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A New Error Model for Discrete Systems and Its ~.

Application to Adaptive Identification and Control - .

Yuan—Hao Lin and Kumpati S. Narendra

1. Introduction: Model reference adaptive schemes for the identification and

control of continuous and discrete systems have been discussed by numerous

authors in recent years [1—9]. Among the many approaches that are currently

in vogue, the stability approach using Lyapunov Theory and the Hyperstability

Theory of Popov have found wide acceptance. The problem of convergence of the

parameters of a dynamical system to desired values in identification and control

problems is recast, using this approach, to the equivalent asymptotic stability

problem of a set of error differential or difference equations.

In a recent paper [9] three such error models were described for continuous

systems which arise frequently in problems of adaptation . Discrete versions of

these models are also very desirable since in most applications which use a

computer as a part of the controller, discrete rather than continuous algorithms

are used. While the discrete versions of the first two models can be obtained

in a relatively straightforward manner from their continuous counterparts, the

third error model has proved to be considerably more difficult. In this paper,

a simple structure is chosen for the third error model and a complete stability

analysis is presented. The applications of the new model to adaptive identifica—

tion and control are also briefly discussed.

In a forthcoming report [121 different versions of three discrete error

models and their applications to adaptive observers and controllers will be

treated extensively and the reader is referred to that report for further details.

Only the principal result concerned with the third error model is presented in
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this paper. Its detailed analysis here is justified by its simplicity and

frequent use in real applications.

2. The Error Model for the Continuous Case: For the sake of completeness as

well as to provide the reader with a basis for comparison with the discrete case,

the error model of the third prototype [9) f or the continuous case is briefly

discussed in this section. Figure (1) represents the error model in block

Strictly Pos. Real

~~~~~~~~~~ T c~~~~~~~~~~~J 1  
e~(~~~

Figure (1)

diagram form. The model is described by the equations

~~(t )  = Ae(t) + b+
T
(t)u(t)

T (1)
e
1
(t) = C e(t)

where e(t) is an (nxl) state vector, 4’(t) and u(t) are in dimensional vectors

with the elements of u(t) piecewise continuous and uniformly bounded. A is a

stable (nxn) matrix, b and c are (nxl) constant vectors, wi th (A,b) comple tely

controllable, and the transfer function C
T(sX_A) L

b is strictly positive real.

The elements of the vector 4(t) are unknown but the time derivative •(t) can

be adjusted using the signals u(t) and e
1
(t) which can be measured. The aim of

the adjustment is to make u r n  e1(t) = 0.
t-I.cQ

If the adaptive law

•(t) —r u (t ) e
1
(t) r rT 

> 0 (2)

is chosen , it can be shown easily using the Kalman-Yacubovich Lemma that

f
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(i) e(t) and •(t) are bounded

(ii) lint e(t) — 0
t~ co

and (iii) if u(t) is sufficiently rich [10]

l1m~~(t) 0

Proof: Choosing V(e,~) = e
Tpe + .Tr

_
~. > 0 as a candidate for a Lyapunov function

e
T[ATP + PA]e + 2eTpb~

T
u +

By the Kalman—Yacubovich Lemma a matrix P ~T > 0 exists such tha t

A
T
P + PA _qqT — cL

P b c

for some vector q, matrix L = LT > 0 and c > 0 iff cT(sI_A)
_l
b is strictly posi-

tive real. In such a case,

= _e
T
(qq

T
+€L)e + 2 e

1~
T
u + 2 ,

T
r
_l
~

By choosing the adaptive law (2) ‘& becomes

— ~-e
T(qqT+~L)e ~ 0

so that the system is stable and (i) holds. If u( t )  is uniformly bounded it

follows [8] that lint e(t) 0. The convergence of $(t )  has been extensively

investigated [10] and it has been shown that when the input u(t) is “suff iciently

rich” lim •(t) — 0.
t-p~

3. The New Error Model for the Discrete Case: Figure (2) represents the error

-: model of the third prototype for the discrete case and is

e(lc+l) — Ae(k) + bv(k)

e1
(k) — ~T~(iç) + dv(k) (3)

v(k) — ,
T
u~ uIk — csuT(k)ru(k)e

1(k); ~a > .~~~, r — rT 
> 0-

~~~~~ 
-
~~~~

-
~~~~~~~~~~ - ~~~~~~~~~~ -- -- - - .-
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where e(k) and u(k) are respectively n and m dimensional vectors and v(k), e1(k)

Strictly Poe. Real -

- Figure (2)

scalars. A is a matrix, b and c are vectors of suitable dimensions and d is a

positive scalar such that the z—transfer function d + cT(zI_A) 1b is strictly

positive real (12].

