematically
by considering the intensity distribution in the image as the sum
of contribution of individual points in the object. Thus, if the
point spread function (distribution of intensity in the image of
a point) for the optical system is known, we can integrate point

by point to compute directly the intensity distribution of the

image. If B(u ,v) and B’ (u’ ,v’) are the intensity distributions

of an incoherently illuminated object and its image , respectively.

G(u’-u,v’-v) is the spread function of the optical system, such
that

B(u ’ ,v ’) JJ B (u ,v )  G(u ’-u ,v ’-v ) du dv (~#)

where u,v are reduced coordinates given by

u = -~~-n.sinLX~ , V = 1
~~

fli 5ino(Jt

--- 7 ---
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Figure 5 Canonical Coordinated for the Axial
Object and Image points

*Follow the notation of Hopkins (Figure 5) ,Xb eing  the convergence

angle of the marginal ray with the principal ray, arid ~ ,)~ are the

rectangular coordinated of the point in the object plane. Primes

denote the corresponding quantities in the image space.

Next consider the pupil function f(x0,yo), it is defined by

f(xo,yo) A (xo ,yo)e~~~~~0~~’
0) within aperture 

~ (6)
=0 outside aperture S

where (x0,y0) are reduced coordinates of a point in the pupil. If

a ray from an object point intersects a reference sphere at the

entrance pupil a point (a,b), and if the radius of the pupil is h,

then

& ~~~~~~~
-

~~~
- =-

~~~-- (7)

If the system is free from aberration, W (x 0 ,y0) 0 arid A (x 0 1y 0) 1,

so that f(xo,yo) 1 within the aperture. With a circular pupil,

--- 8 ---
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therefore , the wave lying outside the circle ~~~ y~ = 1 will not
be transmitted through the system , and f(x01y0) 0 for (x~+y~))1.
From the result of diffraction theory, the complex amplitude in
the image plane can be written as,

F(u’,v’) =ff:xo,yo~~e
i2 (u ’xo+v 0Yo)~~odyo (8)

The intensity in the image plane, G(u’,v’), is then given by

G(u ’ ,v ’ ) = IF(~~’ 
,v’ ~ 

2 (9)

The Fourier inverse transform of G(u’,v’) is represented by
g(s o, t0) ,  namely point spread function. Then , the application of
Parseval’s theorem to the above relations gives

g(s0,to) ff~~~f (xo,yo),f
*(xo_so,yo_to) dx0dy0 (10)

which, by a shift of the origin, reduces to

g(s0, t0) ff
~~~f(x 0+~ s0 ,y0+~ t0) .f *(x0_ ~ s0, y04t0 ) dx0dy0

(ii)
If b’(s0,t0) arid b(s o,t0) denote the Fourier inverse transforms

of B’(u’,v’) and B(u , v ) ,  respectively. Application of the
convolution theorem to the equation (~+) above gives

b’(s0,t0) = b (s 0, t0 ) .g ( s 0, t0 ) (12)

The foregoing can , therefore, be summarized simply by stating
that , with incoherent illumination, an object intensity function
B(u ,v) can be analyzed into a Fourier spectrum of spatial frequency
b(s01t0). The effect of the lens system is then to modulate each

• of these Fourier components in both amplitude and phase, since, in
general, the factor g(s0,t0) in the above relation is complex.

-—-9 -—-
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Each Fourier component b (s0,t0) appears in the image multiplied by
the response g(s0,t0) of the optical system . The image intensity

distribution B’(u’,v’) is then a synthesis of these modulated spa-
tial frequencies.

The frequency variables (s0,t0) used above can be simply related
to the structure of the object or image. By virtue of the in~ ~rse
Fourier transform relationship between B(u,v) arid b(s01t0) ,  the
length of one period, u of the frequency s0is given by u•s0 271,
so that , recalling the defination of u given in (5),

271us0= ~~ns1n, ‘s~~ 271

— 
,.
‘

~~~~~~ 1so nsjn~
*

where R is number of lines per unit length in the object. An

identical expression with primes gives s0 in terms of the number
of lines per unit length in the image.

