
Fr
AO—A063 Th1 DOUGLAS AIRCRAFT CO LONG BEACH CALIF F/G 1/3

AIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 3. PROGRAMMING——ETC (IJ)
DEC 77 R C MORRIS $33615—75—C—3105

UNCLASSIFIED MDC J 71714 PT_ 3 AF FDL—TR—77—99—P T—3 NI.

l A G
C I ~ 74

S

I.11~~E_I~
171

PART 3
~~~~ 

.~~~~~~~ ~~~~~~~~~~~

AIRCRAFT WINDSHIELD BIRD IMP4.cT MATH MODEL,

• PART 3 PROGRAMMI NG MANUAL

R.C. Morr is
Douglas Aircraft Company
McD onnell Douglas Corporation
3855 Lakewoo d Boulevar d
Long Beach , California 90848

~~~~~~~~~~~~~~DEC 211975

DECEMBER 19 11 LJ11l!~U9J..b1i U l~

TECHNICAL REPORT AFFDL-TR-17-99

~~~~ uJ
Final Report For Period July 1315•Dec e mhe r 191 7

IA~pproved for public release ; distribution unhimit!!j

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT -PATTERSON AIR FORCE BASE , OHIO 45433

c ’~ 12 ~~~~~~~~~~~~

- 

+
_ _ _ _ _- - --—~~~~~ + ‘ - ~~~ ~— + + .~~~ + .~~~ - . — —-~~~~ 

~~~~
-- — - — — -

- + +~ ______________ -

—_-_ ,_.~~~~~

S
•

•

NOTICE

When Governmen t drawings , specifica t ions , or other da ta are used for
any purpose other than in connection with a definitely related Govern—
.ent procurement operation, the United States Government thereby incurs
no responsibility, nor any obligation whatsoever; and the fact that the
Government may have formulated , furnished , or in any way supplied the
said drawings , specifica tion s , or othe r data, is not to be regarded
by implication or otherwise as in any. manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This report has been reviewed by the Information Office (01) and is
releasable to the National Technical Informa tion Service (NTIS) . At
NTIS, it will, be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for publication.

~~~~~ ~~~~~~~~~‘—~~--- <~?~k~ tJj*
r~-~~LT. Y G. MOO ROBERT E. WITTMAN

Proj ect Manager Pro gram Manager
Improved Windshield Protec t ion ADPO Improved Windshield Pr otection ADPO
Vehicle Equipment Division Vehicle Equipment Division

FOR THE COMMANDER :

Acting Director
Vehicle Equipment Division

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —
- ~~~~~~~~~~~~~~~~~~~~~~ ~~~.~~~J_ . _ _..-._ _ _  -~~~~~&- _— _~~_~_ —_—~~~~- -_— - _ _ - - - - — • - -



I

sccu.r r, c~.4s$ ,’ IcAiiew ~~~ N14 4G1 I$~~~~dS Da’. EiII.r’d)

REPORT DOCUMENTAT~0N PAGE READ ZNSTRUCT~O~ S

_____ MO ~ ~~~~~~~~~~~~~ CATA~.OG NgNSCa —

~~~~

LPOPI T NUNSE~~

BEFORE COMPL.ETt~ G FORM

~FFp~~TR-77-99 “PART ~ _________ 1~~
- PT—~~~~

7
~~~~ 

- ...t..; ~L~zx’.t s~’ ~~~~~~ t r~~nj~ y ~~~~~~~~
-

~~~~~~~~~~~
_

i

~~~~~~~
~~ CRA FT ~~NDSHIELD BIRD BIPACT MATH MODEL, t~AL ~EP~~T~
PART 3~’ PROGRAt’1MItlG j j,~NUAL. yl~~~4~ - Dec~~~~~~• 77~

I. AuTMO~~(ij ~~~~~~~~ Sfl $fl~~~~ ~~~~

~~~~~~~~~~ U
l ‘)MnC~J7l74 - PT—4~’7

‘R C j Morri sIL ~ ~~~~~l5-75-C-3l~ 5~~~~
$..-4INrO~~MIWG O~~GAP4 IZ A T I O N NAM E AN~~.4~OD~~ES$ ~@. PUO~~.ai~ ELEMEM? . ~ mOjE’ Yas ~

• Douglas Ai rcraft Company ~ ~))
A*(A WORK UNIT N

Task:McDonnell Douglas Corporation j • ~
Project:

~~~~~ 2~?.~I7 
~

Long Beach, California 90846 Work UnIt: 01 L_
II. cowT~ oLLlN,p q cr.cI NAMt A NO AOO~~~ S$ Z ME OAT QAT E
Air ~orce ~i-i aht ~vnann cs LaQoratorl~s (AFFDL /FEW ______

_
Mr force Wri~ht M~ronautica I i aboratorles ~ ~~~~~~~~~~~ ~* ~~~~~ r ue,Air Force Sys tems Comand
Wright-Patterson Air Force Base, Oh f o 45433 506
4. MONITORING AGENCY NAME a AQQ~~fl5( ff ~j ft.r ~~t ?rs~u Cañt,.UU, . OUSe.) IS. SCCU~~ITY Cl ASS. (.1 Mm r~~on)

~~~~ 
-

Unclassified
I I.. DCC L 4544 ~ ICATIQNJ DOWN G~~AOIMG

SCNCOULE

4. OIS1~~ iSUt IOw STATEMENT (•~ AS. R~~ .rf)

Approved for public release; distribution unlimi ted

D D . C\
17. DISTR ISUTION STAT EM ENT (.~

A. ab.Iracs .,,t.,.d Ut II.cb 20 U dUt. ,~~iS fr~~ ~~~~~~~

~~~~~ fl1~[~

IS. S PPL £NTA ~~Y NOTES 

21 1978

u3u u
B

14. ~~5y W O~~OS (C.ntffiv. .i .v.r .. msd. St n.c...ay ..W SI.~,SSSy by bUtch nt b.~)

Ai rcraft Canopy Finite Element Linear
Analysis Computer Program Impact Math Model
Applica tions Damping Laminate Matri x Methods
Bird Dynamic Large Displacements Modal

AI$ 1~~AC T (C~ iIffius ~~~~~~~~~~ mid. IS n.c.. . y ~~4 i4.ntSSy by bUtch ~~~ bce)

This report describes the Bird Impact Math Model (IMPACT), a computer program
designed especially for the purpose of calculatin g transient dynami c responses
of ai rcraft windshield and canopy systems, composed of lami nated transparencies

~~~~~~~~~~~ and supporting structures , to bird Impact.

Part 3 describes the design , opera tion , and implementation of the computer
$ program code. Each of the seven programs ‘comprising IMPACT are described

~~~
‘I

DO ~~ 1413 CD r O N  ~~, I NOV 41 IS OSSOLCI’ C ~,.2j.. (
~ 

4LSO ô
S,r~ olo2.o:: ~ 440 

• 
sECURITY Cl,A1*IF CA? ON O~ T~~u$ ~ 4G( 

~~~~~~ 
0.. ~~~~~~~~~~~

~1
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • . - -- --


~~~~~ TIII~~~~~ 1 : I  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

UNCLASSIFIED
.I~t,.II’uTy CLASSIFICATION OF TI4IS PAOC(WT’mn 0.s. Esf.,.d) 

-

19. KEY WORDS (Continued) 
- •

Multi-layer Thermal •

Non-l inear - Transient
Plastici ty • Transparency

- Structural model windshield -

~0. ABSTRACT (Continued)•

‘indi vidually i~ terms of coding strategy, internal and external s torage
utilizati on, limi tations , error detection , and interfaces between prograim .

- Detailed descriptions of each subroutine are also incl uded.

‘4?

j eft

- surusiTy ‘ L  &SS ~~~~~~ ~~ I Tw ;$  •4~~~~ %i Tt~ ,q 
~~•Is E’ ’...d)

_ _  

-

~~~
~~~~~~~~~~~~~~~~~~~~ ..— -‘- -.— - - —•—--•—• - -

_ _ _ _ _ _ _ _ _ _  -‘ ~~~~ - - ~~~~ • , - - — • - -•~~• -•  - -~~~~~~~ -- - • —~~~~~



Th

FOREWORD

This report is one of a series of reports that describe work performed
by Douglas Aircraft Company, McDonnell Douglas Corporation , 3855 Lakewoo d
Boulevard , Lono Beach , Cal i fornia 90846, under the Windshield Technol ogy
Demonstrator Program. This work was sponsored by the U.S. Air Force Flig ht
Dynamics Laboratory, Wright-Patterson Air Force Base, under Contract
F33615-75-C-3105, Project 2202/0201.

This report is divided into three parts. Part 1 is entitl ed “Theory
and Appl ication ”, Part 2 is ent i t led “User ’s Manual ” , and Part 3 is entitled
“Prograriining Manual. ” The principal investigators and authors were P. H. Denke
for Part 1, G. R. Eide for Part 2 and R. C. Morris for Part 3. The significant
contributions of the following Individuals in the development of the computer
code and preparation of Part 3 are gratefully acknowl edged: J. E. Anderson ,
L. Chahinian , T. W. Gl adhill , and P. R. Lindsey.

Mr. D. C. Chapin , Capt., USAF Ret., was the Air Force Project Manager
during the conceptual phase of the work reported herein. Lieutenant L. G.
Moosman (AFFDL /FEW) succeeded Mr. Chapin during the conduct of the program.

Mr. J .  H. Lawrence , Jr., was the Program Oirector for the Qouglas
Aircraft Company.

This report was submitted to the Air Force on 7 December 1977, and
covers the work performed during the period July 1975 through December 1977.

v:;
~!tC Si~oflcn

• ,- Doc 
~~~~~ ~4~L~oo Q

0

At -

lii

TABLE OF CONTEUTS
PAGE

I INTRODUCTION • 1

GENERAL . . 1

SYSTEM COIIPONENTS - 1
CODING CHARACTERISTICS 2

II SYSTEM OVERVIEW 5
PROGRAM FUNCTIONS -5
DATA FILES . 6

F lie Formats 8
F i l e Contents . . 10

USE OF UPOATE 10

III OPERATIONAL CONSIDERATIONS 17

GENERA L 17
EXTENDING BLAN K COMMON 18
OVERRIDING FILE NAMES . .

SYSTEM CONTRO L CARDS . . .
IV LAMINATE GENERA TO R 29

OVERV IEW 29
FILE UTILIZATION 30
LIMITATIONS 31

V INITIAL GENERATO R 33OVERVIEW . 33
Special Input for Check Out. . . . 33
Organization 34

f Operati on 36
• Reordering of Degrees of Freedom 38

~

JT

- —.. J’~~— - ~~ • — —

• -~~~~ ---
~~
----—---

PAGE
OVERL..AY 42 k...d’

FILE UTILIZATION 43

CORE UTILIZATION 49

LIMITATIONS, 52

VI LOADS GEUERATOR 55

OVERVIEW . . 55
FILE UTILIZATIOM 56
LIMITATIONS 57

VII LINEAR INCREMENTAL SOLUTION 59
OVERVIEW 59

Current Approach 59
Organization 60
Operation 62

FILE UTILIZATION 68
CORE UTILIZATION 71
LI~iITATIONS 72

VIIi NONLINEAR INCREMENTAL SOLUTION 75
OVERVIEW 75

Development History • • • .

Organization 77
Operation 79

FILE UTILIZA TION 86
CORE UTILIZATION 90

LIMITATIONS 93
FUTURE DEVELOPMENT 94

Applicability of Original Design Concepts 94
Design and Functional Improvement . 101

IX POSTPROCESSOR 105 -
OVERV iE W . . 105
FIL E UTILIZAT ION 106
COR E UT ILI ZATION

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 107
LIMITATIONS  .  los

vi

L 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

—--S _ _ _ _ _ _



— —-~~---• - — ----5-..--
PAGE

X PROJECTED IMPROVEMENTS . . . . .  . .   111
• EFFICIENCY  111

EXTENDED CAPABILITY . . . .  . . . . . . .   112

APPENDIX A LAMINATE GENERATOR ROUTINES . .  113
B INITIAL GENERATOR ROUTINES AND LABELED

COMMON BLOCKS . . . . . . . . . . . . . .  139
C LOADS GENERATOR ROUTINES . • • 291
0 LINEAR INCREMENTAL ROUTINES AND LABELED -

CO~ 1ON BLOCKS 311
E NON-LINEAR INCREMENTAL ROUTINES AND

LABELED COf~T1ON BLOCKS 375
F POSTPROCESSOR ROUTINES AND LABELED

COIVION BLOCKS . . . . . . .  . .  . .  .  453

RE FERENCES . * . . . . . . . . . . . . . . .

I

v i i

— ~~~~~~~~~~ - —



____  r

LIST OF ILLUSTRATIONS

PAGE

2.1 Data Flow Through, a Complete Sol ution .. 7
2.2 Function of Update in Preproces s ing . 14

5.1 Initial Generator Organizati on 35
5.2 Initial Generator Joint , Constraint, and Material

Processing Fi les .. 44
5.3 Ini tial Generator Element Processing Files 45
5.4 Ini tial Generator Output Processing Fi les . . . 46

7.1 Linear Incremental Solution Organization . 61

8.1 Nonlinear Incremental Solution Organization 78

— E.

viii

—5—-- - - — —-S. S - - --



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_____________ - -iS
._--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

— ----5- •—..——--- - - -S ______

LIST OF TABLES

PAGE
2.1 CONTENT OF MASTER MATRIX DATA FILES 11
3.1 PROGRAM AND FILE DECLARATIONS 20
3.2 SYSTEM CONTROL CARDS FOR A COMPLETE SOLUTION 21
3.3 INPUT DATA FOR A cOMPLETE SOLUTION 22

. 5.1 CONTENTS OF MATRIX ECT 39
5.2 CONTENTS OF MATRIX EVT 39
5.3 INITIAL GENERATOR LABELED COMMON REFERENCES 50

7.1 LINEAR INCREMENTAL SOLUTION PROCESSING FILES 69
7.2 LINEAR INCREMENTAL SOLUTION LABELED COMMON REFERENCES . . . 73

8.1 NONLINEAR INCREMENTAL SOLUTION INITIALIZATION PROCESSING
FILES 88

8.2 NONLINEAR INCREMENTAL SOLUTION PROCESSING FILES 89
8.3 NONLINEAR INCREMENTAL SOLUTION LABELED COMMON REFERENCES. 92
8.4 ROUTINES MODIFIED DURING NONLINEAR INCREMENTAL SOLUTION

DEVELOPMENT 95
8.5 NONLINEAR INCREMENTAL S LUTION ORIGINAL DESIGN FILE

ALLOCATION 99
8.6 NONLINEAR INCREMENTAL SOLUTION ORIGINAL DESIGN PROCESSING

FILES 100

A INDEX TO LAMINATE GENERATOR ROUTINES 115
B INDEX TO INITIAL GENERATOR ROUTINES AND LABELED COMMON

BLOCKS 141
• C INDEX TO LOADS GENERATOR ROUTINES 293

0 INDEX TO LINEAR INCREMENTAL ROUTINES AND LABELED COMMON
BLOCKS . . 313

E INDEX TO NONLINEAR INCREMENTAL ROUTINES AND LABELED
COMMON BLOCKS 377

F INDEX TO POSTPROCESSOR ROUTINES AND LABELED COMMON BLOCKS . 455

ix- i
_ _ _

L --~~~~~~~ -— - -

SECTION I
INTRODUCTION

GENERA L

The Bird Impact Math Model Computer Program (IMPACT) is a system of
computer programs for calculating the transient dynamic response of a
windshield system subjected to impact loading. The programs were de-
signed and coded to provide a reliable, efficient, and convenient tool
for use in the windshield design process. Effective appl ication of
IMPACT should reduce the time and cost required for both design and -

testing of these complex structural systems.
- S

This document provi des detailed descriptions of the computer code
intended for use by the engineer/programer responsible for implementa-
tion and maintenance of the IMPACT system. The theoretical development
and the resulting formulations of the analytical approach to the solu-
tion process are described in Part 1 of this report. Part 2 of this
report is intended for the engineering user and describes modeling tech-
niques , input data requirements , and app lication of the programs to
windshiel d design problems.

SYSTEM COMPONENTS

The IMPACT system Is comprised of seven stand alone computer programs
designed for batch mode operation . In addition , the des ign of the system
provides for the optional use of the COC utility UPDATE, an editing and
maintenance program for fi les of card images .

The seven stand alone computer programs which comprise the IMPACT
system are

• 1) Laminate Generator
2) Initial Generator
3) Loads Generator

4) FORMAT Phase II

5) Linear Incremental Solution
6) Nonlinear Incremental Solution

7) Postprocessor

The interface between these programs consists of card image or bin-
ary matrix data stored on sequential external files. The design of the
system provides for optional use of some of these programs when applying
the system to a given design problem.

Six of the seven computer programs in the IMPACT system are new and
were written specifically for the Windshield Technology Demonstrator
Program. The seventh program is a modified version of FORMAT Phase II ,
the matrix abstraction phase of the FORMAT system . These modifications ,
made In conjunction with this effort , are documented separately from
this report as supplements to existing FORMAT documentation (References
6 and 10).

Some code for the solution of eigen problems and theory for the
sorting of tabular data were obtained from outside sources. The eigen
equat ion solver , used in the incremental solution of the equations of
motion , is the RGEIG module obtained from the EISPACK library of eigen
problem solvers (Reference 16). The sort routines (QKSØRT, et al.) used
In the ini tial matrix generation step, are original code based on sorting
theory developed by Knuth (Reference 17).

COOING CHARACTERISTICS

All coding in the IMPACT system was done in the FORTRAN IV program-
S

rning language. The code is oriented to the CDC computer due to the
followi ng characteristics.

1) No double precision data or arithmetic operations are used in
l ieu of the accuracy of the 60 bit word length.

2) Alphanumer Ic data is stored at 10 characters/word.

2

V

- 5 - ,- -~~~ - -~~~~ - —---~~ - ~ - - — ——-—- —_ _

5- — - -5--—-- —— --- 5---~~

3) Use ~f the CDC FORTRA N u~ilit1es ENCODE/DECODE is employed.
4) The character “k” Is used as delimiters for alphanumeri c char-

acter strings in some FORMAT statements.
5) The system Input file -Is reposItioned to re—read data In the

input stream.
6) The system design- is enhanced by the use of the COC utility ,

UPDATE .

Mi external files used by the code are sequential , no random access
techniques are employed.

The development of the IMPACT system took place on the CDC CYBER-74
computer at the ASD Computer Center, Wright-Patterson AFB , Dayton, Ohio.
The operati ng system in place during this time was NOS/BE L414J CYBR CMR3.
All compilation was performed by the FTN compiler at optimization l evel
1. The version of the compiler was F’TN 4.5+414.

— -

3

- - — - - - -—5--— - - -~~~~~~~~~~~ -5- .- - - 5 --

— 5 ~~

S

SECTION II
SYSTEM OVERVIEW

The user initiates an analysis by preparing tabular data which des-
cribes the ‘Idealized model of the windshield system under ‘Investigation .
The model may include support structure for the transparency which may
Itself consist of a number of laminates . The tabular data prepared by
the user , consisting of geometry, constraint, material property, and
element definition data, is described in detail in Part 2.

PROGRAM FUNCTIONS

The Laminate Generator provides a preprocessing function with respect
to multi—layered transparencies . Optionall y, the user may prepare the
model definition data consistent with the requirements of the Laminate
Generator. The program will then augment the input model definition data
wi th the joint coordinates and element definitions of interior joints and
elements within a laminate. In addition , surface normal vectors repres—
enting a uni t pressure distribution over the exterior surface of the
transparency are generated. When applicable, this program reduces the
amount of input data prepared by the user and provides vector data for
use In assembling pressure loading condi tions in subsequent analysis
steps.

The Initial Generator serves the prime function of transforming the
complete model definition data in tabular form into matrix data consist-
ent wi th the requirements of the subsequent solution process. Using the
model definition data, the unassembled element stiffness, damping, and
mass matrices are geiierated as are other matrices of geometric trans—
formations , thermal effects, etc. The data generated here is independ—
ent of mechanical loading on the structure and satisfies the require-
ments of either a linear and nonlinear analysis whichever might follow .

The Loads Generator provides the means of computing discrete joint

~~~~~~~~~~ 1~~~~~~~~~~ r~~~~~~r . l I T 1



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
i

_ _
~~

-

loads on the ‘Idealized model as a function of time and bird length , mass ,
velocity, and impact direction . Optionally, the user may prepare the
model definition data to include the description of the impact loading
consistent with the requirements of the Loads Generator. The program
will then generate a matrix of incremental joint loads at the times
specified in either card image or binary form.

The FORMAT Phase II program is used to compute the structural mass
and stiffness matrices, decompose the structural stiffness matrix , ex-
tract vibration modes , perform the modal transfo rmation , and produce
properly ordered binary output data files for input to the incremental
solution step. Input to this processing step are the binary file of
matrices from the Initial Generator and , optionall y, the loads matrix
from the Loads Generator in either card image form or as a binary matrix
in a separate file. The required tasks in this phase of the solution
process may be accomplished in one or more executions of the ‘FORMAT
program.

The Linear and Nonlinear Incremental Solution programs solve the
equations of motion Incrementally for the modal response , structural

S displacements,, and element forces , stresses, and strains. The results
from each increment are output to a binary file for subsequent process-
ing . The format and content of the output file is Identical for either

S a linear or non- linear solution.

The Postprocessor accepts the output file from either a linear or

S
nonlinear soluti on and selectively prints the results. Selection may

be specified for time increments, joints, modes, and elements In any
logical combination .

DATA FILES

Figure 2.1 shows the flow of data through a complete solution .
Each data file is identi f led for subsequent reference in this discussion ,

6

_ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~ •. _ _ S _~~~~~~~~ _ _ _ _~~~_ _ S S.. 1___~~~~~~~
S_ - . -~~~~ .=~~~-- --.— — •- -- —-—-—-

- —5----- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~

5------

USER INPUT 
PATh FLOW

- F LAMINATE —

~~ _______
— 

~~~~~~~~—._(l) ~~ iugG!~n
E~~T m

R
in_] (2) -_11C2 IIIIIJ ~~partial

model ___________________________________
def init i on
data

(1) (5)I LOADS INI TIAL ~1,— —i L GENERAT OR ~~~~~
— GENERATOR][C3

~~~ 
— —( 2) 1 incremental 1 matrices defin- S

[_ joint loads_j  ing model
I (3) (1)

~~~~~~~~~~~~6~~ :o rnL~
J21~~~~~~~~

(4) (7)abstract ion
ins truct’f ons
and matrix

M3 M4data

(20) (21)

ET
INCRETMENIALI

Incrementa l response
time history (2) linear

(23) nonlInear

H

_ _

print options (2)

and selec-
I~~~~~~R0cESSOfl printed~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘5
~~~~~~~ ejt~~~~~~~~~~~~~~~~

Figure 2.1. Data Flow Through Complete Solution

7 

-——-- -5-



- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

e.g., Cl, M3, etc. The FORTRAN logical unit numbers of the input and
output files for each program are shown in parenthesis. Not shown in the
figure is system print file 6 which is used for printed output by each
program nor Is the use of the CDC utility program UPDATE which is dis-
cussed later in this section.

Fi le Formats

There are only two file structures used for all data files shown in
Figure 2.1. Those files Identifi ed with the letter “C” are sequential
files of card images (formatted). Each logical record in these files
corresponds to a single card and contains a string of 80 characters.
The formats associated with each card are given in Part 2.

Those files identified wi th the letter “M” are sequential files of
matrix data (binary, unformatted). The structure of these files corres-
ponds to that of FORMAT matrix data (Reference 1). For purposes of con-
tinuity , a description of this file structure is repeated here.

Each logical record in these files is of the form

ICOL , KODE, NLJM, (A(I),I~l,NUM)
where ICOL Is an integer identif ier for the record, KØOE is an ‘Integer
flag indicating compressed or expanded mode for the data part of record
(array A), NUM is an integer number equal to the number of words remain—
ing in the record , and A is an array of variable length containing the
actual data to be read or written .

The logical records In the file are structured as follows

ii. - . .  

j



5 - --
- S

- -

S Tape header

Matri x A header

Column I of matrix A
Column 2 of matrix A

Last column of matrix A
• Matrix A trailer

Matrix B header
Column 1 of matrix B
Column 2 of matrix B

Last column of matrix B
Matrix B trailer S

Tape trailer

The contents of the header and trailer records are as follows

• ICØL KØDE NUll Data

S Tape header —10 0 7 (TNAME(I),I*1,6),TMOD
Tape trailer -20 0 1 0
Matrix header - 1 0 9 (Mr4AME(I),I*1 ,6),MMOD,IMAX ,JMAx
Matrix trailer - 2 0 1 0

where TNAME and MNAME are six character tape and matrix names stored
one character per word with blank word fill in trailing words as necess-
ary, TMØD and MMØD are integer numbers used as modifiers of the tape
and matrix names for identification , and IMAX and JMAX are the row and
column dimensions of the matrix.

In matrix column data, ICOL is a posi tive integer equal to the column
S number. If a column of a matrix has more than 50% non-zero elements , the

- 

- • .  

.



-

column Is wri tten in expanded form (KODE O) and NUM is equal to IMAX .
If a column has less than 50% non-zero elements, the column is written
in compressed form (KflDESI). Compression is accomplished by forming an
array of the non-zero values and their corresponding row locations in
the column as the data part of the record. For example, if the 12th
column of a matrix with a row dimension of 100 had only 3 non-zero elements,
it would be compressed and appear as a logica l record of the form

- 
ICØL KØDE NLIM Data
12 1 6 V1, L1, V2, L2, V3, L3 

S

where ICOL 12 is the column number, KODE = 1 indicates a data record
in compressed form, NUM 6 is the number of words remaining in the
record (three pairs of val ue and location), the element values are V 1,
V 2, V3, and the row locations of these elements are L1, L2, and L3. S

Note that L1, L2, L3 must be in ascending order.

If a column of a matrix is completely null , no record for that column
will be present in the file.

File Contents

The fil es shown in Figure 2.1 are the master files used by the IMPACT
system to pass data between each of the stand alone programs. The cont-
ent of each of the card image files is given in detail in Part 2. The
content of each of the matrix data files is given in Table 2.1. The
FORMAT tape and matrix names shown in parentheses are specified by user
input and , consequently, may vary while all other names are fixed since
they are imbedded in the program code.

USE OF UPDATE

The design of the IMPACT system provides for the optional use of the
S CDC utility UPDATE duri ng the preprocessing phase. This phase includes

the execution of the Laminate Generator, Initial Generator, and Loads
S 

- Generator. Figure 2.2 shows the intended use of UPDATE in an application

10
________________________

- - S. 5~~~~~~~5 SS ‘5-

- — - -- -5--_~ 5-~~__~~~~~~ 4•~~~~~~~~~~~ —S-! ~~~-~- -



_ _ _ _ __ _ _ _ __ _ _ _ _ _  
___ _ _ _  -

TABLE 2 . 1 .  CONTENT OF MASTER MATRIX DATA FILES

FORMAT NAMESFILE AND MODIFIERS DESCRIPTION
TAPE MATRIX

S 
UZERO ,1 U0, original joint coordinates

MPT,l MPT, material property data

ECT,l E d , element constants

PRUPT ,1 
~RUPT ’ reordering transform fordegrees of freedom

PRUF,1 
~RUF ’ 

reordering transform for
elements

KEL ,l k, lumped element stiffness

MEL ,1 m , lumped element mass

Ml MTAPE,1 KBEL,l k, unlumped element stiffness

CBEL,’I ~~, unlumped element damping S

FFBAR,1 F~, element force transform

SIGFB ,1 a~, element stress transform

EPSIG ,1 ~~~ , elemcnt strain transform

DEBT,1 element thermal deformations

EVT ,l - EVT , element variables

CØNST ,1 CØNST, problem constants

-

S 

M2 LTAPE,1 - DPØT I 1 6
~(~)T’ 

incremental applied loads

- 

1l 

- _______________

L - S—-- - -SSS— - - -— —-  —_,-• .5. -—— 
•_ - s S S •• 5 _ -



S - -•-
~~~~~~~~~~~~~

S--— •--~~
-- -

~~~~~~~~~~
5- ---------

TABLE 2.1. CONTENT OF MASTER MATRIX DATA FILES (Continued)

FORMAT NAMES
FILE AND MODIFIERS DESCRIPTION

ID TAPE MATRIX

(PBUF ,l) 
~UF’ element force modal

transformation
MPT,1 

- S

UZERO,1

ECT , 1
MEL, 1

M3 (FILE2O ,1) KBEL,1

CBEL ,l Copied from file Ml •

FFBAR,1 
S

SIGFB ,l
EPS I , 1

DEBT ,1

EVT ,l

S 

CONST ,1

(PBPHI,l) 6P( )U’ transformed incremen-
M4 (FILE21,l) tal applied loads

(PBUPTJ ,1) 
~~~~~~~~~ 

degree of freedom modal
transformation

12

-~~~~ • - ~~~~~~——~~~~~~~~~~~~~~~~
—-.- --S

~~~~~~~~~~~ --- - - - -~~~~~~- - •

- - - - -5- -- - .-- - -- ------ ~~~~~~~~ ~~~~~~~~~~ S -~~~~~~~-- - ~~~~~~~~~ S .- -’---5- 5-



S 
- 

(

£

TABLE 2 .1 .  CONTENT OF MASTER MATRIX DATA FILES (Continued)

Fl E FORMAT NAMES
ID — AND MODIFIERS DESCRIPTION

______ 
TAPE MATRIX 

________________________________

CØNST,1 CØNST , augmented problem
constants

TIME,1 t, incremental time history

W INDØW ,52877 UZERØ,1 Copied from file M3
(linear)

(PBPHI ,1) Copied from file M4

M5 (PBIJPTJ,l) Copied from file M4

TAPE ,1 - —
(non—linear) RESPNS,~ ~~ ~~B 

‘SB’ and v8,
modal response

BARS ,8 , a , and e , bar
BB 8B

element forces , stresses ,
and strains

MEMBRN ,B FK , a , and c , membrane
8

M 
M

element forces , stresses ,
and strains

CELLS,B , a , and c , cel l
BC 8C BC

element forces, stresses ,
and strains

where B is the Increment number
and these four matrices are
repeated for each time increment.

S . If there are no elements of a
given type, the corresponding
matrix will not be present.

I 

- 

- ~: _ _  _ _



_  _ _  - --- 5- .- - --- SS ~~~~~~~

I

_ _ _ _

- Cl 1 original model
j definition data

UPDAT E
~\Joptional) 

____)

~~~~~f1i~] 

S -

-&I LAMINAT E
II GENERATOR
Lioptional)

(~ 2 1

_ _ I’(UPDATE
‘

~~\
UPDATE S

\. joptional)
_•S_J

’
~~~~~~ (optional) 

•_
~,
)

I I
(i~~IfiedJ (‘iñodifiedl

S ~~~~C2 J .- L C 2 ]

GENERATOR 
~ ~~~~~~~~~

Figure 2.2. Function of UPDATE in Preprocessing

• . 
S

14 

- — -—-•- — --~~~~~~~~~~~~~~~~~
S• -—-.--5-S• —- - - S - -- -  . -



—— .— .5

using all three preprocessing programs. The basic function of UPDATE
in the IMPACT system is to edit the model definition data as necessary
for each of the preprocessing programs. A secondary function is to
permanently store the model definition data in an easily accessible
form once it has been read into the system. On a large model with a
large amount of data , this will avoid many card handling and reader errors
each time the model definition data is required.

In Figure 2.2, each of UPDATE steps as well as the execution of the
Laminate and Loads Generators are optional. Obviously, many combinations
of these programs are possible in applying these tools to the variety
of design problems a user might encounter. Suffice to say that the eff-
ective use of UPDATE in the preprocessing phase will enhance the users
effectiveness by alleviating card handling problems.

~ 

S 

H

15
-

p 
~~~~~~~~~~~~~~ - S — S --—S - S S — - -S -- -S S SS——--S - - -- - -5- - - 5  —___________ --5—  —


SECTION I I I
OPERATIONAL CONSIDERATIONS

GENERAL

Only one of the six new programs in the IMPACT system currently
uses the overlay capability of the CDC operating system. This feature
is used extensively by the Initial Generator. The overlay is accompi—
Ished using th’~ SEGLOAD option of the loader. The SEGLOAD directives
for implementation of this program are given In Section V under the
heading CORE UTILIZATION.

Significant savings in core requirements could be realized by using
overlay in the implementation of the Linear and Non—Linear Incremental
Solution programs. The remaining new programs coded for IMPACT are
relatively small and would not yield enough savings to justify overlay.
The FORMAT program already uses this feature.

S

The following tables gives 1) minimum core requirements for the
current version of each program as implemented , and 2) the associated
size of blank coninon in the compiled code as implemented where appli-
cable. The core requirement is in octal and the blank common region is
in decimal .

CORE BLANK COMMON
PROGRAM REQUIREMENT LENGTH

-
S (octal) (decimal)

Laminate Generator 130000 NA
Initial Generator 130000 NA
Loads Generator 71000 NA

S
FORMAT Phase II 100000 10000
Li near Incremental Solution 104000 8000

Nonlinear Incremental Solution 134000 8000
Postprocessor 60000 10000

EXTENDING BLANK COMMON

The FORMAT Phase II program, the Linear and Non-Linear Incremental
Solut ions , and the Postprocessor use blank common exclusively for core
storage of data during their execution . Space is allocated within the
blank common region for all arrays required in - each program. The array
space is allocated according to problem size as defined by input data .

Even though the blank common regions are of fixed dimension in the
source code, the effect ive blank common region can be increased at exe-
cution time wi thout recompiling any code when operating on the CDC
system. By requesting additional core on the job request card and supp-
lying inpu t data to the program Indicating the increased size of blank
common, larger problems can be processed than could be accommodated by
the dimensioned si ze of the work area in the compiled code.

For example , a program requires a field length of 100000 words
(octa l) with a blank common region of 10000 words (decimal). For a
given probl em, an increase of 2000 words (decimal) is required in the
blank common region. By requesting an additional 4000 words (octal)
for program execution to account for the 2000 word (decimal) Increase
In blank common region and Inputing data to the program spec ifying this
increase in available work space , the program could process the larger S

problem without recompiling any code.

Of course , this procedure can be used only with a program whose str-
ucture and input are consistent with this philosophy. The four programs
of the IMPACT system mentioned above conform to these requirements . The
blank common size requirements and associated input data to over ride
the size parameters. in the code are given in Sections VII , VIII, and IX
of this document under the heading LIMITATIONS . Again , Input card for-
mats associated with this data are given in Part 2. Simi l ar informati on
regarding FORMAT Phase II is given In References 6 and 10 and discussed S
in Part 2.

18

____________________ - — • — S-~ 5- - 5 ~~~~~~~~~~~~~~~~~~

.5-
~~~~~~~~~~ ~~~~

OVER RIDING FILE NAMES

On the CDC system when executing multiple stand alone programs as may
be done using IMPACT , it may be necessary to over ride system default
file names because of confl icts between two programs. That is, one
program may output its data on a file named TAPE1 and the second program
may expect its input on TAPE3. In order to resolve this conflict, the
default file name in one of the programs must be temporarily renamed
during the executi on of that program.

On the CDC system , fi le names of FORTRAN programs are established
by means of the PROGRAM statement, the first statement of the main pro-
gram. The system provides for over riding these names at execution time
by means of a system control card. The format of this command , however ,
requires foreknowledge of the sequence of appearance of file names In
the PROGRAM statement for a given program.

Table 3.1 gives the PROGRAM statements for each of the seven programs
in the IMPACT system. It shows all files that are used by each program ,
and,- together with Figure 2.1, impl icity defines all files used as
scratch as well as those used for master input/output.

SYSTEM CONTROL CARDS

As previously stated, the seven programs of the IMPACT system may
be used in any number of combinations in actual application to the var-
iety of design probl ems that may be encountered. However, in order to
show an example of a complete deck set up including system control cards
and data , a single run using all components of the IMPACT system is des-
cribed here.

• Table 3.2 gives the system control cards for a complete solution
while Table 3.3 lists the corresponding user input data . The complete

S — job is broken down Into steps for reference in the tables and thIs dis-

19

L.  - 
• .-.

.5—.- ~_S5-S5 -S~~~-.-~-~~~~~.- - 
— — ___S~~~_I,!~. -5=- — ~.



-— ——‘--5—-.- -S--S. SS5
~~~

S-5
~~~5

- TABLE 3.1. PROGRAM AND FILE DECLARATICNS

LAMINAT E GENERATOR

PRØGRAM LAMGEN ( TAPE1,TAPE2,~UTPUT,TAPE6=~UTPUT )
INITIAL GENERATOR -

PROGRAM BIRDG 1 ( TAPE1 512, INPUT ,OUTPUT,TAPE5xINPUT ,TAPE6=OtJTPIJT ,
- 

. TAPE? 512, TAPE8 =512 , TAPE9 =512, TAPE1O=512,
TAPE11=512, TAPE 1 2=512, TAPE 13=5l2 , TAPE14a512 ,
TAPE 15=512, TAPE 16=5l2, TAPE 1 7=51 2, TAPE18=5l2 )

LOADS GENERATOR -

PROGRAM LODGEN ( TAP E1,TAPE2 ,TAPE3 ,OUTPIJT,TAPE5=OUTPtJT )
FORMAT

PRØGRAM FORMAT ( TAPE1=512,TAPE2=5 1 2,TAPE3=5l 2,TAPE4= 5l2 ,
1 INPUT=512,TAPE5= INPUT ,OUTPUT=5l 2 ,TAPE6=gIJTPIJT,TAPE7=512,
6 TAPE8=512 ,TAPE9=5 12 ,TAPE1O=5 12 ,TAPE14=512,TAPE 15=5l2,TAPE16=512 )

LINEAR INCREMENTAL SOLUTION

PROGRAM RESPNS(TAPE1 =512 ,TAPE2 =5l2 ,TAPE3 =512,TAPE4 = 512
1 ,INPUT =512 TAPE5 =INPUT,OUTPUT=512,TAPE6=OUTPUT,TAPE7 *512
2,TAPE8 =512,TAPE9 512 ,TAPE1O=512,TAPE11=512,TAPE12=512
3 ,TAPE 1 3=51 2 ,TAPE 14=51 2 ,TAPE 1 5 5 1 2 ,TAPE1 6=512 ,TAPE1 7=512 ,TAPE18=51 2
4 ,TAPE1 9=512 ,TAPE2O=5l 2 ,TAPE21 =512 ,TAP E22=51 2 ,TAPE23=5 1 2
5,TAPE29=5 12 )

NONLINEAR IN CREMENTAL SOLUTION

PROGRAM RESPNS(TAPE1 =512,TAPE2 — 5 12 ,TAPE3 z512,TAPE4 =512
1 ,INPUT =5l2,TAPE5 =INPUT ,OUTPIJT=5l2,TAPE6=OUTPUT,TAPE7 =512
2,TAPE8 =5 l2,TAPE9 =512,TAPE1O=512,TAPE11=512,TAPE 12=512
3,TAPE 13=512,TAPE14=5l2,TAPE15=512,TAPE16=5l2jAPEl7=512, TAPE 18=5l2
4,TAPE19=512,TAPE2O=512,TAPE21=512,TAPE22=5l2,TAPE23=5l2
5,TAPE3O=5l2,TAPE31=512 )

POSTPROCESSOR

PROGRAM PØST ( TAPE1 ,TAPE2 ,TAPE3,
1 INPUT,TAPE5=INPUT,OUTPUT,TAPE6zOUTPUT )

_ _ _ _  - -5- — -~~~~~~—



-5-5-5-5 -5-5.5-55 • S~~~_S.5 ----- -5
-.’

TABLE 3.2. SYSTEM CONTROL CARDS FOR COMPLETE SOLUTION

STEP SYSTEM CONTROL CAROS
RC~ ,TO7~ , IOt !o.CMI*0000,STC$a . ~~~~~~~~~~~~~~~~~~LIMIT C7 777 )

—

1 ~ETURN (~ EwP ~~q Ew ~~Nn( lA PEl )
— ATTA C ’ 4 C LG O , LAMGE ” ILGQ )

M A~~(O’.~)

2 LGO .
q ETt J P~ C T & O E 1 ~~ GU)
~Ew PiC’CT ~ PE2)
U POA TE C ~4 • F .CeCA S ~ )3 TUR~~(~E E5a

~PL .TA P !2)
C C A .~€ )— 

~~~~~~~~~~~~~~~~~~~~~~~~~~
4 UP DATE C r’l.F)

~~~~~~~~~~~~~~~
A l T  A C ‘4 C aLr,O , ~~T ROGIL GO )
MA P C ON )

LDSET (P~~SET.Z!~O)
5 LOADC ~ L G~ )

~~~T~~q 1~ ( BS LCW O .CO’4~~ILE • BL G3, NEWDL ,
~~EW ~~ 4 D C 8 A 3 S)
e A B 3 (T A P ~~�, C A s ~~)

~ET ~~~ (9 a)
EW I N D C T A P € 2 , C A S ~~)

—
ATTACPICLGO ,LOoGE ’~LG0)MAP (Q ’1)

6 LG’~(C A S E. T X)
PET UI~N C C 4 S E , T~~,Lr,O)
~Ew t o C I A PE3 I—

7 P’42.
— QE~~PJf T A P ~~2. T A P ! 3 .T 1 P!~~)

~‘42 (,,T A PE~~,T~~P E~~)8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• , TA P !2 0 , , , , , T A p ~~~~~)

9

~C W I 9 O (T A P ! 2 O . T A p E 2 1)— A TTA cI4 c~Go,LrI,~EAqLG3)
MA C fIN)
~FLCI ~&nQ On)

• 10 LGO ,
P E T U C~~G1~, T A p E 2 ~I , Y A P ~ 2 1)

— W IN~~(TaP(2)
-~~~

~~ & t T A C ’ 4 C L G O , Pf~St LGC))
11 MA P(O’ l)

L (SO.

__1 ~.;: ii ~-.~
:---i:--

~ :~

_ _ _ _ _ - 5 5 - - - -—

TABLE 3.3. INPUT DATA FOR COMPLETE SOLUTION

INPUT DATA
.O(CX Call

I 75•~ Q33a.O
1 1.0(,b ~~01.1~%e ~~~
1 1 1 ,0
a i 1.0 - - . 1.0S A 5 •,0 1 ,0

• a , 4,0 4,0 - 1 ,0a 6 .0 1.0
1 II *,0 4 .0 1,0
2 13 * 2 . 0 1 ,0a t a
a is *1 .0 ~.o i .e
2 to 1 ,0 4 .0a,,..
3 1 lb 75 ,0

4,,,,
5 1 1 1 .0
S 2 1 1.0
S 3 1 1.0
S (I

~ 1,0
5 5 2 1.0
S 0 2 1 ,0
5 1 3 1,0
5 6 3 1.0
S 4 3 1 ,0
S 10 4 1.0
S II S 1.0s ii 1 , 0
5 13 1’ & 1 .0
S IS 10 1 .05,,,,
7 100
7 l O t 100 1 1 1 ,0
7 1~~
7”,,
I I II 1.0
6~~~ Q

t O 100 £~(JMI~uM lO2* ’bl
tO I~’I I * 0.0 t•S
t o t oa i ? ,~ a t. o
i~ 103 I S’~oo0 .
t O 104 I
10 *05 1 ,os e l
IJ lOb 1 .33
tO 107 1 •lZo (.4
10 10$ 2 .251 (.3
%0 101 1 10.
10 110 1 1, 0 (.03
tO Ill
10II~ I11 t as .001 5000. 13.
i t 2 3 •,6 • 10
II 3 .1. 0
11 ‘ •1•~11 5 *1 ,0 2,0 1.0
11 0 1 1 ,0
II 0 4,0 1 .0
ii a S l.a t • O
11’,.,

22

- - -~ - - - -.--~-~ ~-~~ - -S~~— -..-•- --—•S - -- - - - —

• .- ,--, --r~~~~~~~’~~~~~~

S

TABLE 3.3 INPUT DATA FOR COMPLETE SOLUTION (Continued)

TEP INPUT DATA
12 1 ~ 11 13 15

2 2 5 7 ~ II
IA 3 1 3 3 7

10 1 13 11 100 1.0
20 2 15 14 100 1.0

i
30 1 ~ 11 IS * 3 100 .3
30 2 10 11 tO 14 100 .5
10l~ Qq
SQ I I 3 7 3
SO 2 3 1 It I

50 1 4 • a L.A €•2 ,i$ (.1so a i t •

.~~ (.2 ,4 1.2 .~~ 1.;
30 3 13 .4 (.

~~ ,4 (.~ ,S 1.~50 4 ,a (.~ ,4 (‘2 .~~ (.2
50944Q

~~ .D(C8 CAS h
‘~ ,R(~ c~ t I~~~~?

• 1 (4 Q * S LCRO

G ’~, t .OG !C
1~~ u? ?a~ 1 C M? a P (, %)
!‘~~uT Ti• ((L V’ • (,t)
OuTPUt ?4•((DLCOM P ,I)

7 •T.O$! u 0107 .O!JCOI.. tI)
SA V E (O(CO’.P) 000?

p P0~J~~, M(~ •S(0w1P~ ’J’J,’~ UPs s , v P? .O€J C ’L , C 5 4
PS 4 ‘QUPJ .4Ut1. 07
PS? P~
l,L IL ,UR • ~~U~

,(EL .seowc ; •0?
• •q u o, • j i t , j~

Sa V E (‘~€ CO ’ ’) Ml.0qUPJ,~ ?t.U 1
•S1’~? (,.,t Ut

— jF p *Ma t 5? *N O alO
Gre . I..OVU C

!‘~~U? t aRE (‘TaoC,t)
!~~Pt ’ t talL (0(Co’P ,tl
r”iy.~t ?AP((?la ~4$~,1)

$I’~$1RUC?Ifl” .
8 V * L .T 4 • “ s •u$LS0a , 1.71

••7~4? (• , ,~ v0 ~ S

•S uPJ • ?4 .? ULT . •~ UPJ
•~~ij , U TI .7MW. ? . •I~ r
‘*110 • •*ulJ .MU1.T. ~ I*?
SIVI (?~~4 P~5~~) ?l, P5(J PJ . 0IiI1,0050
‘001$ S •IuPJ ,f~ U1.,. II
011111 ? ~~~~~~~~~~ ‘noEs

sIPECIa !.
15 25

—

I -

23

- - _______ _____

-5 - ——
— ——

- 5 — —~~
— - - --5. - -5- -~~~~

~ -- - -~ - --— - - ~—-.-----•-- -~-----• -- ‘-55-55 ---- 5- - --

TABLE 3.3. INPUT DATA FOR COMPLETE SOLUTION (Continued)

INPUTS DATA
SIQIMA ? $t a ’ 40A0 0

On. 1.00IC
7~~0lJ t 1*1! C’TlI!,l)
I~’0(~t Tal l (TQAIII $F .j*
OutPut Ti0((111.120.1)
IUtP U? tAP f (‘ 11(21,1)

9 SIN5T 0U CT!0 ~
SA VE C1It.U0) ~~UF
S A V E (

~~? LE2 0) “ 57
SA V E (111120) U~ 1’0
paVE (‘71120) EC?,NEL ,*6F~ ,CI~L,,~ 18AQ
SaV((171(20) STGF6,(0$IG. 0(e?,fvT .CO~$?
S AV ((‘71(2*) 0160
SA VE (‘11(21) PPUPJ

— 1 0 tO 251 tO 13000
10 10 ,0 70 ,0 30 ii ao :o 50 ,0 00 .0

“.0 ~O ,0 QO~ o— 1 II
1 1 1 * 1
3 l It

l I l t
S 1 111

11 0 1111
I CAPO I. ,!~$? T T ? L L LP ’(
$ CA S O 2. 1TS S?

~1~ L(
CA e O I, S!Cr’.M ~T~ LE LI’ II

0 C oo 2, SC CO ~ 0 Trri_ r I.IME
20 ~~~Il- 1. t O

—
30 ~~~~~~ I. 10

. (
~

S 24

—-- S -S — 5. _ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - S _ S ~S- -5

cussion . The following files are assumed to be permanently stored disc
files in the system. S

LAMGENLGO Laminate Generator relocatable decks
BIRDG1SL Initial Generator SEGL OAD directi ves preceded

by a *DECK UPDATE control card (card images)
BIRDG1LGO Ini t ia l Generator reloca table decks

LØDGENLGØ Load Generator relocatable decks S

- PHASE2A , CY=1 FORMAT Phase II absolute file
LINEARLGO Linear Incremental Solution relocatable decks
PØSTLGO Postprocessor relocatable decks -

During this discussion , Figure 2.1 should be referred to for master
input/output files of each program. Al so, Table 3.1 should be referred
to for the sequence of appearance of file names in the PROGRAM declara-
tions of each program. It is assumed that the reader has a working
knowledge of the CDC system and its control cards.

-

In Tabl’e 3.2, the job card requests 140000 words of central memory
for the run which is more than sufficient to load and execute all prog-
rams. The LIMIT card requests more than the system default disc storage
space normally allocated to a job.

The CDC utilit y UPDATE is executed first (Step 1) receiving Input
from the system input file and outputlng the COMPILE file under the
name lAPEl . In Step 2, the Laminate Generator uses all default file
names accepting file lAPEl as input and creating file TAPE2 as output.
TAPE1 is the partial model defi niti on data and TAPE 2 is the augmented
model definition data. This is followed by another execution of UPDATE

(Step 3) simulating a final editing and/or save of this data which, rather
than being output under the defaul t file name COMPILE, Is renamed CASE.

Step 4 executes UPDATE again to create a card image input stream
for SEGLOD whic h Is output under the default name CØMPILE.

25

_ _ _ _
_ _ _ _ _ _ _ _ _ _ - ~~~~ SS5 -

- Step 5 includes both the loading of the Initial Generator and Its
execution . Input directives to SEGLOAD is the card image COMPILE file
f rom Step 4. Input to the Initial Generator -is the complete model defi-
nition data, card Image file CASE. The normal output file TAPE1 is over
ridden and renamed TAPE2 .

Next the Load Generator is executed (-Step 6). The normal input file
lAPEl i s renamed CASE in order to accept the same model definition data
used by the Initial Generator. The output Is on TAPE3 , the default file
name for the binary matri x data output file. However , the normal card
image output file TAPE2 is renamed to the dufTiny name TX since TAPE2 is
already in use as the Initial Generator output fVle.

The following three steps, 7, 8) and 9, execute the FORMAT Phase II
program to assemble the input files necessary for the Linear Incremental
Solution which follows. In the first execution , all default file names
are used. Input is on file IAPE2 from Step 5 and TAPE3 from Step 6.
Output is on TAPE4~ In the second execution (Step 8), input consists
of file TAPE2, the same file input to Step 7, and TAPE4 output from Step
7. In this step, therefore, the normal input file name TAPE3 is over
ridden and renamed TAPE4, and the normal output file name TAPE4 is over
ridden and renamed TAPE3. This sets up the stage for the final execution
(Step 9) in whi ch the Input Is, again, file TAPE2 from Step 5, and file
TAPE3 output from Step 8. The normal output file names, TAPE4 and TAPE7,
are renamed TAPE2O and TAPE21 for compatibility wi th the followi ng step.

The Linear Incremental Solution Is then executed (Step 10) using all
default file names. Output is on TAPE2. In this step, blank consuon is

• extended to acconiuodate the size of the problem. On the first input card
for this step (Table 3.3, Step 10), the available blank coninon is sped —
fled to the program in decimal as 15000 (last value on card). This is
7000 words (decimal) greater than the size of blank con non in the comp— - -

-

iled code. Therefore, in order to make additional core available for S

S

-5.]

S

- - -

26

— -—5— - 5— - — - — - 5-—- __S_SSS__S_ 5_S _L — ! S - - — - -
~~

- 5— -5_-~~~~-5-5_-- . - - -- -- --5--- - -S-5 -—- 5 - -- -S- --- - S

execution, an RFL command is placed before the load and go coninand ,
LGO. This effectively over rides the field length the loader normally
estab lishes from the relocatable file It accesses for the load. The
req uest ed fi e ld length on the RFL card, 140000 words (octal), is suff i-
cient to compensate for the 7000 words (decimal) added to blank comon.
(See minimum core requirements and dimensioned blank common block sizes
discussed at the beginning of this section). -

-
The last step, execution of the Postprocessor (Step 11) is then per-

formed using all default file names, in which case, TAPE2 is the Input
file.

This example would be identical if the Nonlinear Incrementa l Solu-
tion had been used rather than the linear with the following exception .
The default output file for the non-linear Is TAPE23. The last control
card, the command executing the Postprocessor, would , therefore, have
to over ride the default input file name of TAPE2 to TAPE23 and would
appear as

LGO C, TAPE23)

27

f
5 5 - -

4*

- — -

~~~~~

- - 5- -5 -5



-- 5 -_- ---5—~~~~~~~ - - -  5 -5- -

____ -~~~~~~

SECTION IV
LAMINATE GENERATOR

OVERV I EW

- This program accepts user prepared tabul ar data describing the model ,
including the laminated section and generates additional tabular data
which is merged into the Input. The generated data consists of joint
coordinates and cell definition data representing interior joints and
elements below the exterior surface of the laminate. In addition, surface
normal vectors are generated at each joint on the exterior surface of the
laminate. The magnitude of these vectors corresponds to a unit pressure
on the surface area associated with each joint. The format of the tabular
card Input prepared by the user as well as that of the tabular output is
described in Part 2 of this report. Detailed descriptions Of each routine
in this program are given in Appendix A of thIs document.

