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Preface

) This thesis was intended to determine whether airblast
energy from an atmospheric nuclear burst could effectively
couple into the ground, generate surface seismic signals,
and thus independently cause or contribute to the formation
of an zirshock precurscr. The major thrust of the work was
to investigate the generation, description, and timing of

9 these surface seismic signals.
Appreciation is extended to Major George Nickel of
the AFIT Physics Department for his recognition of an effort
worthy of research and for his earnest attempts to teach free
thinking and the independent analytical application of the

first principles of physics.

Richard N. Price

i
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Abstract

The coupling into the ground of airblast energy from
an atmospheric nuclear burst is postulated as a mechanism
which may contribute to if not independently cause the
observed airshock precursor. A computer model to test the
hypothesis is constructed by assuming an elastic ground
medium, applying finite difference techniques to the equa-
tions of motion, and using the space- and time-varying
overpressure from the nuclear burst to induce the seismic
motions within the ground.

The surface velocities resulting from simulation of a
28 kiloton atmospheric burst at 500 feet height of burst
yvielded a dust layer ballistically reaching only 0.64 cm at
its highest point for the stiff one-layer ground medium,
0.096 cm for the softer one-layer medium, and a negligible
height for the more realistic four-layer Frenchman Flats
medium. Thus, the airblast-induced precursor as postulated
(ballistic rise >nly) fails to re-create the 2 - 3 meter high
dust layers observed in experimental atmospheric nuclear
testing. However, the motions are felt to be significant
enough to be included in any attempt to model from first
principles the precurscr and the up-sweep of dust behind the

shock front. \
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j Introduction

Background and Phemonenology

During early atmospheric nuclear weapons testing
the effect known as the nuclear airblast precursor was
observed. The precursor results frocm the formation of
a heated layer of air immediately above the ground surface.
Because the sound speed is higher in this heated air layer,
the shock front from the nuclear burst is able to propagate
faster in this heated region than in the higher, cooler
regions of air. Thus, a "toe" forms on the leading edge of
the shock front at its intersection with the grouﬂd. This
phenomenon is shown pictorially in Figure 1.

A nuclear burst which generates an airblast precursor

represents a departure from the shock front shape and shock

properties one would expect when a nuclear burst is detonated

over an ideally reflecting, non-interacting surface. It is
precisely the interaction of a real surface which gives rise
to the non-ideal (precursed) properties of the airblast:

two overpressure peaks instcad of one; peak overpressure
reduced up to 50% over ideal; and dynamic pressure increased
up to 100% over ideal. The properties of a nuclear tlast
precursor therefore become of considerable interest when

the response of surface and near-surface systems to the
static loading of real-world overpressure waveforms and to
the enhanced drag loading from the dynamic pressure must be

known with reasonable accuracy.

S .
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The Air Force Weapons Laboratory (AFWL) began to
study the precursors observed in actual atmospheric nuclear
tests (Table I) in an attempt to
1. characterize the development of the
heated air layer which is the heart of

the precursor;

2. model the development of this thermal
region; and

3. extend this understanding of experimental
observations for the relatively low yield
experimental nuclear blast precursors
(1 to 30 kilctons) to the megaten yields
which the defense planner must expect
in today's threat environment.

Utilizing considerable internal and contractor
expertise from 1973 to the present. AFWL has principally
concluded that radiation (primarily X-rays) from the fireball
is the mechanism by which the heated air layer ( and thus
the precursor) is formed. Specifically, if the thermal
radiation on the ground is sufficient to heat the soil above
a threshold level (which will depend on soil type and soil
conditions), ground moisture and hydrated water in the soil
will be suddenly and explosively released. Such a violent
release will "popcorn" the soil into the air. Once airborne,
the dust heats the surrounding air by conduction and convec-
tion while continuing to absorb thermal radiation from the
fireball. (Ganong, 1978)

Nonetheless, the coupling of airblast energy to the
ground has been postulated as another causal mechanism which

may contribute to if not independently cause the precursor.

This mechanism has not been previously studied to determine

!
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‘Table I. Events Studied for Precursor
Scaled
Operation Yield ROR HOB Area
Shot {Number) (Kb () | (/K13 | at NTS | Tyne |precursors
POST Teapot (11) 1.45 300 265 9 Tower Yes
MOTH Teapot (2) 2.40 300 224 3 Tower Yes
HORNET Teapot (5) 3.6 300 196 3 Tower Yes
TESLA Teapot (3) 6.8 300 158 9 Tower Yes
FOX Tumbler-Snapper (5) | 11.5 300 133 4 Tower ?
EASY Tumbler-Snapper (5) | 12.5 300 129 1 Tower ?
HOW Tumbler-Snapper (8) | 13.9 300 125 3 Tower ?
NANCY Upshot-Knothole {2) |24 300 104 4 Tower P
BADGER Upshot-knothole (6) | 25 300 163 2 Tower ?
HARRY Ugshot-Knothole (8) | 32.3 300 94 2 Tower 2
SIMON Upshot-Knothole (7) | 45 300 84 1 Tower %
MET Teapot {12) 22.5 400 142 FF Tower Xes
BEE Teapct (6) 500 250 7 Tower Yes
MORGAN Plumbbob (3() 8 500 250 3 Ballcon Yes
WILSON Plumbbob (5) 10.3 500 230 9 Balloon Yes
KEPLER Plumbbob (11) 10.3 SCD 230 4 Tower No
BOLTZMANN Plumbbob (2) 11.5 500 222 7 Towzr ¢
APPLE 1 Teapot (8) 14.2 500 206 4 Tower Yes
SHASTA Plumbbob (13) 16.5 200 196 2 Tower No
WHITNEY Plumbbob (28) 18.5 500 189 2 Tower ?
ZUCCHINI Teapot (14) 2 500 165 17 Tower Yes
APPLE Ii Teapot (13) 28.5 500 164 1 Tower Yes
TURK Teapat (4) 44 500 142 2 Tower Yes
GRABLE Upshot-Knothole (1) | 15 524 212 FF Gun Yes ol
PRISCILLA Plumbbob (6) 36.6 o 211 FF Balluon Yes
SMOKY Plumbbob (20) 44 700 198 8 Tower Yes
WASP PRIME Teapot (9) 3.2 59 502 7 Air Yes
LA PLACE Plumbbob (24) 1.22 750 702 7 Balloon 2
WASP Teapot (1) 1.2 7€2 117 7 Air No
ABLE Tumbier-Enapper (D] 1 793 793 FF Air No :
DOG " Tumbier-Snapper (4) | 18. 5 1040 393 7 | Air Yes |
CHARLIE Buster-Jangle (3) 14 1132 470 1 Air Yes
CLIMAX Upshot-Knothole (11) | 60 1334 341 1 Air Yes
DOPPLER Plumbbob (17) 19.1 1560 | 681 7 |Ballon| 7
NEWTON Plumbbeb (26) 11.8 1500 059 1 Balloon T
STOKES PlLuimbbob (14) 19 1500 5h2 ki Ballnon ?
(Liner, 1975: 22)
L
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its relative contribution to the heated air layer which
precedes and determines the precursor formation.

