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ABSTRACT

This paper presents the results of empirically testing eight alternative

3]_].

multipliers for a multiplicative congruential generator with modulus 2
The LLRANDOM number package (Learmonth and Lewis, 1973) uses one of the multi-
pliers, the simulation programming language SIMSCRIPT II uses a second and the
remaining six are the best of 50 candidate multipliers studied by Hoaglin (1976)
using the theoretical spectral and lattice tests. The battery of tests raises
serious doubts about three of the multipliers, including the one in LLRANDOM.

The power of the tests is demonstrated by their rejection of RANDU, a notably
poor random number generator. A comparison of the results for the eight multi-
pliers with the eight worst multipliers (with regard to 2-tuples) in Hoaglin
(1976) failed to show any apparent gross differences. Since examination of
performance on the lattice test revealed that the 16 multipliers clustered in
performance when compared to RANDU, one may conjecture that the poorer lattice
test performance for the worst eight is too subtle for detection by our empiri-
cal tests. Since this failure may not be as serious as the lattice test implies,
one may want to revise upward the criteria for acceptable performance on the

lattice tests and similarly on the spectral test. In section 9 an analysis of

algorithms for generating random numbers reveals that the choice of coding can

significantly affect execution time for different multipliers.
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1. Introduction
This paper presents the results of an empirical evaluation of eight
suggested values for the multiplier A in the prime modulus multiplicative

congruential random number generator

(1) Z, = AL, (mod 231.1) .

Lewis et al. (1969) suggested multiplier I and it is in common use in the
LLRANDOM random number package (Learmonth and Lewis, 1973), in APL (Katzan, 1971),
in the simulation program language SIMPL/1 (IBM,1972) and in the IMSL Library
(1977). Payne et al. (1969) suggested multiplier II, and its most common use
is in the simulation programming language SIMSCRIPT II. The remaining six
suggestions come from a study of 50 multipliers by Hoaglin (1976) who evaluated
them as best using the spectral test (Coveyou and MacPherson, 1967) and the lattice
test (Marsaglia,197l). It is well known (Marsaglia, 1968) that all linear con-
gruential generators are flawed. The spectral and lattice tests provide theo-
retical methods of assessing the seriousness of the flaw in a multiplier.
These tests showed that the six multipliers considered here had less serious
flaws than the remaining 44 multipliers studied.

In the present paper we examine the performance of these eight multipliers b
when subjected to a battery of tests designed to detect departures from random-
ness in a sequence of numbers. Let Ui = Zi/(23]-l) for = leeaeshie
Hypotheses to be tested include:
{Ui} is a sequence of i.i.d. random variables.
1+ U; has a uniform distribution on (0,1).
(Up;_1sUp;) has a uniform distribution on the unit square.
U3i) has a uniform distribution on the unit cube.

Hy.  (Ugq.20U34.90
Hps Hys Hy and Hy hold simultaneously. (If Ho and H, hold, H,

and H3 are redundant.)

( - -




For each multiplier, the results include a separate evaluation of the test of y
each hypothesis HO’ H], H2 and H3 and a collective evaluation via H4 of the
performance on the four hypotheses taken together. The collective evaluation
reveals that three of the candidate multipliers (I, III and VII) are seriously
suspect.

In any empirical study of this sort, one hopes that the collective power
of the tests employed is sufficiently high to detect departures from randomness
when they exist. We demonstrate this ability to detect departures in an appli-
cation of these same tests to samples generated by RANDU, the random number
generator used until recently in IBM's Scientific Subroutine Library. Marsaglia
(1971) has demonstrated the notably pcor performance of this generator on the
lattice test.

In a further attempt to demonstrate the power to detect nonrandomness, we
applied the tests to the eight multipliers in Hoaglin's study that performed
poorest on the spectral and lattice tests for 2-tuples. An analysis of the
results of the best and worst in the Hoaglin study showed no difference of
note, leading to several conjectures. One is that the tests cannot consistently
detect departures of the magnitude examined. (How~ver, they can detect departures
as substantial as RANDU's.) Another is that the criteria suggested in Knuth (1969)
and Marsaglia (1971) for a multiplier to "pass" the spectral and lattice tests,
respectively, may be considerably more conservative than first thought. We

discuss these conjectures in more detail in Section 8.

