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BICONTZNUOUS EXTENSIONS OF INVERTIBLE COMBINATORIAL
FUNCTIONS

Tommaso Tolloli

MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA
02139

Abstract. We discuss and solve the problem of constructing a
diffeomorphic componcntwise extension for an arbitrary invertible corn-
binatorial function. Interpreted in physical terms, our solution constitutes
a proof of the physical realizability of general computing mechanisms based
on rcvcrsible primitives.

Keywords. Invertible combinatorial functions, continuous extensions, revere-
ibilit y, Boolcan functions.

I. Motivations

In au ordinary digital computer , the two logic states associated with a bi-
nary signal arc realiz ed as di stin guishcd values of a continuous variable which
represents the range of a physical quantity; correspondingly, the logic function
associated with a given combinatorial network is realized as the appropriate
restriction of a suitaDic continuous function which characterizes a physical eye-
tern involving a number of such quantities. I~ the logic function is not invertible
(note that a computation may yield the same output for different Inputs), Its
continuous extension cannot be invertible. On the other hand, the microscopic
physical Jaws which uuuderly the operation of a computer are presumed to be
strictly reversible, i.e., they uniquely specify a trajectory both forward and
backward in time. Thus, it. is clear that a noninvert ible continuous function
such as the abovc characterizes a physical system only In terms of statistical
mechanics, rather than of microscopic mechanics. In other ,~ rds, such a function
Is necessarily an incomplete specification of a mechanical systemllj; in particular,
it does not give one the means to dea’ in any detail with the Information tha t
Is “discarded” during a computation, beaides accounting for It In terms of the
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increase of a single scalar quantity , the entropy of the system~2J.
En an attempt to exercise some control on the details of the work-to-heat

conversion processes that accompany physical computing (and which are related
to the irreversibility of computation), one may conceive of a different approach
to the mathematical modeling and the dcsign of computcrsl3j (see Appendix for
a brief summary) . In that approach , a major obstacle to arriving at a complete
specification of a mechanical system is removed, since computation is modeled
exclusively in terms of invertible combinatorial functions. It remains to show
that such functions admit in general of a physical realization. This we do in the
present paper.

2. Statement of the problem

GOAL 2.1 Given the set B {O, I) and an invertible f unction
f(’~

) : B” —+ B”, f ind a connected manif old M D B and a diff eomorphism
F ~”~: M ” —. M ” such that j (ts) is a restriction of ~~~

Our goal can be given the following kinematical interpretation. Consider a
box having n input. levers and n output levers, as depicted in Figure 2.1 for n — 2.

Fic. 2.1 Realization of a combinatorial f unction by mean, of con-
tinuous mechanisms.

M represents (lie range of accessible positions for each lever (a manif old Is the
appropriate mathematical structure for describing this range) . Two distinguished
positions within M arc marked “0” and “1”. Assume that the Input levers are
Interconnected to the output ones by means of a passive physIcal mechanisms
(for Instance , an assembly of gears, cams, etc.) In such a way that

2
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(a) When all input levers occupy distinguished positions, so do all the out-
put. ones. In this way, the box “computes” a combinatorial function from
binary n.tuples to binary n-tuples.

(b) The collective configuration of the output levers is a continuous func-
tion of the inpu t confi guration . Continuity should extend to the higher •
derivatives (velocity, acceleration , etc.).

(c) The box is reversible, i.e., condition (b) holds when input and output
levers are exchanged.

Cicarly, (c) implies that (a) too holds when input and output levers are ex-
changed . Thus, the combinatorial function “computed” by the box must be in-
vertible. Wc want design principles to construct a box with the above properties
for any invertible combinatorial function /(‘l), The specifications for such a box
will be represented by a diffeomorphism F~”~ from M” to M”. (When one is
dealing with manifolds instead of intervals of the real line, a diff eomorph i.m is
the appropriate generalization of a bicontinuous function).

