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1, INTRODUCTION

Backgg_ound

The relation between search theory and information theory has had a thorny history.
A 1967 view was summarized concisely by Koopman (reference 1); "Ever since the
mid-nineteen-forties when the theories of information and of search became subjects
of general interest, attempts have been made to apply the theory of information to prob-
lems of search, These have proved disappointing; neither the formulas noxr the concepts
of the former theory have found a place in clarifying the problems of the latter," These
views doubtless reflected much of Koopman's own research on the subject,

An independent contribution to the generally pessimistic view of the matter was the
1961 paper by Mela (reference 2), He presented numerical examples for simple search
models, demonstrating that a search policy that is designed to maximize detection prob-
ability does not necessarily maximize either the gain in expected information or the
probability of correctly committing forces on the basis of search outcomes, Mela con-
cluded: '",..it does not seem likely that there is any intimate connection between search
theory and information theory," And: ",..search theory should be considered in
connection with the general theory of statistical decisions rather than with information
theory,"

: This negative view was reinforced by a later paper by Pollock (reference 3) in
1971, He presented yet another numerical example, in which different search policies
were necessary to maximize either: the probability of detection as a result of the
search, or the probahility of guessing the position of the target after the search, or
the information gained during the search,

These negative findings had a clearly {nhibiting effect on research, and relatively
little effort has been devoted to the connections between information and search for the
past fifteen years, Nonetheless, the intuitive appeal of information theory remains strong,
and more recently the tide of pessimism has been stemmed somewhat, In 1973, for
instance, Richardson (reference 4) used Monte Carlo simulation to explore alternative
surveillance policies in a false~target environment, Target motion based on a Markov
process was also included, Richardson's policy options included: (a) an optimal single-
stage look=-ahead policy (about the same as maximizing the probability of a right guess
after every search stage); (b) a policy to maximize informarion gain; (c) a policy to
search the cell with the highest a priori probability; (d) a uniform surveillance policy
(cycling systematically through all cells),

Richardson's tresults showed that the maximum -information~-gain policy was generally
(but not uniformly) best. In hls summary, he said: "The principal conclusion...is that
the maximum information gain policy...appears to have desirable characteristics in the
idealized surveillance scenario considered. Among these characteristics., .are good

A A R
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initial behavior in the early stages, and good asymptotic behavior in the later stages,
The initial behavior is measured principally by comparison with the optimal single -stage
look -ahead policy, ..which is designed to be good in the carly stages, The asymptotic
behavior is measured principally by comparison with the uniform surveillance policy,
which, for a stationary target, is guaranteed to converge to 1... ."

Finally, inspired by Richardson's simulation findings, Barker (reference 5) proved
these two theorems analytically:

"I: Suppose that the detection function is given by blu)=1 = e Yforu 20,
Then, subject to a constraint on total search effort, the allocation of search effort
which maximizes the probability of detection also maximizes the entropy of the posterior
distribution,"

And the converse:

"II: Let b be a regular detectlon function, Suppose that for every prior
target location distribution and for every constraint on total search effort, any
allocation of search effort which maximizes the probability of detection also . |
maximizes the entropy of the posterior distribution, Then, b{u) =1 ~ e “&Y for
some positive constant a."

These findings, taken as a whole, appear to be inconsistent, In particular, Mela's

numerical example seems, at least superficlally, to be in clear contradiction to
Barker's theorems,

If science teaches us anything, it should be that where contradictions abound,
there lies a fertile field for research, Accordingly, this paper reexamines the relation
of search theory to information theory and and attempts to reconcile past results, to
clarify the current state of knowledge, and to remove some impediments to further
work on the subject,

Plan of the Paper

Section 2 establishes the mathematical framework of the problem. A model for the
gearch process is constructed, A description of the problem in terms of information
theory s provided, and distinctions are drawn among several possible definitions of
information, These are then related to quantities discussed in the earlier literature.

Section 3 reexamines the examples of Mela and Pollock and extends their results
numerically to the case of a large amount of search effort, Section 4 treats analytically
the case when a large search effort is applied; section 5 treats analytically the case In
which the search effort Is infinitesimal,
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Section 6 summarizes the findings and places the results of this paper in a
framework with past work.
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2. PROBLEM STATEMENT

The Search Model

We assume a simple model for the search process, A single target is in Jne of
J cells, Our prior knowledge of its position is described by a set of probabilities,

J
pj, el X pj = 1. We conduct a search operation in which varions amounts of
=1
search effort, zj, are applied to each of the ] cells, The total amount of search
effort, C, is fixed, so that the z, amounts of search are subject to a constraint:

J

C =7, z., . (2.1)

For our general treatment, the Zj need not he quantized. Special cases, for which

the search effort is applied in multiples of a fixed unit (the "look"), appear in the
examples of Mela and Pollock,

We assume that the detection process is governed by an exponential detection
function., This means that the conditional detection probability for cell j, given that
the target is in cell j and that an amount of search effort, z , is applied there is:

J

Pr (det j|j,zj) = 1 - exp(-a.2 . (2.2)

3 j)

«, 18 a characteristic parameter of the detection process in cell j.

]

This formulation subsumes the discrete-look cases of Mela and Pollock, If qj is
the single-look conditional detection probability, then, for nj looks in cell j:

n,
Pr (det jlj,nj) =1 = (l-q ) ), (2.3)

i is identified with Zj' and aj 1s identified with

which is equivalent to eq., 2,2 when n
"ln(l-qj) .

Finally, we assume that no false alarms occur,
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Within the framework of this basic model, a specific allocation of search effort may
lead to J+1 possible outcomes: cither a single detection in any of the ] cells or no
detections at all, Because we have assumed no false alarms, a detection in cell' k pro-
duces a posterior probability distribution:

- R ]
Py 1; Pj

il

OI j i‘ k E J - (2.4)

¢

Failure to achieve detection in any cell produces a posterior distribution:

J
pa = Py exp(-ajzj)/';i,;lpk exp(-akzk)] . (2.5)

For convenience of notation, we define

(pj = cp(zj'u,j'pj) = pj exp(-ajzj) . (2.6)

(These @, functions correspond to the "failure densities," pB(j), used by Barker.)

]

For nondetection, the posterior distribution is:

J
P! =o9./ L o
P g=1"k

2.7)
The unconditional probability of detection in the jth cell is, in this notation:
PD, = p. (1 - exp(~-a.,2. = - Q.
i TP play25)) = Py =@y o (2.8)
and the overall detection probability is:
J J
PD = PD, =1 -jgcpj
j=1 j=1 (2.9)

The Information Description

It is possible to define many "information" quantities related to search operations.
Values for self information and mutual information, for conditional information and
unconditiona! information, for information as a randon: variable and for ensemble
average information -- any of these can be computed at each step of a search, To avoid
ambiguity, we proceed with caution in defining the specific "information" we wish to
discuss in this paper and in relating that definition to the quantities discussed in the
references.,

-5~
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First, we define two probability spaces, X and Y , that are concerned,
respectively, with the true position of the target and the observed response of the
search sensor, Let the event xj represent the presence of the target in cell j. The

space X has dimension J, and the discrete event probabilities are given by px(xj) =
pj. j€ J. Let the event Yo be the null response to search, and let the event Yy re-

present a detection in cell k . The event probabilities in the Y space can be con-
structed from the appropriate probabilities in the X space, together with the condi-

J
tional detection probabilities: pY(yk) = 12:1 pY | X(yk |XJ) px(xj) . In our present
example, the dimension of the Y space is J+ 1; it could be larger if multiple
detections or false alarms were considered,

Our principal concern in this paper is the ensemble average mutual information
between the X and Y ensembles. By definition (reference 6), the mutual information

between the events xj and Vi is:

Lk = 1n[leg)y (23] y)0) /py (x ] (2.10)

This quantity is a random variable in the product space X * Y. Its ensemble average

is -

IE = pxIY(leyk) Ijk []
j.k

J J
LN LY
=jL=J1 k‘:opXIY(leyk)pY(yk) 1n (ple(leyk))/px(xj) . (2.11)

To compute this ensemble average, we use the following relationships, Implicit in
all of these is an allocation of search effort, {zj} :

px(xj) = pj , the prior probabilities; (2.12)
J
- S

pY(yO) —j:lcpj , from (2.9); (2.13)

S SR -

-

!
d
i
|
3
!




