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(VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV]

the Unimolecular and The Electron Donor Catalyzed
Thermal Fragmentation of Secondary Peroxy Esters.
Chemiluminescence of 1-Phenylethyl Peroxyacetate.
LAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Brian G. Dixon and Gary B. Schuster*]7

Department of Chemistry
Lniversity of TiTirors
Urbana, IL 61801
Abstract:

The mechanism of the thermolysis of 1-phenylethyl peroxyacetate was
studied. In the absence of easily oxidized substrates this perester
undergoes thermal fragmentation to yield quantitatively acetophenone
and acetic acid. These products are formed by initial oxygen-oxygen
bond homolysis followed by in cage hydrogen atom transfer. A small
fraction of the so formed acetophenone is generated in an electronically
excited state. In the presence of easily oxidized substrates the reaction
of the perester is catalyzed and generates excited states by the chemically
initiated electron-exchange luminescence (CIEEL) mechanism. An analogy

with the'catalyzed reaction is drawn to the excitation step of bacterio-

Tuminescence.
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Sir:

Our interest in highly exoergic thermal reactions of organic peroxides
led us to the investigation of 1-phenylethyl peroxyacetate (l). Thermolysis
of l in benzene solution gives a quantitative yield of acetic acid and
acetophenone,] a small fraction of which is electronically excited.

The reaction of k is catalyzed by a wide range of easily oxidized
substances. In this case, the electronically excited state of the
catalyst (activator) is formed, apparently by the recently described
chemically initiated electron-exchange (CIEEL) mechanism.2 We report

herein our examination of the mechanism of both the unimolecular and

catalyzed reaction of l.

H 0
—
><0_0)\CH3 - Ph?” NCHy +  CHyCOM M
1

Perester l was prepared by the acid catalyzed reaction of ketene

CHy

Ph

with 1-phenylethylhydroperoxide in CH,Cl, and purified by disti]lation.3

The thermolysis of l in argon purged benzene can be followed conveniently
by the indirect or activated® chemiluminescence that results upon
addition of biacetyl or any one of several easily oxidized fluorophores
(see below) respectively. The rate at which the perester reacted showed
apparent first-order kinetic behavior. However, the observed rate

2 4

constants and derived activation parameters for solutions 1 x 10°

and above are dependent upon the initial perester concentration, indicating

the likely involvement of a radical induced homolysis path.5

At low
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5

initial perester concentration (1 x 107" - 1 x 10'3 M) the rate of

reaction is independent of concentration. Moreover, the activation

parameters for the reaction, AH* = 33.2 + 0.7 kcal/mole, AS* =11.0¢+ 1.9 eu

(see Figure 1), under these conditions indicate a unimolecular process.6

In contrast to the modified Russell mecham’sm7 suggested by Hiatt

and co-worker's8

for the thermolysis of secondary peresters, our findings
are more consistent with a stepwise process in which oxygen-oxygen bond
homolysis is followed by rapid in-cage hydrogen atom abstraction. 1In
particular, the activation enthalpy indicates a transition state in
which bond cleavage is uncompensated by bond formation.6 And the
quantitative yield of acetic acid rules out escape from the solvent cage

of a significant amount of the so formed acetyloxy radica].9 The calculated

10

heat of reaction for the process shown in eq. 1 is -58 kcal/mole. Thus,

the transition state for this reaction lies some 94 kcal/mole above

ground state products. Sufficient energy is released therefore to
populate electronically excited states of acetophenone.]] Indeed, we
detect a low yield of excited state product as indirect chemiluminescence
from added biacetyl. The emission spectrum of the chemiexcited biacetyl
is composed entirely of the phosphorescence, thus implicating acetophenone
triplet as its precursor. This mechanism is shown as path A in Scheme I.
When a small amount of an easily oxidized substance is added to
benzene solutions of perester ] the thermolysis reaction is somewhat
different. For example, N,N-dimethyldihydrodibenzo[a.c]phenazine (DMAC}2
accelerates the rate of reaction of ] (Figure 2) without itself being
consumed. The products of this reaction are acetic acid and acetophenone,
formed quantitatively as they were for the uncatalyzed case. Electronically

excited states are formed by the catalytic reaction as well, and, in

contrast to the unimolecular transformation, are detected as the
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fluorescence of the excited singlet state of the activator. The DMAC is
not unique in its catalytic ability. Similar observations were made for
N,N-diphenyl-2-aminopyrene (DPAP),]3 zinc tetraphenylporphyrin, rubrene,
perylene, 9,10-diphenylethynylanthracene, and others.

