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QUASIPARTICLE DAMPING OF A POSITRON IN AN ELECTRON GAS

J. Oliva

Department of Physics, University of California San Diego

La Jolla, California 92093

ABSTRACT

We present a calculation of the imaginary part of the self energy Z1
of a positron in an electron gas . E1 is inversely proportional to the

inelastic collision rate between the positron and the electron gas.

The calculation vas done using standard many body techniques and within

the RPA approximation . There are two contributions to Li : one arising

from particle—hole pair excitation , the other f rom plasmon excitation.

The former dominates at low energy where - E2 while t a latter domi-

nates at high energy where Z1 in 
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ABSTRACT

We present a calculation of the imaginary part of the self energy L
~

of a positron in an electron gas. E1 is inversely proportional to the

inelastic collision rate between the positron and the electron gas.

The calculation was done using standard many body techniques and within

the RPA approximation. There are two contributions to E~ : one arising

from particle—hole pair excitation, the other from plasmon excitation.

The former dominates at low energy where E1 
- ELwhile the latter domi—

1 E
nates at high energy where E1 - 2.n —
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INTRODUCTION

The collision rate of a positron moving in an electron gas is investigated

using a self—energy approach. The quasi—particle self—energy is a complex—

valued function of momentum. The imaginary part is a manifestation of real

collisions between the positron and the electron gas. In Section I, a Green’s

function for a positron in an electron gas is introduced . The self energy E

is identified and the quasiparticle collision rate is then given by an approxi-

mate expression involving its imaginary part t~ . In Section II an examination

of within RPA is carried Out. Two contributions to are found and inves-

tigated; one arising from particle—hole pair excitation (Section III), the ocher

arising from plasmon excitation (Section IV).

I. POSITRON GREEN’S FUNCTION

We consider a uniform system of a large number, N, of electrons and a

~
. Lngle positron, all moving in a uniform neutralizing background and interacting

via the Coulomb force. The second quantized Hamiltonian for the system may be

written in the Schrodinger picture as*

(la)

- V~ ljia(x)d
3x - f E f ~ (x) ~2 ~~~(x) d3x (ib)

~~ Efd
3x d 3x’ ~$7(x) * ( x ’) 

~—~‘T ~‘(x’) ~~~~~~~~ 
(ic)

— e2 Efd 3x d 3x ’ ~~~x) 4~~ x) 
1 x.-x ’l ~~~~~~ ~~~~~~

~ 1 throughout the discussion.
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where ~j 7(x) (
~
iIa
(x)) are Schrodinger electron field operators which create

(destroy) an electron of spin a at the position x, and where p
+(x) (~~ (x) ) are

Schrodinger positron field operators which create (destroy) a positron of spin

a at the position x. in denotes the mass of the electron and positron.

We seek to calculate the lifetime of the positron quasiparticle states.

To this end we introduce a positron Green’s function GP
8
(xt,xt tt) appropriate

to the description of propogation of a single positron in an electron gas and

def ined as follows:

—
~~~ (‘V JT(4~~~(xt) ,48(x’t’)) I’t~)

01’ (xt,x’t’) H . H (2)- - 
H
< o )

H

where q~~~(xt) and ~~8
(x ’t’) are the Reisenberg positron field operators

and where ‘i’,,,) denotes the Heisenberg ground state of a uniform, fully
13

interacting, N—electron gas. T denotes the Dyson chronological operator which

orders operators in accordance with decreasing time arguments toward the right.

Since, in our case, H does not involve the spin variables, G
~B 

is diagonal in

the spin indices; we only speak of the diagonal part G1’(xt ,x ’t) from here on

out and supress spin indices where appropriate.

That the Green ’s function as defined in Eq. (2) is pertinent, is suggested

in the corresponding Lehmann representation. To obtain this we introduce a

completeness relation in Eq. (2)

&‘(xt ,x ’t ’) — i E

-

(3)
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where the intermediate states ~‘I’~~’are elgenstates of the Hamiltonian H [Eq . (l)j

for the fully interacting hybrid system of an arbitrary number of electrons and

either zero or one positron; and where, as such, the summation in Eq. (3) in-

cludes states of all possible numbers of electrons and either zero or one

positron. Note we have taken<’V I’V 0>’. 1.
Since contains no positrons, the second term of the summand of Eq. (3)

vanishes for all n. Moreover, only intermediate states with N electrons and a

single positron will contribute in the remaining sutmnand.

Upon invoking the spatial and temporal translational invariance of the

system, the following Lehmann representation for the Fourier transform of

G~(xt,x’t) iS readily obtained:

G1’(k ,ü )  = 6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
- n -‘ta — (B —E) + i~ 

(
n

where the prime on the summation denotes the restriction to summation over

intermediate states with N electrons and one positron , where and En are the

momentum and energy of the intermediate state ‘F> where B is the energy of

the fully interacting N—electron ground state and where 4 (o) and 4~~(o) are now

the Schrodinger positron destruction and creation field operators, - evaluated at

the origin of coordinate space. 6,~ ~ 
is the Kronecker delta function .

-
, -n

Note importantly tha t the poles o~ G(k ,~~) in the ca—plane occur at the

exact values of the change in energy associated with the addition to an electron

gas originally in the ground state of a single positron such that the final

system has a momentum k. Note , by way of example , that when the interaction

between the positron and the electron gas is set equal to zero , the intermediate

states ‘F~)appearing in Eq. (4) separate into a product of a free positron state

vector times an N electron (fully interacting) state vector, leading to

4
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c°1’(k ,w) = (5)
k2CA) - — + i~• 2m

• 

~~~

— being the energy of a free positron. This form for G~~ is obviously consistent

with the previous statement regarding the positions of the poles.

