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1. INTRODUCTION

Background

The relation between search theory and Information theory has had a thorny history.
A 1967 view was summarized concisely by Koopman (reference 1): "Ever since the
mid-nineteen-forties when the theories of information and of search became subjects
of general interest, attempts have been made to apply the theory of information to prob-
lems of search. These have proved disappointing; neither the formulas nor the concepts
of the former theory have found a place in clarifying the problems of the latter." These
views doubtless reflected much of Koopman's own research on the subject.

An independent contribution to the generally pessimistic view of the matter was the
1961 paper by Mela (reference 2). He presented numerical examples for simple search
models, demonstrating that a search policy that is designed to maximize detection prob-
ability does not necessarily maximize either the gain in expected information or the
probability of correctly committing forces on the basis of search outcomes. Mela con-
cluded: "... it does not seem likely that there is any intimate connection between search
theory and information theory." And: "...search theory should be considered in
connection with the general theory of statistical decisions rather than with information
theory.

This negative view was reinforced by a later paper by Pollock (reference 3) in
1971. He presented yet another numerical example, in which different search policies
were necessary to maximize either: the probability of detection as a result of the
search, or the probability of guessing the position of the target after the search, or
the information gained during the search.

These negative findings had a clearly inhibiting effect on research, and relatively
little effort has been devoted to the connections between information and search for the
past fifteen years. Nonetheless, the intuitive appeal of information theory remains strong,
and more recently the tide of pessimism has been stemmed somewhat. In 1973, for
instance, Richardson (reference 4) used Monte Carlo simulation to explore alternative
surveillance policies in a false-target environment. Target motion based on a Markov
process was also included. Richardson's policy options included: (a) an optimal single-
stage look-ahead policy (alxbt the same as maximizing the probability of a right guess
after every search stage); (b) a policy to maximize information gain; (c) a policy to
search the cell with the highest a priori probability: (d) a uniform surveillance policy
(cycling systematically through all cells).

Richardson's results showed that the maximum-information-gain policy was generally
(but not uniformly) best. In his summary, he said: "The principal conclusion.. .is that
the maximum information gain policy.. .appears to have desirable characteristics in the
idealized surveillance scenario considered. Among these characteristics.. .are good
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initial behavior in the early stages, and good asymptotic behavior in the later stages.
The initial behavior is weasured principally by comparison with the op4timal single-stage
look-ahead policy.. .which is designed to be good in the early stages. The asymptotic
behavior is measured principally by comparison with the uniform surveillance policy,
which, for a stationary target, is guaranteed to converge to 1... "

Finally, inspired by Richardson's simulation findings, Barker (reference 5) proved
these two theorems analytically:

"I: Suppose that the detection function is given by b(u) = 1 - e u for u > 0.
Then, subject to a constraint on total search effort, the allocation of search effort
which maximizes the probability of detection also maximizes the entropy of the posterior
distribution.

And the converse:

"II: Let b be a regular detection function. Suppose that for every prior
target location distribution and for every constraint on total search effort, any
allocation of search effort which maximizes the probability of detection also
maximizes the entropy of the posterior distribution. Then, l(u) = 1 - e -au for
some positive constant a."

These findings, taken as a whole, appear to be inconsistent. In particular, Mela's
numerical example seems, at least superficially, to be In clear contradiction to
Barker's theorems.

If science teaches us anything, it should be that where contradictions abound,
there lies a fertile field for research. Accordingly, this paper reexamines the relation
of search theory to information theory and and attempts to reconcile past results, to
clarify the current state of knowledge, and to remove some impediments to further
work on the subject.

Plan of the Paper

Section 2 establishes the mathematical framework of the problem. A model for the
search process is constructed. A description of the problem in terms of information
theory Is provided, and distinctions are drawn among several possible definitions of
information. These are then related to quantities discussed In the earlier literature.

Section 3 reexamines the examples of Mela and Pollock and extends their results
numnerically to the case of a large amount of search effort. Section 4 treats analytically
the case when a large search effort Is applied; section 5 treats analytically the case in
which the search effort Is Infinitesimal.
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Section 6 summarizes the findings and places the results of this paper in a
framework with past work.

A,
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2. PROBLIEM STATEMENT

The Search Model

We assume a simple model for the search process. A single target is In .mne of
J cells. Our prior knowledge of its position is described by a set of probabilities,

J
Pit Jc J, L Pj = 1. We conduct a search operation In which various amounts of

J=l
search effort, z are applied to each of the J cells. The total amount of search

effort, C, is fixed, so that the z amounts of search are subject to a constraint:

J
C -\ z . (2.1)

j=1 J

For our general treatment, the z need not he quantized. Special cases, for which

the search effort is applied In multiples of a fixed unit (the "look"), appear in the
examples of Mela and Pollock.

We assume that the detection process is governed by an exponential detection
function. This means that the conditional detection probability for cell J, given that
the target is in cell j and that an amount of search effort, zj, is applied there is:

Pr(det jlj,z.) 1 - exp(-Cjz.) . (2.2)

a is a characteristic parameter of the detection process in cell J.

This formulation subsumes the discrete-look cases of Mela and Pollock. If q is

the single-look conditional detection probability, then, for n. looks in cell j:J

n,

Pr(det jjj,nj) 1 (1-qj) 3 (2.3)

which is equivalent to eq. 2.2 when n is identified with z., and a is identified with

-ln(I-qj)

Finally, we assume that no false alarms occur,
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Within tse framework of this basic model, a specific allocation of search effort may
lead to T+l possible outcomes: either a single detection in any of the J cells or no
detections at all. Because we have assumed no false alarms, a detection in cell k pro-
duces a posterior probability distribution:

p 1 = 1; pE 0, j / k E J (2.4)

Failure to achieve detection in any cell produces a posterior distribution:

P!= Pj exp(- z Pk expz( )(2.5)

For convenience of notation, we define

cpj = cp(zj,j,p9) S pj exp(-jzj) . (2.6)

(These CP0 functions correspond to the "failure densities," 13(j), used by Barker.)

For nondetection, the posterior distribution is:
J

P = " k= (2.7)

The unconditional probability of detection in the jth cell is, in this notation:

PD. = pj (1 - exp(-a zj)) = pj -Ij (2.8)
and the overall detection probability is:

J J

PD = 3 PD = 1 - cj.
j=l J j--1 (2.9)

The Information Description

It is possible to define many "information" quantities related to search operations.
Values for self information and mutual Information, for conditional information and
unconditional information, for information as a random variable and for ensemble
average information -- any of these can be computed at each step of a search. To avoid
ambiguity, we proceed with caution in defining the specific "information" we wish to
discuss in this paper and in relating that definition to the quantities discussed in the
references.
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First, we define two probability spaces, X and Y , that are concerned,
respectively, with the true position of the target and the observed response of the
search sensor. Let the event x represent the presence of the target in cell J. The

space X has dimension J, and the discrete event probabilities are given by Px(Xj)

Pit jC J. Let the event y0 be the null response to search, and let the event yk re-

present a detection in cell k . The event probabilities in the Y space can be con- A,4
structed from the appropriate probabilities in the X space, together with the condi-

tional detection probabilities: py(yk = py I X(yk [xj) Px(xj) . In our present

example, the dimernsion of the Y space is J + 1; it could be larger if multiple
detections or false alarms were considered.

Our principal concern in this paper is the ensemble average mutual information 1
betwoen the X and Y ensembles. By definition (reference 6), the mutual information
between the events x and is:

n = Ir(PXI(Xjiyk))/p (X)
jk LXIYk Xj (2.10)

This quantity is a random variable in the product space X • Y. Its ensemble average
P' (Xji' kE JjikX 'Yk jk

JJ

= v• kk••pxyX j kYk in (PxIY(xjlyk))/Px(xj) . (2.11)j=1 k=0

To compute this ensemble average, we use the following relationships. Implicit in
all of these is an allocation of search effort, (z I

Px(X) = P the prior probabilities;X (2.12)

J

Py(Y 0 ) =ZCpj , from (2.9); (2.13)

"-6-
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PP -k from (2.8); k = l,...,J (2.14)

(2.15)

pxly(XjY0) j/k=ik =1

Pxjy(Xj[Yk) = 6 jk k 1,...,J (2.16)

The latter two equations are derived by appropriate applications of Bayes' rule. When
these are substituted into eq. 2. 11, we obtain:

iE =-J p. n pj 1n•j + \kl 1n =i (2.17)

The first term is recognized as the entropy of the prior ensemble, X, which we
will designate HO. By a general result of information theory, the mutual rmation

between two ensembles, X and Y , can be written:

IE = H(X) - H(XjY) (2.18)

Thus, we can identify the bracketed term in eq. 2.17 as the conditional entropy of X,
given Y. For reasons discussed below, we designate this as HE . Thus:Es!