For an object with a cosine grating of the form

B(u,v) = r+ j3cos2lT(us0+vt0) (1L~)

will always have an image of the same form, with intensity distri-
bution given by

B ’(u ’,v’) = r+/5T (s0,t0).cos [2g(u~s0+vt 0)+e(s0,t0))
(15)

where T(s0,t0) and e(s0,t0) are related by the formula,

T(s0,t0) ei8~~o~to) = D( s0,t0) = so,to)

Jj~~ei k [ xo~~ 5o~ Yo~~ to) - w 0~~s0,~,o4t0~J dx0dy0
(16)

where T(so,t0) is the Modulation Transfer Function, e(so,to) is the

--- 10 ---
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Phase Transfer Function,(PTF), and D(so,t0) is the Optical Transfer
Function (OT?), and A is the normalization factor. Comparing the

above equation, it demonstrates the fact that the Optical Transfer
Function is the normalized inverse Fourier transform of the optical

spread function. Therefore, the above formulation reassures;
1) the image of a sinusoidal type object is itself sinusoidal
2) the worst effect of either diffraction or aberration is to

reduce the image contrast , if the aberration is asymmetric
then the image will displace sideways by an amount that is

• corresponding to the phase change .

• 3) if the system is diffraction limited(free from aberration).
then the OTF reduces to

D( 
~~ 

= 1/A .ff
’
~~dxodyo 

(17)

the ideal lens MTF for circular aperture is given by

TiC So) = -~ -(2n-sin2ri) 
(18)

where cosri = ~~
-
~~~

--
, s0is known as the reduced spatial frequency.

11 — — —
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II. Calculation of Transfer _Function

Many methods have been devised for evaluating the OTF for an
optical system. Several methods are delineated below:

i) obtain OTF from equation (4), if the spread function G(u’,v’)
• is known

ii) since the determination of the actual spread function is some-

what difficul t ,therefore the approach from the convolution
of pupil function over the aperture technique may be used

iii) calculate the wavefront aberration at various points in the
aperture.

• In fact, calculation of the Optical Transfer Function is a lengthy
effort  , even when done on a fast computer. Analytical solutions
and numerical algorithm for the computation of the integrals have
been devised by many researchers, though their techniques various
their results are surprisingly consistent~~ The value of the ideal
lens Modulation Transfer Function, Ti’(so,to) has been calculated by

using (18) and is reproduced in Table 1~
2 T~ (so,t0) can be used

as a basis for extending the criterion for diffraction limited per-
formarice to include the effect of a central obstruction and image
motion as well as wavefront errors.

(~o,O) T~(so ,O) (so,O) Ti(so,O)
0.00 100 1.10 33.68
0.10 93 .64 1.20 28.48
0.20 87.29 1.30 23.5 1
O.~30 80.97 1.40 18.81
O.’iO 74.71 1.50 14.43
0.50 68.50 1.60 10.41
0.60 62.38 1.70 6.81
0.70 56.36 1.80 3.74
0.80 50.46 1.90 1.33
0.90 44.70 2.00 0.
1.00 39.10

Table 1 Diffraction limited MTF for a circular aperture

--- 12 --- 
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a) Effects of wavefront error on the image quality

The optical wavefront is a surface of constant phase for the
image-forming light. A point source of light generates spheri-
cal wavefronts which correspond to the outward radiating light.
In a similar manner, light traveling inward with a spherical
wavefront will converge to a point (the diffraction effect for
the time being is ignored). Figure 6 shows the wavefronts from
a point object in process of imaging waves from one point to the

• other. The purpose of the lens is simply to convert one spheri-
cal wavefrorit surface into another.

Let us now consider the effect of inserting an irregular ele-
ment into the light path. The random wavefront effects , due to
irregularity such as turbulence or imperfections together with

the lens aberration produce wavefront disturbances. The light
will no longer converge to a single point, this is shown in
Figure 7. The greater the magnitude of the wavefront disturbance
the more rapid the fluctuation, or the larger the aberration , or
the more scattered the directions of the light propagation become.
Therefore, the image “point” appears larger.

lens