2. Distribution Testing Procedures \

For each multiplier, we collected 100 independent samples, each with

n =200,000 observations. For sample i and hypothesis j a statistic Ti j ;

was computed. Then for hypothesis j, T]’j.T2 j""’TIOO,j were subjected to




a battery of tests. Let Ti j have cumulative distribution function (c.d.f.)
Gj under hypothesis j. Then P, 3= I-Gj(Ti j) has the uniform distribution

on (0,1) and

(2) F_ ,(t) = ) Bztzi,

where I denotes the indicator function, is an empirical c.d.f. If hypothesis

j 1is true
(3) D. . = sup|F

has the Kolmogorov-Smirnov (K-S) distribution. Also

1

(4) Vo5 = J, Troea(Fn,j(t))dt

has the uniform distribution on (0,1) (Dwass 1958). Finally, for large n

(5) A:,j =n j; {[Fn’j(t)-tJ2/t(1-t)}dt

has a distribution given by Anderson and Darling (1952).

The motivation for goodness-of-fit tests based on Dn,j’ Vn,j and Aﬁ,j
arises from the distinct departures from behavior under hypothesis j that
each is designed to detect. The quantity Dn,j measures the maximal absolute
deviation between the empirical and the hypothesized c.d.f.'s, vn,j measures
the proportion of Fn,j that lies below the hypothesized c.d.f. and Aﬁ,j
measures the extent of deviation, principally in the tails of the empirical

c.d.f.

3. Testing for Independence "0

To test Ho we relied on runs-up-and-down statistics. Let R1 K and

§1 k denote the numbers of runs up and down, respectively, of length k on




4
replication i. Then the statistics for H0 are
6
(6) Ti,07 & poylokelRi ik = ERy IRy o - E(Ry )]
Ry - ERy (IR, , - E(Ry )]
+ ckt[ﬁi,k - E(ﬁi,k)][ﬁi,t - E(ﬁi,z)]} S T,

and each asymptotically has the chi-squared distribution with 12 degrees of free-

dom. The quantities Cre and dkﬂ are computable from the covariance matrix

o~

of Ri’],...,Ri’ﬁ,Ri,],...,ﬁi,G (Levene, 1953). For 200,000 observations one

has
E(R; ) = E(ﬁi,]) = 41670
E(R; 5) = E(R; ,) = 18330
i E(R; 3y = E(ﬁi,3) = 5280
E(R; 4) = E(§1’4) = 1150
E(Ri’s) = E(ﬁi’s) = 200
E(Ri’G) = E(ﬁi’G) = 30

E(Ri,7+) = E(ﬁi 74) = 4.4

Here Ri,7+ and §1,7+ denote the numbers of runs up and down, respectively,
of length 7 or more. Although a statistic similar to (6) that incorporates
either Ri,7+ or ﬁi,7+ can be constructed and asymptotically has a chi-squared
distribution with 13 degrees of freedom, the small value of E(Ri’7+) in the
present case encouraged us to work with (6) to avoid any discretization error
that, say, R; ;+ might induce. Note that inclusion of R; ,+ and §1,7+

in (6) would produce a degenerate distribution for Ti.O (Wolfowitz 1944).

By way of interpretation, excessive short (long) runs imply more mixing




(clustering) than one would expect to find in a purely random sequence. The
decision to examine runs up and runs down explicitly rather than study their

sum was motivated by the finding in Tootill et al. (1971) that runs up and

runs down can exhibit distinct behavioral patterns for certain Tausworthe

random number generators (Tausworthe 1965). Although the generator (1) is

not of this type, we decided to allow for the possibility of analogous behavioral
distinctions.

Column 3 of Table 1 lists the P-values for the test statistics (3), (4)
and (5) for each multiplier. In particular, a P-value for the K-S (A-D) test
is the probability that a random variable from the K-S (A-D) distribution
exceeds D]OO,O (Afoo’o) in value under HO‘ For (4) the P-value is
2 min(le0,0’ 1-V]00,0), since VlOO,j is a uniform deviate under Hj‘ Except

for RANDU, the P-values in column 3 give little cause for concern.

4. Testing for Uniformity H]

-To test H] we chose a chi-squared goodness-of-fit statistic. Consider
K cells on the unit interval each of length 1/K. Let Ni,k denote the number
of the N observations on replication i that fall into the interval
((k-1)/K, k/K]. Then under H,

K ,
(N - NK)E = R k. Nf’k - N i=1,...,00

_k oK
(8) Ti,] T N zk:'l

each asymptotically have a chi-squared distribution with K-1 degrees of freedom.