HE = in cpj + in . (2.19)

The mutual information is then:
IE =HO -H .(2.20)

IE =H0 -HE

For a given prior distribution, H0 is a constant; HE, and consequently I. are func-

tionals of the allocation of search effort (Z as well as functions of the prior prob-

abilities, p , and the set of detection parameters, .
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We will eventually wish to investigate the extrema of I., but H is more convenient

to work with. We note, therefore, that because of the minus sign in eq. 2.20, a
maximum of H will mean a minimum of I., and vice versa.

E H
Throughout this paper, we will discuss the ensemble average mutual information,

I and the conditional entropy of X given Y --- H M H(XI Y) --- almost interchange-
E E

ably. The reader should therefore bear their relationship (eq. 2.20) in mind as he
proceeds.

An alternative approach is to consider the self-entropy of the posterior ensemble.
If detection does not occur, posterior probabilities p are as given by eq. 2.5 or 2.7;

we can, therefore, define a posterior self-entropy, conditioned on nondetection of the
target, as:

J
H p' in p (2.21)

HND j=P

cji n ( Vj + Z k) in PXý (2.22)

Conversely, if a detection occurs (and by our assumption there are no false detec-
tions) eq. 2.4 holds for the posterior distribution, and the posterior entropy, condi-
tioned on detection in any k C J, is:

HD p In p j P3 in p! (2.23)
J/k

= -i in 1 - (J-1) 0 in 0 M 0 . (2.24)

By computing these two conditional entropies with the appropriate probabilities of
occurrence, we can obtain the expected entropy of the posterior ensemble:

HE = PD HD + PND HND (2.25)

PH (i-P NDD HD D ND



Using equations 2.9, 2.22, and 2.24, we find an expression for H that is identical

to eq. 2.19. The two approaches are thus equivalent, and the expected entropy, HE

defined in terms of the expectation over the posterior distribution, is the same as that
arising from computing the average mutual information between the two ensembles. The
latter is the more fundamental approach, however; it should be followed in more complex
cases such as those involving false alarms.

Having defined our basic terms, we can now return to the references to see what,
in fact, the previous authors have discussed. None of those authors recognized explicitly
the possibilities for confusion arising from the existence of various information and
entropy values. Each, however, was consistent in doing calculations with the specific
value he felt to be appropriate. Both Mela and Pollock used IEs Richardson did his cal-

culation with E and Inferred max I based on min H despite the consistency of his

calculations, he did not draw a careful enough distinction between H and H in
E ND

presenting his conclusions. Barker's theorems refer to HND.

Because Mela and Barker were discussing different quantities, no inference of
direct contradiction can immediately be drawn. The ramifications of their findings
will now be discussed.
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3. THE EXAMPLES CITED BY MELA AND POLLOCK

The examples devised by Mela and Pollock have two features in common: Both
consider discrete looks only, and both choose the total number of looks to be small--no
more than the number of search cells, J . They differ in that Mela considers situations
in which both the prior probabilities and the conditional detection probabilities are
identical in all search cells; Pollock, on the other hand, treats the case in which both prior
probabilities and conditional detection probabilities vary. Tables 1-3 list the particulars

of their examples, expressed in the notation of this paper.

TABLE 1

MELA'S FIRST EXAMPLE

J = 2;

P1  P 2 =.5;

S 62 = .693

SEARCH P I - H

POLICY D E 0 E

(,1) .5* .347

(2,0) .375 .380*

The starred entries in the tables Indicate the respective maxima of PD and IE for

the various search policies. It Is obvious that the same policy leads to maxima of P

and IE in Mela's second example, and that different policies are required to maximize

P and I in Mela's first example and in Pollock's example. From this it is self-evident
D E

that a given search policy does not always maximize both detection probability and inform-
ation gain at the same time.

What is not self-evident -- yet is often asserted -- is that this fact further implies
that there is no necessary connection between the extrema of PD and IE . As we show

below, this assertion is, in fact, false. The existence of counterexamples, based on a
small number of policy options and a small amount of search effort, shows that the
connection between the extrema of P and I is not universal. In a wide range of

D E
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circumstances, however, the extrema of P and I do indeed depend on identical
search policies.

TABLE 2

MELA'S SECOND EXAMPLE

J =3;

P1 " P2 P3 = 1/3w

a, = a2 a 03 = .693

SEARCH p I H -
POLICY D " H E

(1,1,1) .5* .549*

(2,1,0) .417 .541

(3,0,0) .292 .478

TABLE 3

POLLOCK'S EXAMPLE

J-- 3;

P1  .1, P2  .3; p3 - .6;

i 0- , 02 .511, a 3 " .357

SEARCH P I H -H

POLICY D E 0 E

(1,0,0) .1 .14*

(0,1,0) .12 .07

(0,0,1) .18* .04

-11-



We examine these first by relaxing the limitation of a small amount of search effort
and by examining P and I as surfaces in a (J-1)-dimensional search allocation

D E
space. Although Mela and Pollock do not deal with HND, we shal examine that quantity

numerically also, as a basis for analysis relating to Barker's work.

For Mela's first example, we consider a large number of discrete looks, C, allocated

between the two cells; m looks are applied in cell 1, and C--m in cell 2. We then
calculate PD' HND. and HE as functions of m for 0 rm 'C. Analytically:

~2rnI 2(Cirn)> 31

PD C )1 - 2-M + 2-( C-m)/2

- (C-r)

HN(C-• 2 + 2 )/2) (3.1)

+ E2-m + 2"(-m)]/2j"- (• 2)/21

[(re+l) 2-m + (c-m + 1)2" (C-m)] (3.2)

HE = [[2-M + 2-(C-m) _/2 ] Mn [ 2 -m + 2- (C-m)

(3.3)

+ [ ( • 2)/2] • [m 2 -m + (C-m)2-(C--m)

These quantities are plotted in figures 1-3 for the case C=30 . H is plotted on

a linear scale (figure 2); P and UE are plotted logarithmically, as -log ( -PD)and

log HE, respectively (figures 1 and 3).

The obvious content of figures 1-3 and their supporting computations is that each
of the three quantities -- PD' HNDP and HE -- has a maximum at the same position,

m=C/2=15. Equal allocation of search effort to the two cells produces the maximum
detection probability, in keeping with Mela's finding for C=2, and the maximum value
of HND as predicted by Barker's first theorem. The surprising finding is that the

expected information gain, I shows a minimum (max HE) for equal allocation of

search effort. Though this is consistent with Mela's calculation, it could not be
anticipated on the basis of previously published results.

-12-
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We use a similar approach to Mel-i's second example, with A looks allocated to
the first cell, in looks to the second, and C-1-rn to the third. The expressions for
PD (bnl), HND (1,m), and H E (A, ni) are completely analogous to those of equations

3.1 - 3.3 (but too unwieldly to reproduce here). Figures 4 - 6 show the three-dimensional
plots of P'0D Hnd' and HEl for C=30, 0<m, Z-<30, 09m-fAs 30. As before, PD and HE
are plotted logarithmically; the H scale is linear.

ND

Figures 4 - 6 give a general idea of the shape of the surfaces. The perspective of
the figures is so oblique, however, that precise conclusions must rest on the back-up
computations. These say that the uniform search allocation (10, 10, 10) produces the

maximum of PD and H ND' and the minimum of 1tE (maximum IE). The maxima of

P and HND are both local and global maxima. But the minimum of HE is a local
D NDE

minimum only. Smaller values occur on the boundaries, at (15, 15, 0), (15, 0, 15),
and (0, 15, 15). Again, these findings are consistent with Mela's C=3 case and with
Barker's theorem. But they are significantly different from Mela's first example, in
that the uniform allocation now produces a maximum information gain rather than a
minimum and that this maximum is relative, not absolute.