TR T

VT T T TR T T R T T A

.S T A TR TIVES TR e Lt T

Bt A

Py (y,) = P = oy » from (2.8); k=1,...,3 (2.14)
\-J\ (2.15)

Pg|y (%31¥g) = C"j/k‘:fpk i '

ple(leyk) = 6jk . k =1,...,7 (2.16)

The latter two equations are derived by appropriate applications of Bayes' rule. When
these are substituted into eq, 2,11, we obtain:

3 J 30 10(3
= -N\ N - —2_\ . + N
Iy Pl 1n p, [j;f"n 1n @, (kgl“’k> “(sz)J (2.17)

The first term is recognized as the entropy of the prior ensemble, X, which we
will designate HO. By a general result of information theory, the mutual {{nformation

between two ensembles, X and Y , canh be written:

Ip = H(X) - H(X|Y) . (2.18)

Thus, we can identify the bracketed term in eq. 2,17 as the conditional entropy of X,
glven Y, For reasons discussed below, we designate this as H_ . Thus:

E
2 1 !
Hp = ;:lcpj 1n P4 + <k:lcpk> 1ln <2’Z=,‘lcpl> . (2.19)
The mutual information is then:
I.=H, =-H . (2.20)

E ] E

For a given prior distribution, H_ is a constant; HE’ and consequently IE y are func-

o
tionals of the allocation of search effort [zj], as well as functions of the prior prob-

abilities, pj, and the set of detection parameters, «, .
-7-

}

NP N Ll ot i

oo T




T g T R

A T
5

\
§
0
.
7
i
b
®
I

i

ot LR A

We will eventually wish to investigate the extrema of IE’ but HE {s more convenient

to work with, We note, therefore, that because of the minus sign in eq, 2.20, a
maximum of HE will mean a minimum of IE’ and vice versa,

Throughout this paper, we will discuss the ensemble average mutual information,
IE and the conditional entropy of X given Y --- HE & H(X| Y) --- almost interchange-

ably, The reader should therefore bear their relationship (eq. 2.20) in mind as he
proceeds,

An alternative approach is to consider the self-entropy of the posterior ensemble,
If detection does not occur, posterior probabilities p! are as glven by eq. 2.50r 2,7;

]

we can, therefore, define a posterior self-entropy, conditioned on nondetection of the
target, as:

J
. _Eips in o} (2.21)
£ (05 Do) 1n (g D
= - R ¢ n af < b
fm <CPJ k=lpk) <CP) E=lw2>
J
= [_su; @, 1n oy * <2,}: cpk) ln<f€ °‘°JL>] /mzlqom (2.22)

Conversely, if a detection occurs (and by our assumption there are no false detec-
tions) eq. 2.4 holds for the posterior distribution, and the posterior entropy, condi-
tioned on detection in any k& J, 1s:

H =-p! Inp! - ¥ pl} ln p! (2,23)
D k k TR j j
= =1l lnl - (J=1) 01ln 0= 0 . (2.24)

By computing these two conditional entropies with the appropriate probabilities of
occurrence, we can obtain the expected entropy of the posterior ensemble:

H, = P, H,L + P H
E DD ND "'ND (2.25)

= P H + (l"PD) H

DD ND °

-8-

T O T P T S L A R R R T T B R LR E I N N i mmAr e e h e s e ek ket ARl ULV A

é
!
1
)
%
i
!
!
i
)
{
4




e

Using equations 2,9, 2,22, and 2,24, we find an expression for HF that is identical

| to eq. 2,19, The two approaches are thus equivalent, and the expected entropy, HE )

_ defined in terms of the expectation over the posterior distribution, is the same as that

b . arising from computing the average mutual information between the two ensembles., The
' latter i{s the more fundamental approach, however; it should be followed in more complex
cases such as those involving false alarms.,

Having defined our basic terms, we can now return to the references to see what,
, in fact, the previous authors have discussed, None of those authors recognized explicitly
: the possibilities for confusion arising from the existence of various information and
' entropy values. Each, however, was consistent in doing calculations with the specific
value he felt to be appropriate, Both Mela and Pollock used IE. Richardson did his cal-
l culation with HE and inferred max IE bused on min HE; despite the consistency of his

calculations, he did not draw a careful enough distinction between HE and HND in

presenting his conclusions. Barker's theorems refer to HND .

Because Mela and Barker were discussing different quantities, no inference of
direct contradiction can immediately be drawn., The ramifications of their findings
will now be discussed,

-\
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3. THE EXAMPLES CITED BY MELA AND POLLOCK

The examples devised by Mela and Pollock have two features in common: Both
consider discrete looks only, and both choose the total number of looks to be small--pno
more than the number of search cells, J . They differ in that Mela considers situations
in which both the prior probabilities and the conditional detection probabilities are
identical in all search cells; Pollock, on the other hand, treats the case in which both prior
probabilities and conditional detection probabilities vary, Tables 1-3 list the particulars
of their examples, expressed in the notation of this paper.

TABLE 1

MELA'S FIRST EXAMPLE

SEARCH

POLICY ’p Ig = Hy - Hg
(1,1) 5% .347

The starred entries in the tables indicate the respective maxima of PD and IE for

the various search policies, It is obvious that the same policy leads to maxima of PD
and IE in Mela's second example, and that different policies are required to maximize

PD and IE in Mela's first example and in Pollock's example. From this it is self-evident

that a given search policy does not always maximize both detection probability and inform-
ation galn at the same time.

What is not self-evident -~ yet is often asserted -~ is that this fact further implies

that there 1s no necessary connection between the extrema of PD and IE . As we show

below, this assertion is, in fact, false, The existence of counterexamples, based on a
small number of policy options and a small amount of search effort, shows that the
connection between the extrema of PD and IE is not universal, In a wide range of

-10-
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circumstances, however, the extrema of PD
search policies.,

and IE do indeed depend on identical

TABLE 2

MELA'S SECOND EXAMPLE

J = 3

i

pl - Pz - p3 = 1/3;

SEARCH ou

POLICY ) Ig = Hy = Hy

(1,1,1) L5¥ .549*

(2’1-'0) 0417 u54l

(3'0'0) 0292 |478
TABLE 3

POLLOCK'S EXAMPLE

J

3

'

pl = .1, p2 = .3y P3 = 63

G, = + =, Gy = 511,

SEARCH p
POLICY i
(1,0,0) 1
(0,1,0) .12
(0,0,1) .18%

-11-
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We examine these first by relaxing the limitation of a small amount of search effort

and by examining PD and IE as surfaces in a (J-1)-dimensional search allocation

space. Although Mela and Pollock do not deal with HND' we shall examine that quantity

numerically also, as a basis for analysis relating to Barker's woik.

For Mela's first example, we consider a large number of discrete looks, C, allocated

between the two cells; m looks are applied in cell 1, and C-m 1incell 2, We then
calculate PD' HND’ and HE ag functions of m for O <m =C, Analytically:

Pyo=1-[2"+ 2~ (C=m)q /5

Hyp

wopr2™™ 4 27 (G g o=l g 2y /2]

m -(C"m)}

{((m+1)27" + (C-m + 1)2

Hy = (r2™ «+ 2-(C—m)]/2} o [27™ 2-(C-m)]

(3.3)

# [0 2)72] » [m2™™ 4+ (Cmm)2™ (C~M)y

These quantities are plotted in figures 1-3 for the case C=30, H is plotted on

ND

a linear scale (figure 2); P.. and “E are plotted logarithmically, as -log (l-PD) and

D
log HE, respectively (figures 1 and 3).

The obvious content of figures 1-3 and thelr supporting computations is that each

of the three quantities -- PD' HND' and HF == hag a maximum at the same position,

m=C/2=15. Equal allocation of search effort to the two cells produces the maximum
detection probability, in keeping with Mela's finding for C=2, and the maximum value

of HND as predicted by Barker's first theorem, The surprising finding is that the

expected information gain, IE

search effort. Though thls is consistent with Mela's calculation, it could not be
anticipated on the basis of previously published results.

, shows a minimum (max HE) for equal allocation of

-12a
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FIG. 1: MELA’S FIRST EXAMPLE — DETECTION PROBABILITY
vs. SEARCH ALLOCATION
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We use a similar approach to Mela's second example, with £ looks allocated to
the first cell, m looks to the second, and C-2-m to the third, The expressions for
PD {4,n), HND (¢£,m), and ”E (4, m) are completely analogous to those of equations

3.1 = 3.3 (but too unwieldly to reproduce here), Figures 4 - 6 show the three=-dimensional

plots of PD' Hnd’ and HE’ for C=30, 0<m, £%30, 0=sm+4% 30, As before, PD and HE

are plotted logarithmically; the HND scale is linear.

Figures 4 - 6 give a general idea of the shape of the surfaces, The perspective of
the figures is so oblique, however, that precise conclusions must rest on the back-up
computations, These say that the uniform search allocation (10, 10, 10) produces the
maximum of PD and HND' and the minimum of HE (maximum IE). The maxima of
PD and HND are both local and global maxima, But the minimum of HE s a local
minimum only, Smaller values occur on the boundarles, at (15, 15, 0), (15, 0, 15),
and (0, 15, 15), Again, these findings are consistent with Mela's C=3 case and with '
Barker's theorem, But they are significantly different from Mela's first example, in
that the uniform allocation now produces a maximum information gain rather than a
minimum and that this maximum is relative, not ahsolute,

Pollock's example is modified slightly here for graphical presentation. The

essence of Pollock's basic example is the variation of both @ and P from cell to

cell, To achieve extreme variation from cell to cell, Pollock chooses a value of 1
for qy» the conditional detection probability in the first cell. The assumption q 1= 1

is equivalent to o =+ ® {n our notation, This has the unfortunate effect of introducing
a singularity into our formalism, because, in computing ¥, » Weare faced with the
fact that: _

lim lim p,e _QJ‘Z'LI A lim  lim pje 1% .