~~~~ ~~~~~~~~~~~~~age

wavefront

Figure 6 Focusing Effect of Ideal Imaging System

--— 13 -—— 
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• turbulence
• or imperfection

Figure 7 Effect of Optical Wavefront Disturbances

A mathematical description of this effect can be obtained by
letting W( x0,y0) be the wavefront deformation. The pupil function
f(x 01y 0 ) may be represented by

f(x 0 ,y0 ) = e~~~~~o’~ o~ when x~ + y~~ 1
(19)

- 

= 0  x~~+ y ~ J 1

Optical quality is often described by the root mean square of
the wavefront errors (rms errors) . Indeed, various computational
and measurement schemes have been developed in the optical industry
to determine the r~ns error and to reduce it as much as possible.
Unfortunately, there is no simple relationship between the rms
error arid an image quality parameter like the optical transfer
function ( OT?). However, if the rms error is less than 1~f8 , the
MTF degradation factor may be determined from Figure ~~~ due to a
recent study of Itek. The product of the MTF degradation factor
arid the aberration-free transfer function yields an approximate
transfer function for that wavefront error. The thus calculated

--- 14 ---

t~~ ~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~

_ _

~~~~~~~~~~ ~~~~~~~



• ~~~~~~~~~~ • - 
•

transfer function is more reliable as the rms error decreases. In

general the wavefront is given by the expression

• W = w20p
2+ w40p

4 + w60p
6 w8~ p

8 + w01Y + w02Y
2

+ w03y3 + (w 21) 2y + (w 22)
2y2 +(w41)

4y (20)

where w20,w40,w60 and w80represent defocusing 1st, 3rd-, 5th- ,and
7th-order spherical aberration, respectively ; w01 corresponds to

a tilt of the aberration function; w02 and w21 represent primary
astigmatism and coma , respectively ; w22 and w~1 correspond to 2nd-

ary astigmatism and coma; and w03 is an ellipitical coma term.

>7/”
1.0 - - - - I

MTF degradati n

O 
I I •

1.0 2.0
normalized spatial frequency

Figure 8 Multiplying factors for various rms wavefront errors

b) Effect of Image Motion

Experiments performed with telescopes usually require longer
exposure times. During the course of exposure the image will
move. Image motion is always present in any optical system, but
it is of small magnitude and does not cause any appreciable error.
In general there are four important typeS of image motion, as shown
in Figure 9, due to the work of Rosena~

74. Linear image motions
arise from uncompensated angular rates, such as inadequate sta-
bilization or improper image motion compensation; parobolic image

--- 15 ---
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motion is due to inherent geometric errors ; sinusoidal image motion

• is due to vibration; and random image motion occurs when many of
• causes are at work in an unrelated way.

• ~ image displacement)

linear 
~ ( time )

• ‘:1

~arabolic :~~

sinusodial 

~~

random ~~L 1AA ~• V
-4 ,-

Figure 9 Comparison of Four Important Image Motions

The modulation transfer function due to image motion can be
estimated by a graphical techniqu~~. The estimate is made by
several discrete modulation transfer factors, where each of these

--- 16 -——
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factors are estimated by graphically determining the modulation
reduction of an originally fully modulated ( MTF = 1.0) sine wave.
The modulation fransfer functions of these four types of image
motions as given by Rosenau *4 are shown in Figure 10. As one

numerical example of’ linear image motion, consider an aerial cam-

era which has exposure time te of 1/300 second. Assume that its

focal length f is 6 inches and that the airplane’s velocity V is

300 feet/second, and its plane altitude h is 10,000 feet. In this

case, the image velocity at the focal plane, Vj, is

V~=(f/h).V
• = 0.18 in/sec .

Thus, the image motion , a, is

a = Vite
= 0.006 in = 1/65 mm

Consequently, the “cut-off” frequency is 65 cycles/mm (i.e., when
a~1/65xnm , it is corresponding to k65 cycles/mm), and the M.T.F.
factor at 30 cycles/mm with ak 30/65 ~~

‘ 0.46, is 0.69 according to
Figure 10.

The most common image motion encountered in the long exposure
for a telescope is the random motion. The simplest model for

this type of image motion is the Gaussian point spread function,
the corresponding image motion MTF FACTOR Tm is given by

Tm e 2
~~
1
~~

2

where a is the magnitude of image motion and k is spatial frequency.

--- 17 ---
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T~k) 
Tm ;:

I I i i  I t l i j i  I I I I i t i t 1 L ~~~~

0.1 1.0 10.0 0.1 1.0 10.0

1.0 1.c -~~

SINUS ODIAL RANDOM 2 2 \ ~
T,(k) J0 ( ak) T~k ) e

27T a

0.1 0.1

• T,~k T1(k

ak ak
I I 1 1 1 1 1 1 1  ~~~ I I , I !bI I I I L

