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ABSTRACT

This paper presents the results of empirically testing eight alternative

multipliers for a multiplicative congruential generator with modulus 231 _ i.

The LLRANDOM number package (Learmonth and Lewis, 1973) uses one of the multi-

pliers , the simulation programming language SIMSCRIPT II uses a second and the

remaining six are the best of 50 candidate multipliers studied by Hoaglin (1976)

using the theoretical spectral and lattice tests . The battery of tests rai ses

serious doubts about three of the multipliers , including the one in LLRA NDOM.

The power of the tests is demonstrated by their rejection of RANDU , a notabl y

poor random number generator. A comparison of the results for the eight multi-

pliers with the eight worst multipliers (with regard to 2-tuples) in Hoaglin

(1976) failed to show any apparent gross differences. Since examination of

performance on the lattice test revealed that the 16 multipliers clustered in

performance when compared to RANDU , one may conjecture that the poorer lattice

test performance for the worst eight is too subtle for detection by our empiri-

cal tests. Since this failure may not be as serious as the lattice test impl ies ,

one may want to revise upward the criteria for acceptable performance on the

lattice tests and similarly on the spectral test. In section 9 an analysis of

algorithms for generating random numbers reveals that the choice of coding can

significantly affect execution time for different multipliers . —______________
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1. Introduction

This paper presents the results of an empirica l evaluation of eight

suggested values for the multip lier A in the prime modulus multiplicative

congruential random number generator

( 1 ) Z 1 AZ~~1 (mod 231 _ i )

Lewis et al. (1969) suggested multiplier I and it is in comon use in the

LLRAN DOM random num ber pac kage (Le armon th and Lew i s~ 1973), in APL (Katzan1 1971),

in the simulation program language SIMPL/l (IBM,1972) and in the IMSL Library

(1977). Payne et al. (1969) suggested mi~1tip lier II , and its most comon use

is in the simulation programming language SIMSCRIPT II. The remaining six

suggestions come from a study of 50 multipliers by Hoaglin (1976) who evaluated

them as best using the spectral test (Coveyou and MacPherson, 1967) and the lattice

tes t (Marsa gl ia,197l). It is well known (Marsaglia, 1968) that all linear con-

gruential generators are flawed . The spectral and lattice tests provide theo-

retical methods of assessing the seriousness of the flaw in a multiplier.

These tests showed that the six multipliers considered here had less serious

flaws than the remaining 44 multipliers studied .

In the present paper we examine the performance of these eight multipliers

when subjected to a battery of tests designed to detect departures from random-

ness in a sequence of numbers. Let U.~ = Z1/(2
31-l) for i =

Hypotheses to be tested include :

H0. {U1} is a sequence of i.i.d. random variables.

H1. U~ has a uniform distribution on (0,1).

H2. (U21 1,U21) has a uniform distribution on the unit square.

H3. (U31_2 ,U31_ 11 U31) has a uniform distribution on the unit cube.

H4. H0, H1, H2 and H3 hold simultaneously. 
(If H0 and H1 hold , H2

and H3 are redundant.)

~~~~~~~~~~~ t~ 
.- -... -.- .- —-

~~~~~~~~~
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For each multiplier , the results include a separate evaluation of the test of

each hypothesis H0, H1, H2 and H3 and a collective evaluation via H4 of the

performance on the four hypotheses taken together. The collective evaluation

reveals that three of the candidate multipliers (I, III and VI I) are seriously

suspect.

In any empirical study of this sort, one hopes tha t the collective power

of the tests employed is sufficiently high to detect departures from randon~’iess

when they exist. We demonstrate this ability to detect departu res in an appli-

cation of these same tests to samples generated by RANDU , the random number

generator used until recently in IBM ’s Scientific Subroutine Library . Mar~ag 1ia

(1971) has demonstrated the notably poor performance of this generator on the

l attL..e test.