The core required by this program without the use of overlay or
segmentation is 130000 octal words. The program uses three external
files. One Is used for card input, one for printed output, and , option-
ally, one for card image output. Organization of all routines for the
program is shown below.

LANGEN

_____ 
IOXS
UVEC

I I I _J I I

RLAYER RIDC EL RJ OINT CELG EN RTVARI JTGEN WJ O INT WN ORM WCELL
CROSSQ DOT
ABS VAL

No labeled or blank common regions are used by the program. Arrays
A and N are dimensioned in the main program which allocates space
within these arrays for use by each of the routines It calls.

- 

I5-1
~ 

29 
__



_ _ _ _ _ _ _ _  1
Routine IOXS - is used to read data not required by the program and -

t.rite It on the output file(s). Routine UVEC is used to unitize vectors.
Routine s RLAYER , RIOCEL , and RJOINT read the layer , cell, and joint
data , respectively.

Routi ne CELGEN generates the cell def ini t ion data for the cel ls  in
the laminate and the surface normal vectors. Routine CROSSQ finds the
cross product of two vectors, and râutine ABSVAL determines the magni-
tude of a vector. Routine RTVARI reads the variable thickness data and
stores the thickness of each layer under eac-h laminate surface joint.
Routine JTGEN generates the coordinates of each joint in the laminates.
Routine DOT is a function that forms the dot product of two vectors.

Routines WJOINT, WNflRM, and WCELL write the joint, surface normal ,
and cel l data on the output file(s).

FILE UTILIZATION 
S

Required input to the program are the tables of joint coordinates ,
laminate definitions , and cell definitions which are Data Codes 2 7
and 40, respectively. The table of variable laminate thickness, Data
Code 8, which is used only when the laminate thickness is not constant,
is optional .

Using this data , the surface normals are computed to form a new
table, Data Code 6. Interior joint geometry and numbering are then
determined and merged into the original joint coordinate table, Data
Code 2. Definitions of interior cell elements are then determined and

merged into the original cell definitIon table, Data Code 40.

S The output consists of the augmented joint coordinate and cell def-
inition tables, Data Codes 2 and 40, the surface normal table, Data
Code 6, and copies of all other tables present in the original input

S 

with the exception of the laminate definition and thickness tables ,

30



-- -V— - — - - -_-_ —~~ 
__
_ __ —~~ --- - ----- - —------- w - -  ~~~~~~~~~~~~ ~~~~~~~~~ —

Data Codes 7 and 8, which are omitted .
There is one card input file referenced by the integer variable

ITAPE. The primary output file is referenced by the Integer variable
JTAPE. These two variables , ITAPE and JTAPE, are initialized In the
main program as files 1 and 2.

The code provides for the following option . If JTAPE 6, only
the printed output is written to file 6. If JTAPE ~ 6, the card image
output is written to file JTAPE and the printed output is wri tten to
file 6. -

LIMITATIONS

The program uses two singularly subscripted arrays , A and N, which
are dimensioned in the main program as 25000 and 2000, respectively.
The si zes of these arrays are stored in integer variables MSIZEA and
MSIZEN which are initialized in the main program. The dimensions of
arrays A and N and their respecti ve sizes stored in MSIZEA and MSIZEN
can be changed to accommodate smaller or larger models. The formulae
for determining the space requirements for these arrays are:

MSIZEA ~ 10*NCELLS + 7*N,JOINT + NJT*NL
MSIZEN ~ 4*(NL_ l ) + NQIJAD + NJT

where NCELLS is the total number of cell elements in the complete model ,
NJOINT Is the number of joints in the complete model , NJT is the number
of joints on the exterior laminate surface, NI. Is the number of layers
in the laminate , and NQUAD is the number of cell elements on the exterior
surface of the laminate.

Although the format of the input data provides for multiple l ami nate
definitions, the code is limi ted to only one l ami nate definition.

~~~~Tz1~~~~II. 


SECTION V
INITIAL GENERATOR S

OVERVIEW

This program accepts tabular input data describing the structural
model in terms of geometry, elements, constraints and matcria3 and
physical properties. From this description , matrix data is generated
as demanded by the subsequent solution process. The mathematical formu-
lation of the output matrix data is given in Appendix H of Part 1 of
this report. The card input prepared by the user describing the struc—
tun a model is described in Part 2. Detailed descriptions of each
labeled common block and routine in this program are presented in
Appendix B of this document.

The program implementation includes extensive use of the COC segmen-
tation capability to overlay both labeled common regions and code. The
core required for program execution using this feature is 130,000 octal
words. In addition to the system input/output files, 5 and 6, the
program uses thirteen external files of which twelve are intermediate
data storage and one for the master output. No blank common is used.

The data assembled and output on the master file is compatible for
use in either a linear or nonlinear incremental solution . This compatibility
inherently results in some additional overhead since the requirements of
each type of incremental solution are different. For example, the
generation of matrices ECT and EVT and the computation of the Ramberg-
Osgood coefficient in runs preparing data for a linear solution is not
required. Conversely, the generation of matrix for a nonlinear solu-
tion is unnecessary. However, for the sake of consistency and user con-
venience , th is approach was adopted.

SpecIal Input for Checkout

• There are some special input parameters pertaining to program check-
out runs which are not discussed in the User ’s Manual , Part 2 of this

~~~~~~~~~~~~~~~~~~~~

— -5 

~~~~~~~~

5--5

~~~

•-5

~~~~~~~~~~~~~~~~~~~


- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S-5.~~~_ _ _ _ _ _

report. These parameters are Input under Data Code 1. On card 1 in
col umn s 3 to 6 an integer master tape dump fl ag , MTDF , may be entered S

which controls the printing of output matrix data according to:

MTDF~~ O no dump
MTDF 1 dump header/trailer -

MTDF 2 full dump

Also, on card 1 in columns 7 to 10 an integer joint number can be S

-

entered which will trigger the printing of all intermediate calculations
for all elements connected to the joint specified . Finally, on card 1
in columns 11 to 14 an integer print flag can be input , which , if non
zero, triggers the printing of all intermediate calculations in the
assembly of matrices PRUPT and PRIJF. S

On card 2 of Data Code 1 , in columns 3 to 6, an -Integer can be entered
which is used as the maximum number of lines per page for printing. If
not input , the number defaults to 45. Also, in columns 19 to 33 and
34 to 48, two coefficients are input as noted in the User’s Manual.
The first coefficient is used in defining the stiffness, or more approp—
ria-tely, the lack of stiffness In bar elements wi th gaps In connectivety
specified . The second coefficient is used to suppress insignificant
values from the stiffness matrix of each element in the structural model .
This was done to reduce matrix density and thus promote storage in
compressed forrn and reduce execution time in mathematical operations.
The values specified for these two coefficients in the User’s Manual
were derived empirically.

O~qan1zation

Figure 5.1 shows the functional organization of the program in terms
of all labeled common blocks and the principle routines called by the
main program. Vertical positioning in the figure depicts the basic over-
lay structure used. Labeled common bl ocks are in parentheses.

34

—5-
—S--S- -~~~~~

- -.- - _~~~~~~~~~~~~~ L —

- ~~~~~~~~~~~~~~ 5- 5

LJ E~~~

-I

~~~~ C-,0.
-J

~~_ w_,~~~~ _ _ 5 C-~
Nw 

~1~~_
— I—. 0

I- C•Lu
.— ~~-_ 

~fl - r-~ ..JC., ~~~~~~~~ ~~ I-I I- 1 (P~ O~ ~~ ~ .0 CJ ~J ~. ~~~~~~~~~~~~~~~~~~~ Cñ ~~ W ~~ C-) ~~~ 0
~~ ~~~~~~~ Z Z~~~ Ø.~~~ ~1— < I-. ø_ — * — • 0 C-) — - ~~ ø_ O~. _I 

~~~~ ~— ~~ .J W ~~~~~~~~ C-) ~ J UJ C-) J ...a ~J ~— _i
— u_

~~ ~~- w <

.-. o_ 0. 4.’L)
0._J —

w

w u_I
—

w
~~~~~ I.0. 0.

.,-
U-

C._~ ~~Z 0
~~~0. I— 0~
UJ W 0. (/1 ..J ~~ —

~) C-)

-:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
i~~~~~~~~~~~~~~~~~~ —----—•~~~~~~~~~~~~~ - -•S

~~~~~~~~~~~~~~~

S

~~~~~~~~

- ---

~~~~~~~~~

~ .

- -

Functionally, the program can be broken down into three major steps;
the processing of joint, vector and material property data, the processing
of element data, and the reordering of degrees of freedom prior to final
output of matrix data.

Operation - -

Processing begins with the reading o-f run parameters and constants
under Data Code 1 by the main program, BIRDG1 . The first branch of the
tree on the left in Figure 5.1 is then executed. Each routine is
invoked in sequence in the order shown (top to bottom). In this first
major processing step, Data Codes 2 through 5 and 10 are read. These
are tables of joint coordinates , temperatures, direction cosines , con-
straints, and material properties. Matrix U0, the original joint
coordinates, and matrix MPT, the material property data , are output to
the master output tape. The contents of matrix MPT, a single column
matrix , is shown below. S

MPT -

Partitions Record Type Description

(a) 1 Real Table of coefficients for each
property of each material

NCF
1 BCD Table of descriptive text for each

material.
(b)

ND
1 Integer For each material , the number of

coefficients for all properties and
(c) the number of words of descriptive

text

1 Integer Pointers Into partitions (a) and (b)
S d

above for each material

MT S

where the total l ength of the column Is NCF + ND + 2MT.

- S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5 -S-

~

. ii.: _ _ _ _ _

_ _ _ _ _ _ _

- S -

Processing o f e lement data , the second major step, Is accomplished by
middle branch of tree shown In Figure 5.1. A loop Is set up In the main
program to process all element data. The loop begins with a call to
routine ELEMNT. This routine reads element definition data , Data Codes
20, 30, 40 and 50, one element at a time, and returns flags to the main
program which control subsequent processing. One flag signals the end of
data for the Data Code currently being processed which dictates either going
on to next table , or, If all tables have been processed, exiting the loop.

If a return from routine ELEM4T indicates the presence of data for a
particular type element, routines EDGES and ACCPRP are called in turn to
assemble an array of joint number pairs for each element edge force and
to establish the material properties for the element, respectively. One
of the three sub-branches is then executed according to the element type;
lumped parameter bar (LPB), lumped parameter membrane (LPM) , or lumped
parameter cell (LPC). No output data is written to the master output S

file In this step. Output consists of intermediate data stored on
scratch files. -

The last major processing step is accomplished by the two remaining
branches on the right In Figure 5.1. These routines are executed once in
the order EDGDOF, PASSM, WTAPE1 , DUMPMT , and PRTCON . Routine EDGDOF
assembles an array of sorted unique joint pairs for each edge in the model
from data previously assembled by routine EDGES. Using this and other
data regarding constraints, routine PASSM then assembles and outputs
matrIces PRUPT and PRUF in the reordered row format. Finally, the three
routines of the last branch are executed to write all remaining master

S output data, dump the master output tape (optional), and print the data
from matrix CØNST, respectively. CONST contains all model constants,
sizing data, and other run parameters (Appendix B, Labeled Common CONST).

Two special or psuedo matrices are formed and output which are not
L part of the theoretical development given In Part 1. These matrices are

ECT, the element constant table , and EVT, the element variable table.

I -

37

S.-- S ~5S~~~ 5 -— - -•- - 5-- —.S-~~~~~~~ •,---—~~~~- S.P ~~~~~~~~~~~~~~~~~ -~~~----
~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~ 



_____________________________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Each element contributes a column to’ ECT and EVT . The data for a column
of ECT and EVT for each type element Is given in Tabl es 5.1 and 5.2 ,
respectively. These two matrices are used during each time increment
of the nonlinear response solution. Matrix ECT Is read only while
matrix EVT , containing material property and stress/strain state data
of each element , -Is read and rewri tten during each Increment.

Reordering of Degrees of Freedom

The reordering of degrees of freedom which takes place in the final
processing step Is done to reduce the wavefront of the structural stiff-
ness matrix subsequently decomposed by the SEQWF module of FORMAT
(Reference 10). The three-row formats (sequence) of degrees of freedom
referred to in this report are the total degrees of freedom, T, the
unconstrained degrees of freedom, U, and the reordered unconstrained
degrees of freedom, RU. The latter being the desired order for SEQWF
and, consequently, the row order of the Initial Generator output matrices
PRUPT and PRUF.

The I degrees of freedom consist of global X,Y,Z translation at each
joint followed by all edge degrees of freedom as shown below.

I

Degrees of Freedom

1
~lX ~

2 J1~, ~.J 1

~i z J

All joint degrees
of freedom

S

32y
~
)
~~

2i

L ~ : ~2 Z J :
S .

-~~~~~~~~

38

- TABLE 5.1 CONTENTS OF MATRIX ECT
S

LOCATION TYP E DESCRIPTION

Bar Men Cell

1 1 1 integer element number
2-3 2-5 2-9 integer joint connectivity (p, q, r . . . etc.)
4 6 10 integer material property number

5 - — real bar area

6 - -- real bar tension gap
7 - - real bar compression gap

- 7 - real membrane thickness
- 8 11 real stress orientation angl e
8 9 12 real mass
9 10— 13 13-24 integer I dof of edge forces

10—li 14—22 25—54 real unit thermal deformation coefficients

TABLE 5.2 CONTENTS OF MATRIX EVT

LOCATION TYPE DESCRIPTION
1 integer element number
2 real temperature
3 real E
4 real EA
5 real
6 real
7 real

~ material properties at
8 real current temperature

9 real 0
1

10 real p

11 real 5

Li 12 real h

13 rea l n
-~~~~~~

1 14 real
15 real

_ _ _ _ _ _
_

39
-

~~~~~

---S

-

- _ S•SS__S__Sa_ _ - — - - — -—-5—- -—-— —5-— —S—— S 5 - S_--5___ 5 — 5-



_______________________________________ ---—5.- —- —5.-- - - --S--S-- S --S -- S S -S5~~S_ -S -S~_S- _S_ S._ - ~~ _5_~~~~~~

• Jnx
. J J

fly nT
3*NJ J

• E Al i edge S

) 2 degrees of freedom

• ~~~~~~ -

NE )

where NJ -Is the number of joints, NE is the number of edges , J arenT
the X ,Y ,Z global translation at joint n, and E~ are all edges connected
to joint n. The edges in E~ are identified by joint pairs in ascending
order where the second joint Is always greater than the f irst and the
positive direction is taken to be from the first to the second joint.
For example ,

Edge
Degrees of Freedom

FIrst Second
Joint Joint

-
S 1 6

1 18
1 56

2 ~ t E
2 17 ; 2

40

SI ~~~~~~ ~-S5 5 . 5

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - - - - 5 - 5- -~— - - — _ L _ s - L S- • ~S-S~~ SSS•S_ _ -_S-_~-~~~~ S _-S-S _ . ~_~S S S-5 S-S_ S _~___ __ 5- —S~~~ - _S_~
_

~S -



___________ -

etc.

The U degrees of freedom are in the same order as the I degrees of
freedom, but with joint constrained degrees of freedom omitted. Edge
degrees of freedom cannot be constrained. S 5

U

Degrees of Freedom

1 ç U

Unconstrained joint
.1 U degrees of freedom

:
3*NJ ..NC U

1

• All edge ~
- S

degrees of freedom• 
~~~2

NE }E ~
S

41

- -_ 5 5 _ - -5-..-—-S-SS- --’—.——--—-- -

-

T ’~

where NC Is the number of constraints , and J are the unconstrained

global translation at joint n.

The RU degrees of freedom consis t of the U degrees of freedom with
the edge degrees of freedom for a joint Immediately following the uncon-
strained joint degrees of freedom, as shown below.

1

Degrees of Freedom

I: }
. } ~2 S

-

-

~~

. } E2

.
I ~~~~~

• } E,,~
3*NJ+IIENC

OVERLAY

Loading of the Initial Generator program should Include the use of
the CDC segmentation capability . The basic overlay structure Is shown

I
42

_ _ _ _ _

!

in FIgure 5.1. Note that the labeled common regions are overlayed as
well as code. rhe SEGLOAD directives to accomplish this overlay structure
are given below. Beg-Inning card columns are noted above each of the
three fields.

1 8 17 -

TREE BIRDG1-(IN ,ELEM,ASSM ,ØUT)
S

ELEM TREE EA-(BAR ,MEM,CELL)
GL~BAL CØNST ,IEDGE,IERR~R,ISEQ ,EDØF ,LPEP ,MTRL
GL~~AL CØN.RM,Q8.IL FCL.C. ,IØ.BUP.

E~~F EQUAL JORT
ISEQ EQUAL WR K
lEDGE EQUAL LPBEM,LPMEM,LPCEM
IN INCLUDE CNSTRN ,JTEMP ,JTPRT ,JZERO ,MTLMØD,SKDATA ,TAPE}10
IN GL~~AL COFCLC,LIMITS
EA INCLUDE ACCPRP ,EDGES ,ELEMNT
BAR INCLUDE LPBAR,LPBPRT,LPBSM -

MEM INCLUDE LPMAP ,LPMC,LPMPRM,PMPRT ,LPMS~1 S

MEM GLØBAL LPMDSZ ,LPMV
CELL TREE LPCAP-LPCC-LPCSM- (LPCPRM ,LPCPRT,LPCFBB ,LPCG ,LPCK)
LPCAP GLØBAL LPCV
ASSM INCL (JDE PASSM,EDGDØF
~UT I’ICLUDE DUMPMT ,PRTCØN ,TAPETR,WTAPE 1

END BIRDG1

FILE UTILIZATION
S All tabular card Input data is read from system input file 5 and all

printed output is written to system output file 6. In addition , thirteen
external files are used. Units 7 through 18 are used as scratch files
and unit I is used for master matrix data binary output.

FIgures 5.2 , 5.3 and 5.4 show the use of these files during the three
major processing steps of the Initial Generator program. The content of
each of these fIles is summarized In the following.

-

43

-

~~~~~~~~~~~~~~~

-

-

- S - - - S -

--



— - -S--S -

In
w

~~
-~.-- ~~ 

.,- s_~~~r —
~~~~

-• .~ L. I— IL.
I a, ~. i~ 0. —~~~~~~~~~~~Z I
I I C
I Eø. i

I

S I U
I ~~~-~~a’ i o

S .
~~~

.,- Ia, iø

I 
.
~~~~

~~ C U~~~
~~~~~~~ 4.1 0.

I 9J 4J ., O~~~~.

C U  - a,
I U~~~ 4.1

I C.0
C

I C

I
S r — — — — - ~ .~a

I 4.1

I’.,

I - a,

L-
~~~ — — — — — ~~~

I•.

C
-
~~~~~~ 

-, .,- S

5’ 0

I 

- 

. ~~~

5- -5 -~~~~~~~~~~



F - -

p — C a ,

— 0.Z E~~~~~~~ —(~)~~~~ñ a,.o i. —
II) 4.1

-€
~
)

1J 11L. -

L!1!!T _ @ 1 1
_:L

~~~~~k1t1 -
5~g~~ ~

-

~~~~~~~ 

_ 
S

- ,  ~.I ~~~~~~

L 

45



~ 5 ?  --—r- -- ~~~~~~~~~~~~~~~~ 
_~-S5S 5_

~
__

~_’ ~-S-S5.5.S~-S - -SS~ - -

- - S

1~I4.,I- 4,
1(J I C V~~— -

. v

1IHi LI~~~~~~ !
.0 a,
a, .C 0

U N

I U ;  ~~~~)U

— a, a,

1~l i —©~ 
-

~~~~~~~~~ 
I

- S ~~~~~~~~
I-S-SS

- - - - S _S 5- _

~~~~~~ 

5 - -



File Content

1 Master output matrix data
7 Intermediate material property and other potentially

variable data for each element (EVT)

8 Intermediate unassembled damping matrix for each
element (

~
)

9 Intermediate deformations due to initial thermal
gradients for each element (seT)

10 Intermediate unassembled lumped mass matrix for each
element (m)

11 Intermediate unassembled strain transformation for
each element (C

a
) 

S

12 Intermediate unassembled force transformation
for each element (Fr)

13 Intermediate unassembled stiffness matrix for each
element (k)

14 Intermediate unassembl ed lumped stiffness matrix
for each element (k)

15 Intermediate unassembled stress transformation for
each element (ar ) -

16 Intermediate constraint data for each constraint
17 Intermediate edge data for each element
18 Intermediate thermal deformation transform for each

element 
~~~

The output of matrices of element data as well as the processing of

S
such data is In the order bars, membranes, ~e1ls, and point mass elements.
The size of some of the matrices and arrays for individua l contributions
from the three types of elements is given below.

Matrix
or

Array Size

~~~ 

E, 4K x NK (syuinetric)
k, c, m HF x HF (symmetric)

NF x NK

MS x HK

47 

5 - -- - -



-- - —- 5-

- - 

C MS x MS (symmetric)

~ T’ ~~ 
FIK x 1

ECT NBx 1
EVT N V x 1

where bar - membrane cell
NF~~ 7 16 36

- NK * 2 9 30

NS~~ 1 3 12
N3~~ 11 22 54
N V s  14 15 24

Only the mass matrix , m , and the element constant table , ECT , apply
to point mass elements. In this case, HF = 3 and IIB 5.

The master output file Is written in a format consistent with FORMAT
master input/output matrix tapes. The FORMAT tape name and modi fier in
the neader record is MTAPE , 1. The order and discription of the matrices
output for the structural model defined by the tabular input data -Is given
below.

Matrix FORIIAT Row and
or Matrix Name Column
Array and Modifier Dimensions Description

U0 UZERØ, 1 NJ x 3 joInt coordinates

MPT MPT, 1 NM x 1 material properties

ECT Ed , 1 100 x NEM element constants

PRUPT PRUPT, 1 MU x NT I do-f reordering

PRUF - PRUF, 1 NU x MPF element force reordering

k KEL, 1 NPF x NPF lumped element stiffness

m MEL, 1 NPF x NPF lumped element mass

k KBEL , 1 NFB x NFB element stiffness
. 

O S

48

S S _ S S ~~~
— —5 —5— — —- - -5 —-— — - ___ _~~ S~~~~~~~~~ ’ — — — ~~~~___~~~~~~~~~~~ _



~~~5-S-S5--S-S -S 5 5_ ~~~~ 5--S~-5-S~~~~5-~~~~ S- -S55_ S-SS-5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

- CBEL I, 1 NFB x NFB element damping

FFBAR, I NFF x NFB element force transform

SIt~FB, 1 NSS x NFB element stress transform

EPSIG , 1 NSS x NSS element straIn tran s form

-

DEBT, 1 30 x NEM element thermal deformation

EVT EVT, 1 24 x NEM element variables

CØNST CØNST, 1 30 x 1 prob lem constants

where NJ Is the number of joints
NM is the length of the material property array

S
HEM - is the number of elements

NU is the number of unconstrained degrees of freedom

NT is the total number of degrees of freedom

NPF is the number of lumped element forces including
point mass element

NFB is the number of lumped element forces

I1IFF is the number of internal element forces

NSS - is the number of s tresses / strains

and NPF is the only dimension which inc1ude~ point mass elements . Matrices
MPT, Ed , EVT and CØNST are mixed integer/fl oating point arrays
which are not ~sab 1e directly by FORMAT.

CORE UTILIZATION

All internal core storage is by means of labeled common blocks. No
blank common is used. Detailed descriptions of each label ed common
block is given in Append ix B. Table 5.3 lists each of these labeled
common blocks and all routines in the program which reference them.

I
~

(_) - -S

49

5 - - - — ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ — -5 ---- — -5- — -- - - - - - - -

-~~~ S S S S-S-S~~~- - - S ~~ 5--S~ S S S ~~~

0.
0. ~~~~~~~< ~~~~A.
I— ~~

a

~~ 0.
a

~~~ ~.) a 0..
_j

I— A. ~~~
~~ _1
0. 1 -

0.
— ~-44) 0~ • 0.

x _,
91) N4~~~~~
C.~ ••~D C_) — j

I.-A. C.)Cd, 0 .0 .  0.
•

C..) a,~ w *Z I Q.. -

w 0.
w 0.0. b- 0.
w —a, • ~~~~I4~C C~~ JJ~~~~..- z _i~~~, I-• 4.’ Cd)

Cd) 0.
0 0.. E

C 0. L~. 0.
C_) ~~ . • .~ I C..)

• 0.
C — ~~~~—~- • _j
IJJ X

In Cd)
a, 91) -
U 0.. C/)
C 0. ~~ _j

—J U 0.
C.. * ~~~C%J •
a, E L~~E C

C ‘C— Cd) ~~~~V)S ).
~ a, Cd) C u )  w

p.4
0. e._)

C.) 0.
* _ I •  a

~~~ < —  0. ~— 0.
~~ C.) Z
~~ ~~.CO ~ 0. (.1

_J _I L) Cd) 0. I- 0..- I-. -,
— *a~ — 0.
I—. C • C
— ~~~~~a

~~~ 0.

~. I—z ~ E
— ~~ II) Cd) ..J W ..J U) ~~LU C/) I- )-. I- ~~ C..)

P 4  (-) < 0.. 0.
0.. -4 -~-~ a a a a

U) • 0.. a - C/) %aJ 9/) a a
0. C’) Z LU P-i LU I- I-

LU 0. Z 0. ~~ 91) C C
. 1  LU C.) UJ Cd, ~~ C.) ~~ 0. LU

~~~ 
,_

~~~~~~ < C.) C.)
0. ~~ A. ~~ Z 0. 0.

_a _i
a a a a * a a •

C.) ~~ U. C.) I..— 
~~ 

a
CD CD ~~ ~~ ~ J CD ~~ 0..

— —~~~ ~~ ~~~ 0. 0.
C.) ~~ Z LU C.) ~~ C.) .. )  -I

- S  — 0 .~ C.) Cd)
~~~~ ~~l C— ~~ I— ~~
~ 0 C.) Cd) ~~ U- C-

a,~~~~ .— U. ~~ C.)
~ l C.) ~~ LU C C — 0. 0.

~

: I

‘-5 ~~ -S -_ - ———w-.--—— -- - - - -

a
C.)

C-,
0.
-4

a
CD
9~)0.
-3

a
a, CD

U. 9/)
C U-X

C-)
4.1 0.
C
0
C.) *

C- • 0.
U, LU~~~LU C.)0. 0.
C.)
Z a, ..J 0.. *
LU ~J C

P-I C
LU ~~ C.J a —U. D U) C.) CD 0. U) -J
LU 0 C.) A.~~~ ..J Z

0. ..)0. 0.
•

Z >4 C
_ ~ 0. a P-i

C- C~J Cd) LU
In ~~ C.) ~~ 9/) Z V) C

O a, 0. 0. LU ~~ 0. ~~ C-
C.) U C.) .J Z 0. ...J A.

0 0. 0. .J
C a, —J ~ J
LU • C. Z —
_J a, a 9/) a 9/) C-
LU ‘C- C.) ~~ U)

31 ~~ 0. L&. E 0. 0.
~~ C.) ~ J Li. 0. .i Z 0.

0. £ ..I 0. ~~l•D. •
a a

C C •
C- CD 0. a P.4 0. CD U) C.)

C-) ~~ C~) ~~ E C-~ 0.0. 0 . .~. E 0. 0. 0. C.) <LU - ~J .4 0 . 0. ~~I ..i -l 0.
-4 (/,

LU a a S a a

CD — a p... C- ~~ a a
U- ~~ 0. C- ~~ U) ~~U- ~~ ~~ LU LU ~~ C-) C.)C.) 0 .X 0.. ~~ ~~ 0. 0..

— 0.. .40. X 0. 3. -~ -1 C-
C- _J -4 0.. .J -J U)
— a J • —

a a 0. C- a
— a C-U) C.) U. Li. 0. ~LU LU C.))

~ Li. U. C.)
• C.) .J 0.. E X E C.)

0.. LU ..J 0. 0. 0.
• -4 -.4 ~~J44) a a a a

* ‘— I—. a a a — —
LU 0. CD 0. 0. 0. CD 2
-4 CA . C C- C-C.) X C-) Z ~~ ~~ U)

0. I-aA . 0. 0.. 0. —
~~ ~J ~ I -.4 -~ ~~ C..) 0.

.0
S .—~~~~~~ U) Z

~I~~~~~V 0. C > —J- -
~~~~~~~ C.) LU E ~.~~~ A. 0. 0. 0. 0. C-. ~~C..) .U ..J .U -.4 .U ~~ _ _ _

51

- — - — —— -~~—~~~— - -~~~~~ — -~~~- -~~ ~~~~~~~~~~~~~~ 
S



_ _  - - - -

LIMITATIONS

Currently probl em size limitations of the program are as follows:

Maximum Type Data

1200 - joints -

50 directIon cosines
600 constraInts
300 oblique constraints

20 materials
10 coefficients or values/material property
660 coefficients for all properties of all

materials
240 words of descriptive text for all

materials (10 characters /word )
7200 edge element forces
7200 1 degrees of freedom -

3600 edge degrees of freedom

Limitations with respect to material properties can be modified by
changing dimensions of arrays in labeled common block MTRL. At the
same time, the data statement in routine MTLMOD Initializing the values
in labeled common block LIMITS must be changed to be consistent with
the array sizes of labeled common block MTRL.

All other limitations are basically functions of the size of labeled
common blocks EDØF , lEDGE , and ISEQ. These common regions are used as
a group in the reordering of degrees by routines EDGDØF and PASSM and
must be of equal size. This size is the limit for number of I degrees
of freedom and edge element forces. Half this dimension is the limi t
for edge degrees of freedom. The current dimensioned size of each of
these three connon regions is 7200 which is reflected in the list of
limitations above.

52

- 
S — — - - 

_ _ s  — _-_-— _ _ _ . -— _ -r- ____ ._ _ . _~~~~~ t . - f l~:~~~~~~~~~ —



.— —— -—- - - - -- . ----— -- -- ---— -‘--.- —- ---- -—----- -—--- -

Labeled common JORT is used to store joint coordinate and temperature
tables and is overlayed wi th labeled common EDØF. JORT requires four equal
size partitions whose length is the limi t for number of joints. The
current Implementation with common region EDØF of size 7200 is , therefore,
sufficient for 1800 joints. Present dimensions in common region JORT,
however, are sized for a limi t of 1200 joints.

Limi tations on direction cosines and constraints are a function of
array sizes in labeled common block WRK as defined in routine CØNSTN .
This common region is overlayed with l abeled common block ISEQ. The
declaration for common region WRK in routine CONSTN is the largest in
the program and uses only 3453 locations of the 7200 abailable. By
increasing the array sizes of labeled common WRK as defined in routine
CONSTN but not exceeding the size of labeled common ISEQ , these l imitations
could be eased without any overall penalty . S

Even thpugh some of the current limi tations could , and probably
should, be eased without increasing overall core requirements for the
program, the array sizes as presently defined , have been sufficient 

S

for processing the largest possible probl ems under the I degrees of
freedom limitation.

i_

I 

- 
S

53

- 5 - ,  —-- - 5 — — - - --‘- - - 5 - 5 - - - -  - - -  - - -- - - - - - S - - 5 - --4



-— -— - -~~~~- -~~~-5 - -- -— S ---~~~~~~- S ~~~~--— —— ~~~~~— - - S - - - - —~~~~~~~~~~~~~~~~~ S - S S---- - - S- -- --

L L

(~
)

____________  — _ _ _  -- —- — - S



-5—---

SECTION VI
- LOADS GENERATOR

OVERV I EW

This program accepts user prepared tabular input data describing the
model including the Impact loading and generates a matrix of Incremental
point loads. The card input prepared by the user is described in Part 2
of this report. The mathematical formulation is given In Appendix H of
Part 1. Deta-f led descriptions of each routine in this program are given
in Appendix C of this document.

The core required for this program wi thout the use of overlay or

segmentation is 71000 octal words. The program uses three external
files in addition to system print file 6. One file Is used for card
input, one for card image output, and one for binary matrix data output.
Organization of all routines for the program is shown below.

LØDGEN -

(CR055
UVEC
~D0T

I 1 I 1 I
S READCO READCN READB READJ GENAB MATMLJL DELTA ØUTPtJT

INVERT SQUEEZ

No labeled or blank common regions are used by the program. Array

A is dimensioned in the main program which allocates space wi thin the
array for use by each of the routines -It calls.

Routines CROSS, UVEC , and DØT perfo rm the vector operations of cross
product, unitize, and dot product , respectively. Routines READCØ and
READCN read the joint coordinate and impact constant data , respectively.

Routines READB, READJ , GENAB, MATMUL, DELTA , and ØUTPUT are called
for each load increment. READB reads the footprint travel and the load

55



factor. READJ reads the numbers of joints that receive load. GENAB
generates the A and B matrices used by MATMUL in performing the matrix
mul tiplication AT(AATY 1BF which results in an array of joint loads.
INVERT Inverts the 3x3 matrix AAT. DELTA finds the change in jo int
loads from the previous to the current load increment.

- 
OUTPUT wri tes the change in joint loads on the output file(s)

using SQUEEZ to compress the data written on the FORMAT tape.

FILE UTILIZATION

Required input to the program are the table of joint coordinates ,
Data Code 2, and the tables of impact definition data and impact foot-
print joint data , Data Codes 11 and 12. This data provides: 1) over
all model geometry, 2) bird l ength , mass and velocity, and 3) the
incremental load in terms of magnitude , direction and loaded joints.

Printed output for each increment consists of increment number ,
bird mass and velocity , duration of impact, average impact force,
load direction, total load, and incremental joint loads . The load
matrix generated represents Incremental joint loads in the global
X , Y, and Z directions. The row format corresponds to joint I degrees
of freedom and columns correspond to the increments .

The output card Image file Is formatted for use as a FORMAT Phase
II card input matrix wi th the name DPOT. The binary output file is
formatted for use as a FØRMAT Phase II master input matrix tape with
the tape name LTAPE ,1 and a matrix name of DPØT.

There Is one card input file referenced by the integer variable
ITAPE. The card image matri x output file is referenced by the integer

S 
variab le JTAPE. The binary matrix data output file is referenced by
the integer variable KTAPE. These three variables , ITAPE , JTAPE and
KTAPE are Initialized in the main program as files 1 , 2 and 3, respect—
tively. All printed output is written to file 6.

t 
—SS* ~~ - 

56 

L — - - - - -



~~~~~~ - --~~~~~~~~~~~~ - - - - - - S - - — - - 5 --- -
~~~~~~~~~~~~~~ -~~~ --- - 

LIMITATIONS
The program uses the singularl y subscri pted array A which Is

dimensioned in the main program as 10000. The size of this array is
stored In the integer variable NSIZEA which is initialized in the
main program. The dimension of array A and its sIze stored in NSIZEA
can be changed to accommodate smaller or larger models. The formula
for determining the space requirement for array A is:

NSIZEA ~ 3*NJTOT + 9*NJTN + NDOF

where NJTØT Is the number of joints under Data Code 2, NJTN Is the 
-

largest number of joints In any Increment under Data Code 12, and NDOF
is the number of joint I degrees of freedom from Data Code 11.

I

57

— I I
‘—--5- 1

-5-- - — - - - - , ——---5-  — -- - - - - - - ----S-S- 5 -- -- — --5- — — - 5



_______ - --- -- - 5 -

SECTION VII
LINEAR INCREMENTAL SOLUTION

OVERV I EW

This program accepts matrix data representing the structural model
in mathematical form and solves the linear equations of motion Incrementally
to obtaIn the structural response. The solution of the linear equation
of motion is a subset of the nonlinear solution as described In Appendix H
of Part 1 of this report. The FORMAT steps required to generate the input
matrix data for this program as well as the card Input required are descri bed
In Part 2 of this report. Detailed descriptions of each labeled common
block and routine in this program are given in Appendix 0 of this
document.

The core required by the program is problem dependent. Sufficient S

space must be available in blank common in which all working storage
space is dynamically allocated during execution. This requirement is
covered In detail in the latter part of this section (see LIMITATIONS).
However, for a nominal size problem of 30 or less transfov~nation modes,
which is the predominant sizing factor, the program requires 140,000 octal
words for execution . The minimum requi rement i s 104 ,000 octal words. In
addition to the system input/output files 5 and 6, the program requires
22 external files of which 19 are used as scratch, two as master input ,
and one as master output.

Current Approach

The program as coded is significantly different from the theoretical
development given in Part 1 in one area. This involves the introduction
of the cosine load variation or impedance matrix and the formation of the
A matrix from which all eigenvalues and elgenvectors are extracted to

S obtain the modal incremental response.

-

S -4
-- 5 -- - - SS- -- - 5----—--S-~-S - - -



- 
- 1 •

Currently , the program does not include the computation and applica-
tion of the impedance matrix in the modal response equations. In
addition , the equations solved for the modal response are based on an A
matrix of the form

Frl~ ~
r
~1

LI oJ
where the desired form as given in Part 1 , which permits a singular
modal stiffness matrix K, is

r° Ii

This inconsistency came about due to changes in theoretical approach
which took pl ace during method development. Originally, the form of the
A matrix was the latter using ~~~~~~~ Subsequently, it was decided to use
the form wi th because of singularities in the modal mass matrix in
some classical test probl ems. However, the final approach as documented
in Part 1, reverts back to the original form of the A matrix using
This was made possibl e by introducing the impedance matrix and automatIcally
accounting for null rows/columns in the modal mass matrix. Unfortunately,
coding of the linear solution was nearly compl ete using the K . 1 

form of
the A matrix and time did not permit changing the code to be consistent
wi th the current theoretical approach.

Organization

Figure 7.1 shows the functional organization of the program in terms
of all l abeled comon blocks and the principle routines. Labeled common

blocks are In parentheses. Vertical positioning in the figure depicts
-‘ a basic overlay structure which could be implemented in the future.

-_~~~~~~~~~--.- --~~ 

~~

S. S

1I - -



- 5555 5 
~~, , n ~~~~~~~~.tzr_ ~ _ :~ f l C ’ — - -

I-

—

— wz

~1 

I
ZW w I -L~

=

~~- — U
-I

—U ,

— w � S

•1~0.0.

I-
3
C.
’

—
~~j

_

~z 
—

~

61 5 -

-

S —— 5 —  ~~~~~~ 
S .  ~~_~~~~ _ S S  - S 

~_
- 

~
_ S _

~~~~
_ _ - 5 5

~~~~
5
~~~~ 

S

S
~~~~~~~~~~~~~~~~ - S~~~~~~~

s - , s .~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~

Functionally, the program can be broken down into two major processing
steps; the initiali zation step accomplished by the three main branches
NITIAL, PREEIG I, and EIGSOL, and the incremental response solution
accompl ished by looping through both remaining branches , LINEAR and
IM8AL.

Operation

The design of this program includes the following characteristics
deemed essential for efficient and flexible operation . All working
storage used by the program is in blank common. Partitions of bl ank -

common are dynamically allocated during execution for each of the matrices
encoun tered during an increment of the solution process. The partitions

S 
for element matrices are sized according to cel l elements which have
the largest requirements. Full advantage is taken of matrix symmetry, both
in storage and computations. Further, all element matrices are compressed
if possible and reformatted into a single record for external storage.

The main program consists primarily of sequential calls to routines
NITIAL , PREEIG , and EIGS OL followed by a loop in which routines LINEAR
and IMBAL are called. The Index of this loop is the number of time
-Increments as specIfIed by the card input. Between each of the calls ,
timing routines are invoked to obtain CP time for the execution of each 

S

module.

Routine NITIAL performs the first stage of initialization process.
First, labeled common block TAPES Is thi tt ali zed with the FORTRAN logical
un it numbers to be used for the scratch files. Routine MATIN is then
called to read the fi rst master input tape and copy each input matrix to S

Individual scratch files. The input file contains matrices MPT,
U0, Ed , m, ~, ~, F~, a~, c ,  61i, EVT , and CONST assembled in a
previously executed FORMAT step. Only matrix CONST remains core resident.

_ _ _ _  
_ _ _ _  - .  -_ _-_ _



_ _ _ _  - -

All card in nut is then read by routine- NITIAL consisting of run
parameters and incremental time history. The CONST array Is augmented
wi th the number of modes and time increments from the card input. The
first data card is read with a format (4j 6 , ILl , 216) and con~.ains the
following run parameters: . S

BETA beginning time interval
NELEMS total number of physical elements (excludes

point mass elements)
NTRVLS number of time intervals -

MG number of transformation modes
HEAT “F” , dummy logical control flag
NJTS number of joints
NWØRK optional extent of blank common

The array NTRVLS , ascending values of elapsed time , is then read with
format (6E12.O).

Using the problem sizing information obtained from the matrix and
card input, routine MITIAL then begins the process of allocating
partitions of the blank comon region for each array required in sub-

sequent processing steps. The first location of each of these partitions
is stored in labeled common block NDICES. The details of the dynamic
allocation scheme used are given later in this section (see CORE
UTILIZATION).

Next , the cel l stress transfo rm, 
~~,

, is initialized by routine
NITIAL since it is constant for all cell elements.

Routine READK is then called by NITIAL to rewrite matrices E, E~, F~,
S c , and 6i -In optimum format. Element partitions of matrices k, ~~, and

are reformatted in upper triangular row-wise form to take advantage of
syiiinetry. The partitions of matrices ~~, E , and 

~~
. for eac h element are

then written on a single file as three records. The partition of is

_ _  

63 

- - _ _ _



written to a seperate file as one record. Element partitions of matrix
F~
. are compressed and written to a seperate file as a single record.

After setting various blank common partitions to zero, NITIAL calls
routine SIGFBR to rewrite matrix In optimum format. Element partitions
of are compressed and written to a seperate- file as a single record.

- 
Interspersed in the above in itialization steps is the setting of

parameters in labeled common block LIMITS and the transcribing of certain
input data to the master output file. The data written to the master
output file by routine NITIAL are the augmented matrix of probl em
parameters , CØNST , the matrix of card input incremental time history,
TIME , the matrix of original joint coordinates , UZERØ , and the contents
of the second master input file , matr ices DPBPHI and PBUPTJ , the incre-
mental applied loads and the modal to joint I degree of freedom trans-
form, respectively. - 

-

The second stage of initialization is performed by routine PREEIG.
This consists of computing the modal stiffness, damping , mass , and loads
matrices, K, C, M, and 6P~Q) respectively. Some 0f the byproducts 0f
this task are also stored seperately on external files . After first

initializing the arrays g, ~, Fi, V , ~~, 6P~~, ~(M)u 
to zero , the follow ing

operations are performed for each physical element in the model .

Read k, 
~~
, 6€

T~ 
m , F?, and 

~uF 
from scratch files

O 
~UF FF

DK D k  S

Wri te 6FKO and OK to seperate scratch files

t =-5±___ —- 

5

— - - S  — - S
~~-5~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



vs 
S

6
~KO ~ KO + D6~Ko S

g

~ ~~~~~~~~~~~~~~

M 
~
M + P UF m P UF

. S

After all bars , membranes, and cells have been processed in this
manner , routine PTMASS is called to add point mass element contributions
to matrix i~ if any of these elements are present in the model .

The third and final stage of initialization is performed by routine
EIGSØL., the third main branch from the left In Figure 7 .1 .  This consists
of the A matrix assembly and subsequent solution for elgenvalues and
eigenvectors. Routine CHLSKY is called to obtain the decomposition of K
and the A matrix is assembled according to

A =

L ’ ’
and the eigen ’equation of the form

A 

~~ 

H~ 

~~~ H

=

[

H~

~

~~~~~ 

~~~~~~
is solved for the eigenvalues H “[~

.] and the diagonal matrix of eigen-
V

S values A D. The inverse of the eigenvectors Is then obtained using routine

J~RDAN and both the eigenvectors and their Inverse are written to the
same scratch file.

The eigenvalue problem is solved by routine R (EIG which is part of

the EISPACK library (Reference 16). The version of routine RGEIG in this
code has been modified slightl y from that in the EtSPACK library. In an

65

S - ___ ~__ _ _ __ ~~ 4~~~ -- — —. - — - 5 - —— -~~~~ ~~~~~~~ — — —-- - -~~~—~~~ —~~~~

effort to reduce core space , the origin of the real input matrix was moved S

n2 locations down from the origin of the matrix of eigenvectors where n
-Is the order of the problem. This allows for the elgenvectors exclusively
in the complex mode.

This concludes the Initialization steps. Other than core resident
data, input to the incremental solution step consists of matrices a

c , OK ,
~ Ko ’ H and W residing on scratch files , and matrix 6

~(,)U
on

the second master Input file.

Executing the incremental solution is accomplished by routines LINEAR
and IMBAL . These routines are called in this sequence by the main program
for each time increment. Routine LIHEAR computes the modal response and
routine IMBAL computes the element forces, stresses and strains from the
modal response.

Core resident data during the incremental solution which remains
constant includes g , ~C

1 , ~~, ~~, ~~ ~~KO and the cell stress transform

a~~ previously set in routine NITIAL. Core resident data from the previous
increment includes

~(M)u
•’ ~ and L Using this data and previously assembled

data on external files , routine LINEAR performs the following operations
for the increment.

Read 6
~~(,)u

from the second master inrut file

Read H and from scratch file
6PKO +

~(M)U + 6P(,)u

Z a -K 1
~

Ca W 1 [_
~
.] diagonal ized

F (-r) • eAT where -r is the incremental time
Q
~~

Ca F (T)
-
~~ 0

.

_ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

IS

--5-~~~~~~~~-

5—--

.
— 5_ —5--- - —-- 5-------__—5 _ _

1&A1
L!JS HQ

* - Z
Va H

Routine IMBAL then completes the computation of the modal response by
performing the following operations.

This is followed by a call to routine ØUTPUT which writes the modal
response to the master output file. The modal response is output as a
column matrix wi th the name RESPNS and a subscript equal to the increment S

number. The data output consists of & , 6E , i, V, P1 and P2 arranged In
that order in a column of length 6*NG where MG is the number of transformation
modes. The P1 and P2 partitions of the column have no real.s-lgnificance .

Routine IMBAL then enters a l oop for processing each element. This
loop processes bar, membrane, and cell elements in that order. A matrix
is written to the master output file for each element type that exists
in the model . The following operations are performed for each element.

Read a~, c0, OK, and 6FK0 from scratch files

a 6F _ D K T .

a - °
~~

FK for bars and membranes

or : : ::~
FK for cells

L Write FK, a, and c to master output f i le

67

— — — S _ _a_S_S_ _S_____._ _ __S___ _ _ — - - - — 5— ——

— — -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

—

The element forces , stresses, and strains are arranged in that order
into a single column of the output matrix for each type of element. The
matrix names used for the three element types are BARS , MEMBRN , and CELLS.
Each is subscripted with the increment number.

This ends the processing for an increment. Execution of routines
LINEAR and IMBAL is repeated for each of the increments specified on the
first input data card.

FILE UTILIZATION

All card inpu t is read from the system input file 5 and all printed
output is written to the system output file 6. Although FORTRAN logical
units 7 and 29 are declared in the PRØGRAM statement in the main proaram,
they are never referenced. FORTRAN logical units 1 through 4 and 8 through
23 are referenced as external files using the variables Ml through N20
stored in l abeled comon bl ock TAPES (see Appendix 0, LABELED COMMON TAPES).
File N2 is used as the master output file while N17 and ~11B are used for
the two master Input files. All three master input/output files are
formatted consistent with FORMAT master input/output matrix tapes.

The code does not key on the FORMAT tape or matrix names in the input
fi les. Matrix data is identified by its sequential position on the input
files. The sequence of matrix data on the first -Input file, Nl7 , is

~~~ 
MPT, U0, ECT , m, i~, ~~

, F~~, 0~~ ta l 6~~~11
EVI, and CONST. The sequence

of matri x data on the second input file , Nl8, is 6P(,)u and
~UPTJ~

All
of these matrices are created in the Initial Generator except for

and
~UPTJ which are computed In precedIng FORMAT steps.

Table 7.1 shows the use of external files by each of the principle
routines during the solution process. The routines are l isted in their

execution sequence. All rel evant data stored on external files are
listed at the top. In the table , the variable external file references
alongside “IN” Impl ies the data Is read from that file in the corresponding

68

-
~~~~~~~~~~ 

—
______________________________ -5 5 -. .- -.~—-----~--—- - 5- ——— -5---



F- - . -
S.’

~~ - _ _ _ !
~L

a. i~. — —~.*  •0 x
*3 — — — — — — — —

p..
z z

~.1 %

— 
Z~~~~ ~

—

~~

— 
~~~~ Z~T~ThUT — Too~~ 

—

L 69

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

~~

5- ’5-5-

~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

routine. File references alongside “OUT” Imply the data is wri tten to
that file in the corresponding routine.

All output to the master output file , N2 , occurs in routines NITIAL ,
IMBAL and routine OUTPUT which Is called by IMBAL. The FORMAT tape name
and modifier of the master output is WINDØW , 52877 and is written by
NITIAL. A description of each of the output matrices including the
routine from which they originate is given below.

FORMAT Row and
Matr ix Name Column

Routine and Modifier Dimensions Description

NITIAL CONST , 1 30 x 1 problem constants

NITIAL TIME, 1 NTRVLS x 1 incremental time history

NITIAL UZERO, 1 NJTS x 3 original joint coordinates

HITIAL OPBPHI, 1 NG x NTRVLS incremental transformed applied
loads

NITIAL PBUPTJ, 1 NG x 3*NJTS modal to joint I degree of freedom
transform 

-

OUTPUT RESPNS, ~ 6*NG x 1 modal response

IMBAL BARS , B 4 x NBAR bar element res ponse
S IMBAL MEMBRN, B 15 * NMEM membrane element response

IMBAL CELLS, 8 54 * NCEL cell element response

where $ is the increment number and NBAR , NMEM, and NCEL are the number of bar ,
membrane , and cell elements , respectively. Note that matrices BM~S, ~V’9, and

CELLS wil l be present only if the correspondina element types are present in the

structural model . Also , the names DPBPHI and PBUPT~ may vary since they are user
defined -In a preceedina FORMAT step. All other matrix names shown above are

imbedded in the orocram code.