S Pt 2,0 2,70 aq-e

To avold this singularity, we take q = .99, which implies @ = 4,605, This

constitutes "Pollock’s Example-Modified, " which is presented {n figures 7 = 9, in |
a format comparahle to that of Mela's second example. The effect of the cell-to~cell
variation 1s preserved by the modified example, while the added complications of the w
singularity are circumvented,

As we shall see in a later section, the cell-to-cell variation of either @ or p,

will destroy the symmetry of the surfaces in ( 4m) space, Variation of @ alone will

-16~-
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displace the relative locations of the stationary points of PD, H, ., and HE’ and can

ND
in fact change the whole character of the surface of HE.

These points are not all obvious from figures 7 - 9, It is clear that the symmetry
has been destroyed in all three figures. HE no longer has a local extremum within the
surface, A saddle point appears at (2, 10, 18), but the extreme values of HE occur
at edg points, PD and HND retain local maxima, at (2, 11, 17) and (1, 11, 18),
respectively, i .

The different positions for the maxima of ‘?D and HND could be inferred from

Barker's second theorem; the different positions for the maximum of P_ and the mini-

D

mum of H_. are consistent with Pollock's findings. Dut the totally different character

E
of the HE surface (a saddle puint in place of a local extremum) could not have been

anticipated rrom publighed work,

The numerical experiments presented in this secticn were designed to be suggestive,
not definitive, and to point the way to fruitful lines of analysis. What the experiments have
suggested can be summarized concisely:

a, When P and @ are the same for all search cells:

0 PD’ HND’ and HE (or IE) al) have local extrema at a common point,
e The local extrema of PD and HND are maxima.,

e The local extremum of “E may be either a maximum or a minimum.,

, - sf , I
e The local maxima of PD and ILJD

local extremum of HE‘ s not necessarily a global extremum,

are also global maxima, but the

b, Whenthe P, and @ differ from cell to cell:

* HE

* PD and HND have local maxima, The positions of their respective

maxima are close, hut not identical,

does not necessarily have a local extremum.,

The next section of this paper consists of analvsis based on these observations,

-
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4, ANALYSIS--LARGE SEARCH EFFORT

In this section we pursue analytically some of the ideas suggested in the previous
section by the numerical extension of the Mela and Pollock examples to the limit of
large search effort, The mathematical framework is that established {n section 2, We
take the three finctionals of the search allocation [zj] : PD’ defined in eq. 2.9; HND’
defined in eq. 2.22; and HE, defined in eq. 2.19, We seek to determine the extrema of
these functionals, subject to the constraint on total search effort (eq., 2.1).

We defer temporarily the precise specification of a "large amount of search effort."
We assert that for C > C*, for some C", the conventional calculus of variation technique
using Lagrange multipliers to incorporate constraints is applicable and will lead us to
the desired extrema. The determination of C* in terms of the p, and «a, will follow

J J
as part of the analysis,
First, it is important to note that the three quantities PD’ HND’ and HE depend

on only two independent functionals of the Czj} !

J
- 4,1) :
Az 2ogy(z,) lnop,(2,) (
%3 3%
and
B= [Jo.lz,) . 4,2
Specifically:
PD = 1 - B (4.3)
HND = ln B - A/B (4.4)
HE = B ln B - A . (405)

=24 =
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We can obtain some general insights using this simplified representation, Let the
operator & signify constrained variation; that is, for a function f, $f refers to the set

J
of ] quantities af/azj. subjectto C = 3 zj . With this notation:
J=1

6P, = -5B

D (4.6)
¢Hyy = 8A(-(1/B)) + &B [(1/3) + (A/Bz)] (4.7)
8Hp = =bA + §B(1 + ln B) . (4.8)

From this set of equations we see that if there is an allocation of search effort [zj"'} )
such that %A and 6B are both zero, then all three functionals PD' HND’ and HE have
extrema for that particular allocation {zj"'] . Conversely, if 6A and 5B are not

simultaneously equal to zero, then extrema of the three functionals will occur for different
search allocations, given respectively by:

§B = 0 (4.9)
5A = §B(Ll + (A/B)): (8A # &B # 0) (4.10)
5A = §B(L + 1ln B): (8A # 6B # 0) . (4,11)

Returning to the specific functional form of A and B, we find that:

8A = (39 /32, ) (1 + In ®p) = A
(4.12)
= -aﬁpk(l + 1n mk) - A
forall k€ J . A is a Lagrange multiplier, Similarly:
BT T TR (4.13)

-25-
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If A and 6B are to be simultanecusly zero, we must have:

EXrv—

a1+ 1n @) = agpy(l + 1n gy (4,14) |

!

(4.15) ?

APy, = a0

k 'k 373 ;

for all j, k €], Eliminating Coj and Cpk between these equations, we obtain: i
i

j

a, =u, , for all j,keJ . (4.16) j‘

Thus, 8A and 6B are simultaneously zero only if a is the same for each of the j search
cells in J,

When all the «, are equal, eqs, 4.14 and 4,15 reduce to:

J

Py (1 + 1n ¢y) cpj(l + 1ln cpj) (4.17) '

and
®x =@y ¢ for all Jke T, (4,18) |

The only solution for these sets of equations is:

¢, = const = K , for all k € J . (4.19)

This equation cannot be satisfied for small values of the total search effort, C. By
requiring it to be satisfied, we can determine C¥*, the lower bound on the search effort
for which this method of analysis is valid. Using the definition of wk, (eq. 2.6), we
infer from eq. 4.19:

=X .2
1 2%2 _ =y . (4,20)

-26~
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In this formulation we have assumed that the ;:uj values are arranged in nonincreasing

. order, so that p = M}n {pj} . From eq. 4,20, with @ = o

3 (4.21)
‘ = ; j = 1,2 == J-1 4,21
- 2y (1/a) 1n (pj/PJ) ]

ﬁ; or:

.l i s l

For C >C*, eq. 4.19, leads to

z

L = (1/a) 1n (p/K) . (4.23)

: Further, because of the constraint on the 2y this constant K can be evaluated in

( terms of the total search effort; thus:

) J
‘( z, = (c/3) + (1l/a) [ln Py - (L/3) = 1n pj] (4.24)

‘ This a well known result, closely related to that originally derived by Koopman,
(reference 8) and expounded in Stone (reference 9). The optimum allocations for Mela's
two examples follow from this trivially,

E' We may now summarize these results in two theorcms:

Theorem I: For the assumptions of our model (section 2,1) with exponential detec-
‘- tion functions and with C >C*, the allocation of search effort {zl':] that leads to an

extremum of PD also leads to an extremum of H'ND only if the o values are the same

for all k € J. (This is the alternative statement of one of Barker's results,)

Theorem II: For the assumptions of our model (section 2, 1) with exponential detec~
tion functions and with C >C*, the allocation of search effort {z;] that leads to an
extremum of PD also leads to an extremum of HE only if the o values are the same
for all k€ J, (New result,)

The allocation [zﬁ} that leads to simultaneous extrema of all three functionals PD'

H D’ and H

N is given by eq. 4.24,

E

e et e e
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We must now find out whether the extrema thus determined are maxima or minima,
To do this, we examine the second derivatives, Let the second constrained variation,

denoted by 62f, be defined by the quadratic form }: cicj (azf/a z, 3z ), subjecttn

i !
c=Yz .
=

To compute 62f. it is more convenient to include the constraint explicitly, rather
than use the Lagrange multiplier technique. This is done by noting that only J-1 of the
z, are independent. The first J-1 of the ¢, are taken as explicit functions of their

j J ]-1
respective zJ. and the remaining cpJ is taken as a functionof C - Z zJ « Incom-=
j=1

puting derivatives with respect to a specific zk, therefore, both cok and coJ must be

considered.