Now we would like to describe these many body excitations in terms of a

positron quasi—particle picture. Quasi—particle states are long lived quasi—

eigenstates of the many body system which have properties approximating those

of free single particle states, though differing from these in being damped

with time, this reflecting the presence of interaction with the rest of the many

body system.

In light of the form Eq. (5), we are led in the standard fashion to the

following quasi—particle approximation for the fully interacting G~:

z(k) 
= 

Z(k) (6)
w-E(k) + i~ w— E(k) .- ir(k)

where in the last step we have written the complex valued quasi—particle energy

E(k) explicitly in terms of its real part, E(k) , and its imaginary part, r(k).

Z(k) is an unimportant function, related to the strength of the quasi—particle

state.

The quasi—eigenstates behave in time as e
_
~~~

1
~~
t. Thus the probability

density of the quasi—particle having initial excitation energy E(k) will decay

in time exponentially at a rate y given by:

y (k) =alr(k)I (7)

This can be interpreted as a total collision rate of the positron in the electron

gas, and the inverse therefore viewed as a lifetime. We point out that for the

5
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.quasi—particle concept to be useful the damping rate must be small compared

to the excitation energy:

F(k) << E(k) (8)

Having established the relevance of 01’, we may now bring to bear on the

matter of determining the positron quasiparticle collision rate the standard

methods of modern many body theory. We rewrite Eq. (2) in terms of the inter-

action picture via the Cell—Mann—Low theorem, thereby obtaining the following

perturbation series:

iG1’(xt ,x’t’) 
~(~~~~~~H_  •~ (x t t t)I4 0) 

1< 0
0)
1 <~0 IE(_i) 

~

x f  dt J dt,~, e~~
l
~~

ti l + . . . ~t~I)

HINT (t
v
) 41(xt) ~~~x

’t’))(~!~~

(9)

where the subscript I on state vectors and operators denotes interaction picture.

is the N—electron non—interacting ground state and H1~~ (ti) is obtainedI I
from Eq. (ic). S is the scattering operator, i.e., S U

1
(~ ,-~ ) ,  U1(t ,t’) being

the conventional time development operator (which takes the form of the numerator

of Eq. (9) with the two positron field operators absent).

Using the explicit form of HINT in terms of field operators, this perturba—
I

tion series may be expressed more conveniently by applying Wick’s theorem to

evaluate the expectation values of the time ordered products of field operators.

6
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The resulting form has a diagrammatic interpretation completely analogous to

that of the more familiar case of the single—particle Green’s function of an
S

electron in an electron gas, and with completely analogous Feynman rules. As

in the just mentioned case, it is readily shown that the “disconnected” diagrams

cancel the denominator in Eq. (9) leaving only the connected diagrams.

We illustrate a few of the lower order diagrams resulting from this procedure:

A double (single) simple line denotes a free positron (electron) Green’s function;

a double (single) wavy line denotes a bare positron—electron (electron—electron)

Coulomb interaction.

It is clear that we may arrive at a Dyson’s equation for G~(xt,x’t) which

will involve a positron proper self energy E~ (xt ,x’t’) ,  this latter being the

sum of all irreducible subdiagrams arising out of the perturbation expansion for

C1’. The subdiagrams referred to result from removing the “ends” of the diagrams

for G1’. [The irreducible subdiagranis are those which cannot in turn be separated

into two subdiagrams by removal of a single particle line.J Invoking the spatial

and temporal homogeneity of the system, we may Fourier transform Dyson’s equation,

arriving at:
0 0

G1’(k,w) C 1’(k ,w) + G 1’(k ,w) Z*(k ,w) G1’(k ,w) .

(lOa)

G1’(k ,w) = 1 
* 

(lOb)
w — E°(k) — Z P(k ,~~)

7 
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where E°(k) is the free particle energy

Upon comparing Eq. (6) and Eq. (lOb), we see that we can now relate the

quasiparticle energy E( k) to the proper self energy E*(kw) Iwe here on out

delete the superscript p (denoting posir on) from C & E] .  In the case of

long—lived excitations:

E(k) ~ E(k) + Re E(k E(k)) (h a)

~(k) ~~~ (1 — Re E*(k C~)I ~~~ ) ) urn Z*(k E(k)) (lib)

Our interest here is in the damping rate (an . We will make the approximation

that the derivative te rm appearing in Eq. (llb) is small compared to unity,

giving: -
~ (k) ~ liii Z *(k E(k) )  (12 )

This is certainly valid for very large k , since E *(k ,E ( k ) ) + 0 for k

and is likely to be valid for very small k, where Re E ( k E(k) ) should be

relatively flat. For intermediate k, this approximation is questionable though;

we shall return to this point later.

II. APPROXIMATE EVALUATION OF Ill £~
We now evaluate the positron proper self energy in an electron gas within

the random phase approximation (RPA) . By this it is meant that the proper

self energy is approximated by an infinite summation of bubble—type diagrams

of the form shown in the following Eq.

+ +

- . 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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(13)

We have introduced with an obvious diagrammatic identification the effective

interaction, Vl~ff, of a positron in an electron gas . These diagrams for Z (p,w )

correspond to successive virtual excitations of electron particle—hole pairs

by the positron. Though it is true, as with the case of electron RPA , that

*this approximation for E becomes very good (exact, in fact) only in the extreme

high density limit r5 << 1 Irs being the Wigner—Seitz radius = mean distance

between electronsi, we probably can expect qualitative, even semi—quantitative

validity for r5 in the metallic range —2 <r5 <—5.

We note that the exchange diagram, , appearing in the electron

has no analog here since there is only one positron in the system. Furthermore,

since in all diagrams for V~ff  there are exactly two electron—positron bare

Coulomb interaction lines, each term is equal in value to the corresponding

term in the effective potential, V f f ,  seen by an electron (e.g., =

etc). We thus have

V~ff (k ,w) v~ff (k~CA) ) — v(k)

—v(k)( k 
- (14)

\
CRPA ( ,w) /

where C~p~ (k~CA)) is the propagating RPA (Lindhard) dielectric function of an

N—electron gas [defined below, Eq. (28)] and where v(k) is the bare Coulomb

interaction:

9
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v(k) 41re2 
(15)

The positron proper self energy is given, in accordance with the Feynman

ruleS, by:

= 
(2w)’ 

f d3k dtA)’ G°(p—k, w—~A) ’) V~ff (k~CA)’) (16)

which, using Eq. (5) and Eq. (13), becomes

= 
(2~~ 

J 
d’k Jd~ ’ v(k) 