Pollock's example is modified slightly here for graphical presentation. The
essence of Pollock's basic example is the variation of both a and p1 from cell to

cell. To achieve extreme variation from cell to cell, Pollock chooses a value of 1
for q1 , the conditional detection probability in the first cell. The assumption q = 1I

is equivalent to a, "+ eO in our notation. This has the unfortunate effect of introducing

a singularity Into our formalism, because, in computing CP. , we are faced with the

fact that:
C2 . 1C / jr rnpe 3

lim lim p1e L lim lim ple
Cc 1. ( 1 -ý0 a

To avoid this singularity, we twke ql .99, which implies a, = 4.605. This

constitutes "Pollock's Example-Modified," which Is presented in figures 7 - 9, in
a format comparable to thit of Mela's second example. The effect of the cell-to-cell
variation Is preserved by the modified example, while the added complications of the
singularity are circumvented.

As we shall see in a later section, the cell-to-cell variation of either a1 or p

will destroy the symmetry of the surfaces in ( ,m) space. Variation of CI alone will

-16-
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displace the relative locations of the stationary points of PD' H11 and HE, and can

in fact change the whole char-acter of the surface of H..

These points are not all obvious from figures 7 - 9. It is clear that the symmetry
has been destroyed in all three figures. HE no longer has a local extremum within the

surface. A saddle point appears at (2, 10, 18), but the extreme values of HE occur

at edg points. P and H retain local maxima, at (2, 11, 17) and (1, 11, 18),
respectively.

The different positions for the maxima of ID and HND could be inferred from

Barker's second theorem; the different positions for the maximum of PD and the mini-

mum of H are consistent with Pollock's findings. But the totally different character
E

of the H-E surface (a saddle point in place of a local extremunum) could not have been

anticipated from published work.

The numerical experiments presented in this section were designed to be suggestive,
not definitive, and to point the way to fruitful lines of analysis. What the experiments have
suggested can be summarized concisely:

a. When p1 and a are the same for all search cells:

[ P D' HND' and HE (or 12) all have local extrema at a common point.

s The local extrema of PD and HND are maxima.

* The local extremum of 11 E may be either a maximum or a minimum.

* The local maxima of P and 1-1. are also global maxima, but the
D 14D)

local extremuni of H-t is not necessarily a global extremum.

b. When the p1 and a•. differ from cell to cell:

0 H does not necessarily have a local extremum.E
* P and H have local maxima. The positions of their respective

D ND
maxima are close, hut not identical.

The next section of this paper consists of analysis based on these observations.
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4. ANALYSIS--LARGE SEARCH EFFORT

In this section we pursue analytically some of the ideas suggested in the previous
section by the numerical extension of the Mela and Pollock examples to the limit of
large search effort. The mathematical framework is that established in section 2. Wetake the three functionals of the search allocation (zj : PD, defined in eq. 2.9; H ND'
defined in eq. 2.22; and HEl defined in eq. 2.19. We seek to determine the extrema of

these functionals, subject to the constraint on total search effort (eq. 2. 1).

We defer temporarily the precise specification of a "large amount of search effort."
We assert that for C > C*, for some C*, the conventional calculus of variation technique
using Lagrange multipliers to incorporate constraints is applicable and will lead us to
the desired extrema. The determination of C* in terms of the pt and at will follow

as part of the analysis.

First, it is important to note that the three quantities PD' HND. and HE depend

on only two independent functionals of the (j :

Jj

n j)(4.1)A CP J. (zj i n cp, (zj)
J=l

and

J
B = j (z) (4.2)

3=l

Specifically:

PD 1-S (4.3)

HND =in B -A/B (4.4)

HE = B in B -A (4.5)
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We can obtain some general insights using this simplified representation. Let the
operator 6 signify constrained variation; that is, for a function f, Of refers to the set

J
of J quantities a f/)zj, subject to C = z . With this notation:

j=l

6P D = - 6B (4.6)

6H ND = 6 -( ))+ 6 B ',(/B) + (A/B2) (.7(4.8)

6HE = - 6A + 6B(1 + 1n B).(,)

From this set of equations we see that if there is an allocation of search effort (z*)

such that 6A and 6B are both zero, then all three functionals P Do HND , and H. have

extrema for that particular allocation Cz*] . Conversely, if 6A and 6B are not

simultaneously equal to zero, then extrema of the three functionals will occur for different
search allocations, given respectively by:

6B = 0 (4,9)

6A - 6B(1 + (A/B)): (6A / 6B / 0) (4.10)

6A = 6B(I + in B): (6A 6BA 0) (4.11)

Returning to the specific functional form of A and B, we find that:

6A = (•apk/bz) (1 + in -

(4.12)
=-k~(1 + in - X

for all k E . X is a Lagrange multiplier. Similarly:

5B =-kPk - (4.13)
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If 6A and 6B are to be simultaneously zero, we must have:

(1 + in ak c (l + In cpj) (4.14)

(4.15)

for all J, k C J. Eliminating 0 and cP between these equations, we obtain:
k

= k ' for all j,k E J • (4.16)

Thus, 6A and 8B are simultaneously zero only if a is the same for each of the j search
cells in J.

When all the a are equal, eqs. 4.14 and 4.15 reduce to:

•k(1 + in k)= cpj(l + in cp,) (4.17)

and

S= J'for all j,k E J . (4.18)

The only solution for these sets of equations is:

c)k = const = K, for all k E J • (4.19)

This equation cannot be satisfied for small values of the total search effort, C. By
requiring it to be satisfied, we can determine C*, the lower bound on the search effort
for which this method of analysis is valid. Using the definition of cOk, (eq. 2.6), we
infer from eq. 4.19:

ple = p 2 e= 2 . . . (4.20)

-26-
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In this formulation we have assumed that the p values are arranged in nonincreasing

order, so that pj Min pj]). From eq. 4.20, with aj =

z= (I/a) in (pj/Po) j J 1,2 -- J-1 (4.21)

or:

C* . (:/: (j in Pj - J In Pmin) (4.22)

For C >C* , eq. 4.19, leads to

zk ' (i/oa) in /K). (4.23)

Further, because of the constraint on the zk , this constant K can be evaluated in

terms of the total search effort; thus:

zk - (C/J) + (i/a) in Pk- (i/n) P• Pj (4.24)
J-in

This a well known result, closely related to that originally derived by Koopman,
(reference 8) and expounded in Stone (reference 9). The optimum allocations for Mela's
two examples follow from this trivially.

We may now summarize these results in two theorems:

Theorem I: For the assumptions of our model (section 2.1) with exponential detec-
tion functions and with C >C*, the allocation of search effort lz*] that leads to an

k
extremum of PD also leads to an extremum of H ND only if the ak values are the same

for all k C J. (This is the alternative statement of one of Barker's results.)

Theorem II: For the assumptions of our model (section 2.1) with exponential detec-
tion functions and with C >C*, the allocation of search effort C z3 ) that leads to ank
extremum of P also leads to an extremum of HE only if the a values are the same

DEk
for all k C J. (New result.)

The allocation Cz* ) that leads to simultaneous extrema of all three functionals Pk D
H NDI and HE is given by eq. 4.24.

-27-
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We must nuw find out whether the extrema thus determined are maxima or minima.

To do this, we examine the second derivatives. Let the second constrained variation,

2 2denoted by 62f, be defined by the quadratic form ( f/b zi 6z), subject to
=iz

C Z.
2

To compute 6 f, it is more convenient to include the constraint explicitly, rather
than use the Lagrange multiplier technique. This is done by noting that only J-1 of the
z are independent. The first J-1 of the Vp are taken as explicit functions of their

I 3 J-1
respective z , and the remaining cp is taken as a function of C - E zj . In comr-

Jul

puting derivatives with respect to a specific zk, therefore, both Jad must be

considered.

With this convention, the various second partial derivatives can be written, after
some manipulation, as:

S k ck k j

(4.25)

S 2 /Zk z£ = 2 jp

2 1 - U2 ~~

2N/c 2 (i 2 2

2 2o- ~ c (1 '.J j) (a JkCp + (I jO
- j(4.26)

J 3 1J1-1 • (P •_• Pq& )/( Y 0 /
/Zk3Z£ = L " JJ[ + ~ OiJ (PJ -ij J-

+ Q(- Pk + "jYj)(- + cLjcoj)

"-28-
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ZV
2 2 2 22

E2 H/Sk= k+ akjyj) + (lTj) (G'kqk - j)2

2

-CLk2 (In k - in y pj

J
2 Pj - in 3 (pj) (4.27)

a 2 H/•ZkZ£ = - cjpjL + Z j+A

+ (-akOk + 'jPJ) (-cy'pk +"JoJ)

These are the second variations evaluated at the extrema, where the relationships
obtained by equating the first variation to zero have been used to simplify the expressions,
especially in the case of HND.

