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BICONTINUOUS EXTENSIONS OF INVERTIBLE COMBINATORIAL
FUNCTIONS

Tommaso Toffoli

MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA
02139

Abstract. We discuss and solve the problem of constructing a
diffeomorphic componentwise extension for an arbitrary invertible com-
binatorial function. Interpreted in physical terms, our solution constitutes
a proof of the physical realizability of general computing mechanisms based
on reversible primitives.

Keywords. Invertible combinatorial functions, continuous extensions, revers-
ibility, Boolcan functions.

1. Motivations

In an ordinary digital computer, the two logic states associated with a bi-
nary signal arc rcalized as distinguishcd valucs of a continuous variable which
represents the range of a physical quantity; correspondingly, the logic function
associatced with a given combinatorial nctwork is realized as the appropriate
restriction of a suitaole continuous function which characterizes a physical sys-
tem involving a number of such quantities. If the logic function is not invertible
(note that a computation may yield the same output for different inputs), its
continuous cxtcnsion cannot be invertible. On the other hand, the microscopic
physical laws which underly the operation of a computer are presumed to be
strictly reversible, i.e., they uniquely specily a trajectory both forward and
backward in time. Thus, it is clear that a noninvertible continuous function
such as the abovc characterizes a physical system only in terms of statistical
mechanics, rather than of microscopic mechanics. In other words, such a function
is necessarily an incomplete specification of a mechanical system(1]; in particular,
it does not give one the means to deal in any detail with the information that
is “discarded” during a computation, besides accounting for it in terms of the
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increase of a single scalar quantity, the entropy of the system[2].

In an attempt to exercisc some control on the details of the work-to-heat
conversion processes that accompany physical computing (and which are related
to the irreversibility of computation), one may conccive of a different approach
to the mathematical modcling and the design of computers|3] (sce Appendix for
a bricf summary). In that approach, a major obstacle to arriving at a complete
specification of a mechanical system is removed, since computation is modeled
exclusively in terms of invertible combinatorial functions. It remains to show

that such functions admit in general of a physical realization. This we do in the
prescnt paper.

2. Statement of the problem

GOAL 2.1 Given the set B = {0,1} and an invertible function
f™: B" = B", find a connected manifold M D B and a diffeomorphism
F™: M"  M™ such that /" is a restriction of F, ;

Our goal can be given the following kinematical interpretation. Consider a
box having n input levers and noutput levers, as depicted in Figure2.1forn == 2,

input > ’ - ‘ output

Fic. 2.1 Realization of a combinatorial function by means of con-
tinuous mcchanisms. :

M represents the range of accessible positions for each lever (a manifold is the
appropriate mathematical structure for describing this range). Two distinguished
positions within M arc marked “0" and “1”. Assume that the input levers are
interconnected to the output ones by means of a passive physical mechanisms
(for instance, an assembly of gears, cams, ctc.) in such a way that

2
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(a) When all input levers occupy distinguished positions, so do all the out-
put ones. In this way, the box “computes” a combinatorial function from
binary n-tuples to binary n-tuples.

(b) The collective configuration of the output levers is a continuous func-
tion of the input configuration. Continuity should extend to the higher:
derivatives (velocity, acceleration, etc.).

(c) The box is reversible, i.e., condition (b) holds when input and output
levers are exchanged.

Clcarly, (c) implics that (a) too holds when input and output levers are ex-
changcd. Thus, the combinatorial function “computed” by the box must be in-
vertible. We want dcsign principles to construct a box with the above properties
for any invertible combinatorial function f("), The specifications for such a box
will be represented by a diffcomorphism F(®) from M™ to M™. (When one is
dealing with manifolds instead of intervals of the real line, a diffeomorphism is
the appropriate generalization of a bicontinuous function).

It must be stressed that Goal 2.1 does not just ask for an arbitrary
diffeomorphic extension of the given function f(™ to an arbitrary manifold.
Rather, the extension must be componentwise. In other words, besides being
a superset of B", the manifold must also be of the form M™, i.c., possess the
same Cartcsian product structurc as B"; morcover, the extension itself must
maintain the variables scparated, i.e., cach component of the extension must be
an cxtension of the corresponding component of the given function. In physi-
cal terms, each binary variable must be encoded in a separate “channel,” so
that in intcrconnecting several boxes of this kind each variable may be routed
independently of the others. Figure 2.2 illustrates the case of an extension that
is not componentwise. This box too “computes” a combinatorial function, but
it is hard to scc how the components of the input n-tuple could be made to

come from different boxes, and those of the output n-tuple go to different boxes,

without using complex encoders and decoders for which the problem of physical
realizability would arise afresh.




input (75K output

Fic. 2.2 An extension which is not componentwise. Only one degree
of frecdom is used to represent several binary variables.

