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THE PREDICTION OF ATTRITION FROM MILITARY SERVICE
INTRODUCTION

Mary situations arise where individuals must be classified into some category on
the basis of observed characteristics. This classification problem {s faced daily by
college administrators, bank loan officers, and company employment managers. Appli-
cants have to be classified ag ""succegses"” or "failures” on the basis of thetr observed
characteristics. Thus, college applicants might be classified as successes or fallures
on the basis of factora such as SAT scores and high school ranking, loan applicants on the
basis of income or net worth, and job applicants on the basis of past training aud experience.

- Beginning with the seminal work of Fisher (reference 1), the classification problem
has been studied intensively in the statistics literature. The approaches to the classifica-
tion problem may be separated into two general classes, those based on a linear probabil-
ity model, and those based on some non-linear probability distribution such as the logistic
or normal. In either approach, an equation for the probability of being a "success” 1g fit
to obeerved data, and the fitted equation is used to predict the success chances of new
applicants. Then, a critical success chance, or qualifying acore is picked. New applicants
whose predicted chances equal or exceed this qualifying score are claasified as successes,
while those whose predicted chances are lower are classified as failures. The optimal
score for distinguishing between successes and failures depends upon the expected cost of
misclassifying new applicants.

Despite extensive discussions of the relative efficlency of linear and non-linrear models
in the theoretical literature on classification (e.g., references 2 and 3), we have not found
& detailed applied comparison of them. The purpose of this research contribution is to
make such a comparigon of these models when they are estimated with very large samples
and used to classify other large cohorts of people, 1

' This work is an outgrowth of a study on attrition of first-term enlisted personnel from
the U.S. Navy. With the advent of the all-volunteer force and higher pay scales for en-
listed personnel, attrition (personnel leaving the Navy before completion of their firs: en-
listment) is becoming more and more costly, and the Navy, as well as the other services,
is under considerabie pressure from Congress to reduce it. [ the process of estimating
equations for attrition probabilities that could be used for screening applicants with high
chances of attrition, we had to answer the question of which emplr!cal method gave the best
discriminazion between attritérs and non-attriters.

1Nerlove and Press (reference 2) do provide an emptrical application of these modeln,
but they were concerned primarily with estimsting probabilities rather than classification.
Also, their work is Lased on fairly small samples relative to the ones “1tilized here.
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Two linear probability models are compared with two non-linear probability models.
The two linear models are the individual linear and grouped linear probability models,
respectively. The two non-linear models, which are based on the logistic distribution,
are the individual logit and the grouped logit models, respectively. The individual linear,
grouped linear, and grouped logit models are all estimated by ordinary least squares
(OLS) or generalized least squares (GLS) while the individual logit model is estlmated by
the method of max!mum likelthood.

These four models are reviewed in detail. Theoretical reasons {or expecting that the
logit models will provide a better fit to the data are noted. Four models of first year
attrition are estimated with a sample of 30, 000 individuals from the cohort of 67, 000 non-
prior service males who enlisted in the U.S. Navy in CY 1973. Next, the ability of the
fitted equations to discriminate between the attriters and the non-attriters in a separate
sample of 30, 000 individuals from the CY 1973 cohort is analyzed. In addition, we analyze
the ability of grouped linear and grouped logit equations fit with all of the data from the
CY 1973 cohort to discriminate between attriters and non-attriters in the CY 1974 cohort
of ron-prior service male enlistees. Finally, we examine the question of which CY 1673
_ equation gives the better prediction of attrition rates in the CY 1974 cohort. '

METHODOLOGIES FOR PREDICTING THE PROBABILITY OF ATTRITION

This section discusses the existing methodologies for estimating attrition probabil-
ities and discriminsting between attriters and non-attriters. It begins with a review of
the individual and grouped linear probability models. The equivalence between the in-
dividual linear probability model and the linear discriminant function is noted. Then, the
two logit models are discussed. Both are consistent and asymptotically efficient and should,
therefore, yield similer parameter estimates in large samples. 'This is an important
point, since the estimation of the individual logit model is considerably more expensive in
large samples. Theoretical reasons for believing that the logit models wln provide a
better fit to the data than the llnear models are examined.