It must be stressed that Goal 2.1 does not just ask for an arbitrary 
p

diffeomorphic extension of the given function /(n) to an arbitrary manifold.
Rather , the extension must be corn pone nt wise. In other words, besides being
a super srt of B”, the manifold must also be of the form M”, i.e., possess the
same Cart esian product structure as B”; moreover, the extension itself must
maintain the variables separated , i.e., each component of the extension must be
an extension of the corresponding component of the given function. In physi-
cal terms, each binary variable must be encoded in a separate “channel,” so
that in interconnecting several boxes of this . kind each variable may be routed
independently of the others. Figure 2.2 illustrates the case of an extension that
is not componcntwise. This box too “computes” a combinatorial function , but
it is hard to see how (he components of the Inpu t n-tuple could be made to
come from different boxes, and those of the output n-tu pie go to different boxes,
without using complex encoders and decoders for which the problem of physical
realizability would arise afresh.

3
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Fio. 2.2 An extension which is not componentwi.e. Only one degree
of f reedom is used to represen t several binary variables.

3. Notation and mathematical prelimInaries

We shall be dealing exclusively with functions that are invertible, and
whose domain and range are structured sets, i.e., arc explicitly given as indexed
Cartesian products of sets. In particular , in all cases domain and range will be
products of identical sets and will coincide.

A restriction , of a function of the form ~‘: A —‘ ~ is usually defined by , j
specifying a subset A of the domain A. However, when invertibility is an issue,
it is necessary to explicitly specify also the restriction’s intended range. Thus,
by the restriction of 4 to (A ,B) (where A ~~ A and B ~~ we shall mean the
relation 4, from A to B such that a4,b whenever a E A, b E B, and ~ (a) b.
Whether 4, is indeed a function , and an invertible one for that matter, depends
on the choice of A and B. If qS is the restriction of ~ to (A,B) , then ~ is an
extension of 4, to (A,i~).

Given 4, :A1 )( X A m~~’Bi X . X B ~, an extension ~~of # to (~,Q)
is corn pon ent wise if there exist sets A1 ~~ A1 and B1 ~~ B1 such that P A1 X

XA m and Q B 1  X X B~. In Ihis case, 4,Is a componentwi.erestriction
of t .

When the domain of a function is an indexed Cartesian product of acts, it is
convenient to speak of input varia bles (or input component., or, sImply, argu-
men t.) uf thc function , using (he same indexing as for the corresponding sets. If
also the range of the function is an indexed Cartesian product, one may likewise
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speak of output variables (or output components) of the function. In ordinary
function composition , an output variable of one function may be substituted for
any number of input variables of other functions , i.e., “fan-out” is allowed , as
indicated in Figure 3.la. In what follows, we shall use a more restricted form of
composition , called one-to-one composition, where any substitution of output
variables for input variables must be one-to-one, as indicated in Figure 3.lb. If
the output variable and the input variable involved in every such substitution
range over identical acts, then one-to-one composition always yields invertible
functkrns when applied to invertible functions.

_ _ _  _ _ _  

H
(a) _______________  (b)

Fic. 3.1 (a) Examples of ordinary composition and (b) one-to-one
corn p osition of f unctions.

A re-indexing of input or output variables is a special case of one-to-one composi-
tion. One-to-one composition is conveniently handled by mean. of an algebraic
notation formally analogous to that of tensor calculusl4]. From a physical view-
point , the one-to-one constraint reflects the fact that signal fan-out requires a
source of energy other than that carried by the signal itself.

Let 4, be a binary relation from S x U1 X ... X U,, to S’ X U~.. X U’,,.,
where the sets U 1, ..., U,,, U~, . .. , U’,,, are singletons. For convenience, the one
element of any of these singletons will be denoted by o. The variables sssociMed
with these singletons will be called dummy. A relation ~ from S X U1, X . . . X LJ~
to 5’ x U’,, x . . .  X U’,,,,, where 1�ii <~ ••< i.�n and I <ji�... <J~~~~

1,
is said to be obtained from 4, by deletion of dummy variables if

N ,,
•(s,o,.. .,o)4,(I ,o, . . .,o) ~~ (.,o,. . .,o~~r,s,. .

that ii, if the two relations coincide when the trailing os which accompany each
tup le are disregarded.