3. Notation and mathematical preliminaries

We shall be dcaling exclusively with functions that are invertible, and
whosc domain and range are structured sets, i.e., are explicitly given as indexed
Cartcsian products of sets. In particular, in all cases domain and range will be
products of identical sets and will coincide.

A restriction of a function of the form &: A — B is usually defined by
specifying a subset A of the domain A. However, when invertibility is an issue,
it is necessary to explicitly specify also the restriction’s intended range. Thus,
by the restriction of ® to (A, B) (where A C A and B C B) we shall mean the
relation ¢ from A to B such that agb whenever a € A, b € B, and ®(a) = b.
Whcther ¢ is indeced a function, and an invertible one for that matter, depends
on the choice of A and B. If ¢ is the restriction of & to (A,B), then @ is an
extension of ¢ to (X,E

Given ¢: Ay X -+* X Am— By X :++ X By, an extension ® of ¢ to (P, Q)
is componentwise if there exist sets A; D A; and B; D B; such that P == A; X

+++ X Am and Q == B X +++ X B, In this case, ¢ is a componentwise restriction
of &.

When the domain of a function is an indexed Cartesian product of scts, it is
convenient to speak of input variables (or input components, or, simply, argu-

ments) of the funclion, using the saine indexing as for the corresponding sets. If
also the range of the function is an indexed Cartesian product, one may likewise
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speak of output variables (or output components) of the function. In ordinary
function composition, an output variable of one function may be substituted for
any number of input variables of other functions, i.e., “fan-out” is allowed, as
indicated in Figure 3.1a. In what follows, we shall use a more restricted form of
composition, called onc-to-one composition, where any substitution of output
variables for input variables must be one-to-one, as indicated in Figure 3.1b. If
the output variable and the input variable involved in every such substitution
range over identical scts, then one-to-one composition always yields invertible
funciions when applied to invertible functions.

1 PO B ey
: H -7:@ 15\
2 2. -J—-—-—-E —z’_
“up o 3
(a) (b)

Fic. 3.1 (a) Examples of ordinary composition and (b) one-to-one
composition of functions.

A re-indexing of input or output variables is a special case of one-to-one composi-
tion. One-to-one composition is conveniently handled by means of an algebraic
notation formally analogous to that of tensor calculus[4]. From a physical view-
point, the one-to-one constraint reflects the fact that signal fan-out requires a
source of energy other than that carried by the signal itself.

Let ¢ be a binary relation from § X Uy X +++ X U, to §' X U}:-- X U,
where the sets Ui, ..., Uy, UY,..., Ul, are singletons. For convenience, the one
element of any of these singletons will be denoted by 0. The variables associated
with these singlctons will be called dummy. A relation ¢ from S X Uj, X - - - X U-r
toS'X U X+ X U;-',, where I1<i) < - < p<nand | < 51 < < jy<S,
is said to be obtained from ¢ by deletion of dummy variables if

n' [ 4
(8,0 O)HlE 6y ®) o= (8,65 2 O)B(e', G- 1O,

that is, if the two rclations coincide when the trailing o's which accompany each
tuple are disrcgarded.
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Finally, a combinatorial function is one of the form f: B™ — B", where B
is the binary set {0,1}.

4. Main results

DETFINITION 4.1 Consider the set B = {0,1} with the usual structure
of Boolean ring, with “@" (exclusive-or) denoting the addition operator, Q"
the additive-inverse operator (which in this case coincides with the identity
operator), and “o" (anD) the multiplication operator. For any n > 0, the
AND/NAND function of order n, denoted by 6™ : B® — B", is defined by

7 7
z z
o | : el i (4.1)
Tn—1 Tpn—|
Tn Oz Pr10730: 02,

REMARK 4.1 (a) The © sign in {4.1), which is redundant (since Sz, =
z,), has been introduced for symmetry with (4.2) below, where it is not redun-
dant. (b) For any n > 0, 0(™ is invertible and coincides with its inverse. (c)
For i =1,2,...,n— L, the i-th component of 8", i.c., 6{"), coincides with the
selector operator for the corresponding argument, i.e., 0&"’(::1, ‘o oy Zy) == z;. (d)
The last component of 8", i.c., 6{"), coincides with the Boolean-complement
operator for n = 1 (note that zj0--- 0 z; = 1 when ¢ == 0), and with the
exclusivc-or of its two arguments for n = 2. (¢) For all other values of n, 0{"™
is still lincar in the n-th argument, but is nonlinear in the first n— 1 arguments.