The relative catalytic rate constant for the various activators was
determined by measuring the total chemiluminescent light intensity under
conditions where most of ] reacted by the unimolecular path (i.e Tow
activator concentration). After correcting for differences in
fluorescence quantum yield and photomultiplier tube and monochromator
spectral efficiency, it is apparent that the only correlation of activator
property and rate constant is with the one electron oxidation potential
(Table 1 and Figure 3).

These findings are just those that one would expect for a CIEEL
process. Electron transfer from the activator to perester l is endothermic
but may be made irreversible by rapid cleavage of the oxygen-oxygen bond of
the reduced peroxide. The rate of this reaction is expected to depend upon
the oxidation potential of the activator. Transfer of a hydrogen atom simul-
taneously with or subsequent to oxygen-oxygen bond cleavage generates acetophenone
radical anion in the same solvent cage as the activator radical cation. Charge
annihilation of these radical ion intermediates leads to the observed excited
state product. This mechanism is shown as path B in Scheme I for DMAC.

This is the fourth well-documented case of an electron-transfer initiated
reaction of a peroxide that leads to electronically excited state product.2
As in the previously described examples, the major evidence is the correlation
of rate constant and oxidation potential, i.e. Figure 3. Comparisons among

the various peroxides reveal that the catalytic rate constant is strongly

dependent upon structure--diacylperoxides react much more rapidly than

2R




14 However, the

peresters, which are more difficulty reduced, for example.
magnitude of the slope of the line resulting from the semilog plot of rate
against activator oxidation potential is essentially constant and equal to
ca. -0.3/RT for the systems investigated to date. This result is consistent
with rate limiting irreversible electron transfer from activator to peroxide
occurring with a trasfer coefficient of ca. 0.3.]5
In summary, we have observed two distinct reaction paths for thermolysis
of secondary perester l. The unimolecular reaction appears to proceed by
a step-wise route, the bimolecular reaction with electron donors by an
electron transfer mechanism. The electron transfer mechanism in
particular may serve as a model for the excitation step in the

16

bacterioluminescence reaction. We are continuing our investigation

of this and other aspects of the chemistry of these peresters.
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Scheme I
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Path A - Indirect Chemiluminescence 1

slow f '
] e >< >—CH S J\ +  CHyCOH |

//ﬁ:i 0 | i
+ H, —> //ﬁ\\ :
3 + CH,» —> light .
PR CH, CH3/u\n/( Ph” CHy  cH )H’/ 3
0
0

Path B - Activated Chemi]uminescence.

Ao

CH3

0
-CH,CO,H
Lt e = >< )\ 32 )k |
3 5 CH
=l 3 Ph” CH,

DMACH ]

0
—_ )]\ + DMAC* —> Tight




Table 1. !

: a b C d -1 -1

Activator Es Eox 91 kcat M 's™)
(kcal/mole) (V vs. SCE)
Perylene 65 1.00 0.84 1.19 x 1074
e

Rubrene 54 0.82 0.56 1.40 x 1074
Diphenylethyny1- -5

anthracene 62 1.16 0.96 3.58 x 10
DPAP 68 0.90 1.00 2.35 x 1074
DMAC 58 0.25 0.04 9.73 x 1072

a. Assigned from the 0-0 band of the fluorescence spectrum.

b.  Determined by cyclic voltometry in CH,Cil solution with tetrabutyl-
ammonium’ perchlorate supporting electrolyte.

C. At 90° in argon saturated benzene solution.
d.  Calculated by comparing relative total intensity to that of DMAC.

€. Self absorption by rubrene may lead to the observed low calculated
value for kcat' !
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Captions for figures

Figure 1. Eyring plot for the unimolecular thermolysis of perester l in
argon saturated benzene. Perester concentration 3 x 10'4 M. Rate
constants were determined by measuring the decrease in 9,10-diphenyl-
anthracene chemiluminescence intenstity which was shown to be directly

proportional to the concentration of the perester.

Figure 2. Catalysis of perester L by DMAC. The observed rate constants
were determined by monitoring the DMAC activated chemiluminescence in
argon purged benzene solution at 99.9° and were first order for three
or more half-lives. The perester was 3 x 10'4 M.

Figure 3. Correlation of total chemiluminescence intensity with activator
oxidation potential (on). The points, in order of increasing on
are: DMAC, DPAP, perylene and diphenylethynylanthracene. Measured in
argon purged benzene with activator at 1 x 10'4 M and perester at
1 x 1073 M at 99.5°.
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