For the case discussed above, a = a and M = K for all J, the second variationsj
simplify to:

6 2PD = -a 2 KD (4.28)

6 2 HND (Ca )/J)D (4.29)

2 2 -2 K2( - in J)D . (4.30)

D is the residual quadratic form:

2 J_ + -29-
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Noting that K, by definition, is a positiye constant between zero and one, we have:

Theorem III: For the assumptions of our model (section (2.1)) with exponential
detection functions, with C > C* and all a. equal, the extrema of PD and HND are

always maxima. Thie extremum of HE Is a maximum for J=2 and a minimum for all

J> 2.

This result clarifies a great deal of the mystery and confusion resulting from Mela's
paper. His two cases, J=2 and J=3, gave contradictory indications about HE and its

relation to PD, and produced the false impression that there was no connection between

detection probability and information gain IE (Mela's IE is equal to (in J - HE) in our

terminology). What we have shown here Is that for the important case in which the
conditional detection probability is uniform throughout the search area, optimizing the
detection probability is identical with optimizing the change in the amount of information.
Moreover, In all instances except the anomalous case J=2, maximizing the detection
probability is identical with maximizing the information gain.

The procedures leading to Theorems I-Ill guarantee only that we have found local
extrema of the expected entropy surface. To complete the analysis, we must further
Investigate:

- Whether there are additional stationary points on the H surface.
E

- Whether there are in general points on the boundaries of the surface for
which the value of H exceeds the value at the local extremum, as

suggested by the numerical results in section 3.

We note first the values of the pertinent quantities at their local stationary points.
Using the solution (eq. 4.24), we find that:

J

Max D 1 - xp [ni + (11J) >. in piJ exp(-ci-C/J) (4.31)
i=l1

Max [1ND = 1n,1

J

Extr [HEJ lnJ [exp(lnJ + (1/J) Li in pi)] eXp(-aC/J).(4.32)
1=1
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For equal prior probabilities, pi l/J, these reduce to:

Max P = 1 - exp(-ciC/J) (4.33)

Max (HND] = inJ (4.34)

Extr IE =HO - Extr [HE) = &J(l - exp(-cLC/J)) (4.35)

To check for the existence of other stationary points on the HE surface, we returnE
to eq. 4.11. That equation can be put in the form:

J
k (in ck - in ", CPi) = (4.36)

i=1

or, by further manipulation:

-YklnYk= G , (4.37)

where

J J

'jk = k j/j (4.38)J=l 1

3
The y must satisfy Y Yk 1, and, for a solution to exist:

k ~ ký. 1 k

0 <- G : ie , (4.39)

as can be seen from figure 10.

The nature of the solutions can be argued from the shape of the curve in figure 10.
3

Assume, first, that G = i/e . Then, Yk = l/e, and ? Yk = J/e, which is less than
k= 1 3

I for J=2, and greater than I for J greater than 2. To drive E Y k toward 1, we

decrease C. For J=2, the points must move down the right branch of the curve,
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,5 Equation system;

G =-TkM Tk: k J

lieTk= 1

.4 rk= I

1/e

G

.2 .

lie
0,2 .4 .6 .8 1.0

Tk

FIG. 10: GRAPHICAL. ILLUSTRATION OF
EQUATIONS 4.37 AND 4.38
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FJ
increasing Yk' until Y = 1/2, = 1/2 In 2. For all J > 2, the points must move down

kPk
the lcft branch of the curve, decreasing Yk' until Yk = ./J, G = (In J)/J. These repre-

sent the solutions ck = K, already discussed in equation 4.19 and those which follow.

If, however, we continue to decrease G, with all Yk on the left branch of the curve,
J J

Y k approaches zero in such a way that for some G*, we can again make Ykk= 1 k=1 k
by switching any one of the Yk to the right branch of the curve. The condition for this is

c0k K1; cp = K2; j ý k ej, for any specific k. Because of tl'e shape of the curve, Y - 1,

y 0, and thu3 K1 > > K2.

Let KI = iK2, and n = J-1. Then, from eq. 4.37:

[p/(ýt+n)] k, [p/(p+n)] - [1/(p+n)] on [1/(pt+n)] (4.40)

The second equation for determining the two free parameters, Ki and K2, is the
cunstraint on total search effort. Using the definitions of the Ck

'C/J = (l/J) Lk=1 Pk " Cfl-n2 (4.41)k=1

Eq. 4.40 cannot be solved for •i(u), but it can be solved for n(pt)

n = - p + exp [W(• i; •)/(•t-1)] . (4.42)

This equation is plotted in figure 11, with lnp as a function of n. For large ýi

n + (il) [ ( /2 + eait + O(4 -2 (4.43)

n
For n k 8 (G k 9), n - In p, j,,-e within a few percent of accuracy. It is important

to note from figure II that this type of solution exists only for n > e-i (3 > e). This means
that for 3 = 2, the only solution is the one with both Y points on the right branch of the
curve 10; for J k3, however, the two classes of solutions exist: a single solution (Type 1)
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///~.- nl - + exp [(J 0nu)/(:u-1))

/~ ~ n - Pin p~j

-//2/

0 24 6 810

n

FIG. 11: GRAPHICAL ILLUSTRATION OF EQUATION 4,42
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with all y points on the left branch of figure 10, and J solutions (Type 2) with any one
of the J y points on the right branch of the curve and the other J-1 on the left branch.

There is an additioiial condition on the amount of search effort, C, however. Just A
as there was a C* threshold for the existence of the Type 1 soluticn, there are J
additional thresholds for the appearance of each Type 2 solution. This is best seen
when the search allocatio, solutions in the asymptotic limit are calculated:

zk I (C/J) + ('/a)a" Pk" (l/aJ) M n pz - (J-1) 2/J (4.44)

Zja (C/J) + (1/Q) k Pj- (1/J) E an P + (J-i)/aJ (4.45)
X.-i

Since the zk : 0, eq. 4.44 peovides the threshold criteria for C: '1
2

MC* (J-i) + 1, in pj -3 in Pk4.46
j=(446)

k-i . J

This, together with eq. 4.22, provides the values of C for which each of the J+1 , r

stationary points of the H surface first appears. In the case of equal prior probabilities,
E"2

C*=0 from (4.22), and a C* equals (J-1) for all k.

HE surface, we now find out what type of stationary points they are. Using eq. 4.27,

we find:

2 2 2
C)= -/a K2 (I - in J) (4.47)

for those coordinates such that cPk = CP = K2 . Thus, for J >2, we have a minimum of

H in J-1 of the coordinates. For the remaining case, cpk = K1 , = K2.
2 2 2

H E/aZk =- 2K2 [ (4+1) -2(p/ ea•)(ii (4.48)
2 i/ - (-i) exp(-( an P)/1(-i))(
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where eq. 4.42 has been used to eliminate n. Direct calculation for 1 ":5 !9 shows

that & 1-1E t 0 for all p. This result seems to suggest, paradoxically, that all J+1

stationary point.q ,re minima.

To resolve this apparent paradox, we must be considerably more careful with our
coordinates. We seek, in particular, at least one linear combination of the zt, such

that its second derivative has the opposite sign at the stationary point.

Let us Introduce a variable x, 0 - x ' 1, such that:

zk -x (C/J) + (1/a) on Pk" (i/"J) 2.=1 P£ (4.49)

J
(jC/J) + (1/") en p. (I/ctJ) •3 P2

2=1 (4.50)

+ (x/(J--)) (C/J) + (1/a) • Pk - (1/cJ) 2n P9 ]z=1

For ease of notation, define:

$/a = (C/J) + (1/ct) 11 Pk (1/CLJ) 2 O P(£=i1

Then equations 4.49 and 4.50 become:

z (i-x ) (4.52)

zj = •jC)+(/J1l /a•) (4.53)

By introducing this parameter, we achieve several results. Note that whea x=0:

z= wk /a/ (4.54)
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II
These are the solutions for optimal detection search from eq. 4.24. When x=1, Zk=0,
and:

J-1
Zj = C/(J-1) + (i/cL) 2n Pj - (i/cL(J-1)) •an pZ

k Mi (4.55)

The latter are recognized as the optimal detection search allocations in J-1 cells, when
cell k is not searched. These represent the class of whereabout searches, whose aim
is to locate an object by searching all cells but one, then guessing the position on the
basis of the search outcome. Of this class, the one for which pk = Max (p in the

J
unsearched cell is called the "optimal whereabouts search." This search maximizes the
probability of correctly guessing the object's location (reference 10).