The family of Anp/NAND functions was introduced by Toffoli[5] for proving
the computation and construction universality of reversible cellular automata.
An earlier, briel mention of the Anp/NAND function of order 3 can be found in [2).

LEMMA 4.1. Any invertible combinatorial function of order n can be ob-
taincd by onc-to-onc composition of AND/NAND functions of order <n.

Proof. In the following construction we shall make use only of 6™ (where n
is the order of the given function) and of 0(!) (the Boolean-complement operator).
By definition, 0() is a permutation on the set of n-tuples over B. (a) Any
permutation can be written as the product of clementary permutations, i.e.,
of permutations that exchange only two n-tuples. In turn, as we shall prove
below, (b) any clementary permutation on B” can be written as the product of
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atomic permutations, i.e., of permutations that exchange two n-tuples which
differ in only one component. Observe that 0(" is the atomic permutation which
exchanges (1,1,...,1,0) with (1,1,...,1,1). By reordering the components of
0(™ and applying 01 to selected components one obtains the family of all atomic
permutations. Note that all the operations used above are forms of one-to-one
composition. It remains to prove (b); this is done in the following way.

The n-tuples ay, az, .. ., a; are said to form a Gray-code path if two adjacent
n-tuples differ by an atomic permutation. It is easy to verify that by means of
sequence of atomic permutations the element at the beginning of the path can
be moved to the end position, leaving the remainder of the path unchanged. By
repcating such a move the first and last elements can be exchanged. The proof
is completed by observing that any two n-tuples can be joined by a Gray-code
path.Q

LEMMA 4.2 Consider the 1-manifold R obtained by identifying all points
of the real line R that differ by a multiple of 2x (R can be thought of as the
real circlc), and let the points 0 and 1 of B coincide with, respectively, 0 and »
of R. Then there exists a diffcomorphism from R" to R™ whose restriction to
(B"™,B™ coincidcs with 6",

Proof. Consider R with addition (“") and additive inverse (“©S") induced
from those on R, and multiplication (“o") defined as follows

l—cosz. 1—cosy
2 S

Zoy=nx

R satisfies all the axioms for a ring except distributivity. Let 6(": R - R" be
defined by

I) I
n n
eln: | : -l : : (4.2)
Tn—1 Tn—1
Tn Oin@Pr10230::: 012,

Observe that when the operators defined on R are restricted to B C R the
Boolcan-ring structure for B is recovered; thus, the restriction of 8" to (B", B")
coincides with 0("), Moreover, ©™ is infinitely differentiable by construction
and coincides with its inverse; thus, " is a diffeomorphism.g

As an immediate consequence of Lemmas 4.1 and 4.2, one obtains the
following theorem (cf. GOAL 2.1).




THEOREM 4.1 Given any invertible combinatorial function
St B" — B", there exist a connected manifold M = B and a diffeomorphism
F™: M™ — M" such that f{" is the restriction of F™™ to (B",B").

5. Additional results

Beforc continuing with our mathematical exposition, it will be useful to
verily in an intuitive way the physical realizability of the functions 8(™. With
refercnce to Figure 2.1, we shall consider boxes whose input and output levers
are constrained to circular motion (i.e., are cranks). In close correspondence with
the defining formula (4.2), 8™ will be realized as in Figure 5.1a, and 6@) as
in Figure 5.1b, where @ represent the mechanisms known as the “differential”
which is used, for example, in automobile transmissions. In this mechanism, the
angles p, ¢, and r satisfly the relation ¢ = —p - r.

1

(a) ' = a (b)
Fic. 5.1 (a) Realization of ©). (b) Realization of 6(?,

©®) will be realized as in Figure 5.2a, where the mechanism denoted by anp is
illustrated in more detail in Figure 5.2b. Basically, the rotary motion of the two
input shafts is converted to linear motion along two orthogonal axes z and y. The
resulting composite motion operates a cam in whose two-dimensional surface
the product of the two orthogonal displacements is encoded as a displacement

along the z axis. A “finger” follows the surface of the cam and contributes an
additive term to the diffcrential.




Fic. 5.2 (a) Realization of ©(). (b) Details of the AND mechanism.

In gencral, (" will be realized according io the scheme of Figure 5.3, which
is convenicnt also for representing the corresponding discrete function 8("), The
(n — 1)-dimensional cam required for the (n — 1)-input AND mechanism can be
realized by cascading a suitable number of two-dimensional cams. Note that,
although our construction makes use of rotary-to-linear conversion, which by
itself is not an invertible operation and in general may introduce “dead points”
in a mechanism, the resulting overall mechanism is indeed reversible.