12

Choosing K = 2" = 4096 implied a cell width of 1/K = 0.000244140625 and

enabled us to test the first 12 bits of Ui ;
2
Column 4 of Table 1 shows the P-values for D]OO,]’ Vloo,l and AIOO,]
for each multiplier. The P-values again arouse little suspicion. The failure

to detect nonuniformity in RANDU may be an indication of the poor power of this
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test or an indication that RANDU has the local property of one-dimensional

uniformity.

5. Testing for Bivariate Uniformity H2

Hypothesis H2 is designed to detect nonuniformity when the Ui are
taken in nonoverlapping pairs or 2-tuples. One motivation for this testing
arises from the theoretical observation in Marsaglia (1968) that the random-
ness of k-tuples becomes more suspect as k increases. The spectral and
lattice tests support this observation. In particular, see Hoaglin (1976) and
Marsaglia (1971). Ideally one would like to test for the uniformity in distri-
bution of k-tuples of the k-dimensional unit hypercube. In practice, such
testing is excessively expensive, even for k = 2.

Let us divide the unit interval into K cells, each of width 1/K. Let
Nijk denote the frequency with which nonoverlapping 2-tuples fall into the
square (((j-1)/K, 3/KI x((k=1)/K, k/K]) on replication i. For fixed K the

quantities

K - X i
(9) Tio=% I (N5 = N/KS) i=1,...,100

each asymptotically have the chi-squared distribution with K2 - 1 degrees of
freedom. Suppose we had chosen as before K = 4096. Then there would be

K2 = 16777216 cells. To guarantee a mean of 5 per cell under H2 would
require N > 80 million observations per replication or over 8 billion obéerva-
tions per multiplier. Since 23]—1 < 4.3 billion, such a sample size is not

possible using this test procedure. Because of this demonstrated excessiveness,

we chose K = 128, which required 16384 cells, implied a cell width of 0.0078125

and, for N = 200,000, a mean of n/K2 = 12.21 per cell under H2. This choice

of K enabled us to study the first 7 bits of each coordinate of a 2-tuple.
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Column 5 in Table 1 disp’ays the P-values for 0100,2, V]OO;Z and

2 Ehion
100,2 ° Although V]OO,Z appears low for multipliers I and III, we do not

A
regard this suspiciously at this point, since we are simultaneously examining
= o 1 c H 2
3x8 = 24 P-values. What is of concern to us is when D]OO,j’ VIOO,J and A]OO,j
all give low P-values for a given multiplier. We demonstrate cases of this sort

shortly when testing H4. Note the extremely poor showing for RANDU.

6. Testing for Trivariate Uniformity H3

Hypothesis H3 tests for nonuniformity when the Ui are taken in nonover-
lapping triplets or 3—tup1es. The motivation is similar to that for testing
H2. Let Nijkz denote the frequency on replication i with which nonoverlap-
ping triplets fall into the cube (((j-1)/K,3/K] x((k-1)/K, k/K] x((£-1)/K,£/K])
for j,k,£ =1,...,K with K specified. Then

* e

K
Ty

2
i,3 )

3
(Nijk£ - N/K

each asymptotically have the chi-squared distribution with K3-1 degrees of

4

freedom. Here we choose K = 2" = 16 which gives K3 = 16x16x16 = 4096 cells

and an expectation of N/K3 48.83 per cell. A perusal of the P-values in
column 6 of Table 1 indicates a rejection of H3 for RANDU and reveals some

concern about multiplier III and a lesser concern about multiplier II.

7. An Omnibus Test H4

In reviewing the P-values for HO’ H], H2 and H3 one finds it difficult
to say that any multiplier except RANDU seriously errs in an omnibus sense. This
finding is entirely in keeping with other empirical investigations using tests with

vague alternative hypotheses. To overcome this inadequacy, we test H4: H

0,

H], H2 and H3 are true simultaneously.

e 0 N o o A RO - o N R -
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Recall that T. T T T. are the statistics on replication i v

120 40" 1,87 1.3

for hypotheses 0 through 3. Under H4 P = ]'Gj(Ti j) for, J = 0, .43

1,3
each have the uniform distribution on (0,1). Let

el

1,] )

i,J
where ¢'] (+) denotes the inverse function of the unit normal c.d.f. Let

Zi min = Mn(Z5 00 25 90 25 90 25 5) |

z

jmax = MaX(Zy g0 Zy g0 23 50 Zg )