Finally, for x (]-)2/JP we find:

2
zk =k/a - (J-1) /ALJk k (4,56)

Z = / + (J-1)/cCJ . (4.57)

JI
These are identical to the asymptotic forms of the positions of the stationary points of the
HE surface, determined in equations 4.44 and 4.45.

Thus, by use of the parameter x, we have introduced a set of J hyperplanes. Each
of tbese hyperplanes connects (a) the Type 1 stationary point corresponding to the allo -
cation for optimal detection search; (b) one of the J Type 2 stationary points; and
(c) one of the J boundary points corresponding to a whereabouts search. We now investi-
gate the curve formed by intersection of these J hyperplanes with the HE surface.

Using equations 4.52 and 4.53, we can put HE in this form:

HE =(exp- [(C/J)-(I/CLJ) 2 pkx e

+ [exp(OkX) + n exp(-Okx/n)] 'n IexP (0kX) + n exP(-Okx/n)]}5
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By computing dHf1/dx = 0, it can be shown that an equation identical to eq. 4.42 is

obtained, with ki now identified as:

exp [(kX) (n+1) /n] .(4.59)

Its solution is again the curve shown in figure 11, and the asymptotic form leads to:

x = n 2 /(n+1) (P k) (4.60)

This is indeed the position of the Type 2 stationary point as determined earlier.

The second derivative of HE at the stationary point is:

d 2  2 2 (is 0 •)/(i-')

d H E /dx (P ex1 P) / (P)/(1) +)p e(p)all(4.61)

In contrast to eq. 4.48, this is negative for all 1 ! p Thus, along the curves
generated by the J hyperplanes, HE has a max at the stationary point, and we may

safely describe the J Type 2 stationary points as saddle points.

Since the entropy has a max at the type 2 stationary point along the x path, and
then turns downward again, we may ask whether it later reaches a value below the
minimum at the optimal detection search allocation. In fact, it does, if C is large
enough. To find this threshold of C , we simply equate HE(O) = HE(1). yielding:

Ji J [exp(0k) + n exp(-ik/n)] n [exp(k) + n exp(-•k/n)]

(4.62)

- •k[exp(•k) - exp(- k/n)]

In the dual limit J > > , 3k >> In (J-1), this equation can be solved approximately:
k J

EQ k, in p£ J n pk + J(J-)inJ (4.63)

The minimum of this over the set J Is:

MIN
c ^C•EQ : np - J in pMIN + J(J-1) in J (4.64)

,= 1=i
-3 ,-

EQ MIN



MIN
For any C > C there is a whereabouts search that yields more expected information

'EQ
than does the optimal detection search.

We can now give a complete description of the expected information surface in allo-
cation space, with the total search effort C as a parameter:

1. For C <C* (eq. 4.22), 1 has no stationarypoints. The extreme values

of IE occur on the boundaries.

2. For C* <C <C* (eq. 4.46), and for j>2, 1E has only one stationary

point. That point is both relative and absolute maximum, and it occurs at the allocation
of search effort corresponding to optimal detection search. )

3. As C increases through the series C* (k = 1, 2, -- J), J new stationary

points appear on the IE surface. All J are saddle points, whose coordinates are given

approximately by equations 4.44 and 4.45. The one maximum point remains both relative
and absolute maximum.

MIN
4. When C reaches C (eq. 4.64), the relative maximum is no longer the

absolute maximum. The new absolute maximum of IE occurs for the search allocation

corresponding to the optimal whereabouts search. As C increases still further, new

border regions are added to the surface, for which 'E exceeds the local maximum.

The optimal whereabouts search allocation remains the absolute maximum of the surface,
however.

Finally, It is interesting to compute the values of P and of the expected information

at where the crossover occurs,

These are, for optimal detection search allocation:

MA= J2 exp(-J "n J) (4.65)PD 1 MAX

for optimal whereabouts search allocation:

P = ( - P MAX MAX (J-1) exp(-J n J) (4.66)
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and, for the information in either case:

('MAX - IE)/IMAX = HE/HO (PMAx/Ho)J 2 Ca J exp (-J k J) . (4.67)

From these it can be seen that for even modest J (j = 5, say) PD is extremely close to
1, and IE is extremely close to ý4AýX, by the time the crossover occurs.

We return now to the case in which the a' are not equal. This corresponds to

Pollock's example. In this case, the allocations (z that determine the extrema of
P D' H ND' and H E are given by the solutions of equations 4.9 - 4. 11. They are, of
course, not identical.

Using the Lagrange multiplier notation, we obtain the following equations. For
6P D =0 :

'k'k = p all k E J (4.68)

for H ND=0:'.

(in- (O CPj in p )j / qOj = XND (4.69)

for 6 HE =0:

•kPk 1n c nk ln" i (.70)j J

The solution to eq. 4.68 is straightforward ard well known:

(4.71)
z~ = • kPk)/k -tjI , jj/j/kJ=1(/j /a ~•(/j

Equations 4.69 and 4.70 are transcendental equations and appear more formidable,
but, in point of fact, only eq. 4.70 is so formidable. If we divide eq. 4.69 by "k and
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then sum on the index k, we find that:

~~~~~~( (Iak = oi nok/- ok C %j kn goj/ !JND k=l kJk=l " C j k-1 Jl1

(4.72)

( 21 *

Since the 1/ak are all nonzero quantities of the same sign, we must have:

XND ( 0 (4.73)

Putting this back into eq. 4.69, we get a much simplified equation. Since a is not

zero, we must have:

J ) 3
in •1k in cpj) (4.74)

Because the right side is independent of k, the only solution to this set of equations is:

k const - K , for all k E J • (4.75)

This is identical in form to the result found in the case of equal 01k ' But the solution for

zk is somewhat different:

A k ( Pk)/ak - (n pj)/aj)/k (i +
~j=l j=1 (4.76)

C/(Zk (1/caj)

The difference between the solutions (equations 4. 71 and 4.76) is a function of the a

oily, and does not depend on the prior probabilities Pk ' Specifically:

Ak Zk - zk = k ) [k ( (( 4j)"jffl J ~
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*P *ND
Note that when all ak are equal, both z* and zk reduce to z (eq. 4.24), and

the 6k* 0 for all k.

Equations 4.71 and 4.76 can be used to calculate the optimum allocation of search
effort in Pollock's modified example. The analytic solutions are, for PD:

zI = 1.497

z2 =- 11.334

z3 = 17.169

and, for FIND:

z = .996

z 2 = 11.126

z3 = 17.878

These values should be compared with those found in section 3 to be the maximum
points on the integer grids: (2, 11, 17) and (1, 11, 18), respectively.

It is significant that the analytically determined maxima of PD and HND are fairly

close. With ce1 large, Pollock's example represents a major departure from a uniform

probability of conditional detection. Nevertheless, the maxima show only a small dis-
placement from each other, although they show a large displacement from their locations
when all the a 1 values are equal. (A representative example, using Pollock's pi, but

taking a '1  a= .693 for all J, yields z1 = 8.61, z2 = 10.19, z3 = 11.20). Thus, in

practical situations, optimizing 11ND will lead to search allocation nearly equal to that

required for optimum detection probability.

These solutions, too, are valid for large search efforts only. The thresholds for
their validity are determined from equations 4.68 and 4.75, using arguments analogous
to those previously given. The results are, for PD:

%J (4.78)
C -J (n; j)p/j - (1/jj) eq [p]i
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and, for HND:

=l j--) PJmin (4.79)

Of greater theoretical significance than the zk are the relative fractions of the

total search effort assigned to each cell:

Ck -= zk/C '

These are trivally determined from equations 4.71 and 4.76:
*P < /~ a

C = j2 k (1/a~ + Cl/c) jj kk)(/akJ--1
(4.80)

'J=1 ln

-- 1/6 (I/a,) + (1/C) ( n)/a.

- ( "n P1)/(j)/ck an (i/o j)

3=1l 3=1

These clearly converge to the same asymptotic limit as C

J=1( (4.82)

No simple strategem is available for dealing with equation (4.70), and closed-form
solutions for the optimum search allocation do not appear possible in the case of HE.

Some limited statements can be made about the nature of the solutions, however. If we
eliminate X. from any two equations in eq. 4.70, and use C1 rather than z, , we get:
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0 ~ ~ ~ ~ ~ ~ ~ ~~ > jjeP "jj 11 P x(Urj p j exp(-oxCC)j

j (4.83)

= 0 .ex(-.~C)2~[Pin exp (-%CkC,))/P3 exP'-a~j~C)1

This can be further manipulated into the form:

J

F J

(alk) [(PilPk) ep-C(k -ii) I J=l ((lk ep J 4.94))

Since the left side of this equation is independent of C, the right side must be, as
well, if the equation is to remain valid in the asymptotic limit C " .

Because the a'k values are given and independent of C and because, by definition,
0

0 ! Z •1, then ci i , must be O(C) in its leading time. The most general form that

satisfies these requirements is:

C = 1/ ij (U/A)L + (fi/Lj C) (4.85)

This renders eq. 4,47 independent or C, to all orders, buw still makes C of order

C;. The functions fi are functions of the a., and p•: they must satisfy:

[uiPi exp(-fi) •'/I [pi exp(-fi)/ •JPj exp(-fj) = (.)

j=1

and

JI (4.87)
"4 (fj / ) A 0

-44-



An explicit solution for the f of eq. 4.86 is no more feasible than an explicit solution

for the ýO of eq. 4.70. But, by the artifice of eq. 4.85, we have separated out the

asymptotic part of the solution. This leads to the very important Theorem IV:

Theorem IV: Under the assumptions of section 2.1, the allocations of the fraction
of search effort among the J search cells that produce stationary points of PD' HND,

and HE have a common asymptotic limit as the amount of search effort C approaches

infinity. That limit is: (8)

ALi

•i= /iJ=l (4.88) '

The final topic to address in this section is whether the extrema are maxima or
minima in the case of differing . This is easily answered in the case of P and

•HND. Combining equations 4, 25 and 4.68, we get:

2PD - -X (a + aJ) for all k E J (J4.89)

%p, ak, and aj are all positive, and PD' therefore, always has a maximum.

Similarly, when we combine equations 4.26 and 4.75:

2ND _k /2 _ 2 + 2 (l/J)- 2 (4.90)

6 HN2DO / (%a 9 + UJ./J )]

"This is always negative for positive integer J; therefoxe, 1,ND' too, always has a
maximum.

2
No gmneral rule appears appropriate for application to 6 HE. Though analytical

results are not forthcoming, we have already seen in the numerical examples that
maxima, minima, and saddle points are all possible as the stationary points of the HE
surface.
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5. A 'AILYSIS--INFINrlTFSIMlAI.. SEARCH iuFFORT

We turn now to the L..pposite limit, in whiich thie total anodunt of search effort approaches
zero. In particular, we consider the case in which an Infinitesimal amount of search
effort 6k is applied in only one cell, k C J. We then apply the usual limiting processes

of calculus to compute the rates of change of P:) 1, 1ND' and H as a result of searching

In cell k.

The quantities A and 13, defined in equations 4.1 and 4.2 are, for search In a
single cell:

A = -H0 "(Pk In Pk)1 1 - exp(-akAZK)]-ak 6Zkpk exp(-a.kazk) (5.1)

B = 1 - Pk [i - exp(-ckzk)] (5.2)

where 1O has been defined in eq. 2.17. When A and 13 are expanded to first order

in Az and substituted In equations 4.3, 4.4, and 4.5, we obtain:
k

P (AZk)akPk + O(Az2)

ND + (Lzk)akPk(HO + in Pk) (5.4)

+ o(Az2)

(5.5)
HE =H + A Z p in

The nce:

1lrn (PD-Po)/Azk dPD/dz -L (5.6)
t, z k-•0 D k ~

lim (HND-Ho)/Azk dHND/d7k akPk(1o + in Pk) (5.7)
A Z 0k- N =OO ~

t~kO

rnlim (if-H U diE/dzk O.kpk in P (5.8)

A-Zk46O
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Our basic concerns will .xe with the magnitude of these rates of change, and with the
extreme vi-lues of the magnitudes over the set J: we shall determine these extreme values.
First, however, -ome observation,; about the signs are significant. Recalling that
0 k and 0 -ýP <1 for all k C J, we note immediately that:

dPD/dzkŽ 0 ; all k E J (5.9)

dH E/dz k 0 ; all k E J . (5.10)

The corresponding result for dH ND/dzk is less obvious. However, the reader may

persuade himself by selected numerical examples that dHND/dzk can be either positive

or negative, depending on the set of the prior probabilities p3 and on the searched cell,
J

k. (Alternatively, we may note that Z (i/ak) dHND/dZk
k=1

of dHND/dzk are not the same for all k.

The observation concerning dPD/dzk is scarcely surprising. But those related to

the entropies are significant:

Theorem V: For any search operation conducted according to the assumptions
of section 2.1, the expected entropy never increases (and the expected information never
decreases), regardless of the cell chosen for search. The entropy that is conditioned on
nondetection of the target, however, may either increase or decrease, depending on local
conditions.

is worth pointing out that the rates of change of P and H depend entirely on

local conditions, i.e., on the prior probability p in the cell being searched; the rate

of change of HND, on the other hand, depends globally on the entire prior ensomble,

through HO. It is therefore conceivable that for two distinct prior ensembles, the rates

of change of HND could vary in both magnitude and sign, even though the individual cells

chosen for search in the two cases had identical prior probabilities.

We now determine whether the results obtained in section 4 still apply in the limit
6zk" 0. Specifically, does the allocation that maximizes P also maximize H and

k D ND
produce an oxtremum (either maximum or minimum) in H1 ?
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We have already noted that in tdie case in which the a k are different in different cells,

no results of useful generality were obtained. We therefore restrict ourselves to the case
ak = a, all kC J, and -- for simplicity in this section -- let a = 1. Then, the rates of

change for PD' LIND' and 1IE are:

pk,Pk(Ho + in Pk) and Pk in Pk

respectively.

Let us assume that the cells are numbered in order of nonincreasing magnitude of

Pk p ! P2 Z - - - ;1 2. 13v this device, we make sure that infinitesimal search in

cell 1 will produce the highest rate of increase In PD' and, hence, maximize PD in the

limit z-*0. We then investigate the extrema over the set J for the rates of change of
HND and FIB?

HND
We noted earlier that the sign of dlI N/dzk might be either positive or negative,

depending on the prior ensemble and on the searched cell, k. This general observation
can be made somewhat more precise. Sonie preliminary observations:

1. For a given prior ensemble, I1O is a fixed positive constant.

2. The factor pk is monotonically noni.ncreasing with the index k because

of the assumed orderinj.: , It Is aliways > 0.

3. The factor II1- lik is mnmotmnicaily nonincreasing with the Index k

from sonic initial valute, and ninv approach -- for a pk that is small

enough. Whether the maximini value of 110-I- 111 is positive or

neg1ative remains to IX deterimined.

We shall later prove that the max of I1 + In Pk is in fact nonnegative for any prior

ensemble. For the m1om0lent, we aSSUl(e that this is true and derive the consequences.
Iy the assumption, there is o range of k-, I < k !5 K <J, for which 1-I + InPk >0.

Then, In this range, pk (it + In k)) is a puositive, niontotnlcally nonincreastng function