~~~

0.01 0.1 1.0 0.01 0.1 1.0

where k~spatial frequency
a magnitude of image motion

= Modulation Transfer Function
factor due to image motion

Figure 10 Modulation Transfer Functions for the Four Image
Motions Described in Figure 9
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c) Perfect Lens with Central Obstruction

The intensity distribution in space near the geometrical focus

of an error-free pencil of monochromatic light bounded by a
circular aperture has been studied by Zernike and Nijboer, also
by Linfoot and E. Wolf,*6 , Asakura and Barakat*?. The concept o±

an annular aperture is particular important in determining the
quality of a cassegrain telescopes. The ratio of obstruction,
é, is defined in Figure 11.

primary

secondary
=

Figure 11 A Typical Cassegrain Telescope

Consider a convergent spherical wave of unit amplitude,
issuing from a circular aperture of radius fi and having radius
of curvature f  = ~~ (Figure 12), at the moment of emergence.
The complex displacement (amplitude) at a point P(x,y) in the
space near the geometrical focus 0 is given by *6

u(R) (p ) = ikR
2 

e~~~~~~~~~~e*~~P J0(vp)pd~ (21)

where
ukR 2z/f2 , v kRr/f , k 27r/,. , r +(x2+y2)~ (22)

--- 19 -—-
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To allow for the effect of a central obstruction of a radius
R’=€ R , we substract from U~~~(P) the complex quantity

u~~
’
~~(p ) = ikR’2 eik 1e *iu P 2 

J0(v’p )edp (23)

and u’ kR’z/f2 , v ’ kR’r/f (24)

thus, the intensity at P(x,y) with central obstruction is then the
square modulus of the quantity

‘I

= 
~~~2 

~~~~~~~~~ e~~~~P
2 

j0 (ve)ede

- 62j
’ 
e~~

’P2

(25)

The problem now is the evaluation of the integrals occuring in
equation (25). The standard procedure for its evaluation is the
expansion of the exponential in a power series. Table 2 8 lists

y
P(x ,y)

Figure 12 Image Formation of A Circular Aperture
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values for the MTF degradation factor, T€ , for central obstruction

for diameter ratios ranging from ~~0.O5 to e=o.6o. When the nor-

malized spatial frequency

~ 1;e

the MTF degradation factor will approach to a constant value,

T~~ i~i2

• s/s0 
_ _ _ _ _ _  

0.1 0.2 0.3 0.4 0.5 0.6
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000(
.1. .8729 .988 .966 .9241 .907 .859 .788
.2 .7471 .985 .933 .866 .787 .672 .506
.3 .6238 .980 .912 .787 .636 .502 .393

• .24 .5046 .9724. .881 .763 .626 .490 .383
.5 .3910 .989 .946 .868 .759 .581 .433
.6 .2848 1.040 1.01~O .976 .843 .612
.7 .1881 I I 1.1~3 1.1~3 1.O~0.8 .1041
.9 .0374

1.0 0 1.003 1.009 1.097 1.183 1.328 1.553

_____  _______  

1.003 1.010 1.099 1.190 1.333 1.563
4Values for T~ taken from L. Levi,”Applied Optics” , Table 67

Table 2 Te as a Function of s/so

For a perfect lens with central obstruction, the Modulation Tran-
sfer Function is equal to the product of MTF degradation factor (Ta)
and ideal lens MTF (Ti). Figure 13 shows the diffraction limited
modulation transfer function for annuli with various amount of sil-