70

~~~~~~~~~~~~~~~~~-~~~~.- - S - 5~~~5_

- _~~~~ 55- — ~~~~~~~~~~~~~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~5-r

_ _ - 5 S -5~ --
- S -

CORE UTt LIZATION

All internal core storage is within array A in blank common. The array
is implicitly partitioned by routine NITIAL where the beginning l ocations
of each partition are computed . These beginning locations , or indices , are
stored -In labeled common block NDICES. In the allocation scheme , an overlay
structure Is used within array A where a given space is reused for different
data as the solution process proceeds. For reference, the labeled common
block declaration for NDICES is repeated here.

COMMON /NOICESIIVBDB ,IVBB ,IVBX ,IDPBPU ,IPBMLJB ,IDPPUB,IDBL ,IVBL
IPBAR,IPBPHU,IKB ,ICB ,IMBAR,IMBARL,IDEBCL ,ICØNST

, ITIME ,ISIGSS
IKBL ,IZ,ICA ,IQ,IVAL ,IFTAU ,IVEC ,IEGSYS
IU,LU,IECT ,IEVT,IMPT,IDEBO,IDFBKO ,IDSEB

, IFK ,IFBK ,IDEL ,IDEDL,IFSFB ,IFSFBB ,IPBCU

IPBKU,ISIGFB ,ISIGBH ,IEPSIG,IPSION ,IO ,IDK -

ISKB,ISKBB,ISCB ,ISCBB ,IPBUF,ISK,ITK,ICIB,IMEL

Each integer variable in NDICES Is the first l ocation of a partition
in array A. For example , A (IVBDB) and A (IVBB-1) point to the first
and last locations of the partition used to store matrix $~. By definition ,
the length of the partition would be equal to the number of transformat ion
modes MG.

The variables in NDICES are allocated in such a way as to represent
three contiguous members. The members are from IVBDB through ISIGSS ,
from IKBL through IEGSVS , and from IU through IMEL. The member IVBOB
through ISIGSS is permanently resident in array A , while the remaining to

S members are effectively overlaid. Graphically, the overlay structure can

S
be shown as

I
_ _

71

-- - - - - --S- - —-~~~~~~~ — --—s- - - — - — --——
5
- - 5-5~~~~~~~ C -~~~ -

________- - ~~~~~~~
-- - - 5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ --- - - - ——- 5-~~~~~~~~ 5- 5-~~~~~~~~~~~~~~~ - 

—~

IVBDB

Is i ass

- 

~1 
5

- IKBL Iii

IEGSYS IMEL

where the vertical positioning impl ies relative location in array A and
IVBOB starts at A(l). The member IKBL through IEGSYS is used exclusively
by routine EIGSOL for the eigen probl em solution . Member IU through IMEL
Is used by all other parts of the program.

The actual allocation in the present code deviates from this scheme
in that the partition associated with IU has been moved to the end of the
permanently resident member IVBDB through ISIGSS. This was done so that
the joint coordinate data would be permanently core resident. This Is
no longer a requirement in the linear incremental solution and could be
changed to conform to the allocation scheme as shown above.

There are three other labeled common blocks used by the program , LIMITS ,
TAPES , and CLOCK. Detailed descriptions of each common block are given in
Appendix D. Table 7.2 lists each of the common blocks and all routines

which reference them.

S 
LIMITATIONS 

-

Sufficient space must be available in blank common array A to accommodate
L - - the problem . The size of array A required for a given probl em is a function

of many parameters . The dimensioned size of array A is 8000 whIch is stored

72

5- S -5 -- -5-- - 5-’- - S 5-~~~
_ 

~~~S - -  —


5- — 5-5-5 _ S55~~ -5 -. -. 5-— — 5- - -- - —5--- .5 - - -5--—
~~~~~~~~~~~~~~~~ _______ 

- - - - - - ~~~~~~ - -

TABLE 7.2 LINEAR INCREMENTAL SOLUTION LABELED COMMON REFERENCES

Labeled
Conunon
Block Referenced by Routine

CLOCK IIMEQ , TSETQ

LIMITS RESPN$, EIGSOL, IMBAL , LINEAR, NDXSET , NITIAL , OUTPUT, PBARUF,
PREEIG, PTMAS S , READK, SIGFBR

NOICES RESPNS , EIGSOL , IMBAL , LINEAR , NDXSET , NITIAL , OUTPUT,
PBARUF, PREEIG , PIMASS , READK , SIGFBR

TAPES ~ESPMS , EIGSOL , IMBAL , LINEAR , NITIAL , OUTPUT , PBARUF , PREEIG ,
PTMASS , READK, SIGFBR

73

— -—-5-5-— -



5- - - - - 5 - -5-—--—
~~~~~~~~~~~~~

- S- - — -— - -—---- --5-~~~~~~~~~- -~~~~~~

In -variabl e NWØRK and initialized by routine HITIAL. Larger sizes can be
defined by inputting the appropriate value of NWØRK on the first input
data card which is read by NITIAL.

The size of NWORK must be sufficient to satisfy the following relation-
ships - -

- NWORK � 1200 + 5MM + 27MG + NELEMS + NTRVLS + 3NJTS + 8MG2

NUORK ~ 6700 + 5NM + 113MG + NELEMS + NTRVLS + 4NJTS + MUM

where MG is the number of transformation modes
NM ~‘(NG

2 + NG)/2
NELEMS is the number of physical elements (excludes point

mass elements)
S NTRVLS is the number of time increments S

NJTS Is the number of joints
and MUM is the length of the MPT record (row dimension of

matrix MPT)
S

I

-

- —----5-- S S _ - - - - ~~~5 5 _

-

S

SECTION V I I I S

NONLINEAR INCREMENTAL SOLUTION

OVERVIEW

This program accepts matrix data representing the structural model
in mathematical form and solves the nonlinear equations of motion in-
crementally to obtain the structural response. The solution of the non-
linear equations is mathematically consistant with the theory developed
in Part 1 of this report and the equations summarized in Appendix H of
that document. However, the procedures followed by this program are
not complete with respect to material nonlinearity nor is the code opti-
mized for geometric nonlinearity . This will be covered In detail later
In this section .

The FORMAT steps required to generate the input matrix data for this
program as well as the card input required are described in Part 2 of
this report. Detailed descriptions of each labeled common block and
routine In this program are given in Appendix E of this document.

The core required by the program is problem dependent. Sufficient
space must be available in blank common in which all working storage
space is dynamically allocated during execution. This requirement is
covered -In detail in the latter part of this section (see LIMITATIONS).
However, for a nominal size problem of 30 or less transformation modes,
which is the predominant sizing factor, the program requires 170000 octal
words for execution. The minimum requirement is 134000 octal words. In
addition to the system input/output files 5 and 6, the program requires
23 external files of which 20 are used as scratch , two as master input,
and one as master output.

Development History

The original design of this code was based on a theoretical approach

1
— S~~-,~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~ - - - ,- - - - - - S - - _5_ ~~~ - 5 5~~5 
_______



_____ - S - - 

/

significantly different from that documented In Part 1. The design In-
cluded strategies for the computations of both geometric and material non—
lineari ties according to the original theoretical approach .

The theoretical approach in this early stage of development attempt-
ed to account for geometric nonlineari ty by means of a scalar correction
factor to be applied to the linear incremental modal response. The corr-
ection factor, ~~, was computed as the single unknown of a third order
polynomial whose coefficients included the effects of fictitious forces
and deformations.

Subsequent appl ication of this code to geometrically nonlinear prob— 
S

lems proved unsati sfactory . Several alternate theoretical approaches to
geometric nonlineari ty were proposed , implemented In the code, tested,
and either accepted or rejected. During this time , some code rela tive
to material nonlineari ty was del eted from the test versions of the pro-
gram since 1) the test cases did not include these effects, 2) the mat—
erial nonlineari ty code was incomplete , and 3) because of the change in
approach to geometric nonlineari ty, the original program design and
associated code for processing material nonlinearity was not compatible
with the modified code either in an operational or theoretical sense.
At this point in time, all executive routines and associated data rela-
tive to processing material nonl inearity according to the original
theoretical approach were implemented throughout the code. However, the
routines necessary for the actual updating of material properties and
regeneration of element stiffness, damping, etc. were not yet ready for
implementation .

The modifications made to the original code during this development
process were intended as temporary changes for testing purposes only.
It was assumed that subsequently, the final approach adopted would be
implemen ted as efficiently as possible. However, time constraints did
not permit reimplementation of the final approach to geometric nonlineari ty

1:  
76 

- - - - ~~~~~~~~~~~~~~~~~~~ - -



-~~~---- ~~~~~~~~~~~~~~~~-~~~~ - 

I
nor the completion of the material nonlineari ty code. The final version
of the code, therefore , reflects this development history and the conse-
quences of time constraints . Under the heading FUTURE DEVELOPMENT at
the end of this section , more specifi c information is provided regarding
elimination of some of these shortcomings.

The final version of the code reflects the final theoretical approach
adopted~ for geometric nonlinearity which is that documented in Part 1
of this report. The principle differences between this approach and the
original is the iterative solution process for the modal response rather
than the ~ approach, and the introduction of the cosine load variation
or impedance matrix.

The following discussion of the Nonlinear Incremental Solution program
covers those areas of processing consistant wi th the final theoretical app-
roach to geometric nonlineari ty. The actual code, however , still contains
many operations based on the original approach to both material and geometric
nonl inearity. These areas of the code are described under the heading
FUTURE DEVELOPMENT at the end of this section . In addition , the document-
ation of each routine in Appendix E Identifies these areas of code in more
detail.

Orq~a n i za ti on

Figure 8.1 shows the functional organization of the program in terms
of all labeled common blocks and the principle routines . Labeled common
blocks are in parentheses. Vertical positioning in the figure depicts
a basic overlay structure which could be implemented in the future .

Functionally , the program can be broken down into two major processing
steps ; the initialization step accom plished by the two main branches
NITIAL and OUTPUT, and the incremental solution accomplished by looping
through the remaining branches , PREEIG, EIGSOL , FIFDEF , PREBAL , and IMBAL .
The iterative solution for the modal response is an inner loop consisting

of the EIGSOL and FIFDEF modules .

1
- - — — - —~~~~~~~~~~~- — — — ~~~~~~~~~ --5~~~~~~ — 

- 
~~~~~ 

- 5 ————- —— —~~~~~~~~ - -~~~~~~~~~~

---5- - — -—- -- - - -----5 - - - -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~

IJ~-~ _ ‘~~~_)

E
‘-I

.1 LU
-J -J -J

-~~~~S W ø.. J
~~~_J _J

~~ _ Q .
LU _j —

— U-
0. CJ

0.
-I

U~~~~ V)~I) LU
—

~~~~~~~~~~~~~~~~~~ —U-
0..— —. _J

a.~
.,-

—U-
V1 Lt~ ~~ V) ~~ —
~~ LU LU i.-. (fl P 0. •

L) 0. — LU ...J 0
‘I, — ~~~X — -
~~~~~ a

4.,

0
I~~ _J
I =

— I c~LU I
LU

-— —~~~~~~~~~~~
—S ~~~~~ —5-- fl - —— 5- rnr cr - —• -- --S ----S-- --~---- —

Operation

The design of this program includes the fol lowing characteristics
deemed essential for efficient and flexible operation . All working
storage used by the program is in blank common. Partitions of blank
common are dynamically al located during execution for each of the matrices
encountered during an increment of the solution process. The partitions
for element matrices are sized according to cell elements which have
the largest requirements. Full advantage is taken of matrix s~’i~netry,
both in storage and computations. Further , all element matrices are comp-
ressed if possibl e and reformatted into a singl e record for external
Storage.

The main program RESPNS consists of sequential calls to routines
NITIAL and OUTPUT followed by a loop whose index is the number of time -

increments as specified by the card input. Within this loop , routines
PREEIG , EIGSOL , FIFDEF , PREBAL , and IMBAL are called in sequence where
E~GS0L and fIFDEF are called repeatedly under control of an inner loop.

The index of this inner loop, which is the iterative processing to account
for geometric nonl ineari ty in the solution of the modal response, is a
constant initialized as 5.

Routine NITIAL performs the first stage of initialization process.
First, labeled common block TAPES is initialized wi th the FORTRAN logical
unit numbers to be used for the scratch files. Routine MATIN is then
called to read the first master input tape and copy each input matrix to
individual scratch files. The input file contains matrices

~UF~
MPT,

U0, Ed , m , k,
~~
, F?, ci~~, c~~, 6eT, EVT, and CONST assembled in a previous-

ly exec uted FORMAT step. Only matrices CONSI and U0 remain core resident.

S
All card input is then read by routine NITIAL consisting of run

parameters and incremental time history. The first data card is read
with a format (416, iLl , 216) and contains the fol l owing run parameters:

79

-- - 5- - -~

BETA beginning time interval
NELEMS total number of physical elements

(excludes point mass elements)
NTRVLS number of time intervals
MG number of transformation modes
HEAT - “F” , dummy logical control flag S

NJTS number of joints
- NWORK

- optional extent of blank common

The array NTRVLS, ascending values of elapsed time, is then read with
format (6E 12.O).

Using the problem sizing information obtained from the matrix and
card input , routine NITIAL then begins the process of allocating
parti tions of the blank common region for each array required in sub—
sequent processing steps. The first l ocation of each of these partitions
is stored in labeled common block NDICES . The details of th~ dynamic
allocation ~scheme used are given later in this section (see CORE

S

UTILIZATION).

Next, the cell stress transform, a50, is initialized by routine
NITIAL since it is constant for all cell elements.

Routine READK is then called by NITIAL to rewrite matrices k, C,
and

~
seT In optimum format. Element partitions of matrices k, c, and

c0 are reformatted in upper triangular row—wise form to take advantage of
symmetry. The partitions of matrices k, c , and 6

~T
for each element are

then written on a single file as three records. The partition of is
wri tten to a separate file as one record . Element partitions of matrix
F? are compressed and written to a separate file as a single record.

NITIAL then reads the original joint coordinate data into core from
the scratch file where it had been written by routine MATIN. Before exit-
ing NITIAL, various blank common partitions are initialized to zero In-

S i

_

-

_ _

80

I

cluding those for ~~,

~
~~~~~~~~~ 

~~~~u ’ 
6
~~ .)u’

and
~ CL

S

Interspersed in the above initialization Steps is the setting of
problem parameter variables in labeled common block LIMITS.

Routine OUTPUT transcribes certain input matrix data to the master
output file. After augmenting array CONST with the number of modes and
time Increments from the card input, the data written to the master
output file are the augmented matrix of problem parameters, CONST, the
matrix of card input Incremental time history , TIME, the matrix of orig-
inal joint coordinates , UZERO , and the contents of the second master in-
put file, matrices DPBPHI and PBUPTJ , the incremental appl ied loads and
the modal to joint I degree of freedom transform, respectively.

This concludes the initiali zation process. All data passed to the
incrementa l solution process Is on external files except for the arrays
of incremental times , original joint coordinates , and problem constants.
During the incrementa l solution , it is assumed that the element stiffness
and damping remain constant and that no initial element deformations
from thermal or other causes are present.

Incremental solution processing begins wi th the execution of routine
PREEIG. First, the transformed incremental applied loads for the increment,
if any, are read from the second master input file. The matrix of trans-
formed loads P is then partially assembled according to

= -
~ (M)U +

where 6PU are the unbalanced forces from the previous increment ,
are the inertia forces frcm the previous increment , and

~~(~)U are the
applied loads.

A loop is then entered whose index is the number of elements in the
- ,

structural model . The following operations are performed for each element.

81
4

45
~__ :: - - - nflrZ: --

- - - - - I t fl__~~
_ - S

~~~~~~



~ — -

Read k, E, and 6eT from scratch file

Read D from scratch file (0 = 
~~ UF F?)

= ~~+ o ~~?~~ 
-

OK * O k  S

K +D K D~
C + D ~~~D~

Read from scratch file -

FK = FK +6F KO
Wri te DK, k and FK to scratch file

After all bars, membranes , and cel l elements have been processed ,
the assembly of the transformed loads is completed by subtracti ng the
modal damping forces of the previous increment 

~(c)u 
from the partially

assembled loads P. 
-

The sequence of operations above is s lightly different on the initial
pass for the first increment. Matrix D is computed from matrices and

F? read from scratch files and then matrix D is wri tten to a separate
scratch file. Matri x FK, the element forces from the previous increment,
is initialized to zero rather than read from a scratch file. Matrix M
is computed according to

UF UF
S 

where M is implicitly initialized to zero as are K and C in the sequence
above. After all bar, membrane, and cell elements have been processed,

5 routine PTMASS i s ca lled by PREEIG to add contributions from point mass

elements , if any , to matrix II. Finally, any null rows/columns of N are
augmente4 on the diagonal with a value equal to 1 x lO~~ of the root mean

82



5-

square of all non zero diagonal elements of the matrix. Routine CHLSKY
is then ca lled to decompose M. The decomposition of this matrix then
remains core resident for the remainder of the run.

The inner loop consisting of routines EIGSOL and FIFDEF Is then
executed for 5 iterations. Routine EIGSØL assembles the A matrix for
which the eigenvaiues , A , and the eigenvectors, H, are obtained. Routine
RGEIG, which -Is part of the EISPACK library (Reference 16), is called for
solution of the eigen problem . The version of routine RGEIG in this code
has been modified slightl y from that in the EISPACK library . In an effort

to reduce core space , the origin of the real Input matrix was moved
locations down from the origin of the matrix of eigenvectors where n is
the order of the problem . This allows for the elgenvectors exclusively
in the complex mode.

Input to EIGSOL are the core resident transformed modal stiffness,
damping, decomposed mass , and loads matrices K, C, M~~, and P respect-
ively. Al so input for all i terations other than the first are the equiv-
alent loads deri ved from fictitious force and deformation effects computed
by routine FIFDEF which are a lso- core resident. Output from EIGSOL~are
the modal displacements , velocities , and accelerat ions , &~, ~, and ~~,

respectively. The equations for solution of the modal response are given

~n Appendix H of Part 1 (H.l6l through H.l75).

Ro~tine FIFDEF is then executed to obtain the effects of fictitious
forces ~,nd deformations. Using the modal response computed by routine
EIGSOL , and element forces due to ficti tious deformations computed by
FIFDEF in the previous incrment, FIFDEF processes each element in dividu ally
to determine the element deformations , temporarily updated joint coordi-
nate data, and compute element forces. This data is then used to solve
for the element fictitious forces and deformations from which the equiv-
alent transformed loads and element forces due to fictitious defo rmations
are derived for use in the next iteration . The element forces due to

83

— _ - — — — 5 - - - ——5———— — ——-- .S——--— — A 
~~~~~~~~~~ — - —S — -5 -SS_5~~ -~~_ _ 5 5S_-SSS_~~ •~_5•_ -_•__ -__ 5•_~~_____ SS _____ S_ - S - _____________________________


n- - - ~~
- - - ~~S — ~~~~~~~~~~~~~~~

I

ficti tious deformations are output to a scratch file for use by FIFDEF
in the next Iteration.

Routines GEØM and AVRAGE are called by FIFDEF to temporarily update
geometry and average geometry , respectively. Routines LPBFIC , LPMFICI
and LPCF!C are called by FIFDEF to compute fictitious force and deforma-
tion effects from bar , membrane, and cell elements, respectively.

Routines EIGSOL AND FIFOEF are then executed again for the next
Iteration until 5 iterative steps have been completed . At the end of the
iterative process, the final element forces and deformations from FIFDEF
are passed on a scratch files to routine PREBAL , the next step in the
Incremental solution. The final modal response from EIGSOL consisting
of the incremental displacements ~~~~, the cumulative velocities ~~, and
the cumulative accelerations ~ are core resident.

Routine PREBAL permanently updates joint coordinates , computes the
incremental element forces , and regenerates matrices F? and a? based on
the new geometry. Before processing each element to accomplish these
tasks , the transformed modal inertia forces are updated based on the
accelerations at the end 0f the increment according to

=

Following this , the implicit initialization of the arrays for
and

~(K)u to zero, and a call to routine PREBLL to perform some inter-
mediate allocation of work space, the followi ng operations are performed
for each element.

Read ~ ~~, F~ , ECT , &e and ~ from scratch filesUr r B_ i
Call routine PREBGM to update coordinates and regenerate F? and a?

0 PUF F?
S Read and ~ from scra tch files

I
S S S~~~~~~~~~ S S .~~~~:5- - -

-

- -- - - - - 5 -

•
~(C)U ~(C)U + 0

~~ F?

Read ?K from scratch file
B—i

-

*

~(K) u + 0 ?~
-

S

Write 0, F?, 6FK~ and to scratch files

The last step in processing for an increment is the execution of
routine IMBAL . First, the core resident matrices for cumulative trans-
formed modal applied loads and displacements are augmented with their
incremental components according to

+ 6P(,)U

= ~ + ~& S

Next , routine IMBAL writes the model response to the master output
file. The modal response Is output as a column matrix with the name
RESPNS and a subscript equal to the Increment number. The data output
consists of ~~, ~A , ~~, ~~, P1 and P2 arranged -In that order in a column
of length 6*NG where NG is the number of transformation modes. The P1
and P2 parti tions of the column have no real significance.

S Routine IMBAL then enters a loop for processing each element. This
loop processes bar, membrane, and cell elements In that order. A matrix
is written to the master output file for each element type that exists

in the model . The following operations are performed for each element.

Read a~, ~a’
FK, c8 1 and 6?K from scratch files

a a~ for bars and membranes

or a 05a a~ ?~ for cells

S

85

S -~~~~~

— -- — - - - - -- -
~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- c C
B_1 

+ C a~ ~
FK

Write ?K, a, and e to master output file

The el ement forces , stresses , and strains are arranged in that order
into a singl e column of the output matrix for each type of element. The
matrix names used for the three element types are BARS , MEMBRN, and CELLS.
Each Is subscripted wi th the increment number.

This ends the processing for an increment. Execution of routines
PREEIG , EIGSØL , FIFDEF, PREBAL , and IMBAL is repeated for each of the
Increments specified on the first input data card.

FILE UTILIZATION

All  card input is read from the system input file 5 and all printed
output is written to the system output file 6. Al though FORTRAN logical
unit 7 is declered In the PROGRAM statement In the main program , it is
never referenced. FORTRAN logical units 1 through 4 and 8 through 23 are
referenced as external files using the variabl es NI through N20 stored
in label ed common block TAPES Csee Appendix E, LABELED COMMON TAPES).
Files N30 and P431 , FORTRAN logical units 30 and 31, respectively are
used by routine FIFDEF exclusively for passing data during the iterative
solution of the modal response. File P423 Is used as the master output
file while N17 and N18 are used for the two master input files. All
three master Input/output files formatted consistent wi th FORMAT master
input/output matrix tapes.

The code does not key on the FORMAT tape or matrix names in the input
files . Matrix data is identified by its sequential position on the input
files . The sequence of matrix data on the first input file , N17 , is

~UF’ 
MPT, U0, Ed , rn , k, 

~~
, F?, a~ ~~~ , 6~.r EVT, and CONST. The sequence

of matrix data on the second -Input file , N18 , is 
~~(~ )u 

and ~~~~ All
of these matrices are created in the Initial Generator except for

and 
~~~~ 

which are computed th preceding FORMAT steps.

86

5-——
~~~~~~~ - 55 5

S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SS


SSSS__5 5 ~~~~~ 5 5 - S S

• Tables 8.1 and 8.2 show the use of external files by each of the
principle routines during the initialization and solution processes,
respectively. The routines are listed In their execution sequence. All
relevant data stored on external files are listed at the top. In the
tables, the variable external file references alongside “IN” Implies the
data is read from that f-tie In the corresponding routine. File refer-
ences alongside “OUT” imply the data is written to that file in the
corresponding routine.

The file utilization shown -In Table 8.1 is for a typical increment
and does not apply to the first increment which includes some -InitialI-
zatlon processing not shown.

At the end of an Increment, the absolute desi gnations of the external
files lis ted in Table 8.2 under Last Increment and Current Increment are
i nterchanged so that the variable file references remain unchanged for
the next increment. The f i les “flip—flopped ” In this manner are

P413 and P414
N3 and N19

P44 and N5
S N9 and P410

During the iterative solution for moda’. response, i.e. looping through
routines EIGSOL and FIFDEF , routine FIFDEF passes the element forces due
to fictitious deformations on files P430 and P431 . File N30 contains ele-
ment forces from the last iteration while fi le P431 is output with element
forces from the current iteration. These fIles are “flip—flopped ” at
each iteration.

- S All output to the master file , N23, occurs In routines OUTPUT and
IMBAL. The FORMAT tape name and modifier of the master output is TAPE , 1
and is wri tten by ØLJTPUT. A description of each of the output matrices
-Including the routine from which they originate follows on the next page.

87

____ 5-——••_• ~~ - ~—5- S~ ••••5-5-s_~~~

S 4~ -~
0. z

— 10. a)

S_ I-
a) .,-

_ I— 4J~~~

in ,
46 C

0 4-’~~~ C40
~~LaJ4.’.,-

4.) ~~~~~~~~~~~
~~
‘ ., - ~~~~~~~~
0 a)4- 0Z ‘—0 In S-

4- 4.’ 4.’ .C .C
0 4 5 0I—. £. E S— .

~4-— >• >19-SJJ Z ~~ 4.’ >1,-.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 4n04J a).,- S_ C ,—z l~~ 45 • I _ Sa) a).~_Ia) I— (%J C’-J u— E 4- .— 4-(fl ai
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S_ W4- W > , -~~Li . i n S - aF% C~I C~. ‘.0 L. ~J .C C .5 4.’o D 1- 1- 1- 1- 0 U 0 1.. ,
~I.’ Z Z ~~~~~ ‘4— 4.) S_) 0 >0.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0..,..
0 u- S-

1- aio tLL I— -41 5. U in >. 4.’ 45— 0 9- 4.’
I— .- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ =

5.
L~. C’~ a) 4.)

~fl 15 a) in— ‘U.. 1-IS. —. 5. 45 a) .0 ., ..
-~~ 4.’ U. 4-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
5. 0~~~’-in— o. a)

C N - I S 0~ C i n~~~~~~~.,..— — U 1-I- ‘-1 - C 0 ~~ 0 30
— 5- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1- i n > ,
a)4.) N- 0 a)4J 45
in ‘-~~ ‘ ‘— > .i-

1— Z
~~~Z 

_ _ _ _  _ _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  45
Li 4-)

45 C- W 4 5 . CLi E I- ‘ -~~~ in E in.-
C~~0 (5

_ _ _ _  _ _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  
in

9
—I I— 1~- C~.J .= 0 

~~~I— — 4.’ in fl
Li a)~~~~~inin .CLi a) C 4 . ’ U

Z 0 r...L. (5
— a)

E ‘-.~~~~~0..- 4-
0z I-. N-. -~S 0.

1- - 1-• U. N-’—
1-I- ..

0. Z Z in
Lu

_____ ______ _____ _____ _____ a)
4.)

z~~~ z~~~~ ~~~~~p.- —~~~~• —~~~~ ‘-~~~~. —~~~~•

C
9-
4.’ — — 0.o

— Lu

88

5
- -

S -n-- -~--~~~-~~ - --,-~- - 555 ~~~5 5- __5~~~~S~ _55-~~~
— ~~~~~~~~~~~~~~~ - ~. __ -___s- _~~~_ ~~~~~~~~~~ - 5- S~

- -
~~~____ S -- S ~~~~~~~~~~~~~ ~~~~~~S S .SS - 5- - SS - 5-— - - - -

1-.

-~~ p.-

~~~~~~~~~ ~0. Z
‘0

N- N-
‘ 0 4 0 Z Z

4-45 O r —
IU.
‘04)

Li 4.)
(5

— 9-
U.

SU. IL. ‘.0 ‘.0
0 ‘0

1/) C - S
Lu — ~~ ‘.0Z

0. 04.)
Z C
0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

LCJ Lfl
O S - lu. Z Z
4-

______ _____0
1/) 0.4.) 1-
-~ (5 4.’

O C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _a)
Sr

LU I. ILi. -
U. Z S

LU
C.,

4-’
— C

_______ _____ ______ ______ _____ ________E4)
OE
5-. 4)~~~~ I L. Z z

Li
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _U I

_J 4-’ ‘ Z

I.-,
Z in IL. I— 1-(S U.

-J

0 ‘.0
U I—

ES _______ ______ ______ ______ ______ ________Ui 4-’ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-J (5 I—
I~~~ I U Ia) I—

‘0 Z
I-

_ _ _ _ _ _ _ _ _ _ _ _ _

‘0 C’.J CU4.) U 1-
In Ui Z
C _______ ______ ______ ______ ______ ________

8 U. 1-
1- I-

S IA. Z

p.- p... p... p... 1-
~~~~~

4) — Q. — ~~~~ ‘-‘ ~~~~ ______

C
9- U.4-) — Lu

Ui 00 Ui C.D U. Lu— —A. LU • U. 0. —

89

- - -- -t5 -_



5--S - - ~~~~~~~~~~~~~ - -

- FORMAT Row and
Matrix Name Column

Routine and Modifier Dimensions Description

OUTPUT CONST, 1 30 x 1 problem constants

OUTPUT TIME, 1 NTRVLS x I incremental time history

OUTPUT UZERO , 1 NJTS x 3 original joint coordinates

OUTPUT DPBPHI, 1 NG x NTRVLS incremental transformed
- appl ied loads

OUTPUT PBUPTJ , 1 tIG x 3*NJTS modal to joint T degree of
freedom transform S

IMBAL RESPNS , a 6*NG x 1 modal response

IMBAL BARS , ~ 4 x NBAR bar element response

IMBAL MEMBRN, a 15 * NMEM membrane element response

IMBAL CELLS, B 54 * NCEL cell element response

where a is the increment number and NBAR , NMEM, and NCEL are the number
of bar, membrane, and cel l elements , respectively. Note that matr ices
BARS , MEMBRN, and CELLS will be present only -If the corresponding element
types are present in the structural model . Also , the names DPBPHI and
PBUPTJ may vary since they are user defined in a preceeding FORMAT step.
All other matrix names shown above are imbedded in the program code.

CORE UTIL IZATION

All internal core storage is wi thin array A in blank common. The
array is implicitl y partitioned by routine NITIAL where the beginning
locations of each parti tion are computed. These beginning locations , or
IndIces , are stored In label ed common block NDICES. In the allocation
scheme, an overlay structure Is used wi thin array A where a given space
is reused for different data as the solution process proceeds. For

- , reference , the label ed common block declaration for NOICES is repeated
here.

90 

-
~~1~ -j  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — — ~~-* -~-*5- - - - -

— - - - - -- — — - — 5S—--—--•--— ’S- -- - — - S~~~-S~~5~~~_ - - • 5 5  - S __.. L.~~_ 5 - 5~—_ —- --- - - - - - --~~ --~~~ S



COMMON /NDICES/ IVBDB ,IVBB ,IVBX ,IDPBPU, IPBMUB,IDPPUB ,IDBL ,IVBL
IPBAR ,IPBPHU,IKB,ICB ,IMBAR,IMBARL ,IDEBCL ,ICONST
ITIM E,ISIGSS -

IKBL ,IZ,ICA ,IQ, IVAL ,IFTAU,IVEC ,IEGSYS
IU,LU,IECT,IEVT ,IMPT,IDEBO ,IDFBKO ,IDSEB

, IFK ,IF BK ,ID EL ,I DEDL , IFSFB , IFSFBB ,IPBCU
IPBKU ,ISIGFB ,ISIGBH ,IEPSIG ,IPSL ØN ,ID ,IDK
ISKB,ISKBB,ISCB ,ISCBBJPBUF ,ISK ,ITK ,ICIB ,IMEL

Each integer variable in NOICES is the first location of a partition
in array A. For example , A (IVBDB) and A (IVBB-l ) point to the first and
last locations of the partition used to store matrix ~~~~~. By definition,
the length of the partition would be equal to the number of transformation
modes NG.

The variables in NDICES are allocated in such a way as to represent
three contiguous members. The members are from IVBD8 through ISIGSS,
from IKBL through IEGSYS., and from tU through tMEL . The member IV~DB
through ISIGSS is permanently resident in array A, while the remaining
two members are effectively overlaid. Graphically, the overlay structure
can be shown as

IV BDB

- S ISIGSS

I 1
IKBL IU

IEGSYS IMEL

91

— - — -—~~~~ 5—.- .S-S- -—-~~~~
— - - - - - -—~~ ~~~~

--—- - -~~~



Fr
AD—A 063 7~f 1 DOU6LAS AIRCRAFT CO LONG BEACH CALIF FIG 1/3 “ uAIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 3. PROGRAM$IP4G——EflflJ)

O~C 77 R C MORRIS F33615—75—c—3105
UNCLASSIFIED MDC J 717’4 PT 3 AFFDL—T R—77—99— PT—3 ML

08 ‘74

___ _ _ ___  

U



F~ 
-

TABLE 8.3. NONLINEA R INCREMENTAL SOLUTION LABELED COI4ION REFERENCES

Labeled
Coainon References by Routine
Block

RESPNS, AVRAGE, CHKØUT, CHKPNT, EIGSØL, FIFDEF, FØRMAT, GE~M,NDICES IMBAL , NDXSET, NITIAL , OUTPUT, PØLSOL , PBARUF, PREBAL , PREBGM ,
PREBGU, PREBLL, PREBST, PREEIG, PTMASS, READK

RESPNS, AVRAGE , CHKØUT, CHKPNT, EIGSOL, FIFDEF, FORMAT , IMBAL ,
LIMITS NDXSET, NITIAL, NKRK, OUTPUT, PBARUF , PØLSOL , PREBAL , PREBGM ,

PREBGU, PREBLL, PREBSTI PREEIG , PTMASS, READK

TAPES RESPNS, CHKPNT, EIGSOL , FIFOEF , IMBAL , NITIAL , OUTPUT, PBARUF ,
PREBAL , PREBGM, PREBGU , PREBLL, PREBST, PREEIG , PTMASS, READK

LPEM CHK?NT, LPBG, LPCFFB, LPCG, LPCSFB, LPMFFB, LPMG, LPMSZD, LPMS1
LPMS2, ØUTPUTI PREBAL, PREBGM, PREBGU , PREBLL, PREBST

FICNDX CHKOUT, EDGUNV , FIFDEF, GEOM , NKRK

GEØMS EDGUNV , FIFDEF, GEØM , LPBFIC , LPCFIC, LPMFIC

CRRAYS AVRAGE , CHKOUT, FIFDEF, NKRK

i

-~~~~



-- - :  - 
-—--- “-‘-

where the vertical positioning implies relative location in array A and
IVBDB starts at A (l~ . The member I KBL through IEGSYS Is used exclusively
by routine EIGSØL for the elgen problem solution. Member ZU through IMEL
is used by all other parts of the program.

The actual allocation in the present code deviates from this scheme
in that the partition associated with IU has been moved to the end of the
permanently resident member IVBDB through ISIGSS. This was done so that
the joint coordinate data would be permanently core resident.

There are six other label ed coirr~on blocks used by the program , LIMITS,
TAPES, LPEM, FICNDX , GEOMS , and GRRAYS. Detailed descriptions of each
coninon block are given in Appendix E. Table 8.3 lists each of the comon
blocks and all routines which reference them.

LIMITATIONS

Sufficient space must be availabl e in blank conron array A to
acconinodate the problem. The size of array A required for a given problem
is a function of many parameters. The dimensioned size of array A is
8000 which is stored in variable NW~RK and initialized by routine NITIAL .
Larger sizes can be defined by inputting the appropriate value of NWØRK
on the first input data card which is read by NITIAL.

The size of NWORK must be sufficient to satisfy the following
relationships

NWØRK ~ 1200 + 5NM + 27NG + NELEMS + NTRVLS + 3NJTS + 8NG2

NWflRK ~ 6700 + 51*1 + 113NG + NELEMS + NTRVLS + 4NJTS + NUN

where NG Is the number of transformation modes
NM a(NG2 + NG)/2
NELEt4S is the number of physical elements (excludes point

mass elements )

~~~~~~~~~~~~~~~~~


— ~~~I H
NTRVLS is the number of time increments
NJTS is the number of joints

and NUN is the length of the MPT record (row dimension
of matrix MPT)

FUTURE DEVELOPMENT

In the preceding description of the final version of the Nonlinear
Incremental Solution , a number of processing operations designed for the
original theoretical approach were not dIscussed . These will be covered
here as a guide in future development, provide more insight to the
code as It exists, and to promote salvaging of code where possible.

The modifications necessary to progress from the original version of
the code to the final version were grouped into three UPDATE steps.
Table 8.4 lists each of the decks modified in each of the three steps as
well as the UPDATE identification name associated with subsets of these
modifications . A description of the changes made Is also provided . These
modifications are a mixture of corrections to errors1 supplements to
capability, changes in order to implement the final approach to geometric
nonl inearity, and deletions of some material nonlinearity code.

In order to preserve the original design concepts and provide a record
of program development, the original source code and the three sets of
deck modifications as wel l as the final source code have been included as
part 0f the program delivery to the contractor.

Applicability of Original Design Concepts

In order to understand the Nonlinear Incremental Solution code in its
final form, some background information regarding the original theoretical
approach is necessary .

The original theoretical approach to geometric nonlinearity was to
scal e the linear Incremental model response by a factor ~ computed as

a function of fictitious force and deformation effects during the increnent

pr~
- -

—-

TABLE 8.4. ROUTINES MODIFIED DURING NONLINEAR
INCREMENTAL SOLUTION DEVELOPMENT

STEP *ID~4T DECK DESCRIPTION

FIFDEF Suppress Intermediate printing from
GERM fictitious force module designed into code

CHK for check out purposes only.
AVRAGE
NKRK

CHKØUT Error corrections for fictitious
force module.FIFDEF

AVRAGE
FIXUP NDICES

ARRAYS
LPBFIC
VECT -

FIFDEF Delete Intermediate printing from
GE~M

fictitious force module introduced into
ERRPRT code for debugging during in itial testing.

EDGUNV
LPBFIC
AVRAGE

RESPNS Add routine HALT, modify intermediate
IMBAL printing , error corrections, and modify

imbalance test.
P~LS~L

TEMP1 PREEIG
READK
N IT I AL
HALT

PREMBAL Modify Intermediate printing , introduce
output data for intermediate postprocessor,TEMP2 IMBAL and delete portion of code in PREBAR rela-

EIGSOL tive to material nonlineari ty.

— J

_ _ _ _ -~~~~

TABLE 8.4. ROUTINES MODIFIED DURING NONLINEAR
INCREMENTAL SOLUTION DEVELOPMENT (Continued)

STEP *IDENT DECK DESCRIPTION

RESPNS. Modify intermediate print, error correc-
PREBLL tions , remove some probl em dependent code,

replace routine JORDAN, and introduce
CHKPNT iterative approach to geometric nonlinear—
F’F~~F ity, cosine load variation, and augmen—
£

~ tion of M null rows and columns with
2 TEMP3 PREEIG diagonal terms having small values.

NITIAL
LPBFIC
IMBAL
EIGSOL
PREBAL
JORDAN

RESPNS Add routine PTMASS, acconrodate point
TUQM mass el ements , delete preliminary post-
£IIIJ I

~~~ 
processor output, process U as an NJ x 3

NITIAL on external files , introduc~ output data
3 TEMP4 PREEIG generation consistant with final post-

processor.
PREBAL
READK
OUTPUT
PTMASS

96

~~~~~~~~~~~~~~~~~~ — — - - ---—- —- - - — — — - — — - -


~~fl

-‘-—
~~~~~~~~~~~~~ 

.~ ,-~=~_zr~_ - ~~~~~~~~~~ - ——

(see History of Development at the beginning of this section). No
processing of an iterative nature was Involved here. However, In account-
-Ing for material nonlinearity , a second iteration through the entire
incremental solution process was required. For this solution , average
modal stiffness and damping matrices, K and ~~, were used. The averaging
was done using the initial ~ and ~ matrices at- the beginning of the
increment and the R and ~ computed at the end of the first Iteration
which included the effects of changes In the material properties of any
elements due to plasticity and the failure of any elements that occurred
In the first solution. The criteria for determining the necessity of
this second iteration was the equilibrium imbalance test at end of the
first solution.

For the second iterative solution , some data computed in the first
iteration was passed on external files since ft did not require regene-
ration. This included the element stiffness and damping matrices and
some geometric data based on initial geometry for the increment generated
for the computation of fictitious forces and deformations.

In the code, the variable denoting that the second iterative pass is
being processed is called BETBAR for ~ . This flag is used to control
which operations of the complete solution process are to be executed dur-
ing the second Iteration. Array A (IDEBCL), which is core resident, is
used to flag those elements that fail during the solution process. This
array Is primarily used to store the dissipated damping energy due to
temperature change In each element, 6ECL (always positive). Elements
which had failed during previous increments were flagged by a -10 and
elements failing during the current increment were flagged as -1. The
values in array A (IDEBCL ) are tested at various points in the code to
detect failed elements and omit processing for such elements .

The input matrix EVT was intended as a data file for those element
parameters which may vary during the solution process. These parameters
included element temperature, current material properties , stress/strain

97

—,---—- ~~~~—~~~~~~~~~~~~~~~
——---—- ------ ------ - —



-~-~ —
~~~~~~~~~~

- :
~~~~~~~~~ ~~~

-- - .

~~~~

state in terms of equivalent stress and stress, increment at which last
update occurred , increment at which element failed , etc.

- The allocation of all data to external files for this original program
design is given in Table 8.5. The following data quantities listed In
the table are redefined here for clarification.

D

OK a O k

FK a F + ~~K0
CI D~~ DT

D0IGf
a geometric data for the generation of

fictitious forces and deformations

where each of the above is computed individually for each element.

Table 8.6 shows the intended use of these files during a typical
increment of the solution process . Certain initializi ng operations are
performed in the first Increment which are not shown here . The 20 exter-
nal files u5ed are listed across the top while the major modules appear
in their execution sequence at the left.

This information should provide more insight to the code , the
reasoning behind some operations still present there, and reduce the
effort required for future modifications. The basic design features of
this program enhance Its adaptability to changes in methodology. These
features Inc lude the library of utility routines to perform a wide variety
of incore matrix operations and the partitioning of blank coninon for
required array space. -

Some other features of the code which should be pointed out are the
intermediate print capabilities in routines CHKOUT and CHKPNT. Routine
CHKOUT Is used excl usively in the FIFDEF module to output Intermediate
calculations at various predetermined points in the computations. - In

_ _ _ _ - -

L - - ____ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— -

TABLE 8.5. NONLINEAR INCREMENTAL SOLUTION ORIGINAL
DESIGN FILE ALLOCATION

Increment
- Resident Data

8—1 B B
Files Files Files - .

P41 N2 (‘(I,
~~

-
~~
‘

~ r~’ ial ,NELM)

P43 N19 P419 (D~ ial ,NELM) , (Do , Gf1,
lsl ,NELM)

N4 N5 N5 (
~k~ 1*1 ,NELM)

N6 (OKi, ~T1, FK~, izl ,NELM)
N6 (c1~~~ ~~Kj ’ ial ,NELM)

N6 (DK1, i=l ,NELM)

N6 (
~ , i~l ,NELM)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.
~

Kj
(6e , ~~~~~~ ial ,NELM)

P48 (6e , &~~, i l ,NELM)
N9 P410

(EVT1, ial ,NELM) , (e1, i 1 ,NELM)

Nil ial ,N~~f.~)

N12

(ECTi , i”l,NELM) , MPT

P413 Nl4 P414 (Fr . il ,NELM)

N15
-

(
~ , i~l ,NELM)

_ _ _ _ _ _ _ _ _ _ _ _ _ _

K0
N16 N17 (e , i~l,NELM) , U

P418

P420 (kAVE , CAVE I izl ,NELM)

Note : NELM ~ number of physical elements
(excl udes point mass elements)

H

_
-~~~~~~~~~ -~~~~~~~~~~~ -~~~~~~~~~~~~~~~ - - -~

F- —-- - -------.

~

- - ---— -

~~
- - .- - —---- -—- -—-.- —------- .- --‘- -:.- -—

~~

~

ft ~~

— L

~~~~~~ I lI.~~ 
- 

~~~~~~~~~~~ .
- .-

U- — ___ — —— — — — *-. —

—
-

~~ IM

~~
—
~~U.’ — — — — — — — . ~~~- - — — — — — —.11

0
.I

~~ —~~ a —~~a

a 0 0
~~ 2 :a~~ —~~

—~~

z _

~ —z
2 _

-~~ L
E ~~~~~~

a ilu

~111Iii iii 1iii

the original design source code , calls were made to this routine to
initiate printing. As noted in Table 8.4 , many of these calls which
were eliminated, can be reactivated for checkout purposes . Routine CHKPNT
is called exclusively by routine PREBAL at preset points in the code.
Depending on an array of flags in routine CHKPNT corresponding to each
of these points in routine PREBAL, specific arrays are output to aid in
debugging the solution process. The actual printi ng in this instance is
done by routine PLØP, a general print routine for any real or integer
array.

Design and Functiona l Improvements

Even though the current version of the code and its approach may not
be the ultimate method adopted for geometric nonl inearity, the redundan-
cies and inefficiencies now present and planned strategies for implemen-
tation of material nonlinearity should be discussed so that they be con-
sidered in any future development effort.

Obviously, all unnecessary code relative to original theoretical
approach should be elimi nated. This ‘Includes all calculations relative
to a and passing of certain data on external files. That data identif led
in Tables 8.1 and 8.2 is the only data presently required for the incre-
mental solution. All other data processing on external files in the final
code Is unnecessary. Some routines included in the source code of the
final version are no longer used , ‘I.e. FORMAT and POLSOL.

In tI’~ iterative solution for geometric nonlinearity , routine EIGSOL
recomputes the elgenvalues and eigenvectors of the A matrix at each
iteration. This is unnecessary since the A matrix is constant duri ng
the iteration . Only that part of the transformed load matrix due ficti-
tious forces and deformations changes at each iteration necessitati ng the
solution of only those modal response equations which involve the load
matrix P .

101

L - - _ _ _ _ _ _ _ _ -

F -
_ _ _ _ _ _ _ _ _ _

Further , in the last iteration for geometric nonlinearity, routine
FIFDEF need only recompute the final element forces which are a func-
tion of the input data to FIFDEF from EIGSOL. The calculations for fic-
titious force and deformation effec ts In FIFDEF are unnecessary since
their only use is as input to routine EIGSØL which will not be called
again for the current increment. - .

That portion of code in routine PREBAL relative to material nonl ineari ty,
which was deleted in modification step 1 under *IDENT TEMP2 in Tabl e 8.4 ,
contained computations , logic , file processing , and calls to routines
consistent with the original design for material nonlineari ty. Included
in this sequence of code is a call to routine PREBST . This routine was to
be the executive routine for the updating of element material properties
and regeneration of element stiffness and damping matrices. Under control
routi ne PREBST , the stress/strain state of the element would be computed
and tested to determine whether or not regeneration of stiffness and
damping were necessary . The testi ng would be based on the amount of
change in the followi ng parameters since the element was last updated .

1) Temperature - recompute material properties

2) Equivalent stress in plastic range - recompute Young ’s
Modul us , E

3) Equivalent strain - use new element geometry .

At this point in the processing sequence, the data necessary for

• testing and regeneration would be available from the followi ng sources:

1) Array A(IDEBCL), which is core resident would identify
previously failed elements.

2) Matrix MPT, the core resident array of material property
coefficients, would be used to compute new material properties
as a function of temperature.

102

• 3) Array A (IEVT)I which is core resident, would provide element
material properties and other data parameters from the time
of last update, e.g. temperature, equivalent stress/strain , etc.

4) Current element geometry would be availabl e in core from the
previous execution of routine PREBGM .

The following new code and modifications would be required In order
to make this approach to element updating operational .

1) All necessary data is currently availabl e with the exception of
some data in array A (IEVT), e.g. increment number of last update,
temperature at time 0f last update, change in temperature since
last update, equivalent stress/strain at time of last update , etc.

2) Routine PREBST, which ‘is a dunvny routine in the original version
of the source code, has to be designed and coded as do the rou-
tines required for the testing to determine If updating is
necessary. Routine PREBST calls the testing routines and , if
necessary, calls the regeneration routines.

3) Those routines necessary for the actual computation of new
material properties and the regeneration of the compliance ,
stiffness, and damping matrices must be provided . Nearly all
these routines are availabl e from the Initial Generator. The
routines for generation of element geometry (routines LPBG ,
LPMG, LPMFFB , etc.,under routine PREBGM In Figure 8.1) were also
obtained from the Initial Generator and Implemented in a manner
simulating the program structure of the Initial Generator. This
was done in anticipation of imp lementing the other Initial
Generator routines for compliance , stiffness, and damp i ng matrix
regeneration.

103

SECTION IX
- POSTPROCESSOR

OVERVIEW

This program accepts output data from the linear incremental or
nonl inear incremental solution and selectively prints data according to
user Input criteria. The card input prepared by the user is described
In Part 2 of this report. The format of the output data from either
linear or nonlinear incremental solution is described in Section VII
of Part 3. Detailed descriptions of each routine and labeled convnon
block in this program are given in Appendix F of this document.

The core required by this program without the use of overlay or
segmentation is 60000 octal words. In addition to the system input!
output files 5 and 6, three external files are required . These three
files , referenced as integer variables ITP1 , ITP2, and ITP3, are used
for program generated selection tables, incremental solution input data,
and selected partitions of input matrix PBUPT, respectively. Organiza-
tion of all routines in this program is shown below. Labeled cornon blocks
are shown in parentheses.