With this convention, the various second partial derivatives can be written, after
some manipulation, as;

2 2 2 2
3" Pp/azy = - [?Hmk * OLJ“’J]
(4.25)
2 2
0 Pp/ozydzy = = G50y
2 2 _ o N2 2
" 2 2
- (1/ & cpj) (a0 + 3% 5)
) (4.26)
2 2 J g 7,9
3%Hyp /32,32y = = ajey 1+ ooy - (jf;lq:j on cpj)/(j/:lcpj) /(j?_;)lcpj)

* (= o *ageg) (- ape +oase,)

«28-
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2 2

2 2 _ 2 - _
d HE/azk = ~ (e * o) + (1/Z§cpj) (Gpey = ¢597)
-0,2 (ln - 1n 3 )
k%k Px = Py

2 - s

J
2 . .2 - -
d HE/azkaz2 = aJwJ[} ton @y Wt(;zle)]

+ o (maggy + Ugpg) (g, + g4

(4.27)

These are the second variations evaluated at the extrema, where the relationships
obtained by equating the first variation to zero have been used to simplify the expressions,

especially in the case of H

(4.28)

(4.29)

ND'
For the case discussed above, aj = o and Ct} = K for all j, the second variations
simplify to:

2 - _. 2
) PD = =¢q KD

2 2

6 Hyp - {(a™)/J)D

520, = ~a?K(1 - 1n 3)D .

D is the residual quadratic form:

(4.30)
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Noting that K, by definition, is a positive constant hetween zero and one, we have:

Theorem III: For the assumptions of our inodel (section (2.1)) with exponential
detection functions, with C >C* and all aJ_ equal, the extrema of PD and HND are

always maxima. The extremum of HE is a maximum for }=2 and a minimum for all
I>2,

This result clarifies a great deal of the mystery and confusion resulting from Mela's
paper. His two cases, J=2 and J=3, gave contradictory indications about HE and its
relation to PD, and produced the false impression that there was no connection between

detection probability and information gain IE (Mela's IF isequal to (In J = HE) in our

terminology). What we have shown here is that for the important case in which the
conditional detection probability is uniform throughout the search area, optimizing the
detection probability {s identical with optimizing the change in the amount of information.
Moreover, Inall instances except the anomalous case J=2, maximizing the detection
probability is identical with maximizing the information gain,

The procedures leading to Theorems I-IlI guarantee only that we have found local
extrema of the expected entropy surface. To complete the analysis, we must furthex
investigate:

- Whether there are additional stationary points on the HE surface,

- Whether there are in general points on the boundaries of the surface for
which the value of HE exceeds the value at the local extremum, as

suggested by the numerical results in section 3.

We note first the values of the pertinent quantities at their local stationary points.
Using the solution (eq. 4.24), we find that:

J
Max [P } = 1 - exp [Ind + (1/J) 2 ln pi] exp (=aC/J) (4.31)

J
D i=1

Max {Hy,} = 1nd

I

Extr {Hp] = 1nJd [exp(lnd + (1/J) S 1ln p;)] exp(-aC/J) .(4.32)
i=1
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For equal prior probabilities, p1 = 1/], these reduce to:

Max [{P.} = 1 = exp(-aC/J)

DI

Max {HND] = 1nJ

Extr (I_} = H, = Extr {H

g} o = I (1 = exp(=aC/J))

o)

To check for the existence of other stationary points on the H

to eq, 4,11, That equation can be put in the form:

Gy (1n @y = 1n :él 0y) = A
or, by further manipulation:
“Yelny, =G
where
J
Yk = cpk/ j:l @y G = \/a j-.;Jl Py
]
The Y, must satisfy 3 Ko 1, and, for a solution to exist:

k=1

0<G =z 1l/e ,

as can be seen from figure 10,

(4.33)

(4.,34)

(4.35)

E surface, we return

(4,36)

(4.37)

(4.38)

(4.39)

The nature of the solutions can be argued from the shape of the curve in figure 10,

Assume, first, that G = 1/e , Then, Yk = 1/e, and 3 Yk = J/e, which {8 less than
k=1

J

1 for J=2, and greater than 1 for ] greater than 2, To drive Z 'Yk toward 1, we
k=1

decrease G. For J=2, the points must move down the right branch of the curve,

-31-

oy

e ———— — e e e s




6 — Equation system:
G=.TrdnTk: keJ
J
: p> Tk=1
4 k=1
\-
r:. f
»,-. G 1
E- ;
1‘. |
?
. 4
: i
: |
‘ :
§ - X
: !
, !
. ] ] *
: 6 .8 1.0 .
g :
. FIG. 10: GRAPHICAL ILLUSTRATION OF
.' EQUATIONS 4.37 AND 4.38
:
?’
:
)
: :
3 ]
-
-
= -
S
' |




W — T ———

TN T T T

Increasing Y

sent the solutions ®

K’ until Yk =1/2, G=1/2 1n 2, For all J > 2, the points must move down

the lcft branch of the curve, decreasing Y, , until Yk =1/], G =(In])/]. These repre-

k
= K, already discussed in equation 4.19 and those which follow,

k
If, however, we continue to decrease G, with all Yk on the left branch of the curve,
] J
2 Yk approaches zero in such a way that for some G*, we can again make Z Yk = 2
k=1 k=1

by switching any one of the ¥_ to the right branch of the curve, The conditicn for this is

k

© =Kl1; ¢ =K2; j#k €], for any specific k., Because of the shape of the curve, Yk ~1,

k b

Y, ~ 0, and thuz K1 >>K2,

J
Let K1 =pK2, and n=]-1, Then, from eq, 4.37:

(u/u+n)] én [u/(u+n)] = [1/(u+n)] ¢on [ 1/ (u+n)] (4.40)

The second equation for determining the two free parameters, Kl and K2, is the
constraint on total search effort, Using the definitions of the cpk :

J

aC/3 = (1/3) [kEJl n Py = In u]- tn K2 . (4.41)

Eq. 4.40 cannot be solved for p(u), but it can be solved for n(u) :
n(p) = -y +exp [W&w/w-07 . (4,42)
This equation is plotted in figure 11, with lnp as a function of n. For large p

n~oéu+ (L) [Cm ;4)2/2 +onou] + O(unz) . (4,43)

For n28(J29), n~1ny, p~en within a few percent of accuracy, It is important
to note from figure 11 that this type of solution exists only for n >e=-1(]J >e). This means
that for J= 2, the only solution is the one with both Y points on the right branch of the
curve 10; for J 23, however, the two classes of solutions exist: a single solution (Type 1)

=33~
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FIG. 11: GRAPHICAL ILLUSTRATION OF EQUATION 4 .42
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with all ¥ points on the left branch of figure 10, and J solutions (Type 2) with any one
of the J v points on the right branch of the curve and the other J-1 on the left branch,

Thera is an additional condition on the amount of search effort, C, however, Just
as there was a C* threshold for the existence of the Type 1 soluticn, there are J
additional thresholds for the appearance of each Type 2 solution. This is best seen
when the gearch allocatior. solutions in the asymptotic limit are calculated:
J

2, v (C/3) + (1/a) 6apy = (M/ad) T i p, = (3-1)%/a3  (4.40)
k = k Pyt %
J
24 2 (C/3) + (1/a) on Py ~ (L/ad) Z i py, + (I=1)/a7 (4.45)
L=1
Since the zZ, 20, eq. 4.44 provides the threshold criteria for C:
J
act ¥ (-1 + T lnp, - I lnp
i=1 (4,46)

k = l . L] [ J
This, together with eq. 4,22, provides the values of C for which each of the J+1
stationary points of the HE surface first appears., In the case of equal prior prohabilities,
C*=0 from (4.22), and @ C# equals (-1)° for all k,

Havi g found the approximate locations of the ] additional stationary points of the

HE surface, we now tind out what type of stationary points they are. Usingeq. 4.2/,

we find:

2

2 2

for those coordinates such that Cok = tPJ = K2, Thus, for ]>2, we have a minimum of

HE in J-1 of the coordinates, For the remaining case, Cpk = Kl, cpj = K2,

2 2 2
= e - 2 b -1
3 Hy/d2y a“K2 [ (u+l) (w22 WY/ (u=1) (4.48)

= (u=1)2 exp(-(u o )/ (u=1))]
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where eq. 4.42 has been used to eliminate n, Direct calculation for 1 sp < ® ghows
that 62HE 20 for all p, This result seems to suggest, paradoxically, that all J+1 p
stationary points are minima, ‘
To resolve this apparent paradox, we must be considerably more careful with our
coordinates. We seek, in particular, at least one linear combination of the zi. such

that its second derivative has the opposite sign at the stationary point,

Let us introduce a variabhle %, 0 <x £1, such that:

J

I

.: 2, = (1-x) [(C/J) + (l/a) tnop = (1/ad) lf____“ll n pl] (4.49)

J

. zy = [(€/3) + (1/a) @ py = (1/ad) D iy

¢ 2=l (4.50)

jl + (x/(J=-1)) [(C/J) + (l/a) Py ~ (l/ad) 221 in Py

k J#Aked.,

( For ease of nutation, define:

~: 3

Bp/e = (/D) + (1/e) gy - (M/ad) T mpy - (4.51)

Then equations 4.49 and 4,50 become: §
: ] i
: z, = (1-x) (8, /%) _ (4.52) i
i 1
;- 2y = (By/a) + (X/(I-100G /) . (4.53) |
: By introducing this parameter, we achieve several results. Note that when x=0:

'7 2, = By /% 2y = aj/a . (4.54)
\
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These are the solutions for optimal detection search from eq. 4.24, When x=1, zk=0.
and:
J-1
z, = C/(J=1) + (1/a) tn p; = (L/a(J-1)) 2 mp
3 3 LAk 2
(4.55)

The latter are recognized as the optimal detection search allocations in J-1 cells, when
cell k is not searched. These represent the class of whereabout searches, whose aim
is to locate an object by searching all cells but one, then guessing the position on the
basis of the search outcome. Of this class, the one for which pk = Max (pj) in the

unsearched cell is called the "optimal whereabouts search,'" This search maximizes the
probability of correctly guessing the object's location (reference 10),

Finally, for x = (]-l)Z/JBk we find:

2
2, = B /e - (=123 (4.56)

2y = Bj/a + (J=1)/ad . (4.57)

These are identical to the asymptotic forms of the positions of the stationary points of the
HE surface, determined in equations 4,44 and 4.45,

Thus, by use of the parameter x, we have introduced a set of ] hyperplanes, Each
of these hyperplanes connects (a) the Type 1 stationaxry point corresponding to the allo-
cation for optimal detection search; (b) one of the ] Type 2 stationary points; and
(c) one of the ] boundary points corresponding to a whereabouts search, We now investi-
gate the curve formed by intersection of these ] hyperplanes with the H_ surface,

E
Using equations 4,52 and 4,53, we can put l-lF in this form:
:’I ) L ( ) ( /n)]
= - -(1/a3) 2 inp. -~ 3. % [exp(B, x)=-exp (-8, %xX/n
Hp (exp [ (Cc/T)=(1/ad) o P,L] Bk P8y k

(4.58)
+ [exp(B,x) + n exp (-, x/n)] in [exp(Byx) + n eXP('ka/n)]} .
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By computing dHE/dx = 0, it can be shown that an equation identical to eq, 4.42 is
obtained, with p now identified as:

exp [(akx) (n+l)/n] . (4.59)

Its solution is again the curve shown in figure 11, and the asymptotic form leads to:

X = n2/(n+l)(Bk) . (4.60)

This is indeed the position of the Type 2 stationary point as determined earlier,

The second derivative of HE at the stationary point is:

d2}~IE/dx2 ~ [ nw)/ (u=1) + uz exp(=(u ta )/ (u=1)]-(u+l)] . (4.61)

In contrast to eq, 4,48, this s negative for all 1 <pu<® , Thus, along the curves
generated by the | hyperplanes, HE has a max at the stationary point, and we may

safely describe the ] Type 2 stationary points as saddle points.
Since the entropy has a max at the type 2 stationary point along the x path, and
then turns downward again, we may ask whether it later reaches a value below the

minimum at the optimal detection search allocation. In fact, it does, if C is large
enough. To find this threshold of C , we simply equate HF(O) = HE( 1), ylelding:

Jon J = [exp(Bk) +n exp(-ﬁk/n)] on [exp(Bk) +n exp(-Bk/n)]
(4,62)

- Bylexp(3)) - exp(-g,/m)] .

In the dual limit ] >> 1, Bk >> ln (J-1), this equation can be solved approximately:

J
k Lo "

The minimum of this over the set ] is:

MIN

Y

EQ )

\

7

aC + J(J-1) InJ . (4.64)

L

- T
. 1ln Py J 1ln PuIN
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For any C > ClI\E/[(;I\]’ there is a whereabouts search that yields more expected information
than does the optimal detection search,
We can now give a complete description of the expected information surface in allo~
cation space, with the total search effort C as a parameter:
1. For C <C* (eq. 4,22), IE has no stationary points, The e¢xtreme values
of IE occur on the boundaries,
2, For C*<_C <Cl"é (eq. 4.46), and for J>2, IE has only one stationary

point, That point is both relative and absolute maximum, and it occurs at the allocation
of search effort corresponding to optimal detection search,

3. As C increases through the series Cl': (k=1, 2, == ]), ] new stationary
points appear on the IE surface, All ] are saddle points, whose coordinates are given

approximately by equations 4.44 and 4.45, The one maximum point remains both relative
and absolute maximum,

4, When C reaches ngN (eq. 4.64), the relative maximum is no longer the
absolute maximum,. The new absolute maximum of IE occurs for the search allocation

corresponding to the optimal whereabouts search, As C increases still further, new '
border regions are added to the surface, for which IE exceeds the local maximum,

The optimal whereabouts search allocation remains the absolute maximum of the surface,
however,

Finally, it is interesting to compute the values of P

D
Cg{gq. where the crossover occurs,

These are, for optimal detection search allocation:

and of the expected information

at

P g2 exp(~-J tn J) ; (4.65)

p = 1~ Puax

for optimal whereabouts search allocation:

P.= (1 -

D )

Puax’ ~ Pmax (J-1) exp(-J tn J) ; (4.66)
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and, for the information in either case:

- 2 -
(Iyax = Tp)/Tyax = Hp/Hg = (Pyax/H) I o1 T exp (=T on J) . (4.67) 1
From these it can be seen that for even modest J(J =5, say) PD is extremely close to

1, and LE‘, is extremely close to I'MAX’ by the time the crossover occurs. %

We return now to the case in which the @, are not equal, This corresponds to
Pollock's example, In this case, the allocations {zj] that determine the extrema of

PD. HND' and H_, are given by the solutions of equations 4,9 - 4.11, They are, of

E
course, not identical,

Using the Lagrange multiplier notation, we obtain the following equations, For
6p_=0:
D

Q)P = Np ¢ all k ¢ J ; (4.68)
6 = . I3
for HND 0: Q
' 2
GxPx [‘1“ oy )/ ? ”j] - (23‘ Py Ln “"j>/<zj “’j> =Anp b (4.69)
=0 e i
for 6HE- 0:

Gty [ln Py ln':;cpj] =g o (4.70) 3

The solution to eq. 4.68 is straightforward and well known:

. ;{ J ‘{ (4.71)
zﬁ =( on c‘kpk)/“k -[(j“:l( on ajpj)/aj)/ak j‘:l(l/aj)]+ C/o.k j%l(l/aj)

Equations 4,69 and 4.70 are transcendental equations and appear more formidable,

but, tn point of fact, only eq. 4,70 is so formidable, If we divide eq, 4,69 by o and

-40-
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then sum on the index k, we find that;

SRRtV [( S ) 5 [(i > )/
Mg O o) =l Do tne ) Dol -l Do Doy
ND 2y < k=1 K KD j] ka1 K gm17d ¥,
(4.72)

J

(jélmj>2] "0

Since the l/ozk are all nonzero quantities of the same sign, we must have:

Ayp = 0 - (4.73)
Putting this back into eq. 4.69, we get a much simplified equation., Since akcok is not
zero, we must have:
Jd J
ln = (5 ln ) = . 4,74
Py (j=lcpj ®y// j:lcpj (4.74)

Because the right side is independent of k, the only solution to this set of equations is:

P = const = K , for all k ¢ J . (4.75)
This {8 {dentical in form to the result found in the case of equal @ . But the solution for
zl’: is somewhat different:
*ND 3 J
z = (¢ p.l)/a -(.;J(an)/a..)/a 2 (L/ag) | +
k k k =1 3 j k j=1 3
(4.76)
J
Clay, & (M/ay)
The difference between the solutions (equations 4,71 and 4.76) is a function of the ak
ouly, and does not depend on the prior probabilities Py Specifically:
A, = 2P L ¥ND (l/a,) [P/n a ("g‘ (o as)/a )/g‘ (1/a )] 4.77)
=5 - = - od Y bad 3 i
k k k k k j=1 3 j jal 3
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Note that when all ak are equal, both zkp and szD reduce to Zk (eq. 4.24), and

the Ak E 0 forall k.

Equations 4,71 and 4. 76 can be used to calculate the optimum allocation of search
effort in Pollock's modified example, The analytic solutions are, for P_:

D
z, = 1,497
22 = 11,334
2z, = 17,169
and, for HND:
zl = 996
z2 = 11,126
23 = 17,878 .,

These values should be compared with those found in section 3 to be the maximum
points on the integer grids: (2, 11, 17)and (1, 11, 18), respectively.