Linear Models
To begin with, let X = (X, ...X,) be a 1 x k vector of variables which determine the

probability that an Individual will be an attriter. Then p(A|X) is the conditional probabtlity

that the Individual will attrite given X. The problem {a to estimate the relationship between

p(A| X) and X. One way to do this is to assume & simple linear relatlomhlp between p(A] X)
and ¥ ' 8.1

PAAl¥) = X8 whergﬁ- .
L

. | m
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8quatlon (1) is called the linear probabilfty model. The parameters in the linear prob-
ability model can k2 estimated two ways.

The Individue.. Linear Probability Model

The individual linear probability model is estimated by ass(gnmg a value of 1 to
attriters and 0 to ncn-attriters. This binary dependent variable is then regressed on.
X. Formally, the model to be estimated 19 glven ln 2):

Y=XB+ ¢ where Y +

r
o"'ol"""h‘
-

. -l

.Y is an n x 1 vector of observations which may be partitioned into an n, x 1 vector of ones
representing the n, attriters in the sample, and an n, x 1 vecter of zeros representing

the n, non-attriters.” X in (2) {s an n x K matrix of observations on the independent
variables. The well-known OLS estimator of () s shown In (3):

f=0xy . | | @

Atter computlng Q the probability that an individual with set of characteristics xl will
attrite is pi = X Q '

The linear model 1s appealing because of the computational ease of OLS and because
of the ability of OLS to handle very large samples. Onu the other hand, it has been sub-
ject to criticism In the literature. A major criticism is that the {ndividual linear model
violates the constam variance assumption of OLS. The error term in (2) is binominal -~ it
can take on the value -X8 or the value 1 - X8. For the ith observation, the variance of
the error term ¢ { is X B (1 -X B) Since the error term 13 heteroskedastic, the OLS

estimator of 8 will not be the mlnlmum variarce linear eatimator. 1

Goldberger (refersnce 4) suggests the following solution to this problem. First, (2)
Is estimated by OLS and the weight =, = Vxlﬁ (1-X8) 18 computed for each tndividual

lee Goldberger (reference 4) for a diucussion of the problem of heteroskedasticity.

-3~
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in the sampie. ‘Then, each le and xl is weighted by le' and Yl/wi is regressed

on Xl/wl. This weighting procedure ylelds a raodel with a constant error variance, and
the regression of Y‘/wl on Xl/wl gives the generalized least squares (GLS) estimator of

2, which is the minimum variance unblased estimator (reference 4, p. 250).

A second criticism of the linear probgbility model is that it does not restrict s
to lie within the unit interval, althougha p outside of this interval could not be inter-
preted as a probability estimate. In addition, Goldberger's procedure for correction
for heteroskedasticity is invalidated when predictions outside of the unit interval are ob-
tained. While the problem of prediction outside of the unit interval should diminish as the
sample size increases, * we still encountered it in the empirical work reported below with
a sample of 30, 000 observations. Nerlove and Press (referen:e 2, pp. 54-55) discuss
some work by Smith and Cicchetti (reference 5) on methods for handling inadmissible
welghts obtained in the Goldberger procedure. We adopted the one that uses .02 as the
estimate of p for the cases where p was less than zero. While this procedure can be
applied to get around the problem of negative weights in the GLS estimation of 8, the
problem of interpreting the resulting equation as a probability model still remains.

A third criticism of the individual linear probability model 18 not so serious as it
first appears. It is often stated that since the error term in (2) is not normally distribu-
ted, tests of significance are not exact tests. Ladd (referencz 6) shows that despite the
binary form of the dependent variable in (2), the usual tests of significance are exact
tests. .

The (unweighted) individual linear model {8 proportional to the lirear discriminant
function (LDF) first proposed by Fisher (reference 1) in 1936 as a means of identifying
binary group membership. The goal of LDF is to derive some linear combinstion of
known characteristics, say Z = \'X, from known data, and then use this linear combina-
tion to identify the group to which a new applicant belongs. For the ith new applicant,

114 Z‘ =}' )(l is less than some critical value of Z, say Zo, the individual 18 classified

as a member of group 1 (say, attriter). Otherwise he !s classified as a member cf group
2 (say, non-attriter).