POST
(INDEX)
(PARM) I READC

I— ~ EUTL9

1 (ZERO

I I

INITL PØUT

L

I 4 I 1

CRDIN PBUPT BLKIN SKPALL JOINTS MODES BARS MEMS CELLS
SELCT JNTPR EBAR EMEM
CHKIN

-

•

A singularl y dimensioned array A in blank coninon Is used for all
data storage. Two labeled comon blocks , PARM and INDEX , are used by
the program. PARM is used to store problem parameters from input matrix
CONST as wel l as program generated selectivity flags. INDEX is used

•

105

-~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .•~ •~~~-—— ~~~~~~~~~~
:-• •

•
~~~~~~~~~~~~~~~~~~~~ 

— -



to store beginning locations or indices of partitions within blank
common array A.

All initializati on takes place under routine INITL. Initial ization
consists of allocating array space, processing all card input, assem-
bling selection tables for joints, bars, membranes, and cells , assembling
required partitions of Input matrix PBUPT, and initializing line headers
and print flags for the forces, stresses, strains, and equivalent
stresses for each type of element.

Routine INITL reads matrices CONST, TIME and UZERO from file ITP2
and stores this data in core. Array space is then allocated followed
by a call to routine CRDIN to process all card input data. Matrix
DPBPHI is read over by routine INITL as is matrix PBLJPT if no joint
data is requested for printing. If joint data is requested, matrix
PBUPT is read and processed by routine PBUPT. Routine BLKIN is then
evoked to initialize all line headers and print flags for each type
element.

Routine POUT calls routine SKPALL to read over all data for an
Increment if no data for the increment is to be printed . Otherwise,
routines JØINTS, MØDES, BARS, MEMS, and CELLS are invoked in sequence
to process their respective data. Routine JOINTS reads matrix RESPNS
from file ITP2, the joint selection table from file ITP1 , and the part-
itions of matrix PBUPT from file ITP3. Routines BARS, MEMS and CELLS
read their corresponding selection tables and matrices from ITP1 and
ITP2, respectively.

FILE UTILIZATION
All card input is read from file 5. All printed output is written

to file 6. The three scratches files required , ITP 1 , ITP2 and 11P3,
are initialized in the main program as files 1 , 2 and 3, respectively.



______ —- •~~~- - —

File ITP1 Is used to store joint, bar, membrane , and cel l selection
tables . A selection table is assembled and wri tten to ITP1 only If
that type data exists in the model and at least one of the subsets of
that type data has been requested for printing. Routine SELCT reads
the card input for the selection tables which are present, assembl es
the table accordingly, and writes the table onto ITP1 .

File ITP2 contains the incremental solution output data consisting
following FØRMAT matrices:

CONST Matrix of problem constants
TINE Platrix of incremental time
UZERO Matrix of original joint coordinates
DPBPHI Matrix of incremental loads
PBUPT Modal to I degree of freedom transformation matrix

and for each increment:
RESPNS Modal response matrix
BARS . Bar element response matrix
MEMBRN Membrane element response matrix
CELLS Cell element response matrix

If bar, membrane, or cel l element data does not exist in the modal ,
the corresponding matrix will not be present in the incrmental solu-
tion output.

File ITP3 Is used to store partitions of matrix PBUPT. Routine
PBUPT assembles the partitions according to the joints selected for
printing coordinate, displacement, velocity, and/or acceleration data.

CORE UTILIZATION
All array space is allocated into a singularly dimensioned blank

coninon array A. The beginning location of each partition wi thin
array A is stored in label ed common block INDEX . Labeled common block

‘ - I 
_ _ _  • 

107



PARM Is used to store problem parameters and print selection flags.
Both labeled common blocks, PARM and INDEX , are used by all principle
routines.

Some of the more pertinent problem parameters stored in labeled
common block PARM are described below. - •

• NJTS number of joints
NBARS number of bars
NMEMS number of membranes -

NCELS number of cells
NMODS number of modes
NTVLS number of time intervals

LIMITATIONS

Sufficient space must be available in blank common array A to
accommodate the problem . The size of array A required for a given
problem is a function of the problem parameters stored in label ed
common block PARM. If IWORK is the length of array A , and defining

as

• 6*NMODS ~ L1 ~ 60

and L2 as the larger of NJTS, NBARS, NMEMS, and NCELS, then

IWORK ~ 640 + L1 + L2 + 2*NTVLS + 3*NJTS + 3*NMODS

The integer IWORX is the first word of blank comon and is equal
to the size of array A in blank common . The integers ILNMAX and
ICLMAX are stored in labeled common block INDEX and are equal to the
maximum number of lines and columns printed on each page. These
three var iabl es , IWØRK, ILNMAX and ICLMAX , are initialized to 10000,
60, and 8, respectively. However, the user may override these values
on the first input card provided the following Is true of the user
specified values:

_ _  - 

~ 8

p

_ _ _ _ _  _ _  _ _ _ _  _ _



_ _ _ _ _ _  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- ~~—~~- - • - - - • -— ~~~~~~~~ --— -~~~— - -  -~~-—— - • -

IWORK ~ 10000
ILNMAX ~ 20

8 ~~ICLMAX ~ 1

_ _ _  

_ ±~~~t • •~~~
_
~~



- —

SECTION X
PROJECTED IMPROVEMENTS

EFFICIENCY
The following modifications to the final version of the program code

are recommended in order to reduce the machi ne resources required for
execution and to reduce execution time.

1) Increase the dimensioned size of the arrays in labeled common
blocks JORT and WRK in the Initial Generator so that they take
advantage of the available space defined by labeled common blocks
EDOF and ISEQ, respectively (see Section V , LIMITATIØNS).

2) Where possible, take advantage of symmetry in the generation of k,
m and c4, in the Initial Generator.

3) Use SEGLOAD in the implementation of the Linear and I4onl inear
Incremental Solution programs.

4) Delete excess files declared in the PROGRAM statements of the
Linear and Nonlinear Incremental Solution programs.

5) Delete unnecessary copies of master Input data to scratch files in
routine MATIN of the Linear and Nonlinear Incremental Solution
programs.

6) In the Linear Incremental Solution, el iminate the allocation of space
for the joint coordinate data since it is not required.

7) Eliminate all unnecessary process ing In the Nonli near Incremental

• Solution program left over from the original design (see Section
VIII, FUTURE DEVELOPMENT).

8) Eliminate all unnecessary printing from the Nonlinear Incremental

_  

:hi±
~~ 

1
~~~~~~~~~~~~~~~~~~ j : T ~~~~~~


Solution program left over from program check out.

9) Provide the logic and processing comands to store joint coord-
inate data on an external file during the eigen problem solution
(EIGSOL) in the Nonlinear Incremental Solution .

10) Perform the functions of routine PREEIG (regeneration of K, C)
in routine PREBAL of the Nonlinear Incremental Solution .

EXTENDED CAPABILITY

The following modifications to the final version of the program code
are recommended in order to extend basic capabilities already in existance.

1) Development convergence criteria and necessary code to end the
iteration process through routines EIGSOL and FIFDEF for geometric
nonlinearity in the Nonlinear Incremental Solution program.

2) Introduce the cosine load variation or impedence matrix to the
Linear Incremental Solution program.

3) Modify the processing matrix 6~ . in routine PREEIG of the Nonl inear
Incremental Solution to account for the fact that is presently
assumed constant.

Introduction of additional capabilities to the Nonlinear Incremental
Solution such as material nonlinearity and restart will be contingent on

• theoretical development. Guidel ines for program modifications to acco-
ninodate material nonlineari ty are discussed In Section VIII under FUTURE
DEVELOPMENT. In this particular area, consideration should be given to the
use of random access files for external storage of matrices k,

~~
, 6i~., and

EVT in element partitions. This would provide for rewriting these matrices
only for those elements whose properties change rather than for all elements
as the present design requires.

112

- -- - - - .-- - - --— - - — - — —--— --•-, -- - -~~ --“ - - - - -

- -— ~~~~~~~ T

‘
~~~~~~~~

APPENDIX A

LAMINATE GENERATOR ROUTINES

113

~

- .— • -

~

‘-  -~~~~~~~~~—•~~~~~~~~~ - -~~~~~~ . • -  -- - -- --—• - - -



APPENDIX A
LAM INATE GENERATOR ROUTINES

• This appendix contains detailed descriptions of all routines in this
program. Table A gives page number references within this document for
documentation of each routine.

The detailed description of each routine is divided into the following
subheadings:

Al gorithm verbal flow chart of routine logic and data flow

Input/Output description of all external data set input/output

Argument List name, type, and description of each argument

Labeled Common list of all labeled common blocks declared

Subroutines Called list of all routines called

Error Detection description of tests made for errors and action
taken

114



TABLE A. INDEX TO LAMINATE GENERATOR ROUTINES

Page

MA IN PROGRAM LAMGEN . . . . . . . . . . . . 116

FUNCTION ABSVAL . . .  . . . . . . . .  118
SUBROUTINE CELGEN  119
SUBROUTINE CROSSQ . . . . . . . . . . . . . . . . . . . . . 121
FUNCTION DOT. . . .  . . . . . . .  122
SUBROUTINE IOXS  123
SUBROUTINE JIGEN  . 124
SUBROUTINE RIDCEL . .  . . . . . .  126
SUBROUTINE RJOINT .  . 128
SUBROUTINE RLAYER . . . . . .  . . . .   130
SUBROUTINE RTVARI . . . . . . .   132
SUBROUTINE UVEC ,  134
SUBROUTINE WCELL . . .   135
SUBROUTINE WJOINT . . .    . .  . . . . . . • 136
SUBROUTINE WNORM  137

115



MAIN PROGRAM LAMGEN
The main program allocates core and calls the input, calculation ,

and output subroutines.

Algorithm

Two arrays are set up -- A and N -- and every element In the A
array is initialized to io30. The first subroutine called is I0XS to
read and write Data Code 2 data (if any). The next subroutine called
is RLAYER. The element and joint numbering Increments read by this sub-
routine are required by MAIN to allocate sufficient core for generated
cell and joint data. The message
‘LAYERS READ NO. LAYERS = nnnn ’
is printed after a successf ul return from RLAYER. The call to RIOCEL
is next. The number of quadrilaterals and the joint numbers of their
corners read in by this subroutine are required to allocate sufficient
core to contain the generated joint data. After calculating the total
number of cells that will have to be handled the message
‘CELLS HAVE BEEN READ NO. CELLS nnnnn NO. QUADS nnnnn ’
is printed. The subroutine that reads the joint data, RJOINT, is called
next, and after the largest joint number to be handled is calculated ,
the message
‘JOINTS HAVE BEEN READ NO. JOINTS nnnnn ’
is printed. The subroutine CELGEN, called next, sets up an array of
quadrilateral corner joint numbers required by RTVARI and JTGEN ,
which are called next. The subroutines WJOINT, WNORM, and WCELL follow,
with calls to IOXS Interspersed to keep the numerical order of the Data
Codes on the output files intact.

Input/Output

There is no input , all output Is printed on file 6.

Argument List

None

116



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

j!~4beled Common

None

~tbroutines Called

IØXS , RLAYER, RIDCELL, RJ0INT, CELGEN , RTVARI , JTGEN, WJOINT, WNØRM,
WCELL

Error Detection

If an error flag is received from one of the reading subroutines
(RLAYER, RIDCEL , or RJOINT) indicating necessary data was not read ,
the message
‘JOB TERMINATED’
is written and execution of the program Is stopped .

t .

117

~~~ ~~- - - - — — -  ~~~~~~.~~- - - — ~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~


‘
~~~~~~~~~~~~~ T~~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FUNCTION ABSYAL -

This routine finds and returns the l ength of a vector.

Algorithm

The three components of the input vector are squared, the square
root of the sum of the squares is the length of the vector.

Input/Output

None

Argument List

C A real array of components of a vector

Labeled Common

None

Subroutines Called

None

Error Detection

None

118



SUBROUTINE CELGEN

This routine generates the data required to form the cells of the
l aminate and sets up an array of joint numbers that correspond to the
corners of quadrilaterals.

Algorithm

Data for the cells is generated .for a stack of cells under each
quadrilateral , one stack at a time. First, the stress orientation angle and
material number for each cell in the stack are stored in the cell array.
Then, for each corner of the quadrilateral , the number of the joint at
the corner is stored in an array in numerical order (i.e., no dupl ication
of joint numbers), a cross product is formed of the two sides of the quad-
rilateral forming the corner, a quarter of the magnitude of which is
added to the running sum in the area array for that joint, and the unit
vector of which is added to a running sum in the surface normal array,
and finally, the numbers of the joints in the stack and stored in the
cell array in the correct location for each cell In the stack. The joint
coordinates in the stack are checked to see if any of the joints has been
already defined by the user. If a user-defined joint does exist below
the quadrilateral corner, the joint number of the corner is made negative
as an indicator for later subroutines (JTGEN & RTVAR I).

Input/Output

None

Argument List

VJOINT A real array of coordinates of joints stored by joint
number

IDCELL An integer array of numbers of the joints on the eight
corners and the material number of each cell , stored by
cel l number

• ZETA A real array of stress orientation and es

119

_____________  - -  • •~~ ~~~~~~~~~~~~~~~~ ~~~~~~~ • ~~~~~~~ ~
- 

~~~~~~~~~~~~~
———— • -~

--—-
~~

------ —- -— - —-—
~~~~~~~~~~~~~~~~~



ML An integer array cell number increments, joint number
increments, and material number of each layer

JOINTP An integer array of joint numbers corresponding to the
corners of quadrilaterals, stored in numerical order

JQUADP An integer array of numbers of cells that have only four
defined corners (quadrilaterals) stored in order in which
they were read

VNORM A real array of running sums of unit vectors at each quad-
rilateral corner , stored in the same order as the joints
in JOINTP

AREA A real array of areas associated with the joints on
the quadrilateral corners

NJØINT An integer scalar defining the total number of joints

NJT An integer scalar defining the number of joints that
define quadrilateral corners

NCELLS An integer scalar defining the tota l number of cells

NQUAD An integer scalar defining the number of quadrilaterals

NL An integer scalar defining the number of layers

Labeled Common

None

Subroutines Called

CROSSQ , UVEC, ABSVAL

Error Detection

None 

_  _  

I



SUBROUTINE CROS3Q

This routine forms and returns the cross product of two Input vectors.

Algori thm

The mathematics of forming a cross product are performed and the
resultant returned through the argument list.

Input/Output

None

Argument List

U A real array for the first input vector

V A real array for the second input vector

W A real array for the resultant vector

Labeled Common

None

Subroutines Cilled

None

Error Detection
None

~: I

121

I 
_ _ _  

— 
— 1

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



FUNCTION DOT

This routine calculates the dot product of two input vectors.

Ai~ori thm

The pairs of x, y, and z components of the two input vectors are
multiplied and added .

Input/Output

None

A~gument List

U A real array for the first vector

V A real array for the second vector

Labeled Common

None

Subroutines Called

None

Error Detection

None



SUBROUTINE IOXS

This routine reads selected data and directly writes it back out on
files 6 and JTAPE.

Al gorithm

Given beginning and ending Data Code numbers for a ser ies of Data
Codes, all data with Data Codes in the series Is read from ITAPE and
written in the same order on file 6 and , if JTAPE ~ 6, on file JTAPE.

Input/Output

Input Is read from file ITAPE; output is written on files 6 and
JTAPE.

Argument List

ITAPE An integer scalar defining the number of the input file

JIAPE An Integer scalar defining the number of one of the out-
put files

JCODE An integer scalar defining the starting Data Code number

LCØDE - An integer scalar defining the ending Data Code number

Label ed Common

• None

-• 
Subroutines Called

None

Error Detection
None

123

--4



r~ ~ 
-

SUBROUTINE JTGEN

This routine generates the joint coordinates for the joints In the
lami nate.

Al gori thm • -

The first step is to unitize the normal vectors created by CELGEN.
The coordinates of the Joints wi thin the laminate are generated either
along these normal vectors or along lines connecting user-defined joints
in the laminate. The coordinates are generated for the stack of joints
under each quadrilateral corner. If the coordinates of the first joint
in the stack are other than the Input values , the new coordinates are
generated by multiplying the local normal vector by the input offset and
adding that vector to the input location of the first joint. If the
joint number stored in the array of quadrilateral corner joints is
negative, indicating there is a user-defined joint in the stack of joints ,
there is a branch to the segment of the subroutine that constructs unit
vectors between user defined joints in the stack and calculates the Inter-
vening joint coordinates along these unit vectors. If the joint number
at the top of the stack is positi ve all the coordinates of joints in
the stack are generated along the local surface normal.

Input/Output

None

Argument List

VJØINT A real array of coordinates of each joint
• 

ML An integer array of layer Information : element number
increments , joint number increments, and material number

TL A real array of layer thickness, incl uding the offset of
the true outer lami nate surface from the input laminate

• surface joints

124

• 
~~~~~ 

•
~~

•
~~~~~~j-



TVARI A real array of layer thickness for each stack of joints
that does not have internal user-defined joints

JOINTP An integer array of joint numbers corresponding to quad-
ril ateral corners stored In numerical order

VNORM A real array of surface normal vectors corresponding to
quadrilateral corners, stores in the same order as the
joints in JØINTP

NJT An integer scalar defining the number of layer

Labeled Common

None

Subroutines Cal led

UVEC, DOT

Error Detection

None

125 

-•



— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _  

-

•:

SUBROUTINE RIDCEL

This routine reads the Input file searching for Data Code 40 data
(cell data) which it stores .

Al gorithm -

The input file is read unti l a Data Code 40 card is encountered . The
file is then backspaced one record and the fi rst cell data is read and
stored In an array in a location corresponding to the cell number read.
If the input number used to define the fifth corner Is zero, the cel l Is
called a quadrilateral and its number is stored in another array . The
file is read and the data stored unti l a cell number of 9999 is read or
the Data Code on the card is not 40.

Input/Output •

The input is read from file ITAPE.

Argument List

IDCELL An Integer array of numbers of joints on the eight cel l
corners (four corners for quadrilaterals) and the material
number stored according to cell number

ZETA A real array of stres~s orientation angles stored accordingto cel l number

IDQUAD An integer array of numbers of the cells that only have four
defining corner joints input (quadrilaterals) stored In the
order in which they are read

IFLAG An integer scalar flag signalling the main program to
terminate execution if no cell data are found

NCELLS An Integer scalar defining the l argest cell number read

JQUAD An integer scalar defining the number of quadrilaterals
encountered

I MAX Q An integer scalar defining the largest cell number among
I

the quadrilaterals

f 126

~~~~~ .~ m.-•- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• • _ a  • _ - -



________________________

MAXJT Ai~ integer scalar defining the largest joint number used todefine a quadrilateral corner

ITAPE An integer scalar defining the number of input file

Labeled Common 
-

None

Subroutines Called

None

Error Detection
If no cel l data cards are found the message

‘NO CELLS (DATA CODE 40) ENCOUNTERED IN INPUT’
Is printed and IFLAG is set equal to 1 to cause the main program to
terminate execution.

127

- --I



SUBROUTINE RJOINT

This routine reads the input file searching for Data Code 2 data
(joint data) which it stores.

Al qori thm

The input file is read unti l a Data Code 2 card is read. The file
is backspaced one record and the coordinates are stored in an array in
a location corresponding to the joint number. The file is read and the
contents stored until a joint number of 9999 is read or a card without
a Data Code of 2 is encountered.

Input/Output

The input is read from file ITAPE.

Argument List

VJOINT A real array of coordinates of input joints stored by joint
number

IFLAG An integer scalar flag signalling the main program to term-
inate execution of no joint

NJOINT An integer scalar defining the largest joint number read

ITAPE An integer scalar defining the number of input file

Labeled Common

None

Subroutines Called

None

Error Detection

If no joint data cards are found , the message
‘NO JOINTS (DATA CODE 2) ENCOUNTERED IN INPUT ’

• i  _____
— 

128

p — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - • - - • —

~~
•• —- • -

— _



• -- -- —- - - _ _ _ _ _ _ _ _ _  

is written and IFLAG is set equal to 1 to cause the main program to
terminate. I

129

I 

- - - —  _ _ _ _



SUBROUTINE RLAYER

This routine reads the input file searching for Data Code 7 (layer
data) which it stores.

Al gori thm •

The input file is read until a Data Code 7 card is found . The file
is then backspaced one record and the layer data is stored in an array
In a location corresponding to the l ayer number plus one. The zeroth
l ayer (which really contains only the distance from the loft line to the
top layer) is thus stored in the first column of the l ayer data. The
input file continues to be read and layer data stored unti l a layer identi-
fication of 9999 is read or until a card that does not carry a Data Code
of 7 is read.

Input/Output

The input is read from file ITAPE.

Argument List

IL A real array of thicknesses of the layers

ML An integer array of material number , element number
increment, and joint number increment for each layer

IFLAG An integer scalar for signalling the main program to
determine if no layer data is read

NL An integer scalar defining the largest layer number read
pl us one

ITAPE An integer scalar defining the number of the input file

• Labeled Common

None

Subroutines Called

None

• • • 130

I , ~~~~~~~~~~~~~~~~~~~ 
•- • • • ,• 

~~~~
‘

~~

••••—• — --_ -—

~~~

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- - • • - - • - • - •- —__-— • • • - —-_ - - _


Error Detection
If no layer data cards are read the message

‘NO LAYERS (DATA CODE 7) ENCOUNTERED IN INPUT’
is printed and IFLAG is set equal to 1 to cause the main program to
terminate. •

131

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ • • •

I

SUBROUTINE RTVARI

This routine determines the thickness of every layer at every joint
in the laminate using the thicknesses read in RLAYER for each l ayer as
the default values and reading revised thickness data to calculate and
store the non-default thicknesses.

Algori thm

First all the thicknesses read in by RLAYER are stored in an array
in locations corresponding to layer number and quadrilateral corner
number so that each quadrilateral corner has a stack of thicknesses
associated with it. Then the input file is read , searching for revised
thickness data (Data Code 8). When the data is found it is stored in the
appropriate location in the array created earlier , replacing default
values. The reading and storing continues unti l a joint number of 9999
is encountered or the card does not carry a Data Code of 8.

Input/Output

The input is read from file ITAPE.

• Argument List.

TYARI A real array of thicknesses of l ayers beneath each joint
on a quadrilateral corner

Ti. A real array of thicknesses of layers stored by layer
number by RLAYER

JOINTP An integer array of joint numbers corresponding to
quadrilateral corners

• NL An integer scalar defining the number of quadrilateral
corners

ITAPE An Integer scalar defining the number ~f the input file

Labeled Common

None

132

— • -•- -~~~~~ •~-
• •- “‘- .-- - -•- —-- — • -4


~~~~~~~~~~~~~~~~
- • •

~~~~~~~
-
~~~~~~~~~~~~

• - -
~~~~~~~~~~

— - ; •• — •
.
_ • •_ • --

~~
---.- •— - —- -—--•

r i— ---—--—--— - - --—-— • - - -

Subroutines Called

None

Error Detection

If any joint number input through Data Code 8 data has a user-defined
joint in the stack of joints below it the message
‘JOINT nnnn LISTED IN DATA CODE 8 IS ABOVE A USER-DEFINED JOINT -- USER-
DEFINED JO INT W ILL REMAIN UNCHANGED ’
is printed but execution continues since the user-defined joint will take
precedence later on In the program.

If the revised thickness data duplicates the existing thickness data,
the message
‘CARD ENCOUNTERED IN DATA CODE 8 DUPLICATES EXISTING LAMINATE DATA ’
is printed as a caution to the user and execution continues .

If any input joint is not found in the list of joint numbers corres-
ponding to quadrilateral corners the message
‘JOINT NO. nnnn LISTED IN DATA CODE 8 IS NOT FOUND IN LIST OF QUAD
CORNER JOINTS -— BAD DATA MAY RESULT ’
is printed and execution is conti nued although revised thicknesses are
liable to be applied to the wrong quadrilateral corners.

If no revised thickness data is found the message
‘NO REVISED THICKNESSES (DATA CODE 8) ENCOUNTERED IN INPUT ’
is printed and execution proceeds, assuming all thicknesses to be as they
were read by RLAYER.

• 133
I

— . •- — • - •-• -•_-•- ••- .-•-• • -•_-~~~~-•- — -~— _--_— .-•---4~•.• __ • — _— — —_•- - — • -•

r ______ i-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__
~ -__________________ —--- — — — -

I

SUBROUTINE UVEC

This routine forms and returns a unit vector from an input vector .

Algorithm

The length of the input vector Is found and the input vector’s
components are divided by the length. The resulting unit vector Is re-
turned through the argument list. .

Input/Output

None

Argument List

I An integer scalar defining the location of input vector
in array C

J An integer scalar defining the location of output vector
- in array C

C A real array of vectors

Labeled Common

None

Subroutines Called

None

Error Detection
If the length of the vector to be uniti zed is zero, the message

‘ATTEMPT TO UNITIZE ZERO VECTOR ’
is pri nted and the zero vector Is divided by a length of one and returned.

134

_ _ ~~~~~~~~p., • - - •- • • • • • • - •• —— •——- - •• --- - ———

SUBROUTINE WCELL
This routine outputs the cell data In the format for Data Code 40 on

files 6 and JTAPE.

Algorithm

The cel l data (cel l number, corner joint numbers , material number,
and stress orientation angle) are written on file 6 and , if JTAPE j’ 6,
on file JTAPE as well. The format for the JTAPE output does not include
carriage control characters . After all the cel l data has been wri tten
a cel l number of 9999 Is output to mark the end of the cell data .

Input/Output

The output is written on files 6 and JTAPE.

Argument List

IDCELL
-

An integer array of cel l data: eight joint numbers
defining the corners and the material number for each cell

ZETA A real array of stress orientation angles
•

• NCELLS An integer scalar defining the number of cells

JTAPE An integer scalar defining the number of one of the
output files

• Labeled Common

None

• Subroutines Called

None

Error Detection

If array IDCELL has data greater than lO s, indicatino nr~ data was read
or aenerated for the cell , the message !.GAP IN DATA ’ is outout and execution
continues wi th the next cell for which the program has valid data .

135

—-

SUBROUTINE WJOINT

ThIs routine outputs the joint data In the Data Code 2 format on files
6 and JTAPE.

Algorithm •

The joints data (joint number and coordinates) is written on file 6
and, if JTAPE $ 6, on file JTAPE as well. The format for the JTAPE
output has no carriage control characters. After all the joint data has
been output, a joint number of 9999 is output as a flag indicating the
end of the data.

Input/Output

The output is written on files 6 and JTAPE.

Argument List •

VJOINT A real array of coordinates of the joints

NJØINT An integer scalar defining the number of joints

JTAPE An integer scalar defining the number of one of the
output files

Labeled Common

None

• Subroutines Called

None

Error Detection

If the x-coordinate of a joint is io30, indicating that no data for
the joint was read or generated, the message
‘GAP IN SEQUENCE’
is output and execution continues at the next joint whose coordinates
are known.

136

—_ - •~ - ---~~~~- — --- — — —- —-~~~-—•— :• -•--- • -
.•

_ _ _ _ _ _ _ _ - - •~~~~--- — • —• --•-- - • • • • --- • • • - •

--

----•- • • •-- • ---- .- - ----— ---•- - - - ---- •

SUBROUTINE WNORM

This routine outputs the surface normal data in the Data Code 6
format on files 6 and JTAPE.

Algori thm

The normals and areas which’ have been generated for every joint on a
quadrilateral corner are output on file 6 and JTAPE ~ 6, on fi le JTAPE
as well. The format for JTAPE has no carriage control characters. When
all normals have been written a joint number of 9999 is output to signal
the end of the surface normal and area data.

input/Output

The output is written on files 6 and JTAPE.

Argument List

VNORM A real array of the uniti zed surface normals for every
joint on a corner of an input quadrilateral

AREA A real array of the areas associated wi th every joint
on a corner of an Input quadrilateral

JOINTP An integer array of the joints on the corners of the input
quadrilaterals

NJT An integer array of numbers of joints on corners of input
quadrilaterals

JTAPE An integer scalar defining the number of one of the
output files

Labeled Common

None

• Subroutines Called

• None

137

_ _ _ _ _ _ _ _
-‘-.4

—~~ -• —•‘- -------- • • —-- — —-‘-~~ •1~~

Error Detection
-

None

- L
(_ •

)

138

I .

I APPENDIX B

INITIAL GENERATOR ROUTINES AND
LABELED COMMON BLOCKS

~

1~~
.

139

1

• APPENDIX B
INITIAL GENERATOR ROUTINES

AND
LABELED COMMON BLOCKS

This appendix contains detailed descriptions of all routines and
labeled common bl ocks In this program. Table B gives either page number
references within this document or references to other documents for
documentation of each routine or labeled common block. Some page number
references may be to preceding appendices where the doucmentation for
a~ routine in this program is identical to a previously documented routine.
This does not imply verbatum source code duplication for the routine 1
only functional dupl ication Is implied .

The detailed description of each routine is divided into the fol lowing
subheadings:

Algorithm verbal flow chart of routine logic and data flow

Input/Output description of all external data set input/
output

Argument List name, type, and description of each argument

Labeled Common list of all l abeled common blocks declared

Subroutines Called list of all routines called

Error Detection description of tests made for errors and action
• taken

The detailed description of each labeled common bl ock Is divided into
the following subheadings:

Declaration verbatum declaration of the labeled common block

Contents name and description of each variable appearing
in the declaration

t
Usage list of all routines which contain declarations

f for the labeled common block

j

140

L •~~~~~~_-~~ _ - ---—~~ - - - - •~~ • - -~~~~• - - - - • - - ----~~~---~~ -- - -~ --• - - • • -

_ _ _ _ _ _ _

- TABLE B. INDEX TO INITIAL GENERATOR ROUTINES AND
LABELED COMMON BLOCKS

Page
MAIN PROGRAM B I R D G 1 145

L.ABELED COMMON ABC 148
LABELED COMMON COFCLC 149
LABELED COMMON CONST 150
LABELED COMMON EDOF, IOOF , AND ISEQ 152
LABELED COMMON IDEN 153
LABELED COMMON IERROR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 154
LABELEO COMMON JØRT 155
LABELED COMMON LIMITS 156
LA8ELED COMMON LPBEM 157
LABELED COMMON LPCEM , . 158
LABELED COMMON LPCV 159
LABELED COMMON LPEP 161
LABELED COMMON LPMDSZ • 163
LABELED COMMON LPMEM 165
LABELED COMMON LPMV 166
LABELED COMMON MTRL 168
LABEL ED COMMON WRK 169

SUBROUTINE ACCJZE 170
SUBROUTINE A C C P R P - ... 171SUBROUTINE CNSTRN 172
SUBROUTINE CØCALC 174
SUBROUTINE DRCNUM 175
SUBROUTINE DUMPt’fr 177
SUBROUTINE EDGDØF . .. 178
SUBROUTINE E D G E S 180
SUBROUTINE E L E M N T . 182

141


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- TABLE B. INDEX TO INITIAL GENERATOR ROUTINES AND
LABELED COMMON BLOCKS (Continued)

Page

SUBROUTINE HORNER . . . . . . . . . . . . . . . . . . . .  184
SUBROUTINE JTEMP 185
SUBROUTINE JTPRT 186
SUBROUTINE J Z E R O . . . . . . .   187
SUBROUTINE L P B A R . . . . . . . .   188
SUBROUTINE L P B P R T . . . . . . . . .   190
SUBROUTINE LPBSM . . . . .  191
SUBROUTINE L P C A P . . .   193
SUBROUTINE LPCC .  195
SUBROUTINE LPCEBT 196
SUBROUTINE LPCFFB 199
SUBROUTINE LPCG  204
SUBROUTINE LPCK 210
SUBROUTINE S LPCKC  211
SUBROUTINE LPCPRM . ..  • . .   213
SUBROUTINE LPCPRT  214
SUBROUTINE LPCSM . . . . . .  215

• SUBROUTINE LPCZM ..  217
SUBROUTINE LPMAP  218
SUBROUTINE LPMC . . . . . . . .  219
SUBROUTINE LPMD  220
SUBROUTINE LPMEBT 221

• SUBROUTINE LPMFFB 223
SUBROUTINE LPMG . . . * . * . . . . . . . . * . . . . .  225
SUBROUTINE LPMK . . . . . . . . . . . . . . . . . . . . .  227
SUBROUTINE L P M K C . . . . . . . . . . .-  228
SUBROUTINE LPMM . . . . . . . . . . . . . . . . . . . . .  230
SUBROUTINE LPMP RM .. ... ..  232
SUBROUTINE LPMPRT 233
SUBROUTINE LPMSM . . . .  . . . .  234

• 
( I

142

I

— — - -~~~~ —---- • - -~~- —--— ----~-- -- -- --- — — -  — - • • • • • - - ••



— 
_ _ _  

~~~~~~~‘ - -

TABLE B. INDEX TO INITIAL GENERATOR ROUTINES AND
LABELED COMMON BLOCKS (Continued)

Page

SUBROUTINE LPMSZD
SUBROUTINE L P M S 1 , 238
SUBROUTINE LPMS2 . 240
SUBROUTINE LPMZ • . 242
SUBROUTINE LPMZM 244
SUBROUTINE LTRMLT 245
SUBROUTINE t~1ATDES 246
SUBROUTINE MATHD 248
SUBROUTINE MATTR • • • • 250
SUBROUTINE MLTMTR 251
SUBROUTINE MLTMØD 252
SUBROUTINE ØVER3 254
SUBROUTINE . PARTN 255
SUBROUTINE PASSM 257
SUBROUTINE PASSM1 258
SUBROUTINE PASSM2 260
SUBROUTINE , PASSM3 262
SUBROUTINE PAS SM4 264
SUBROUTINE PASSM5 . . 266
SUBROUTINE PASSM6 2 6 8
SUBROUTINE PR~P - * . . * • . . • • 269
SUBROUTINE PRTCØN • . • • 271
SUBROUTINE QKSØRT.. • 272

• SUBROUTINE RAMØSG * . . . • • 274
• SUBROUTINE SID * 277

SUBROUTINE SKDATA 279
SUBROUTINE STACK • . • • • 280
SUBROUTINE SWAP • • 281
SUBROUTINE T A P E H D

SUBROUTINE

I_ _--

1~~~~~


~~~

TABLE B. INDEX TO INITIAL GENERATOR ROUTINES AND
LABELED COMMON BLOCKS (Continued)

Page
SUBROUTINE VECT . . 

- 
. . . .  . .  284

SUBROUTINE WPART  286
SUBROUTINE WRMAT • • • • . • . . . 288
SUBROUTINE WTAPE1 • . • 289

_ _ _  _ _ _ _ _ _ _



_________________ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘ •
~~~

_
~~~

• - • 
- _____

MAIN PROGRAM BIRDG1

This routine is the overall executive or supervisory routine for the
windshield technology program Initial Generator. It controls the
sequence of Input, the calling of subprograms or modules, and the
coordInation of data output. For the derivation of element matrices
and additional mathematical formulati ons , refer to Appendix H of Part
1- of this report.

Algorithm

The program begins by initializing various counters and flags.
Then Data Code 1 Is read and checked for validity . Subroutines JZERO
and JTEMP are invoked to read Data Codes 2 and 3 bui lding the joint
coordinate and joint temperature tables. These are printed out by
subroutine JTPRT.

Next , a taoe header is written on tape 1 using subroutine TAPEHD.

The joint coordinate table is written onto tape 1, with the header and
trailer records written by routines MATHD and MATTR. Direction numbers
and constraints , Data Codes 4 and 5, are read and the reaction table

• created and written onto tape 16 by execution of subroutine CNCSTh. Next
Data Code 6 is skipped over by calling routine SKDATA. Material properties,
Data Code 10, are processed for future use and wri tten onto tape ‘I by
module MTLMOD. Again SKDATA is used to skip over unnecessary input Data
Codes 11 and 12, if present.

The program now goes into a loop for processing the vari ous d c .
merits . One element is processed each time through the ioop . First
bar elements, then mentranes, cells and point mass elements are pro-
cessed In order. Subroutine ELEMENT Is used to Input and validate

• the element definition Input, Data Codes 20, 30, 40, and 50. The
joint temperature differentials are calculated and the material

145



properties are then obtained by Invoking routine ACCPRP . Print flags
are checked and the compliance matrix is formed according to the type
of element. Subroutine LPBAR, LPCAP and LPMAP are invoked to generate
the various element matrices which are saved as partitions of their
respective matrices representing the total structure by routines LPBSM,
LPCSM, LPMSM, and, in the case of point mass elements, by main program.

After processing all elements, the edges are processed by routine
EDGOOF. Using the edge data, the ETC table and some program constants,
the assembly module PASSM generates the PRUPT and the PRLJ F matrices
wri ting them out to tape 1. Next, routine WTAPE1 is used to generate
the K, M, (BAR, CBAR, FFBAR , SIGMA FBAR, EPSILØN SIGMA , £801, and EVT
matrices. These matrices along with the CONST table are written onto
tape 1. Finally, a tape trailer record is written onto tape 1 using
routine TAPIR called from BIRDG1.

If a dump qf tape 1 is requested by the user, It is dumped using the
routine DUMPMT. When this is completed , the program constants are
printed by subroutine PRTCØN and the run is wrapped up.

Input/Output.

Tape 1 is the output tape for binary matrix data and is formatted
for use as a FORMAT matrix master input tape. Tapes 5 and 6 are
used for system input and output, respectively. Tapes 7 through 18
are used as scratch uni ts to store data passed between modules within
the program. The data temporarily stored on these tapes Is as follows:

Tape Data

• 7 Element variable table (ECT)
8 Element damping matrix (~~~)

9 Element thermal matrices 
~~~~~~~ 

and 6~ .)
10 Element mass matrix Cm)

I

146

p ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
• - — •

—4


~~~~~~~
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~
‘ •

— •

~

_ - _ • - •

Tape Data

Ii Element stress/strain transform C c)
12 Element force transform (Fr)
13 Element stiffness matrix (‘g’)

14 Element stiffness components (KLPB , DLPM and KLPC)
15 Element force/stress transform

• 16 Global /oblique constraint tables
17 Edge degree of freedom table
18 Element constant table (ECT)

~~9ument List

None

Labeled Coninon

CØNST, IERROR , JØRT, LPEP, MTRL

Subroutines Called

ACCPRP , CNSTRN, OUMPMT , EDGDOF, EDGES, ELEMNT , JTEMP, JTPRT , JZERO ,
LPBAR, LPBSM, LPCAP, LPCC , LPCSM, LPMAP, LPMC , LPMSM, MATHD, MATTR,
MTLMOD, PASSM, PRTCON , SKDATA , TAPEHD, TAPETR , WTAPE1

Error Detection

A check is made for the Data Code 1 delimi ter card being missing or
out of sequence. If this card is missing the run is aborted. If
the base temperature is not input , the program sets the IERRØR flag
equal to zero aborting the run but continues execution to allow a
scan of the remaining input data for addi tional errors.

147

- --~~~~~~~

LABELED CO~I4ON ABC F
This coniuon block is used by the sorting module to store sort

control parameters.

Declaration

COMMON /ABC / INIHI,INILØ ,IP,ISWAP ,ICNTR,KEYFLD

Contents

Pointer to last record in a file to be partitioned

II’IILO Pointer to first record in a file to be partitioned

IP Pointer to record that is the partitioning agent

ISWAP Record interchange counter

ICNTR Pointer to next subfile in the subfile stack

KEYFLD Record element that contains the sort key

Usage

PARTN , QKSORT, STACK, SWAP

j
I

j 148

• p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• - —-• -_-

~~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

I

LABELED COMMON COFCLC

This cormion block is used to store data and program parameters assoc-
iated with the computation of material properties.

Declaration

COMMON /COFCLC/ TVPA(lO,lO),RTMP (lO,3) ,ITMP(lO,3),VPT(lO),
AP(lO) ,A5C (lO,1O),BSC(lO)

Contents

TVPA An array of temperatures for a property where the rows
are temperatures associated wi th a property in VPT and
the columns are monotonically increasing powers of the
temperature

RIMP Scratch space required by routine S b , must be at least
~~~~~~ of rows

IMPT Same as RTMP

VPT Inpu t property values associated wi th temperatures in TVPA

AP Temporary storage for the calculated coefficients

ASC Scratch stor~age used In the calculations

BSC Same as ASC

Usage

COLALC , PRØP

149



—

LABELED COMMON CONST

This common block is used to store coefficients and counters des-
cribing the overall model size and problem constants.

Dec laration

DIMENSION CONST(30)
COMMON /CONST/ NJ, NC, NM, NBAR, NMEM, NCELL , NPTM, NEDOF, NMODES,

NPLJ, NOR, TBASE , HJ, NMC, ND, MP1, MP1NM, GC, GE
EQUIVALENCE (CONST(l),NJ)

Contents

NJ Number of joints

NC Number of constraints

NM Number of material s

NBAR Number of bar elements

NMEM . Number of membrane elements

NCELL Number of cell elements

NPTM Number of point mass elements

• NEDOF Number of edge degrees of freedom

NMODES Number of modes

NPLJ Number of pressure loaded joints

NØR Number of oblique reactions

TBASE Base temperature of the structure

HJ Mechanical equivalent of heat

NMC Total number of material property coefficients

ND Total number of material property words

MP1 Maximum number of properties per material + 1

MPINM MPI*NM

,•

~ 

• 
__ __

- •— ~~~~ _ . - _ - - - _ -  — - • •-—• - - _ - • -  •• •



• - - -,- --- -_-~- _ _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6C Cell stiffness matrix suppression coefficient

GE Bar compliance matrix suppression coefficient

Usage

BIRDG1, JTEMP, JZERØ , MTLMOD, PASSM, PASSM1 , PASSM2 , PASSM4 , PASSM5,
PRTCON , WTAPE1

151 

--‘-•-~~~•- - -•--•• -- - •- -•- •- -



r~~~r ~

-

~~~~~~

• • •
__

~~~

• -

~~~ 

__

~~~~~~

-_ -_--— .

~~~~~~~~~~~~~~~~~~~~~~~

.- -• -iII
~

LABELED COMMON EDOF , lEDGE, AND ISEQ

These common blocks are always used as a group by those modules
associated with the computation of overall structural degree of freedom
row formats.

Declaration
-

COMMØN /EDOF/ IDOF(7200) /IEDGE/ IEDG(7200) /ISEQ/ ISEQ(7200)

Contents

IDOF Edge degrees of freedom in same sequence as ISEQ

IEDG Sorted pairs of joints defining edges

ISEQ Index to original sequence of IEDG

The content of these common regions varies between modules. Source
code listings should be consulted for specific information regarding
content.

Usage

EDGDOF, PASSM

I
-1

~~~~~~~ 
i i

152



LABELED COMMON IDEN

This common block is used to store data and program parameters assoc-
iated with reading material property input data , Data Code 10.

Declaration

COMMON /IDEN/ MR,IP ,NPC,MAP ,MROLD ,IPOLD ,NCOLO ,MAPOLD

Contents

MR Material reference number of current record divided by 100
IP Property identification number of current record

NPC Number of coefficients input for current property

MAP Number of coefficients to be computed for current property

MROLD MR for the previous record

IPØLD IP for the previous record -

NCOLD NPC for the previous record

MAPØLD MAP for the previous record

Usage

COCALC, MAIDES, MTLMØD, PROP



~ -
~~~

—
~~~~~~~

-
~~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • -• ~~~ • •~~ ~~- • -~~~~ • • ~~~~

LABELED COMMON IERRØR

This common block Is used to store the main error flag and print

control flags.

Declaration

CØMMØN /IERROR/ IERROR ,LNPAGE ,MTDUMP,NPA$SM

Contents

IERROR Program fatal error flag

LNPAGE Lines per page print l imit, defaults to 45 lines

MTDUMP Tape 1 dump flag which if 0 means no dump , if 1 dump
header records only, and if 2 dump complete tape

NPASSM Print flag for PRLJPT and PRUF matrix assembly

Usage

BIRDG1, ACCPRP, CNSTRN, COCALC , DRCNUM, EDGDOF, EDGES, ELEMNT, JTEMP,
JZERO , LPCKC, MATDES, MTLMOD, OVER 3, PASSM, PASSM1, PASSM2 , PASSM4 , PASSM5 ,

• PRØP , PRTCØN, RAMOSG, WTAPE1

154



-- ._- •-~--~• • • --- •--- • • -—--•- __-- --~~~~—-•---..---_--_---•---.--~-,—-—-,- 
___ _ _ _

LABELED COMMON JORT

This common block is used to store joint coordinate and temperature
data.

Declaration

CØMMØN /JORT/ J0(3 l200), TEMP(l200)
REAL JO

Contents

JO Joint coordinate table

TEMP Joint temperature table

Usage

BIRDG1, ACCJZE , JTEMP, JTPRT, JZERO , LPBAR, LPBPRT , LPCAP , LPCG, LPCPRT,
LPMAP LPMG, LPMPRT

155 

—_-- •- -- ~— -



• •~~~~~ 
- • -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LABELED COMMON LIMITS

This common block is used to store size limitation parameters
associated wi th material property tabular data , Data Code 10.

Declaration

COMMON /LIMITS/ MXMTRL ,MXPROP ,MXCOFS,MXDES ,MXPCO,MXPVL

Contents

MXMTRL Maximum number of materials that space is provided for

MXPROP Maximum number of properties that space is provided for

MXCOFS Maximum number of coefficients for all properties for all
materials that space is provided for

MXDES Maximum number of packed words (10 characters per word) of
material description for all materials

MXPCO Maximum number of coefficients for a property

MXPVL Maximum number of values for a property

Usage

COCALC, MATDES, MTLMOD, PROP

• •--•- •-.• • • • -- - - ~~-•-~~~~~~
------ ----

LABELED COMMON LPBEM

This common block Is used to store geometry and output matrix data
for bar elements.

Declaration

COMMØN /LPBEM/ CBAR(2 ,2) , EBARTD(2), EBOT(2) ,

EMASS(6,6), EPSSIG , FFBAR(7,2),
KLPB(7,7), KBAR(2,2), SFBAR(2) ,

AB(4) , PQ(4)
REAL. KBAR , KLBP

Contents

CBAR Element damping matrix

EBARTD Unassembled element deformations due to unit temperature
change

EBOT Initial element thermal deformations

EMASS Element mass matrix

EPSSIG Element strain matrix

FFBAR Unassembled to global transformation matrix

KLPB Transformed element sti f fness matri x

KBAR Element stiffness matrix

SFBAR Element stress matrix

AB X, Y, Z components of unit vector from P to Q

PQ Bar length and X , Y, Z components of length

Usage

LPBAR , LPBPRT, LPBSM

H
157

•~~~~z.r —
~

“ -
~ ‘~

— —-- —-— - -— -- —- • — —-——— — — _—

LABELED COMMON LPCEM

This common block is used to store cel l element output matrices.

Dec larati on

COMMON /LPCEM/ CBAR(30,30), EBARTD(30) , EBOT(30),
EMASS(24 24), EPSSIG(6,12), FFBAR(36 ,30),

KBAR(30,30), KLPC(36 ,36) , SFBAR(12 ,30)
REAL KBAR , KLPC

Contents

CBAR Element damping matri x

EBARTD Unassembled element deformations due to unit temperature
change

EBOT Deformations due to the difference between element joint
temperature and the structural base temperature

EMASS Element mass matrix •

•

EPSSIG Element strain matrix

FFBAR Unassembled to global transformation matrix

KBAR Element stiffness matrix

KLPC Transformed element stiffness matrix

SFBAR Element stress matrix

Usage

LPCAP, LPCEBT, LPCK, LPCKC, LPCRM, LPCSM, LPCZM

_ _ _ _ _ _ _ -- -

158

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - • -— —— — — — --_-—— . • • — —
~~—- •— •.• —-—- — - -

_ _ _ _ _

LABELED COMMON LPCV

This common block is used to store cel l element geometry and
vector data.

Declaration

COMMON /LPCV/ PQ(4.8) RQ(4,8) , RS(4,8) , PS(4 ,8)
AB(4,8) , BB(4,8) , CB(4 ,8) , DB(4,8)
EB(4,B) , FB(4 ,8) , FK(5,8)
LA(8) , LB(8) , LT(8) , THETA(8)
TPB(4) , TQB(4) , TRB(4) , TSB(4)
TPQ(4) , TRQ(4) , TRS(4) , TPS(4)
V(8) , ZETA(8)

REAL LA, LB, LI

Contents

PQ Edge vector components and magnitude

RQ Edge vecgor components and magnitude

RS Edge vector components and magnitude

PS Edge vector components and magnitude

AB Unit vector components

88 Unit vector components

CB Unit vector components

DB Unit vector components

EB Unit vector components

FB Unit vector components

FK K factor

LA Length of cell sub—element

LB Width of cell sub—el ement

LI Average thickness of cel l sub-element

THETA Corner angles THETAPO , THETAQO, THETARO , THETASO ,
THETAP1, THETAQ1 , THETAR1 , and THETAS1

H
159

- I

TPB Thickness vector components and magnitude

TQB Thickness vector components and magnitude

TRB Thickness vector components and magnitude

TSB Thickness vector components and magnitude

TPQ Thickness vector components and magnitude

TRQ Thickness vector components and magni tude

IRS Thickness vector components and magnitude

TPS Thickness vector components and magnitude

V T*A*B*SIN(THETA) for cel l sub-element

ZETA Orientation angle of cell sub-element

Usaqe

LPCAP, LPCEBT , LPCFFB, LPCG, LPCKC, LPCPRT, LPCSM

160

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- •- -— - — ••

I. — - - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —


LABELED COMMON LPEP

This common block is used to store material properties , joint
connectivity data, and other information for an element.

Declaration

DIMENSION CK(3 3), JMN (4)
COMMON /LPEP/ A , ALPHAT , CK1(6,6), CK2(6,6), E

EC , El , H , JCN(8) , MR
MT , NU , PM(3) , PRFLAG , RHO
I , TD(8) , VOL , ZETAPQ

EQUIVALENCE (CKJ (1 ,1),CK(1 ,fl),(JcN(fl,JMN(l)) ,
(JP ,JCN(l)) ,(JQ ,JCN(2)),(JR ,JCN(3)),(JS ,JCN(4)),
(JPO ,JC N(l)) ,(JQO ,JCN(2)),(JRO,JCN(3)),(Jso,JCN(4)),
(JP1,JCN(5)),(JQ1 ,JCN(6)),(JRl ,JCN(7)),(Jsl ,JCN(8)),

REAL MU, MT
INTEGER PRFLAG

Contents

A Cross sectional area

ALPHAT Coefficient of thermal expansion

CK Compliance matrix

CK1 Compliance matrix for upper half of LPC element

CK2 Compliance matrix for lower half of LPC element

E Elastic modulas

EC Compression gap

El Tension gap

H Damping/stiffness ratio

JCN Array containing cell joint numbers JPO, JQO, JRO, JSO,
JP1, JQ1, JR1 , and JS1

JMN Array containing membrane joint numbers JP , JQ, JR , and JS

MR Material properties reference code

161

~rr~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - • — ~~~~~~~~~~ - — -~~~~ -~~~~~ -—- ~~~~~~~ - • — - - - .•~~~ • -_ - -_ -


~~~~~~~~~~ ~~~~~~~~~~~~ 

— •--- ‘-- -

~~

— —-_•------- - — - - •---
~~~~

--
~~~~

-- - - - - •

MT Total element mass

NV Poisson ’s ratio

PM Point mass
PRFLAG Print flag
RHO Mass density -

I Membrane thickness

TD Array containing unit temperature differential at
joints JPO , UQO, JRO , JSO , JP1 , J~1 , JR1 , and JS1

VOL Element volume

ZETAPQ Material or stress orientation angle

Usage

BIRDG1 , ELEMNT, LPBAR, LPBPRT , LPBSM, LPCAP , LPCC , LPCEBT, LPCFFB, LPCG,
LPCKC, LPCPRT , LPMPRT , LPCSM, LPMSM, LPMAP, LPMC , LPMFFB , LPMEBT, LPMG

I

162 

•
~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


LABELED COMMON LPMDSZ

This common block is used to store membrane element geometry data
and intermediate matrix data.

Dec laration

COMMON /LPMDSZ/ AOTP , A0T~ , AOTR , AOTS
• DP(3 ,3), DQ(3 ,3), DR(3 ,3), 05(3,3),

SP(3) , SQ(3) , SR(3) , SS(3)
ZP(3,3), ZQ(3 ,3), ZR(3,3), ZS(3,3)

Contents

AOTP A*B*sin (THETA)/t for corner p

AOTQ A*B*sin (THETA)/t for corner q

• AOTR A*B*sIn (THETA)/t for corner r

AOTS A*B*sin (THETA)/t for corner s

DP 0 matrix for corner p

DQ D matrix for corner q

• DR 0 matrix for corner r

OS 0 matrix for corner s

SP Skew stress matrix for corner p

SQ Skew stress matrix for corner q

SR Skew stress matrix for corner r

SS Skew stress matrix for corner s

ZP Global translation matrix for corner p

ZQ Global translation matrix for corner q

k ZR Global translation matrix for corner r

ZS Global translation matrix for corner S

163

Usage

LPMAP , LPMKC, LPMPRT, LPMSZD, LPMS1 , LPMS2

- - —

—

164

_ _ _ _ _ _ _ _ _ _- - - - - - _-

LABELED COMMON LPMEM

This common block is used to store membrane element output matrices.