*9houetting . The effect of the annular aperture is thus to decrease
the radius of the first minimum of’ the diffraction pattern. The
extent to which the minimum is decreased depends upon the amount of’
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the central region of the aperture. Unfortunately,this gain in

resolving power is obtained at a considerable loss of intensity in

the diffraction pattern. A further constraint is the increased
intensity of the secondary maximum as the central obstruction is
increased. The introduction of a central obstruction reduces the
response at lower frequency and raises it at higher frequencies.
The cut-off frequency remains unchanged. A system of this type
has a natural tendency to exhibit reduced contrast on course target
and a slightly improved contrast for higher frequencies, particular-
ly when the obstruction is large.

MTF 

~~~~ 
_________

normalized spatial frequency

Figure 13 Modulation Functions of Annuli

Combination of Wavefront Error, Image Motion and Central Obstruction

The MTP degradation functions for wavefront error, image motion
and central obstruction, TA, Tm~ arid T~

, respectively , are defined

in the previous sections. Multiplying the ideal lens MTF, T~, by

any !~TP degradation function will give the MTF for a perfect lens
with that particular image degradation under consideration. These
three degradation functions are independent, so that multiplying the

--—22 -—-
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idea]. MTF, T~ , by all three MTF degradation functions will give the
complete lens MTF, T,

T = TAx Tmx T ~
x Ti (26)

Values for T~ may be obtained from Figure 8, Tmfrom Figure 10, and
T~ from Table 

2, while T~ is given in Table 1.
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III. Measuring Instruments and Technicues

The optical transfer function (OTF) or the modulation transfer
function ( MTF ) , its modulus , is now generally accepted as one of

the suitable objective method of assessing or specifying the image

quality of an optical system . For a full description of the per-

formance of an optical system , however , a large number of CT? or
MTF curves are required covering a range of spatial frequency , test
azimuths arid field positions. To obtain all this data and then
use it to determine whether the optical system has or has not an
acceptable performance is very time consuming and expensive.

• However, the test criteria may be carefully chosen so that to have
measurements which are representative of the overall subjective per-

formance of the optical system.

The Theory of’ MeasuririE Techniques

Many methods have been utilized over the past decade in order to
successfully measure the modulation transfer function of an optical
system. The type of’ method used is somewhat dependent upon the
reason for testing. Broadly speaking, the techniques can be broken
down into two distinct categories~ those involving scanning devices

and the interferometric type measurements.

A) Scanning Techniques
Consider a narrow incoherently illuminated slit G(u,v) which

is being used as a test object for an optical system . The image

of the slit (line spread function) has an intensity distribution
which can be represented by G(u’,v’), as Figure 14.

v

G ( u 
~~~~~ ,- “ u ’

~~~s1~ t ~~~~~~~~~~~~~~~ , v ’)
0 ject 

,,~~~~~ne spread function

Figure 14 Image of a Slit
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It has previously been shown that the Fourier Transform of
the line spread function is equivalent to the optical transfer
function of the system under testing. Suppose the spread func-
tion falls on a screen whose transmission varies in one direction
and is constant in an orthogonal direction. Thus the optical
transfer function D(s) is given by

D(s) = 4ff
°au ’,v’ e~~~

’
~ du’dv ’ (27)

where is photometric constant, and s 2lrR”f” is the reduced
spatial frequency. Expanding the above equation we have

D( s) = -3-Jf G ( u ’ , v ’) [cos(u ’s) - isin(u’s)] du’dv’

= G(u’,v ’) cos(u’s) du’dv ’

- G(u’,v ’) sin(u’s) du’dv ’

Re - ilm

= T (s) ~~~~~ 
(28)

where

Re = G(u’,v’) cos(u’s) du ’dv ’ (29)

1w = —i--fJ~~
G(u’,v’) siri(u’s) du’dv’ (30)

and

T(s)  = (Re 2 + 11n2)* = Modulation Transfer Function (31)

0(s) = tan~~ (1w/Re) = Phase Transfer Function (32)
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By far the most critical component in measuring is the target

it is not difficult to obtain an MTF if a good sinusoidal grating

is available. Recognizing ~he difficulty of producing 
accurate

sine wave targets, many other forms of target have been used to

improve the results, such as sine-cosine pairs, square wav e and
Morie’fringe, as shown in Figure 15, and other types of’ targets.
A typical MTF measurement for different types of target , Figurel6,

• thus can be arranged with the help of a specific grating.

(A) sinusoidal (C) square wave

4 -  
~~~~~~~~~~~~~~~~~~~~~~~