‘Beginning with the asaumpftqn that X values are distributed multivariate normal
with mean vector u and varfance-covariance matrix £ , the "best” LDF coefficients
are those which maximize # tn equation (4):

12
g = xﬁ . * (4)

1;\Ierlove and Press (reference 2) note that extreme sensitivity of OLS estimator of 8§ to

the sample {in small samples. “- _ -




In (4), u A is the vector of means of the X values fu- the attriters and Mp is the

" vector of means of X values for the non-attriters. Thus, the )\ vector 13 ¢ nosen such

that the ratio of the squared difference between the means of the two groups, \u A and

X'uNA , to thelr variance, \'S)A , is maximized. The ) vector that maximizes (4) {s

given in (5): -1 : | ,
A= (uA-uNA) . &)

The mean vectors u A and HNA and the variance-covariance matrix I are unobservable.
However, ) can be estimated by using the sample averages X ), and -iN 4 a8 estimates

of u, and y and the sample variances and covariances of the X values to egtlmaté

A NA
£ . Thua, A is estimated by (6):

Vesx,-%g) -« e

Ladd (reference 6) has showp that the Q vgctor obtained from (6) is directly pro-
portional to the: regression coefficient vector 8 obtained from (3). This relationshin is
shown in (7) : ' S : o

n-2
=040 - ™

ESS in (7) 18 the error sum of squares from the linear regression (3). Thus, using a

linear discriminant function to assign individuals to group 1 (say, attriters) or group 2
(say, non-atiriters) with a cutting score of zo is equivalent to assignment on the basis

of the linear probability model with a cutting score of P, = (-E-?—Sz—) Zo .

The LDF procedure is not subject tn quite the same criticisms as the individual linear
probability model, even though the parameter estimates froin the two procedures are pro-

. portional to one another. Since the fitted LDF {8 not used to predict probabilities, but

only for classification, it i8 not subject to the criticism that it gives predicted probabilities
outside of the unit interval, In addition, there {8 no problem of heteroskedasticity since
the estimation procedure is not based on the assumption of OLS that the error term is
normally distribrted with constant variance. ,

-5-




Grouped Linear Probebility Modei -

An alternative to the linear probebility model based on Individual observations is the
grouped linear prcbability model. . Ir this procedure, the observations are grouped into
cells besed on all possible con..:'nations of the independent variables. Grouping is easy if
all of the independent variables are categorical variables (e.g., race). If some of the vari-
ables are continuous (e.z., e2ducation level or age), they have to be broken up into a (reason-
ably small) number of intervals in order to group the data., The number of cells is the pro-
duct, over the number of classifiers (e.g., race, age, education), of the mmber of intervals
‘for each classifier. Thus, if there are five clasgiflers and 3 intervals for each classifier,
there will be 35 = 243 cells into which observations can fall.

A :
Once the data are grouped, the proportlon, pj = aj/n’ , of nj individuals in the jth

cell who were attriters is computed. pj is an estimate of the true probability pj that in-

dlvidualsAwho fall into the jth.cell will attrite. To estimate the grouped linear probebility
model, pj is regresred on 1 dummy variables repregenting the different levels of the

clasgsifiers.

One problem wlth a simple regression between pl and X, {s that the error term in

}

the regression (pj ) has a non-constant variance, and hence the OLS estlmator of B is

P
not a minimum variance estimator. The variance of the error term (n’ - pj) is

j(l - j)/n, and is inversely related to the cell size nj .
is handled by‘ welghting each observation by the inverse of the estimated standard deviation

n
error term, E . The weighted regresslon ‘etween p ‘-/:I and

- 1 A
(1 pj) ](1 pj)

This heteroskedasticity problem

n
X ] ‘//\—j/\: gives the minimum varlance unblased estimator of 8 .
Pj(l - Pj) '

Since the dependent variable in the grouped linear model {s actually a rate rather than
a 1 or O criterion variable, as in the indivicual linear model, the grouped linear model seems
more in the spirit of a probability model, Since the dependent variable in the grouped linear
modei lies in the unit {interval zne would think that the predictions with the fitted model would
also be more llkely to lie in this interval. Unfortunately, we have found with a large sample
that this {s not necessarily the cace. '




E_og!stlc Models

Because of their ease of application, the linear probability models are frequently
employed in the literature, espacially the individua! linear model. However, there are
reasons for suspecting that the linear probebility model is & poor specification of palX%).