The airblast-generated precursor contribution as
postulated would occur in the following sequence (Figure 2):
the airblast strikes the ground, coupling energy into the
ground and generating seismic-like displacements; the dis-

pPlacement waveforms propagate into the ground along the

soill surface with velocities characteristic of the seismic

velocities of the ground medium. As the radius of the

airshock increases, the peak overpressure at the shock front
decreases and the airshock subsequently slows. When the
seismic surface wave velocity exceeds the velocity of the
advancing 2irblast, these seismic surface disturbances will

outrun the airshock and are for the first time able to

contribute to the thermal layer formed ahead of the shock.

For this contrirution to be c¢f concern, the surface
disturbances must be sufficiently large to impart a sizable
vertical velocity to the dust/soil particles lying loosely
on the ground, causing these lcosge particles to rise
ballistically above the ground. One additional requirement
is that sufficient energy must remain in the fireball to
heat the rising dust particles. The heated dust can then
heat the surrounding air by conduction and convection as
in the case of the thermally-induced soil blowoff. Early

heating from the fireball will practically assure the

presence of loose, dry soil at the grourd surface. As in

the case of thermally-induced soil blowoff, the airblast-




Figure 2. Pictoral Representation of Airblast-Induced

Precurscr

a. Airblast strikes ground at

Tys Fireball heats ground

surface.

b. Airblast expands along sur-
%>k? face; Seismic waves radiate
into ground and along surface

but move slower than front of
airshock,

c. Seismic waves are now able to
outrun airblast, imparting an
upward velocity to dust parti-
cles on the surface;

fireball radiation and heat
the surrounding air by conduc-
tion and convection.

I Injected dust particles absorb




induced contribution will alsc be yield, height of burst,

and soil condition dependent.

Purpose

The documentation which follcws details the approach
that was undertaken to model any airblast-generated contri-
bution to the heated air layer which precedes the precursor,
As such, it presents computations of seismic surface dis-
placements, seismic surface velocities, and anticipated
airborne dust layers. This research is intended to be
used to determine whether further, more exact modeling is
warranted on the role cf airblast energy couples into

seismic waves as a contributor to the nuclear precursor.

Scope

The computational model to simulate ground motions
developed as a product of this thesis research is applicable
to any problem which involves pressure or stress loading
normal to the surface of an elastic half-space for which
order of magnitude answers are desirable. However, the
problems for which ground motion results are presented are
limited to atmospheric nuclear test events. This work does
not investigate thermal energy transport or hydrodynamics

within the rising dust layer.
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Order of Presentation

The order of presentation will be as follows:
Chapter II describes the computational model (preliminary
analysis, equations of motion, finite difference equations,
surface pressure, treatment of boundary displacements, and
method of solution); Chapter III discusses output calculated
from the model (stability, transmitting boundary, and
simulation of an atmospheric nuclear burst); and Chapter IV
concludes whether the seismic surface waves generated by
the airblast make significant contributions to the precursor

and recommends improvements or new approaches for the model.




) & Computational Model

Preliminary Analysis

The heart of the airblast precursor is the formation of

a heated air layer immediately above the ground. The postulated

means through whiph seismic signals can contribute to this
thermal layer is by the injection of dust/soil particles into
the air, these particles subsequently absorbirg fireball
radiation.

The height h to which a dust particle would rise
ballistically above the surface (ignoring hydrodynamics and

drag) is independent of its mass and is given by

B % g (em),

1l

where v the particle's vertical velocity, and

g the gravitational acceleration.

Clearly then, the driving force invelved in tasting
this postulated causal mechanism is to calculate an order of
magnitude value for the vertical velocity of the dust/soil
particles, or equivalently, the peak vertical velocity of
the ground surface. The single greatest assumption made is
that satisfactory values can be obtained through a treatment
of the soil as an elastic half-space.

This assumption is put into perspective through
consideration of research conducted by the U. S. Army Corps
of Engineers., Since 1971 computations and data analyses have

simulated and reconstructed seismic motions resulting rrom




TN T

high explosive and nuclear test events. This work indicates
that while soils are not truly elastic media, two-dimensional
elastic wave propagation calculations can be performed with
comparative ease and require only limited soil property

data relative to inelastic, non-linear calculations. Also, it
was felt that elastic calculations were less subject to

numerical errors. (Hadala, 1973: 297, 383)

In addition, one particular set of computations compiled
by the Army Corps of Engineers revealed that for peak over-
pressures in the 100 to 50 psi range, the elastic soil model
generally yielded maximum velocities less than those given by
the inelastic model., However, the reverse was true in the 50
to 1 psi range. In other related calculations a similar but
different overpressure crossover point was also found. Generally
then, these results imply that the elastic model subsequently
used to approximate the vertical velocities of the dust
particles will underestimate these velocities if outrunning of
the airshock by the seismic signal occurs at the high end of
the peak overpressure region and will overestimate them if
outrunning occurs in the low overpressure region. (Hadala, 1973:
295)

After first assuming an elastic medium, an estimate

through one-dimencional analysis can be made of the maximum
surface vertical velocity in a uniform media. This is derived

in Appendix A and is given by

S P

A _ P (cm/sec), (1a)
dt - 1 round vc
max at 2z=0 &

10




o s i ioa'n s dtbinin s I il 47, e i A 380

T

- displacement in the z-direction,

P
(o)

peak overpressure on the surface at the
point of interest,

ground = density of the ground, and

Vc = compressional seismic velocity of the
ground,

The peak overpressure P0 along the surface is a function
of yield and height of burst; and the compressional seismic
velocity VC is a function of the seismic constants (Lamé
constants ,l and Kl) and density of the ground. Therefore,
the maximum vertical velocity with which dust can be injected
into the air will also be dependent upon the yield, height of
burst, and seismic properties of tlie ground.