5

- ,~~~~~~~~ -~~~~~~~~~ ~~~~~~~~~~~~~~~ . 
~~~~~~~~~~~~~~~~~~~~~ I

~~~ ~~~L4~i~~~~ .~~~L4  ~~~~~ 2



_________ 
_________

Finally, a combinatoria l function is one of the form f: B” —, B”, where B
is the binary set (0, 1).

4. Main results

DEFINITION 4.1 Consider the set B = (0,1) with the usual structure
of Boolean ring, with “s” (exclusive-oa) denoting the addition operator, ~~~
the additive-inverse operator (which in this case coincides with the identity
operator), and “o” (AND) the multiplication operator. For any n > 0, the
AND / NAND f unction of order n, denoted by O~”~: B” —, B”, is defined by

xl Zl

Z2 Z2

(4.1)
Z,,—l Zn_i

Zn êx,,~~ xio x2 o .oxn 1

REMARK 4.1 (a) The ê sign in (4.1), which is redundant (since ex,, =
x,,) , has been introduced for symmetry with (4.2) below, where it is not redun-
dant. (b) For any ii. > 0, of ”) is invertible and coincides with its inverse. (c)
For I = 1, 2,. . ., n — 1, the i-th component of (“), i.e., OS ”) , coincides with the
selector operator for the corresponding argument, i.e., O5~) (z1, . . ., x,,) = z~. (d)
The last component of ~(“), i.e., ok’) , coincides with the Boolean-complement
operator for n = 1 (note that xl o •~ • o Sj I when i 0), and with the
exclusive-oft of its two arguments for ii 2. (e) For all other values of n,
is still linear in the n-th argument , but is nonlinear in the fir st n—i  arguments.

The family of AND/NAND functions was introduced by TofloliI5J for proving
the computation and construction universality of reversible cellular automata.
An earlier , brief mention of the AND/NAND function of order 3 can be found in [21.

LEMMA 4.1. Any invertible combinatorial f unction of order n can be oh-
tam ed by one-to-one composition of AND/NAND f unction, of order �n.

Proof . In the following construction we shall make use only of Of”) (where n
Is the order of the given function) and of o~’~ (the Boolean-complement operator).

By definition , ~(“) is a permutation on the set of n-tuples over B. (a) Any
permutation can be written as the product of elementary permutations, i.e.,
of permutations that exchange only two n..tuples. In turn, as we shall prove
below, (b) any elementary permutation on B” can be written as the product of

8
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atomic permutations, i.e., of permutations that exchange two n-tuples which
diffe r in only one component. Observe that O(”) is the atomic permutation which
exchanges (I, I,.. ., 1, 0) with (I, I, . . ., 1, 1). By reordering the components of
Of ”) and applying o( ’) to selected components one obtains the family of all atomic
permutations. Note that all the operations used above are forms of one-to-one
composition. It remains to prove (b); this is done in the following way.

The n-tuplcs ai, a2, . . ., a are said to form a Gray-code path if two adjacent
n .-tuples differ by an atomic permutation. It is easy to verify that by means of
sequence of atomic permutations the element at the beginning of the path can
be moved to the end position, leaving the remainder of the path unchanged . By
repeating such a move the first and last elements can be exchanged. The proof
is completed by observing that any two n-tuples can be jo ined by a Gray-code
path.~

LEMMA 4.2 consider the 1-manif old f t  obtained by identif ying all point s
of the rea l line R that diff er by a multiple of 2w (f t can be thought of as the
rea l circle), and let the points 0 and I of B coincide with, respectively, 0 and ~rof it. Then thcre exists a diff comorphism f rom it” to it” whose restriction to
(B”, B”) coincides with o(”) .