In a further attempt to demonstrate the power to detect nonrandomness , we

applied the tests to the eight multipliers in Hoaglin ’s study that performed

poorest on the spectral and lattice tests for 2—tuples. An analysis of the

results of the best and worst in the Hoaglin study showed no difference of

note , leading to several conjectures. One is that the tests cannot consistently

detect departures of the magnitude examined . (How’-ver , they can detect departures

as su bstantial as RANDU’s.) Another is that the criteria suggested in Knuth (1969)

and Marsaglia (1971) for a multipl ier to “pass ” the spectral and lattice tests,

respectively, may be considerably more conservative than first thought. We

discuss these conjectures in more detail in Section 8.

2. DistrIbution Testing Procedures

For eac h mul tip l ier , we collected ‘00 independent samples , each with

n = 200,000 observatIons. For sample i and hypothesis j a statistic T.~ 
~ 

&

was computed . Then for hypothesis j, Tlj’ T2j ’~ ~~~~~ 
were subjected to 

b
~~~
— .— -~._- -~~~~ --

~~~~~~~~~~ ~~~~~~
. 

~
.. .- 

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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a battery of tests. Let have cumulative distribution function (c.d.f.)

G. under hypothesis j .  Then P. . = 1-G.(T. .) has the uniform distribution3 1,3 3 1 ,3

on (0,1) and

(2) F~~~(t) = 

~ ~i=l 
1 (o,tj (P 1~~) 0 ~ t � L

where I denotes the indicator function , is an empirical c.d.f. If hypothesis

j is true

(3) Dn = sup~F .(t) —n , j

has the Kolmogorov-Smirnov (K-S) distribution. Also

(4) V
fl ,~ = f

~ 
I[o,t](F n j (t))dt

has the unifo rm distribution on (0,1 ) ( Dwass, 1958). Fina l l y, for large n

(5) A~,3 = n f f[F~~~(t)-t]
2/t (1—t) }dt

has a distribution given by Anderson and Darling (1952).

The motivation for goodness-of-fit tests based on D~ ., V,.~ . an d A~ .

arises from the distinct departures from behavior under hy;othesis j tha t

each is designed to detect. The quantity 
~~~ 

measures the max ima l abso l ute

deviation between the empirical and the hypothesized c.d.f.’s, ~~~ measures

the proportion of ~~~ that lies below the hypothesized c.d.f. and ~~~

measures the extent of deviation , princi pally In the tails of the empirical

c.d.f.

3. TestI ng for Independence H0

To test H0 we relied on runs-u p -and-dow n statistics . Let R i k  and

k denote the numbers of runs up and dow n , respectively, of length k on
I

— ~—
‘----- 

—
.
~~~- -.—-

-~ - ~~~ .~(L. _ _ _ _ _  

-
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replication i. Then the statistics for H0 are

(6) T 1 0 = 
~~~~l

{Ck~
[R I ,k 

- E(R1 k )] [ R i l  
- E(R 1~~ )]

+ dk~
[R j k — E(R j k )][

~j~~ 
E(~~~~)]

+ 
~~~~~~ 

— E(
~j,k )][

~i~~ 
— E(~1~~)]} I = ~~~~~~~~

and each asymptotically has the chi-squared distribution with 12 degrees of free-

dom. The quantities ck~ 
and dkl are computable from the covariance matrix

of ~~~~~~~~~~~~~~~~~~~~ (Levene~1953). For 200,000 observations one

has

E( R 1 1 ) = E(~ 1 1 ) = 41670

E(R 1,2 ) = E(~~~2) = 18330

E(R. 
~ 

= E(~ . 3) 
= 5280

(7) 1 , / 1 ,

E( R 1 4 ) 
= E(~1 4 ) 

= 1150

E(R 1 5 ) = E(~~~5) = 200

E(R 1 6 ) 
= E(~1 6 ) 

= 30

E(R 1 7 +) = E(~~~7+) = 4.4

Here R .,7+ and ~j 7+ denote the numbers of runs up and down , respectively,

of l ength 7 or more. Although a statistic similar to (6) that incorporates

either Ri 7 + or ~j 7
+ can be constructed and asymptotically has a chi-squared

distri bution with 13 degrees of freedom, the small value of E(R~~7+) in the

present case encouraged us to work with (6) to avoid any discretization error

that, say, R1 ,7+ might induce . Note that inclusion of R1 ,7+ and R~~7+

in (6) would produce a degenerate distribution for 1i 0  (Wol fowit; 1944).