Another important consideration - the ground range at
which the seismic signal will bYegin to outrun the airshock -
will also have the same dependency as above. In order to
obtain a preliminary estimate of where this "outrunning™ will
occur, it is first assumed that there is an average velocity
vave with which the sperical shock expands. With this
assumption it is shown in Appendir G that the apparent velocity

with which the airshock advances along the ground surface can

be expressed as 1
2

2
vave
vapp = 2 (cm/sec) (1v)
1 - -
H2 + rz
where H = height of burst, and
r = ground range.




P slows to the seismic velocity

Vc' the seismic signal thus created at the intersection of the

When this velocity Va

shock front and ground will outrun the airshock.
However, the surface seismic disturbances having the
largest magnitude are known to be Rayleigh waves which travel

more slowly than Vc' So, solving Equation 1b for r when Vapp =

VRayleigh' yields that ground range at which outrunning of

seismic Rayleigh waves will occur. This is given by

%
2 ]
r = H {em or £t).
— V ] 2
Rayleigh
P — - 1

ave

Consider the case of a 30 kiloton burst detonated at

500 feet, also where V__ = 2.4 km/sec (eight times the sound

ve

speed in sea-level air) and ¥ 2.5 km/sec. Then,

Rayleigh ~
Rayleigh outrunning begins to occur at a ground range of

r =0.,52 km = 1714 ft. PFrom blast data curves it is found
that at that ground range the peak overpressure will be
Po = 40 psi and that the time of arrival of the airshock will
be TARR = 0.15 sec. Thus the maximum vertical velocity
(Equation 1a) is 2.6 cm/sec and 50 percent of the fireball
radiation has yet to be emitted. (Glasstone, 1977: 111, 121,
309-310)

While Equations 1a and 1b were derived for a uniform
elastic medium, peak velocities occurring in a layered elastic

medium are also of interest because ground motion data and

12
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soil testing have revealed that testing grounds such as

Frenchman Flats at the Nevada Test Site consist of horizontal
layers which vary with depth in density and characteristic
seismic velocities (Figure 3). Because elastic property

data for the medium at Frenchman Flats are known and atmospheric
nuclear tests displaying an airblast precursor were conducted
there, the layered medium of this site will provide a "real-
world" problem with which to test the postulate of the airblast -
generated precursor,

Figure 4 depicts the phenomological effect of a two-
layered ground medium. Typically, because of the effects of
weathering, pressure from the overburden, and some degree of
cementation, deeper layers will be seismically "stiffer" (read
less compressive) and possess a higher characteristic seismic
rropagation velocity. Thus, once a disturbance reaches a
stiffer layer it will propagate more quickly than a disturbance
in an above layer., This will ultimately cause the seismic
signal to outrun the airblast at the ground surface earlier
than would have occurred had the material consisted solely of
material with seismic properties of the upper layer.

One other important effect of layering in the medium
is that the stress transmitted into the lower layer can be
greater than the stress incident on the interface from above.
The transmitted and reflected stresses have been derived

from one-dimensional analysis in Appendix B and are given by

2
oy = g3
1%

9262

* d

15




:'_ -

and

5 S
14
Or - "PZCZ g3 "
G oA
1%

i

where ‘Pj density of layer j, and

Cj seismic velocity of layer J.

For a stiffer lower layer, density ’PZ and seismic

velocity C2 will be larger than 'Pl and C1 of the upper layer.
Thus the transmitted stress will be greater than and of the
same type (tensile or compressive) as the incident stress.
Therefore, if the energy attenuation resulting from spatial
expansion of the seismic signal is not greater than the gain
in stress achieved, the stress transmitted to the second layer
which is then later re-transmitted back into the upper layer
can be greater than the original incident stress, thereby
resulting in seismic displacements greater than in the single-

layered medium.

Equations of Motion

Armed with a knowledge of the seismic phenomenoclogy
and the parameters upon which it depends, the next step is to
generate the equations which govern the motion of the ground
medium under airblast loading. Cylindrical geometry is

chosen due to the axial symmetry of the advaancing airblast
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shock front. Sr and SZ are defined to be the displacements

in the radial and vertical directions, respectively. of a
given point within the ground medium about its equilibrium
point. The displacement Se in the e-direction is zero because
of the problem symmetry.

The equations of motion are given by

£ 8
St
Ot 0
dA 2L D d W (2)
(Arait) —3e - rife e e o
2 S
dt2 " 0
AN TR -~ sk (3)
(A+2p) =255 L N e
0
where
1 a(fS) 1 D%@( 0 S,
A= 1 it i a: , ()
and
24 = d Sy _ 05, . (5)
¢] Oz or

The boundary conditions which apply are that the stress
at the surface z=0 in the vertical direction is just the

overpressure P(r,t) which acts normal to the surface.
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where P SZ

%4 dz

and that no tangential stress exists at the surface. (Kolsky:

195: 55)

oz or

._a.._s_r_ + b SZ
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Finite Difference Egquations

The technique of finite differencing was chosen to
solve the ecuations of motion primarily due to the ease and
speed with which the equations could be implemented and solved
on a digital computér. The equations were evaluated at the
time-space mesh point i, j,n, where the finite difference mesh

is described in Figure 5 and

Sr(ri.zj,tn) = Sr(iAr, jAz, nAt) - TR

A straizht-forward application of central differences

yields for Sr’

(6)

(7)
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Because central differences were employed, the scheme
will be accurate to second order in ZXt, Z&r, and Z&z. The
centering grid is given in Figure 6.

Similar implementation of the finite differencing for

the SZ displacement and the boundary conditions causes Equatiocns

3, 6, and 7 to become

S, -25 + S,
i, j,n+1 1y Jsn Li,j,n—l

[ -
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X are known values; o are intermediate calculated values;
o is the final calculated value
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and

S S - S
LA = ri'i'n riIB;n
Z2 -
¥ =0 2 N
S - S
= - a SZ - Zi-112ln Zi+1,2gn
br z=0 ZAI' * (11)

Because the displacement values at time n and n-1 will
be zero until airshock arrival, the only unknowns in Equations
8-11 are the time advanced (n+1) values. Thus, the scheme as

chosen is a second-order accurate, explicit algorithm,




Surface Pressure

Finally, before implementation on the computer the
surface pressure input P(r,t) is required. Because scaled
i near-proximity of the bursts to the ground is necessary +to

achieve an airblast precursor, surface effects upon the over-

{ ~ pressure have to be considered. The blast data curves in

Glasstone's, The Effects of Nuclear Weapons were taken as

reference data because of his inclusion of ground effects.
For the typical overpressure waveform shown in Figure 7,
the following parameters are required: time of arrival TARR,

peak overpressure PEAKP, duration of the positive overpressure

phase TPLUS, and the rate of decay of pressure with tine.
General algorithms were found for TARR and derived for
the rate of decay of the pressure with time. The first is

given as follows (Liner, 1975: 1972-3):