~~~~~ ~~ 
- 

w-&-E°(p-k) + in

(17)

The frequency integral appearing in Eq. (16) is along the contour C [shown in

Figure (la)J, so chosen so as to properly avoid the poles of E(k ,W ’).

We have seen that in our approximation, the imaginary part of the self

energy is directly related to the collision rate [Eq . (12)J. A rather convenient

for Im l
~~,A(f,w) is now obtained [we from now on omit the subscript RPA on

RPA 
and Note the free—positron G—F in the integrand of Eq. (17) has a

pole at w’ = w — E°(p—k) + i~. Note further that since

c (k,w ’) — 1 — .-1- Iw ’I -
~ 

(18)

we may, by Jordan’s lemma , close the contour C in Eq. (17) with the standard

infinite semicircle in, e.g., the upper half plane. By rotating the resulting

closed contour 900 counterclockwise Esee Fig. (lc)J , we have by Cauchy ’s theorem

and upon noting that for both initial and final contours, the integral over the

10
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semicircular part vanishes,

S 
Z
*(p w) = 

(2w)’ {Jd
3k 

,
dw ’ v(k) 

( 

t (k,w’) - 

i) 
. 

‘ E 0 ( k )  +in

—?T 1 J d~k ( 
1 

— v(k) (19)
O<E°(p—k)<w- ~ (k,w—E°(p—k) +in) /

where C’ is the +900 rotated version of C (with the dogleg). Realizing that

there are no poles of the first integrand in Eq. (18) near the imaginary axis,

we may now equivalently replace C’ by the imaginary axis and in addition, Set

n— 0 in the integrand. The second term in Eq. (18) is a residue contribution

which arises since, as the original contour is rotated , the pole CA) of the

positron propogator, when it is in the first quadrant [i.e., when k)-w > E(p—k):

note limits in the second integral of Eq. (1 )J goes from being within to being

outside the closed contour.

It can be shown that the imaginary part of the line integral appearing in

Eq. (1 ) vanishes [Having replaced C by the real axis and setting rrO, introduce

the change in variables u—lw. Noting then that since C(k,W’) is the propogating

dielectric function which has the symmetry property C(k,W’) = E(k,—U)’), the

resulting integral is manifestly realj.

Therefore we arrive at the useful expression

mm Z*(p, w) — Im I d 3k v(k)

2112 0<E(p—k)<w (k,w—E°(p-k) + i1)

(20)

which will serve as the starting point for the subsequent development.
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We now review the properties of the Lindhard dielectric function c(k,w).
RPA

Its real and imaginary parts Cr (k
~w) and c1(k ,w) are given by

/ w m  Po\

~p k  2k)

+

~~~~~~~~ 

~~~~~~~~~~~~~~~~~~

(21a)

ci~
(k,w) = ~ (~ 

(
~ 

- 
)2)