Proof . Consider it with addition (“s”) and additive inverse (“ê”) induced
from those on R, and multiplication (“a”) defined as follows

1—coa x 1—cos y
2 2

it satisfies all the axioms for a ring except distributivity. Let O(”~: it” —~~ it” be
defined by

xl xl
Z2 Z2

b—s 0 (4.2)
Zn_I Z~_~
Zn ex,,~~xiox2 o ox,, ~

Observe that when the operators defined on it are restricted to B ~~ it the
Boolcan-ring structure for B is recovered; thus, the restriction of OC”) to (B”, B”)
coincides with o(”) . Moreover, O~”~ is infinitely differentiable by construction
and coincides with its inverse; thus, Of”) is a dlffeomorph lsm.p

As an immediate consequence of Lemmas 4.1 and 4.2, one obtains the
following theorem (ci. GOAL 2.1).

141
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TIIEOREM 4.1 Given any invertible combinatoria l f unction
f(’1): B” —.+ B”, there exist a connected manif old M ~~ B and a diffeomorphism
F ~”~: M ” —, M ” such that j ( ”) is the restriction of F (”) to (B”, B”).

5. Additional result.

Before continuing with our mathematical exposition , it will be useful to
verify in an intuitive way the physical realizability of the functions ~~ With
relerence to Figure 2.1, we shall consider boxes whose input and output levers
are constrained to circular motion (i.e., are cranks). ~n close correspondence with
the defining formula (4.2), e” ) will be realized as in Figure 5.la, and e~

2
~ as

in Figure 5.1 b, where ~~ represent the mechanisms known as the “differential”
which is used , for example, in automobile transmissions. In this mechanism, the
angles p, q, and r satisfy the relation q —p + r.

_

_

_  _  
F

Fic. 5.1 (a) Realization of ~ (1)~ (b) Realization of ~ (2)•

~~(3) will be realized as in Figure 5.2a , where the mechanism denoted by AND Ii
illustrated in more detail in Figure 5.2b. Basically, the rotary motion of the two
input shafts is converted to linear motion along two orthogonal axes z and y. The

0 

resulting composite motion operates a cam in whose two-dimensional surface
the product of the two orthogonal displacements is encoded as a displacement
along the z axis. A ufinge~ follows the surface of the cam and contributes an
additive term to the differential.