‘

~~~~~~~~~~~~~~~~~

-

(B) sine-cosine pairs (D) Moire fringe

Figure 15 Typical Scanning Screens

~~~~~~ ~~~~~~~~ [d~~ec~Or

light grating sflt
source

Figure 16 Arrangement for MTF measurement
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( 1) Sinusoidal Screen
If the form of a sinusoidal screen can be represented by an

expression of ( 1+sin(u’s+5)) and if L is the total amount of’
light transmitted by the screen. then

L = -ffJ~~ G (u ’ , v ’) ( 1~ sin(u ’s+6) ) du ’dv ’

= +17’ G (u ’ , v ’)  du ’dv ’ + 
+ff

a(u ’,v ’)sinu ’scos6du ’dv ’

+ ±ff~~~
G(u ’ ,v ’) cosu’s sinS du’dv’

= K +1w cos8 +Re sins (33 )

where
K = -j-Q~ G (u ’ , v ’) du ’dv ’

= total light in image which is constant

L = K + (Re2 + 1m2)* sin(&+e) ( 34)

If 6 is varied linearly, L will vary sinusoidally with an ainpli-
tude (Re2 + Im2)~ . Thus the Modulation Transfer Function can
be measured by using an incoherently illuminated slit, the image
of which is the spread function denoted by G(u’,v’) arid scanning

• the image with a series of sinusoidally transmitted targets.

(2 )  S ine-cosine Pairs Screen
As in the previous method , if a screen of form ~ 1+sin(u’s+&)3

is used first. The transmission of’ the spread function through
the target is given by,

• L K I M cos6+Re siri5

L - K = 1w cos6 + Re sine = L’

-—— 27 -——
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If the spread function is imaged through a target displaced
by 

~ 
cycle (ie. 

~ 
S~+ 7T/2) and if the transmission is now

represented by L’2, it follows that

L’ 1 Im cosS, +Re sin &,

L’2 = 1w cos6
~ 

+ Re sin g,,

T(s) = CL’2 + L~
2)~ = (1w2 + Re2)~ ( 3 5)

8(s)  +
~~~~~ = tan~~ (L~ / L~ ) (36)

The significance of equations (34) and ( 3 5)  is that by merely
measuring the transmission through two targets of the same sap-
tial frequency, but changed in phase by ~ 

cycle, then not only
can we obtain an expression for the MTF, but also the phase in-
formation is readily extractable.

(3) Square Wave Techniques
If now a square wave target is used, the corresponding res-

ponse is known as the square wave MTF and is somewhat different
from the sine wave response. Assume a rectangular type target

being used as a test object, the object O(x’) can be represented
by a Fourier series,

O(x’)B{1+4/,~-(cos27Tsx’ 
— 1/3cos2lT(3s)x’ + 1/5cos2lr(5s)x’

+ 

the corresponding image is represented by

I(x’) = B f  1 + 4,.f r [T(s)cosV~sx’ - 1/3T(s)cos2f l (3s)x’

+ 1/5T(s)cos27T(5s)x ’ + 

--- 28 ---
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If higher order harmonics in the rectangular wave could be
eliminated in some way , the measurement would be equivalent to

• that obtained by using a sinusoidal type grating.

( Li.) Morie ’Fringe Technique
When two gratings are placed upon one another, they produce

a Morie’ fringe, the waveform of which is triangular. The Morie’
pattern can be used as a test pattern in the measurement of MTF
instead of a sinusoidal grating.

( 5)  Spread Function Technique
In this method of measurement the intensity distribution in

the image of’ a narrow , incoherently illuminated slit source is
measured by scanning with a second narrow slit. Then a computer
program is utilized to perform a Fourier Transform operation on
this distribution to give the optical transfer function. Mathe-
inatically,

D(s) =ff G(u’,v’) e 21
~~~~ du’,dv’

Thus, if G(u’ ,v’) can be measured, then D(s) can thus be computed
directly. In actual practice the integral calculation is not
difficult to perform by means of a digital computer. A major
drawback with this type of measurement is the fact that in order

- to measure the rapid variations in intensity at the edge of the
spread function, a narrow slit is required. Associated with
this is a subsequent reduction in the illumination falling onto
phototube, thus making an accurate recording of the spread func-
tion an extremely difficult process.