/ 
~ 2 

(2 1b)
k 1I k ~ wmf o r — + — i — i > - — —
P0 2\P~/ 

—

ci
(k,w)

mp2 
‘2 \

c (k ,w) = ° ( — ~~1 , forF ‘.3 !i 2

L 

/ 2

po — 
~~~~ ~~~~ 

2
~~o

(21c)

where p0 is the Fermi momentum of the electron gas,

p (3 w 2n) ’I’~ (22)

12
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n being the electron density. Note we have introduced a separate notation

for the two distinct analytic forms of c~ , there applying in different regions

of the w vrs. k plane.

We illustrate the single—particle excitation spectrum of a free electron

gas In Figure (2). The shaded band corresponds to the region where excited

particle—hole pairs can exist. Note that ci(k,w) is non zero only within this

band. The two bounding curves

k2 k p0w(k) = — +max 2m a (23a)

and
2 k p

mm 2m in (23b)

give the maximum and minimum energies, resp., of a particle—hole pair of

momentum k.

Also shown in this Figure is the plasmon excitation branch ~1’
(k) which

appears when interactions are allowed for. w
1’
(k) solves the equation of the

longitudinal resonance condition:

c(k, w
1’
(k)) 0 (24)

This branch starts at k—O with energy w0 given by

wo
a~ 

~~~ ) , (25)

rises to a maximum value w
~
(k
~
) at the so—called plasmon cutoff momentum,

and ceases to be a well defined excitation for k > k. The cutoff is determined

by the condition that it becomes possible for a plasmon to decay into a single

pair excitation, i.e., when
k2

w (k) = — + k —= w  (k) . (2 6)max 2m m p

13
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Returning now to the calculation for Im E*, it will be seen that there are

in general two types of contributions to Im Z 
f 
see Eq. (20)] : one from the

integration over the region of k—space where c1(k, w —E(p—k) + i~) is finite 
I

I
[this corresponding to the positron ’s exciting particle—hole parisj and the

other arising from any poles in the integrand (i.e., zeros of c~ ) falling within

the domain of integration 
[this corresponding to the positron

’s exciting piasmons].

Before proceeding, we makt~ one further approximation: we take for the

appiuximate collision rate 2F(see Eq. (13)) twIce the value of the self—energy

E(k,E(k)), evaluated at frequency F(k) — E°(k), i.e., the on shell value. We

will thus be evaluating,

2 1
* — Im I d 3k (27)Tin Z — 2112 J £(k, E°(p)—E°(p—k) +i~)

O<E°(p—k)<E°(p) -

III. PARTICLE—HOLE CONTRIBUTION

As indicated in Eq. (21), the imaginary part of the dielectric function

c(k ,w) is non—zero when either p0k + k2 > mW > ~p0
k — 

~~
. k~~ or

k <2p0 & 0 
< mw < kp — k2. Using the fact that in the integral of Eq. (27),

c(k,w) enters with frequency argument w— (2pk cos e—k 2) 1whe1
~ 

0 is the

angle between and kJ. it is straightforward to show that this set of inequalities

reduces to the one simple inequality:

jk — p cos .~~ 
p0 

(28)

The region of k—space specified by this inequality is bounded by a surface

known as a Pascal limacon of revolution. For p > p0, there are two branches of

the surface (one contained in the other) whereas for p < p0, there is a single

brar.ch [see Fig. (3)J . The region of k—space in which tin c(k, (2pk cos0—k 2) )

14
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is nonzero and which contributes to the integral Eq. (27) is then the region

which is both within the Pascal limacon (when p > p0 this means between the two

branches) and within the sphere of radius p centered at k p. [s:e Fig. (3)1*.

We find, defining E 
~ 
(p) particle—hole contribution to Ii Z (p),

p-h

~..1 ,.2px
—e2 I 1— u i  dx j dk
2112 J J c

~
(k ,

~~
•
~
(2pkX...k ))+c~ (k,~~ (2pkx_k2))

1 (~< ~~

(29a)

l p 0
* —e 2 

2px 
1Z

I,p_h (P) - 

~~~ 

im~~~
j 

dx dk

px+po \
+ 

J 
dx 

Lx_p 

dk

p 
(p > p0)

(29b)

We first consider the case p << p0 . Entering into Eq. (29a) is then the

dielectric function evaluated for momentum and energy very small compared to

Po and E0, respectively:

2mp 2m2p2 
~c(k, f(2pk cos8—k

2)) ~~~ + -

~~~~~

-

~~~~} 

+ ~{ k3 
~~~(2pk cos8—k

2)

(k << p0) (30)
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S J
see Eq. (21). We readily arrive at:

t
P h  

— - 
e2,Ta0 - r p 1’ p << (31)

We note that in this small momentum regime, the p—h contribution to the

collision rate decreases with increasing electron density. Contributing to

this is the fact that at higher densities, the characteristic size of the

region of enhanced electron density screening the positron decreases, rendering

the positron quasiparticle less effectively scattered , and the fact that at

higher densities, where the kinetic energy dominates the dynamics, the

electrons are less able to respond to the presence of an external charge.

In passing, we note the obvious physical correspondence between an electron

of momen tum ke just outside the Fermi sphere and a positron of very small

momentum k~ compared to p .  in that the respective quasiparticle states are

both very long lived (r e
1 — (k

e
_P
o)

2 for an electron.)