Declaration

COMMON /LPMEM/ CBAR(9,9) , EBARID(9) , EBOT 9)
EMASS(l2,l2), EPSSIG(3,3), FFBAR 16,9),

KBAR(9 ,9) , KLPM(l6 ,l6), SFBAR 3 ,9)
REAL KBAR , KLPM

Contents

CBAR El ement damping matrix

EBARTD Unassembled element deformations due to unit temperature
change

EB~T Deformations due to the difference between element joint
temperature and the structural base temperature

EMASS Element mass matri x

EPSSIG Element strain matrix

FFBAR Unassembl ed to global transformation matrix

KBAR Element stiffness matrix

KLPM Transformed element stiffness matrix

SFBAR Element stress matrix

Usage

LPMAP, LPMFFB, LPMEBT, LPMPRM, LPMSM, LPMSZD, LPMZM

165

I
_ _ _ _ _ _

—

LABELED COMMON LPMV

This common block is used to store membrane element geometry and
vector data.

Declaration

COMMON /LPMV/ PQ(4) , RQ(4) , RS(4) , PS(4)
AB(4) , BB(4) , CB (4) , 08(4) , EB(4)
FK1 FK2 , FK3 , FK4 , FK5
THETAP , THETAQ , THETAR , THETAS

Contents

PQ Edge vector components and magnitude

RQ Edge vector components and magnitude

RS Edge vector components and magnitude

PS Edge vector components and magnitude

AB Uni t vector components

B8 Unit vector components

CB Unit vector components

DB Unit vector components

EB Unit vector components

FKl K factor

FK2 K factor

FK3 K factor

FK4 K factor

FK5 K factor

THETAP Corner angle

THETAQ Corner angle

THETAR Corner angle
THETAS Corner angle

166

-
~

-
~

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • —

$ I -

Usage

LPMAP, LPMFFB, LPMEBT, LPMG, LPMPRT, LPMSM, LPMSZD

t -

167



LABELED COMMON MTRL

This common block is used to store the material property tables in
their entirety.

Declaration

COMMON /MTRL/ CØEFS(660) ,LENCOF,LENDES,LNGTHS(14 ,20) ,MPTR(240),
- 

MRDES(240), PRPVAL(13)

Contents

COEFS Coefficients for all properties for all materials

LENCOF Length of coefficients

LENDES Length of MRDES

LNGTHS Number of coefficients for each property and number of
packed material description words for each material

MPTR Pointers to first coefficients for all properties of all
materials as stored in array COEFS, and pointers to the
first packed material description word for all materials
as stored In array MRDES

MRDES Packed material description for all materials

PRPVAL Temporary storage for properties for a material
PRPVAL( 1) Elastic modulas
PRPVAL( 2) Secant modulas at point A ,

Approximate yield point

L 

PRPVAL 3 True stress at point A
PRPVAL 4 True stress at rupture
PRPVAL 5 True strain at rupture
PRPVAL( 6) Poisson ’s ratio
PRPVAL( 7) Coefficient of thermal expansion
PRPVAL 8) Mass density
PRPVAL 9) Specific heat
PRPVAL 10) Damping/stiffness ratio
PRPVAL 11) Ramberg-Osgood coefficient
PRPVAL(12) Slope tangent to Ramberg—Osgood curve at the

origin
PRPVAL(13) Elastic lim it stress

Usage
BIRDG1, ACCPRP, LPBSM , LPCSM, MATOES, MTLMOD, PRØP , RAMOSG

_ _ _ _ _ _-

~~ 

-. 

168

• - —---- . 
• •  -



~~~~
-• -- - ,- -- - --i

--,
~~

--—-
~ •-

. ---- --- ---- •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --—

~

---_, --- -• •- --- —,- - ---

~

-. ----- - --

LABELED COMMON WRK

This common block is used as scratch space by several routines.

Declaration

The largest extent declared for labeled common block WRK occurs in
subroutine CNSTRN. The declaration In that routine Is given here.
COMMON /WRK/ DIREC(3) , DIRTBL(50,3), DUM(600),

ICON(600,3), OBLIQ(300 ,3)

Contents

The content of this common region varies between modules. Source
code listings should be consulted for specific Information regarding
content.

Usage

CNSTRN, DUMPMT, LPCK, LPCKC , LPMAP

169

—— - 
I

•— -

~

-—----- —- --•--- • - - - • --— •-- — — - •  — --- — - — - •— -— -• ---- - -



—-•--—~~ -- - — — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~ ~~~~~~~~~
- —

--

I SUBROUTINE ACCJZE

This routine computes the difference of the X , V and Z coordinates
of two joints.

Algori thm

The coordinates of the two joints are accessed in the joint coordinate
table, array JO, and the X, ‘f Z coordinate di fferences, representing
the components of a vector directed from the first joint to the
second, are stored in array DIREC .

Input/Output

None

Argument List

JNTh An integer scalar defining the fi rst joint number

JNTN An integer scalar defining the second joint number
DIREC A real array for the di rection vector

Labeled Common

JORT

Subroutines Called

None

Error Detection

None

170

- _______________________ ________________

SUBROUTINE ACCPRP
~~~~~

This routine computes properties for a material as a function of a
given temperature and comPutes the Ramberg-Osgood coefficients.

A1~orjthni

The first 10 values of the PRPVAL array are computed using subrouting
HORNER. The last three are computed by routine RAMOSG. IF the IERRØR flag
is set non-zero prior to entry to this routine , no material properties
are computed.

Input/Output

Diagnostics are written on tape 6.

~~qument List

MR An integer scalar defining the material reference number
NM An integer scalar defining the number of materials
TMPT A real scalar defining the temperature

Labeled Common

MTRL

Subroutines Called

HORflER, RAMØSG

Error Detection

If a material reference number is greater than the maximum allowed ,
a diagnostic is printed , the IERROR flag is set equal one, and a return
Is made to the calling routine.

171

_ _  _ _ _ _ _ _  -- - -- ~ • - ~~ • - - - -~



- - ---.
~~~~~~~~ - 

- -:
~~~~~~~ 

F
SUBROUTINE CNSTRN

This routine reads the di rection cosine data, Data Code 4, the
constraint data, Data Code 5, from which tables are generated to
indicate constrained degrees of freedom that are oblique as well as
parallel to the global di rections.

Algorithm

Data Code 4 Is processed and the direction table Is generated by
calling subroutine ORCNUM.

Constraints, Data Code 5, are processed next one at a time. A
data card Is read and an ECHO of the va l ues are printed on tape 6.
The data is checked for validi ty and If errors are found, the IERRØR
flag Is set and the program continues to check the remainder of the
input. Subrouti ne ACCJZE is used to access the joint coordinate
table and determine the direction cosines. The direction cosines are
normalized and the direction vector checked for zero. The constraint
number and the joint number are stored in the constraint table ICON.
Next the components are checked to see if the constraint is in the
global directions. If so, the procedure is continued for the next
constraint unti l all constraints are processed.

If the constraint is an obli que constraint, the di rection cosines
are stored Into the oblique di rection table OBLIQ and the rest of
constraints processed as above.

After all of the constraint data has been processed the constraint
table is sorted using subroutine QKSØRT. A check is made for more
than three entries per joint using routine OVER3. The constraints and
oblique table are written onto tape 16.

1 -- --- i

172

I

L



- •-~~~~~~~—-

Input/Output

User input constraint data is read from tape 5, and the compiled
constraint table is written onto tape 16. Tape 6 is used for the
output of diagnostics.

Argument List

MAXJNT An integer scalar defining the maximum joint number In the
- structure

NCT An integer scalar defining the number of constraints

NØB An Integer scalar defining the number of oblique reactions

LNPAGE An integer scalar defining the lines per page print limi t

Labeled Common

MTRL

Subroutines Called

ACCJZE, DRCNUM, OVER3 , QKSORT

• Error Detection

Checks are made for any di rection vectors equal to zero, invalid joint
numbers, data out of sequence, invalid Data Code, number of constraints
exceeding the program maximum limi tati on, constraint data missing, and

• the number of oblique constraints exceeding the maximum. A diagnostic
is written for all errors, the IERRØR flag Is set equal zero, and a
return is made to the calling routine.

• 
173

II.
__ -

~~~~~~~~~~~
- - - - - -— • -- - - — - - -~~~~~~~~~~~~~ -~~~~~~~~ - -- —~~

- --• . -- -----
~~

—

I
I

SUBROUTINE COCALC

This routine produces a column matrix of material properties
coefficients.

Algorithm

The MYP temperature/value pairs stored in arrays TVPA and VPT a e
used In the following equation to compute material property coeffi-
cients.

AP (TVPAT * TVPAY
1

* (TVPAT * VPT)

Input/Output

Di agnosti cs are wri tten on tape 6.

Argument List

MVP An integer scalar defining the number of temperature/value
pairs

Labeled Common

•
COFCLC, IDEN , IERROR , LIMITS

Subroutines Called I
-

LTRMLT, MLTMTR, SID

Error Detection

If (TVPAT * TVPAY 1 Is singular , a diagnostic is printed, the
IERROR flag Is set equal to zero, and a return Is made to the calling
routine.

-

- g 174

SUBROUTINE DRCNUM

This routine reads the direction cosine data, Data Code 4, and
builds the direction table.

Algorithm -

Data Code 4 cards are read and checked for valid data entry. An
echo of the input values is printed on tape 6.

Subroutine ACCJZE is used to access the joint coordinate table
and determine the di rection cosines. A check is made of the di rection
vector to see If it is zero. If it is zero, the IERRØR flag is set
and the program continues to scan the input for errors. Next the
direction cosines are normalized and stored Into the di rection table
DIRTBL. This procedure is continued unti l all Data Code 4 input has
been processed.

Input/Output

Direction cosine data are read from tape 5 and di agnostics are
written onto tape 6.

Argument List

DIRTBL A real array for the di rection table

MAXJNT An integer scalar defining the maximum joint number in the
structure

NOR An integer scalar defining the number of records in the
directi on table

JERR4 An integer scalar error conditi on flag for the di rection
• table

Labeled Common

IERROR

175

_ _ _ _ _ _ _ _ _ _ _— •

• ‘~~~~~
—

~~~~~
—-—‘ • ~~~~~~ ~~TZ _____ ~~~~~~~~~~~~~~~~ 

—-
~~~~~~~~~~~~ -=~~~~

— --=- --

Subroutines Called

ACCJZE

Error Detection

A check is made for all zero direction vectors, joint numbers out
of range, direction cosine records not in sequence , invalid data code ,
and direction numbers exceeding the maximum allowable. For all errors
a diagnostic is printed, the IERRØR flag is set to zero, and the
input data scanned for further errors. •

-

I
(p

176

A - ~~~~~~~~~~~~~~~~~~~~~~~

_________________ - - _

SUBROUTINE DUMPMT

This routine dumps all or part of the data on a standard FORMAT tape.

Algorithm

The Informa tion conta ined on tape IN is read according to standard
FORMAT matrix data format and then printed on tape 6.

Input/Output

Data is read from tape IN and then printed on tape 6

Argument List

IN An integer scalar defining the logical unit number of the tape

IFLAG An integer scalar control flag wn4ch, when zero, specifies
dump header records only and , when non-zero, specifies complete
dump

Labeled Common

W RK

• Subroutines Called

None

Error Detection

None

177 L

SUBROUTINE EDGDØF

This routine generates an insort table of uni que edges and a table
of edge degrees of freedom corresponding to the original order of the
unsorted unique edge table.

Al gorithm

If the IERROR flag is set non—zero prior to entry to this routine,
it is not executed. An Immediate return is made to the calling routine.

Tape 17 containing the pairs of joints defining each edge is rewound and
read into array IEDG. The edges are sorted according to the first joint
using routine QKSORT. The edges are compared one to another for duplica-
tion and only the unique edges are saved in array IEDG . The degree of
freedom number for the edge is saved in array IDOF. The final table
of edges, array IEDG, is sorted then back into the original sequence.

Input/Output

Tape 6 is used to output diagnostics , and edge data is read from
tape 17.

Argument List

NWRT An In teger scalar defining the number of elements processed

NPRS An integer scalar defining the number of edges processed

IUNQ An integer scalar defining the number of unique edges

• Labeled Common

EDOF , lEDGE , ISEQ
-

Subrouti nes Calle d

QKSORT

178

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Error Detection

If the number of edge pairs requested Is not equal to the number of
pa i rs read from tape , a diagnostic is printed , the tERROR flag is set
equal one , and a return is made to calling routine.

: -

~

~

- -: -

_ _

- • - -

- • ~~~ -~~~~~~~~ —

SUBROUTINE EDGES

This routine assembles the joint pairs that define the edges of an
element.

Al gorithm
- -

The number of edges are determined according to the type of elenl2nt.
Each joint pair defining an edge is packed into a single word of array
lEDGE according to the formula

lEDGE Ji * 10000 + J2

where Jl , the jo int number of joint one , is less than J2, the joint number
of joint two. When all edges for the element have been processed , they
are written on tape 17 as one record for subsequent use by subroutine
EDGDOF. -

Input/Output

Tape 6 is used to output diagnostics, The edge data is output onto
tape 16.

Argument List

ICODE An integer scalar defining the data code of the element

20 ~ Bar
30 Membrane
40 • Cell
50 • Point Mass

JCN An Integer array containing element joint numbers
FIWRT An integer scalar defining the number of elements whose

• edges have been processed
NPRS An integer scalar defining the number of joint pairs or

edges processed

___________________ — — ~~~ —

Labeled Common

IERROR

Subroutine Called

None

Error Detection

If an invalid Data Code number is detected, the IERRØR flag is
set equal to one, a diagnostic printed , and a return Is made to the
calling routine.

t
_ _ _

_ _ _ _ _

181

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-

SUBROUTINE ELEMNT

This routine reads and checks the validity of element definition
data.

Al gorithm

The user input defining the elements, Data Codes 20, 30, 40 and 50,
is read and the data checked for validity. If an error is found , appropriate
error flags are set. The run is aborted only after all the input data
is scanned for errors.

Input/Output

Tape units 5 and 6 are used for card input data and Output diagnostic
messages, respectively. An echo of the input is also output on tape 6.

Argument List

ICODE ~An integer scalar defining the Data Code number

NE An integer scalar defining the element numbers

MAXJ An integer scalar defining the number of joints

IEOD An integer scalar flag set equal to one when the end of
element data is encountered

LNPAGE An integer scalar defining the lines per page print limi t

Labeled Comon

• LPEP , tERROR

Subroutines Called
None

• . (• - ‘

• 182

— — ~~~~~~~~~~~~~~~~~~~~~~~~~

_ - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •_ ~~~ •~~~~~~~~~~~~~~~~~~~~~~

Erràr Detection

A check Is made for element numbers out of sequence , element type
code out of sequence, zero area for bar elements , zero thickness for
membrane elements, joint numbers out of range, and for joints not defined.
For each error condition , a diagnostic is printed . The IERRØR flag is
set equal to one but the scan of input data is allowed to continue.

1 _
.

183 - •

r

SUBROUTINE HORNER

This routine solves a monotonically increasing polynomial equation
by Hom er ’s method.

~jg~orithm - •

The polynomial is evaluated in the following manner:

V 1 • COEF(INUM)*TMPT + COEF(IN UM-l)

INUM-l
VAL

~
TMPT + CØEF(INUM-i)

i~2

InputJOutput

None

Argument List

COEF A real array of coefficients describing the polynomial

INUM An integer scalar defining the number of coefficients

TMPT A real scalar defining the independent variable

VAL A real scalar defining the dependent variable

Labeled Common

None

Subrouti nes Called

None

Error Detection

None

•~

-1

.

184

— —- .~~~~-— - ~~~~- • — - ~~~~~ -~~~~~~~~ - — - — •--~

SUBROUTINE JTEMP

This routine reads joint temperature data, Data Code 3, and
modi fies the joint temperature table.

Algorithm

Temperature data is read and checked for validi ty, then the
temperature table stored in array TEMP is updated accordingly.

Input/Output

User specified joint temperature data is read from tape 5 and
diagnostics are written onto tape 6.

Argument List

None

Labeled CoMi~on

J~RT

Subroutines Called

None

Error Detection

Checks are made for input of a data code other than 3 and for
the omission of the joint number if temperature data is present. If
an error is detected, the tERROR flag is set equal zero and a return
is made to the calling routine.

(•
‘
1

*

185

A . . . ~~~~~ ~~~~~~~~~~~ ~~~~~~~

SUBROUTINE JTPRT

This routine prints the contents of the joint coordinate table and
the joint temperature table.

Al gorithm

The contents of arrays JO and TEIIP in label ed comon JZERO are printed .

Input/Output

The joint coordinate and temperature data are written onto tape 6.

Argument List

LNPAGE An integer scalar defining the lines per page print limit
NJT An integer scalar defining the total number of joints

Labeled Common .

JORT

Subroutines Called

None

Error Detection
None

(I

• 186

• ~~~~— •

_ -_ -.- • —-~~~~~~~~~~ . - • _

SUBROUTINE JZERO

This routine reads user input joint coordinate and temperature
data , Data Code 2 , and forms the joint coordinate table and the
temperature table.

Al gori thm

Joint coordinate and temperature input data cards are read and
checked for validi ty. The joint coordinate and the temperature tables
are formed in arrays JØ and TEMP , respecti vely.

Input/Output

Joint coordinate and joint temperature data are read from tape S
and diagnosti cs are wri tten onto tape 6.

Argument List

None -

Labeled Common

C~NST, IERR~R, JORT

Subroutines Called

None

Error Detection
Checks are made for input of a data code other than 2 and for the

omission of the joint number if coordinate data is present. If an error
Is detected, the IERRØR flag Is set equal zero and a return is made to
the calling routine.

*

187

- - _
* - - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

_
~~~~~ q _

Lfl ~ . • _2 •



SUBROUTINE LPBAR

This routi ne forms the matrices for lumped parameter bar
elements .

Algori thm

Using the element geometry, physical properti es and material
properties stored in labeled common, the following matrix equations
are evaluated. Matrix size is gi ven in parentheses at the left.

(3 xl)

(2 x 2) E
~~C I ~~I 

[l.O~~~~]

(2 x 2)

-

-ay

(7 x 2) FF * ax

1.0 -1.0

(1 x 2) a.F
~

(1 x 1) cc Ck

(2 x 1 ) eT~ * 
3T 

d~
•t

* 

.

- 

188

• ~~~ — -~- — -— -----~--.— — —~



2 1 — 
~~~~ i~ i. 3(T~~-T~) + (TJQ—TB)( x ) oCT 8 (TJp_TB) + 3(T~~-T8)

(lx i) V z A I ~~]

(1 x 1) m1. = ~ V

2 1
—

(7x 7) m = 2
_ _ _ _ _

Input/Output

None

Argument List

TBASE A real scalar defining the base temperature of the structure

Labeled Common

JØRT, LPEP, LPBEM

Subroutines Cal led

LPBPRT, LPMK, VECT

Error Detection
None

- •

189

— •_ * , r— — - • • ~~~~~~~~~~~~~~~~~~~~~~~
•
~

- • - --_
~~
- • - _

~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~•••• •~~ .~ • - •  .--.-- —



AD—A 063 7141 DOUGLAS AIRCRAFT CO LOWS BEACH CALIF F/S 1/3
AIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 3. PROGRAMMING——ETC (U)
DEC 77 R C MORRIS F33615—75—c—3105

UNCLASSIFIED MDC fr71714 PT 3 APFDL— TR—7 7—99—PT—3 NI.

3~~6
ADA

De~~74



— ThLm~~

~T I ~
TJP TB~ 

+ (TJQ_TB)
(2 x 1) aeT 

a d (TJp~TB) + 3(TJP-TBJ

(l x i) V z A  I~
.I

( l x i )  m.T a p v

2 1
2 1

(7 x 7) 1 
~ 2

Input/Output

None

Arqument List

TBASE A real scaler defining the base temperature of the structure

Labeled Coniiion

JØRT, LPEP , LPBEM

Subroutines Called

LPBPRT, LPMK , VECT

Error Detecti on

None

189 H
— I i

I___ _ __ __ _ ___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. - - - -—.———~~—— —.. - — —— 

~
— ---



(

SUBROUTINE LPBPRT

This routine prints the input and intermediate calculations for
lumped parameter bar elements.

Al gorithm

This routine Is executed only in runs made for the purpose of pro-
gram checkout. The intermediate calcula tions for the elements are
printed as are the contents of labeled common LPEP and LPBEM.

Input/Outout

Intermediate data is output on tape 6.

Argumei~t L ist

None

Labeled Common

JØRT , LPBEM , LPEP

Subroutines Called

None

Error Detection.

None

I

~~ f

190
V —



F-

T
SUBROUTINE LPBSM

This routine saves 1un~ed parameter bar element data on external
files.

Algori thm

The matrix partitions representing the contribution of this ele-
ment to each of the output matrices are written onto the appropriate
scratch tape.

Input/Output

The data output to scratch tapes is as follows :
Tape Data

7 Element variable table
8 CBAR
9 EB~T

10 EMASS
11 EPSSIG
12 FFBA R
13 KBA R
14 KLPC
15 SFBAR
18 Element constant table

Argument List

NBAR An Integer scalar defining the bar element number

TMPAVG A real scalar defining the element average temperature

Labeled Common

LPBEM, LPEP~ MTRL



_ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _  -

~~Proutines Called
None

Error Detecti on
None

1 F

I _ _
_ 

_ _  _ _ _ _ _ _ _ _ _ _ _ _

192

~ ~~~~~~~~~~~~ ~~~~~~~ 
- - - -------—- ----——-— 

- ~~~~~~~ — -~ -- —



— —5--- —~ 5!. -~ —- -~~~ -~~- - —~~~~~

SUBROUTINE LPC4W

This routine acts as the executi ve routine for computing the
lumped parameter cel l (approximate parallel piped) matrices .

Algori thm

Routine LPCG Is Invoked to compute cel l element geometry. Routines

F LPCKC, LPCK and LPCFFB are then called to compute element matrices ~~~,

k and Fp respecti vely. Using data stored in labeled common, the
following matrix equati ons are then evaluated. Matri x size is given
in parentheses at the left.

1~k 1
(12 x l2) C a  

— 

Ck

(30 x 30)

2mLPM mLPM Note: See rou-
(36 x 36) m a 2 I tine LPMM for

‘~LPM ‘flLPMJ definition of
L. mipH.

Routine LPCEBT Is then called to compute matrices 6~ . and

Input/Output

None

Argument List

GC A real scaler defining the cell sti ffness matri x
suppression coefficient

Labeled Common

JØRT , LPCEM, LPCV, LPEP

~ 

-



— !!U ’’ “ - _  —_.~~~..-- ! .  —.—~~5~~~~~~~5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ,— - --‘—--- -— — —‘————-—-- - -
~~~~~~~~~

—

Subroutines Cal led

LPCEBT , LPCFFB , LPCG, LPCK, LPCKC, LPCPRM, LPCPRT , LPCZM, LPMM

Error Detection

None

I

194
— 

—- S - - ______________-- 

- . 5-- ---- ,-- ~~~--.--~~ -.S -~~~~~~~ - - .



- —. --~ - - - - -~~—~ — ---~ -—  —--—5--,- -- - — . - - - -- —---—--- -.--—- -— - --- --- - —S--— --—-------— -,

- - - - -~~.-s..- .-’n~~~~.-— - - -

SUBROUTINE LPCC 
-

• This routine forms the compliance matrix for lumped parameter cell
elements.

Algori thm

The compliance matri x for the upper and lower surfaces of the cell
element are formed Independently. These two matrices each of order
6 x 6 are then assembled as diagonal partitions of the 12 x 12 compli-

ance matrix for the elemtnt. Each partition is formed as shown below

where E Is Young ’s Modulus and V is Poisson ’s Ratio.

1-V -V
-V 1 -V

1 -V -V 1
- CK

R
r 2(1+V )

2( 1+V)
- 2( 1+V)

Input/Output

None

Argument List

None

Labeled Common

LPEP

Subroutines Called

None

Error Detection

None

0 •
195

~-; 
—~~-I~~~-- 

—- - ---..- —-.~---- - 5- .-- - - - - - - -  —5

- - - - -~~~~~~~~~~~~~~~~~~ -— - .—-- - - -
~~
-— -- — !~~~~~ - S -- -5.—-~~~~~~~~~~ -



SUBROUTINE LPCE3T

This routine calculates the unassembled element deformations due to
unit temperature change at the joints defining a cell element and the
Initial thermal deformations for the element.

Algori thm

The theoretical definiti on of matrix as a function of geometry,
element K factors , and the coefficient of thermal expansion Is as follows :

P0 q0 r0 s
~ 

p1 q1 r1 S1

E12
(9 x 4) (9 x 4)

E21 E22
(9 x 4) (9 x 4)

E3 (4 x 8)

E4 (8 x 8)

• where the partitions E12, E21, and E3 are null and

b1 cos 01 b2 cos 02 K3 6 b3 cos 03 K3,6b4 cos 04
a2

a1
a3

E11 b2 

a4

• 

- 

b3
b1

196
- - -.-55-------- -

L - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —



-5-5-

b5 cos e5 b6 cos 06 K37 b7 cos 87 K37b8 cos 08
a6

a5
a7

a
22 b6

b7
b5

b8

tl
t5

t2
t6

E4~~ t3
- t7

t4
t8

However, the matrices and 61i used by the code are single column
matrices . Matri x aeT, initial thermal deformations, is formed by
multiplying the terms in each col umn shown above by the initial thermal
gradient of the referenced joints and summing the columns. Matri x
used by the code represents unassembled element defo rmations due to an
average unit joint temperature change for the element. It is formed
by simply summing the columns shown above . Subsequently, this column

• matri x is scaled by the average joint temperature change of the element.

input/Output

None

- - 

197 

- _ ___________  ___



—-- -~~~~ --• .-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -5 - -,--,

Argument List

None

Labeled Common

LPCEM, LPCV , LPEP

Subroutines Called

None

Error Detection

None

I

198

_ _ _ __ _ _  -- 

- - -



SUBROUTINE LPCFFB

This routine generates the force transformation matrix for l umped
parameter cel l elements.

Algorithm

The transformation matrix F~ for a cell element is of dimension
36 x 30 and is given by the matrix equation

a (C F’ F~ + CQ
S Q~

) ~?p

Matrices CF’ , F~ , CQ
S , , and are functions of the unit edge

vectors a, b , c, d, e, f, the thickness proportionality factors
~~~, s, y, and the panel K factors. Matrix F~ is assembled directly from
this data as opposed to assembling these matrices and solving the matrix
equation given above.

For the sake of presentation so that each element of F~ can be
shown , we can parti tion F~ as follows

FF1 F2

(24 x 15) (24 x 15)

F-F4
(12 x 15) (12 x 15)

where

~~1

:1 ~~~~~~~~~~~~ •~~~_

-5 — -~~~~~-- - - - —-—-~~~~~~~~~--- - - - - —~~~~~~— — -w-- ---—.--- — - --—-

- I I

•~ a •d0 s0: x 2

—
~~~ 

a -d
0 

s _ 1o ~I 3? 1
- 

-‘O
S 

~
00 5 _1

O I
2 2 2

o~~ O ~~ b
0 - - lox’ 

b0 1

• K10. 1
~~
. b0 s b0 10~ 3’ 1 1

lO~ i0h2 ‘o: 
b0 a 

• 
102

1 b0~~

~C0 s -b0 a _l
o l

* 2 2

-C 0 s —b
0 

a I
1 1 3?

a -b0 a •‘o ~
2 2 2

f0 K~~. Co . d0s

C0 s d0 . C s

f
0

K40. d
0

s C 0 1

FT -l~ I -d1 I 
_ 1

1r
1 

.

I —d1 S a
1 7 7

I —d 1 S •11 aa 2 a

~~ 
K 111 1

~ 
I b 1 I o K 11a i

~ 
a a

* * * * 2 2

~~ 
K111 a

~ 
I b1 I I K11a 1

~ 
• a

3? 3’ 7 0~ 3’

• K111 .1 • b~ I • K 11. a, • b, a02 2 2 o a_ a a

I S a
2 2 x

I -b1 I C
1 
a

7 7 3?

-C1 I •b 1 1 C 1 .2 2

f 0 K41I c~~1 d1 5 f0 K41a c 1 .

d1 S f 0 k41. c

co~~411 C 1 I d1 f 0 K41. c 1~~ 
—

200

- .• - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1!

—d0 I •.0 K15, d~~ 
—

~~0~~ 
_l

o Ki5Y d27

• 
.d~~I 

~
40 K1 5y d22

- 
b
0

K 12~~ _•O
*

• 0~

b0 K~2y

•b0 5 
~

o
~K13” b32

bb,

—b 3 I -c 0 K 1 3~

d0 5 d0 K14y

FT 
• 

= 
d0 K14y -f 0

-d 1 . K427

t42

.d1 K42y d2

I 1 K437 ‘o,~

I 1 K 43y 
0
7 

-

0~

b1 a —b 1 K42
y

b1 s —b 1 K42 r

43

d1 a C1 K45y f ox 
F

C1 K4s7

d
1
. C1 K45 y q

O2

(I)

201

--— -- 5 - -- -~~~~~5 - ~~~~--. 
- __._5- - _ - --5---- - - .~~~

___
~~

_ _ _ __- • ——-



— — - - - -.-- ---- -•• —S — ----- - --- - - - .-•--.--5- - - -- ---5— --• -—-- -- - - - ---•

-a a I -I I —

K3Q 
-. S 11(30 -I

21(30 S -s 
~30 S -S

Sx~~~ S -a ~~~

4

r
3

I -I I S -. S

-I I -.

1(3i S —• ~ 31 -• S

I —I aX
~~ —

‘V 
- —

I —V

‘V

I -1 _ 7

— 1 1

‘E2z ‘~
1(S3 .1 ‘

71(33 —71(54 —~ I

‘E24 i1(~~ -1 1

S 
71(33

- - — 
S 

~~ 
.

~~~5 
—

- S

202

.._. _ __- - -- - - - - 5-

~- - -~~~~~—~~~~~~ - ~~~~~~~~~-5-- - -5- - — 5- - - -5

Input/Output

None

Argument List

FFBAR A real array for the output transformation matrix for
the element

Labeled Common

LPCV , LPEP

Subroutines Called

None

Error Detection

None

203

________ •

_ _ _ _— _ _ _ _ _


~~~~~ 5-5- •  • 5 - •~-5~~~~~~—~~5- _ _ _ _ _ _

SUBROUTINE LPCG
This routine computes vector geometry for lumped parameter cel l

(approximate parallelpiped) elements .

Algori thm 
- -

Thickness Vectors

• a p1 
- p0

tq q1 -

tr 
a -

~~~ 
a t -~~~~~~~~pq q p

t a t tr

• trs ts - tr

t a t - t -PS S p

Surface 0 Surface 1
pq

0
a q

0 ~~~
pq1 z q 1 ~~~

~ q0 - r0 • q1
-

rs0 — s 0 - r 0 rs1 a s 1 - r 1

ps0 S0
- p0 ps1

a -

a

~~
/ ~

al pg1 / I
~~l

I
• (‘

204

_ _ _ _ _ -

- - - - - - — -S - -~~~~~• - • - - -—~~~~ - - -S - - - • - --
~~~~ -—- -~~~~~~~~~~ .- -  5 -



_____________ - — — —•~~~~~.. — - - - - ‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.. ~~~~~~~~~~~~~ - —- — -————— ~~-~~~~~ -

I

Surface 0 Surface I

•
~~

/ 1
~~o 1

~i
a

~~
/
~~

•
~~

/ ~
j:~-0 • j:j-

1 / ~~~~~~~~ ~

•

~~
/ ~~

‘
~i ~~i

/

Co •tq / !Iq I
~, F

a~~~~

~l a T 0

Surface 2 Surface 3
a pq3

=

rq2~~ -tq • r q 3 a~~t

rs 2~~ -pq1 y’s
3

a r q
1

a p53 tq

a2 10 13
Z _5•

~

• _
~~~~~ 53 

a t
~r / It r I

~2 
•
~~
ii C3 •~~l

~2 • ~ / It I ~

e2 •F0 C3

L . 

~2 
•
~~ l T3 •~~i

205

4 —
-S -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



-- -—5 -S~~~~~-
— - - - 5 -

-- 5--- - -

Surface 4 Surface 5

-pq 4~~~ rs 0 pq5~~~ -pr0

a

rs4 • -rs1 rs 5 ps 1

p54 
a tr 

a

14 15 
a

a -T0 55 -a2
• 

~ l a

a ..T3 = -T0

a a0 -i~
a •

~
6
~s

Surface 6 
- 

Surface 7
Pq 7 a P q 0 +~~tpq

1~6 I~o I B t rq rq 7
a

0 + a t

rS6 • r s O + $ t rs rs 7~~~~rs 0 + a t

16 a 

~ 6 / I 
~ 6 I 1~ a 

~
q7 / I pg7 I

• 

. 

(

- 

1 

206

S 
- -•—•~~—-—- ,- - -. • - -• - ----—-—- 5-.

______ ________________________ -



Surface 6 Surface 7

F6 a ‘~6 / I~ 6 I F7 ~~7 / V~7 I

a ‘~6 
- / 6 1 

~~7 / V~7 I

• 
~ 6 / 1PS 6 i a7 ~~ ~

‘ I~~i I

a eo e7 • e0

T6 T0 T7 
a

Sub-element Geometry

1al 
a 0.5 IP% I 1b1 0.5

1a2 
a 0.5 IPq6 I • 

1b2 ~ 0.5 I~ 6 I
1a3 

a 0.5 
~~6I 1b3 • 0.5 fr~6 1 

-

1a4 0.5 1b4 0.5 I~ 6 I
1a5 

a 0.5 ~~~ 1b5 0.5

1a6 0.5 IP~7 I 1b6 a 0.5

• 1a7 
a 0.5 IlS~I 1a7 • 0.5

1a8 
• 0.5 1b8 0.5 IP~7 I
• a 

~~~~~
- (9t~ + 3tq + + 3t5)

a
~~~~ (3t~ + 9tq +3t,. + t5 )

t3 • t7 ~~ (Ip + 3tq +9t + 3t5)

t4 - t 8 s
~~~

- (3t
~~

÷ T + 3 t + 9 t)

207
-—

5— -~~ -

K Factors

CT

•
-(1~ x ~~ • - K1 1 (11 x- (W.~ - ~~~~

•

(F,~ x~~ 1)

-K1 ~(i~ x~~ j)
• T1 - K2 •(W.~ x~~ 1) • T

K3,1 (t.~ x~i1) •

-K3 (~ x ~i)~ .K a _ _ _ _ _ _ _ _

(T1 x~ T1) .

-(i1 • a 1) - K 1 1 (i1 .~~~) - K 2 1 (F1 .a1)
K • ‘5,1

-K3,1(~1 . ~1) - K4,~~~1 .

~1)
•

where I • O,l,2,••~ •7

Corner Angles

01 cos~ (-a6 •

02
• cos 1 (16 F6)

03 a cos~ ~~~ • F6)

04 • cos~ ~ ‘ a6)

e5 • cos~ (—17 ~7)

• cos~ (17 F~)

208

_ _ _ _ _ _ _ _ _ _ _ --

07 a cos~ (—~
‘7 - F7)

08
• cos 1 (C7

•

a a C5
a a cpq

C3 C4
a Cpq — (Gi

a e4)

C5 6
a Cpq (05 08)

Vo l uam and Mass

a

~ ~o x ~~
) • + (ii~ x

~~~~~~~~)

+ 

~~~ 
x ~~) • + (~~ x

+ (~~0 -~~ 0) x (t - j ~1)] •

M = D V

Input/Output

None

Argument List

None

Labeled Common

JØRT, LPCV , LPEP

Subroutines Called

VECT

Error Detecti on

() None

L
‘~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


SUBROUTINE LPCK

This routine computes the transformed element sti ffness matrix
for lumper parameter cell elements.

Algori thm
-

The following matrix equation Is evaluated using data stored in
labeled common. The size of the resulting matrix is given in
parentheses on the left .

(36 x 36) k a F T EF F.T

Input/Output

None

Argument List

None

Labeled Common
LPCEM, WRK

Subroutines Called

None

Error Detection

None

210

- - - -- - • • JiI: - - 5 -.-----•

~~~~~ U



____  - 

1

SUBROUTINE LPCKC

This routine forms the lumped parameter cell element sti ffness
and stress matrices .

Al gori thm -

The following matrix equations are evaluated using data stored in
labeled common. Matrix dimensions are given in parentheses at the
left .

4 8 -1
(30 x 30) a (V

k 
a~ Ckl °T~ 

+ 

k~5 
(Vk c

~T Ck2 ~r)}

r(k~l ‘
k

(12x30 ) r u s  /8

LL~5 Vk Vk

Input/Output

Diagnostics are wri tten onto tape 6.

Argument List

KB A real array used to store the LPC stiffness matrix

GC An real scalar defining the cel l sti ffness matri x suppres-
sion coefficient

KCFLAG An integer scal ar control flag which, if zero , signals
generation of matrices KBAR and SPBA R and If one, signals
genera tion of CBAR

Labeled Common

IERR~R, LPCEM, LPCV , LPEP , WRK

¶ 211

—5- — - 5- - - — - -  — - 5- .- - - - -  -



-

Subroutines Called

LPCPRT, 510, WRNAT

Error Detection

If SID cannot Invert KBAR, a diagnostic is- printed , intermediate
calculati ons dumped, and the IERR~R flag set equal one. Return is
made to the calling routine. The loss of significant digits is checked
and, if less than two , a warning diagnostic is printed and execution
is allowed to continued.

~1

212

—
5--— ~~~~~~~ —~~~~ ——-——••——- - — • -—-— 5-

-5 - - - -—5- ~~~~~~~~~ _ _ _ ~~~-55-~5 • •~~•• • •  ——5---- -5----— - 5 - - - - -~~~~~~~-~~~~~~~~~~~~~~~~~~~~
5-5-

~~~~~~~~~~~
5-

F ~~ _ _ _ _ _

SUBROUTINE LPCPRM

This routine prints the output matrices for lumped parameter cell
elements.

Algori thm
-

Matri x parti tions for cell elements and the contents of labeled
coninon LPCEM are printed.

Input/Output

Matri x data for cell elements are wri tten onto tape 6.

Argument List

None

Labeled Common

LPCEM

Error Detection
None

213

— .— - - .— - - --5 - —----- - - - 5 - - — - -S— --- -

-- 5 - 5 ----
~~~

SUBROUTINE LPCPRT

This routi ne prints the Input and intermediate calculati ons for
lumped parameter cel l elements.

Algori thm -

Intermediate cell element calculati ons and the contents of labeled
common LPEP and LPCV are printed.

Input/Output

Intermediate cell element data are wri tten onto tape 6.

Argument List

None

Labeled Common -

LPEP , LPCV, JØRT

Subroutines Called

None

Error Detection
None

11 

214

I ~ Llf L — ‘ - - - ~~~~~~~‘~~
—-——-———-— 

- 

— - 5-----5-~~ - - - - - - -~~ —5~~- — - - - 5-- -5 ——- —--- ---- - -- --- - - - -



-- -— •- -— ---5- . . -5—

1-~ SUBROUTINE LPCSM

This routine saves lumped parameter cell element data on external
files .

Algorithm 
- -

The matrix partitIons representing the contribution of this ele-
ment to each of the output matrices are written onto the appropriate
scra tch tape.

In put/Output

The data output to scratch tapes is as follows:

Tape Data

7 Element variable table
8 CBA R H
9 EBØT 

-

10 
- 

EI’ASS 
i i

11 EPSSIG
12 FFBAR
13 KBAR

14 KLPC

15 SFBAR
18 Element constant table

Argument List

NCELL An Integer scalar defining the bar element nunter

TMPAVG A real scalar defining the element average temperature

Labeled Common

LPCEM , LPCV , LPEP , MTRL

-•  

215 

—

— 5- 5- - __1__5_ ~ __-5~5_~~ —---S---



~ ::;: T~~~~~~~~~
5-I

~~~~
5-

Subroutines Called

None

Error Detection

None

216

IS,. -~.
-1.__- -

- - 5- -—. —5—---—-—

L - - ~~~~~~~~~~~~~~ ~~~~ _ _~~~~~ • - - _ . -~~~~~~~~~ - —

5 - - — -- - 5-- -- --- —5-- 5 --- -- _ _ _ _ _ _ _ _ _ _ _

SUBROUTINE LPCZM

This routine Initializes the matrix arrays for lumped parameter
cell elements .

Algori thm

All arrays in labeled common block LPCEM are set to zero.

Input/Output

None

Argument List

None

Labeled Common

LPCEM

Subrouti nes Cal led

None

Error Detection

None ,

217

- — — —- - - -5- - - —- - -~~~~~~ -~~~~~~- - - - -5 - — — - -5- •5-~~~~~~~ — 5 --5~~~

-- - -

- I

I I
SUBROUTINE LPMAP

This routine acts as the executi ve routine for computIng the
lumped parameter membrane (approxiate parallelogram) matrices .

Algori thm
. -

Routine LPMG is called to compute membrane element geometry.
Routine LPMSZD is then invoked to form the p, q , r, and s components of
matrices 5, Z and D. Routines LPIIKC, LPMK and LPMFFB are then calle d
to assemble matrices E, k and Fr, respecti vely.

Using the complIance and sti ffness matri ces Ck and E, the code
forms the matrices and ~~ . Routine LPMM is then called to compute
the element mass matrix, m. Finall y, routine LPMEBT is called to
form matrices and

Input/Output

None

Argument List

None

Labeled Common

~3ØRT , LPEP , LPMDSZ, LPMEM , LPMV

Subroutines Called

LPMEBT , LPMFFB , LPMG , LPMK , LPMKC , LPMM , LPMPRM , LPMPRT , LPMSZD , LPMZM

Error Detection

None

SUBROUTI NE LPMC

This routine forms the compliance matri x for l umped parameter
membrane elements .

Alqorithm

The compliance matrix Ck of order 3 x 3 is formed from the material
properties of the element. Using Young ’s Modulus , E, an d Poisson ’s
Ratio, IIU, matrix Ck is assembled as shown below.

1 -NU
C a~~~ —NU 1k 2(1 + fflJ)

Input/Output

None

Argument List

None

Labeled Common

LPEP

Subroutines Called

None

Error Detection

None

219

- - - - - _ _ _ _ _ _ _- - -

~~~~~

- 5-~~~~5-  -



-

~ 

-

SUBROUTINE LP MD
This routine generates the D matrices for lumped parameter parallel-

ogram elements . -

Algori thm

The following matrix equation is. evaluated to form the matrix D
of order 3 x 3.

A (5T zT Ck ZS)

Input/Output

None

Argument List

AØT A real scalar equal to A*B*SIN (THETA)/T

C A real array for the compliance matrix

D A real array for the D matrix

S A real array for the skew stress matrix

Z A real array for the global translati on matrix

Labeled Common

None

Subroutines Called

Flone

Error Detecti on

None

220

-5— 5- - - -- -- - - -5 - - — - —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---. - . -  - 5 .  — —5 -- - -



SUBROUTINE LPMEBT

This routine calculates unassembled element deformati ons due to
unit temperature change at the joints defining a membrane element and
the initial thermal deformations of the element.

Al gori thm

The theoretical definition of matrix as a function of geometry
and the coefficient of thermal expansion Is as follows :

p q r 5
L
2 3L2

312 12
314 14

eT~~
a -

~
. 14 3L4 -

3L~ 15
L6 3L6

3L~ . L8
• 3~

where
12 3 I~

•I
14 

3 I~
.I

— L~ a I ~ ]
18

3 Ips I

However, matrices i.~ and 61T used by the code are single column
matri ces. Matri x 61~., initial thermal deformations, is formed by
mul tiplying the terms In each column shown above by the Initial thermal
gradient at the referenced joints and summing the columns . Matrix

221

_ _ _ _ _ _ _ _ _  — - —~~~~~~ -~~~~~~~~ - .- - - - -5 - - - 5 - —  -- -— -



- - • - -

used by the code represents unassembled element deformations due
to an average unit joint temperature change for the element. It is
formed by simply summing the columns shown above . Subsequently, this
col umn matri x is scaled by the average joint temperature change for the
element.

Input/Output -

None

Argument List

None

Labeled Common

LPEP , LPMEM , LPMV

Subroutines. Called

None

Error Detection

None 
.

222
5 --—--55- -

_ _  — - - 5 - - -  _ - . - 5 - - - - - - -5- - —--5——- - -—-



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  --

- -  -—---y - - 5-

SUBRO UTINE LPMFFB
This routine generates the trans formati on matrix for the lumped

parameter membrane element.

Algori thm

The transformati on matrix Fr of order 16 x 9 is assembled as
shown below.

-d~

e
~

K1 a
~e

~
K1 a~

e
~

K1 a
~ -b2

-c -b
F~ _bz

e
~

K4 c,~
e~K4 - 

c~
e
~

K4 c~ d2
~1 ~

‘1 ~
‘i

f2K2 -f2 -f3
f 3K3 f 3 -f 3
f 4K5 f 4 -f 4

Input/Output

None

Argument List

None

223

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  —-~~~ - - - -_---5-—— 5—-- -- _ _ - _ -—- ----.----—.--- -—--- _--- -- -—-- - - _ ——5- - ---- -5— -.---. —5-- _. . - .-



_____ 
- 

7

Labeled Common 
-

LPEP, LPMEM, LPMV

Subroutines Called

None 
-

Error Detection

None

- I

- t

224
. - --——--5-. -

_ _ _  - — --- --5-- —-- _ - . -- 5- -- -- — 5  - 5 -  —



V— -- W- —i- i- -.--- 5-- -~~-5--55-~~---~~~~~w
5-—-5--—-5-— - --— ---5------v-—- 5--S-S.. — - —- - -5 

5—,’

SUBROUTINE LPMG

Thi s routine computes vector geometry for lumped parameter membrane
parallelogram elements .

Algori thm -

- 

Edge Vectors

pq a - ~ and qp = - pq

rq~~ q - r  and qr~~ -rq

S — S  - r  and s r = - r s

PS S - p and sp — ps
j  s~~~~~~~/ ~~~~~

- 

~~=~~
./ I~ii

~~ *~~~~~~(~~~~~ / I~i~x~~]

K Factors

K1 - -(i x~~F) . ~ / (~~x~~ )

K3 - -K 2 (~~x~~) i/ ( E x ~~ ) .