~McFadden (reference 3, p. 374) notes that the (weighted) least squares estimator of 8
In (2) 18 very semnsitive to specification. error. Further, Cox (reference 7) and Day and
Kerridge (reference 8) show that, under a variety of assumptions, p(AI X) 1s logistic
rather than lirear.! The form of p(A| X) for the logistic distribution s shown in (8).

p(AlX) = where q = . (8)

Re e

1+e K

There are several ways to estimate the parameter vector in (8). If X is indeed
multivariate normal, the best linear estimates of the ¢ vector {n (8) would be the LDF
coefficients in (6). This follows since Xq 18 normally distributed if X is multivariate
normal, and it was shown above that the % vector in (7) is the best linear unblased esti-
mate of ¢ when X {s multivariate normal. 2 However, Halperin, Blackvelder, aad
Verter (reference 9) show that if X {s not multivariate normal, the LDF estimator of o
will not be consistent. Consistent, asymptotically efficient estimates of g may be obta.ned
from efther the grouped logit or individual logit procedures.

Grouped Logistic Model

With a large sample, a can be estimated using linear regression. The loglstic
probability function in (8) can be transformed into the following log-linear equation which
may be estimated with OLS:

ln('f!;p')?" Xe, . | O

The dependent variable here i3 the logarithm of the odds of being an attriter. To estimate
this equation, the data are grouped into cella just as in the grouped linear model. Then
. ln(‘ﬁl/(l - ﬁj) ) rather than ) is used as the rdependert variable in the regression.

1'I‘hat p(A] X) 18 logistic was originally derived from the assumption that X {s multi-
variate normal, but the authors cited show that p(A] X) s logistic for a variety of other
. conditions, including the case where all the independent variables are dichotomous.

2This implies that better estimates of attriiion probabiiities can be obtained by plugging

the LDF coefficlents in (5) Into (8) than by converting LDF parameter estimates to individual
linear probability model estimates via (7) and estimating attrition probabtlities with a iinear
equation,

-7
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One problem is that the error term in this regression has the non-constant variance

——-(—I—E-PT— . Welghted regression, whére each observation s weighted by J j j(1 pj).

Py
yields the generulized least squares estimator of a . This grouped logit procedure, due
to Berkson (reference 10), is known as the minimum logit chi-square method. Cox
(reference 6) shows that under very general conditions this method ylelds consistent,
asymptotically efficient estimates of a .

Individual Logistic Model

The logistic probability function in (8) is a non-linear equation which may also be
estimated by the method of maximum likelthood. Maximum likelithood estimatfon of (8)
was developed because the grouped logit procedure is inapplicable in small samples
where many cells are empty or have only a few obgervations. As Nerlove and Press
(reference 2, p. 60) state, the maximum likelithood procedure yields parameter estimates
that have desirable small sample properties.

To estimate (8) by the method of maximum likelthood, the likelihood function i{s formed,
and the a vector which maximizes the value of the likelthood function is found. Since in-
dividual observations are used, we call this model the individual logistic model. The
likelthood function ts:

Xo 1
L= m, —2 g  — 10
Y 1 1 +eXa Yy 0 1 +eXa

Since (10) is not a simple linear expression, the a vector has to be estimated by
a non-linear, {terative technique. Using the Newton-Raphson technique, the o vector
is estimated as follows. The logarithm of the likelthood function L is computed, and
then the partial derivative of 1nL with respect to each a , (@1nL/3 al), is computed.

Denote this k x 1 vector of partial derivatives by £ (. This vector is called the "score."
The point at which £ (a ) = 0 18 called the "efficient score, " since the likelthood function

is maximized at this point.