We now consider the case of high momentum p >> p0. Starting with Eq. (29b)

*it can be shown that for this range of ~~‘ ~~ 
(p) varies inversely with p:

p-h

* 
p

a 
~~ 

C(p 0) 
+ 

(32a)
p0

with p (u+l)

C(p 0) Ia du dk 
~ (k c 2 (k u) ) + (k ,~~(k ,u ))

1 p0(u—1) r 1

I 2p0u

+ du dk 
~~~~~~~~~~ 

+ c~~ (k ,~~(k ,u))

(32b)

Q(k,u) ~~(2p0k
u_k2)
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- We present plots of 1Z 1* (p)/E I vrs. p/p for various r 5 (Graph 1).
a p-h

Since it is quite difficult to obtain a manageable analytic approximation to the

integrals in Eq. (28) for intermediate momenta (p — p0) ,  we have tesorted

where necessary to numerical integration. From the numerical integration we

have shown that the p’ dependence for small p is valid up to - — . lp0. Increasing

p further, the curves rise somewhat rapidly to a relatively broad maximum at

p ..2p (with values of E1 
(p)/E0 at the maximum ranging from — .3 for r5 3

p—h

to — .05 for r =2) and then fall rather slowly, droping only -10% in going

from p — 2p0 to p — 6p0. We found numerically that the variation for

p >> p0 becomes discernable for p > - 2Op0.

IV. PLASHON CONTRIBUTION

As noted earlier , the plasmon contribution to 4(p) urn E*(p) arises when

the pole of ~~‘(k ,E°(k)—E °(k—p) +i~ ) falls within the domain of integration

(Eq . (27)).

We first address the question of whether a positron of momentum p < p0 is

in principle able to excite a (real) piasmon. Of course we are assuming that

the system has plasmons of energy less than ~~~~~~, for otherwise excitation would

not be possible on energetic grounds alone . From the geometric construction

of Figure (4a) for the case p < p0, it is apparent tha: tin c(k, E
°(k)—E°(p—k) +i~)

is nonzero throughout the region of integration for E1 
(p). Thus the positron

necessarily will excite only electron—hole pairs, i.e., it is not possible for

a positron cf momentum p < p to excite a plasmon, regardless of how small the

plasinon energy may be.

17
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We turn now to the case p > p0. From Eqs. (24), (27) and the comment

after (25), we see that the poles of the inverse dielectric function are

encountered during the k—integration for Z
1
*(p) when both

E°(p) — E°(p—k) w (k) (33a)

and

k < k
~ 

, (33b)

i.e., when it is dynamically possible for a particle to excite a plasmon.

Let us for the time being neglect the small dispersion of the plasmon mode

and set
w ( k) = w~~(o) E w 0 (34)

whence the conditions (33) for a pole become :

_i(P 2 
— I~—~J~

) = w~, (35a)

k <k
~
° (35b)

with the cutoff momentum in the absence of dispersion, kc
° given by:

= (p~ + 2~w0)
½ 

— p (36)

The set of points k satisfying Eq. (35a) is a sphere centered at k — p

and of radius (p 2 
— 2mw0)½. When (p 2 — 2mw0)

½ < p0, points k on this sphere

are such that k > k
~
°, and thus do not satisfy the second requirement for a

pole, Eq. (35b) . [Alternatively put, as is evident from Figure (4a), these

points lie within a region of the domain of integration for E1
(p) in which

tin c(k , E°(p)-.E°(p—k) + i~) # 01. There then is no plasinon contribution to

in this case.

18
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On the other hand, for radius (p2 — 2mu0)½ > p0, the sphere of points

satisfying Eq. -(35a) does at least pass through regions of the domain of inte-

gration in which tin ~ (k, E°(p)—E°(p—k) +ic5) 0, namely , referring to Figure

(4b) , the crescent shaped region bounded by both the outer branch of the Pascal.

limacon and the sphere of radius p, and the oval region bounded by the inner

branch of the limacon. Only in the oval region, however, do the points on the

sphere also satisfy the additional condition for a pole, Eq. (35b)

0 0(Re ~ (k, E (p)—E (p—k) +i~) # 0 in the crescent region ) and it is therefore

from only this region that we get a plasmon contribution for E
1 (p).

From this discussion, we conclude that the value of positron momentum at

the threshold for excitation of a plasmon is, neglecting dispersion , given by

~th 
a (2ia~j  + ~2)½ (37)

2
i.e., the positron has at threshold an energy -

~~-- such that upon loosing anin

energy ~~ to the plasmon, it ends up with the Fermi energy -r—~
Precisely the same value of piasmon excitation threshold momentum is found

for the case of an electron probe interacting with an electron gas [again

neglecting plasmon dispersion (Quinn , 1962)] . One might offhand say that

the value 
~th 

is reasonable for the electron case since the external electron

cannot, after exciting a plasmon, end up with an energy less than E0, the corres-

ponding states already being occupied. This line of reasoning would seem to lead

to the following “paradox. ” For a positron scattering from an electron gas, one

is then tempted to say that the plasmon excitation threshold should occur at E°(p)

with the scattered positron, being distinguishable from the electrons, ending

0up in the E (p) — 0 state.

The discrepancy suggested by the last argument lies of course it~ its failing

to take account of the implications of momentum conservation. If a positron of

19
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energy E°(p) w were to excite a plasmon , it would have to give up a momentum

(2mw )½. But this is in excess of the plasmon cutoff momentum k
c
° = (p~+2mw0)

½

— p .  therefore implying that such a positron is after all unable to excite a

plasmon.

Note in fact that at the actual threshold 
~~~ 

(Eq. (37)) the plasmon excited

will have momentum equal to the cutoff momentum k
~
°. As positron momentum is

increased above 
~~h’ it will be able to excite plasmons with momenta ranging

from a low of p — (p2_2m%)
½ k [forward scattering] to a high of kc

° [the
mm

positron scattering at an angle cos 1—~ from its original direction]. These

statements follow simply from Figures (3c & d). Note that kmjn tends to zero

as p tends to infinity.