0.54291 Y - 21.185 r_ v2/3 4 361.8 r32Y1/3 + 2383 rsz

1 TARR =

5 v?/3 4 2,048 ey Y173 4 2.6872 rs2

, where

3 TARR is in msec,

* Y = weapon yield in kilotons, and !
By = slant range in kilofeet. ‘

For a surface burst

TARR (HOB = 0) = TARR (2Y, rs).
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Figure 7.

peak I

Typical Cverpressure Waveform
(Glasstone, 1977: 8L)
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ignored in this model)
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For a non-surface burst, the free air arrival time is
used in the regular reflection region and a linear inter-

polation between free air and surface burst values is made in

b the Mach reflection region.
HOB ok
TARR = TARR(Y,r.), for —mmia—rmrss - b
HOB
s *
TARR(Y,rS) ground range i
HOB
HOB ~
3 * -
TARR(2Y,r ) (1 ground Tange )y £oT o ound vange — 1

The second parameter, decay of overpressure with time,

is given by

,
1/m
B -1 - [1- o]

where + - TARR

TAU —TPIUS . and

1 + .382 (1ln PEAKP)

8
i

- .136 (1n PEAKP)? + .025 (ln PEAKP)J .

The computational algorithm for TARR was originally
derived by Brode and that for P(%t) was derived by applying
curvefitting techniques (Appendix C) to the Glasstone data
for overpressure decay. (Glasstone, 1977: 100)

At the time of computer implementation no suitable,

general algorithms had been found for PEAKP and TPLUS. The
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technique chosen, then, was to fit the Glasstone data for
these parameters by linear segmentation for each specific
problem simulated. This aspect, while speeding initial
implementation,, adds significant awkardness when applying the
code to various burst problems. A minor improvement was
achieved by calculating the pressure as a function subprogram.
For differing events the unique overpressure function can be
validated independently and then appended to the main program,

(Glasstone, 1977: 111-115, 119)

Treatment of Boundary Displacements

The two stress components on the surface (the normal
strese defined by the overpressure and the identically zero
tangential stress) provide the calculational means to derive
the displacements at the top boundary of the finite difference
mesh., These were given analytically by Equations 6 and 7 and
in finite difference form by Equations 10 and 11.

Symmetry is the key by which the displacements at the ‘7
lefthand mesh boundary are found. Because ground zero is the
symmetry axis, displacements immediately to either side are
considered equal., By averaging these mirrored displacements,
the displacements at the lefthand mesh boundary or ground zero
are found and are equal to those Jjust averaged.

Finally, the righthand and bottom mesh displacements
must be defiried, The simplest choice is to apply rigid
boundaries; that is, the displacements there remain zero. One
particularly annoying property of such a treatment is that

reflection of seismic signals occurs at these rigid boundaries.




This trait becomes particularly restrictive whén attempting

to compare model output data to published late-time seismic
motions from test data and independent elastic calculations.

Interference of reflected signals can be prevented. Two
computationally easy choices can readily be implemented:
increase the mesh size or stop the computation before any
reflected signal can reach the point of interest.

Increasing the mesh size can be done by increasing the
3patial mesh increments, thereby losing accuracy, or by
increasing the computer memory requirements of the calcula-
tion. Stopping the computation hefore reflection can affect
the motion of the point of interest can, as in late-time
motion, result in shutdown before significant motion has
occurred at the point of interest.

Another choice which is more difficult computationally
is to develop a transmitting boundary; that is, a boundary
which acts as nearly as possible as though a semi-infinite
region of material exists beyond the mesh boundary. If
successfully accomplished, a seismic signal can be transmitted 1
across the boundary with no reflection; and, the mesh could be
kept resonably compact, yet still yield acceptably accurate
results., i

The nature of the airblast-induced precursor requires
that surface seismic motions be computed over a ground range
which is long in comparison to the ground depth of interest.
As a result a relatively shallow mesh grid is used. Because

reflections from the bottom of the mesh would therefore occur

28




first, the bottom mesh boundary was chosen for the application

of the transmitting boundary.

The requirement upon such a boundary is that it must
act as a one-way valve. This one-way action can be accomplished
by permitting a seismic disturbance incident upon the boundary
from above to pass out of the mesh and disappear into the
imaginary half-space below while simultaneously preventing
the return of reflected signals into the mesh.

The means by which this action will be performed 1is based
upon a momentum flux argument. Consider the mesh as it exists
in Figure 8 near the bottom boundary. At the points marked
with the symbol X, the displacements Sr and SZ are known. From
these displacements, calculations of velocities, spatial
derivatives, and stress components can be made for the point
P centered at i+i and JMAX-3/2.

The stress component CEZ represents the flux of z-momentum
in the z-direction, and component C7iz’ the flux of r-momentum
in the z-direction. A properly constructed transmitting
boundary permits the net outward flow of momentum. However, it
prevents the net inward flow of momentum because this results
in the undesirable increase of momentum within the finite
difference computational grid.

Therefore, if the proper flow of momentum is indicated at
point P (Appendix D presents the derivation of the logic table
and equations for the transmitting boundary), this momentum is
allowed to flow across the boundary (level JMAX-1) by equating

the stress at point P to that at point R centered across the

29
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Figure 8. Finite Difference Mesh Grid Near Bottom Boundzary
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boundary at i+i and JMAX-3. If the conditions indicate improper
flow of momentum, the stress components at R are set to zero.
Next, displacements along level j=JMAX are calculated from the
centering scheme, where the displacements at the lower right-
hand corner of the mesh are zero and the computational march
is executed along the j=JMAX level from i=IMAX-1 to i=3,

Of course, a trade-off does exist when using such a
transmitting boundary. This is that momentum transferred out
of the mesh is lost and can play no part in the elastic rebound
of the medium. For airblast-induced seismic motions this

limitation is expected to occur far tco late to be of concern.
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Method of Solution

The explicit, second-order finite difference scheme
derived earlier involves twoc known time levels (n-1 and n) and
three known spatial levels in both the radial (i-1, i, i+1)
and vertical (j+1, j, j-1) directions. The task is then to
calculate the unknown, time-advanced (n+1) values for all the
spatial mesh points of interest. Figure 9 presents as a flow
chart the method by which the computational model solves the
equations of motion. |

Data characterizing the burst, ground medium, finite
difference mesh parameters, and output options are first input.
An array describing the ground properties within the mesh is
constructed. Next, the overpressures on the ground surface
are calculated ancd used by the boundary condition equations.
These equations give the displacements at the uppermost
boundary of the finife difference mesh, and the symmetry condi-
tion is used to find the displacements at the leftmost boundary.
Utilizing the main difference equations for the seismic displace-~
ments and marching through the spatial mesh, the displacements
are found for each mesh point except at the righthand and
bottom boundaries.,

No displacements are calculated at the righthand boundary
because a rigid boundary condition is used. For the bottom,
either a rigid boundary condition or a transmitting boundary
condition based on a momentum transfer argument is applied
(Appendix D). All of the desired time-advanced displacements

throughout the mesh have not been calculated.