1'1"he equations that make up the efficient score are similar to the normal equations in a
Unear regres~ion, but are non- llnear and camiot be solved analyti~ally as can the normal

equationas.
-8.
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Next, the k x k matrix of second partial derivatives of 1nL with respectto a ,

(3 2lnl./acxla aj). is calculated. Denote this matrix by £'. The vector « is then esti-

mated iteratively as follovva:1

A A
a =a

m m-x‘f"m Tl“a) . 1)

The m subacript refers to the mth iteration. (e’ (c:.) ] is the inverse of £’ ( o.)
On each tteration, (4" (2) T and 2 @), are evaluated with the sample data. The best
fit (l.e., the o vector such that £ (a) = 0) is found when [z (a )] t (a ) converges
to zero. The "start values” in the iteration piocess are the LDF coefficients in (6).

The ML estimate of o {s normally distributed with asymptotic covariance matrix
(e’ @, ] . Thus, a t-test of the slgnlﬂcance of a lsa, /S where Sy 18 the square
root of the ith diagonal element of [t'(a.) 1! ‘

ll't was noted above that £ (a) = 0 cannot be solved anealytically for a. However, equation
(11) for Q is derived as Zollows, If £ (a) is expanded in a Taylor series around the
arbltrtrlly selected point a, s then

fE)=fl)+@-a) L) +1/2@ e ) L @) ...

Ignoring 1/2 (a.-ao)2 £ (ao) and other higher order terms, setting £ (a) equal to
zero, and solving for a , we find that,

ama (0@ ey -

" 'This equation gives a value for o by expanding ¢ (o) around the arbitrary point o .

The best firting o, a_, 1s found by iterating =1 aun:u[:'(ao)] £ @ )vmshe..

= == =

s i




Finally, it is worthwhile te note the similarity between parameter estimates obtained
from a model based on the logit distribution and those from a model based on the normal
distribution. Instead of aesuming a logit distribution, one could assume that attrition
probabilities follow & normal distributioa with unit variance (a2 =1):

Xy, -1/2t”
p= f — d& o az)
The parameters in (12) must be estimated by maximum likelthood. This model is called

the probit model. While the logit model in (9) and the probit model in (12) look different,

2
L

3 * .

‘ | o VT
Therefore, {f the o obtained from the logit estimation procedure is weighted by el
it will be virtually the same as the y obtained from the probit estimation. The logit

thelr cumulative distributions are very similar. The logit distribution has variance

“and probit estimates differ only by the scale factor V-—;?— . Logit estimation is used

more often than prokbit estimation, because the logit probability function is closed form
(does not have an integral that must be evaluated) and {s therefore much easier to :stimate.

EMPIRICAL RESULTS ‘ ' L !

The four models discussed above were applied to data from the CY 1973 cohert of
non-prior service male enlistees. The dependent variaile was whether or not the {ndividual
was lost before the end of one year of service. The independent variables were years of
education, mental abllity as measured by the Armed Forces Qualification Test, marital
status, age, and race, Education wae split Into three categories, less than 12 years, 12
years, and more than 12 years. Individuals were classified into five standard mental
groups (I, II, ITIU, O'L, and IV) on the basis of their AFQT scores. Age was split into
three cai=gories, less than 18 years, 18 or 19 years, and greater than 19 years. The

- various combinations of education level, mental ability, age, race, and marital status
(3x5x3x2x2) give rise to 180 cells that individuals can fall into.

The CY 1973 cohort contained approximately 67, 000 men. We divided the first
60, 000 of them into 2 samples of 30, 000 each (with 7, 000 left over) by alternatively
assigning individuals to an "A"” sample and a "B" sample. Then, the four models de-
scribed above were estimated with each sample of data. Splitting the cohort into samples
of 30, 000 was necessary for comparing the individual logit model with the other models,

«10-




becauee the Mmum likelthood computer program uaed to estimate this model can
accommodate a maximum of 30, 000 observations. Even with 30, 000 observations, 2.5
hours of computer time were required to estimate it.

After che four models were fit with euch sample of data, the ability of each fitted
equation to discriminate between the attriters and the non-attriters in the oti:er (crces-
validation) sample was examinad. On the basis of qualifying scores ranging from 60 to
100, each {ndividual in the cross-validation sample was clagsified as an attriter oz non-
attriter. Thus, if the qualifying score is 75, individuals who have lower survival chances
are labeled attriters and individuals with equal or higher scores are labeled non-attriters.
For scores ranging from 60 to 100, we examined: (1) the percentage of the cross-valida-
tion sample that would be selected, (2) the "hit" rate, or percent of sample correctly
identified as eithér attriters or non-attriters, (3) the "false negative" rate, or percent
of sample labeled as attriters who actually stayed, and (4) the "false positive” rate, or
percent of sample labeled as ron-attriters who actually left.