From Figure (2) it is seen that the model contains a known linear time—

invariant part with a strictly positive real transfer function , a known time

varying gain czu
T(k)ru(k), which depends on the input signal, in the feedback

path and a time varying vector gain •(k) in the feedforward path. The vector •(k)

is assumed to be unknown but changes in ~~k) can be made using the measured sig-

nals u(k) and e
1
(k). The objective is to determine suitable adaptive control

laws for updating +(k) such that in the limit e1
(k) -

~~ 0 as k -
~ 0. From the

previous section it is seen that this adaptive updating is quite simple in the

continuous case. While relatively complex schemes are known in the literature

[5] , our aim is to develop a scheme for the discrete case which is comparable

in its simplicity to that in the continuous model. The principal result of this

paper is that the adaptive law

- •(~~l) - +(k) - -r e
1

(k)u(k) (4)

achieves the desired aim. While this adaptive law is similar to (2) in the con—

- ~~~~~~~~~~~ ~~~~~~~~~~ _ - i  ~~~~ 
- . ~r~~- A
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tinuous case, it is achieved by using an additional feedback signal in the discrete

model.

Lemma: Given an (nxn) matrix A with all its eigenvalues within the unit circle,

a symmetric positive definite matrix r, vectors b,c £ with (A,b) completely

controllable and u(k): ~~ 
~ whose elements are bounded , the equilibrium states

of the set of n + m difference equations (3),(4) is stable and lirn e(k) 0 if

Tthe transfer function d + c (zI—A ) b is strictly positive real. Further if u(k)

is sufficiently rich, Em $(k) — 0.

Proof: From the discrete version of the Kalman—Yacubovich Lemma [11] it is known

that if d + c
T(zI_A)

_l
b is strictly positive real, a matrix P = ~

T 
> 0 exists such

that

A
TPA — P _qqT —

A
T
Pb = c/2 + vq (5)

d _ b T
P b V 2

for some vector q, matrix L — L
T 

> 0 and c, V > 0.

Defining a Lyapunov function candidate for the set of difference equations

(3) (4) as:

V(e(k)~~ (k)) 2e~(k)Pe(k) + ,
T(k)r~~,(k)

we obtain

AV(e(k) ,+(k)) 1~V(k) = V(1c4-1) — V(k)

— 2[e
T(k)(ATPA_P)e(k) + 2eT(k)ATPbv(k)

+ bTPbv2(k)] + ,T(~~l)r
_l
,(;.c.f.l) — ,

T(k)r l
.(k)

Choosing the matrix P given by the relations (5):

AV(k) — _2[e
T(k)q_vv (k)]

2 
— 2ceT(k)Le(k) + 2e

1
(k)v(k)

+ 2,
T(k)r 

1
$(k) + a,

T
(k)r~~~,(k)

~~~~~ ~~~~~~~~~~~~~~ ~~~- •~~~~
• 

~- -
~~~~~

- -~~~~ :~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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With the adaptive law (4) for t~$(k) the sum of the last three terms may be ex-

pressed as

2e1(k)v(k) 
— 2$T(k)51

(k)u(k) + e~(k)u
T(k)ru(k)

or (_2a.4.l)u
T(k)ru(k)e~(k)

Hence t~V(k) — _2(eT(k)q_vv(k) 12 — 2ceT(k)Le(k) + (_2ct+1)uT(k)ru(k)e~(k)

i f a > ~~ (6)

The system (3),(4) is stable and e(k) and +(k) are bounded if e(0) and •(0) are

bounded.

Having established the global stability of the discrete error model we now

state some of its other stability properties:

(i) The boundedness of e(k) and •(k) are assured even when u(k) is not bounded.

(ii) Furthermore, we can prove u r n  e(k) ~ 0, lint e1
(k) -P 0 whether or not u(k)

is bounded. Defining

(2c1_l)uT(k)ru(k) ~ ~(k) , ~(k) > 0

we have

AV(k) _2[eT(k)q~vv(kfl
2 

— 2ceT(k)Le(k) — E (k)e~(k)

E AV(k) I — V(co) — V(O) I < ~ since AV(k) ~ 0

or E {2(eT(k)q_vv(k)]2 + 2ceT(k)Le(k) + ~(k)e~(k)} <

k-C

Hence we conclude lim e(k) — 0 for u(k) bounded or not.
k-~co

If u(k) is unbounded, so is ~(k), e1(k) has to go to zero.

If u(k) is bounded but does not tend to zero as k -~
. =, ~(k) does not tend

to zero and hence e1(k) ÷ 0. If however u(k) does tend to zero as k ÷

then e1(k) -‘ 0 by (3) and the result follows.
(iii) Since from (ii) E (k)e~(k) + 0, •(k+l) — $(k) in (4) tends to zero or

,(k) -‘ • ,  a constant vector. From (3) it follows that if u(k) is

~~~~~~ ~~~~~~~~~~~~~~~~~~ - ~~ - .--  ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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“sufficiently rich” 0 or $(k) ~~ 0 asymptotically.
4

(iv) In Figure (2), if we just consider the loop with the strictly positive

real transfer function in the forward path and (au
T
(k)ru(k))e

1
(k) in

the feedback path, it follows that this loop is uniformly asymptotically

stable if u(k) is bounded. Therefore, if there is any input disturbance

which tends to zero , the effect of this disturbance on the output will

also tend to zero.