By way of interpretation , excessive short (long) runs imply more mixing

~~~~~~~~~~~~~~~~~~~



t
(clustering) than one would expect to find in a purely random sequence . The

decision to examine runs up and runs down explicitly rather than study their

sum was motivated by the finding in Tootill et al. (1971) that runs up and

runs down can exhibit distinct behavioral patterns for certain Tausworthe

random number generators (Tausworth~~l 965). Although the generator (1) is

not of this type , we decided to allow for the possibil ity of analogous behaviora l

distinctions.

Column 3 of Table 1 lists the P—values for the test statistics (3), (4)

and (5) for each multiplier. In particular , a P-value for the K-S (A-D) test

is the probability that a random variabl e from the K-S (A-D) distribution

exceeds 0100,0 (A~000) in value under H0. For (4) the P-value is

2 min(V 100 0, l-V 100 0), since V100~ is a uniform deviate under H~. Except

for RAN DU , the P-values in column 3 give little cause for concern.

4. Testing for Uniformity H1

To tes t H1 we chose a chi-squared goodness-of-fit statistic. Consider

K cells on the unit interval each of length 1/K. Let N i ,k denote the number

of the N observations on replication i that fall i nto the interval

((k-l)/K , k/K]. Then under H1

(8) T 1 1  = 

~~ ~~~~~~~~ 

(N 1~~ 
- N/K) 2 = 

~~~~~~~~ 

N~~ - N I = l ,...,l00

each asymptotically have a chi-squared distri bution with K-i degrees of freedom.

Choosing K = 212 
= 4096 implied a cell width of 1/K = 0.000244140625 and

enabled us to test the first 12 bits of U.~ .

Column 4 of Table 1 shows the P-values for D1001 , V100 1 and

for each multi plier . The P-values again arouse little suspicion. The failure

to detect nonun i formity in RANDU may be an indication of the poor power of this

— 

~~~~~~~~~~
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test or an indication that RANDU has the local property of one-dimensional

un i fo rm i ty.

5. Testing for Bivariate Uniformity H2

Hypothesis H2 is designed to detect nonuniformity when the are

taken in nonoverlapping pairs or 2-tuples. One motivation for this testing

arises from the theoretica l observation in Marsag lia (1968) that the random-

ness of k—tupies becomes more suspect as k increases . The spectral and

lattice tests support this observation. In particular , see Hoaglin (1976) and

Marsag lia (1971). Ideally one would like to test for the uniformity in distri-

bution of k—tuples of the k-dimensional unit hypercube . In practice , such

testing is excessively expensive , even for k = 2.

Let us divide the unit interva l into K cells , each of width 1/K. Let

N jjk denote the frequency with which nonoverlapping 2—tuples fall into the

square (((j-l)/K , j/K] x ((k—l )/K, k/K]) on replication i. For fixed K the

quantities -

2 K 22
(9) 11 ,2 

= 

~~i ~j,k=l 
(N jjk - N/ K ) I = 1,...,100

each asymptotically have the chi-squared distribution with K2 - 1 degrees of

freedom. Suppose we had chosen as before K = 4096. Then there would be

K2 = 16777216 cells. To guarantee a mean of 5 per cel l un der H2 would

require N > 80 million observations per replication or over 8 billion observa-

tions per multiplier. Since 231_i < 4.3 billion , such a sample size is not

possibl e using this test procedure. Because of this demonstrated excessiveness ,

we c hose K = 128, which required 16384 cells 1 implied a cell width of 0.0078125

and , for N = 200,000, a mean of n/K2 
= 12.21 per cell under H2. This choice

of K enabled us to study the first 7 bits of each coordinate of a 2-tupie.

- - - —_ -