It is significant that the analytically determined maxima of PD and HND are fairly
close, With @, large, Pollock's example represents & major departure from a uniform
probability of conditional detection, Nevertheless, the maxima show only a small dis-

placement from each other, although they show a large displacement from their locations
when all the aj values are equal., (A representative example, using Pollock's pj. but

L= 8.01, z, = 10,19, z, = 11,20), Thus, in

will lead to search allocation nearly equal to that

taking o i

practical situations, optimizing H

= o= ,693 forall j, vields =z

ND
required for optimum detection probhability,

These solutions, too, are valld for large search efforts only, The thresholds for
their validity are determined from equations 4,68 and 4,75, using arguments analogous
to those previously given, The results are, for PD:

J J
w3 3 (4.78)
C jL;l( Ca ujpj)/aj (j‘:l(l/aj)) tn [o.p]min
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and, for HND: i
: e CRCA J
[ C = j‘:l< én pj)/aj - (j‘;l(l/aj)> on pmin (4.79>

Of greater theoretical significance than the 2z are the relative fractions of the

‘ k
: : total search effort assigned to each cell: '

i, i 2 At T L e T il S e Db 3

Ck = Z/C
: These are trivally determined from equations 4,71 and 4,76:
P = (10 Sy, ) + (/0 [ aypy) /a %
¢k ~ k g2y %Py’ /o
(4.80)
( J J | :
; - | 2 (0 oayps)/a >/a 2 (l/&-)] .
. ) 'j=l j 3 j k j'—"l J . ;i
P
0 (1 5y )) + (1/) [ p)/a
e = \Mo 2 Yy : Py ) /% .
- (4.81) )
r !
-(g(onp)/u )/a g)(l/a.)] :.
j=1 3 p) k j=1 J C
These clearly converge to the same asymptotic limitas C = =
J
*p *ND e
¢ = (e = Lo, 2 (/o)
ke k A (4.82)

\ No simple strategem is available for dealing with equation (4,70), and closed-form
;' solutlons for the optimum search allocation do not appear possible in the case of HE .

Some limited statements can be made about the nature of the solutions, however., If we ) {
eliminate XE from any two equations {n eq. 4.70, and use Ci rather than z, , we get;




TR TR T
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3

[O‘ipi exp(—u,i(;ic)]cn [(pi exp(-uigic)>/.‘\__) Py exp(—aj(;jc)]

=1
3 (4.83)
= [akpk exp(—akgkC)]Pm [(pk exp(-akgkc)> j?ilpj exp (=a 4 jC)] .

This can be further manipulated into the form: 3

j=1

(ai/ak) = ’[(pi/pk) exp (—C (akck—qici))] » on [E (Pj/Pk)exp (‘C (ajCj-aka))]

(4.84)

J .
/ tn [j‘;l (pj/pi> exp ("c (ngj avi\,i)>]{ .

Since the left side of this equation s independent of C, the right side must be, as
well, if the equation is to remain valid in the asymptotic limit C = ®,

Because the a values are given and independent of C and because, by definition,
0s Ci <1, then o Cl , must be O(CO) in its leading time, The most general form that

satisfies these requirements is:

J
This renders eq. 4.47 independent of C, to all oxders, but still makes § of order

CO. The functions 1’1 are functions of the ai, and p; they must satisfy:

J
3
p;, exp(-f,) . . exp(=f.) N -f - (4.86)
[ai i i] n [(p_]_ xp 1 >/j=lpj exp( j)] K
and
J‘ (4.87)
e (£./a.) =0
J=1 373




i An explicit solution for the fi of eq, 4.86 is no more feasible than an explicit solution !

AL

for the coi of eq. 4.70. But, by the artifice of eq. 4,85, we have separated out the
asymptotic part of the solution. This leads to the very important Theorem IV;

Theorem IV: Under the assumptions of section 2.1, the allocations of the fraction
of search effort among the ] search cells that produce stationary points of PD' H

ND’ 3
and HE have a common asymptotic limit as the amount of search effort C approaches
infinity, That limit is:

LT S SR R T T R

J 4
-] = $ 1 3
i The final topic to address in this section is whether the extrema are maxima or

1
P minima in the case of differing aj . This is easily answered in the case of PD and j
¥ Hy . Combining equations 4.25 and 4.68, we get: :

2 - 4,89
6 Py ~ AP(ak+aJ) for all ke J . ( )

"3 )‘P' ak. and aJ are all positive, and PD’ therefore, always has a maximum,

Similarly, when we combine equations 4,26 and 4,75:

; 2., 2 2 2 _ 2 )
: 6 “Hyp ~ -2akaJ/J - lay *+ aj) [ (1/3) (1/3%)] (4.90)

This is always negative for positive integer J; therefore, HND' too, always has a
maximum,

No general rule appears appropriate for application to 62HE. Though analytical ;

results are not forthcoming, we have already seen in the numerical examples that :

maxima, minima, and saddle points are all possible as the stationary points of the HE
! surface,
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5., ANALYSIS--INFINITESIMAL SEARCH EFFORT

We turn now to the vpposite limit, in which the total amount of search effort approaches
zero, Inparticular, we consider the casc in which an infinitesimal amount of search

effort Azk is applied in only one cell, k € J, We then apply the usual limiting processes
of calculus to compute the rates of change of P
in cell kl

D’ ”ND’ and HE as a result of searching

The quantities A and B, defined in equations 4.1 and 4,2 are, for searchina
single cell;

A = -Hg -(pk 1n pk)[l - exp(-oakAz.,‘:)]—cu.kAzkpk exp(-akAzk) .1

B=1-p [1=-exp(~anz)] (5.2)

where HO has been defined in eq, 2,17, When A and B are expanded to first order
in Azk and substituted in equations 4.3, 4.4, and 4.5, we obtain:

2
pD = (Azk)o,kpk + O(Azk)

(5.3)
Hyy = Hp + (82y)aypy (Hy + 1n py) (5.4)
2
+ 0(az))
) (5.5)
HE = I{O + Azk“kpk 1in Py :
Thence:
lim (PD-PO)/A'.=:k @ dPD/de = Py (5.6)
Az, 0
k
lim (HND_HO)/AZk = dHND/d?k = akpk(}lo + 1n pk) (5.7)
Az, 0O
k
lim (”1:“."”0)/Ak = dHE/dzk = 0y Py In pp . (5.8)
Azk—'o
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Our basic concerns will ..e with the magnitude of these rates of change, and with the
extreme vrlues of the magnitudes over the set J: we shall determine these extreme values.
First, however, snme observations about the signs are significant, Recalling that
0= e <@, and O Spk <] for all k € J, we note immediately that:

= ; a 5.9
dPD/dzk 0 11 ke J (5.9)

[ . (5‘10)
dHE/dzk < 0 all k € 4

The corresponding result for d!—IND/dzk is less obvious., However, the reader may

persuade himself by selected numerical examples that dI—lND/dzk can he either positive

or negative, Jepending on the set of the prior probabilitles p § and on the searched cell,
]

k. (Alternatively, we may note that Z (l/ak) dHND/dzk = 0, implying that the signs

k=1
of dHND/dzk are not the same for all k.

The observation concerning clPD/dzk is scarcely surprising. But those related to
the entropies are significant:

Theorem V: For any search operation conducted according to the assumptions
of section 2,1, the expected entropy never increases (and the expected information never
decreases), regardless of the cell chosen for search, The entropy that is conditioned on
nondetection of the target, however, may either increase or decrease, depending on local

conditions,

It 1s worth pointing out that the rates of change of PD and HE depend entirely on
local conditions, i.e,, on the prior probabi_llty pk in the cell being searched; the rate
of change of HND’ on the other hand, depends globally on the entire prior ens~rmble,
through HO. It is therefore conceivable that for two distinct prior ensembles, the rates
of change of HND could vary in both magnitude and sign, even though the individual cells
chosen for search in the two cases had identical prior probabilities,

We now determine whether the results obtained in section 4 still apply in the limit

Azk“‘ O. Specifically, does the allocation that maximizes PD also maximize HND and

produce an extremum (elther maximum or minimum) in HE?
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We have already noted that in the case in which the o, are different in different cells,

k
no results of useful generality were obtained. We therefore restrict ourselves to the case
a =a, all k€], and -~ for simpiicity in this section «~ let @ =1, Then, the rates of )

k

change for P , and }Il are;

-
-4
aj

o' Yxp

pk,pk(HO + 1n p)y and py 1n py

respectively,

Let us assume that the cells are numbered in order of nonincreasing magnitude of
pk: Py 2 p2 22 pJ 20, By this device, we make sure that infinitesimal search in

cell 1 will produce the highest rate of increase in PD’ and, hence, maximize PD in the

limit Az=0, We then investigate the extrema over the set | for the rates of change of

HND and HE'

fNp {
We noted earlier that the sign of dHND/de might be elther positive or negative,

depending on the prior ensemble and on the searched cell, k. This general observation
can be made somewhat more precise, Somc preliminary observations:

1, For a given prior ensemble, ”O {s a fixed positive constant,

2. The factor pk is monotonically nonincreasing with the index k because
of the assumed ordering, It isalways =0,

3. The factor ”O +In Py is monotunically nontncereasing with the index k
from some inittal value, and mav approach -« for a by that is small

cnough, Whether the maximum value of HO-I- In P is positive or

negative remains to be determined,

We shall later prove that the max of l-lO + In Py s in fact nonnegative for any prior

ensemble, Tor the moment, we assume that this is true and derive the consequences,

By the assumption, there is a range of k, 1 <k £ K «J, for which I~IO+ In pk =20,
Then, in this range, pk(”(') + In pk) is a pusitive, monotonically nonincreasing function

of k, bhecausc it is a product of two porsitive, monotonicully noninereasing functions of k.
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In this range:

; py(Hy + 1n pq) 2 Py (Hy + 1n Py} (5.11)

for 1 <k < K, Outside this range HO + In Py <0, and the monotonicity of the product

1s no longer assured, Since the product {s then negative, however, it is obviously less
ri- than pl(HO+ In pl). Thus, if P, hpk for any 1 <k <], then pl(HO+ in pl) =

pk(H0 + ln pk) for any 1 <k sJ .