8
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0 (a) 

~~~~~~~~~ 

a’)

Fic. 5.2 (a) Realization of ~~~ (b) Details of the AND mechanism.

In general , e~”~ will be realized according i,o the scheme of Figure 5.3, which
is convenient also for representing the corresponding discrete function o(”~. The
(n — 1)-dimensional cam required for the (n — 1)-input AND mechanism can be
realized by cascading a suitable number of two-dimensional cams. Note that ,
although our construction makes use of rotary-to-linear conversion , which by
itself is not an invertible operation and in general may introduce “dead points”
in a mechanism ,. the resulting overall mechanism is indeed reversible.

:T__________

FIG. 5.3 Schematic representation of 0(n) or

Returning to our mathematical exposition, let us observe that Lemma
4.1 supplies a s~t of invertible primitives for constructing—via one-to-one
composition—any invertible combinatorial function. However, this set is un-
bounded , in the sense that 0’s of ever larger order may be needed as the order of
the given invertible function increases. It is well known that any combinatorial
function can be synthesized by ordinar~y function composition starting from a
single computing primitive such as the two-input NAND function. In analogy

9
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with this, can Lemma 4.1 be strengthened so as to require only a f inite set of
primitives? According to Theorem 5.1 below, the answer to this question is nega-
tive. However, Theorem 5.2 shows that O~

3
~ is a universal primitive for invertible 0

combinatorial functions if componentwise restriction and deletion of dummy
variables arc allowed in addition to one-to-one composition. Using the same
operations (which have a simple interpretation in terms of physical realizability),
it is possible to construct a diffeomorp hic componentwise extension of any in-
vertible combinatorial function using ~~(3) as a primitive (Theorem 5.3). In view
of the many constraints imposed on the construction , this result is quite strong.
We conjecture that it is the strongest possible.

THEOREM 5.1 There exist invertible combinatorial f unctions of order n
which cannot be obtained by one-to-one composition f rom AND/NAN!, f unctions
of order < n.

Proof . In the same context as the proof of Lemma 4.1, o( ’) permutes exactly
2 ” ’  n-tuplcs of B”. Thus, only even permutations can be obtained when 1> 0.
Since the product of even permutations is even, only even permutations can be
obtained by one-to-one composition of any number of AND/NAND functions of
order < nf l

THEOREM 5.2 Any invertible combinatorial f unctiQn can be obtained
by one-to-one composition, component wise restr iction, and deletion of dummy
variabics f rom ~(3)~ 

0

Proof . Consider the function ~~ of Figure 54. A value of 0 for the fifth 
0input component always results in a value of 0 for the corresponding outp ut 0

component.

1-I _ I l ’- 
_ 

I
I t , ,  I 0

X~ L_~_ J ~ FL__ J
_ _ _ _ _ _ _  

I I  I‘Cl 
_ _  

ii 
• 1

L1~~ J

FIG. 54 ConstructIon of ~~~ When xg — 0, also ~ —0.  The 0

remaining corn p bnents behave as the correspon ding ones of I ( ’) .

10 0
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From the restriction of ~ (5) to (B3 )< {0}, B3 X {0}) one obtains 0~
) by deletion of

the dummy variables X5 and j,~ . In a similar way, all 0~”') (n > 3) can be obtained .
~(2) and of’) are obtained directly from ~(3) when the first and , respectively, the
first two components are restricted to the value 1 and the resulting dummy
variables arc dclcted . If one-to-one composition is applied before deletion , it is
easy to verif y that the number of deletions (i.e., the number of constant inputs)
required for the construction of any invertible combinatorial function of order
n does not exceed 2n — 3.~

THEOREM 5.3 For any invertible combinatoria l f unction ,(n), a
diff eomorphic corn pon ent wise extension F~”~ can be obtained by one-to-one com-
position, corn pon ent wise restriction , and deletion of dummy variables f rom ~~~~

Proof . The proof parallels that of Theorem 5.2.~

6. Conclusions

Com puting is based on the evaluation of functions that are discrete and
many-to-one. On the other hand , the mechanisms offered by a schematization
of physics such as classical mechanics are based on functions that are continuous
and one-to-one. We have explicitly bridged the gap between these two concep-
tions.

Appendix :. 0

The question of whether there exist reversible systems (i.e., systems charac-
terized by an invertible transition function) which possess universal computing
capabilities has been considered by many authors (see (5J for references). The
answer to this question is positive. For our purposes, it will be sufficient to recall
the following basic proposition[3]:

For every combinatorial f unction 4.: B’” —, B” there exist. an invertible
combinatorial f unction /(m+Y) : Bm+’ —. Bm+ ’ (with ,�n) such that

p.

~/\ I n+r)(x1,...,x~ ,0,...,Q) ~~~~~~~~~~~~
1<i<n

In formally, the required function 4. is obtained from f (~+’) by assigning constant
values to the r additional Input component. and ignoring the “random” values

11
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obtained for the in + r — n additional output components. (We use the term
“random” for output values that depend on the first m input arguments and thus

0 
cannot be used as constants for a new com putation. By contrut, the additional

0 output com ponents used in the proof of Theorem 5.2 yield “nonrandom” values.)
We cannot avoid mentioning the analogy of the above scheme of compute.-

tion with the functioning of ordinary physical computers, where one must supply
work (i.e., a nonrandom form of energy) in addition to the input signals, and
remove hea t (i.e., energy in random form) in addition to the output signals.
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