of k, because It is a product of two pw.itive, iionotl)iicully nonitncreasing functions of k.
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In this range:

PlH + in p,) Ž Pk(Ho + in Pk(511)

for 1 < k :9 K. Outside this range l-O + In pk < 0 , and the monotonicity of the product

is no longer assured. Since the product is then negative, however, it is obviously less
than p1(Ho+ In P). Thus, if P1 ' Pk for any 1 <k !9j, then pl(HO+ in pl)

Pk(Ho + in pk) for any I < k :J.

Now we prove the assumption. We need to show that for any prior distribution, there
is at least one pk such that H + in Pk Is nonnegative. This is easily done by noting
that:

J J
=' Žp + = () (5.12)

0 + k Pk =, (= P J + Jn Pk) =1 j

If P is Max pj I then each term in the sum is nonnegative, andJ

H0 + 0. (5.13)

One final comment about dHND/dzk. We have seen that, for the largest pk in J,

dlND /dzk > 0; in addition, for sufficiently small pk values, dHND /dz k0 . This sort

of behavior suggests that for some Intermediate value of pk' dHND/dzk has a relative

minimum < 0 (which, in fact, is an absolute minimum, too). This is best illustrated by
a specific model.

Consider a countably Infinite set of search cells, in which the (ordered) prior
probabilities are:

P Y) k- (5.14)

Clearly • Pk I when the sum converges (0 Y Y < 1).
k= I
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This model is a useful tool for lnvest:iporing some situations Involving finite J.
General analytical results can be obtained with the infinite model, yet that model can
be made to approximate a finite model reasonably well by truncation of the series

after J-1 terin s and lumping all the remaining probability P Pk together as the
k=J

Jth term. For Y < 1/2, the total residual probability in (J, 0) is less than the J-1
term, and the decreasing ordering Is preserved.

For this model, with ak = = 1, we can show that:

dHND /dzk = (l/y) on yI exp(-k I n y )1 - k(1-y)] . (5.15)

This expression is positive for small k and negative for large k. The crossover
point is given by:

k (y) 1/(l-y) (5.1)

which is monotonically inercasing from 0 to "I as Y goes from 0 to . Thus, by
choice of the parameter Y , we can make an arbitrarily large number of cells have
positive values of dHNb/dzk

Treating k as a continuous variable and differentiating, we find that:

a (dHND/dzk)/rk = 0 for k k* (5.17)

where:

k*(y) = I/(l.-y) + !(,' yI) . (5.18)

This can be shown to be a mininmm of d(N /clz . Like k (y), k*(Y) is also a monotoni-
NJ) k

cally increasing function of Y , going from 1 t• + ± as Y goes from 0 to 1. The
position of the minimum can also be situated at a.rhitr~rily large values of k, depending
on the choice of Y , although clearly the choices of k (Y) and k*(Y) are not independent
of each other.
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HE

An analysis of the relative magnitudes over (k) of pk In p Is closely related to a

problem already solved by Browning (reference 11). Browning treats a slightly more
complicated case, in which the amounts of search effort are finite ("looks") rather than
infinitesimal. That makes his proofs more complex than the present case requires, but
it does not alter their validity or their relevance to the infinitesimal limit.

We shall simply state the necessary results with qualitative justifications. The
reader may consult Browning for analytical proofs.

We shall consider the rate of change of the expected information, rather than the

expected entropy: dIE/dzk = "Pk In p Ok a. Figure 12 shows the function y(p) = -p in p

in the domain 0 <p ':I. This curve is asymmetrical, having a maximum at (1/e, I/e).
J

We must visualize along this curve the set of points Yk = P subject to 1 Pk = 1, and
k=1

to the ordering p k P k P P

Browning has shown that the following cases should be distinguished:

1. I/e 1 P1 . In thic case all the Yk are on the increasing part of the

curve y(p); therefore, the ordering of the pk guarantees the ordering of

the Yk: Y y 2 y 3 k - ;kyYka0 - i

2, I/e !p 2 . In this case, which can still satisfy the constraint L pk = 1, Y,
k= I

is on the decreasing segment of y(p); therefore, y2 > yl

3. P2 !9/e 1 p1 ' This case is problematical arid is best resolved by numerical

calculation.

Before turning to relevant calculations, we must resolve the question whether y3 could

be the largest of the y under any conditions. Reference to the figure shows this is

obviously not possible if p2 tI/e , since then y3 ey 2 . On the other hand, if both p1

and p2 are ! i/e , then the maximum value possible for p3 is (l-2/e) <i/e, attained

when p1 =P 2  I/e. There again y3 <y 1 y2 I Any increase in p1 and p2 above lI/e

can occur only at ý.wi expense of p3 , which further decreases Y3 at a rate faster than

either y, or y2 because of the steeper slope for p < I/e. Thus, there are no conditions
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for which y3 = Max y we need therefore consider only cells 1 and 2 when allocating
k

search effort to produce the maximum rate of information increase.

Figure 13 shows the relevant portion of the pit P 2 plane. The boundary curves

J
are p +P2 (the limiting case of P = 1), p1 = p2 (the limiting case of the assumed1 2 kj.
ordering p p ), and y(p1 ) = y(p2 ). In region I, y1 >y 2 ; in region II, y2 > y1 "

It Is important to note that the line pl + P2 -- I Is a boundary of region II only. This

implies that for the case J=2, y2 > Y,, except for the endpoint y2 (0) = yl(1) = 0. When

there are only two search cells, the maximum rate of increase of information is always

attained by searching the cell with the lower prior probability, and the minimum rate of
I increase of information !s always attained by searching the cell with the higher prior

probability. This is in agreement with the results obtained for the asymptotic case

When J > 2, however, a new feature enters. There is a significant region in the

P, P2 plane, where the maximum rate of information increase is attained by searching

in the cell with the second highest prior probability. The cell with the highest prior
probability, which is searched to maximize the growth of PD' does not represent either

a maximum or a minimum in the rate of information growth. The results of the asymptotic
analysis, therefore, do not carry over into the infinitesimal limit, and we cannot assert
universally that the allocation that maximizes PD also produces an extremum in

HE (or IE).

Reference to our infinite-number-of-cells model will illustrate some of these points.
For that model:

dIE/dzk -(1/y) (1-y)exp(-k Jan y )I[E(1-y) + (k-i) e, yJ , (5.19)

which is, of course, always 2 0 for any k. Again, treating k as a continuous variable,
we find that dl E/dzk has a maximum at:

k*.(y) 1 - Cn(1-y)]/ n y - 1/ n y . (5,20)

-53-

A



1.00

.96-

.90

,85

.80

.75 -

.70

.65
C'N

S.8o--
._0

.55

S.50

k. .45
0

Region I1:

.25 -

.20 Y1>Y2

.10-

0 .05 .10 .15 .20 .25 .30 .36 .40 .45 .5{ .55 .60 .65 .70 .75 .80 .85 .90 .95 1.00

p1  Prior probabillty in cell 1

FIG. 13: DELINEATION OF REGIONS IN THE SPACE
OF PRIOR PROBABILITIES

-54 -

. . ... .. .....



The behavior of k*(Y) differs significantly from that of k*D(Y) . As Y goes from
E ~~ND(Y

0 to 1, k*(Y) starts at 1, increases slightly to a maximum of -'1.5422 at Y;=.351575,

then decreases monotonically toward -0. Of the positive integers, only k = 1 or 2 are
closest integers to this curve for any Y , as suggested by our previous discussion. Thus,
only cells 1 or 2 need be considered candidates for Max dI E/dz kk E kk

The results of this section are summarized as follows. For ordered probabilities
S2 3p 0:

a. The rate of change of PD is always positive. It has a maximum for search

in cell 1 and a minimum for search in cell J.

b. The rate of change of HND may be either positive or negative. k has a

nonnegative maximum for search in cell 1, and a negative minimum for search
in some intermediate cell m: 1 <m <J

c. The rate of change of I is always positive. If J=2, it has a maximum
E

for search in cell 2 and a minimum for search in cell 1. If J > 2, then, either
(1) it has a maximum for search in cell I and a minimum for search in cell
J, or (2) it has a maximum for search in cell 2 and a minimum for search in
either cell J or cell 1.
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6, SUMMARY

The relation between search theory and information theory remains complex.

Previous attempts to attack the problem have focused on only a narrow part of the
relationship. Their narrow focus and the lack of clear definition of "information" or
"entropy" created an unwarranted impression that the body of work was contradictory,
if not incorrect. It is not.

The work reported in the earlier references is both correct and, when viewed from
a broader perspective, consistent. The Individual results reported earlier have been
useful in establishing this broader perspective.

In the present paper, some of these earlier results have been rederived from a
different viewpoint. Other new results have been added. Taken together, these findings
are enough to allow us to sketch a coherent, though still incomplete, picture of the
relation between search theory and information theory.

Equally important, we can now identify the gaps somewhat more clearly and can
direct future research toward those gaps with the confidence that there is an underlying
body of theory to be completed, rather than a mere collection of isolated observations.

Before summarizing the findings, it is important for us to recapitulate the assumptions.
These are the most critical assumptions of our model, which are used consistently
throughout this paper: There is a single target; it is stationary; no false detections
occur; and the detection process is governed by an exponential detection function.
Relaxation of any of these assumptions would add considerable complexity to the theory
and might change the conclusions significantly. Within the framework of these general
assumptions, this paper has examined subcases in which (a) the amount of search effort
is either very large or very small, and (b) the conditional detection probability is
either uniform or variable throughout the search cells.

Summary of Findlngs

a. Uniform conditional. detection protxability.

1. The allocation of search effort that maximizes the posterior entropy
conditioned on nondetection H also maximizes the probabiliy of detection

ND
P This result was first established by' l3rker and was confirmed by the

present author in both the large and smalL .,earch effort limits. Since Barker's