The Parameter Estimates

Table 1 shows the parameter estimates obtained by applying the four procedures
described above to one of the samples. Estimates obtained with the second sample are
contained in appendix A, The estimates shown in the column labeled "Individual Linear"
are those obtained with the weighted regression procedure described in the last section. 1
Table 1 also shows the LDF coefficients, which are proportional to the unweighted esti-
mates (not shown) of the individual linear probability model.

Several cnnclusions are apparent from table 1. With the large sample used here,
each of the two grouped models gives virtually the same fitted equation as {ts individual
counterpart. Especially in the ~ase of the two linear models, the parameter estimates
obtained with the grouped linear model are in most cases the same down to the third dec~
imal place as those obtained with the individual linear model. Differences in the predicted
attrition probabilities obtained with the two linear equations are quite small. Although not
as obvious, the differences in the estimates from the two logit models also imply trivial
differences in estimated attrition prol:abmt!es.2 The parameter estimates from either

lxt was noted above that the unweighted estimates of the individual linear probability

“model gave predicted attrition chances of less than zero In some cases. This occurred '

for individuals who had more than 12 years of education and who were in mental group I.
These individuals made up about 2 percent of the sample. The problem of negative weights
in the welighted regressfon procedure was handled by assigning these irdividuals an attri-
tion probability of .02 .

zA difference in a parameter est‘mate between the two procedures of about .10 will tmply
a difference In the predicted attrition probability of about .01 . Most of the differences
between the parameter estimates obtained v/ith the two logit procedures are considerably
smaller than .1C . 1
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of the two logit procedures differ from the LDF coefficients on precisely the variables
that have the most impact on the probability of attrition, the education and mental group
varisbles. For most of the other variables, the deviations of the logit coefﬂclenta from
the LDF coefficients are small,

The close ccrrespondence between the parameter estimates from the two logit
modeis is to be expected, since both have been shown in the theoretical literature to be
consistent and asymptotically effictent. The similarity of results is important, because
with large samples the individual logit model is conslderably more expensive to estimate.

The Selection Ratlo and Distributions of Correct and Incorrect Predlctlona lor Linear
and Logit Models

Figures 1 througfx 4 show the selection ratio, hit rate, false pcsitive rate, and
false negative rate for the individual linear and logit models for qualifying scores ranging
from 60 to 100. While the distributions in these figures are based on the individual -

linear and logit models, the distributions obtained with the grouped models were virtually

the same. The differences that exist between models are between the lincar models and
the logit models, not between ghe two versions of the same model.

Looking first at figure 1, at a qualifying score of 69, all of the cross-validation
sample would be admitted. As the qualifying score is raised, obviously fewer people
are gelected. The sizeable differences betwean the selection ratios implied by the two
methods occurs in the range of qualifying scores between 74 and 82. In this range, a
higher percentage of the cross-validation sample would be selected with the logit model
than with the linear model. The maximum difference between models occure at a qualify-
ing score of 79, where S percent more people would be selected using the logit model.

The hit rate distribution 18 shown in figure 2. Again, the range where sizeable
differences In hit rates occur lies between cutting scores of 74 and 82. In this range,
the logit model gives a spmewhat higher hit rate than does the linear model. Again, the
maximum difference occurs at a qualifying score of 79. Here the loglt model gives a 3
percent higher hit rate than the linear model.

Figures 3 and 4 show the rate of false positive predictions and the rate of false
negative predictions for the linear and logit models. As figure 5 shows the rate of false
t-oitive predictions declines as the qualifying score is raised, because only those whoae
survival chances exceed the higher qualifying score are selected. Again, most of the
differences between the models occuyr in the range 74 to 82, At the qualifying score of

79, the logit model gives a one percent higher rate of false positives than the linear model.