A Note: As pointed out In the Introduction, a simple adaptive law is achieved

by the use of the structure of the error model shown in Figure (2) which involves

the use of the feedback term (au
T(k)ru(k))ej(k). In general, the output of the

unknown gain (i.e. +
T
(k)u(k)) must be assumed to be inaccessible for measurement

since otherwise we would use the first prototype error model as discussed in [4].

Hence one may question the very validity of the model described so far. The

answer to this lies in the following section on applications where it is shown

that the above error model can be realized even when the output of the unknown

gain is not measurable.

4. Applications: All the adaptive observer and control problems which could be

resolved using the error model for the third prototype in the continuous case

have their counterparts in the discrete case as well. We merely descr ibe here

briefly two impor tan t applications to indicate how the error model described in

the previous section (3) can be derived and used in the generation of the adaptive

laws.

a) A Discrete Adaptive Observer:

The input uflc) and the output y(k) of an unknown stable linear time—invariant

plant are given. If the z—transfer function of the plant is P(z)/Q(z) where P(z)

is an ~
th degree polynomial in z and Q(z) an ~th degree manic stable polynomial,

~he plant catt be described by (2n+l) parameters which are the coefficients of

~ 

..~~~~~~~~~~. ~~~~~~~~~ - - L- -~~ ~-~
- ~~~~~~ _____
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P(z) and Q(z) . An adaptive observer is to be constructed which will estimate these

pa rameters and evolve to the true values asymptot ically.

Following (2] it is known that any transfer function with n poles and n zeros

has an equivalent non—minimal canonical representation given by

P~z) P1(z) 
[ 

F1(z)/F 2 (Z) 
(6)Q(z) R(z) J Q1(z) F~ (z)

L 1 — R(z) F
2

(z)
th th thwhere p1 and Q

1 
are n and (n—l) degree polynomials, R(z ) is any n degree monic

thstable polynomial, F1(z) and F2(z) are in degree monic polynomials (in ~ n) with

F1(z) /F2 (z) strictly positive real and such that R(z) contains F
1
(z) as a factor.

(In the simplest case we can choose F1 
= F

2 
1).

The representation of (6) in block diagram form is shown in Figure (3).

u(k) 

~~ j )() 
-

j  Q
1

(z) 
_________

[ 
R(z)

Figure (3)

The identification of the plant transfer function (I.e. the polynomials P(z) and

Q(z)) is now reduced to the identification of the polynomials P
1

(z) and Q
1
(z).

Figure (4) shows the discrete version of an adaptive observer. The structure of

the observer is identical to that in the continuous case with the exception of

~~~~~~~~~~~ ~~~~~~~-
- -
.
. 

~~~~~~~~~~~~~~~~~~~~ - 
- - - -

~~~~ - — 

- 

~~~~
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the feedback signal (czuT(k)ru(k))e
1
(k). The parameters â

1
(k) and ~~(k) in

the model are estimates of the corresponding parameters a1 
and b~ in the

plant (I l,2,...,n; j 0,l...n). 

~~ 1Fv 1
~~~~~ 