Figure 9,

Method of Solution

Input Data:

burst, ground proper-

ties, and output
options

ind Sr and SZ

everywhere excluding
boundaries by apply-
ing explicit dif-
ference scheme

Define seismic pro-
perties at each mesh
point

Find S and S at
r Z

mesh bottom by apply-
ing either transmit-
ting or risid

boundary conditions

Set displacements

Sr and SZ to zero

everywhere in mesh

/

Output according to
options selected

Calculate surface
pressure P(r,t) for
z=0

/

Update time:
t =t + [\t

Find S and 5. av
r 2

upper and lefthand
boundaries by arply-
ing boundary and
symmetry conditicns

Has fastest distur-
bance reached rigid,
righthand btoundary?

No _Yes

STOP




Finally, the output format chosen by the input options

is executed, and the process is repeated, beginning with an
advanced time and updated surface pressure.

This iterative process continues until the desired
shutdown time is reached. Typically, this shutdown time is
chosen as the time of first arrival of seismic waves at the
righthand rigid boundary. Thus, unwanted, artificial reflections

are prevented.
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TERTE Code Calculations

Stabilit

One of the prime guestions arising when using any

finite difference scheme is whether the scheme is stable.
The artificial, non-physical inaccuracies introduced by the
presence of instability are governed by the choice of time
step Zﬁt and grid element sizes [&r’and ZXZ.

Two different stability criteria were initially speculated
to be applicable to this model. The first, Stl, was set forth
by the Army Corps of Engineers investigators as applicable to
two-dimensional finite difference calculations of ‘ground shock
which outruns the airblast. This condition was presented as
the Courant, Fredricks, and Levy stability requirement, namely,

(Hadala, 1973: 42)

A L (sec),
2 Vmax

I A

where ZXt = time step,
Ax = sgpatial mesh increment = Ar = Az, and
Vmax = maximum disturbance propagation velocity.

The second stability criterion, Stz, was based on the
physical argument that no disburbance should be allowed to
propagate a distance greater than the mesh spacing ZXr or ZXZ

in one time step ZXt. Mathematically, this is given as

th < Z&X (sec) .

Vmax

25
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In order to determine which of the two preceding stability
conditions in fact apply to this model, an experimental stability
analysis was conducted. Figures 10-12 present the results of
this stability analysis. This analysis consisted of making

several runs with the computer model to calculate a ground

shock problem. All runs are the same except that the time step
has been changed in each run. The time step for each run is

shown in relation to both stability criteria, St, and St..

1 2

While some far-field oscillations appear for Z&t = ,002 sec
(which exceeds the stability criterion St1 set forth by Hadala),
the solution has not become unstable. Instead, this indicates
that the stability condition is being approached. Further
enlargements of the time step show that the less restrictive,

physically-derived condition, Stz, should be applied as the

stability limitation to the difference scheme of this model.
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Transmitting Boundary

Figures 13-16 present a comparison of surface seismic
motions computed by the computer model., Three different but
related problems are represented. One is a "standard"
employing a rigid bottom boundary and 100 by 25 mesh grid
for comparison with the results obtained using a transmitting

boundary. The second differs from the "standargd" only by

using a transmitting bottom boundary. Lastly, the third

employs a transmitting bottom boundary and a reduced 100 by
10 mesh grid. However, the mesh spacing in the third run is
the same as in the standard. The purpose of this third run is
to test whether the transmitting boundary as constructed would
permit the execution of a problem with a reduced number of mesh
points while faithfully reproducing the results obtained with
a larger number of grid points.

The first and second runs are identical (Figures 13 and
14) until just after t = .4161 when the close-in waveform and
magnitudes change slightly. These changes reasonably coincide
with the earliest possible arrival at the surface (t = .4166)
of a bottom reflected signal in Run #1. As would be expected
the surface displacements after t = .4266 are more negative
in Run #2 in which reflection has been prevented. Table II shows
the surface vertical displacements for mesh point (i = 13,
j = 2) from Run #1 (standard, rigid bottom boundary) in compari-
son with Run #2 (transmitting boundary) in which reflection has

been prevented.
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But, unlike the encouraging results obtained with Run #2,
Run #3 deviates from the "standard" at an earlier time than
is expected from computing the earliest possible arrival time
of a bottom-reflected signal, with the surface displacements
becoming significantly larger. This result casts a shadow of
uncertainty over the validity of the transmitting boundary

being utilized.
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Table II.

Comparison of Surface Seismic Motions ~ Rigid

Versus Transmitting Bottom Boundaries

Surface Vertical Displacements
at Mesh Point (i=13, j=1)

Standard w/rigid

100x25 Mesh with

100x10 Mesh with

Time Boundary Transmit. Boundary | Transmit. Boundary
{sec) (cm) (cm) (cm)
0.311 0.0 0.0 0.0
0.350 0.021 0.021 0.022
0.375 -0.017 -0.017 -0.015
0.400 -0.023 -0.023 -0.040
0.425 -0.023 -0.023 -0.050
0.450 -0.018 -0.025 -0.060
0.475 -0.009 -0.030 -0.061
0.500 -0.003 -0.004 -0.012
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Simulation of a 28 Kiloton Atmospheric Burst

With the preceding analysis completed, the model is
next used to simulate the airblast-induced ground motions from
an atmospheric burst. A yield of 28 kilotons is chosen, with
detonation occurring at 2 height of burst of 165 feet. This
height of burst is intermediate to those for events in Table I
detonated at Frenchman Flats and displaying an airshock precursor.
Appendix F gives the subroutine which calculates the airblast
parameters on the ground for this event.