~~~~~~~
;- r _

~~~~~~ -
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Column 5 in Table 1 disp 1 iys the P-values for 0100 2’ Vioe 2 and

A~002 . Although V 10~~2 appears low for mu l t i p l iers I an d I I I , we do no t

regard this suspiciously at this point , since we are simultaneousl y examining

3x8 = 24 P-values. What is of concern to us is when D100~~. V 100~ and A~00~~

all give low P-values for a given mu l tiplier. We demonstrate cases of this sort

shortly when testing H4 . Note the extremely poor showing for RANDU .

6. Testing for Trivariate Unifo rmity H3

Hypothesis H3 tests for nonuniformity when the U~ are taken i n nonover-

lapping triplets or 3-tuples. The motivation is similar to tha t for testing

H2. Let N jjk~ 
denote the frequency on repl i cation i wi th wh i ch nonove rla p-

ping triplets fall into the cube (((j—1)/K ,j/K] x ((k—l )/K , k/K] x ((~ — l)/K ,Z/K] )

for j,k,e = l ,...,K with K specified . Then

K
(10) T~~3 

= 

~~~

- 

~j k~~~l 
(N 1~~~ 

- N / K 3)2 i = l ,...,100

each asymptotically have the chi-squared distribution with K3-l degrees of

freedom . Here we choose K = 2~ = 16 which gives K3 = 16x16x16 4096 cells

and an expectation of N/K3 = 48.83 per cell. A perusal of the P-values in

column 6 of Table 1 indicates a rejection of H3 for RANDU and reveals some

concern about multiplier III and a lesser concern about multiplier 11 .

7. An Omnibus Test H4

In reviewing the P-values for H0, H1, H2 and H3 one finds it difficult

to say that any multiplier except RANDU seriously errs in an omnibus sense. This

findi ng is entirely In keeping wi th other empirical investigations using tests with

vague alternative hypotheses. To overcome this Inadequacy, we test H4 : H0,
H1, H2 and H3 are true simultaneously.

a
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Recall that 1. o’ T. 1 ’ 2’ ~ 
are the statistics on replication•1 , 1 , 1 , •I ,

for hypotheses 0 through 3. Under H4 P1~~ 
= l_ G~ (T 1~~) for j = 0,.. .,3

each have the unifo rm distribution on (0,1). Let

~~~ =

whe re ~~~~~ ( )  denotes the inverse function of the unit norma l c.d.f. Let

Zi min 
= min (Z1 ~~~

, Z~~1~ Z,2, Z~~3)

(11) -

Zi,max = max(Z 1 0’ z~ 1~ Z~~2~ Z~~3)

Under H4 the statistics

Tj4 = l_O (_Z j,min~ 
_Z

i ,min s _Zj,mjn 
_Zj,mjn)

(12)

T ,4 
= l_O (Zi ,max~ 

Zi max ’ Zi max ’ Zi max)

where 
~~
(, ,, )  denotes a four-dimensional multivariate norma l distri bution

each have the unifo rm distribution on (0,1). Under H4, T~~4 
is the probabil-

ity of observing a minimum P-value smaller than min(P 1. 0’ 1’ 2’ P1 3) and

T 4 is the probability of observing a maximum P-value greater than

max(P . o~ 1’ 2’ ~ 3).
1, 1 , 1, 1 ,

Figure 1

Poss ib le Arran gements of P1 0 ~ ~i ,l’ 
P1 ,2 and

I . S S  •O (a) 1

I.- •...
0 (b ) 1

L ~~~~~~~~~~~~ 

— 

~~~~~~~~~~~~~~~~~~~~
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*
Figure 1 provides a rationale for studying I.~ ~ 

and 1. . Figure la

shows three “reasonable ’ P1~~’s and one excessivel ; small one . One way to

evaluate the extent to which this behavior is consistent with H4 is to test

11 4~
••• ~~~ ~ 

for uniformity on (0,1). Figure lb shows a case in which

no
’ 
P. 0, P1 ; , P1 2  or P1 3  is small nor is any moderately large . Here one

tests Tl 4~ 
,T100 4 for uniformity on (0,1) to determine the extent to

which the behavior in Figure lb is consistent with H4. Al though tests that

explicitly inc l ude the other order statistics can be performed, we felt that

the two selected tests represented sufficiently extreme situations that , if sig-

nificant , would be regarded as unequivocal evidence for disquali fying a multiplier.