K4~~ -K 3 ( Ex i~) 1/ (ix i~) .1

Corner Angles

e~~
a cos~ ~~~~~~~~~~~~~~

e5~~ cos 1 
~~~~~~~~~~~~~~~

eq~~ cos 1 (1 . £•)

I - - -

225

er
a cos~ ~~~~~~~~~~~~~~~

Volumn and Mass
V

M - p -v

Inputjoutput

None

Argument List

None

Labeled Common

J~RT , LPEP, LPMV

Subroutines Called

VECT

Error Detecti on

None

226

5— - , - -- — - - - - 5 -5-- - - -

_ _
- -

— -5— -—-- - -5—- - — - - -5 5- —-r- - --5-— -~~

SUBROUTINE LPMK -

This routine computes the transformed element stiffness matrix
for lumped parameter membrane elements .

~~9orithm
-

The following matrix equati on Is evaluated where k is of order
16 x 16.

k Fr ~ rr
T

Input/Output

None

Arqument List

KLPM A real array for the element k matrix
KBA R . A real array for the element stiffness matrix
FFBAR A real array for the unassembled to global transformation

matrix

NK An integer scalar defining the number of rows and
columns of array KLPM

NKB An integer scalar defining the number of rows and
columns of array KBA R

Labeled Common

None

Subroutines Called

None

Error Detection

None

227

-5- - - - 5 - - S -~~~~~~~~~~~~-~~~~~- - - _ _ . - -5

- -
~

—
~
.---—- -‘ --- - -

SUBROUTINE LPMKC

This routine forms the lumped parameter membrane stiffness matrix.

Algorithm

The flexibility matri x , d, for the membrane element Is fi rst formed
by evaluating the matrix equation

d — ~~~~~~ + Tq~~qTq + TrThrTr + T5
1D5T5)

where the actual assembly of matrix d is done element by element knowing
the confi guration of the T and matrices .

After the assembly of matrix d, routine SID is called to obtain the
invers e which is the element stiffness matri x i~.

InputJOutput

Diagnostics are wri tten onto tape 6. -

Argument List

FK A real sca lar defining the element

JMN An integer array containing membrane joint numbers JP ,
JQ , JR , JS

KBAR A real array for the 1PM sti ffness matrix

Labeled Common

LPMDSZ

Subroutines Called

LPMPRT , SW

228

_ _ _ _ _ _ _ _ - - — --_ —
~~~~~~~~~ 

— —-
~~~~~~


- - -S

~~~~~~~~ 

5 -’ ’ 5 -

~~~~~~~~ T: J: ~~~~~~~ :.~~~~~~~~~~~~~~~:I~~~~~~~~~~~~~

Error Detection

If SID cannot invert KBAR , a diagnosti c is printed , intermediate
calculati ons dumped , and the IERRØR flag set equal one. Return is then
made to the calling routine. The loss of signi ficant digits is also
checked , and , if less than 2, a warning diagnosti c Is printed and exe-
cution is allowed to conti nue.

229

- - -5. ——-- W’ l* _ _

-
-

SUBROUTINE LPMM

Thi s routine forms the mass matrix for lumped parameter membrane
elements.

Al gori thm , -

The element mass matrix m of order 16 x 16 Is assembles as showr1
below.

4 2 1 2
4 2 1 2

4 2 1 2
2 4 2 1

2 4 2 1
2 4 2 1

1 2 4 2
1 2 4 2

1 2 4 2
2 1 2 4

2 1 2 4
2 1 2 4

Input/Output

None

Argument List

EMASS A real array In which the mass matri x is to be generated

N An Integer sca lar defining the maximum dimensions of
-

~~
- the array EMASS

j

PV A real scalar defining the quanti ty pv (

-

230

.5 5--.

_ _ _ _ _ _

Labeled Common

None

Subrouti nes Called

None -

Error Detection
None

231

-

- - 5 - - -.- - ,

SUBROUTINE LPMPRM

This routine prints the output matrices for lumped parameter
membrane elements.

Algori thm

Matri x partitions for membrane elements and the contents of
labeled common LPMEM are printed.

Input/Output

Matrix data for membrane elements are printed on tape 6.

Argument List

None

Labeled Common .
~-

-

LPMEM i —

Subroutines Called

WRMAT

Erro r Detection
None

232

_ _
_

_ _
_ _ -5- --5

—-5 - -- - —-5- ~~~~~~ - - ~~~~~-~~ 5- _ --5 .- -~~~~~~~~~~~~~~~ 5-5-5_ . - - -

SUBROUTINE LPMPRT

This routine prints the input and intermediate calculations for
lumped parameter membrane.

Algori thm

Intermediate membrane element calculati ons and the contents of
labeled common LPEP I LPMV and LPMDSZ are printed.

Input/Output

Intermediate membrane element data are pri nted on tape 6.

Argument List

None

Labeled Common

J~RT , IPEP , LPMDSZ, LPMV

Subroutines Called

None

Error Detection

None

233

-5-5 -5 5 - -- --- - - -

_ _ _ _ _ _ _ _ _ _ _______ -

SUBROUTINE LPMSM

This routine saves lumped parameter membrane element data on external

files .

Algori thm

The matrix partitions representing the contributi on of this element
to each of the output matrices are wri tten onto the appropriate scratch
tape .

Input! Output

The data output to scratch tapes is as follows :

Tape Data

7 Element variable table
8 CBAR
9 EBØT

10 EMASS
11 EPSSIG
12 FFBAR
13 KBAR
14 KLPC

15 SFBAR

18 Element constant table

Argument List

NMEM An integer scalar defining the membrane element number

TMPAVG A real scalar defining the element ave rage temperature

Labeled Common

LPEP, LPMEM, LPMV , MIRL

-

Subroutines Called

None

Erro r Detection
None

I
.

I.

- f 235
-

-,- 5--- , - - -. 5---— . - - .S 5 S5 -~~

-5 , — ---5- -, --- . . “ - 5 -5~~~~ - - - - — -- - - - 5 —- --- .~
- ---- -- ---5.—-- _ _ _ _ _ _ _

SUBROUTINE LPMSZD

This routine computes the area matrices (Sp , Sq, Sr , Ss) , the
global transformati on matrices (Zp , Zq, Zr , Zs), and the D—tf lde
matri ces (~

p, ~q, ~r, ~s) used to compute the lumped parameter membrane
element damping, stiffness, and strain matrices.

Algori thm

The corner angles , ep, eq, or, and es , are tested for equality
which would indicate the element Is a parallelogram. If they are not
equal , the following six steps are executed for each of the four element
s-I des using the corresponding edge vector and corner angle.

1) a -
~~ I~1 (constant for all sides)

2) b — ~ l~~I (substi tuting i~ , ~~ and ~~
)

-

3) ~~~
= a b sin op (substituting eq, or and Os)

Ii
4) Sp-

I a l
- L i

5) Call routine LPMZ to compute matrix Z

6) Call routine LPMD to compute matri x ~
A..

If the element is a parallelogram, the S, Z and D matrices cor-
responding to each side of the element are equal. In this case , the
S, Z and matrices are computed for the fi rst side and copied for the
other three sides .

After completing the above procedure, if the element Is a parallelo-
gram, routine LPMS1 is called to form matrix a

~
. If the element is not

a parallelogram, routine LPMS2 generates matri x a
~
.

~*
_ -

~~±
- -5~~~~~~- — - -~~~~~~~~~~~~ - - 5~~~~~~~~~~~~ .

_

~2~~
_

- - -5

--- --5-— - - 5 --- --5 -~~~-- -

-

——“5 - — - -----
-5—,’

In put/Output

None

Argument List

CK A real array for the compliance matri x

T A real scalar defining the membrane thickness
ZETAPQ A real scalar defining the material or stress orientation

angle

Labeled Comon

LPMDSZ, LPMEM, LPMV

Subroutines Called

LPMD LPMS1, LPMS2, LPMZ

Error Detecti on

None

237

- _______

SUBROUTINE LPMS1
-

This routine forms the lumped parameter membrane stress matrix for
parallelogram elements.

Algori thm

The stress matri x of order 3 x 9 for a parallelogram membrane
element is given by the matrix equation

~~
h1
~~~

(T p 4 T q 4 T r 4 T s )

or , more explicitly, In terms of the elements of matrix Z, the vector
magnitudes a and b, the thIckness t, and the element K factor Is given
by

211 Z11 Zii 211 212 212 Z 12 Z12

a-p * -~2
i— c z21 z21 Z21 221 222 Z22 Z22 222t 2 —s-- m -&- -& 

~a ~i ~~

C ~3l ~3l ~3l ~3l ~32 ~32 ~32 ~32

where C1 213 (1 + K)/a

c2 Z23 (1 + K)/a

c3 Z33 (1 + K)/a

Input/Output

None

Argument List

FK A real scalar defining the K factor

—- - 

238



~~~~~~ ‘ ‘— — 5---- ’

SF BAR A real array for the element stress matrix
THICK A real scalar defining the membrane thickness

Labeled Common

LPMDS Z

Subroutines Called

None

Error Detection
Hone

239

- - -.5 .- - - ~~~~~~ - -

SUBROUTINE LPMS2

This routine forms the lumped parameter membrane stress matrix
for approximate parallelogram elements .

Algori thm -

The stress matrix of order 3 x 9 for an approximate parallelogram
element Is given by the matrix equation

ar a ~~~~ (Z~S~T~ + Z

q

S

q

T

q

+ ZrSrTr + Z5S5T5)

or, more explicitly, in terms of the elements of matrix Z for each
edge, the vector magnitudes a and b for each edge, the thickness t, and
the element K factor is given by:

c1
2q11 2011 2r11 Z~fl 2g12 2rl2 Zp12 Z512
bq b~ br b5 aq ar a~ a

~

— c Z~21 ~ 21 Zr21 Z~21 Z~22 Z~~2 Z~~2 Z522
q p r 5 q r p 5

c3
2Q31 1p31 Zr31 2s31 2g32 2r32 2p32 2s32
bq b~ br b5 aq ar a~~ a

~

where c1 ~ [Z~13 +

Z~~3 K (Zr13 +

Z
s13)]

c2 ~
{
~~23 +

Zg23
+ K (Zr23

+

Z
523)

]

C3
~ [Z;33 +

Z;33
+ K (Z;33 +

Z;;3)
]

240

- 5 -
_ _

--5


~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~

Iflput/Output -

None

A~~ument LIst
FK A real scalar defining the K factor

SFBAR A real array for the element stress matrix

THICK A real scalar defining the membrane thickness

Labeled Common

LPMDSZ

Subroutines Called
None

Error Detection

None

241

_ _ _ S

— 5 —— -- 5- 5 - 5- 5 - 5-- --- - - - 5 - —-5--- --5 -5- - - ——-5-

I

SUBROUTINE LPMZ

This routi ne forms the l umped parameter membrane global translation
matrix.

Algorithm
. -

-

Matrix 2 of order 3 x 3 is fo rmed as shown below:

- zll zl2 zl3

Z - sln (HETA) [::: :::
where

= cos2(ZETA)

z21 — sin
2(ZETA)

a -sin(ZETA) cos(Z ETA)
- COS2(THETA-ZETA)

222 • sin2(THETA-ZETA)

z32 sin(THETA-ZETA) cos(THETA-ZETA)

213 — 2 cos(THETA-ZETA) cos(ZET A)
z23 — -2 sin(THETA-ZETA) sin(ZETA)

233 SIn(THETA..ZETA)cOS(ZETA)..COS(THETA_ZETA)sin(ZETA)

Input/Output

lone

Argument List

THETA A real scalar defini ng the corner angle

242

____________________ — — - 5 __ _ ~~~~~~S 5 - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

Z A real array for the global translation matrix

ZETA A real scalar defining the material orientation angle

Labeled Common

None - .

Subrouti nes Cal led
None

Error Detection

None

243

- - - 5 - - 5 .- - — - -5 - - - - —— _ - - -- 5- - - — -- -

- -. - - -5 -- -—--5- - - ‘5- - ----5 - - — - — —--5---’

SUBROUTINE LPMZM

This routine initializes the matri x arrays for lumped parameter
membrane elements.

Al gori thm

All arrays in labeled conhiion block array LPMEM are set to zero.

Input/Output

None

Argument List

None

Labeled Common

LPMEM

Subroutines Called

None

Error Detecti on
None

244

-- --~~~~~~~~~~
-5 - ‘ - - . . . - _ _ _

SUBROUTINE LTRMLT

This routine performs a transpose multiply matrix operation.

Al gorl thm
The following matrix operation Is performed:

C i AT B

In put/Output

lone

Araument List

A A real array for the matri x to be transposed

M An integer scalar defining the number of rows of A

N An integer scalar defining the number of columns of A
MAXRA An integer scalar defining the max rows of A

MAXCA An Integer scalar defining the max columns of A

B -A rea l array for matrix B

I An Integer scalar defining the number of columns of B

C A real array for the product matrix C

Labeled Common

None

Subroutines Called
None

Error Detection

None

245

_ _ _ _
___ - ~~~~~~~~~~~~ ~~~~~~~ ‘

SUBROUTINE MATDES

This routine processes the material description input data records
for a particular material in the material property tables , Da ta
Code 10.

Al gorithm
.

- The first card of the material description has been read by routine
MTLMOD and -Is stored in array REC. The routine transfers information
from REC to array MRDES until a full word of blanks is encountered . The
routine reads, checks, processes and echos the input for continuation
cards of the material description. ~Ihen the description has been corn—
pl etely processed, the pointers pertaining to the beginning and ending
of the description words stored in array MRDES are set.

Injut/Output

Material descriptions are read from tape 5 and diagnostics are
written on tape 6.

Argument List

REC An alphanumeric array containing the input data record

CØNT An al phanumeric scalar containing the continuation field
of input record, any non-bl ank character will indicate
a continuation

Labeled Common

b EN , IE RRØR , LI MITS , MRTL

Subroutines Called

None

Error Detection

Checks are made for material reference numbers being out of seouence,
for invalid Data Code numbers, and for insuff icient space allocate d for

246

- -- --5 ,’—-
-’

Input. If an error is detected , IERROR Is set equal one , a diagnostic
is printed , and a return is made to the calling routine.

-L - -

247

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ________

I

SUBROUTINE NIA THD
This routine writes a F~RMAT matrix header record .

Al gori thm

A record, twelve words In length, Is written on tape TAPENØ as
shown below.

Word Data Type Descripti on

1 -l integer matrix header code
2 0 integer compression code
3 9 Integer words remaIning In record

a 4 X BCD ‘

5 X BCD
6 X BCD
7 ~ BCD matrix name (1 leading character wi th

blank fill)
8 X BCD
9 X BCD

10 MF integer matrix subscript
Ii I integer number of rows
12 3 integer number of columns

In put/Output

A matrix header record is written on tape TAPEN~.

~~g,ument List

TAPEN~ An integer scalar defining the logical tape number

NAME An alphanumeric array for the matrix name (6 characters)

MF An integer scalar defining the matrix subscript

I An integer scalar defining the number of rows In the matrix

3 An Integer scalar defining the number of col umns In the
matrix

fi - - ‘- ~~~--
_ - -i-T-

~ .--5-~ _ _ --

-- “~~~~~~~~~~~~~~~ ‘

Labeled Common

None

Subroutines Called

None

Error Detecti on

None

Li

- -

,

249

‘ . ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5-

~~~~~~~~~ ~~~~~~~‘
__.

SUBROUTINE MATTR

This routine wri tes a F~RMAT matri x trailer record.

Algori thm

A record, four words in length, is wri tten on tape TAPEN~
as shown below .

Word Data Type Description

1 -2 integer matrix trailer code
2 0 integer compress-Ion code
3 1 integer words remaining in record
4 0 Integer dunu~y data

Input/Output

A matrix trailer record is written on tape TAPENØ.

Argument List

TAPEN~ An integer scalar defining the logical tape number

Labeled Common

None

Subroutines Called

None

Error Detected

None

— 250

—-5 - ____-. -

k ~~~ u a r ~~~~~- - ~~~~~---- -— —~~-- -— - -— - ----‘- — - - -  -- -



SUBROUTINE MLTMTR’

This routine forms the product of two matrices.

Algori thm

( C) — (A ) (B)

Input/Output

None

Argument List

A A real array for the first input matrix

H An integer scalar defining the usable rows In matrix A

N An integer scalar defining the usable columns in matrix A

HAXR An integer scalar defining the dimensioned row size of
matrix A

MAXC An integer scalar defining the dimensioned row size of
matrix B

B a real array for the second input matrix

I A integer scalar defining the usable column s of matrix B

C A real array for the output matrix

Labeled Coninon

None

Subroutines Called

None

Error Detection

None

251

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _____________________ _ _ _  —4



~

- - -

SUBROUTINE I-ILThØD

This Is the executive routine for the module which reads and processes
the material property tabl e , Data Code 10.

A1~ori thm

First the lengths of the coefficient tabl e and the material s descrIp-
tion table are initialized.

A material property data card is read , checked for errors, and an
echo of the data is printed. If the card is descriptive text for the
material , subroutine MATDES is called to process -It and any continuation
cards. If the card defines a property Of the material , subroutine PROP
is called to process the input. This procedure is repeated until all
Input for all materials Is processed.

The necessary constants are saved in l abeled common CONST and the
assembled material property data is written to taPe 1 in the form of
a standard FØRMAT matrix. Finally, a report of the output coefficients
is printed on tape 6.

In put/Output

The material property table is input on tape 5. Material property
coefficients and diagnostics are output on tape 6. The material property
data also output on tape 1 for use by the analysis modules following
the Initial generator.

Argument List

None

- 
- 

Labeled Common

- 
- CØ~4ST, IDEN , t ERR OR , LIMITS , MTRL

— 252

• 
—-

-‘--.—-

~ 

-~~:r-
-5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -- -- . , -— - 5- . -
- - - -~~~~~_ -_

_
- S

Subroutines Called
MAIDES, PROP

Erro r Detection

Checks are made for omissions in the Input for a material , for a
material reference number out of range for which space has been
allocated, for Invalid Data Code , and for material reference numbers
out of sequence. If an error Is detected , appropriate diagnostics
are printed, the TERROR flag is set equal one , and a return is made to
the calling routine.

253

-—-5 -
- 5- — -

5 - - - - 5 - - - _ --—-~~~~— - ---~~~~~~ 5--5---—- -—-5—-—- - -~~~ — -
_-~~~ - - -—---5- -- ’ - -

SUBROUTINE ØVER3
-

Th is routine searches the constraint table for more than three
entries per joint.

Al gorithm

It Is required that the system of constraints at a joint for
translation be statically determinate. Therefore, for translation,
the table is searched to determine If there are more than three Input
constraints acting at a joint.

I nputJOutput

Diagnostics are written onto tape 6.

Araument List

ICON An integer array for the constraint table

UCT An integer scalar defining the number of records in the
constraint table

JERRS An integer scalar error condition flag for the constraint
table

Labeled Common

I ERROR

Subroutines Called

None

Erro r Detection

If more than three constraints are found at a joint, a diagnostic
is printed , the IERROR is set equal one , and a return is made to the
calling routine.

_ _ _ -

254

SUBROUTINE PARTN

This routine partitions a file which is being sorted by routine
QKS~RT.

Algori thm

Pointers are set to the top of the file and to the bottom of the
file. A pointer is set to the pi vot record, that is , the record that
is to serve as the partitioning element. The purpose is to end up with
all the larger records above the pivot element and all the smaller
records below . The number of records in the file Is calculated , then a
comparison is made between the pivot record (which is initially at the
bottom) and the highest record. If the pi vot record is smaller , then
the pointer to the highest record is moved down to the next record.
If the pivot is not smaller , then a swap is made between the pivot

• record and the compared record. The pointer to the lowest record is
moved up and comparisons begin between -the pivot record and the records
below it. The file is partitioned when the upper and lower pointers are
adjacent.

Input/Output

Error messages, i-f any, are written to file 6.

Argument List

REC An Integer array of records to be sorted

CHGSEQ An integer array to specify the original positions of the
sorted records

UREC An integer scalar speci fying the number of records In array
REC

LENREC An integer scalar specifying the length of the records in
array REC

255

__ _ _ _ _ _ _ _ _ _ _ _ -5 - - - - 5 -

-- _ . _

~~~~~~~~

_ ,

~~~~~~

‘

~~~~~~~~~~~: 

-

Labeled Common

ABC

Subroutines Called

SWAP

Error Detection

A check is made at the end of the partitioning to be sure that the p

file pointers are correct , that Is , the ending low pointer should be -

ininediatel,y after the ending high pointer. If this is not true, then
the low , high and pi vot pointers are printed along with a di agnostic
and the records of the file passed to PARTN for parti tioning. Executi on
is then terminated.

256 

-5- --

5 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~— — _~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - — - -—~~~ 5~~~~~~~ -~~~~ - 5 — -  —-5— - ~~~~~~~ —- ~~~ —- -
~~~

-- -~~~_ - - .~~:~~~~~ : — ~~—

--
_

‘ 5-’ - - -- .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rr

SUBROUTI NE PASSM

This is the driver routine for the module which assembles output
matrices PRUPT , PRUF and ECT.

Algori thm

After Initializing the intermediate error flag, NERR, and re-
winding files 16, 17 and 18, routi nes PASSM1 , PASSM2, PASSM4, and
PASSM5 are called to assemble matrices ECT, PRUPT and PRUF. File 16
contains constraint description data, file 18 contains element joint -

numbers as well as other element constants, and file 17 is subsequently
used as scratch .

Input/Output

None

Argument List

None

Labeled Common

C~NST , EDØF , lEDGE , TERROR, ISEQ

Subroutines Called

PASSM1 , PASSM2 , PASSM4, PASSM5

Error Detect-Ion

If NERR is returned as non-zero by PASSM2, then IERROR is set equal
one and a return is made to the calling routine.

257

15. 5- - - - ---4--5 - --------~~~ ~~~~~~~~~ -



- - - -  - --~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUBROUTINE PASSM1

This routine assembles and outputs matrix ECT and assembles Inter-
mediate matrix PFT.

Al gorI thm

After wri ting matrix headers on files 17 and 1 for matrices PTF
and ECT , the bar data Is processed followed by membranes and cells.
The same procedure takes place in each case.

The element constants for the next element are read from fi le 18
into array IECT. Using the edge degree of freedom numbers stored in
array ID~F, array TECT -Is augmented and output to file 1. Array NPF
is then set to the degree of freedom numbers corresponding to each of the
element forces and output to file 17.

In the case of point mass elements , no data is output to file 1
for matri x ECT . However , array NPF Is assembled and output to fIle 17
In a similar manner as the other elements.

In put/Output

Matri x ECT is output to tape 1. Tape 17 is used as a scratch unit
to hold the PTF matrix temporarIly. ECT data from the routines LPBSM,
LPCSM and LPMSN is input on tape 18. Tape 6 is used to output inter-
mediate calcul ations if flagged.

Argument List

LEDGE An Integer array of joint pairs defining each edge DOF

IDØF An integer array relating each edge element force to an
edge DOE

IECT An integer array of element constants

NPF An integer array used to store a column of PET

258  

- - -- - 5. - -- - -

L — — -~~~~~~ - “ - -  
_



- ~~~~~~~~ ‘ 

Labeled Common

CONST, TERROR

Subroutines Called

MATHD , MATTR 
—

Error Detecti on -

None

~~~~ - -. _ _  4


- 5 - ’~~~ 5-~~~~~~~~~~~~~~~ 5- -5’ 5-
~~
— _

SUBROUT INE PASSM2

This routine asse mbles intermediate matri x PUPT.

Algori thm

After wri ting a matrix header on file 18 for matri x PUPT, con-
straint data is read from file 16 into arrays ICON and OBLIQ. The
three columns of ICON contain the constraint number, the joint at
which the constraint acts, and the direction description. Values of 1 ,
2 and 3 for direction description indicate the global X , V and Z
directions , respecti vely. Va lues greater than 3 are pointers to array
OBLIQ whIch contains the direction cos ines of oblique constraints.

Using arrays ICON and OBLIQ, matrix PUPT Is assembled by omitting
rows corresponding to global degrees of freedom which are constrained
and placing unity in remaining rows at the corresponding column . In
the case of oblique constraints, routine PASSM3 is called to transform
global X, Y and Z unit vectors into contributions in the global and/or
oblique unconstrained degrees of freedom.

Array IDØF is used to flag constrained degrees of freedom as zero,
unconstrained degrees of freedom as one, and degrees of freedom w ith
duplicate constraints as less than zero .

Input/Output

Constraint data is input from tape 16. Matrix PUPT is output to
tape 18. Tape 6 is used for printing diagnostics and intermedi ate
calculations if flaged.

Argument List

LEDGE An integer array of joint pairs defining each edge DOE
— IDØF An integer array used to flag constrained TDOF and to count

and detect duplicate global constraints

-

~~

- -

~~~

--

~~ 

~:. 

5- 

260



~ 

‘

ICON An integer array defining each constraint created by the
constraint processor module and wri tten to un-It 16

OBLIQ A real array of direction cosines of oblique constraints
also on unit 16

NERR An intege r scalar used as an error flag

Labeled Common

CØNST, TERROR

Subroutines Called

MATHD, MATTR, PASSM3

Error Detection
A test is made for duplicate constraints, and , If detected, the

- NERR flag is set equal one and a return Is made to the calling
routine. A diagnostic is printed on tape 6.

261

--5- --5- - - --5--- - ----- -- - - -L~~~. ~~~~~~~~~ - - - -_ — — - — - - ‘ ~~~~~~~~~~~~~~ 
- -



SUB ROUTI NE PA~SM3
This routine assembles contributions to intermedi ate matri x PUPT

for joints which have oblique reactions.

Al gorithm -

The equation [A][Bi’ [C] is solved to obtain the contributions
to matrix PUPT for a joint with oblique constraints. [A] is an identity
of order 3 and [B] contains the direction cosines of from 1 to 3 obLi-
que constraints. Both [A] and [B] are stored in array PF. The code -

inItializes the leading 3 x 3 parti tion of array PF as an identi ty.

After solving for [C] , the rows corresponding to unconstrained
degrees are assembled from each column in arrays P and IP in compressed
form. Each column of matrix PUPT so obtained is then output to file 18.

Input/Output 
-

Column s of matri x PUPT are output to tape 18. Tape 6 is used for
printing intermediate calculati ons If flaged.

Argument List

IRF An integer array which is the partition of array IDOF for
the joint being processed

PF A real array where columns I to 3 contain unit vectors In
the X , V Z global directions and the remaIning columns
contain the components of reacti ons acting at this joint

NR An Integer scalar defining the number of reactions at
this joint

NERR An Integer scalar used as an error flag

ICOL 
- 

An integer scalar defining the column locati on In PUPT
of the last matrix element output

IROW An integer scalar defining the row locati on in PUPT of
the last matrix element output 

-

- 

262

- - 5  —~~ --5— — 
._____~

_____ __—i: 
- — -5-- —



5-

I
— - NPASSM An integer scalar used to signal printing of intermediate

data

Labeled Common

None

Subroutines Called

None

Error Detection

A test is made for duplicate constraints , and , if detected, the
NERR flag is set equal one and a return is made to the calling
routine.

263

h... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-5 _____ - - -_ _ _ _ _ _ _



- 5-

SUBROUTINE PASSM4

Thi s routine determines the uncons trained degree of freedom (UDOF)
row format, the reordered UDOF for SEQWF , prints these row formats,
and outputs intermediate matrix PRP.

Algori thm

Initially, array LEDGE contai ns pairs of joint numbers identifying
each edge degree of freedom. Two joint numbers are stored in a single
word by scaling the fi rst joint number by 10000 and adding the second
joint number.

Arrays LEDGE and ISEQ are restructured to contain the identification
of each unconstrained degree of freedom. The identi fication for joint
degrees of freedom consists of a joint number in array LEDGE and the
integer 1, 2 or 3 in array ISEQ indicating global X , Y or Z degree of
freedom, respectively. The Identi fication for an edge degree of free-
dom consists of the first joint number in array LEDGE and the negative
of the second joint number in array ISEQ .

The joint number pairs initially contained In array LEDGE are
extracted and stored in arrays LEDGE and ISEQ at locati ons correspond-
ing to their proper positi ons in the unconstrained degree of freedom
row format. Then using the array ‘DOE containing flags identi fying
constrained and unconstrained joint degrees of freedom, the partition
of arrays LEDGE and ISEQ are set to appropriate values.

Arrays LEDGE and ISEQ are then scanned to determine the reordered
unconstrained degree of freedom format. The reordered positi on of
entries In arrays LEDGE and ISEQ is stored in array IDOF.

Input/Output

Reports of the unconstrained degrees of freedom and the reordered
UDOF row formats are printed on tape 6.

- - 

264



I

- Argument List

LEDGE An Integer array of joint pairs defining each edge DOE

IDOF An integer array of flags identifying joint constrai ned
and unconstrained DOE

ISEQ An integer array used for Intermediate storage

Labeled Common

CØNST, TERROR

Subroutines Called

MATHD , MATTR , PASSM3

Error Detection
None

265

—4



-5 

__________

1~~ 
- -

SUBROUTINE PASSM5

This routine assembles and outputs matrices PRUF and PRUPT from data
stored in array IDØ F and in termedi ate matrices PUPT and PTF which are
on tape.

Algori thm

Array LED GE is Initialized as zero for a length equal to the total
number of degrees of freedom. Matrix PUPT is then read from file 18
one column at a time. Using the reordered row positi ons stored in array
IDØF, the reordered elements of matrix PRUPT are stored in arrays LEDGE
and ISEQ. Array LEDGE contains a positive or negati ve integer at the
row location corresponding to the column of matrix PUPT read from file
18. A positive Integer indicates a single value of unity for that column
of matrix PRUPT at the row position equal to the integer value. A
negati ve Integer indicates more than one value is present in , the column.
This occurs only at joints where oblique constraints are present. In
this case , the absol ute value of the integer points to a location in
array ISEQ containing the number of values present in the col umn. Tm-
mediately following In array ISEQ , are paIrs of values and reordered
row locations of that column.

After sorting the value/ location pairs for a column in array ISEQ,
the column of matrix PRUPT Is output to file 1 using the data con-
tained in arrays LEDGE and ISEQ.

The coefficients in arrays ISEQ are then made negative for use In
conjunction wi th the assembly of matrix PRUF. Matri x PET Is then read
from file 17 one column at a time. Each column of matrix PTF contai ns
the total degree of freedom number for each force for an element.

- 

- 

Using these numbers as pointers Into array LEDGE , the col umns of matrix
PRUF are assembled and output to file 1.

I
, )

_ _ _ _ _ _ _ _ _ _ _ _ _  - - 

266



_ _ _ _ _ _ _ _  - - -5—- —- -- - - 5- -- - -5 - - ----5---~~~~--- -- --~~~

— Thput/Output

MatrIces PRUPT and PRUF are output onto tape 1. Matrix PTF is
Input from tape 17 and matrix PUPT is input from tape 18. Intermediate
calculations are printed on tape 6 if flaged.

Argument List

lEDGE An integer array containing the reordered row positions
of each UDØF

IDOF An integer array used to store reordered row positions of
each TDØF

ISEQ An integer array used to store values and positions of
elements of matrix PUPT when a col umn contains other than
a single value of unity

IPET An integer array used to store columns of matrix PRP

Labeled Common

CØNST , TERROR

Subroutines Called

MATHHD , MATTR, PASSM6

Erro r Detection
None

—

‘ H
267 

-5 - - --~~~- - - - - - -~~~~ _~~~~~~~~-



- —_ ~~~ - - - ~~~~~~~~~~
-- - - - - - - - - — -5

-5---— -. — - —-—~

- - - 

_
1

SUBROUTINE PASSM6

This routine sort s array ISEQ columnwise into ascending order based
on the values in the second row of array ISEQ.

Algorithm

Array ISEQ contains matrix element values in the first row and
matrix element row locations In the second row. The columns are sorted
based on the values in the second row. Note that the number of columns
in array ISEQ must be two or more.

Inp~utJOutput

None

P~rgument List

ISEQ An integer array used to store values and positi oos of elements
of matrix PUPT

KNUM An integer scalar defining the number of columns in ISEQ

Labeled Common

lone

Subroutines Called

None

Error Detection F
None

268 



—

SUBROUTINE PREP

This routine processes the material property value input data
records for a particular material in the material property tables ,
Data Code 10.

Algori thm

The first material property card has been read by routine MTLIIØD
and is stored in array REC. The parameters in labeled common IDEN
have also been Initialized.

The next material property card is read, checked for correctness
of input and to determine if it is a continuati on card associated with
the property . If coeffi cients are input, they are saved in array AP.
If temperature-value pai rs are input, the temperature-value arrays are
set up to compute the coefficients . The coefficients are then computed
by subrouti ne CØCALC .

The coefficients for this property are moved from array AP to array
COEFS, the pointers and counters updated, and the data for the next
property Is read and processed similarly.

Input/Output

Material property data is read from tape 5. Diagnostics are printed
on tape 6.

Argument List

REC A real array containing the current input data record

Labeled Common

— 
COFCLC, ID EN , IERR ØR , LIMIT S, MTRL

- 

269

— —
-
~~
——-.—-— - 5 - -  -- - — -5-  - -  -- -5- - 5 - - —---



- -- -5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

pu-1__ 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~ I 

- -

Subroutines Called

COCALC

Error Detecti on

Checks are made to insure that there Is sufficient space allocated
for the materials input , that the number of coefficients read is equal
to the number requested, that the number of coefficients to be calculated
is not greater than the number of values input , that the number of
coefficients will not overflow the space allocated for all coefficients,
that there are not more properties to be input than space is allocated
for , that there is not more coefficients to be input than space is
allocated for , that a wrong material reference number was Input , or
that a bad Data Code was input.

- 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

270 

- - -5



SUBROUTINE PRTCON

This routine prints the contents of labeled common block CONST.

Al gorithm

The contents of labeled common CØNST , consisting of model size data
and problem constants , is printed.

Input/Output

Problem constants and sizing variables are printed on tape 6.

Labeled Common

CØNST, TERROR

Subroutines Called

None

Error Detection

None

271

— - _ _ __a a - - - - a — — r- — —= ~~~~~~ _ —- - -~~~~~ - n - - - —



~ ---5 - ----- 5--------- ---------~~~ - - - -5—  -5---- —-— - - -—-~~~~ -5-- — 5-  - - - - - - - ---5

SUBROUTINE QKSØRT

This is the driver routine for the module that accomplishes file
sorting by the infile Quick Sort technique (Reference 17).

Algori thm

The upper and lower records of the target file are identified.
The file is partitioned into 2 subfiles relative to the key field of
a specifi ed record. The subfl les are identi fied by a stack of pointers.
Subfi les are- removed from the stack and partitioned until there are no
subfi les remaining. If a subfile consists of only 2 records , then it
is ordered and need not be stacked with the other subfiles . When no
subfiles remain, then the file is sorted.

Input/Output

None

Argument List

REC An integer array of records to be sorted

CHGSEQ An integer array to specify the original positions of
the sorted records

NREC An integer scalar speci fying the number of records in array
REC

LENREC An integer scalar specifying the length of each record in
array REC

IT~P An Integer scalar pointing to the last record in array REC

IBOT An integer scalar pointing to the first record in array REC

KYFLD An integer scalar pointing to the record element containing
the sort key

Labeled Common

ABC

272

— - --- ----.-—— . _ _ _ •_ —_ - -—.-----,--—-—---- .—~-- _ -- —. .- - —-_--—_ .-—-—-- ---5 - - ---  -- 5 —  — - - - - - - —— - - ___



-5--5.—5----- 5---- 5-—- — -5—---- - - - -- -. ----—--5--

Subroutines Called

PARTN , STACK , SWAP

Error Detection

None

(
_ _

‘

273

--5—  -- - - - -  -5- - - ----5- —



-5 -5 —

SUBROUTINE RAMØSG

This routine calculates the Ramberg—Osgood coefficient , the slope
tangent to the Ranterg—Osgood curve at the origin, and the elas tic
limit stress.

~]~orithm

First, the input properties are tested to determine if the material
has a plastic range, If EA = E, 

~A ~r 
and 

~r 
~~~~~, the material .

is assumed to be totally elastic. The program sets n * i , ~ E, and -

and returns to the calling routine.

If the material has a plastic range , the Ramberg-Osgood coefficient ,
n, the initial slope of the stress/strain curve, ~~ , and the elastic
limit stress ,

~L’ are solved for using an iterati ve approach. Initializ-
ing

r = r -

and no 50.0
the following equations are evaluated in an i terative manner unti l n

has converged or the Iterati ve count , k, reaches 50.

CALC1 • l.O-r

EA “k-1~Rk_l T -
r

CALC1

CALC5

274

F - . - - -

n ln (CALC2) - ln (l_R k_l) -
ln (CALC4)

k ln (CALC5)

When n has converged , processing Is completed by evaluati ng the
following equations :

EA n—i
R -c-- r

1 —

r EAa T
• r

If convergence does not take place , a fatal error condi tion occurs
causing subsequent failure of the run.

I nput/Out;ut

Diagnostics are wri tten on tape 6.

Argument List

MR An integer scalar defining the material reference number

Labeled Common

IERR ØR , MTRL

Subroutines Called

None

Error Detection
Checks are made to detect various denomi nators being equal to zero ,

non-convergence , and an attempt to extract the logori thm of zero . The

275

-.

- -

~~~~~

.

errors associated wi th each of the potential errors codes printed In
the diagnostic message are listed bel ow :

Error
Code Error

1 E •O.O

2 EA O.0

O.O

4 no convergence

5 CALC1 •O.O

6 R •l.O

- 
7 CALC2 • O.2

9 CALC4 • 0.0

10 CALC5 • 0.0 

276

--5- - - - - - _- -—-- --—--------5-~----- - —~——-.--.-  -5 



SUBROUTINE SID 
-

This routine inverts a real non-singular square matrix (A), and if
desired , will also solve linear system(s) of simultaneous equations ,
(A)(X) • (B) where (B) may have any number of columns. Every column of
(B) must have at least one non-zero element. 

-

Al gorithm

The numerical method is basically the Gauss—Jordan elimination with
selection of maximum pivotal elements (full pivoting). Special procedures
are present to improve accuracy and also minimi ze the frequency of over-
flow and underflow when the magnitudes of any of the elements in the (A)
or (B) matrices are large or small.

Input/Output

None -

Argument List

A A two-dimensional real array which contains (A).
(A) will be replaced by inverse (A) during the execution
of SID.

N An integer which denotes the number of rows in (A)

NORØW An integer scalar which denotes the maximum number rows
which may be stored in the A array. Note that the matrix (A)
may have fewer rows and/or columns than the array A which
contains it.

NDCØLA An integer scalar which denotes the maximum number of columns
which may be stored in the A array

B A real array which contains (B). If (B) is present, the B
array must have exactly NDROW rows . (B) wi ll be replaced
by (X) during the execution of SID. If no (B) is present,
B may be any variable or constant of any type.

M An integer scalar which denotes the number of columns in (B).
If there is no (B), use M • 0.

(

277

- -



_____________

1DCOLB An integer which denotes the maximum number of columns
which may be stored in the B array. If no (B) is
present , NDCbLB may have any value.

SIGDIG A real scalar which will be set equal to an estimate of the
number of significant digits in the elements in the inverse.
This estimate is based on the assumption that the elements of
(A) are all accurate to eight significant digits .

IERROR An integer scalar used to flag errors. TERROR • -l indicates
both of the fol lowjng:
1) neither (A)-’ nor (X) could be computed
2) (A) was singular or nearly so.

IERRØR • 1 indicates no errors were detected. Division by
zero cannot occur in this routine. No test is made for
floating point overflow.

PIV OT A real array containing at lease 3*N elemen ts

INDEX An integer array containing at least 3*N elements

SCALES A real array containing at least M elements

Labeled Common

N one

Subroutines Called

None

Error Detection

See TERROR and SIGOIG under Argument List above .

278
I  

_ _ _ _  

L
____________ _ -- _--~~~~,~~~~~~~ _ _ i~ .~~~~~~~ - - - --5- - - -  —~~~~--:= -—-5



SUBROUTINE SKDATA

This routine skips over Data Codes in the card input tables which
are not used by the initial generator.

Algorithm

The input file Is read and each card is checked to determine if it is
the end card for the Data Code to be skipped over. When the end card
is encountered, a return is made to the calling routine. If a Data Code
is encountered which is less than the Data Code to be skipped over, an
error exit occurs. If the Data Code is larger , the fnput pointer is

backed up and a normal exit is made.

Input/Output

Input is read from tape 5 and error diagnostics are written on tape 6.

A~qument List 
-

ICODE An integer scalar defining the Data Code number to be
read over

Labeled Common

None

Subroutines Called

None )
Error Detection

If the data cards are out of sequence , the TERROR flag Is set equal one
and control is returned to the call ing routine.

279

— —  

-- - -——

~~~

--

~

— -

~~~~~

5- -  

~~~

—-

~~~~ 

-5 5-,—- - - -5 - _ - - -5



55- ~~~~~~~~~~~~~~~~~~~~~~~

SUBROUTINE STACK

This subroutine stacks pointers to subfIles of a file that is being
sorted by routine QKSØRT.

Alq~ori thm

The lengths of the lower and upper subfiles are calculated. The
largest subfile is stacked first. If they are of equal length, then
the upper file is stacked first. Subfiles of 2 records are not stacked.

Input/Output

None

Argument List

REC An integer array of records to be sorted

NREC An integer scalar specifying the number of records in array
REC

LEUREC An integer scalar speci fying the length of the records in
array REC

Labeled Common

ABC

Subroutines Called

None

Error Detection
None

280



- -—5- - - - - -.  ~~~~~~ — - - - - - —--5 -~~~ —— - - - - -5------ —-- -- -.---~~~~-—---~~ 5-

SUBROUTINE SWAP -

This routine switches the positions of two records in a table that
is being sorted by routine QKSØRT.

-: A1qor ithrn

Two rows of length LENREC in array REC are interchanged as are two
entrys in array CHGSEQ . The counter ISWAP is incremented for each inter-
change made in array REC .

In put/Out put
None

~~g~ment List

I An integer scalar defining the first row of array REC
J An integer scalar defining the second row of array REC
CHGSEQ An integer array of original row positions of array REC
NREC An integer scalar defining the number of rows in array REC
LENREC An integer scalar defining the number of columns in array REC
REC An -Integer array for the tabl e to be sorted

Labeled Common,
ABC

Subroutines Cal l ed
None

Error Detection
None

281

- —  ~~~~~~- — — - 5 —  - _t_ _ _ . - 5 — — —  — -  ~ r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—5-- -— - - - - . - 5 ---- - -  -

SUBROUTINE TAPEH~
This routine writes a FORMAT tape header record.

Algori thm

A record ten words in length is written on tape TAPENO . as shown below.

Word Data Type Descri ption
1 -10 integer tape header code
2 0 integer compression code
3 7 integer words remaining in record
4 X BCD
S X BCD tape name
6 X BCD L (1 leading character
7 X BCD with blank fill)
8 X BCD

9 X BCD

10 MOD integer tape modifier

Input/Output

A tape header is written on tape TAPENO.

Argument List

TAPENO An integer scalar defining the logical tape number

NAME An alphanumeric array for the tape (6 characters )

MØD An integer scalar defining the tape modifier

Labeled Common

None

Subroutines Called

None

Error Detection
None

- 

282

-- --5— — - . _ ~~~~ 5-- - -  — - .



--5- - - - - - -

SUBROUTINE TAPETR

This routine writes a FØRMAT tape trailer record.

Algorithm

A record of four words in length is written on ta pe TAPEN Ø as shown
below.

Word Data Type Description

1 —20 integer tape trailer code
2 0 integer compression code
3 1 integer words remaining in record
4 0 integer dummy data

I~put/Outou t

Writes a tape trailer on tape TAPENØ.

Arqument List

TAPENO An integer scalar defining the logical tape number

Labeled Common.

None

Subroutines Called

None

Error Detection

r~one

i S

283

— 

5 —  -5-- - —-- -—-a—- -— —--.-—-— - - - ~~ —5 —



SUBROUTINE VECT

This routine performs vector operations.

Al gorithm

The following vector operation is performed according to the value
of N.

N Opera tion

2

3

4

The magnitude of the resultant vector ‘E i s then compu ted and stored
in 1. If normalization is requested, the components of the resultant
vector ~ are divided by T for N equal to 1 , 2, or 4.

Input/Output

None

Argument List

N An integer scalar specifying which vector operation to t

perform
A A real array for the first impact vector
B A real array for the second impact vector
C A rea l array for the resul tan t vector
T A real scalar for the resultant vector magnitude
I An integer scalar controll ing normalization of the

resultant vector

Labeled Common

None

L~~~. - - _ _  —

—

5- - - -— -5_ _--_ -- -~~~---~~~— -5-55



F- AO—A063 fl1 DOUGLAS AIRCRAFT CO LONG BEACH CALIF FIG 113
AIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 3. PROGRAMMING——ETC (U)
DCC 77 R C MORRIS F33615—75—C—3105

UNCLASSIFIED MDC—J— 7 174—PT—3 AFFDL—T R—77—99—PT—3 ML

4 r ~ 5
0 ?4

%1

______ ________________________ ______ 

‘I



::- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~— •—-— —

- 
Subroutines Called

None

Error Detection

None

I

285



~~~“~~~~~~~~~~~~~-- iTTT~ : T ’ ~T~~~~ _ _ _ _

SU3ROUTI~1E WPART

This routine writes a partition of a matrix onto tape in standard
FØRMAT matrix data format.

Al gorithm

Each column of the matrix partition A is written onto tape in the
compressed mode. The origin of matrix partition A in the overall output
matrix is at row IROW and column ICØL. The row/column indices of the
element of array A are incremented by IROW and ICOL to obtain their proper
location in the overall matrix.

Inout/Output

A matrix partition is written onto tape TAPENO .

Arqument List

TAPENØ An integer scalar defining the number of the last column
output logical tape number

IRØW An integer scalar defining the number of last row output

ICOL An integer scalar defining the number of the last column
output

A A real array for the core resident matrix partition A

M An integer scalar defining the number of rows of matrix
partition A

N An integer scalar defining the number of columns of matrix
partition A

Labeled Common

None

Subroutines Called

Hone

4,

Error Detection

Hone

SUBROUTINE WRt~lAT

This routine prints a matrix residing in the core.

Algorithm

The maximum column dimension of the matrix to be printed is 50. If
MAP is equal to zero, the elements of the matrix are printed. If MAP
is not zero, a map of the non-zero elements of the matrix is printed.
This routine is executed only in runs made for program checkout.

Input/Outout

Matrix data is printed on tape 6.

Arcument List

AMAT A real array for the matrix to be printed

M An integer scalar defining the number of rows in AMAT

N An integer scalar defining the number of columns of AMAT

MAP An integer sca lar print control flag

LABEL Matri x label

L An integer scalar defining the number of words (10 char/word)
in LABEL

Labeled Common

None

Subroutines Called

None

Error Detection

t None

288

~~~~ -~~



_______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SUBROUTINE WTAPE1

This routine reads the element partitions for matrices KEL, MEL,
KBAR , CBAR, FFBAR, SIGFB, EPSIG, DEBT, EVT and CØHST, assentles the
parti tions into the final matri ces , and outputs the matrices as
standard FØRMAT matri x data .

Algori thm

The order In which the first nine output matrices are processed
is (EL , MEL, KBAR, CBAR, FFBAR, SIGFB , DPSIG, DEBT, and EVT. In each
case, the element data is read and processed in the order bars, mentranes ,
and cells. The only matrix having contributi ons from point mass ele-
ments, which are processed last, is matrix MEL. However, trailin g null
partitions are also present in matrix KEL for point mass elements .

In all of these matrices wi th the excepti on of DEBT and EVT , the
element partitions are positioned as diagonal or psuedo diagonal
partitions. In matrices DEBT and EVT , each element parti tion Is a single
column each beginning in the fi rst row .

Finally , array CØNST which contains problem constants is output
as a single column matrix.

Input/Output

Matrix data is read from tapes 7 through 15 and all output data
is wri tten to tape 1.

Tape Matrix

14 KEL
10 MEL
13 KBAR
8 CBAR

12 FFBAR

289



r —
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -
~~- - -~- -~~~~~~-- -- - -~~~

-—

1

Tape Matri x
15 SIGFB
11 EPSIG
9 DEBT
7 EVT

Argument List

None

Labeled Common

CØNST, IERRØR

Subroutines Called

MATHD, MATT R, WPART

Error Detection

None

r~
- ___________________

U

I APPENDIX C

LOADS GENERATOR ROUTINES

291

_ _ _ _ _ _ _ _ _ -

APPENDIX C
LOADS GENERATOR ROUTINES

This appendix contains detailed descriptions of all routines in this
program. Table C gives either page number references within this document
or references to other doàuments for documentation of each routine. Some
page number references may be to preceding appendices where the documentation
for a routine in this program is identical to a previously documented
routine. This does not imply verbatum source code duplication for the
routine, only functional duplication is implied .

The detailed description of each routine is divided into the following
subheadings :

Alqorithm verbal flow chart of routine logic and data flow

Input/Output description of all external data set input/output

Argument List name, type, and description of each argument

Labeled Common lis t of all labeled common blocks declared

Subroutines Called list of all routines called

Error Detection description of tests made for errors and action
taken

292

1~~~_~_~
——j—— ” . — - -————- —---- — — ----——--- ‘—- ..-~--- -- — - - — . - - — - — .— . — . — -~~ ‘--— — --—~- --—--- ------ - —--—-—- — - ---

_ _ _ _ __ _ _ __ _ _ _ __ _ _ _ -

TABLE C. INDEX TO LOADS GENERATOR ROUTINES

Page

MAIN PROGRAM LODGEN

SUBROUTINE CR055 121
SUBROUTINE
FUNCTION DOT 122
SUBROUTINE GENAB • 298
SUBROUTINE INVERT 300
SUBROUTINE MATMUL , . 301
SUBROUTINE

SUBROUTINE R E A D B 3 04
SUBROUTINE READCN . . 3 0 6
SUBROUTINE READCØ
SUBROUTINE READJ
SUBROUTINE . S Q U E E Z . Ref. 5
SUBROUTINE UVEC 134

‘ I.

293

— -~~~~~~ ~~—— -~~ - -~~- - -- - ‘~~~~~~~~~~ ~~~~~~

MAIN PRØGRAM LODGEN

The main program allocates core and calls subroutines to read , cal-
culate, and output incremental loads data .

Alqorithm

The subroutines READCO and READCN are called and the average impact
force is calcula ted. The load increment loop is then entered and READB
and READJ are called. The current total load on the model and the loca-
tion of the center of its footprint for this load increment are calcu-
lated, the largest component of the centroidal vector is determined , and
the subroutines GENAB and MATMUL are called . If the load increment
number is greater than one and less than or equal to the total number
of load increments , subroutine DELTA is called . If the increment
number is one, there is no need to calculate the change in loads from
the preceding increment to this, since this change is the current load ,
and if the load increment number is equal to the number of increments
plus one, the change in l oad is the negative of the preceding load.
Subroutine ØUTPUT is then cafled and the current loads and the joints
of their applications are stored at the end of the A array for use In
the next load increment.

Input/Output

There is no input; all output is printed on file 6.

Arqument List

None

~~ e1ed Common

None

_ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Subroutines Called

CROSS, DØT , MATMUL, READB , READCØ, UVEC , DELTA , GENAB, OUTPUT, READCN,READJ

Error Detection

If , in either of the checks on utilization of the A array, It is
found that the available storage in the A array has been exceeded, the
message
‘INSUFFICIENT STORAGE nnnnn VS nnnnn ’
is printed and the program is terminated.

4 .

I ~ .

295



w—,’__ .-  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

1’

SUBROUTINE DELTA

This routine compares the joint loads of the current load increment
to the joint loads of the previous load increment and finds the change
in load at each joint.

Al gorithm

Since only non-zero joint loads for the current and previous load
increments are stored in order of the joint numbers, there are three
basic possibilities for each change in joint l oad . (1) The joint is
loaded in the current increment, but not in the previous increment;
(2) the joint is loaded in both the current and previous increments ;
or (3) the joint was loaded in the previous increment but not in the
current increment. In any case the change in load on the joints loaded
currently or in the previous load increments , are found and stored in
order of the numbers of the joints .

Input/Out

None

Argument List

JOINTO An integer array of the numbers of joints that received
load in the previous load increment

PHIOLD A real array of loads on the joints in the previous load
increment

JØINTN An integer array of the numbers of joints that receive
load in this increment

PHINEW A real array of the loads on the joints in the current
load increment

JTDEL An in teger array of the numbers of joints that were loaded
in the previous load increment or are loaded in the
current increment

DELPHI A real array of the changes in joint loads from the
previous load increment

296

:IJ

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - --- .—-- - - - — --—~~~~~~

~~ T I’1.J~

NJTO An integer scalar defining the number of joints that re-
ceived load in the prev ious load increment

NIJTN # n Integer scalar defining the number of joints that
receive load In the current increment

NDELPH An integer scalar defining the number of joints that
receive load in either ti~e current or previous loadincrements

Label ed Common

None

Subroutines Cal led

None -

Error Detection

None

297

h. -~~~~. ~ — — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~— - — - -J [~ ~~~ .~~~ —~~~ -~~~~~.---—

____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4,r ~~~~ ~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ - _ _ _ _ _ _ _ _ _ _ _

SUBROUTINE GENAB.

This routine generates the A and B matrices.

Algori thm

The B matrix ’s three members are calculated first from the cross
product of the vector to the current footprint location and the unit
vector in the direction of load application . The A array (dimension
3X NJTN) Is created second, using the cross products of the vectors
to the joints that are to receive load and the unit vector in the
direction of load application .

Input/Output

None

Argument List

COORJ A real array of coordinates of all the joints

JOINTN An integer array defining numbers of joints that are to
be loaded In this load increment

ABETA A real array defining the A array for this load Increment

BBETA A real array defining the B array for this load increment

CBETA A real array of the coordinates of the center of the
footprint

UVAPP A real array defining the unit vector in the direction of
load application

NJTN An integer scalar defining the number of joints to be
loaded in this load increment

IROW2 An integer scalar defining the number of one of the
principal axes in the reference plane

IROW3 An integer scalar defining the number of the other
principal axis in the reference plane

298

_ _ _ _ _

j
--

________ .- —- -- .—— —---- -- ---- -—- — —- -. -Th’--.- ----- -

~~~~~~~~~~~~~~~~~~~~~~~~

Labeled Common

None

Subroutines Called

None

Error Detection

None

I

— 

299

I



— —--- - —V——- ~~~~~~~~~~~~~ 
~~~~ i~~~~~~~... : -

•
1

SUBROUTINE INVERT

This routine inverts a 3 x 3 matrix by the method of successive
transformations.

Al gorithm

An identity matrix is set up first, then, while the matrix to be
Inverted is turned Into an identity matrix, the row operations to do so
are also performed on the Identity matrix. When the input matrix is
an Identity matrix, the identity matrix has been transformed Into the
inverse matrix.

Input/Output

None

Argument List

MT A real array defining the Input matrix to be inverted

AATIN A real array defining the Inverted output matrix

Labeled Common

None

Subroutines Ca lled

None

Error Detection

None

300

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

— — -______________________________________ . —

— _s_ — ~~~~~~~~ ~~~~ ‘--. — . —A-— — ..~~~~~~ . — — —

r - — - — ---- -—--

~

------ -

~~~~

-------- ———

~ 

-—-

~~~~

---- --- ------.-

SUBROUTINE MATMUL

This routine performs the matrix multipl ication AT(MTY 1BF.

A1qori thm

The first step is to obtain MT, then the matrix multiplication
AT(AA TY1 is performed. The final two steps are the matrix multipl i-
cation AT(MT

Y~B arid the scalar multiplication AT(MTY1BF.

Input/Output

None

Argument List

ABETA A real array defining the A matrix for this load increment

PREPRO A real array of storage area for the pre-product

PHINEW A real array defining the final matri x product of
loads on the joints -

JOINT An integer array defining the numbers of joints that are
to be loaded in this load increment

BBETA A real array defining the B matrix

F A real scalar defining the total load for this increment

NJTN An integer scalar defining the number of joints to receive
load in this Increment

Labeled Common

None

Subroutines Called

INVERT

L ~
Error Detection

El None

301

_ _

SUBROUTINE OUTPUT

This routine prints, punches and writes (on tape) the output data.

Algorithm

The output is produced In two forms. The first form is for the
user to use for checking the Input data. The constant data (mass
velocity, duration of impact, average impact force, and the load appli-
cation unit vector) are printed first, then the current load and the
change in load that occurred between the preceding and current load
increments for each joint that undergoes a change In load are printed .
The second form of output is printed for the benefit of the user and
written on tape for analysis programs downstream. The format used is
that for a FORMAT matrix whose rows are the degree of freedom numbers
and whose columns are the load increment numbers . The change in load
between the previous and current load increments are divided along the
degrees of freedom and are written accordingly.

Input/Output

The output is written on files 6, JTAPE and KTAPE.

Argument List

DELPHI A real array of the change in joint loads from the previous
to the current load increment

JOINT An integer array of the numbers of joints that undergo
changes in load from the previous to the current load
increment

PHINEW A real array of the loads on the joints In the current
increment

JOINTN An integer array of the numbers of joints that receive
load in the curren t load increment

IBETA An integer scalar defining the number of the load Incre—
ment

i i
-

302

ii
_ _

-
_ _ _ _ _

j
I i~

——- --~.
-

~~
-

.——-- - -- — - - - __________

- - p-t——-—— - .. - - - ----— ..— —--.--- .

F A real scalar defining the total load applied in the current4 ncrement

UVAPP A real array defining a unit vector in the direction of the
appl ied load

NJTN An integer scalar defining the number of joints that received
load in the current Increment

NDELPH An integer scalar defining the number of joints that undergo
changes in load between the current and preceding load
increments

NDOF An integer scalar defining the total number of degrees of
freedom

AMASS A real sca lar defining the mass of the bird

VEL A real scalar defining the velocity of the bird

TIME A real scalar defining the duration of impact

FAVG A real scalar defining the average load

UVEI. A real array defining a unit vector of the velocity of the
bird

JTAPE An integer scalar defining the number of the output file
that will contain the FORMAT matrix card images

KTAPE An integer sca lar defining the number of the output file
- that corresponds to the FORMAT tape output

NBETAP An integer scalar defining the total number of load Increments
plus one

COLM A real array used to assemble a column of the output matrix

Labeled Common

None

Subroutines Called

SQUEEZ

Error Detection

None

- - ~
T3

-

r—~ ---11- --- - •
~

. ---w— - - -..~~~~~~___ -~ .~~~- - ---- - - . -- -~~~~
--

~~~~
---- -- . -~~~-

-

SUBROUTINE READB

This routine reads the footprint travel and load factor for the
current load increment.