F:r p >p~h we thus have a plasmon contribution to E 1
*(p) which we denote

by E1 
(p), and which is given by:

p
~
.

(p) = — —s--- f d~k tin 
v(k) >

pP. 2ir~ oval c(k , E°(p)— E° (p—k) +i~ )

(38)

In the oval region we approximate the dielectric function by its high frequency,

low wave vactor form (i.e., again neglecting dispersion).

2
— i — (39)

w 2

Upon using Eq. (39) in Eq. (38), introducing spherical coordinates with p taken

along the polar axis, and performing the trivial azimutal integration, we arrive

at: 1 px—p

Z1
* (p) a — Im dx f 0 

dk k 2 (2px—k ) 2 
(40)

p (-
~ 
k(2px—k) +in)~ -~~~~~

20
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where x5cosO , 0 being the polar angle.

Doing first the k—integration , only one of the four simple poles of the

integrand falls within the region of integration, this being the one at

k a px - (p2x2 + 2mU~ — in) ½ (41)

Applying the symbolic identity (for real x)

= P 1 ~ i r ~S(x) (42)

it is trivially seen that the only contribution to the imaginary part of the

integral arises from the residue at this pole. Proceeding in a straight

forward manner, we eventually find:

* 
w 

f
~~2 + 2~W)

½ —
E
i~~

(P) — 

2a0p 
P.n~~ 

— (p2 — 2mw )½) 

>

(43)

We should remark that precisely the same result is obtained for the piasmon

contribution to the imaginary part of the electron self energy in an electron

gas (see Quinn (1962)). Though this is consistent with our earlier observation

of the equality of the positron and electron plasmon excitation threshold mo-

menta, the equality of the two self—energy contributions is slightly surprising.

We note the following about the behavior of E~~ (p). Recall that this
pP. 

*expression applies only when p > — p0 + k° . Of course at p 
~~h’ ~~

* 0 
pP.

must (and does*) vanish. Z~ (p) drops abruptly just beyond 
~th’ 

with a finite
PP.

derivative w.r.t. p at 
~ 

— Pth+•

* Note that the numerator in the argument of the log in (43) is precisely k

21
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For p > >p
(A~

(p)~~ — —---2~-P.n --2- (_2. + oo) (44)
pP. a

0
p p0 p0

As does the particle—hole contribution to (p), the plasmon contribution

then decreases with increasing positron momentum.

In view of Eqs. (32) and (44), and using 4(p) = E * 
(~~~) + ~ * (p)

t
p—h 

Ipi
we thus arrive at the sensible conclusion that the total collision rate of a

positron moving in an electron gas decreases with increasing momentum. [i.e.~

that for increasingly high momentum, the particle behaves as an increasingly

nondisturbing probe of the electron gas]. Moreover, comparing Eq. (32) and Eq.

(44) we see that the plasmon contribution to the collision rate dominates at

high momentum. Thus,

* 2w
y (p )  -~~ 2~Z1 

(p) + 2j 4  (p)I — __2. in _L , 
_2~ + (45)

Let us remark that though this last result was derived for a charged

particle, which is distinguishable from the electrons in the gas, the same

result applies even to an energetic, “external” electron, since at very high

momentum it “loses sight” of the Pauli restrictions. These restrictions

would only come into play if the electron were to “try” to undergo a highly

unlikely , strongly inelastic collision which would , in the absence of the Pauli

restrictions, have brought it down below the Fermi sphere. Indeed , the particle—

hole contributions to the electron and positron self—energies should thus (and

do) approach one another in the high momentum limit.

*Before presenting numerical results for 
~~ 

(p) we make a worthwhile modif 1—
p2

cation of the formula Eq. (43). Recall that we have until now neglected plasinon

dispersion. This was done for reasons of calculational expediency and was

*It can be shown that the sign of the particle charge does not affect the result ,

Eq. (44).
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justified since the dispersion, being relatively weak, should not enter into

the self energy in a way that would qualitatively alter any conclusion based

on neglecting it. However there is one quantitative aspect which we would like

to be (and which is not) contained in the form Eq. (43) for (p), namely,
PP.

the correct value of particle momentum at the plasmon excitation threshold.

We have seen earlier that this occurs at p a = + kc
° if the dispersion

is neglected. Now allowing for dispersion, at the plasmon excitation threshold,

the plasmon produced will have the different plasmon cutoff value, k
~
, for its

momentum. However, at this high momentum the plasmon energy u
~

(k
~
) will be

somewhat greater than w~ (o) = w
0 (usually by ~ 20% for most metals). Since at

threshold the positron still ends up with momentum p0 after excitation , 
it must

now have an initial momentum greater than the previous value

We see then that account must be taken of dispersion in order to obtain the

correct threshold momentum. On the other hand, for particle momentum much

higher than threshold , the plasmons which are excited (mostly in the near forward

direction) will have small momenta, and energy close to

[E
0

p — E°(p-k) w~,(k) is satisfied by k + 0 as p + ~ since w~~(k) + constant

as k + 0]. Thus in the high p regime, the result Eq. (43) is quantitatively

correct (within our overall approximation).