The higher rate of false positives for the logit model in the range 74 to 82 is due to the
fact that in this range, a higher percentage of the applicant cohort would be enlisted ualng
the logit model (recall figure 1),

-13-
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Looking at the rate of false negative predictions In figure 4, we see again, that, the
differences between the logit and linear models occur in the range 74 to 82. Again, the
maximum difference occurs at the qualifying score of 79, where the logit model has a 4
percent lower false negative rate than tae linear model.

To summarize, our results indicate that individuals who have very low or very high
chances of early attrition will be correctly classified by either model. Thus, for qualify-
ing scores below 74 or above 82, the two models give about the sume rate of hits, false
positives, and false negatives. However, in the range between 74 and 82, the logit model
gives a higher rate of hits and false negatives, but a higher rate of false positives. It is
significant that this is the area of greatest overlap between attriters and non-attriters.
Seventy-eight {s the everage SCREEN score of attriters, while 82 is the average score of
non-attriters. In the range where overlap occurs, the logit model gives slightly better
discrimination between attriters and ron-attriters than the {inear model.

Grouped logit and grouped linear equations fit to the whole CY 1973 cohort are found
in Lockman (reference 11). These equations are reproduced in appendix B. The Navy is
now using tables based on the grouped logit model to screen recruits, so we wanted to de-
termine how well these two models distinguish between atriters and non-attriters in an-
other cohort. Therefore, these equations were applied to the CY 1974 cohort. The selec-
tion ratio, the hit cate, false positive rate, and false negative rate distributions are shown
in figures 5,6, 7, and 8, respectively. Although the patterns are similar to the ones shown
previously, the differences between the logit and linear models are much less pronounced.
Whereas we found virtually no differences in the lower tatls of the distributions in figures
1 through 4 above, we do find some differences in figures 5 through 8.

Prediction of Attrition Rates with Linear and Logit Models

In addition to using the linear or logit models for classification, we are also Interested
in just how well they predict future attrition rates. Even if the models are not used for re-
cruft screening purposes, they could still be used to predict the attrition that will be suffered.
As noted above, theory tells us that the logit model s a better specification of P(A| X) than -
the linear model. If so, the logit model should have smaller errors in predicting future
attrition rates than the linear model. ‘

To see if this {8 true, we predicted the attrition rates for the 137 cells in the CY 1974
cohort which contained observations from grouped linear and grouped logit equations based
on all of the data from the CY 1973 cohort. We computed two values reflecting khe predic-
tive ability of the two equations. The first is an error sum of squares, £ (1:j - pJ . The

second s an error sum of squares which weights the square of the error by the number of

observations in the cell, T Nj(pj ﬁj) . This statistic should provide a better comparison

of prediction errors for two reasons. First, it weights each error by the "cost” of the error;
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predlctlon errors are more expensive the more lndlviduals there are in a cell. Second,

it could be that the larger errors are occurring in the upper or lower tails of the proba-
bility distribution where the cell sizes are small. The linear model might be predicting
as.well in the middle of the distribution (say, where the uttrition probabilities lfe between
.land .3 tut doing poorly in the tails. If this {s so, the difference between the models in
LN, (1:0j j) should be smaller than the differences ln Z (pj 61)2 .

Table 2 presents the results of these computations. Based on either measure, the
logit model is found to give smaller prediction errors than the linear model. It is some-
what surprising that there 18 a larger (percentage) difference in the weighted error sum
of squares between the models than in the unweighted error sum of squares. Differences

. between methods were not just due to the linear model having larger prediction errors in
small cells or cells at the extremes of the probability distribution. These results indicate
that the Ioglt specmcatlon of P(A| X) was a better predlctor than the linear specification

of P(A| X).
TABLE 2

TWO MEASURES OF PREDICTION ERROR, CY 1973 EQUATIONS
APPLIED TO CY 1974 COHORT

Grouped logit Grouped linear

z 6, - Sj)z 4.08 4.38
A2
NG, - B) 165.15 205.76
171
CONCLUSIONS

. Several general conclusions emerge from our empirical analysia., First, with large
samples, the individual linear ard logi* models give virtually the same fitted equation as
their grouped counterpart. This ls essentially an emplirical demonstration of the fact that
each individual model hag the same asymptotic properties as its grouped counterpart. Know-
ing that the grouped logit model based on linear regression and the individual logit model
based on maximum likelithood yteld the same fitted equation is extremely usef:l, because
maximum likelthood estimation {s computationelly expensive in very large samples.