Algorithm

The input file is read until a Data Code 11 card is read. The Data
Code 11 cards are read until a card with a flag of 6 is found. The
cards with a flag of 6 are read until the card with the current incre-
ment number is read and the data Is stored. The subroutine then returns
to the main program.

Input/Output

The input is read from file ITAPE.

Argument List

DBETA A real scalar defining the distance the footprint travels
from the init ial Impact point -

FACTOR A real scalar defining the current position portion of
the average impact load to be appl ied for the current
load increment

IBETA An integer scalar defining the current increment number

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

Subroutines Cal led

None

Error Detection

If no Data Code 11 cards are read the message
‘NO CONSTANTS (DATA CODE 11) ENCOUNTERED IN INPUT’

304

-
~

-
~ 

- - . - 
~~~~~~~~~~~~~~~~~~ 

-
~

— — —--.

— --4

is printed. If the card with data corresponding to the current load
increment is not read the message
‘INCREMENT (BETA) NUMBER nnn NOT FOUND IN DATA CODE 11 DATA ’

is printed .

305

- - - -~-.-~~~~~~~~~~~~~~~~~~~

_____________________________ — —-.-.~~- - - -

I
SUBROUTINE READCN

This routine reads the constants associated with the impact distri-
bution .

Al gorithm

The Input file Is read until a Data Code 11 card is read. The input
file is backspaced one record and five cards are read and their data
stored before the subroutine returns to the main program.

Input/Output

The input is read from file ITAPE.

Argument Li st

NDØF An Integer scalar defining the total number of degrees of
freedom

AMASS A real scalar defining the mass of the bird
-

VEL A real scalar defining the velocity of the bird

ALENG A real scalar defining the length of the bird

UVEL ~ real array defining a unit vector in direction of bird
motion

UN~RM A real array definin g a unit vector normal to the surface
at the impact point

UFOOT A real array defining a unit vector in the direction of
impact footprint travel

COØRI A real array defining a vector from the origin to the
impact point

NBETA An integer scalar defining the number of load increments

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

306

~~~~~~~~~~~~~~~~~~~~~ - ———— 



________ — —.- —-. ---.--~~
-.-,-——--- - ---—--—. —.---- • —_ T:~~

--- --- .—-__ - - - — -- - - - -—,--.- --. ‘ . - - - ,  -.----— - - ---.----- - -,

Subroutines Called

None

Error Detection

If no Data Code 11 cards are read the message
‘NO CONSTANTS (DATA CODE i t ) ENCOUNTERED IN INPUT’
Is printed. If there are not at least five consecutive Data Code 11
cards, the message
‘MISSING DATA IN DATA CODE 11’ 

-

is printed .

LI

307

_ _ _ _ _ _ _ _ _  _ _ _ _ _  -- -- -- - --.- . -~~~ -—---L . - - - ~~~- — - -- - - —— - —~~~~ -~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ . - --—
~~

- -..----.---- -

SUBROUTINE READCO

This routine reads the joint coordinate data .

Algorithm

The input file is read until a Data Code 2 card is found. The input

file is backspaced one record and the coordinate data is read and stored

until the data code is no longer 2 or unti l a joint number of 9999 is

read.

Input/Output

The Input Is read from file ITAPE.

Argument List

COORJ A real array of coordinates of joints stored by joint number

NJTOT An integer scalar defining the largest joint number input

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

Subroutines Called

None

Error Detection

If the end of Data Code 2 data is encountered without encountering

• joint number 9999 the message

‘A 29999 CARD WAS NOT FOUND ’

Is printed but execution continues . If no Data Code 2 data is found at

all , the message
‘NO JOINT COORDINATE DATA (DATE CODE 2) ENCOUNTERED IN INPUT’

Is printed .

308

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—.——

~~
—— — - - - 



SUBROUTINE READJ

This routine reads the joint numbers that will receive load in
the current load increment.

Algori thm

The input file is read until a Data Code 12 card is encountered. The
file is backspaced one record and the data Is read, checking the incre-
ment number. When the current Increment number Is read the joint numbers
are read and stored for as many cards as have the current increment
number.

Input/Output

The input is read from file ITAPE.

Argument List

JOINT An integer array defining the numbers of joints that are
to receive load during the current increment

NJTN An integer scalar defining the number of joints that are
contained in JOINT

IBETA An integer scalar defining the current load Increment number

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

Subroutines Called

None

Error Detection

If no Data Code 12 cards are read the message
‘NO LOADED JOINTS DATA (DATA CODE 12) ENCOUNTERED IN INPUT ’

309

- -  - .



- ~~~~~~~~ -— -

I

I

is printed . If a card with data corresponding to the current load in-
crement is not read the message
‘JOINTS FOR INCREMENT (BETA) NUMBER nnnn NOT FOUND IN DATA CODE 12
DATA’
is printed .

I
--

L 
_ _  

I

- 

— 

310

_ _ _  _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  A



APPENDIX D 
-

- LINEAR INCREMENTAL ROUTINES MD
LABELED CO~tv1ON BLOCKS

I .

• 311

—.4
~~~ -• .----- -~~~-- _____ .,__- _ -_


APPENDIX 0
LINEAR INCREMENTAL ROUTINES

AND
LABELED COMMON BLOCKS

This appendix contains detailed descri ptions of all routines and labeled
common blocks in this program. Table D gives either page number references
within this document or references to other documents for documentation
of each routine or labeled common block. Some page number references may
be to preceding appendices where the documentation for a routine in
this program is identical to a previously documented routine. This does
not imply verbatum source code dupl ication for the routine , only functional
duplication is impl ied.

The detailed description of each routine is divided into the following
subheadings:

Al gorithm verbal flow chart of routine logic and data flow

Input/Output description all external data set input/output

Argument List , name, type, and description of each argument

Labeled Comon list of all labeled common blocks declared

• Subroutines Called list of all routines called

Error Detection description of tests made for errors and action
taken

The detailed description of each labeled common block is divided into
the following subheadings :

Declaration verbatum declaration 0f the labeled common block

Contents name and description of each variable appearingL
~ in the declaration

Usage list of all routines which contain declarations
• for the labeled common block

- 312

~

~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~ - -



TABLE D. INDEX TO LINEAR INCREMENTAL ROUTINES AND
LABELED COMMON BLOCKS

Page

MAIN PROGRAM RESPNS . . . . . .  315

LABELED COMMON CLOCK . . . . .  3~7
LABELED COMMON L I M I T S . . . . . .  .  . . . . . . 318
LABELED COMMON NOICES ... • .... 320
LABELED ’OMMON TAPES . . . . . . . . . . . . . . . . . . • • . 323

SUBROUTINE ABSYM . . . . . . . . . • • •  325
SuBROI.TrINE ADD . . • • • 326
SUBROUTINE A S Y M B . . . . . . . . . . . . .  • 327
SUBROUTINE BALANC 

~~~~~~~~~~~~~~~~~~~~ Ref. l6
SUBROUTINE B A L BA K • Ref. l6
SUBROUTINE • C C M U L T • 329
SUBROUTINE CHGSGN • • 331
SUBROUTINE CHLSKY • • . 332
SUBROUTINE COPY . 333
SUBROUTINE ’ C R M U L T . . . • . • •. • 334
SUBROUTINE EIGS OL 336
SUBROUTINE E L M H E S

~~~~~~~~ Ref. 16
SUBROUTINE E L T R A N . . . . . . . . . .  • .

~~~~~~~~~~~~ Ref. 16
SUBROUTINE EtJTL9 Ref. 6-
SUBROUTINE HALT • . • 338
SUBROUTINE HQR • . . • Ref. 16
SUBROUTINE HQR2 Ref. 16
SUBROUTINESUBROUTINE JØRDAN . . . $ 341
SUBROUTINE L I N E A R
SUBROUTINE
SUBROUTINE MBAR 346

•

313
- .

•
~~~~~~~~~~~~~~~~~~~~~~ —‘~~~~ •- -—-- — •——• — — —-— -—-. — •—_-——— — ,- - __ • __ .__.~~~~~~~~~~ _~~~~~~O .__~~___ , ~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _

1 -
I

- TABLE D. INDEX TO LINEAR INCREMENTAL ROUTINES AND
LABELED COMMON BLOCKS (Continued)

Page

SUBROUTINE MULT . . . . . . . . . . . . . . . . . . . . . . 348
FUNCTION N DX S E T . .  . . . . . . . . 349
SUBROUTINE NITIAL . . . .‘ . . . . . . . . . . . . . . . . . 350
SUBROUTINE O IJ TPUT.... . .... . .  • . .  . .  352
SUBROUTINE PBARIJF . . . . . . . . . . . . ..  . .  . . .. $  353
SUBROUTINE P R E E I G . .  . . . . . . . . . . .  354
SUBROUTINE P R I N T R . . . . .  .. . . . . .  .. 356
SUBROUTINE PTMASS . . . . . . . . . . . . . . . 358
SUBROUTINE READA . . . . . . . . .  Ref. 5
SUBROUTINE READK . . . . . . . .  . . . . . . . .  359
SUBROUTINE READM 360
SUBROUTINE RGEIG . . . . . . . . . . . . . . . . . . ... . Ref. 16
S~3ROUTINE . SBTRCT 361
SUBROUTINE S I G F B R . . . . . . . . .  . . .  . . .  352
SUBROUTINE SMULT . . . . . . . . . 363
SUBROUTINE SQUEEZ . . . . . . . . . . . .  Ref. 5
SUBROUTINE S Y M A B T . . . . . . .  . .. 364
SUBROUTINE SYMFIL . . . . . .  . 365
SUBROUTINE SYMSOL . . . . . . . . . . . . . . .  366
SUBROUTINE TIMEQ . . .  . Ref. 6
SUBROUTINE T M U L T . . . . . .  . . . . . . . .  368
SUBROUTINE TSETQ . . . . . . .  . . . . . . . .  Ref. 6
SUBROUTINE V D M U L T . . . . . . . . . . . . . . . . . . . . .  370
SUBROUTINE WRITE . . . . . . . . . . . . . . . . . . . . . •Ref. 5
SUBROUTINE W R I T E M . . . . . . . . . . . . . . . . . . . . .  371
SUBROUTINE X P Ø N N T . . . . .. . . . . . . . . . . . . . . .  372
SUBROUTINE Z E R Ø . . . . .. . . . . .. . . . . . . . . . .  373

314

~~~~~~~~~~~~~~~~~~~~~~~~ 
— — —----—,•—

MAIN PROGRAM RESPNS

This is the dri ver of the Linear Incremental Soluti on program.

A1~ori thm

The driver functions of this program consist of:

1) Defining 23 data sets used for Input , output and scratch storage.

2) Delimi ting the extents of 4 common blocks , the first 0f which ,
blank common, will be used for working storage.

3) Initializi ng via subroutine NITIAL.

4) Setting the stage for an incremental analysis by invoking sub-
routine PREEIG to generate matrices 1~1 R’ and ~~

‘

which are the
components of the eigenvalue problem statement set up and solved
via subrouti ne EIGSOL.

5) Performing the incremental analysis through the sequence of calls
to subroutines LINEAR and IMBAL for each time Interval .

6) Clocking the execution of each module and displaying elapsed
time on output.

Input/Output.

None

Arguments

None

Labeled Common

NDICESI TAPES, LIMITS

•

-
Subroutines Called

NITIAL, PREEIG , EIGSOL , LINEAR , IMBAL , TSETQ, TIMEQ

315

- •
~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~-•- - - -~~‘ - --~ T

Error Detection I
None

1: 

316

• •

_ _ • • _ - • •  —---•-—------ _ ,----- - — --•• ---------—--- _ ----- --- .-- - —~~~ -,- _ — ---——— _ _ _ - -~~~_ --- -  
_ _ • _



- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~, • •~~~~~~~~ •.~~~~~~~~~~~~~
- — - -— — ------- — -‘--- 

~~~~~~~~~~~~~~~~~~~

LABELED COMMON CLOCK

This comon block is used to store timing Information to obtain CPU
time required for major modules wi thin the program .

Declaration

COMMON /CLOCK/ ORGTIM

Contents

ORGTIM CPU time remaining for the run obtained by system routine
TIMREM

Usage

TIMEQ, TSETQ

317

- . -

~

- •- “- ——— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- — — —

~~~ - ~~~~~
— _ •



LABELED COMMON LIMITS

This common block is used to store problem size information, problem
constants, option flags, and other program parameters used by all
principle routines.

Declaration

CØMMON /LIMITS/NG ,NK ,NELEMS,NTRVLS ,BETA ,BETBAR,HEAT,NM ,IORGN ,JX
KOLX ,NF ,MOREK ,MOREC ,NG2 ,NG2SQ ,NJTS ,AHAT ,DEBCL ,TBM1
TAU ,NS ,NOWRK ,NSUPD ,NFAIL,NOPBPU -

LOGICAL BETBAR,NOBPU
INTEGER BETA

Contents

NG Number of modes

NK Number of l umped forces for an element

NELEMS Total number of physical elements

NTRVLS Number of time increments

BETA Current increment number

BETBAR Not used

• HEAT , Option flag for el ement dissipated damping energy con-
verted to heat

NM (NG*NG+NG)/2

IORGN Pointer to unused trailing partition of blank common

JX Pointer to a location in label led common NDICES

KOLX Matrix column counter

NF Number of forces for an element

MOREK Flag designating addit ional partitions of k

MOREC Flag designating additional partitions of C

NG2 NG+NG

NG2SQ NG2*NG2

i 
318 

— -•

• ~~~~~~~~~~~~~~~~~~~~~~~~ — —•.—-——--• — - . - -—--—~~ ~~~~~~~~~~~~~~~~~~~~~ 
— 

~~
-
~ _ ••_-_ —• -~

__ —_ ~—• -— . • - ~~~~~~~~ •-•



~ 1~

NJTS Number of joints

AHAT Not used

DEBCL Total damping energy

TBM1 Time increment of previous interva l

TAU Time increment of current interval

NS Number of stresses for an element

NWØRK Extent of blank common region

NSUPD Not used

NFAIL Not used

NØPBPU Flag indicating the input 6P(s)u has been exhausted

Usage

RESPNS, EIGSØL , IMBAL , LINEAR , NDXSET, NITIAL , OUTPUT, PBARUF, PREEIG,
PTMASS, READK , SIGFBR

319



_________________________________ •

LABELED COMMON NDICES

This common block is used to store pointers to partitions within
blank common array A . All val ues in this common block are initialized
in routine NITIAL . Partitions for elements are sized for cells which
have the largest storage requirements.

Declaration

CØMNØN A( 8000)
COMMON /NDICES/IVBDB ,IVBB ,IVBX ,IDPBPU,IPBMIJB,IDPPIJB ,IDBL,IVBL

IPBAR, IPBPHU, 1KB , ICB, IMBAR,IMBAJ~L , IDEBCL ,ICØNST
ITIME,ISIGSS
IKBL,IZ,ICA ,IQ,IVAL,IFTAIJ ,IVEC ,IEG5YS
IU,LU,IECT,IEVT,IMPT,IDEBO,IDFBKO ,IDSEB
IFK,IFBK,IDEL,IDEDL ,IFSFB,jF5FB~.IPBCUIPBKU,ISIGFB ,ISIGBH ,IEPSIG,IPSL~N ,IO,IDKISKB,ISKBB,ISCB ,ISCBB ,IPBUF,ISK ,ITK ,ICIB ,IMEL

Contents

IVBDB . ~~~~, modal accelerations

IVBB ~~~~, modal veloc ity

IvBx 
~~~~~~~~~~~ 

modal velocity of previous increment

IDPBPU 6~~, incremental modal force imbalance

IPBMUB
~(M)u ’

modal Inertia force

IDPPUB 6P(,)u~
incremental modal applied load

IDBL. incremental linear modal displacement

IVBL
~L’

linear modal displacement

IPBAR P, total modal forces
IPBPHU

~(~)U’
modal applied load

1KB K, modal stiffness

ICB C, modal damping
IMBAR M, modal mass

_________________________________ - -----I-——--

—--‘----_ -- - - - •

IMBARL Cholesky decomposition of K

IDEBCL 6EC1, incremental element dissipated damping energy

ICONST Problem constants

ITIME Incremental time history

ISIGSS a5 , stress transform for cell elements

IKBL Cholesky decomposition of K

IZ The modal matrix Z

ICA The modal matrix Ca H 1 yo

IQ The modal matrix Q = C F(t) where Ca is C diagonaltzeda0 a
IVAL A , eigenval ues

IFTAU F(’r), a modal column matrix of eXt

IVEC H, eigenvectors

IEGSYS Eigenvalue problem work array

IU U0, original joint coordinates

LU Not used

IECT Ed , element constant table

IEVT EVT , element variable table
IMPT MPT, material property tables
IDEBO 6~~, incremental initial element deformations

IDFBKO , incremental element forces due to initial deformations
0

IDSEB 6~, incremental element defo rmat ions
• IFK The matrix FK F + ~F for an element

-
K8_1

— IFBK FK, element forces

IDEL deL) incremental linear element displacement

IDEDL d
~L)

incremental linear element velocity

321

_ _ _
-

- -
• - .

IFSFB F
~F~

element force transform

IFSFBB Not used

IPBCU
~(C)U ’ modal damping forces

IPBKU
~(K)U ’ modal stiffness forces

ISIGFB element stress transform

ISIGBH Not used

IEPSIG L
a

) element strain transform

IPSLON c, element strains

ID The matrix D =
~UF F~ for an element

10K The matrix OK PUF F
~

k for an element

15KB k, unassembled element stiffness

ISKBB Not used

ISCB c , unassembled element damping

ISCBB Not used

IPBUF
~UF’

modal transform

ISK 5k’ modal fictitious forces

IlK tk) modal fictitious deformations

ICIB The matr ix ~T =
~UF F~ c FF

T
~UF for an element

IMEL m, element mass

Usage

RESPNS, EIGSOL , IMBAL, LINEAR, NDXSET , NITIAL , ØUTPUT, PBARUF , PREEIG ,
PTMASS , READK, SIGFBR

- - i
i

322

’

p
-A - --~.-~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -— • -

- - - - , - - - - - - - - - - -—~~~~~~~~~~~~~ - --- -

-_-_--- ~~~~_~~~~~~~~~_
_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘.----- --_ --- •

LABELED COMMON TAPES

This common block is used to store the FORTRAN logical unit numbers
of the external files used by the program.

Declara tion

COMMON /TAPES /N1 ,N2 ,N3 ,N4 ,N5 ,N6 ,N7 ,N8 ,N9 ,N1O
Nll ,N12 ,N13 ,Nl4 ,Nl5 ,N16 ,Nl7 ,N18 ,tflg,N20

Contents

The values in the common block are initiali zed in routine NITIAL .
The FORTRAN logical uni t designations assigned are given here.

Nl 1
N2 2
N3 3
N4 4
N5 8
P46 9
P47 10
P48 11
N9 12
P410 13
Nil 14
N12 15
N13 16
N14 17
P415 18
P416 19
P417 20
Nl8 21
P419 22

• N2O 23

-

323

- _ _ _ _ _

__________ _______

Usage

RESPNS, EIGSOL ,IMBAL ,LINEAR,NITIAL,OUTPUT ,PBARUF ,PREEIG ,PThASS, READK ,
SI GFBR

~1I

324

_________ ----.~ ~~~~~~ ..— - - - _ ----- • - —

- -

-_ —- - -- - - —- -••--.-——-—. ~~~~~~~~~~~~~~ --—‘—- -•- ,- -- -Th--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
SUBROUTINE ABSYM

This routine performs a matrix cross-product wherein the post-
multiplier matrix is the upper half of a symmetric matrix.

Alq~orithm

The mode of storage of the post-mul tiplier matri x is b11, b12
bin) b22 ~~~~~~~~ When the logical variable SUM Is false, the array
accomodating the resulting matrix is initialized as zero. Otherwise,
It is simply incremented to yield the matrix sum C = C + A .B.

Input/Output

None

Argument List

C A real array accommodating the product matri x

A A real array accommodating the pre-multiplier matrix

B A real array accommodating the post-multiplier matrix In
the mode of storage b11, b12, . . ., b1,~, b22

M An integer scalar defining the order of the pre-multiplier
matrix

N An i nteger scalar defining the order of the post-multiplier
syirinetri C matrix

Labeled Common

None

Subroutines Cal led

None

Error Detection

None

— -- =—~~~~~~~ --~~~~~~~~~
-- I— -

~ 
- -



—~~-.-~ -- -- _ - -  -- - - - -~~

I

SUBROUTINE ADD

This routi ne performs vector addi tion; C A + B.

Al gorithm

Vecto rs A and B are summed into C.

Input/Output

None

Argument List

C A real array accommodating the resulting vector

A A real array accommodating the first input vector

B A real array accomodating the second input vector

N An integer scalar defining the order of the vectors

Labeled Common

None

Subroutines Called

None

Error Detection

None

L I

L 

326

p u~~
—

~
—- -~~~~

- -~—— - — 
-

~~~

‘

~

r-: -?V :,:

~

r - —

I

SUBROUTINE ASYMB

This routine performs a matrix cross-product wherein the pre-
multiplier matrix is the upper half of a symmetric matrix.

Al gorithm

The mode of storage of the symmetric pre-mul tiplier matrix is
a11, a12, “., ~~~ a22 ~~~~~~~ When the logical vari able SUM is false,
the array accommodating the resulting matrix is initialized as zero .
Otherwise, it Is simply incremented to yield the matrix sum C C + A~B.

Input/Output

None

Argument List

C A real array accommodating the product matrix

A A real array accommodating the pre-multipl ier matrix in
the mode of storage a11, a12, i . .

, a~~, a22
B A real array accommodating the post-multiplier matrix

M An integer scalar defining the order of the symmetric
pre-multiplier matrix

P An integer scalar defining thE column order of the
• pre-multiplier matrix

SUM A logi cal scalar which If true, C C + A .B; otherwise
C*A .B

Labeled Common

None

-• Subroutines Called

None

327

Error Detection

None

328

p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_______________ - • • • —

•

~~~~~~~~ 

______ _______

~~~
- - SUBROUTINE CCMULT

This routine computes the specified leading rows of the product
of ~ o complex matrices.

Al gorithm

When the logical variable SUM is false, the array accommodating

the resulting matrix Is initialized as zero. Otherwise, It is

simply incremented to yield the matrix product and summation C * C + A*B.

Input/Output

None

Argument List

C A complex array accommodating the product matrix

A A complex array accommodating the pre-mul tiplier matri x

B A complex array accommodating the post-multiplier matri x

M An integer scalar defining the row dimension of arrays
C and A

N An integer scalar defining the column dimension of array
A , and the row dimension of array B

• P An integer scalar defining the column dimension of arrays
B and C

ML. An Integer scalar defining the computations concerning
ML rows of C

SUM A logical scalar which If true, C C + A*B; otherwise
C A*8

Labeled Common

• None

(‘

329

----- -i-- - ~~~~ • -——--—-—--- -

_ _ _ _ _ _ _ _ _ _ _ - - -- • _ _ _ _

Subroutines Called

None

Error Detection

None -

I

-

330

~

-

~

-- • - -~~-- - - - - - _

- -~~~~~•-. —~~~~~ - - - - - - ~~ • -- -- - - - - - - -

SUBROUTINE CHGSGN

ThIs routine changes the algebraic sign of a vector.

Algorithm

The sign of the vector is reversed by being set to minus .

Input/Output

None

Argument List

A A real array accommodating the vector whose sign is to
be reversed

N An integer scalar defining the order of the vector

Labeled Common

None

Subroutines Called

None

Error Detection

None

331

p

-
— — - - • — -- -- -

~~• --• -
~~. —-- • ~~~•--—- •• • • - • - -

- - - -- —~~-~~~~~~~ —w-~ -
~~— - - • -~~~~~~~~ • - - - -V- -—- — - -

~~~
-. — -

~

-

SUBROUTINE CHLSKY

This routine performs an in situ Cholesky decomposition, where
the symmetric matrix is given in its triangular half.

Algorithm

Where A a LLT, given the positi ve definite matrix A in its
symmetric half , this routine transforms it to L. The mode of
storage Is a11, a12, •

~~~
. ~~~ a22 •.. a2~ etc.

Input/Output

None

Argument List

A A real array accommodating the symmetric half of the
positive definite matrix on input , and its square root
decomposition on output

N An integer scalar defini ng the order of the problem

Labeled Common

None

Subroutines Cal led

None

Error Detection

None

1 T’I T~ - ~~~~~~~~~~~I1

-

SUBROUTINE COPY

This routine copies an array from core to core.

Algorithm

Array A is copied into array B.

Input/Output

None

Argument List

A A real array to be copied

B A real array Into which the copy is made

N An integer scalar defining the order of the arrays

Labeled Common

None

Subroutined Called
• None

Error Detecti on

None

•1

333

_ _ _ _ _ _ _ _

SUBROUTINE CRNULT

This routine computes the specified leading rows of a matrix product
wherein the pre-multiplier matrix is complex.

Al gori thm

When the logical vari able SUM is false , the array accommodating
the resulting matrix is initialized as zero. Otherwise, it is simply
incremented~to yield the matrix product and summation C = C + A*B.

Input/Output

None

Arqument List

C A real array accommodating the product matri x

A A real complex array accommodating the pre-multiplier
matrix

B A real array accommodating the post-mu ltiplier matrix

M An Integer scalar defining the row dimension of arrays
• C and A

• N An integer scalar defining the column dimension of
array A and the row di mension of array B

P An integer scalar defining the column dimension of arrays
B and C

ML An integer sca%ar defining the computations concerning ML
rows of C

SLIM A logical scalar which If true, C • C + A*B; otherwise,
C~~ A~B

Labeled Conrion

Hone

334

_ _ _ _ _ _ _ _ _ _ _ -—--~~~~~ -— —•~~~~—- • ~~-- -- - • • • - —-- -~~~------- - • - -•~~~ • - —.----—-—- •----

Subroutines Called

~4one

Error Detection

None

_ _ _ _ ~~~~~~~~~~ _ _ _ _ _

r _ _ _ _ _ _ _ _

SU BROUTINE EIGSOL

This routine sets up, executes and disposes of the eigen problem .

Algorithm

The upper quadrants of array A are filled with the negative of sym-
metric modal damping an4 mass matrices, C and M , reconstructed in their
full forms. The lower left quadrant is set to the identi ty . Subroutine
SYMSOL is then invoked , with the Cholesky decomposition of modal stiff-
ness matrix K as argument, to arrive at:

1~
g..1E _R

~~M]

L i o j
Subroutine RGEIG now performs the complete elgenvalue problem

solu tion . The eigenvalues are reciprocated . In this process, equal
elgenvalues corresponding to equal eigenvectors are recognized as being
part of a ~ingu1ar system. An attempt to remedy this condition is made
by scalar mul ti plying matrix ~ with 1.0001 and going through the complete
procedure anew. Should this instability persist, the printing of an
appropriate statement is followed by a call to subroutine HALT . Other-
wise, the writing of the matrix of eigenvectors onto data set NB is
followed by their inversion through subroutine JØRDAN . The inverse is
also output onto data set N8.

• Input/Output

To conserve core space, the matrix of eigenvectors and its
inverse are stored on data set N8.

Argument List

B A real array accommodating the eigenva l ue problem
statement

336

II

_ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ ______

X
•

A real array accommodating the matri x of eigenvectors

M An in teger which defines the order of the ei genvalue
problem

N An integer whose value is M/2

Labeled Common

LIMITS, NOICES , TAPES

Subroutines Called

CHLSKY , CØPY , HALT , JØROAN , ~GEIG , SMULT, SYMFIL , SYMSØL ,
WRITE , ZERØ

Error Detection

Equal complex eigenvectors wi th corresponding equal ei genvalues
are detected as singular. An attempt to remedy this conditi on is made
by scalar multi plying matri x ~ with 1.0001. Should the unstable con-
di ti on persist, the printing of an appropriate message is followed
by the call to subroutine MALT .

337

_ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~

1

•

SUBROUTINE HALT

This routine performs termination processing as necessary in the
event of a fatal error.

Al gorithm

In anticipation of certain processing requirements before job

terminati on initiated by the detection of a fatal error, this routine
and appropriate calls were provi ded. Subsequently, however, It was
determined that no processing of this nature was necessary.

I np utJOutp Ut

A job termination message is output to uni t 6.

Argument List

None

Labeled Common

None

Subroutines Cal led

None

Error Detection

Hone

338

_ _ _
-

• -

•-
~~
•- • - - “-4

_ _ _ _ _ _ _ _ _ _ _ - -~~~~~- - -

SUBROUTI~1E IMBAL

For each physical element within each type of element , this
routi ne computes the force, stress and strain matrices ,

~K’
a and e ,

and wri tes them onto the output data set.

Al gori thm

• The output matrices concern bar elements , membrane elements and
cell- elements . Their respecti ve FØR.MAT matri x names are BARS , MEMBRN
and CELLS. Each physical element is represented by a column whose
contents are vectors TK, a and c. These quantities are computed as
follows :

- DKT X

where OK =
~UF

FT ~

a for cell s

or a a-p. TK for bars and membranes

aa

Inout/Outout

Tape 2 is the output data set. For ear.h physical element , matrix
a~

. is read from data set N14; the matrix quanti ty
~UF

F-FE is read from
data set N7; is read from HiS; and ca is read from N16.

Araument List

None

• Labele d Common

Li~1ITS , NOICES , TAPES

•- —— — -

339

I ,.- - - - --- _—___- _ -~~~~-~~~-- ~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~ - - - - -

Subroutines Called

ADD, ASYMB, MULl, ØUTPUT, READA , READM , SBTRCT, TMULT , ZERØ

Error Detection

None

I

340

L. — • — - . - _____

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUBROUTINE J~RDAN

This routine inverts In situ a complex matri x by pivoting on the

available row of largest magnitude wi thin the next available column .

Alqori thm

The method used is Gauss-Jordan. The array KØL is used to reco’~d
the order of rows which have been selected for pivoti ng .

Input/Output

None

Argument List

A A real matrix which is transformed to its inverse pri or
to exit from this routine

K~L An integer work array of dimension 2*N. Prior to exit
from this routine, the first H locations contain the
order In which rows have been selected for pivoting.
The second ~ loca ti ons contain the values of the pivotingelements.

N An In teger scalar defining the order and dimension of
• matrix

Labeled Common

None

-

• Subroutines Called

None

Error ~etecti on

F-

341

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  



— —

SUBROUTINE LINEAR

This routi ne computes vectors T, 6~, ~ and .

Al gori thm

Data set 118 is already positi oned at the ori gin of the matrix of
inverse elgenvectors . It is rewound as soon as this matri x has been
read. The next read then brings in the matri x of eigenvectors proper.

• aX and V are computed in the complex mode and transferred to their
final blank common desti nati ons in the real mode . Through abstracti on
like CALL statements to utility routines , the matrix equati ons to
compute ~~~ , a~, V, and V are solved in the following manner:

= ~ + 
~(M)U 

+

CaD H~ [_
~

_] di agonalized

F(t) e~

• . Q = C ad F(t)

[
~

-]= HQ
v

~A -z

Input/Output

• The matrix of elgenvectors and Its Inverse are read from data set

- t £18. The incremental applied l oad matri x is from data set 18.

-L



Argument List

Nona

Labeled Common

LIMITS , NDICES , TAPES

Subroutines Called

ADO , CCMULT, CHGSGN , C~PY , CRMULT , EUTL9 , PRItITR , REAOA , SYMSØL ,
VOMULT , XP~NNT, ZER~

Error Detection

None

343

—4



_ _ _ _ _ _ _ _ _

_ _ _ _ _  - - - - 
~~

-• -

fl~~

SUBROUTINE £•IATIN

This routine routes FØRMAT Program input matrices and arrays from
tape 20 to the intended, or interim, data sets.

Al gorithm

Reading over the data set header positions it at the origin of
its first matrix.

The following takes place wi th each i tem sandwiched between a
matrix header and trailer. The data set designation , onto which the
next matrix in sequence is to be written , Is taken from the list NT
arid rewound. The matrix header is read and Ignored. Each record
thereafter is transcribed. Addi tionally, the third matrix is also
written on data set 14. This process continues as long as the first
word of the records thus processed is a positi ve integer. Except In
the case of matrix 

~~~~~ 
the output data set is then rewound.

InputJOutput

The list of throughput matrices and the data set onto which they
•

•
are output follows:

Matrix Name Data Set Number Description

~UF
14 Modal element force transform

MPT 3 Material property table

U0 8, 14 Original joint coordinates

ECT 15 Element constant table

•
MEL 13 Element mass matrix

11 Element sti ffness matrix

17 Element damping matrix

Fr. 4 Element force transform

- - ----~~~~
_ _ _ _ _

344

_ •

~~ IS PAGE IS BEST QUAI~I1’! ~~~~~~~~~~~~
~~ ~~ Q

Matrix Name Data Set Hunter Descriotion

15 Element stres s transform

22 Element strain transform

6— 10 Initial thermal element defor-eT • rnati ons

EVT 9 Element vari able table

Argument List

A A real work array

HUM An In teger scalar used as a dimensioning vari able

Labeled Common

None

Subroutines Called

None

Error Detection
• None

345

I .~~~~~~~~~

‘ - -

—

-

I

SUBROUTINE MBAR

This routine fetches the upper half of the next uncoupled parti tion
from a tape resident symmetric quasi-diagonal matrix.

Algori thm

The end product of this routine consists of a triangular matrix of
order HF in expanded format wherei n the rows begin from their diagonal
elements. As each column (KØLX + 1) through (K~LX + HF) is read in the

compressed format, its elements preceding the diagonal are discarded.
The row desi gnati ons of the elements retained are reduced by the
quanti ty KOLX - IIF*(I_l), where I represents the sequence of these
columns from 1 through HF. One call to subroutine EUTL9 expands this
triangular matrix in its desired form.

Input/Output

None

Argument List

NF An integer scalar defining the number of rows and columns
in desired matrix partition

KOLX An in teger scalar defining the designation of the last
column read on previ ous entry in to this routine

A A real storage array

NT An integer scalar defining the designation of the data
set containing the matrix

Labeled Common

None

Subroutines Called

EUTL9, READA , ZERØ

•~

r T ~
IT1:T ~~

~~1S PAGE IS BEST QUta~t?! PRACTI~”jJp COPY 1L~Q~j~i~~~ IOWQ ~~~~~~~~~.—

Error ~etection

None

7 1 -

24 7

SUBROUTINE MULT

This routine performs a matrix product.

Al gorithm

The matrix product A*B Is added to matrix C. Matrix C is
ini tialized to zero only when the logical variable SUM is false.

Input/Output

None

Argument List

C A real array accommodati ng the product matri x

A A real array accommodating the pre-multipl ier matrix

B A real array accommodating the post-multiplier matrix

M An integer scalar defining the row dimension of matrices
C and A

N An integer scalar defining the row dimension of matrix B
and the column dimension of matrix A

P An integer scalar defining the row dimension of matrices
C and B

SUM A logical scalar which if false , array C is initial ized
as zero

Labeled Common

None

Subroutines Called

None

Error Detection

None

348

: ~~ I •~~~~~~~~

F-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

- - - - - --

~~IS PAGE IS BEST QWILXT! P L C~ L~L~L4
fROM COPY E~~2~1S~~

) To £~ Q ~~~~~~~~

FUNCTION NDXSE~

This routine defines the elements of a vector used to segment
the working core.

Algori thm

The vari able I~RGN contains the relative l ocation from which the
work array is available for segmentati on . The following takes place
for each of the N apportionments : 1) the value of JX , the Index ing
pointer used wi th vector NOEX , is incremen ted ; 2) t-~RGN is stored into
MOEX(JX); 3) I~RGN is thcreased by INC , the extent of core being
alloca ted each origin.

tflOut/Out3ut

?lone

Argument List

INC An integer scalar defining the extent of core to ~ealloca ted wi th each ori gin NDEX (I)

Number of ori gins to be defined

Labeled Cc~~on

LIMITS, NDICZ 3

• Subrou tines Ca lled

None

~r~or Detec ti on

• . - -



SUBROUTINE NITIAL

This is the intializing routine.

A lgori thm

The variables Ni through N20, which are contained within l abeled
common TAPES, are sequencially set to represent tapes 1 through 4, and
8 through 23.

The Input matrices are read in thei r FØRMAT generated mode and
wri tten onto their interim, or intended , data sets via subroutine
MATIN. The following delimi ting parameters are read from the first
input card.

Item Type Descripti on

BETA INTEGER Starting time

NELEMS INTEGER Number of structural elements

NIRVIS INTEGER Number of time intervals

HG INTEGER Hunter of modes

HEAT LOGICAL “TRUE” indicates presence of
thermal conditions

HJTS INTEGER Number of structura l joints

NW
~
RK INTEGER Number of words in blank common

Blank common array A is apporti oned to the vari ous matrices and
arrays through the designati on of their respecti ve ori gins by the
index from labeled common NDICES.

• • The NTRVLS values concerning the time array are read into the
space Leginning wi th A(ITIME) and checked for their being in ascending

• orcer. Executi on is halted wi th an appropriate statement when this
check fails.

350

~ 

— —-- - - • • - • • - — — - - —



T~1IS PAGE iS BEST QUAlITY PBACT~ C~L~~~

~~~ M COPY iUR~ISHE~ ~~~~~ ..~~~~~~
—

Th~ constant matri x for cell elements is ;enerated and stored
at A (ISI~ZS).

Overlay withi n array A is effected by assigning I~(3L and IU the
same va1 ue The fi rst of these subscripts represent the origin of
space used by subroutine ~~ S~L only; :he second is the leading sub-
script of non-conversant space used by other modules .

Subroutine READ~ is invoked to merge selected matrices residing
on i nterim data se ts. The arrays wh ich are to ac:o~~cdata the f~iiow-
thg vectors are initi ali zed with zerces : ~7, 7,

~~~

, J~J~ 
~~~~~~~~~~~~~~~~

~~(C)u’ ~ (~ u’ and ~
‘
CL

!nout/Ou t~ut

All card input takes 2lace ii this routine. In addi:icn , the
following input matrices are wrt :an onto the post-processing data
set, tape 2: the array of constants under its i nput F~R~AT program
matrix name ; the array of time intervals under the matri x name 11’E;
the array of joint coordinates under the matri x name UZE~ø; vectors

and ~ — under their inout names .(~1U uPi -

~r:urnent List

None

Labeled Co~~on

LIMITS , HOICES , TAPES

Luorou tines alle d

•~s’~’s, :~-o~ :;, ~x-:~, ~Cx~ZT , ~~~~~~ ~~~~~~~~ ~~~~~ SC~T , ~~~~~~~~~ :~ c

Err~ r e:ac:4:i

- -

I
SUBROUT I NE OUTPUT

This routine stores output onto the output data set in the mode
of the FORMAT program.

Al gorl thm

• Vectors ~~, S~, ~~~, ~~~, 6PJ, and are written onto data set 2
as a single column FORMAT matrix with the name RESPNS.

tnput/Outp~ut

Matrix RESPNS is output to data set 2.

Argument List

None

Labeled Common

LIMITS, NOICES , TAPES

Subroutines Called

WRITE

Error Detection

None

1

4 .

352

TT _ _ _ _ _

_ _ _ _ _ _

T~~~~
w

~~ IS PAGE IS BEST QU AlITY PBACTL~4!~J
PROM Ok~L ~~~~~~~~~~ 1V ~~Q

SUBROUTINE PSARUF

This routine reads a parti tion of matrix ~~ and the :orrespon~ing
parti tion of matrix

Algori thm

Data sat Nl 3 contains matrix ~~ in the fcrm of one partiti on per
record . ~eading one such record provides the informati on necessary
to determine the columms bounding the des i red par tition of

Inout/Outout

Matrix is read frcm data set N13. ~atri x ~~ is read fromr
data set N il.

Arcumenc L i s t

None

Labeled Common

LIMITS , NDICES , TAPE S

Subroutine C-~l i~d

REA~A , EUTL~

Error Detection

None

F -

——

2

-—

~~~~~~~~~ -~~~~~~~~~
-
~~~~~~

—- — ~~~~
- • ~~~~~~~

• .

SUBROUTINE PREEIG

This routine generates matrices 11, R, ~ and

Al qori thm

For each element, the matrix operati ons are performed through
abstraction like CALL statements to utility routines. Havi ng initializ-
ed matrices L ~~, i~T, V, and as zero, the matrix operations per-
formed are as follows:

~~KO ~

o =
~UF fr

P = P + D 6 F KQ

OK =

= ~ + OK

~~ C + D ~~D
T

* ~ +
~UF m

If point mass elements exist their contributi on to the modal mass
matrix , ~i, is computed and added by a single call to subroutine PTMASS.

Input/Output

For each physi cal element, a partition of the matrices ~~~, ~~~ and
~~

— is read in that sequence from data set Ni. Similar partitions ofe1
matrices

~UF’
FT1 and m are read from data sets Nil , N13 and N10,

respectively. The contribution of each physical element to matri x
OK is wri tten onto data set N7 and , similarl y, the contribution to
6F KO is written onto H15.

-

•

- -

- A rgument List ThI S PAGE IS BEST QUAlITY m~~ 1C~~~~~
PROM CO1~Y I USki~ D TO ~~~~~~~

None

Labeled Common

L:MITS , NDICZS I TAPES -

Sub routine Called

ABSY M , .AOO , ASY MB, CHGSGN , ~8AR , MULl , PSA RUF , PThtASS, RE.ACA , SY~ABT ,
‘
~RITE?4, ZER~

Error Detection

~1one

I
- ’

L

I-

- - - - . -

~~~~~
-

~~~
- - --- - - •

~~~~~~~ 
•



— — —  ..

SUBROUTINE PRI ~ITR

This routine prints a core resident matrix.

Al gori thin

Groups of not more than 8 columns across each page are written
for partitions of not more than 55 rows. Each page is headed wi th
the title. The column designations appear under the title. The row
designations precede each row. Only the most si gnifi cant aspect of
double precision matrices is wri tten. Two calls to this routine are
required to print a complex matrix.

InputJOutput

None

Argument Lis t

A A real array accommodati ng the matri x to be printed

K An in teger scalar used as a dimensioning vari able. K
for real and single precision arrays. K = 2 for compressed
or double precision arrays. K = 4 for double precision
complex arrays.

M An integer scalar defining the row dimension

N An integer scalar defining the column dimension

TITLE An alphanumeric scalar for header data

Labeled Common

None

Subrouti nes Called

;lone

356



-•~~~~~~~~~~~~~~~~ - -~~~~~~~ • - - •~~~~~~ - - -  -• -• -- —-— --—-~~ - - •~~~~~~~~~~ --“--•--

ThIS PAGI IS BEST QUALITY PR&CTLCL~~I

~rrc r etec t~on 



- -- 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _ __ _

SUBROUT INE PTMASS

This routine concludes the computations of 1T with the contributions
of the point-mass elements.

Algori thm

The computations concern the triple product
~UF MEL ~UF involvin g

point mass elements. MEL consists of one element. The columns of
these matrices are read and the computations are exercised upon
matching the column designations.

Input/Output

Matrix MEL is read from data set NlO. Matrix
~UF is read from

data set Ui).

Argument List

None

Labeled Cornon

LIMITS , NOICES , TAPES

Subroutines Called

READA, EUTL9, ABSYM , SYMABT

Error Detection

None

358

- - -~~~~~~~- • - • -~~~~~~~- ——~~~~~~~~~ •-~~~~~~~~~~~~ -~~~
- -

~~~~~~~~~



SUBRCUTINE READK

This routine transcribes F~R~AT program generated matrices from
In terim data sets to their Intended data sets .

Alçori thm

The symmetri c quasi-diagona l matri ces ~~, e~ and E are read in their
full for~~. They are retained only In thei r symmetri c hal ves prior
to bei ng wri tten as single compressed records .

Matri x £e1 is simply copied from its input to its output tape.
The quasi-diagonal matrix 

~~~~~ 
is output in records of sub—matri x

parti ti ons.

Inout/Outout

Matrices ~~, a~, ~~, d~ ., and F=~ are respecti vel y read from data

sets M8, N1.9, N1~ , NiO , and N4; matrices a3 and are wri ttCn Onto
data sets N16 and N13. Matrices ~~, ~~~ and -

~~~~~~

. are wri tten onto data
set Ni i n the sequence 

~~~~
, c~, ai~,

~
,
~~~ ~~~~~~~~~ etc.

Arcumen t List

None

Labeled Common

LIMITS , NOICES , TAPES

SubroutInes Called

EUTU, ~3AR , ~EACA , ~RiTE

E~~tr et~O ti- ~n

~cne



- —- —~~~ ——-- --
- 
-

~~~~~ 
—-

SUBROUTINE READM

This routine reads a matrix which was written on a scratch data set
via subroutine WRITEM.

Al gori thm
-

The matrix is read via subroutine READA . Should it be compressed,
subroutine EUTL9 expands it.

Input/Output

The matri x is read from data set NT.

Argument List

M A duni~ argument
N A dummy argument

A A real array into which the matrix is read

NT An integer scalar defining the input data set

Labeled Common

None

Subroutine Called

None

Error Detection

None

.
(I

360
_ _ _ ------ -

__

SUBROUTINE SBTRCT
This routine computes the arithmetic di fference between two

vectors.

Algori thm
-

The algebraic difference between vectors A and B Is stored In
vector C.

Input/Output

None

ArQument List

C A real array for the resulting vector

A A real array for the vector being subtracted

B A rea l array for the subtracting vector

N An integer scalar defining the order of vectors

Labeled Common

None

Subroutines Called

None

Error Detection

None

361

- _ _ _ _ _ _ _ — —

____ - -~~~~~~~~~~~~~~~~ ---~~~~~
.

SUBROUTI NE SI GFBR
This routine partitions a quasi-diagonal matrix and outputs its

partitions in single compressed records.

Algorithm

The columns of each partition are read and stored consecutively in

their compressed format. In the process, the row designations are
replaced by the location of the elements relati ve to the current sub—

matrix. A single call to sub routine EUTL9 expands the partition which

is then output by subroutine WRITEM.

Input/Output

The matrix Is read from data set Nl4 and written onto data set

N12.

Argument List

None

Labeled Common

TAPES, LIMITS, NDICES

Subroutines Called

EUTL9 , READA, WRITEM

-
S Error Detecti on

None

I
- — - -

362

F-

--

r -
~~~~~

-- - -
~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- . -——,-- -- . - - - -— -- -~~~~

SUB ROUT I NE SMULT

This routine scales a matrix.

Algori thm

Each element of array A is multip lied by the scalar S, and the
product is stored in array C.

Input/Output

None

Araument List

C A real array accommodating the output matrix

S A real scalar coefficient

A A real array accornodating the matrix to be scaled

M An Integer scalar defining the row dimension

N An Integer scalar defining the column dimension

Labeled Common
None

S Subroutines Called

lone

Error Detection

None

15

363

- - ~~~~~— ~~~~~~~ - - - - --~~~~~~~~ - - - - -,  - - -~~~~~
- 

- -



SUBROUTINE SYMABI

This routine computes the triangular half of a symmetric matrix
where the post-multiplier is transposed.

A~gorithm -

The mode of storage of the product matrix Is Cil~
•
~~

Cin~ 
C22

...I
2I~,

átc. When the logical variable SUM Is false, the array accommodating
the resulting matrix is ini tialized as zero.

Input/Output

None

Argument List

C A real array for the triangular product matrix
S A A real array for the pre-multiplier matrix

B A real array for the transposed post-multi plier matrix

M An integer scalar defining the row dimension of all matrices

N An integer scalar defining the column dimension of A
•and B matrices

SUM A logical scalar when false, causes the resulting matrix
to be initialized as zero

Labeled Common

None

Subroutines Called

S None

Error Detection

l~one

_ _ _ _ _ _



SUBROUTINE SYMFIL

This routine stores a sylTinetric half matrix into the partition of
an array while reversing the sign. 

- S

Algori thm

The mode of storage of the symmetric half—matri x is a11 , ... a11~,
a22 •... When K ~ 1, the receiving matrix is real. Uhen K = 2, it
is complex. Note that in this case , the imaginary components are left
untouched.

Input/Output

~lone

Argument List

A A real array for the symmetric half-matrix

B A real or complex array for the output matrix

K An integer scalar where K = 1 for real B array, K 2 for
complex B array

11 -An integer scalar defining the row dimension of B array

N An integer scalar defining the order of symmetric matrix

Labeled Common

None

-- Subroutines Called

None

Error Detection

None

365

________  _______________ 
S - -—— ~~~-—~~~

— — — — S . —  ~~~ _S~S_5_~~~~~ ~~! ~~i_. ~~~~~~~~~~~~~~~~~~~~~



SUBROUTINE SYMSØL

Gi ven matrices L and B in the expression LLTX = B; this routine
transforms B into X.

Algori thm 
-

The mode of storage for matrix L is 111) • • • . ~~~ la” . X l~
computed by way of V where LY B. Then, L X = V. The array storing
matrices B and X may be real or complex. When the integer K Is 1 , the
array i s real ; when K is 2, the array is complex.

Input/Output

None

Argument List

A A real array accommodating matrix L In the mode of
storage 1 ll ”~~n1’ 

122~~
B A real or comp lex array accommodating matrices B , V and X

K An integer scalar where array B is real when K = 1 , and
complex when K = 2

M ‘An integer scalar defi ning the row dimension of array B

Fl An integer scalar defining th~ order of equation

P An integer scalar defining the number of columns in
matri ces B, V and X

Labeled Common

None

Subroutines Cal led

- -  

None

366

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S •

S _ ________ ______________

Error Detection

None

367

_________ - ~~ -~~~~~~~----- - — -~~~---~~~~-- .
~~.- —~~~

-
~~~~ _~~ 

--
~~~ - --~~-- --

-—— -
~~~~~~~~~~~~~~~~~~~ -: -



. S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

SUBROUTINE TMULT

This routine performs a matrix cross product wherein the pre-
mul tiplier matri x is transposed .

Al gorithm

The matri x product transpose ATB is added to matrix C. Matrix C

is initialized to zero only when the logical variable SUM is false.