A device for shifting the threshold momentum to the correct value while

preserving the correct high p behavior of the formula Eq. (43) is to everywhere

replace w0 there by the expression w~ (k(~ ))

*E
0

(p) — E°(p -  k
~

) = w
~

(k
~

) (from Eq. (26))~~~ (k 2 + kc Po) 
~~~ th 

p0 + kc~
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w (k (p))  /(p~ + 2m w (k (p))) ½ 
-

E1 (p) — — 2.nI 
p 

; k (p) < k (46)
pP. a0p p — (p2 — 2m w (k(p)))~

Here k(p) (<k
u) satisfies

E(p) — E~p— k) = w ~~(k) (47)

where we set k f p. Note that the important k’s actually are parallel to p

both for p near p and for p + ~~ .
th

It is seen that for p at the proper threshold 
~th 

= k
~ 

+ p0, E1
* (~ )

* 
PP.

vanishes, as desired . Moreover, since k(p) -~ 0 for high p, we obviously

recover in this range the earlier correct result Eq. (43). The expression

Eq. (46) then will serve as our approximation to E
1
’
~ (p).
PP.

In practice we will make the quadratic approximation for

p2
w (k) = w + — ° k2 (48)p o 1 0 2m w

0

Using Eq. (48) in Eq. (47) we find k(p) which is then substituted back into

w~(k) to give _ 2

w (k(p)) - w0 + B 
(2m~+l) 

~2p
2 2m~+1)2irw0 

- 2p(p 2_ ( 2tflB+1)2tfl(~) ) ½ 

S 

(49)

wit h ,
2

3 p
B E—  (50)10 2m

In this approximation, the cutoff momentum kc is given by:

k — ((~~~~~~

)

2 

+ 4 - ~))~ / (2 (s 

- (51)

*The numerator of the argument of the logarithm is precisely k
~
.
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Values of the original and corrected threshold momentum for relevant values

of r5 appear in Table (1) . Differences of the order of — 10% are seen. A
F * *comparison [for r — 2] of E~ (p) and Z~ (p) j using Eq. (49) in the latter

pP. pP.
appears in Graph (2). It is apparent that both results are even quantitatively

very similar, save for the discrepancy in thresholds. We point out that deriva—

tive w.r.t. p of E1~ (p) is again nonzero at p — Pth+.pP.
Finally, we present plots of ~E1 (p)~ /E vrs p/p0 for relevant r5

pP.
Graph (3) . The following qualitative features emerge: an abrupt rise in

I~~~I~~

’ 
(p)~/E just beyond p = 

~th’ 
a fairly broad maximum of magnitude — 1/10 at

pP.

p/p — 2—4, followed by a rather gradual decrease to zero .

The total value for 4(p) is given by the sum E1
* (p) + E~~ (p)
p—h pP.

(Eqs. (29) and (46)). Before proceeding to a discussion of the character of

E1
(p) it is necessary that we verify the notion implicit until this point

that the probe interacting with the electron gas forms a reasonably well defined

quasiparticle state. More precisely put, we must verify that the energy width

of our quasi—eigenstates, namely 4 (p ) is small compared to the excitation

energy E°(p). Plots of 4(p/pf)/E°(p/ pf) vrs P/P f are presented in Graph (4)

for representative r
5. It is seen that only rarely does this ratio approach

even a tolerable - 20%. For the most part, the fractional uncertainty is

considerably smaller. We can be assured then that our results are reasonably

sensible.

We are now able to present the following picture for the RPA total collision

rate of a positron moving through an electron gas. [see Eqs. (29) and (46)].

Plots of J 4(p)J/E0 
— .

~~ 

yIE
~, 

vrs. p/p appear in Graph (5) for relevant r5.

For p < p ,  only particle—hole pairs are excited. 14 ( ~) 1 s t a r t s  o f f

with a - p”r 2 dependence and increases smoothly through the region p p0.

25
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At a momentum 
~ 

— 
~~h 

— 2p (for r of interest) the particle begins to excite

plasmons [in addition to p—h Pairs], this being manifested in a definite jump

in 14(P)I there. There is then a rather broad maximum, of magnitude ranging

from — .2 E for r5 
a 

~ to — .7 E for r5 = 3, reached at P 2—4 p0. This

is followed by a relatively slow drop off with an asymptotic — -
~~~ ~~~~

dependence, originating from the dominating plasmon excitation channel.

For reference and convenience we present plots of E1
*(E0) vr s B° in Graph (6).

In Graph (7) we present a comparison between our results for 4(p) for a

positron and Quinn’s results for the same for an electron. The larger magnitude

of the imaginary part of the positron self energy is readily understood :

Since the positron does not see the Pauli restrictions operative for the electron,

it has more available phase space to scatter into, resulting in its having a higher

collision rate.