Now we prove the agsumption, We need to show that for any prior distribution, there
is at least one pk such that HO + 1ln pk is nonnegative. This is easily done by noting

that:

J J
Hy + 00 by = j?.jlpj(- on py *in Py) = jZ;lpj (2nlpy/py)) + (5.12)

iy pk is Max pJ , then each term in the sum is nonnegative, and

]

Hy + o Py = 0 » (5.13)

One final comment about dHND/dzk' We have seen that, for the largest Py in],

dHND/dzk 2 (; in addition, for sufficiently small Py values, dHND/dzk"O- . This sort
of behavior suggests that for some intermediate value of Py dHND/dzk has a relative
minimum < 0 (which, in fact, is an absolute minimum, too), This is best illustrated by
a specific model,

i Consider a countably infinite set of search cells, in which the (ordered) prior
probabilities are:

p = (1-y) ¢, (5.14)

-]
Clearly Z pk = 1 when the sum converges (0 £y <1),
k=1
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This model is a useful tool for investipating some situations involving finite J,
General analytical results can be obtained with the infinite model, yet that mode! can

be made to approximate a finite model reasonably well by truncation of the series
L]

after J-1 terins and lumping all the remaining probability Z P together as the
k=]

Jth term, For Y <1/2, the total residual probability in (J,®) is less than the J-1

term, and the decreasing ordering is preserved.

For this model, with a_= a= 1, we can show that:

k
di n/dz, = (1/y) o v| exp(=k|en y|)[1 = k(l=y)] , (5.15)

This exprescion is positive for small k and negative for large k., The crossover
point is given by:

+
k' (y) = 1/(1l-y) (5.16)
which {8 monotonically increasing from 0 to ® as Y goes from 0O to 1, Thus, by
choice of the parameter Y, we con make an arbitrarily large number of cells have

positive values of dHN]{dzk .

Treating k as a continuous variable and differentlating, we find that:

a(dHND/dzk)/g}k =0 for k = k* , (5.17)

where!

K* (y) = 1/(L-y) + 1/(|ea v |) (5.18)
This can be shown to be a minimum of dHND/dzk . lLike k'}'(y), k*(v) ie also a monotoni-

cally increasing function of Y, golng from 1 to + % as Yy goes from 0 to 1", The

position of the minlmum can also be slituated at u_rhltr-irily large values of k, depending
on the choice of ¥, although clearly the choices of k (Y) and k™(Y) are not independent
of each other, '
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An analysis of the relative magnitudes over [k} of Py In Py is closely related to a

problem already solved by Browning (reference 11), Browning treats a slightly more
complicated case, in which the amounts of search effort are finite ("looks") rather than
infinitesimal, That makes his proofs more complex than the present case requires, but
it does not alter their validity or their relevance to the infinitesimal limit,

We shall simply state the necessary results with qualitative justifications. The
reader may consult Browning for analytical proofs.

We shall consider the rate of change of the expected information, rather than the
expected entropy: dIE/dzk = P, 1n Py 20, Figure 12 shows the function y(p)= -p Inp
in the domain 0 <p <1, This curve is asymmetrical, having a maximum at (l/e, 1/e).

J

We must visualize along this curve the set of points V) = y(pk). subject to 3" P = 1, and
k=1

to the ordering P 2 Py 2p3 2e - -2 pj z 0,
Browning has shown that the following cases should be distinguished:
1, 1l/e 2 Py In thie case all the ¥y areon the increasing part of the
curve y(p); therefore, the ordering of the Py guarantees the ordering of
the V! ylayzzyaz-..aykao. I
2, 1/e <Py In this case, which can still satisfy the constraint kgl Py = 1, ¥y

is on the decreasing segment of y(p); therefore, 2 2 Yy
3. Py <l/e <Py - This case is problematical and is best resolved by numerical

calculation.

Before turning to relevant calculations, we must resolve the question whether Ya could
be the largest of the Vi under any conditions. Reference to the figure shows this is
obviously not possible if Py £1/e , since then Vs < Yy On the other hand, if both Py
and p2 are 2 1/e , then the maximum value possible for p3 is (1-2/e) <1/e, attained
when Py=P,= 1/e. There again Vg <y1. Vo o Any increase in P, and P, above l/e
can occur only at w12 expense of Pa» which further decreases V3 at a rate faster than

either ¥, OF Y, because of the steeper slope for p <1/e. Thus, there are no conditions
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for which Yq = Max Y, we need therefore consider only cells 1 and 2 when allocating
k

gsearch effort to produce the maximum rate of information increase.

Figure 13 shows the relevant portion of the Py» Py plane, The boundary curves
J
are p, + p2 = 1 (the limiting case of ; pk = 1), P = p2 (the limiting case of the assumed
=]
2 = . ’ >y,.: ' »
ordering P pz), and y(pl) y(pz) In region [ ¥y 2y, in region II Y, > A

It is important to note that the line pl + p2 =1 is a boundary of region Il only, This
implies that for the case J=2, y, > Yy except for the endpoint y2(0) = yl(l) = 0. When

there are only two search cells, the maximum rate of increase of information is always
, attained by searching the cell with the lower prior probability, and the minimum rate of
| increase of information !s always attained by searching the cell with the higher prior

\ probability, This is in agreement with the results obtained for the asymptotic case
Coe,

When ] > 2, however, a new feature enters. There is a significant reglon in the

Py Py plane, where the maximum rate of information increase is attained by searching

in the cell with the second highest prior probability, The cell with the highest prior
probability, which is searched to maximize the growth of PD. does not represent either

a maximum or a minimum in the rate of information growth, The results of the asymptotic
analysis, therefore, do not carry over into the infinitesimal limit, and we cannot assert
universally that the allocation that maximizes PD also produces an extremum in

HE (or IE).

Reference to our infinite -number-of~cells maodel will illustrate some of these points,
For that model:

dlp/dz, = = (1/y) (1=y)exp(=k|en y|)[on(l=y) + (k=1) o y] , (5.19)

which {8, of course, always 2 0 for any k. Again, treating k as a continuous variable,
we find that dIE/clzk has a maximum at:

KE() =1 = [onl~y)1/ ony = 1/ tny | (5.20)
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) 'The behavior of kE(Y) differs significantly from that of k&D(Y) . As Y goes from
_‘l Oto 1-. ké(Y) starts at 1, increases slightly to a maximum of ~1,5422 at Y:.351575,

then decreases monotonically toward -®, Of the positive integers, only k = 1 or 2 are
closest integers to this curve for any Y , as suggested by our previous discussion. Thus,
only cells 1 ox 2 need be considered candidates for Max {dIE/dzk] .
k
| The results of this section are summarized as follows, For ordered probabilities
! P12p22p32---2pJ20;
a, The rate of change of PD is always positive, It has a maximum for search

Pioies a8

in cell 1 and a minimum for search in cell ],
b, The rate of change of HND may be either positive or negative. It hasa

nonnegative maximum for search in cell 1, and a negative minimum for search
in some intermediate cell m: 1<m<7J,

¢. The rate of change of IE is always positive, K J=2, it has a maximum

for search in cell 2 and a minimum for search in cell 1. I J > 2, then, either
(1) it has a maximum for search in cell 1 and a minimum for search in cell

J, or (2) it has a maximum for search in cell 2 and a minimum for search in
either cell J or cell 1,
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6. SUMMARY
The relation between search theory and information theory remains complex, y

Previous attempts to attack the problem have focused on only a narrow part of the
relationship, Their narrow focus and the lack of clear definition of "information' or

"entropy' created an unwarranted impression that the body of work was contradictory,
if not incorrect. It i1s not,

The work reported in the earlier references is both correct and, when viewed from
a broader perspective, consistent, The individual results reported earlier have been
useful in establishing this broader perspective.