The seismic reactions of four different ground media
are compiled in the tables which follow. This compilation
results from the use of the computer model with rigid right-
hand and bottom boundaries. From run to run, only the ground
medium over which the burst is assumed to occur is changed.
These four ground media are described in Figure 16.

The resulting maximum upward surface velocities are
given in Tables iII—V. These velocities were obtained by
differentiatioh of the vertical surface displacements computed
with the model. No maximum velocities are given for Run #4
which simulated the Frenchman Flats test site because all ub-
ward velocities were less than 0.1 cm/sec and considered
insignificant., Failure of this layered medium to produce
the enhanced velocities indicated as possible in Appendix B
is apparently due to the presence of the very slow upper layer

where the seismic velocity is only slightly greater than the

sound speed in ambient air,

e
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Figure 16. Ground Media for Model Simulation
of 28 Kiloton Event

Run_ #1

uniform medium = 1.22 km/sec

= 1.14E10 dynes/cm?
1.14E10 dynes/cm?

S B M
i

= 1.9 gm/cm3
Run_#2
uniform medium vp = 1.82 km/sec
A = 3.70E10 dynes/cm®

= 1.49E10‘dynes/cm2

§
£ = 2,0 gm/cm3
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Figure 16. Cont. . . .
Run #3
5 N 0.35 km/sec
1
610 L
f cm ayer 1 _(1 = 1.7 gm/cmB
Layer 2 Ay = 1.16E9 ‘dynes/cm>
K, = u.68E8 dynes/cm®
v = 1,82 km/sec
Py :
Y, = 2.0 gm/cm3
A, = 3.70E10 dynes/cm®
MU, = 1.49E10 dynes/cm2
Run #4
¥ ]
854 cm Layer 1 Simulates Frenchman Flats
% (Hadala, 1973: 145, 281)
' v = 0.35 km/sec
6396 cm Layer 2 131
: v = 0.76 km/sec
{ P2
1 v = 1,82 km/sec
¥3
10650 em  Layer 3 vp, ° 245 ku/sec
} Layer 4
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The stiff, uniform ground medium used in Run #2
produced the greatest vertical velocities. While initially
appearing to conflict with Equation (1), this result is
apparently due to the ability of the stiffer medium to trans-
mit signals ahead of the airblast which were created
"upstream" at higher overpressures, while these same signals
are not able tc outrun the airblast in the slower, more
compressible medium of Run #1. Another factor is the
ability of a stiffer medium to more readily transmit the higher
frequency disturbances. These higher frequency components may,
in part, explain the larger vertical velocities.

Because the heating from the fireball which any rising
dust receives is of interest in creating the thermal layer
which determines the precurscr, Tables III-V also give
data pertinent to the fireball radiation emission. Significant
amount of fireball hgating can be received by rising dust
only when the difference between T1, the time of occurrence
of maximum upward surface velocity, and T2, the time of
airblast arrival, is sizeable. This will only occur when the
seismic sighal is able to substantially outrun the airblast.
Such substantial outrunning is not reflected in the Tables
III-V because the upward velocities continue to diminish
with increasing ground range.

Dust layers created ballistically would reach a maximum
height of only 0.096 cm for Rur. #1, 0.64 cm for Run #2,

0.16 cm for Run #3, and a negligible height for Run #4.




IvV. Conclusions and Recommendations

Conclusions

Accuracy requirements, interference from artificially
reflected signals, and computer storage limitations together
prevented the comparison of results obtained with this model
(rigid righthard and bottom mesh boundaries) with the available

published data. The data on-hand consisted of independent,

elastic calculations of late-time, airblast-induced ground
motions and of late-time seismic motion data from actual test
events,

Prevention of the artificially reflected signals and
reducticn of the computer storage requirements would have
permitted this ccmparison. Application of the transmitting
toundary condition constructed to zccomplish the above two goals -
yieided indefinite results at best. This uncertainty in
whether the transmitting boundary condition was properly con-
structed prohibited its use in validating the model against the
independent data.

Thus, the mcdel remains unvalidated, and data derived from
it must be viewed accordingly. Nonetheless, it appears that
several general conclusions can be made.

First, the surface velocities resulting from simulation of
a 28 kiloton atmospheric burst at‘500.feet hgight of burst yielded

a dust layer ballistically reaching only 0.64 cm at its highest

point for the stiff one-layer ground medium, 0.096 cm for the
softer one-layer medium, and a negligible height for the more

realistic four-layer Frenchman Flats medium. These heights are
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significantly less than the two to three meter high dust layers

known to exist prior to airshock arrival., Therefore, it must

be concluded that as postulated (ballistic rise only) the

airblast is not likely to significantly contribute to the

precursor,

However, the magnitude of upward vertical velocities

computed indicate that the seismic motions of the ground surface

can be significant and should be considered in any modeling of

thermal layer precursor generation. In particular, the seismic

ground motions can alter the velocity with which dust is injected

into the air by another causal mechanism such as the thermally-

induced soil blow-off mechanism researched by AFWL. Only when

another causal mechanism can be shown to occur sufficiently

in advance of the arrival of the seismic signals to preclude the

interaction of the twoc mechanisms does it appear that the airblast

effect can be ignored.

In addition, AFWL modeling of the thermally-induced soil

blow-off indicates that the injection velocity of the particles

can range from 50 to 200 cm/sec without significantly altering

the height of the dust layer computed by their model. At the

maximum injection velocity of 200 cm/sec, the dust would

ballistically rise only 20 cm — not the 2-3 meters found experi-

mentally. This indicates that thermal radiation transport and

hydrodynamics is the more docminant force 1lifting the dust particles.

Redefining the airblast/seismic model to include these two effects

may well result in airblast-induced thermal layers more nearly in

agreement with experimental data. Or stated another way, the




key factor may be to begin the soil particles in an upward

motion whereby the thermal radiation transport, hydrodynamics,
and Tayler instabilities dominate to 1ift the soil to the
significant heights of several meters. The role of airblast-
induced vertical motions in the precursor formation certainly
warrants further research. (Prentice, J., 1976: 13)

Finally, velocities imparted to the surface dust before
and after arrival of the airshock may have considerable effect
upon the amount of dust swept up as the airshock passes. This
airborne dust would be expected to have significant impact

upon the dynamic pressure and the erosive ability of the airshock.