(6) Edge Gradient Technique
• The optical transfer function can be computed indirectly by

measuring the intensity distribution in the image of an edge.
If the energy distribution in the image of an edge E(x) can be

--- 29 ---

______ • • - •



—-, —
~
•-—- — --•-•—-.——•—•- — —•--••-•

~
•-•-,-•—•—-• —• ----— 

~~~~~ ~~~~~~~~~~~~~~~~~~ 
——••••,- ••.—~~~~~ —‘- —•~ -•——-~~ -~-•-~ .—,‘ .•- —-

measured as a function of x, the distance across the image, then
the line spread function can be shown mathematically to be equi-
valent to the derivative of the edge gradient d.E/dx. Since the
optical transfer function is the inverse Fourier transform of the
line spread function, then it is possible to calculate the optical

transfer function from the measurement of’ the edge function.
To perform this experimentally, the image of the edge must be

detected by a narrow slit and a photocell, then the image can be
recorded on film and analyzed by means of a microdensitometer.
This technique has the advantage that the sinusoidal grating is

• not necessary ; however ,the analysis of the intensity distribution

in the shadow region is extremely dependent on the signal to noise
ratio and measurement made are of’ doubtful accuracy.

B) Interferometric Techniques
It was first shown by H. H. Hopkiris 1° that the optical trans-

fer function can be directly measured by means of a shearing in-
terferometer. With the advent of lasers in the past ten years,
and the need for very high-quality optics both in the laboratory
and in field environments, the interferometric techniques appears
to be ideally suited to single-wavelength measurements. There are
two basic type of’ interferometric measurements.
(1) Auto-correlation Method

The optical transfer function is previously shown to be equi-
valent to the autocorrelation of the pupil function f’(x,y),

D( s) +J1 f(x 1.y) ftx-~ ,y) dxdy (37)

where s is the amount of’ shear of the wavefront and is actually
equal to the reduced spatial frequency . The region of integra-
tion is the area of overlapped apertures as displayed in Fig. 16.
To perform this integration experimently a two beam shearing in-
terferometer can be used. If the wavefront aberration is repres-
ented by W (x,y), then

--- 30 
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• f(x,y) = e X~ 3~

Thus, if the wavefront aberration can be determined experi-
mentally, the above equation can be applied to calculate the
optical transfer function. Various types of interferometer
have been devised for this purpose.

Figure 17 Region of Integration for Frequency s/2
(2) Cross—correlation Method

The basis of the cross-correlation technique is arialogus to
the random noise, which is often used to measure the frequency
response of a communication system . In this technique there

are two developed photographic plates being utilized as random
charts ; one is placed in the object plane and the other acts as
a scanning screen in the image plane. The light transmitted
through the second plate is measured photoelectrically against
the shear and this gives the cross-correlation function. The

Fourier transform of this function is then derived in order to
calculate the MTF.

In this method the spatial frequency range is limited for
the photographic are not random in higher spatial frequencies
and the fact it is not possible to measure the phase makes this
technique somewhat unattractive.

From the analysis of the above methods, it is important to
consider the degree of’ difficulty and the accuracy of result of
a method before it is chosen to measure the MTF of an optical

--- 31 ---
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system. The trend in the early days of instrumentation
was to introduce new and frequently more complex techniques , and
usually involving sophisticated electronics. The emphasis has
now been changed as to concentrate more efforts on the calibra-

tion and qualification of the instruments under all expected
conditions of’ use. It is also very helpful to consider the test

criterion philosophy on which the design of the instruments is
based. They may be summarized as these;

* A measurement of the system MTF alone is sufficient (i.e.,
PTF does not need to be measured)

* Measurement of MTF at low spatial frequencies are most
significiant

* Measurement of on axis MTF are more important
it is generally accepted that the low spatial frequency region

of the OT? curves is the most significant as far as the subjective

impression of the image qual ity is concerned , since in general it
has the greatest effect on the contrast of the image and sharpness
of the edge. Furthermore, at low spatial frequencies the PTF of
the system is usually small and therefore only the system MTF need

• to be considered. The results of measurement also Showed that
the low and intermediate spatial frequencies region of the MTF
curve can be characterized with sufficient accuracy by the MTF
at a single spatial frequency . A good correlation existed between
this value of MTF and the results of subjective tests of image
quality.

In the majority of military sights the performance at the center

of the field is always expected to have the greatest effect on a
subjective evaluation of performance, since the eye will in general
look along the axis of a sight and the user will point the sight in
to bring potential. targets into the center of field of view. This
does not, of course , imply that the performance of the off-axis has
no significance. In fact for all the sights tested, the off-axis

performance was fairly closely related to the on-axis performance.
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Measuring Instruments

The system described here is an extremely flexible one which is
designed for its simplicity and can be easily adapted to any special
measurement. At heart of’ the system is a large granite surface

table, flat to better than 0.001” over the entire surface. It serves
as an excellent reference from which to set up and align any optical

system configuration. The system may be incorporated into either
a single- or a double-pass mode corresponding to finite or infinite
conjugate. Typical arrangements of finite and infinite conjugate

tests are shown in Figure 18. For measuring the system MTF,stable
lens holders are required that permit precisely defined adjustments

and displacements, thus allowing measurements to be made at known
field positions and in desired image planes.

In effect  the inst ruments may be thought of as comprising several
modules, as outlined in Figure 19. The object generator contains
the light source arid acts as the test object for the system under
evaluation. In general ,a He-Ne laser with wavelength equal to
6329.914 Angstrom is used for interferometric methods, while sinu-
soidal targets are comprised of a tungsten ribbon filament lamp
used to incoherently illuminate with a film loop attached to a

detectorgenera or lens under
test

Figure iSa Typical finite conjugate tests

object
gene rat or

__  L