In the present paper, some of these earlier results have been rederived from a
different viewpoint, Other new results have been added. Taken together, these findings
are enough to allow us to sketch a coherent, though still incomplete, picture of the
relation between search theory and information theory,

Equally important, we can now identify the gaps somewhat more clearly and can
direct future research toward those gaps with the confidence that there is an underlying
body of theory to be completed, rather than a mere collection of isolated observa“ions,

- _ . . ._

Before summarizing the findings, it is important for us to recapitulate the assumptions,
These are the most critical assumptions of our model, which are user consistently
throughout this paper: There is a single target; it s stationary; no false detections
oceur; and the detection process 1s governed by an exponential detection function,

Relaxation of any of these assumptions would add considerable complexity to the theory g
and might change the conclusions significantly, Within the framework of these general E
assumptions, this paper has examined subcases in which (a) the amount of search effort

1s either very large or very small, and (b) the conditional detection probability is

either uniform or varlable throughout the search cells,

Summary of Findings

a, Uniform conditional detection probability.

1. 'The allocation of search effort that maximizes the posterior entropy
conditioned on nondetection HND also maxlmizes the probability of detection
PD. This result was first established by Barker and was confirmed hy the

present author in both the large and smal: search effort limits. Since Barier's
proof is not restricted to these llmiting cases, the result is valid in the inter-
mediate range as well,
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2, Inthe larpe search effort limit, the allocation of search effort that maximizes

the probability of detection, PD also produces a local extremum in the expected

information I For two search cells, this extremum is a local minimum of IE.

E -
For any number of search cells greater than tvo, this extremum is a local maximum
of IE' This is consistent with Mela's calculations, (Although the number of looks

is only equal to ] in Mela's examples, this still corresponds to the large search
effort limit, since C* =0 by eq. 4.22.

3, The local extremum of IE is not necessarily the giobal extremum. For an

intermediate range of C, C*< C < ngN, the local extremum is also the global
extremum, For C%/léN <C, there is always at least one whereabouts search (and

there may be as many as J), corresponding to an edge point of the IE

produces more expected information than the optimal detection search. In practical
cases the distinction appears unimportant, since PD ~ 1 and IE ~ IM AX

when C reaches CMIN '

EQ
4, Inthe small search affort limit, the exact correspondence between the maximum

of PD and the extremum of IF breaks down, We achieve the maximum rate of

increase of IE by gsearching in the cell that has either the largest or second largest

rate of increase of detection probability. In the two-cell case, this is at least con-
sistent with the large search effort limit. For more than two cells, however, this
is a distinct phenomenon, constituting another demonstration that the conneciion
between optimum search and optimum information gain is not universal. Woxrking
with PD and IE directly, rather than with ratea of change, Browning has obtained

comparable results in the intermediate search effort region for cases J=2 and J=3,
There remains an open question: precisely how the transition between the two
limits takes place and whether the C* determined in equation 4.22 18 in fact the
minimum value foxr which the large search effort limit is valid,

5. The rate of change of IE is always poaitive for any search allocation, The
rate of change of HND can be either voslitive or negative, depending both on the

search allocation and on the eusemble of prior probabilities in the search cells,

Variable conditional detection nrobability,

1, Inthe large search effort limit, both PD and H have local maxima. The

ND
gearch allocations leading to those maxima are not the same, as is demonstrated by
eq. 4.77. This finding is consistent with Barker's second theorem,
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2, Inthe large search effort limit, no closed-form solution for the stationary
points of IE can be determined. [ven the nature of the stationary points cannot

be established analytically, but the numerical examples have shown that maximum,
minimum, and saddle point are all possibilities., In the asymptotic limit (C ~«),
the positioning of the stationary points of PD’ HND' and IE all converge toa

common lmit:

J
(Clay) (L/ (l/aj) )
j=1
3. Inthe small search effort limit, no systematic relationships have been
established among the maxima of PD' HND' and IE'

4, ‘That the rate of change of I, is positive for any search allocation, even

E
when the conditional detectian probabilities vary, remains valid,
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Interpretation

Ouly in the case of uniform conditional detection probability do we have enough
results to attempt some interpretavion. There, however, some simple statements can
do mnuch to dispel the legacy of past confusion,

S T

Flrsac, using Barker's theorems and our present results on the rates of ~hange of
ng

PD and HND » wa have noted that identical search policies produce the maximum

increases of both detection probability and posterior conditional entropy. Like all
entroples, HND is a negative information., Thus, maximizing its rate of increase {

is equivalent to maximizing the rate of decrease «f an information, The information
that is being decreased is that contained in the er. :mble up to the time of detection:
the information about the target location that {s expressed by the prior probabilities
and that changes as the search progresses. With this view, we can state one general
conclusion, already correctly anticipated by Richardson:

=T

D L T ST e T

o The scarch policy that maximizes the probability of detection is
the vne that uses up the informarion contained in the prior ensemble
at the maximum rate.

Second, we have shown in this paper that in most cases the optimum policies for

i PD and IE are eqiuivalent, Here, howevar, information is being created rather than

used up, Because this is expected information, visualizing the overall process of
information creation may be harder. Consider a repeated search in one of the ] cells.
If that cell has a prior probability Py of containing the sbjiect, its initial self information

=538 -
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is ln pk. At each stage of the search, if detection does not occur, p decreases;

k
consequently, the actual self information of the cell also decreases, The probabilities
of the other J-1 cells, however, increase simultaneously (because of the constraint

J
Z p | = 1), as do their values of self information. If detection does occur in the kth
j=1

cell after some number of unsuccessful searches, its self information undergoes a
sudden increase; the self infor.nation of the other cells then drops.

When we speak of ensemble averages, as we have thrcughout this paper, the competing
effects of these Information~creating and -destroying processes are combined, with a
probabilistic weighting. Until the time of detection, the loss of information caused by
failure to detect in the cell being searched is weighed against the inferred gain in
information in the other cells, The ret change ol information may be either positive
or negative, as we noted In our discussion of the rate of change of HND + If detection

occurs, the positive and negative information contributions from that process must
also be added in, with the proper weighting, Then, as indicated by the rate of change
of IE , the overall information gain is net positive,
This interpretation of the creation and destruction of information leads to our second
general conclusion:

e Ina wide range of practical cases, the search policy that maximizes
the detection probability is the one that creates expected information at
the maximum rate. We achieve that maximum rate of creation by using
the existing information of the prior ensemble as fast as possible, thereby
galning an early detection, with its concomitantly large increase of
expected information,

Except fur the anomalous cases, these two statements contain the essence of the
interpretation of optimum search; We consume existing information at the maximum
rate in the expectation of gaining still more information, also at the maximum rate.

The anouialous cases are of three types: (1) the case of two search cells, in which
maximum information gain i8 achieved by search in the cell ylelding the lower detection
probability, regardless of the amount of search effort applied and regardless of the
probabilities in the prior ensemble; (2) the case of three or more search cells, in which
maximum information gain is achieved by whereabouts search rather than optimal detec~
tion search for very large amounts of search effort; and (3) the case of three or more
search cells, in which maximum information gain is achieved by searching the cell that
ylelds the second highest detection probability, but only for small amounts of search
effort, and only for special reglons in the space of prior probabilities,
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The anomaly in the first two cases appears to be caused by the two competing
methods of increas.ng information: by actual detection in the searched cells, or by
inference that the target 1s in the other cell, lased on failure to detect in the searched
cells, These two mechanigms are at work regardless of the number of cells. When
there are only two cells, however, failure to detect in one leads to a large increase

in the probabliity that the target is in the other, and, hence, much more information
about the location of the target,

This mechanism of inferred information is dominant in the two-cell case, 80 that
actual detection is not necessary to achieve the maximum information gain, even with
small amounts of search effort, The two-cell search is thus an exemplary case of
the whereabouts search., For three or more cells, the inferred information mechanism

of th? whereabouts search is not normally dominant; it becomes important only at
large values of the search effort.

In the second case, the anomaly appears to be more dependent on the mathematical
structure of the ensemble average information -=- on the form p ln p, Inthose areas
of the (pl, p2) plane where the anomoly exlsts (figure 13), Py !s large, and the amount

of self-information to be gained by a detection in cell 1 is small. Detection in cell 2,
although less likely, provides more self-information. When incorporated in the ensemble
average, the greater but less likely expected information contrikution from cell 2 -- P,

In Py =" dominates the smaller but more likely contribution from cell 1 -~ Py In P

Future Research

Finally, we need to set out the areas in which further research may prove most
fruitful,

The principal case treated herc (uniform conditional detection probability) has broad
practical applications, Its basic structure has been laid out, and only minor holes remain.
Clearly, there are unsolved questions relating to the transition between the small and large
search effort limits in the case of tE « These are important theoretical questions, but

less so in a practical sense,

The major extensions needed for use in real world search theories are, first, to
false targets, second, to multiple targets, hoth real and false, and finally, to moving
targets. Each of these cases is of Immense practical significance, and any theory that
does not include them can have little claim to completeness,

Relaxation of the assumption of exponential detection functions, and any further con-
siderations of the case of varying conditional detection probabilities can be deferred on the
grounds ni lower practical priority, despite their considerable theoretical irterest and
complex mathematical challenge,
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