X, Y

X2 : : Yz

"h-n - i - y'l-l
QND

Xn 3 Yn

Fic. 5.3 Schematic representation of (™ or 6™

Returning to our mathematical exposition, let us observe that Lemma
4.1 supplics a sct of invertible primitives for constructing—via one-to-one
composition-—any invertible combinatorial function. However, this set is un-
bounded, in the sensc that 0's of ever larger order may be needed as the order of
the given invertible function increases. It is well known that any combinatorial
function can be synthesized by ordinary function composition starting from a
single computing primitive such as the two-input NAND function. In analogy

9
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with this, can Lemma 4.1 be strengthened so as to require only a finite set of
primitives? According to Theorem 5.1 below, the answer to this question is nega-
tive. However, Theorem 5.2 shows that 0() is a universal primitive for invertible
combinatorial functions if componentwise restriction and deletion of dummy
variables arc allowed in addition to one-to-one composition. Using the same
operations (which have a simple interpretation in terms of physical reallzablhty),
it is possible to construct a diffeomorphic componentwise extension of any in-
vertible combinatorial function using @ as a primitive (Theorem 5.3). In view
of the many constraints imposed on the construction, this result is quite strong.
We conjecture that it is the strongest possible.

THEOREM 5.1  There exist invertible combinatorial functions of order n
which cannot be obtained by one-to-one composition from ANp/NAND functions
of order < n. .

Proof. In the same context as the proof of Lemma 4.1, 0¢¥) permutes exactly
2" n-tuples of B™. Thus, only even permutations can be obtained when i > 0.
Since the product of even permutations is even, only even permutations can be
obtained by one-to-onc composition of any number of aND/NAND functions of
order < n.fj

THEOREM 5.2  Any invertible combinatorial function can be obtained
by onc-to-onc composition, componentwise restriction, and deletion of dummy
variablcs from 60,

Proof. Consider the function ¢ of Figure 54. A value of 0 for the fifth
input component always results in a value of 0 for the corresponding output
component.

X, ——F——r— ———u
X3 T i T } Ya
| ! | |

RRE s NG e, 90 5 9
B 7. g TR
N ;r r %
l |

Fic. 54 Construction of ¢®). When 25 == 0, also y5 == 0. The
remaining components behave as the corresponding ones of &%),




From the restriction of ¢{*) to (B? X {0}, B® X {0}) one obtains () by deletion of
the dummy variables z5 and ys. In a similar way, all () (n > 3) can be obtained.
0 and 0) are obtained directly from 0) when the first and, respectively, the
first two components are restricted to the value 1 and the resulting dummy
variables are deleted. If one-to-onc composition is applied before deletion, it is
easy to verify that the number of delctions (i.e., the number of constant inputs)
required for the construction of any invertible combinatorial function of order
n docs not exceed 2n — 3.0

THEOREM 5.3 For any invertible combinatorial function f(™, a
diffeomorphic componentwise extension F(™ can be obtained by one-to-one com-
position, componentwise restriction, and deletion of dummy variables from ),

Proof. The proof parallels that of Theorem 5.2.0

6. Conclusions

Computing is based on the evaluation of functions that are discrete and

many-to-one. On the other hand, the mechanisms offered by a schematization

of physics such as classical mechanics are based on functions that are continuous
and one-to-one. We have explicitly bridged the gap between these two concep-
tions. ;

Appendix

The question of whether there cxist reversible systems (i.e., systems charac-
terized by an invertible transition function) which possess universal computing
capabilitics has been considered by many authors (see [5] for references). The
answer to this question is positive. For our purposes, it will be sufficient to recall
the following basic proposition|3]:

For every combinatorial function ¢: B™ — B" there exists an invertible
combinatorial function f(m+7); Bm+r — B+ (with r<n) such that

/\ fsm+')(-7l’ co oy Tymy 0’.-:?0) _— ¢i(’lv veey ‘m)'

1<i<n

Informally, the required function ¢ is obtained from f(™+") by assigning constant
values to the r additional input components and ignoring the “random” values




obtained for the m -4 r — n additional output components. (We use the term
“random” for output valucs that depend on the first m input arguments and thus
cannot be uscd as constants for a new computation. By contrast, the additional
output components used in the proof of Theorem 5.2 yield “nonrandom” values.)
We cannot avoid mentioning the analogy of the above scheme of computa-
tion with the functioning of ordinary physical computers, where one must supply
work (i.e., a nonrandom form of energy) in addition to the input signals, and
remove heat (i.e., energy in random form) in addition to the output signals.
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