Recommendations

Reccmmendations for further work with the computer model
developed as an adjunct of this thesis research include:

1. the further search of published literature
in an effort to find early-time seismic
motion data with which the rigid btoundary
model may be validated;

2. the further search of published literature
to find one or more suitable, generalized
algorithms for peak overpressure and
positive pressure phase duration; such algorithms
would eliminate the requirement of generating
a new surface pressure function for each new
problem computed;

3. *he further study, analytical development,
and construction of a transmitting boundary;
if successful, this work can have wide appli-
cations in this simulation as well as other
models using a fixed finite difference mesh;

4, refinement of the model to confidently give
arrival time data of the airblast-induced
seismic motion.
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Recommendations for further work on the airblast-induced
precursor include:

1. the study of experiemental data to give
time of occurrence of the thermal layer
for comparison with seismic signal arrival
times in order to determine whether the
airblast-induced seismic signals arrive
too late to significantly contribute to the
thermal layer; and

2. 1if the above investigation reveals that
the arrival of the seismic signals is not
too late, incorporation of thermal
radiation transport and hydrodynamics into
the model.
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Appendix A

One-Dimensional Estimate of the Maximum
Vertical Velocity

Suppose that Sx’ the displacement of a particle in the
ground, can be expressed as a wave-like disturbance propa-

gating in the x-direction with velocity c.

= f(t-c/x)

The displacement Sx then satisfies the wave equation.
This, of course, must be the case as stress within an elastic
solid is known to be a generalized form of Hooke's Law.
(Kolsky, 1953: 8)

This one-dimensional stress can be expressed as the

following (Newmark, N., 1962: C-9)

B0 T po2 D flt-x/e)

stress & = 10c ) .

where { is the density of the solid medium,

Differentiating the function f yields

_PCZ Q f(t-x/c) = _{,02 O f(t-x/c) d (t-x/c)

Ox S 5 (t=x/c) Sz

& - 0 f(t-x/c)
s 0 (t-x/c)

The boundary condition which applies at the surface
x=0 is that the stress is equal to the normal loading of the

pressure on the surface, or
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é £(t-x/c) P
e = -P(t)
Ox f O (t-x/c)

z=0 x=0

However, the particle velocity is simply the derivation

of the particle displacement with respect to time.

v d Sy O f(t-x/c)
ot Ot

O f(t-x/c) d (t-x/c) _ _O f(t-x/c)

O (t-x/c) Ot d (t-x/c)
d f
Supatituting for @————— in Equation (A-3) gives
O (t-x/c)
- ¢ Vy 3 = =P(t)
or,
v R . &)

The particle velocity is a maximum when the loading

pressure is a maximum. Finally,

Py
\'A
{_ 5 =0.} max fe

]

(A-k)




Appendix B

Effect of Ground Medium Layering
on Stress (Newmark, 1962: C-13—C-~15)

Given the following two-layered ground medium:

Layer 1 ‘Pl' c1

Layer 2 f%. c,

X

Y
where 4)1 is the density of the ith layer, and
c; is the seismic velocity of the ith layer,

If an elastic medium is assumed then the displacement of

a particle within this solid must obey the wave equation,

2
3° s,
dt2

= p —

Solutions to the wave equation take the form

8 = f(+-x/c) + g(t+x/c)

where f(t-x/c) represents a wave traveling in the positive
x-direction, and

g(t+x/c) represents a wave traveling in the negative
x-direction. - wee =

Now consider a disturbance incident upon the interface

between the two layers, namely,

S, = f(t-x/c)
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The stress incident upon the interface is given by

= ey 20

<
O—Xincident % - ik d (T-x/c) (B-1)

Let the incident wave or disturbance be expressed as the

sum of reflected and transmitted components.

Sx = Sx + Sx
incident reflected transmitted

or, alternately,
f(t-x/c) = G(t+x/c) + P(t-x/c)

From Equation (B-1) the interface condition that the sum
of reflected and transmitted stresses must equal the incident

stress can be applied.

= +J

Cxxincident Crkreflected xtransmitted

or

“P1°12 0 f(t-x/c) i “Flclz 0G§t+x(c} " ..cmzz 0 F(t-x/c)
o x

Oz Ox
(B-3)
Let
R = reflection coefficient = constant in time, and
T = +transmission coefficient = constant in time.
such that G(t+x/c1) = R f(t-x/cl) and

1}

F(t-x/c,) T f(t-x/cl) :
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From (B-2),.f = Tf + Rf

or,
1 =R =T,
; From (B-1) and (B-3), "Plcl 3% = - -f’lcl —m)
| ke + P1°%
) (t-x/cz)
However,
O f(t-x/c) _ _d f(t-x/c) O (t-x/fe) _ O _ r
Ot ) (t-x/c;) Ot 0 (t-x/c,)
Applying (B-6) to Equation (B-5),
i f
= 1% 9—— = - P2, T _b___ + P16 R AE.
34 t 34

Dividing by (— -f104,
c
1 =(i@.§) T = R
1%
c
1+ R = ﬁ__z. T
f1°4
Combining (B-4) and (B-7) gives

2%,

2 = T(1 +

)
f1¢1

(B-6)

(B-7)
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Finally,
2
T = ’ (B'B)
i £ 22
f1°1
and
fata .
T ¥1°%
ot i
"N + 1 (B-9)
since G = Rf, %¢ _ g Of
Ot Ot
but ,
d G(t+x/c) > (t+x/c) d ft-x/c) d (t-x/¢c)
d (t+x/c) Dt ) d (t-x/c) 2t
giving .
U1 ST H O £
0 (t+x/c) 0 (t-x/c)
or, equivilently, 0
O = & Oy (B-10) |
|
Similarly,
¥ = T¢I
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dF 7d f = d P 3(#«ﬂk)
Ot ot O (t-x/c,) Dt
. N £ d (t-x/cy)
b (t-X/Cz) b t
or,
O _F A 0 f
d (t-x/c,) ) (t-x/c,)

Continuing similar to the derivation for (B-10) gives

(B-11) %
£2° ’

N

Consider what happens if this transmitted stress Cﬂr is

allowed to be incidént upor. the interface. The stress transmitted

back to the upper layer cy; is given by

Cﬂ{ i 2 Gy 2 2 Ao
28 . ¢ 2% . 31411 L,
1% {1% £ 2%2
PARIPENS. ¢ . f2°2
£ 2% T1"1

76

7'\.
3

SRS e P ——mste e ﬁ




If 'cmz — 'Plcl , then

f1°¢1
Thus,
o, = A o
S £1°1 5 $£2C2
P.C P.c.
272 e
£ 1% o ety g2 5 .
T2 { P16
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Appendix C

Derivation of Algorithm for Decay of

Overpressure with Time

To accurately apply the overpressure on the ground
surface requires that its time-dependent behavior be
incorporated. Accurate behavior with time is necessary to
couple the correct frequency components of the airblast into

the ground. To this end, it is undertaken to transform the

data contained in Glasstone's, The Effects of Nuclear Weapons,

and presented in Figure 17 into an algorithm which could then
be inco;porated into the computer model.