proof is not restricted to these liniting cases, the result is valid In the inter-
mediate range as well.
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2. In the large search effort limit, the allocation of search effort that maximizes
the probability of detection, P also produces a local extremum in the expected

Information IE . For two search cells, this extremum is a local minimum of

For any number of search cells greater than two, this extremum is a local maximum
of I., This is consistent with Mela's calculations. (Although the number of looks

is only equal to J in Mela's examples, this still corresponds to the large search
effort limit, since C* = 0 by eq. 4.22.

3. The local extremum of IE is not necessarily the global extremum. For anE MIN
Intermediate range of C, C* < C< C , the local extremum is also the global

interediat C = EQ
extremum. For C <C, there is always at least one whereabouts search (and

there may be as many as J), corresponding to an edge point of the IE surface, which

produces more expected information than the optimal detection search. In practical
cases the distinction appears unimportant, since P '- 1 and IE ~ IMAX'

MIN D - A
when C reaches CEQ M

4. In the small search effort limit, the exact correspondence between the maximum
of P and the extremum of I breaks down, We achieve the maximum rate of

D E
increase of IE by searching In the cell that has either the largest or second largest

rate of increase of detection probability. In the two-cell case, this is at least con-
sistent with the large search effort limit. For more than two cells, however, this
is a distinct phenomenon, constituting another demonstration that the connection
between optimum search and optimum information gain is not universal. Working
with P and I directly, rather than with rates of change, Browning has obtained

D E
comparable results In the intermediate search effort region for cases J=2 and J=3.
There remains an open question: precisely how the transition between the two
limits takes place and whether the C*' determined in equation 4.22 is in fact the
minimum value for which the large search effort limit is valid.

5. The rate of change of IL is always positive for any search allocation. The

rate of change of HND can be either positive or negative, depending both on the

search allocation and on the ensemblc of prior prcobabilities in the search cells.

b. Variable co.nditional detection probability.

I. In the large search effort limit, both PD and HND have local maxima. The

search allocations leading to those maxima are not the same, as is demonstrated by
eq. 4.77. This finding is consistent with Barker's second theorem.
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rj
2. In the large search effort limit, no closed-form solution for the stationary
points of IE can be determined. Even the nature of the stationary points cannot

be established analytically, but the numerical examples have shown that maximum,
minimum, and saddle point are all possibilities. In the asymptotic limit (C -

the positioning of the stationary points of PD' HND, and 1E all converge to a

common limit:

(C/Ui) (i/ W !aj)

3. In the small search effort limit, no systematic relationshipa have been

established among the maxima of PD' HND and I.

4. That the rate of change of I is positive for any search allocation, even
when the conditional deteetiorD probabilities vary, remains valid.

Interpretation

Only in the case of uniform conditional detection probability do we have enough
results to attempt some interpretation. There, however, some simple statements can
do much to dispel the legacy of past confusion.

First, uslng Barker's theorems and our present results on the rates of ,-hange of
PD end HND' wsi have noted that identical search policies produce the maximum

increases of both detection probability and posterior conditional entropy. Like all
entropies, H is a negative information. Thus, maximizing its rate of increase

is equivalent to maximizing the rate of decrease -t' an information. The information
that is being decreased is that contained in the eji ,rmble up to the time of detection:
the information about the target location that is expcessed by the prior probabilities
and that changes as the search progresses. With this view, we can state one general
conclusion, already correctly anticipated by Richardson:

The search policy that maximizes the probability of detection is

the one that uses up the informalion contained in the prior ensemble
at the maximum rate.

Second, we have shown in this paper tmat in most cases the optimum policies for
P and I are eqnivalant. Here, howeve-r, information is being created rather than

used up, Because this is expected information, vianalizing the overall process of
information creation may be harder. Consider a zepeated search in one of the J cells.
If that cell has a prior probability pk of containing the .,bject, its initial self information
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is II P k At each stage of the search, if detection does not occur, pk decreases;

consequently, the actual self information of the cell also decreases. The probabilities
of the other J-1 cells, however, increase simultaneously (because of the constraintI--• pj = 1), as do their values of self information. If detection does occur In the kth

cell after some number of unsuccessful searches, its self information undergoes a

sudden increase; the self Infor, nation of the other cells then drops.

When we speak of ensemble averages, as we have thr ughout this paper, the competing
effects of these information-creating and -destroying processes are combined, with a
probabilistic weighting. Until the time of detection, the loss of information caused by
failure to detect in the cell being searched is weighed against the inferred gain in
information in the other cells. The net change ol information may be either positive
or negative, as we noted in our discussion of the rate of change of H If detection

occurs, the positive and negative information contributions from that process must
also be added in, with the proper weighting. Then, as indicated by the rate of change
of IE , the overall information gain is net positive.

This interpretation of the creation and destructi.on of information leads to our second

general conclusion:

In a wide range of practical cases, the search policy that maximizes
the detection probability is the one that creates expected information at
the maximum rate. We achieve that maximum rate of creation by using
the existing information of the prior ensemble as fast as possible, thereby
gaining an early detection, with its concomitantly large increase of
expected information.

Except for the anomalous cases, these two statements contain the essence of the
interpretation of optimum search: We consume existing information at the maximum
rate in the expectation of gaining still more information, also at the maximum rate.

The annialous cases are of three types: (1) the case of two search cells, in which
maximum information gain Is achieved by search in the cell yielding the lower detection
probability, regardless of the amount of search effort applied and regardless of the

probabilities in the prior ensemble; (2) the case of three or more search cells, in which
maximum information gain is achieved by whereabouts search rather than optimal detec-
tion search for very large amounts of search effort; and (3) the case of three or more
search cells, in which maximum information gain is achieved by searching the cell that
yields the second highest detection probability, but only for small amounts of search
effort, and only for special regions In the space of prior probabilities.
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The anomaly in the first two cases appears to be caused by tile two competing
methods of increaskng information: by actual detection in the searched cells, or hyy
inference that the target is in the other cell, 1-ased on failure to detect in the searched
cells, These two mechanisms are at work regardless of the number of cells. When
there are only two cells, however, failure to detect in one leads to a large increase
in the probability that the target is in the other, and, hence, much more information
about the location of the target.

This mechanism of inferred information is dominant in the two-cell case, so that
vctual detection is not necessary to achieve the maximum information gain, even with
small amounts of search effort. The two-cell search is thus an exemplary case of
the whereabouts search. For three or more cells, the inferred Information mechanism
of Lh-, whereabouts search is not normally dominant; it becomes important only at
large, values of the search effort.

In the second case, the anomaly appears to be more dependent on the mathematical
structure of the ensemble average information -- on the form p In p. In those areas
of the (pit P2) plane where the anomoly exists (figure 13), p1 Is large, and the amount
of self-information to be gained by a detection in cell 1 is small. Detection in cell 2,
although less likely, provides more self-information. When incorporated in the ensemble
average, the greater but less likely expected information contribhution from cell 2 -- p2

In P2 -" dominates the smaller but more likely contribution from cell 1 -- p1 in p1 .

Future Research

Finally, we need to set out the areas in which further research may prove most
fruitful.

The principal case treated herc (uniform conditional detection probability) has broad
practical applications. Its basic structure has been laid out, and only minor holes remain.
Clearly, there are unsolved questions relating to the transitiun between the small and large
search effort limits in the case of ' These are important theoretical questions, but

lesa so in a practical sense.

The major extensions needed for use in real ;,-,orld search theories are, first, to
false targets, second, to multiple targets, both real and false, and finally, to moving
targets. Each of these cases is of immense practical significance, and any theory that
does not include them can have little claim to completeness.

Relaxation of the assumption of exponential detection functions, and any further con-
siderations of the case of varying conditional detection probabilities can be deferred on the
grounds n0 lower practical priority, despite their considers ble theoretical interest and
complex mathematical challenge.
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