Under H4 the statistics

Ti.8 = 1-00Z5 nins 25 min® “Zi.min® ~Zi,min)
(12)
i )
T1',4 h ]'¢(Zi,max’ Zi,max’ Zi,max’ Zi,max-’

where o(°*,*,*,*) denotes a four-dimensional multivariate normal distribulion

each have the uniform distribution on (0,1). Under H4, Ti 4 is the probabil-
ity of observing a minimum P-value smaller than min(Pi,o, Pi’], Pi,2’ Pi,3) and
*

Ti 4 is the probability of observing a maximum P-value greater than

max(Pi’o, Pi,]’ Pi,2’ Pi,3)'

Figure 1

Possible Arrangements of Pi,O’ Pi,]’ Pi,2 and Pi,3

L o P - J :
X (a) 1

L b v By i s
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Figure 1 provides a rationale for studying Ti,4 and T:,4 . Figure la
shows three "reasonable" Pi,j's and one excessively small one. One way to
evaluate the extent to which this behavior is consistent with H4 is to test
T1,4""’T100,4 for uniformity on (0,1). Figure 1b shows a case in which
no Pi,O’ Pi,l’ Pi,2’ or P’.,3 is small nor is any moderately large. Here one
tests T:,4”"’T:OO,4 for uniformity on (0,1) to determine the extent to
which the behavior in Figure 1b is consistent with H4. Although tests that
explicitly include the other order statistics can be performed, we felt that
the two selected tests represented sufficiently extreme situations that, if sig-
nificant, would be regarded as unequivocal evidence for disqualifying a multiplier.

Because Pi,O’ Fi,l’ Pi,z and Pi,3 are based on the same sample data of
200,000 observations, treating them as independent would be unreasonable. Instead
we concentrate on Zi,O’ Zi,l’ Zi,2’ and Zi,3 to acknowledge the dependence
appropriately. Under H4 these quantities have a four-dimensional multivariate

normal distribution with mean vector 0 and unknown covariance matrix : . Con-

sider the Cholesky decomposition representation

cc' =t

c]0 c]] 0 0

c=
Ca0 €21 €22 0
“30 “31 “32 *32
_ 8
3 2i=j i .

Then one can express (12) as
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3
T =1 - 2
i,4 TT&:O o Cjzi,min)

(14)

3
w
M

[y
-
S
|

°(cjzi,max) :
Since I s unknown, the computation of (14) is not directly possible. Here

we estimated : by

A
£ 118,
A 1 n = =
% T AT L (Zy,i-23)(Zy 572)
7 -1 N -
Byt o B n = 200,000

from which we estimated Co» S5 € and 3 and (14) by substituting
the estimates for o’ Cys ¢, and C3e If Ti,4 and T:,4 have the
proper distribution under H4 then estimating ¢ will cause the data to appear
to follow H4 more closely than using the true ¢ . Thus the tests employed
here are conservatcive.
Columns 7 and 8 of Table 1 show the P-values for H4. Here the test
based on the maximum provides strong evidence against multiplier I and the
test based on the minimum provides strong evidence against multipliers III and
VII. RANDU's failure on the minimum test is consistent with its poor showing on
Ho, H2 and H3.
In interpreting the results for the minimum or maximum test in column 7
or 8, one needs to pay attention to the issue of multiplicity across the eight
multipliers (ignoring RANDU). Under the hypothesis that the eight multipliers
each satisfy H4, the probability of observing at least two K-S test statistics
there with P-values < .006 on the minimum test is .0010. Alternatively, under
the same hypothesis, the probability of observing at least one K-S test statistic |
with P-value < .004 on the maximum test is 1-(.996)8 = ,0316. We fegard these j
|
|

R L aX I
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probabilities as sufficiently small to reject equality of behavior on the minimum
and maximum tests across the eight multipliers. Therefore, we regard the poor

behavior of multipliers I, III and VII as real and not simply due to sampling.

8. O0Other Prime Modulus Multipliers

As mentioned earlier, the six multipliers selected for study from Hoaglin's
paper were evaluated there as the best performers on the spectral and lattice
tests. A question naturally arises as to-how sensitive the battery of empirical
tests presented here is to the flaws present in the remaining 44 prime modulus
multipliers there. As a first inquiry, we selected the worst eight multipliers
there, based on their performance on the spectral and lattice tests for 2-tuples,
and subjected them to the same battery of empirical tests. The results in Table
2 show no apparent gross departure from those in Table 1.