It is first observed that the data curves are very nearly
symmetric about the line indicated in the figure. Next, a
"super ellipse" of the following form and centered at the

point (1,1) is argued to reasonably fit the curves (Nickel, 1978):

(1-X?m + (1-y)m = Al (c-1)

At the symmetry axis chosen, x=y. Or, in this

application
P(t)/PEAKP = t/t

Il

where  P(t) pressure at time t,

PEAKP = peak overpressure,

t = +time measured from arrival of shock
front, and

t; = direction of positive overpressure

phase.




At the symmetry axis Equation (C-1) becomes

(1"x)m = % ’
from which results
L E B . (C-2)
in (1-x)

From Figure 17 data and Equation (C-2), the following

table results:

PEAKP x = t/t; 1-x m
20 035 065 1-60
100 .27 .73 2.20 |
200 21 .79 2.94
1000 .12 .88 5,42

After several trials, the above table data relating
PEAKP and m is chosen to be fit by a cubic equation in
(1n PEAKP),
m =1+A * 1nPEAKP + B * (1n PEAKP)?
+C * (in PEAKP)Y (c-3)

Three equations are set up using Equation (C-3) and the

data table, then solved, giving

A = 0.382,
B = -0.136, and
C = 0,025 o




g e o et a2

Knowing m, Equation (C-1) is solved for y yielding

1/m
y = 1 - [ 1 - (1~-2)" } .
or equivalently,
1/m
1) - (1-t/tT)m
Peakp = 1 1 - (1-%/t)) .

The results of using this curve-fitting algorithm are
given in Figure 18 for the surface overpressure from a 28

kiloton event at 500 feet height of burst.




Figure 17.

NORMALIZED OVERPRESSURE, p(1)/p

Rate of Decay of Overpressure with Time

(Glasstone, 1977: 100)

NORMALIZED TIME, #/1;

Figure 18, Comparison of Algorithm for
Time-Dependent QOverpressure and
Glasstone Data
s ! P(%)
+ PEAKP
PEAKP AEQ algorithm Glasstone
1563 0.071 0.142 0.14
1563 0.030 0017 0.01
75 0.23 0.12 0.11




Appendix D

Derivation of a Transmitting Boundary

At a boundary it may be desirable to pass or transport
seismic signals through the edge of the mesh as though a
semi-infinite expanse of ground material existed beyond that
edge. Although several conditions may exist upon which such
a "transmitting" boundary can be constructed, an argument
based upon momentum transfer is chosen.

Consider the finite difference mesh near such an edge,

in this case, the bottom.

—_—
l JMAX-2
o P
z JMAX-1
o R
JMAX
3 1+3 1+1

Assume that the horizontal level JMAX-1 is the boundary
cross which seismiz signals are desired to be transmitted
without reflection. The points marked with the symbol "X"
are known. Thus, the stresses 0y 30d Oy, can be
calculated at point P, centered at (i+%, JMAX-3/2).

The stress CTiz represents the flux of z-momentum in
the z-direction, and s the flux of r-momentum in the
z-direction. A properly constructed transmitting boundary
would permit the outflow of positive momentum and the inflow
of negative momentum, while preventing the inflow of positive
momentum and outflow of negative momentum which result in a
net increase in moméntum flcwing into the finite difference

mesh.
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The z-momentum density is given by the product 7”Vz,
and, similarly, the r-momentum density by f’Vr, where Vz and
Vr are the velocities of the ground particles in the z-direction
and r-direction, respectively. Assuming the density £ +to be
constant near the mesh boundary of interest, the positiveness
or negativeness of z~ and r-momentum can be determined by
testing the sign of the VZ and Vr velocity respectively.

Then, consider the following:

Vz = dsz = dSz dz .
at dz at
where S 1is the displacement of the bround in the
= z-direction.

Here %5 is assumed to be greater than or equal to zero.

The following logic tables result:

bsz . .
2 Crzz indicate

d D reflection ? action
=0 =0 Yes crzz l = 0

R
= 0 < Q0 No GZZIRza—Zle
<0 >0 No Gy lR =CTiZLp
< 0 <0 Yes CTiZl = 0

R
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0 Sr Grz indicate

Or P reflection ? action
=0 =0 Yes @ = 0

rz
R
> 0 < O No (Feos R = O—rzl
< 0 > 0 No O‘rz ) = O"rz
<0 < 0 Yes O'rz » = 0
o Sz d Sr .
b 5 ’ ’ O_ZZ y O CrI‘Z " 1s
P P ;
equal to zero, either action results in the same thing.
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Appendix G

Estimate of Apparent Airshock Velocity

Along Ground Surface

The shock front from a nuclear burst can be considered a

spherical shell which is expanding with some average velocity,

vave' The intersection of this spherical shock front with

the ground surface forms a circular regicn. This circular
line of intersection will expand along the ground with a

Velocity, called the apparent velocity Vapp’ which will differ

from Vave' If the airshock is approximated locally as a planar

wavefront, the following figure describes the position of the

airshock at twe times, t and t+dt.

In dt, the shock wave radius S (also egqual to the slant
range) expands by Vavedt. Thus,
S(t+dt) = S(t) * V. __dt.

ave
Also,
2 3 2 2
(ar)? = (V3 _ a2+ [sm dd)] , or
2 2
A ad
y R T S [S(t) at ] '
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But, tan§b== Eﬁil and sec qb = §§£l .

| Also, —3— (tan q) ) = secz¢) d_qb: _}1{ A plt) .

dt

which gives gﬂb S 1 a r(t)

dt H Secz i dat
2
1 H d r(t) H A\ ‘
= == | 2ia) = app
H (S(‘t ) dat Sz('t)
Substituting for %gb in the expression for %% above
yields
2 2
dr kS 2 2 2 HV .
E) = Nappt Vave T S(t) ___app_ 2} '
[S(t)]
or 2 ‘
¥ < 1 - H . = ¥ e :
app S(t) ave
J
S i f Vv
olving for app’ %
2 2
ave
Vv = .
app t - | 5
S(t)
i
= ;
Finally substituting for S(t) = [( e + ( r(t) )2] A i
1
2 i
2
Vave :
Va = , 5 . |
HZ &% r2 ;
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