Second, the logit models are found to be superior to the linear models on 1everal
counts, For a range of qualifying scores most ltkely to be used by the Navy to separate
acceptable from unacceptable applicants, the logit modela give somewhat better prediction
of actual success or failure, They are also found to give 8 lower rate of "lalse aegatives"




(predicted fallures who are actual succesa=s). However, thcy do give a slightly higher
rate of "false positives” (predicted successes who are actual faflures).

Third, the grouped lopit model based on data from one cohort (CY 1973 enlistees)
was found to give better estimates of attrition rates of different groups in other cohort
(CY 1974 enlistees) than the grouped linear model based on the same data. Goodness of
fit was measured by both weighted and unwelighted error sums of squares in prediction.
Consequently, the grouped logit model is the best model for the prcdiction of attrition
with very large samples. . ' ,

=20~
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APPENDIX A

ESTIMATES OF PARAMETER VALUES,
SAMPLE B FROM CY 1973 COHORT

B T PR AR G IR 1, L R




Variable

Bd<12

Bd> 12

Mental Group I

Mental Group It

Mentsl Group IIL

Mental Group IV

Marftal status (married)
Age < 18

Age> 19

Race (Noln-Cnuculnu)
Constant

N

‘"t" values in parentheses,

APPENDIX A

BSTIMATES OP PARAMETER VA LUES,
'SAMPLE B PROM CY 1973 COHORT

‘ ‘ Linear
Individual Grouped Individual Grouped discriminant

linear linear logit logit function

112 117 -727 -.713 -.849
(18.01) (15.78) (22.99°  (16.45) (20.92)
017 .02 .252 o .201 181
(2.32) 2.88) ( 3.25) ( 2.13) ( 2.74)
.060 .064 .848 752 .460
(1.79) ( 7.20) ( 6.70) ( 5.04) . (5.50)
.017 .018 .199 .197 .140
( 3.34) (2.90)  (4.47 (3.6 (3.32)
-.075 -075  -.484 -.480 -.551
(10.64  (9.08) (10.83) (8.85) . (4.37)
-.110 -a11 -652 -.642 O -.794
3.95 2.1 (14.58) (11.56) (15.38)
-.061 -.042 -.435°  ..487 =470
( 6.21) ( 3.94) (6.8  (6.67 ' 7.10)

-.026 . -.014 -.078 -.104 -

(3.4 (1.55) (1.75) ( 2.05) (1.67)
-.017 " -.020 -.148. -.13% -.134
(3.18) ( 3.28) ( 3.31) ( 2.70) ( 3.25
.013 .022 .075 .035 113
(1.67) (2.48) (1.68) ( .67 ( 2.10)
.890 .890 2007 2100 . 2,141
(z4.20) (20.74) ‘ (43.21) (22.16)
30, 000 131 30, 000 131 30, 000

A-1
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APPENDIXB

PARAMBTBR BSI‘IMATBS FOR GROUPED LOGIT AND GROUPED LINRAR WDBLS. .
‘ . BASED ON WI'AL cy 1’9’73 GG%%RT ‘
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PARAMETER ESTIMATES FOR GROUPED LOGIT AND GROUPED LINEAR MODELS,

Variable
Rd< 12

Ed> 12

Mental Group I

Mental Group I1

Mental Group ITIL
Mental Group IV
Marital status (married)
Age < 15 |

Age> 19

Race (Non-Caucasian)
Constant

N

APPENDIX B

BASED ON TOTAL CY 1973 COHORT

Grou logit

-.701
.20

.314
( 4.42)

.989
(8.37)

.254
( 6.22)

-.365
 (8.85)

-.597
(4.23)

'0389
( 6.95).

'0093

-.280
( 6.43)

119
( 2.64)

1.976
(57.35)

137

B values in parentheses,

Grouped linear

-.111
(19.03)

.031
( 4.49)

.079
(10.85) .

.026
( 5.28)

e 052
{ 7.91)

-.100
(13.44)

-.038
. ( 4.36)

'0015
( 2.89)

-.N32
( 5.43)

034
( 4.89)

.882
(26.89)

137