To understand why the tests detect the poor behavior of RANDU but do not
reject all multipliers IX through XVI, we return to lattice test performance.
The lattice test relies on the reduced basis vectors of the lattice of n-tuples.
This is the basis that is as close as possible to being orthogonal, given the
constraints of the lattice (Hoagling1976). The ratio Ln of the lengths of the
longest to the shortest basis vectors provides the figure of merit. A ratio of
unity is ideal.

Table 3 1lists this ratio for all multipliers examined in this study. As
measured by Ln’ RANDU performs considerably more poorly for n = 3, 4 and 5.
Therefore, one possible explanation of the less than complete rejection of mul-
tipliers IX through XVI is that the flaws revealed by the lattice test are
too subtle for detection. Since the rule of thumb for considering a multiplier
acceptable with regard to n-tuples is Ln < 2, one may want to revise this
bound upward in view of our results. A similar upward revision may app]y‘to

the acceptance criteria for the spectral test,

diee o » s S d v )
— =
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Table 3
Lattice Test Performancea

Multiplier L2 L3 L4 L5 L6
RANDU 1.00 1819 1872 274 £
I 7.60 3.39 2.07 1.67 3.36
1 1.26 2.92 1.64 1.52 2.1
11 1.03 2.1 1.88 1.55 1.13
v 1.07 1.34 1.17 1.62 1.89
v 2.82 2.63 1.50 1.20 1.86
VI 1.88 2.84 1.39 1.51 1.24
VI 1.64 2.36 1.71 1.24 1.24
VIII 1.69 1.62 1.88 1.38 1.41
IX 27.91 1.20 1.7 2.00 1.21
X 21.94 3.10 1.45 3.78 2.47
XI 18.1 1.17 3.14 1.41 2.37 F
XI1 12.16 3.48 1.54 1.41 1.33
X111 10.81 4.30 2.84 2.73 1.32 ' b
XIV 8.77 4.02 1.28 2.65 1.30
XV 8.33 1.19 2.32 2.10 2.09
XVI 7.05 2.53 1.95 3.18 1.59

4Source: For RANDU, (Marsaglia 1971). For Multipliers I through XVI, (Hoaglin 1976).

— s g — s
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9. Execution Time

In Table 1 we Tisted the relative mean execution times observed for each mui- )
tiplier (except RANDU). These samples were obtained by using the LLRANDOM package
(Learmonth and Lewis, 1973) with a substitution of multipliers for 16807. The
apparent increase in execution time as A increases in magnitude makes the
desirability of large multipliers questionable. To put this issue in perspec-
tive, we examine an algorithm due to Payne et al. (1969) that is in common use
for generating deviates from prime modulus generators.

Suppose one has storage areas A, X and Y each capable of holding p
binary digits and a working area D capable of holding 2p binary dicits.

Payne et al. (1969) developed the following algorithm with A containing the

multiplier and X containing the most recently generated random number.

LCG
b e X RS

i.p.[o/2P 17 .
WL B e BT | ol 5

g X

+

4. X+«X*Y, ; Lo
i.p.[x/2P 7 .
B M V=B, X+Xe ity
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7. Return X .

Steps 2 and 3 may be performed using shift opérations on D. Step 5 and
the check in step 6 may be performed on p bit word machines by an overflow
check.
It is instructive to examine how often the check in step 6 is satisfied. \

0f the possible (2”"-2) different initial values of X, A* of these cause

™
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the check in step 6 to be satisfied where )

| ipLa-2)(A-1)/28] if Asg2P®
A il |
i.p. [(A-Z)(A-l)/ZA + _2__;1_—_25] if A>2P? !

Therefore, the average execution time for LCGl tends to follow the relationship

* p_]-
By * B]A /(2 2)
where o is the time to perform steps 1 through 7 of LCGlI without the i
check in step 6 being satisfied and B9 is the time to perform the operation
*
in step 6 when the check is satisfied. For most values of A, A is very i
close to A/2 and the average execution time for LCG1 is g, + E]A/Zp . I ]

In practice, execution time is code-dependent as well as algorithm-dependent.
In particular, a code that produces a very small By is most desirable. The
code provided in Payne et al. (1969) and used with s]ight modification in SIM-
SCRIPT II should produce a very small By - The code is self-contained. How- J
ever, the code in LLRANDOM for step 6 will produce a relatively large value t
for By - This is due to calls to a routine outside the generator code (when

an overflow occurs). Regrettably, this observation did not come to our attention

until all runs were completed. In summary, all implementations of the Payne et al.
algorithm have execution times proportional to A . ‘However, the choice of code

determines the constant of proportionality.
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