The mean free path A(p) of a positron quasi—particle with excitation energy

E(p) may be taken as 
—

)~( ) 
— d E(p) 1 (52)— 

dp y(p)

Now E(p) is given approximately by Eq. (h a). We will here ingnore the

k—dependence of Re E*(p,E(p)) and take simply:

— . (53)

A plot of A (E°) vr s E° appears in Graph (8). The correspondence between the

structure in E1~ described above and that in A is apparent.

For E°(p ) << E0. /
A (E°) (/2 

15 
3/2) 3/2 

— 1
3/2 (54)

\e
2a lt ~ 

/ 
E° E°

— - - 
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and f or E°(p) >>

A (E°) 4a E° 1 E° - (55)
0 w P.n(E°/E) P.n E0

A minimum of the order of a few Angstrom’s occurs at E
0 2E

0.

The author would like to thank Professor Walter Kohn for numerous valuable

discussions.
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TABLE 1

p0 E k o  k 

— 

w~ (o) wp (”c) p~~ p~~
p0 p0 p p

(a.u. ) (eV) (eV) (eV) 0 0

2 .960 .12.5 .528 .640 16.7 21.4 1.53 1.64

3 .640 5.57 .621 .739 9.07 11.3 1.62 1.74

4 .480 3.13 .698 .820 5.89 7.23 1.70 1.82

5 .384 2.00 .764 .882 422 5.11 1.76 1.88

/ 3 \~r =f — I  a = Bohr radius — —
~ \4ffa~ n/ 

0 
me2

0

p0 — Fermi momentum 
(~~~

)‘‘

~ 

2~~ (atomic units)

Fermi energy =

— 
~~~~ = plasmon cutoff momentum, neglecting dispersion = (p~ + 2irw )

½ — p

— plasmon cutoff momentum, including quadratic dispersion.

Ic 
- + 

~~~~~~~~~ 
-8))½) 

~ - ____

C 
2(8 — 

1 ) 10 m~w

w
9

(o) — plasmon energy at cutoff, neglecting dispersion ~~~~~~~~~~~~~~~~~~~~~

w~
(k

~
) — plasmon energy at cutoff , including quadratic dispersion.

~th — positron momentum at plasmon excitation threshold, neglecting dispersion:

0 0
1’th - k + p0.

~th = positron momentum at plasmon excitation threshold , including quadratic

dispersion: 
~th 

— k
~ 

+ p0.
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FIGURE 1: Contours for Self Energy Evaluation

t -

a) Original contour C for the
I

frequency integration. im w

x denotes poles of dielectric

function.

+ denotes a pole of the free

positron Green’s function.

+ occurs in the let quadrant 
+2 

____________________

when ~ > E°(pl), e.g., +
1 

K

and it -~ccurs in the 2nd

quadrant when E°(p—k) > w, Im w’
e.g., +

2
.

b) Close contour in, e.g., 
+2 ______________________

upper half plane.

- Re~

1mw ’
c) Rotate contour in b

by + 900. A residue

contribution arises when -

the pole + lies in the

let quadrant. The contour +2 (~] Y
C’ may be now deformed into Re ~
the imaginary axis.
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- 2m . m

3E~ -
0) uc,

2E0
-

w,( k )  
~~~~~E j :E 11

I 2 m  m
~~

~i~~ i2 I m 2m

k c 2po

FIGURE 2: - Excitations in an Electron Gas

The shaded band corresponds to electron—hole pair excitations in the

free electron gas. The imaginary part of the Lindhard dielectric

function, c1, is non—zero only within this band. w (k) is the plasmon

excitation branch which arises in the interacting gas.
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k : p c o s 8 ÷ p o  k : p c o s 8 + p o  k : p c o s O — p o

- ~-~//,:, -

p 
P0

~0 P

( a )  (b)

‘ç~ *FIGURE 3: Cross Section of Region of k—Space Contributing toL~.1 (p) -
- ph

Figure a, p < p
0; Figure b, p 

> p
0
. 0 is the origin of k—space. Shaded

regions correspond to points k lying both within the domain of integration

in Eq. (21) (within the sphere of radius p centered at k = p) and within

the region of k—space in which urn c(k,-~~(2 pk cos 0 — k2)
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FIGURE 4: Plasmon—Contribution to Im~~~*(p)

—
/ ,i~1=AJ I I / N~,. I ‘ __ 1~

__,’4-I_J P j( / / /‘5-y’.. \
/ ~�i~L/~’ 1&T?V / / /V\ / / A~~7 / /)‘-L 711/

/

Li
(p 2 -2 - /

p 
~~ — —~~p 0_

(p t — 2mw,)~!

( a )  ( b )

The energy conservation condition - w (k) — E° (p) — E°(p—k) is satisfied for k on the

dotted spheres in both cases. Only when its radius is greater than p0 
do the points

on this sphere lie in regions where Im c(k , -i-. (2 kp cog O — k 2 ) )  = 0 (b), and then ,

only points such as k1 in the small oval give a zero of C(k, -i-- (2 kp cos 8 —

(Re ~(k , -k-- (2 kp cos 0 — k 2 )) ~ 0 fo r poin ts such as k2 ) .  Obviously, threshold

corresponds to the p for which the dotted sphere coincides with the sphere centered

at k — p and of radius p0. -32-
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GRAPH 1

Particle—Hole Contribution to Imaginary Part of Self Energy vrs Momentum
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GRAPH 2
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