_

)1~x2J ~~~~

‘°______ ______  

V
2 

J Z_X2

_ \ v ~
fi

~~~~~~ ~~~~~~~~

/ ________________ [Fi(z)1

/ ~ V2~~J
for i~~ j 

/
I 

J
Figure (4)
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If wT(k) — [w
1

(k)~ w2(k),...w~(k)]; v
T(k) [v

0
(k) ,v

1
(k),...v (k)] in Figure (4),

defining u (k) — [w (k),v (k)] the error equations can be represented in the

form shown in Figure (2) and hence the adaptive laws can be written by inspection

as

ra(k+ln Ia(k) 1 r w(k)
I I = 1 I — ~ e1(k) I
Lb( 1~l)J Lb~)J L v(k)

It is worth pointing out that while the signals corresponding to w(k) and v(k)

in the plant are not accessible , (and hence 4 (k)Tu(k) in Figure (2) is not

accessible) the desired error model is obtained by feeding back the signal

(cxuT(k)ru(k))e
1
(k) in the model as shown in Figure (4).

b) The Adaptive Control Problem:

We consider in this section the simplest of the control problems treated

in [8] where an unknown linear time—invariant plant with a single input and

single output is to be controlled to follow the output of a specified model with

a strictly positive real transfer function. We shall treat only the case where

a single parameter of the controller can be adjusted and extend the results

directly to the general case where (2n+l) parameters are to be adjusted . For

the latter case we shall merely indicate the structure of the adaptive controller

and the form of the adaptive laws.

Let an unknown plant be represented by the difference equation

x (k+l) = Ax (k) + bv (k)

Ty (k) = C x (k) + dv(k)
p p

where the matrix A, vectors b and c and scalars d are unknown. If v(k) — r(k) +

+ ~(k)y (k) , then ~(k) rep resents the gain in the feedback path as shown in

Figure (5), and r(k) the input to the overall system.

~- -~~~~
-
~~~~~~~~ —-- T T T ~~ — - — — —  ~~~~~~ —~ ~~~— —~~~ - — — -— - --5— ..
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Figure (5)

Let the specified model have a strictly positive real transfer function

* *WM (z) . We assume that a constant 8 exists such that when 8 8 the transfer

f unction of the plant matches exactly that of the model. The plant and model

are subjected to the same input r(k) and the aim of the adaptive procedure is

to update 8(k) using input—output data such that

1e1
(k) I ~~ y (k) — yM (k) ÷ 0 as k -‘-

where YM
(k) is the output of the mode1 .

It follows immediately that the error model can be represented in the form

shown in Figure (6).

y (k) ~~~~~~~~~~~~~~~ 
I 

wM
(z) e (k)

•(k) 
Strictly Poe. Real

Figure (6)

where 8(k) — 8 — $Oc) and y (k) — y1~
(k) — e1(k).

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 
—5-55 -~~~~~.
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Our aim is now to adjust •(k) (or equivalently 8(k)) such that e
1

(k) ÷ 0

as k -‘- . To reduce the error model (6) to the standard form described in section

(3) we have to use a feedback with a gain c(~Y (k) as shown in Figure (7) or in

the plant as shown in Figure (8) .

y
(k)0 

~~~~~~~~ 

~~i[ 
WM Z) 

J 

e
1
(k)

Figure (7) Modified Error Model

MODEL 

~~~~~~~~~~~~~~~~~~~ 
(k)

r(k) + ,—
~~~ PLANT _ _ _ _

8(k) y~ k)

2
ayy (k)

Figure (8) Modified Plant
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It is the fact that the error e
1
(k) can be fed back into the plant that allows

the new error model to be realized . The adaptive law can now be written down

by inspection as:

~8(k) — ~~$(k)  — —y e1(k)y (k) y > 0

For the general case of an unknown plant with transfer function

where P(z) is an n
th degree stable polynomial and Q(z) is a monic ~~~ degree

polynomial whose output is to follow the output of a given model with strictly

positive real transfer function , it can be shown that a controller of the form

shown in Figure (9) can be used to achieve the above objective.

The cont roller consists of (2n+l) adjustable parameters

which are the elements of a parameter vector 0 and two

identical auxiliary signal generators with stable transfer functions whose inputs

are the plant input and output respectively . If reference input r(k) together

with the 2n signals v
1

(k) ,v
2(k),...v n

(k) , v
1(k),...w (k) is defined as

u(k)T ~ [r(k) ,v
1

(k) ,v
2
(k),...v (k),w

1
(k),...w (k)]

and a signal [ctu(k)
T
ru(k)] is fed back as shown in Figure (9), the total input

to the plant may be expressed as

Ô T (k) (k) — (auT (k)ru(k)]e1(k)

*
If a constant 8 exists auch that Model and Plant transfer functions are identical

*when 0 = 0 , then we obtain an error model of the form shown in Figure (2). Once

again the adap t ive laws can be written by Inspection as

ô(k+1) — 8 (k) — r e1(k)u(k)

- - -

~

: ~~~~~~~~~~~~~~~~~~~~~~~ 
_ ..~~~ 
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I 1
MODEL

— e1(k)

r(k) 
_____ ________________S 

_~~~~~~~~~__L (k) 
1~

[Af

LJ 

. . n

Figure (9)

Conclusion: A new error model for discrete adaptive systems is presented in

this paper. By introducing a feedback term in the corresponding error model for

the continuous case it is found possible to retain the same form for the adaptive

laws . It is demonstrated that the output error tends to zero whether or not the

input vector is bounded .

The new error model has wide app lications in both adaptive identif ication

to indicate how the error model is derived and the corresponding adaptive laws

and adaptive control. Two applications are outlined towards the end of the paper

generated.
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