~~~~

i

~~

€o r

Figure 18b Typical infinite conjugate tests
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rotatable drum. The image detector consists of a narrow ruled slit,
suitable collecting optics , and a photomultiplier tube. Light pass-
ing through the slit is collected by means of a high-aperture lens
and transferred to the photomultiplier tube. The signal. from the
photomultiplier is then passed to a switching arrangement, enabling
the operator to select a method of presentation.
Error Analysis

Errors can originate from many sources, even with a simple system.
Precautions must be taken when MTF measurements are being made. A list
of the principle sources of error in MTF evaluations are listed below:
Environmental errors:

Vibration
Air turbulence
Dust
Temperature and humidity variation

Bench and Collimator errors:
Straightness and flatness of benches
Alignment of benches and collimators
Aberration present in collimator lenses

Object Generator
Partially coherent light in illumination system
Stability of light source
Color temperature of light source
Target errors, modulation, transmission, etc.
Aberration in relay optics
Stray light
Failure to fill aperture of system under test

Image Detector:
Parallelism of’ slit
Variation of’ sensitivity of photomultiplier tube face
Response of electronics to range of spatial and temperature
frequencies

With careful. design and experimentation it will be observed that
most , if not all, of’ the above errors can be eliminated from the
system.
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Conclusion

The concepts and techniques outlined here are applicable to a
wide range of optical quality assessment needs. Because of the
limited time available for this task and the shortage of suitable
and more sensitive equipment, the measurements and data analyses
are not completed. The author sincerely wishs that an extension

will be granted in order to complete the present study.
This study was conducted under Contract #DAAK4O-78-M-0022 from

U.S. Army Missile Research and Development Command, Huntsville, Ala.
to Alabama A & M University, Normal, Alabama.

The authors would like to thank R. Light arid H. Gray, both of
U.S.Army Missile Research and Development Command, for contributing
discussions and helpful suggestions.
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