Becaus e P1 0 ~ 
p’~~~1, P1 2  and 

~i 3  are based on the same sample data of

200,000 observations , treating them as independent would be unreasonable. Instead

we concentrate on Z. o, Z. Z. 2’ and Z. to acknowledge the dependence
1, 1 , 1 , 1,

appropriately. Under H4 these quantities have a four-dimensional multivariate

normal distribution with mean vector C and unknown covariance matrix ~ . Con-

sider the Cholesky decomposition representation

C C’ =

~ 0 0

( c10 c11 0 0
c 1— 

~~c20 c21 C22 0

c31 c32 c32

—C
j 

— 

~~~ 
C
j j

Then one can express (12) as

— -T——,.----- -- . -- -. -

~~
-— — - - - -----

~~~~
‘-- -

~~ 

_ _
~~~~~

-.w.._ _  
-~~~~ - - 

— .

4 - - 
_L.  ~ ii~’t. ~~ ~~~~~~~~~~~ ~~,
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= 1 - 1T~~ •(~cjZi min )

(14)

T;,4 = 1 - lTj :0 ~(CjZi,max )

Since E is unknown , the computation of (14) is not directly possible. Here

we estimated z by

1= J I ~1~H
A 1 fl — —

°iJ 
= n—i 

~k=1 
(Z k,i

_Z
i )(Zk,j

_Z
J
)

= 
‘~ ~k~l 

Zk,i n = 200,000

from which we estimated c0, c1, c2 and c3 
and (14) by substituting

the estimates for c0, C1, c~ and c3. If T~~4 and have the

proper distribution under then estimating c will cause the data to appear

to fol low H4 more closely than using the true C . Thus the tests employed

here are conservacive.

Columns 7 and 8 of Tabl e 1 show the P-values for H4. Here the test

based on the maximum provides strong evidence against multiplier I and the

test based on the minimum provides strong evidence against multipliers III and

VII. RANDIJ ’ s failure on the minimum test is consistent with its poor showing on

H0, H2 and H 3.
In interpreting the results for the minimum or maximum test in column 7

or 8, one needs to pay attention to the issue of multiplicity across the eight

multipliers (ignoring RANDU). Under the hypothesis that the eight multipliers

each satisfy H4, the probability of observing at least two K-S test statistics

there with P-values - � .006 on the minimum test Is .0010. Al ternatively, under

the same hypothesis , the probability of observi ng at least one K-S test statistic

with P-value ~ .004 on the maximum test is 1_ (.996) 8 
= .0316. We regard these
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probabilities as sufficiently small to reject equality of behavior on the minimum

and maximum tests across the eight multipliers . Therefore, we regard the poor

behavior of multip l iers I , III and VII as real and not simply due to sampling .

8. Other Prime Modulus Multipliers

As mentione d earl ier , the six multipliers selected for study from Hoag lin ’s

paper were evaluated there as the best performers on the spectral and lattice -

tests. A question naturally arises as to how sensitive the battery of empirica l

tests presented here is to the fl aws present in the remaining 44 prime modulus

multipliers there. As a first inquiry , we selected the worst eight rn~1tipliers

there , based on their performance on the spectral and lattice tests for 2-tuples ,

and subjected them to the same battery of empirical tests. The results in Table

2 show no apparent gross departure from those in Table 1.

To understand why the tests detect the poor behavior of RANDU but do not

reject all multipliers IX through XVI , we return to lattice test performance.

The lattice test relies on the reduced basis vectors of the lattice of n-tuples.

This is the basis that is as close as possibl e to being orthogonal , given the

constraints of the lattice (Hoaglin2 1976). The ratio Ln of the lengths of the

longest to the shortest basis vectors provides the figure of merit. A ratio of

unity is ideal .

Tabl e 3 lists this ratio for all multipliers exami ned in this study . As

measure d by Ln~ RANDIJ performs considerably more poorly for n = 3, 4 and 5.

Therefore , one possible explanation of the less than complete rejection of mul-

tipliers IX through XVI is that the flaws revealed by the lattice test are

too subtle for detection. Since the rule of thumb for considering a multiplier

acceptabl e wi th regard to n-tuples is < 2, one may wa nt to revise this

bound upward in view of our results . A simi lar upward revision may apply to

the acceptance criteria for the spectral test .
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Table 3
Lattice Test Performance a

Multiplier L2 L3 L4 L5 L6

RA NDU 1.00 1819 1872 274 --

I 7.60 3.39 2.07 1.67 3.36

II L26 2.92 1.64 1.52 2.11

III 1.03 2.11 1.88 1.55 1.13

IV 1.07 1.34 1.17 1.62 1 .89

V 2.82 . 2.63 1.50 1.20 1.86

VI 1.88 2.84 1.39 1.51 1.24

VII 1.64 2.36 1.71 1.24 1.24

VIII 1.69 1.62 1.88 1.38 1.41

IX 27.91 1.20 1.71 2.00 1.21

X 21 .94 3.10 1.45 3.78 2.47

XI 18.1 1.17 3.14 1.41 2.37-

XII 12.16 3.48 1.54 1.41 1.33

XIII 10.81 4.30 2.84 2.73 1.32

XIV 8.77 4.02 1.28 2.65 1.30

XV 8.33 1.19 2.32 2.10 2.09

Xvi 7.05 2.53 1.95 3.18 1.59

I.
asource: For RANDU, (Marsaglia 1971). For Multipliers I through XVI , (Hoaglln 1976).

1.1 ‘ 
‘

- 

~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



16

9. Execution Time

In Table 1 we listed the relative mean execution time s observed for each mu i-

tip lier (except RANDy). These samples were obtained by using the LLRAi~DOI~1 package

(Learmonth and Lewis~ 1973) with a substitution of multipliers for 1 6807. The

appa rent increase in execution time as A increases in magnitude makes the

desirability of large multipliers questionable. To put this issue in perspec-

tive , we examine an algorithm due to Payne et al. (1969) that is in coniiion use

for generating deviates from prime modul us generators .

Suppose one has storage areas A , X and Y each capable of holding p

binary digits and a working area 0 capable of holding 2p binary d iCits.

Payne et a]. (1969) developed the following algorithm with A containing the

multiplier and X containing the most recently generated random number.

LCG J

1. D ÷ X ~~ A .

2. V ÷ i.p.[D/2~~
1] . 0

3. X ÷ D — Y  2p— 1

4. X ÷ X + V .

5. V ÷ i.p.tX/2~~” J . 
-

6. If V � 0, X ÷ X - (2P l ..1)~

7. Re turn X .

Steps 2 and 3 may be performed using shift operations on 0. Step 5 and

the check in step 6 may be performed on p bit word machines by an overflow

check.

It Is instructive to examine how often the check In step 6 is satisfied .

Of the possible (2P1 _ 2) different Initial values of X , A* of these cause

—---—-——— -
‘ 
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the check in step 6 to be satisfied where

i.p.[(A-2)(A-l)/2A] if A �

A* = 

~~~~~ [A2 ~~A~1 /2A + 
2~~ +1-2A] if A >

Therefore, the average execution time for LCGJ tends to follow the relationship

+

where 
~o is the time to perform steps I through 7 of LCGI without the

check in step 6 being satisfied and 131 is the time to perform the operation

in step 6 when the check is satisfied . For most va l ues of A , A is very

close to A/2 and the average execution time for LCG1 is + 131A/2~ .

In practice , execution time is code-dependent as well as algorithm-dependen ” .

In particular , a code that produces a very small is most desirable. The

code provided in Payne et al. (1969) and used with slight modification in SIM-

SCRIPT II should produce a very small . The code is self-contained . How-

ever , the code in LLRANDOM for step 6 will produce a relatively large va l ue

for . This is due to calls to a routine outside the generator code (when

an overflow occurs ). Regrettably, this observation did not come to our attention

until all runs were completed . In suninary, all Implementations of the Payne et al .

algorithm have execution time s proportional to A . ‘However , the choice of code

determines the constant of proportionality.

I
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