Input/Output

None

Argument List

C A real array accomodating the product matrix

A A real array accommodating the pre—mu ltiplier matrix

B A real array accommodating the post-multiplier matrix

M An integer scalar defining the row dimension of matrix C
and column dimens ion of matri x A

An integer row dimension of matrices A and B

N An i nteger scalar defining the row dimension of matrix C
and column dimension of matrix A

An integer row dimension of matrices A and B

P An integer column dimension of matrices B and C

SUM A log ical scalar when false causes array C to be
initi alized as zero

Labeled Comon

None

t .

368
L

___________ 
~~~~~~ — 

—

- ~~~~~~ -- -S~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- —-‘~~~~----- .-- .-S.-_-,- -.-—-- ---- ----- ---~-S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— -~ -

1

Subroutines Called

None

Error Detection

None -

—

369

__________________—_ -S.— ~~~~~ —.--_~~~~~~~~
S

SUBROUTINE VDMULT

This routine performs the element by element Droduct of two complex
vectors.

Al gorithm

The element by element product of complex vectors A and B is
stored in vector C.

t
.

Input/Output

None S

Argument List

C A complex array for the output vector C

A A complex array for the input vector A

B A complex array for the input vector B

N An integer scalar defining the order of the vectors

Labeled Common

None

Subroutines Calle d

None

Error Detection

None

(S

370

—
ST ::_______

S~~~~~~~~~~ Ja~~~~ LAS. S — - -r --.- - -,—-—- —--- --

-

SUBROUTINE WRITEM

This routine writes a one-record matrix , compressed (as required).

Al gori thm

Following an attempt to compress the matrix via subroutine SQUEEZ,
It is wri tten onto the output data set NT.

InputJoutput

The matri x Is written onto the output data set.

Argument List

M An integer scalar defining the matrix row dimension

N An integer scalar defining the matrix column dimension

A A real array for the input matrix

141 An integer scalar defining the output data set

Labeled Common

None

Subroutines Called

SQUEEZ, WRITE

Error Detection
None

S
— S

371

-- S.

SUBROUT I HE XPØHNT

Given complex vector D and vector 1, thIs routine finds vector
A ,, eD*T .

Algorithm

All computations take place in the real mode as vectors A and D

are doubly dimensioned arrays.

Input/Output

None

Argument List

A A real array accommodating the output vector

0 A real array for the complex Input vector treated in the
real mode

T A real array for the input vector S

N An integer scalar defining the order of vectors

Labeled Common

None j -

Subroutines Called

None

Error Detection

t~one

372
________________ - - 5

j
—--- -S..-——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _5- -_-___•_-__ - S.S - — - - - - - -5 .—-

_ _ _ - ~~~~~~~‘ S

(J SUBROUTINE ZER~
This routine zeros an array.

Al qori thin

The specified extent of array A is set to zero. P

Input/Output

None 1 :

Arq~ument List

A A real array to be set to zero

N An integer scalar defining the extent of A to be set
to zero

Labeled Common

None

Subroutines Called

None

Error Detection

None

373

r. - ___________ - ---
~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~

APPENDIX E -

- 

. 

NONLINEAR INCREMENTAL ROUTINES
AND LABELED CO~~ON BLOCKS

- 375

-— — ——  S.~~
_ __________________________ - 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~ _ 5~~~~~~~~~~~~~ - ~-



APPENDIX E
NONLINEAR INCREMENTAL ROUTINES

AND
LABELED COMMON BLOCKS

This appendix contains detailed descriptions of all routines and
labeled coninon bl ocks In this program. Table E gives either page number
references within this document or references to other documents for
documentation of each routine or label ed common block. Some page number
references may be to preceding appendices where the documentation for
a routine in this program is identical to a previously documented routine.
This does not imply verbatum source code duplication for the routine, only
functional duplication is impl ied.

The detailed description of each routine Is divided Into the fol lowing
subheadings:

Al gorithm verbal flow chart of routine log ic and data flow

In put/Output description of all external data set input/output

~~ ument List name , type, and description of each argument

Labeled Common l ist of all labeled common blocks declared

Subroutines Called list of all routir,as called

Error Detection description of tests made for errors and action
— taken

The detailed description of each labeled common block is divided into
the following subheadings :

Declaration verbatum declaration of the labeled common block

Contents name and description of each variable appearing
in the declaration

tisaoe list of all routines which contain declarations
for the label.ed coninon block

376

- - - 



- — - - -——---- S - -~~~ S~~

- TABLE E. INDEX TO NONLINEAR INCREMENTAL ROUTINES AND
LABELED COMMON BLOCKS

Page

MAIN PROGRAM RESPNS . . . . . . .  380

LABELED COI4ION CRRAYS  382
LABELED COMMON FICNDX • 383
LABELED COMMON GEØMS 385
I..ABELED COMMON LIMITS • 386
LABELED COMMON LPEM   388
LABELED COMMON NDICES 393
LABELED COMMON TAPES • • • 397

SUBROUTINE ABSYM • 3~5
SUBROUTINE ADD  326
SUBROUTINE . ASYMB 327
SUBROUTINE AVRAGE 399
SUBROUTINE BALANC. ...  Ref. 16
SUBROUTINE BALBAK  Ref. 16

S SUBROUTINE . CCMULT  329
SUBROUTINE CHGSGN ....  331
SUBROUTINE CHKØUT.....  400
SUBROUTINE CHKPNT 401
SUBROUTINE CHLSKY..  332
SUBROUTINE COPY 333
SUBROUTINE CRMU L T . . . .   334
SUBROUTINE EDGUNV . . . . . . . . . . . . . .  402
SUBROUTINE EIGSOL . . . . . . . . . . . . .  404
SUBROUTINE ELMHES • Ref. l6
SUBROUTINE ELTRAN . . . . . . . . • . • • Ref. 16
SUBROUTINE EUTL9  Ref. 6
SUBROUTINE F I FDEF . . .. . 406 

S

SUBROUTINE FØRMA T..... . . 409

- — -5- —S.--- S. --
- 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ S.S.S.~~S. SS. •AS.~I~S.~~S.5.S.S.~ - S~~ S.S~~~~~~~S.S. - • S S .-S S S . S


I
- TABLE E. INDEX TO NONLINEAR INCREMENTAL ROUTINES AND

LABELED COMMON BLOCKS (Continued)
Page

SUBROUTINE GEOM . . . S 410
SUBROUTINE HALT . • 339
SUBROUTINE HQR • Ref. 16
SUBROUTINE HQR2 Pef. l6
SUBROUTINE IMBAL • 411 5 ’
SUBROUTINE JORDAN * . . • 341
SUBROUTINE LPBFIC

-
. . . . • • 414

SUBROUTINE LPBG • 415
SUBROUTINE LPCFFB 417
SUBROUTINE LPCF IC.. • 418
SUBROUTINE LPCG 419
SUBROUTINE LPCSFB • 420
SUBROUTINE LPMFFB • 4~
SUBROUTINE LPMFIC • 422
SUBROUTINE LPMG 423
SUBROUTINE LPMSZD • 4~4
SUBROUTINE LPMS1 425
SUBROUTINE LPMS2 426
SUBROUTINE LPMZ 242
SUBROUTINE MATIN 344
SUBROUTINE MATPRT • 427
SUBROUTINE MBAR 346
SUBROUTINE MLTMAT 428
SUBROUTINE MULT •

~~~~~~~~~~~~~~~ 348
FUNCTION NDXSET   349
SUBROUTINE NEWKC • 429
SUBROUTINE NITIAL  •  431
SUBROUTINE NKRK.. .   434

j SUBROUTINE O UTPUT. .    435
SUBROUTINE PSARUF 353
SUBROUTINE PLOP  437

378

I ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _  s -s - - -

- S.S.—~~---~~~ -- -- -- -S —-- ~~S. ~ S.S.S.~~- ~~ ---~~~~~~~~~~ - 
—-S.-

- c n ~~zras t.__fl:: tC



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~

TABLE E. INDEX TO NONLINEAR INCRMENTAL ROUTINES AND
LABELED COMMON BLOCKS (Continued)

Page

FUNCTION POLSOL 438
SUBROUTINE PREBAL 440
SUBROUTINE PREBG M. ... 443
SUBROUTINE PREBGU.. 444
SUBROUTINE PREBLL 446
SUBROUTINE PREBST 447
SUBROUTINE PREEIG . • 44~
SUBROUTINE PTMASS 358
SUBROUTINE READA * • Ref. S
SUBROUTINE READK 359
SUBROUTINE READM * 360
SUBROUTINE RGEIG * Ref. 16
SUBROUTINE . SBTRCT3 6 1
SUBROUTINE SMULT • 363
SUBROUTINE SQUEEZ Ref. 5
SUBROUTINE SYllABI . • 364

S SUBROUTINE • SYMFIL . . 365
SUBROUTINE SYMSOL 366
SUBROUTINE TMULT 368
SUBROUTINE TRNMLT. 451
SUBROUTINE V D M U L T • 370
SUBROUTINE V E C T 284
SUBROUTINE WRITE Ref. 5
SUBROUTINE WR ITEM.... . • 37l
SUBROUTINE XPØNNT • • 372SUBROUTINE ZERO 373

~~L- :_ L
~SS. 5~~

— _

~~~~~~ S D* .~ _ -s-  si 5..~~~_ ~~~~~~~~~~~~ ~~~~~~ 

S.



—— S ~~~~~~ S.55. — S  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - S -

MAIN PRØGRAM RESPNS

This is the executive routine for the Nonlinear Incremental Solution
program.

Al gorithm

This routine controls the incremental solution process including the 
S

iterations necessary to determine the modal response. Routine NITIAL is
called first to establish partitions of array A in blank common as required
by problem size. Routine ØUTPUT is then called to transcribe certain mast-
er input data to the master output file.

A loop is then entered the index of which is the number of increments
defined in the card input data . Routines PREEIG , EIGSOL , FIFDEF , PREBAL ,
and IMBAL are the executive routines for the modules which make up the in-
cremental solution . These modules are called in sequence for each incre-
ment within which routines EIGSOL and FIFDEF are iterated through 5 times.
The variab l~ controlling the number of iterations is NFFMAX which is Initial-
ized as 5.

The basic functions of each routine called during the Incremental sol-
ution are

1) PREEIG - compute M in the first increment and compute K, C, and P
In every increment

2) EIGSOL - assemble the A matrix , solve for all eigenvalues and eigen-
vectors , and compute the modal response, 6~, v, and ~

3) FIFDEF — temporarily update geometry and compute the fictitious
force and deformation effects, Sk and tk 

-

4) PREBAL - permanently update geometry and regenerate F~ and
5) IMBAL - compute element forces, stresses, and strains from the

modal response and new geometry

Array DBLL is used to store the cumulative modal displacements , ~~, and
--  

S is of length NG , the number of modes. This array is currently declared in
a DIMENSION stater~ent and is of length 75. A partition of length NG for

_ _  

- 

380 

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~



storing ~ should be allocated in the blank common array A by routine NITIAL
rather than using a dimensioned array.

Array A (IVBX) is used to store the modal l oads , P, which are acting
at the beginning of the increment. Arrays A(ISK) and A(ITK) are used to
store the equivalent modal loads due to fictitfous force and deformation
effects , respectively, which at computed by FIFDEF for each iteration .

Input/Output

None

Arguments

None

Labeled Common

NDICES , LIMITS, TAPES

Subroutines Called

COPY , EIGSOL, FIFDEF , IMBAL , NITIAL , ØUTPUT, PREBAL , PREEIG , ZERO

Error Detection

None

I

381

L “ _ - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - —
~~

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -

~~-

AD—A 063 741 DOUGLAS AIRCRAFT CO LONG BEACH CALIF F/S 113
AIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 3. PROGRAIIMING——ETCCU)
DEC 77 R C MORRIS F33615—75—C—3105

UNCLASSIFIED MDC—J—7174—Dt—3 AFFD L—T R—77—99—PT—3 NI.

USa 74

n

r

I

Subroutines Called

None

Error Detection

None

E

285

L

_ _ _ _ _ _

-:
~~~~~~~~ L~~ T

SU8ROUTI~1E W PART

This routine writes a partition of a matrix onto tape in standard
FORMAT matrix data format.

Algori thm

Each column of the matrix partition A is written onto tape In the
compressed mode. The origin of matrix partition A in the overall output
matrix is at row IROW and column ICOL. The row/column indices of the

• element of array A are Incremented by IROW and ICOL to obtain their proper
location In the overall matrix.

Inout/Output

A matrix partition Is written onto tape TAPENØ .

Argument List

TAPEtIO An integer scalar defining the number of the last col umn
output logical tape number

IRØW An integer scalar defining the number of last row output

ICOL An integer scalar defining the number of the last column
output

A A real array for the core resident matrix partition A

M An Integer scalar defining the number of rows of matrix
parti tion A

N An integer scalar defining the number of column s of matrix
partition A

Labeled Common

None

Subroutines Called

None

286



Error Detection

None

I

I •~~

• 287



-~~~~~ --~-- •
~~~

•
~~~~

SUBROUTINE WRf1AT

This routine prints a matrix residing in the core.

Al gorIthm

The maximum column dimension of the matrix to be printed Is 50. If

MAP Is equal to zero, the elements of the matrix are printed . If MAP

is not zero, a map of the non-zero elements of the matrix is printed.
This routine is executed only in runs made for program checkout.

Input/Output

Matrix data is printed on tape 6.

Argument List

AMAT A real array for the matrix to be printed

M An integer scalar defining the number of rows in AMAT

N An integer scalar defining the number of columns of ANAl

MAP An integer scalar print control flag

LABEL Matrix label

L An integer scalar defin ing the number of words (10 char/word)
In LABEL

Labeled Common

None

Subroutines Cal l ed

None

Error Detection
r None

: ~ TT~ TTTT’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ _ _ _


— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ----—-———

SUBROUTINE WTAPE1

This routine reads the element partitions for matrices KEL, MEL,
(BAR , CBAR , FFBAR , SIGFB , EPS IG , DEBT. EVT , and CØHST, assentles the
parti tions into the final matrices , and outputs the matrices as
standard FØRMAT matrix data .

Algori thm

The order In which the first nine output matri ces are processed
is KEL, MEL, KBAR, CBAR, FFBAR, SIGFB, DPSIG , DEBT , and EVT . In each
case, the element data is read and processed in the order bars , mentranes,
and cells. The only matrix havi ng contributions from point mass ele-
ments , whi ch are processed last , is matri x MEL. However , trailing null
parti ti ons are also present in matri x KEL for point mass elements .

In all of these matrices with the excepti on of DEBT and EVT , the
element parti tions are positi oned as diagonal or psuedo diagonal
parti tions. In matrices DEBT and EVT , each element partition Is a single
column each beginning In the first row.

Finally, array CØNST which contains problem constants Is output
as a single column matrix.

Input/Output

Matrix data Is read from tapes 7 through 15 and all output data
Is wri tten to tape 1.

Tape Matrix

14 KEL
10 MEL
13 KBAR
8 CBAR

12 FFBAR

289

-~~~~~~

Tape Matri x
15 SIGFB
11 EPSIG
9 DEBT
7 EVT

Argument List

None

Labeled Comon

CØNST, IERROR

Subroutines Called

NATHD, MATTR, WPART

Error Detecti on

None

I
290 •

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
.
~~~~
.•- --•



APPENDIX C

LOADS GENE RATflR ROUTINES



APPENDIX C
LOADS GENERATOR ROUTINES

This appendix contains detailed descriptions of all routines in this
program. Table C gives either page number references within this document
or references to other documents for documentation of each routine. Some
page number references may be to preceding appendices where the documentation
for a routine in this program is identical to a previously documented
routine. This does not imply verbatum source code duplication for the
routine , only functional duplication is Implied.

The detailed description of each routine is divided into the following
subheadings :

Al gorithm verbal flow chart of routine logic and data flow

Input/Output description of all external data set input/output

Argument LISt name, type, and description of each argument

Labeled Common l ist of all labeled common blocks declared

Subroutines Called list of all routines called

Error Detection description of tests made for errors and action
taken

292



I
f ~ -

‘ TABLE C. INDEX TO LOADS GENERATOR ROUTINES

Page

MAIN PROGRAM LØOGEN . . . . . . . . .2 9 4

SUBROUTINE CROSS .. . . . . . . . . . . . . . . . . . . . . 121
SUBROUTINE DELTA . . . .  . . . . . . . . . . 296
F UNCTION DØT . . . .           . . .       122 —

SUBROUTINE G E N A B . . . .  
SUBROUTINE INVERT   • .  . .       300
SUBROUTINE MATMUL ,  301
SUBROUTINE OUTPUT                *      . 302
SUBROUTINE READB                     • . 304
SUBROUTINE READCN . . . . . . . 306
SUBROUTINE READCO . .. ~~~~~1~~~~~~~~~ • •  . 308
SUBROUTINE R E A D J . . . . . . . . . . . . . . . . . . . . . . 3 Q 9
SUBROUTINE . S Q U E E Z . . . . . . . . . . . . . . . . . . . . . .R e f . 5
SUBROUTINE U V E C . . . . . . .  . 134

293

• ~~~~~~•~~~~~~ -~~~~~~~ •



MAiN PRØGRAM LODGEN

The main program allocates core and calls subroutines to read , cal-
culate, and output incremental loads data.

Al gorithm

The subroutines READCO and READCN are called and the average impact
force is calcula ted. The load increment loop is then entered and READB
and READJ are called. The current total load on the model and the loca-
tion of the center of its footprint for this load increment are calcu-
lated , the largest component of the centroidal vector is determined , and
the subroutines GENAB and MAThUL are called . If the load increment
number is greater than one and less than or equal to the total number
of load increments, subroutine DELTA is called . If the increment
number is one, there Is no need to calculate the change in loads from
the preceding increment to this, since this change is the current load ,
and if the load increment number is equal to the number of increments
plus one, the change in oad is the negative of the preceding load .
Subroutine ØUTPUT is then called and the current loads and the joints
of their applica tions are stored at the end of the A array for use in
the next load increment.

Input/Output

There is no input; all output is printed on file 6.

Argument List

None

Label ed Common

None

294

•



Subroutines Called

CROSS, DOT, MAThUL, READB , READCO , UVEC , DELTA, GEMS, OUTPUT, READCN,READJ

Error Detection

If, in either of the checks on utilization of the A array, It is
found that the available storage In the A array has been exceeded, the
message

~INSUFFICIENT STORAGE nnnnn VS nnnnn’
is printed and the program is terminated.

4

• 
295

_ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



I
SUBROUTINE DELTA

This routine compares the joint loads of the current load increment
to the joint loads of the previous load increment and finds the change
in load at each joint.

Al gorithm

Since only non-zero joint loads for the current and previous load
increments are stored In order of the joint numbers , there are three
basic possibilit ies for each change in joint load . (1) The joint is
loaded in the current increment, but not in the previous increment;
(2) the joint is loaded in both the current and previous increments ;
or (3) the joint was loaded in the previous increment but not in the
current increment. In any case the change in load on the joints loaded
currently or in the previous load increments , are found and stored in
order of the numbers of the joints .

~!p~t/Out

None

Argument List

JOINTO 
• 

An integer array of the numbers of joints that received
load In the previous load increment

PHIOLD A real array of loads on the joints in the previous load
increment

JOINTN An integer array of the numbers of joints that receive
load in this increment

PHINEW A real array of the loads on the joints In the current
load increment

JTDEL An integer array of the numbers of joints that were loaded
• in the previous load increment or are loaded In the

current increment

DELPHI A real array of the changes in joint l oads from the
previous load increment



~~~~ : ~~~~~~~-•~ ..—- 2-~ — . . • _~~~~~ _ . — ---— _ •

NJTO An integer scalar defining the number of joints that re-
~eived load in the previous load i ncrement

NJTN An integer scalar defining the number of joints that
receive load in the current increment

NDELPH An Integer scalar defining the number of joints that
receive load in either the current or previous load
increments

Labeled Common

None

Subroutines Called

None

Error Detection

None

(.

297

r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUBROUTINE GENAB.

This routine generates the A and B matrices.

Al gorl thm

The B matrix ’s three members are calculated first from the cross
product of the vector to the current footprint location and the unit
vector in the direction of load application . The A array (dimension
3X NJTN) is created second, using the cross products of the vectors
to the joints that are to receive load and the unit vector in the
direction of load application .

Input/Output

None

Argument List

COORJ A real array of coordinates of all the joints

JOXNTN An integer array defining numbers of joints that are to
be l oaded in this load increment

ABETA A real array defining the A array for this load increment

BBETA A real array defining the B array for this load increment

CBETA A real array of the coordinates of the center of the
footprint

UVAPP A real array defining the unit vectnr In the direction of
load application

NJTN An integer scalar defining the number of joints to be
loaded in this load increment

IROW2 An integer scalar defining the number of one of the
principal axes in the reference plane

IROW3 An integer scalar defining the number of the other
principal axis in the reference plane

_ _ _ _ _ —

298

-

• I - Label ed Common

None

Subroutines Called

None

Error Detection

None

299

SUBROUTINE INVERT

This routine inverts a 3 x 3 matrix by the method of successive
transformations.

Al gorithm

An identity matrix is set up first, then, while the matrix to be
inverted is turned into an identity matrix , the row operations to do so
are also performed on the identity matrix. When the input matrix is
an identity matrix , the identity matrix has been transformed into the
inverse matrix.

Input/Output

None

Argument List

AAT A real array defining the input matrix to be inverted

AATIN A real array defining the inverted output matrix

Labeled Common

None

Subroutines Called

None

Error Detection

None

-
- I

~~~~~ ‘

:~~~~ ~~~~~~~~~~~~~~~~~~ . .  •~~~~~~~~~~~~~~ _ _ _ • •~••t1



• 
••-

SUBROUTINE MATMUt.

This routine performs the matrix multiplication AT(MTY 1BF.

Algorithm

The first step is to obtain MT, then the matrix multiplication
AT(AA TY~ is performed. The final two steps are the matrix multipl i-
cation AT(MTY~B and the scalar multiplication AT(AA T)..1BF.

~~put/Output

None

Argument List

ABETA A real array defining the A matrix for this load increment

PREPRØ A real array of storage area for the pre-product

PHINEW A real array defining the final matrix product of
loads on the joints

JOINT An Integer array defining the numbers of joints that are
to be loaded in this load increment

BBETA A real array defining the B matrix

F 
•
A real scalar defining the total load for this increment

NJTN An integer scalar defining the number of joints to receive
load in this increment

Labeled Common

None

Subroutines Called

INVERT

Error Detection

None

301

L - . - -



SUBROUTINE OUTPUT

This routine prints, punches and writes (on tape) the output data.

Algorithm

The output is produced in two forms. The first form is for the
user to use for checking the input data. The constant data (mass
velocity , duration of impact, average Impact force, and the load appl i-
cation unit vector) are printed first, then the current load and the
change in load that occurred between the preceding and current load
increments for each joint that undergoes a change in load are printed.
The second form of output is printed for the benefit of the user and
written on tape for analysis programs downstream. The format used is
that for a FORMAT matrix whose rows are the degree of freedom numbers
and whose columns are the load increment numbers. The change in load
between the previous and current load increments are divided along the
degrees of freedom and are written accordingly.

Input/Output

The output is written on files 6, JTAPE and KTAPE.

Argument List

DELPHI A real array of the change in joint loads from the previous
to the current load increment

JØINT An integer array of the numbers of joints that undergo
changes in load from the previous to the current load
increment

PHINEW A real array of the loads on the joints in the current
increment

JØINTN An integer array of the numbers of joints that receive
load In the current load Increment

IBETA An integer scalar defining the number of the load incre-
ment

I
_ _ _ _  

- 

302

I ~~~~~~~~~~~~~~~~~~ 
-.——— —

L - - • - -—- •. ———•~ ~~-- - - --— - • ----—- — - - -_____



F A real scalar defining the total load applied in the current
ncrement

UVAPP A real array defining a unit vector in the direction of the
applied load

NJTN An integer scalar defining the number of joints that received
load in the current Increment

NDELPH An integer scalar defining the number of joints that undergo
changes in load between the current and preceding l oad
increments

NOOF An integer scalar defining the total number of degrees of
freedom •

AMASS A real scalar defining the mass of the bird

VEt. A real scal ar defining the veloci ty of the bird

TIME A real scalar defining the duration of impact

FAVG A real scalar defining the average load

UVEL A real array defining a unit vector of the velocity of the
bird

JTAPE An integer scalar defining the number of the output file
that will contain the FORMAT matrix card Images

KTAPE An integer scalar defining the number of the output file
that corresponds to the FØRMAT tape output

NBETAP An integer scalar defining the total number of load increments
plus one

COLM A real array used to assemble a column of the output matri x

Labeled Common

None

Subroutines Cal led

SQUEEZ

Error Detect ion

None

303



— - - -~~
--w - • -•- •- ~~

--
~~~

•
~~~~-

•
~~• - - - • - • ~~~~~~~~~~~~~~~~~~~~~~ 

• - - - - •••
~~~ • - -~~

- ••-, -•- •-
~~

- • •

SUBROUTINE READB

This routine reads the footprint travel and load factor for the
current load increment.

Al gorithm

The input file is read until a Data Code 11 card is read. The Data
Code 11 cards are read until a card with a flag of 6 is found. The
cards with a flag of 6 are read unti l the card with the current incre-
ment number is read and the data is stored. The subroutine then returns
to the main program.

Input/Output

The input is read from file ITAPE.

Argument List

DBETA A real scalar defining the distance the footprint travels
from the initial impact point

FACTOR A real scalar defining the current position portion of
the average impact load to be appl ied for the current
load increment

IBETA An integer scalar defining the current increment number

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

Subroutines Called

None

Error Detection

If no Data Code 11 cards are read the message
NO CONSTANTS (DATA CODE I l) ENCOUNTERED IN INPUT ’

304

•
..; ~:• ;• ~~~~~~~~~~~~~~~~~~~~~

—

is printed. If the card with data corresponding to the current load
Increment is not read the message
‘INCREMENT (BETA) NUMBER nnn NOT FOUND IN DATA CODE 11 DATA ’

is printed.

-

305

~

---.- ---- -— —-- ~~~~

—.~ ---- -~- ——-~~—

SUBROUTINE REAOCN

This routine reads the constants associated with the impact distri-
bution.

Al gorithm —

The input file is read until a Data Code 11 card is read . The input
file is backspaced one record and five cards are read and their data
stored before the subroutine returns to the main program.

Input/Output

The input is read from file ITAPE.

Argument List

NDOF An integer scalar defining the total number of degrees of
freedom

AMASS A real scalar defining the mass of the bird

VEt. A real scalar defining the velocity of the bird

ALENG A real scalar defining the length of the bird

UVEL A real array defining a unit vector In direction of bird
motion

UNØRM A real array defining a unit vector normal to the surface
at the impact point

UFOOT A real array defining a unit vector In the direction of
impact footprint travel

COORI A real array defining a vector from the origin to the
impact point

NBETA An integer scalar defining the number of load increments

ITAPE An integer scalar defining the number of the input file

Label ed Common

None

• 306

~~~~~~~~~~~~~~~~~~~~ 
— • •

_ _ _ _ _ _ _  
_______________________ • . -- •~~



- ~~~~~
-- - ••

•-“
• ‘l

Subroutines Called

None

Error Detection

If no Data Code 11 cards are read the message
‘NO CONSTANTS (DATA CODE 11) ENCOUNTERED IN INPUT’
is printed. If there are not at least five consecutive Data Code 11
cards, the message
‘MISSING DATA IN DATA CODE 11 ’
is printed .

S —

307



_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
SUBROUTINE READCO

This routine reads the joint coordinate data.

Algorithm

The input file Is read until a Data Code 2 card is found. The input
file is backspaced one record and the coordinate data is read and stored
unti l the data code is no longer 2 or unti l a joint number of 9999 is
read.

Input/Output

The input is read from file ITAPE.

Argument List

COORJ A real array of coordinates of joints stored by joint number

NJTOT An integer scalar defining the largest joint number input

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

Subroutines Called

None

Error Detection

If the end of Data Code 2 data is encountered without encountering
joint number 9999 the message
‘A 29999 CARD WAS NOT FOUND ’
is printed but execution continues . If no Data Code 2 data is found at
all, the message
‘NO JOINT COORDINATE DATA (DATE CODE 2) ENCOUNTERED IN INPUT ’
is printed .

I 
— -  - 

308



•
_

•--~~~~~
_.--- -•

~~
——.

~~~~~~
--—

~~~~

SUBROUTINE READJ •

This routine reads the joint numbers that will receive load in
the current load increment.

Algorithm

The input file is read until a Data Code 12 card is encountered. The
file is backspaced one record and the data is read, checking the incre-
ment number. When the current increment number is read the joint numbers
are read and stored for as many cards as have the current increment
number.

I nput/Out~ut

The Input is read from file ITAPE.

Argument List

JØINT An integer array defining the numbers of joints that are
to receive load during the current increment

NJTN An integer scalar defining the number of joints that are
contained in JOINT

IBETA An Integer scalar defining the current load increment number

ITAPE An integer scalar defining the number of the input file

Labeled Common

None

Subroutines Called

None

Error Detection

If no Data Code 12 cards are read the message

• . ‘NO LOADED JOINTS DATA (DATA CODE 12) ENCOUNTERED IN INPUT’

309

•_ _—---- •



is printed. If a card with data corresponding to the current load in-
crement is not read the message
‘JOINTS FOR INCREMENT (BETA) NUMBER nnnn NOT FOUND IN DATA CODE 12
DATA ’
is printed .

I
•1  

- 

310



• _____  •-•—-——-- .- -•——- ,_ • — .—_••—.._• ••••••-- - - -
~~~~~~

• •

APPENDIX D

LINEAR INCREMENTAL ROUTUIES AND
LABELED COt~t1ON BLOCKS

311 • •

r

APPENDIX 0
LINEAR INCREMENTAL ROUTINES

AND
LABELED COMMON BLOCKS

This appendix contains deta iled descri ptions of all routines and labeled
common blocks in this program. Table D gives either page number references
within this document or references to other documents for documentation
of each routine or label ed common block. Some page number references may
be to preceding appendices where the documentation for a routine in
this program is identical to a previously documented routine. This does
not imply verbatum source code duplication for the routine, only functional
duplication is impl ied.

The detailed description of each routine is divided into the following
subheadings:

Algori thm verbal flow chart of routine logic and data flow

Input/Output descripti on all external data set input/output

• Argument List , name, type, and description of each argument

Labeled Common list of all labeled common blocks declared

Subroutines Called list of all routi nes called

Error Detection description of tests made for errors and action
taken

The detailed description of each labeled cosmion block is divided into
the following subheadings :

Declaration verbatum declaration of the labeled common block

t Contents name and description of each variable appearing
in the declaration

Usage list of all routines~’which contain declarations
for the labeled common block

1,
*

•

312

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ • _ _ • ~ -. _— 
~~~~~~~~ •. .  -


TABLE D. INDEX TO LINEAR INCREHENTAL ROUTINES AND
LABELED COMMON BLOCKS

Page

MAIN PROGRAM R E S P N S 315

LABELED COMMON C L O C K . 317
L.ABELED COMMON LIMITS 318
LABELED COMMON NDICES 320
LABELED COMMON TAPES 323

SUBROUTINE ABSYM • • • • 325
SUBROUTINE ADD • 326
SUBROUTINE A S Y M B 327
SUBROUTINE B A L A N C . Ref. 16
SUBROUTINE BALBAK • Ref. l6
SUBROUTINE S CCMULT • 329
SUBROUTINE CHGSGN • . 33~

SUBROUTINE CHLSKY 332
SUBROUTINE COPY . . . •• 333
SUBROUTINE ’ CRMULT 334
SUBROUTINE EIGSOL

~~~~~~~~~~~~~~~~ 336
SUBROUTINE ELMHES . . . . . .  . . . . . . .  . . • • . • Ref. 16
SUBROUTINE ELTRAN . . . . . .  .  . . . . . . Ref. 16
SUBROUTINE EUTL9 . . . . . .  . . . . . . .  . . • . • . Ref. ’6
SUBROUTINE

SUBROUTINE HQR . . . . . , .  . . . . . . .  . . . . . • Ref. 16
SUBROUTINE H Q R 2 . . . . . . . . . . . .. . . . . . . . . .  Ref. 16
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE M A T IN . . . . . . . . . . . . . . . . . . . . .3 4 4
SUBROUTINE M B A R . . . . . . . . . . . . .  . . 3 4 6



—~~~~~~~~~~~ -— -•--- - — - • I
• TABLE D. INDEX TO LINEAR INCREMENTAL ROUTINES AND

LABELED COMMON BLOCKS (Continued)

Page

SUBROUTINE MULl . . . . . . . . . . . . . . . . . . . . .  348
FUNCTION N D X S E T . .  . . . . . . . . .  349
SUBROUTINE N I T I A L . . . . . .   350
SUBROUTINE Ø U T P U T . . . . . . . .   35~
SUBROUTINE P B A R U F . . . .  . .  . .  . .• • •  353
SUBROUTINE PREEIG .  354
SUBROUTINE PRI N T R . . . .  .. .. .. .. .  356
SUBROUTINE PTMASS . . . . . . . . . . . . . . .  358
SUBROUTINE READA . . . . . . . . .   Ref. 5
SUBROUTINE R E A D K . . . . . . . .   359
SUBROUTINE READM  360
SUBROUTINE RGEIG . . . . . . . . . .   Ref. 16
SUBROUTINE . SBTRCT  361
SUBROUTINE SIGFBR 362

SUBROUTINE SMULT .  363
SUBROUTINE SQ U E E Z . . . . . . . .   Ref. 5
SUBROUTINE 

• 
SYMABT 364

SUBROUTINE S Y M F I L . . . . .   365
SUBROUTINE SYMSOL 366
SUBROUTINE TIMEQ . . . . .   Ref. 6
SUBROUTINE TMULT . . . . . . . . . . . . . .  368
SUBROUTINE TSETQ . . . . . . . . . . . . . . .  Ref. 6
SUBROUTINE VDMULT . . . . . . . . . . . . . . . . . . . .  370
SUBROUTINE WRITE . . . . . . . . . . . . . . . . . . . .  •Ref. 5
SUBROUTINE W R I T E M . . . . . . . . .  . . . .  . . . . . .   371
SUBROUTINE X P Ø N N T . . . . . . . . . . .  . ,  372
SUBROUTINE ZERO . . . . . . . . . . . . . . . . . . . . .  373



— - — ‘ “ “““~I~~~’ ~~~~~ 
-

MAIN PROGRAM RESPNS

This is the driver of the Linear Incremental Solution program.

Algori thm

The driver functions of this program consist of:

1) Defining 23 data sets used for input, output and scratch storage.

2) DelimitIng the extents of 4 common blocks , the first of which ,
blank common, will be used for working storage .

3) Initializing via subroutine NITIAL .

4) Setting the stage for an incremental analysis by Invoking sub-
routine PREEIG to generate matri ces FIf, R and ~ which are the
components of the eigenva lue problem statement set up and solved
via subroutine EIGSOL .

5) Performing the incremental analysis through the sequence of calls
to subroutines LINEAR and IMBAL for each time interval .

6) Clocking the execution of each module and displaying elapsed
time on output.

IRput/Output.

None

Arguments

None

Labeled Common

NDICES, TAPES , LIMITS

Subroutines Ca lled

NITIAL , PREEIG , EIGSOL , LINEAR, IMBAL , TSETQ , TIMEQ -

315

—4



_____ • - • -

• Error Detecti on

None

I 

. 

‘ ‘

-

f-T 

_ _ _ _ _ _ _ _  

316

_ _• _ .~~~•*S,,~_ - - •  -----——-“-—-••. - - - • • ••  -

-_ _ - --- - - ----- - - -~~-------_- - ••‘ - - -_ ---- -‘ -_-~~__ _  • - • - ____----_ ••- -•- • -- -



• i LABELED COMMON CLOCK

This common block is used to store timing information to obtain CPU
time required for major modules wi thin the program .

Declaration

COMMON /CLOCK/ ORGTIM

Contents

ORGTIM CPU time remaining for the run obtained by system routine
TI MREM

Us aq~
TIMEQ, TSETQ

317 —



~ 

-. - — —

LABELED COMMON LIMITS

This common block i s used to store problem size Information, problem
constants, option flags , and other program parameters used by all
principle routines .

Declaration

CØMMON /LIMITS/NG,NK,NELEMS,NTRVLS,BETA,BETBAR ,HEAT ,NM,IORGN ,JX
KOLX ,NF ,MOREK ,MOREC ,NG2 ,NG2SQ ,NJTS ,AHAT ,DEBCL ,TBM1
TAU ,NS,NOWRK ,NSUPD ,NFAIL ,NØPBPU

LOGICAL BETBAR,NØBPU
INTEGER BETA 

•

Contents

NG Number of modes

NK Number of l umped forces for an element

NELEMS Total number of physical elements

NTRVLS Number of time increments

BETA Current increment number

BETBAR Not used

• HEAT , Option flag for element dissipated damping energy con-
verted to heat

NM (NG*NG÷NG)/2

IORGN Pointer to unused trailing partition of blank common

Jx Pointer to a location in label led common NDICES

KOLX Matrix column counter

NF Number of forces for an element

MOREK Flag designating additi onal partitions of k

MOREC Flag designating addit ional partitions of c

NG2 NG+NG

NG2SQ NG2*NG2

318 r
p rn r ... a~ •! “- •



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •

NJTS Number of joints

AHAT Not used

DEBCL Total damp ing energy

TBMI Time Increment of previous interval

TAU Time increment of current interval

NS Number of stresses for an element

NWORK Extent of blank common region

NSUPD Not used

NFAIL Not used

NØPBPU Flag indicating the input 6P($)u has been exhaus ted

Usage

RESPNS, EIGSOL , IMBAL , LINEAR , NDXSET , NITIAL , OUTPUT, PBARUF, PREEIG,
PTMASS , READKI SIGFBR

319



~~
-

~~~

_ _ _ _

LABELED COMMON NDICES

This common block is used to store pointers to partitions within
blank common array A. All val ues in this common block are initialized
in routine NITIAL. Partitions for elements are sized for cells which
have the largest storage requirements.

Declaration

COMMØN A(8000)
COMMON /NDICES/IVBDB ,IVBB,IVBX ,IDPBPU,IPStil.jB,IDPPUB,IDBL,IVBL

IPBAR ,IPBPHU, IKB ,ICB, IMBAR,IMBARL ,IDEBCL,IC~NST
, ITIME ,ISIGSS
$ IKBL,IZ,ICA ,IQ,IVAL ,IFTAU I IVEC ,IEGSYS

IU ,L.U ,IE CT ,I E VT ,IMP ’T ,I QEBO , I QF B KQ ,IDSEB
IFK,IFBK,IDEL,IDEDL ,IFSFB,IFSFB5.IPBCU
IPBKU,ISIGFB,ISIGBH , IEPSIG,IPSLPN , 10,10K
ISKB,ISKBB,ISCB,ISCBB ,IPBUF ,ISK ,ITK ,ICIB ,IMEL

Contents

IVBDB . v 8, modal accelerations

IVBB v8, modal veloci ty

IVBX modal velocity of previous increment

IDPBPU • ~u incremental modal force imbalance

IPBMUB
~(M)u’ modal inertia force

IDPPUB 6P(,)u$ incrementa l modal applied load

IDBL incremental linear modal displacement

IVBL linear modal displ acement

• IPBAR P, total modal forces

IPBPHU
~(~)u’ modal applied load

1KB K, modal stiffness

ICB C, modal damping
t IMBAR 14, moda l mass

320

~~~~ - ~~~~~*••-~ • •‘-.• • — •  — —----—
~~

—----- •-• ,-



_ _ _ _ _ _ _ _ _ _  _ _ _ __ _ _  

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IMBARL Cholesky decomposition of M

IDEBCL 4ECL$ incremental element dissipated damping energy

ICONST Problem constants

ITIME Incremental time history

ISIGSS a
~6

, stress transform for cell elements

11(81 Cholesky decomposition of K

IZ The modal matrix Z =

ICA The modal matrix Ca = H 1 
yo

IQ The modal matrix Q = C F(t) where Ca Is C dlagonalt zedaD D a
IVAL A , eigenvalues

IFTAU F(’r), a modal column matrix of eAt

IVEC H, eigenvectors

IEGSYS Eigenvalue problem work array

ID LI0, original joint coordinates

LU Not used

IECT ECT, element constant table

IEVT EVT , element variable table

IMPI MPT, material property tables

IDEBO 6~~, incremental initial element deformations

IDFBKO oF1( , incremental element forces due to initial deformations
0

IDSEB 6e, incremental element deformations

IFK The matrix FK = F + 6F for an element
- ~s l  K0

IFBK F1(, element forces

IDEL 6eL~ incremental linear element displacement

IDEDL 
~ L’ incremental linear element velocity

321 H 

-• - -4



r — —---
~~~

IPSFB F~, element force transform

IFSFBB Not used

IPBCU
~(c)u’ modal damping forces

IPBKU
~(K)U ’

modal stiffness forces

ISIGFB a~, element stress transform

ISIGBH Not used

IEPSIG c
~~
, element strain transform

IPSLON e, element strains

ID The matrix D = P~~ F~ for an element

10K The matrix DK = Pu~~
F
~

k for an element

ISKB k, unassembled element stiffness

ISKBB Not used

ISCB C , unassembled element damping

ISCBB Not used

IPBUF
~UF’

modal transfo rm

ISK 5k’ modal fictitious forces

ITK tk$ modal fictitious deformations

ICIB The matrix ~~ = P~~ F~ C FF
T
~UF for an element

IMEL in , element mass

Usage

RESPNS, EIGSOL I IMBAL, LINEAR, NDXSET , NITIAL , OUTPUT, PBARUF , PREEIG ,
PTMASS , READK, SIGFBR

- - I
I 322

• • p ~~~
- • - - - - —•••- ••- •• - - • —_— —

________ •
~~~~~~~ 

—‘
~~~~~~~~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~
‘
~~
‘
~~~~~

‘‘
~~ ~~~~

“ ‘
~~~~
“

LABELED COMMON TAPES

This common bl ock is used to store the FORTRAN logical unit numbers
of the external files used by the program.

Declara tion

COMMON /TAPES /Nl ,N2 ,N3 ,N4 ,N5 ,N6 ,N7 ,N8 ,N9 ,NlO
$ Nil ,Nl2,N13 ,Nl4 ,N15,N16 ,N17 ,Nl8 ,N19 ,N2O

Contents

The values in the common block are initIalized in routine NITIAL.
The FORTRAN logical uni t designations assigned are given here.

Ni 1
N2 2
N3 3
N4 4
N5 8
N6 9
Ni 10
N8 11
N9 12
N1O 13
Nll 14
N12 15
N13 16
N14 17
N15 18
Nl6 19
Nh 20
Nl8 21
N19 22

• N20 23

323



Usage

RESPNS , EIGSOL ,IMBAL ,LINEAR,NITIAL ,OUTPUT,PBARUF ,PREEIG ,PThASS, READK ,
SIGFBR

_  

324

‘ U -~~~ 

•

~~~

•-

~~

- •
•

-

~~~~

— •-—••• •—_ •—— •—_- S-•-  _~~~• S ~~~~~~~ ~~__ ~~~~~~~~~~~~~~~~~~~~ ••—“•-—- _ —--- - ‘-  •— • — • —-



—~~~~~~~- — -~- 
-5- - --~~

SUBROUTINE ABSYM

This routine performs a matrix cross-product wherein the post-
multiplier matrix is the upper half of a symmetric matrix.

Aiq~ori thin

The mode of storage of the post-multiplier matrix is b11, b12
bln~ 

b22 ~~~~~ When the logical vari able SUM is false , the array
accommodating the resulting matrix is Initialized as zero. Otherwise,
it is simply incremented to yiel d the matrix sum C = C + A •B.

Input/Output

None

Argument List

C A real array accommodating the product matri x

A ‘ A real array accommodating the pre-mul tiphier matri x

B A real array accommodating the post-multiplier matri x in
the mode of storage b11 , b12, ~~~~~~~ 

b1~ , b22
• M An ‘Integer scalar defining the order of the pre-multipl ier

matrix

U An Integer scalar defining the order of the post-multiplier
syninetri c matrix

Labeled Common

None

Subroutines Cal led

Hone

Error Detection

None

325

- 5- -.- • - •  — -.



I

SUBROUTINE ADD

This routi ne performs vector addi tion; C A + B.

Al gorl thm

Vectors A and B are summed into C.

Input/Output

None

Argument List

C A real array accommodating the resulting vector

A A real array accommodating the first input vector

B A real array accommodating the second input vector

N An integer scalar defining the order of the vectors

Labeled Common

None

• Subroutines Called

None

Error Detection

• None

326

I — 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - 5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—



- • •  - • - _ - - -— ~~~~~~~~~~ =~~~~ - - •

SUBROUTINE ASYMB

This routine performs a matrix cross-product wherein the pre-
multiplier matri x Is the upper half of a symmetric matrix.

Algori thm

The mode of s torage of the symmetri c pre-multiplier matri x Is
a11, a12, ..

. a1~~ a22 -
~~~

• . When the logical vari able SUM ‘Is false,
the array accommodating the resulting matrix is initialized as zero.
Otherwise , it is simply Incremented to yield the matri x sum C = C + A •B.

Input/Output

None

Argument List

C A real array accommodating the product matrix

A A real array accommodating the pre-mult ipiter matri x tn
the mode of storage a11, a12, ..., a~~, a22

B A real array accommodating the post-multiplier matrix

14 An Integer scalar defining the order of the symmetric
pre-muitiplier matrix

P An integer scalar defining thE column order of the
pre-multiphier matrix

SUM A logical scalar which if true, C C + A~B; otherwiseC = A ~B

Labeled Common

None

Subrouti nes Called

None

L

•

327

Error Detecti on -

None

I

1

-~~
5-5- - - 5 5-~~~~~~~~~~~~~~~~~~~~~~~ -- - --- -

- - - - - - -—--——— - ---————— —

SUBROUTINE CCMULT

This routine computes the speci fied leading rows of the product
of two complex matrices.

Algori thm

When the logical variable SUM is false , the array accommodating
the resul ting matrix is Ini tialized as zero. Otherwise , it is
simply Incremented to yield the matrix product and summation C C + A*B.

Input/Output

None

Argument List

C A complex array accommodating the product matri x

A A complex array accommodating the pre-mul tiphier matrix

B A complex array accommodating the post-mul tiplier matri x

14 An integer scalar defining the row dimension of arrays
C and A

N An integer scalar defining the column dimension of array
A , and the row dimension of array B

P An integer scalar defining the column dimension of arrays
B and C

It An integer scalar defining the computations concerning
ML rows of C

SUM A logical scalar which if true, C C + A*B; otherwise
C MB

Labeled Common

• None

—

329

L - _ _ ~~~~~ ~~~ ~~~

_ _ _ _ _ _ _ _ _ _ _ _

1 -
Subrouti nes Cal led

None

Error Detection

None

‘fi ‘

_ _ ii .ii:: - -- I

—~~—- —•—‘-~~~~~~~~~~~~~ -—---5- 55- --~~~~~~~~ - -5 - -

SUBROUTINE CHGSGN

This routine changes the algebraic sign of a vector.

Al gorithm

The sign of the vector Is reversed by being set to minus.

Input/Output

None

Argument List

A A real array accommodating the vector whose sign Is to
be reversed

N An integer scalar defining the order of the vector

Labeled Common

None

Subroutines Called

None

Error Detection

None

331

- • • •_ - - ______

I

SUBROUTINE CHLSKY

This routine performs an In situ Cholesky decomposition, where
the symmetric matrix Is given In its triangular half.

Algori thm

Where A LLT, given the positive definite matrix A in its
symetric half , this routine transforms it to L. The mode of
storage Is a11, a12, ... a~~, a22 ... a2~ etc.

Input/Output

None

Argument List

A A real array accommodating the symmetric half of the
positi ve definite matrix on input , and Its square root
decompositi on on output

N An integer scalar defi ning the order of the problem

Labeled Common

None

Subroutines Called

None

Error Detecti on

None

•

332

— 5— —•—— - _5__,~~_•.~~~~~___ • S__•_- •__ • — - -—-—-—.——-•.-5— •— • •-

L - • - — - “ -

-• - •

SUBROUTINE COPY

This routine copies an array from core to core .

Algorithm

Array A is copied into array B.

Input/Output

None

Argument List

A A real array to be copied

B A real array into which the copy is made

N An integer scalar defining the order of the arrays

Labeled Common

None

Subroutined Cal led

• None

Error Detection

None

()

333

—— —5- --
- - - • — - - - — ~~~~~ ~~~~~~~~ - ‘- 5 - ____________________ - — - - - -

- --5-- .-

SUBROUTINE CRI’IULT

This routine computes the specified leading rows of a matri x product
wherein the pre-multiphier matrix Is complex.

Algorithm

1’ihen the logical variable SUM is false, the array accommodatIng

the resulting matrix is initialized as zero . Otherwise , it is simply
Incremented’ to yield the matrix product and summation C = C + A*B.

InputJOutput

None

Argument List

C A real array accommodating the product matrix

A A real complex array accommodating the pre-multiphier
matrix

B A real array accommodating the post-multiplier matri x

M An integer scalar defining the row dimension of arrays
C and A

N An integer scalar defining the column dimension of
array A and the row dimension of array B

P An integer scalar defining the column dimension of arrays
B and C

ML An Integer scalar defining the computations concerning ML
rows of C

SUM A logical scalar which if true, C • C + A*8, otherwise ,
C • A~B

Labeled Common

h one

334

_ • - . - ‘-—---‘ --- -- . - - 5- -- — — —5 .5-5-

- 5 - -- 5-5- -• -S — - --.- —-5— — —- 5- - -~~~~~ -
_

“1~

-

Subrouti nes Called

tIone

Error Detection

None

-

~~~~ 
i~ — .—- •5-

~~~~~~~~~~~ 5- • ~~•• ‘-5 -5 5~~~~~~~~~~~~ ~~~~~~~~~~~ 

_

- - - 5 - -
—--- - ~~~. • . -. •. •

I

Su BROUTINE EIGSOL

• This routine sets up, executes and disposes of the eigen problem.

Al gori thm

The upper quadrants of array A are filled.wi th the negative of sym-
metric modal damping an4 mass matrices , C and M, reconstructed in their
full forms. The lower left quadrant is set to the identi ty. Subroutine
SYMSOL is then invoked , with the Cholesky decomposition of modal stiff-
ness matrix K as argument , to arrive at:

1
~~~

_ 1

~~ 
_F1

MI

L ’  o j
Subroutine RGEIG now performs the complete eigenvalue problem

solution. The eigenvalues are reciprocated . In this process, equal
eigenvalues corresponding to equal eigenvectors are recognized as being
part of a ~ingu1ar system. An attempt to remedy this condition is made
by scalar mul tiplying matrix ~ with 1.0001 and going through the complete
procedure anew . Should this instability persist, the printing of an
appropriate statement is followed by a call to subroutine HALT. Other-
wise, the writing of the matrix of eigenvectors onto data set N8 is
followed by their inversion through subroutine JØRDAN . The inverse is
also output onto data set N8.

Input/Output

To conserve core space, the matrix of eigenvectors and its
inverse are stored on data set 148.

Argument List

B A real array accommodating the eigenvalue problem
statement

I
_ _ _ _ _ _ _  

.

-

. 

• — - -~~~~~~~~~~—

- 

- - -- - . _ _ _ _ _  _ _



X 
• 

A real array accommodating the matri x of eigenvectors

M An integer which defines the order of the eigenvalue
prob lem

N An integer whose value is M/2

Labeled Common

LIMITS, NOICES , TAPES

Subroutines Called

CHLSKY , CØPY , HALT , JØRDAN , RGEIG , SMULT , SYMFIL , SYMSOL ,
WRITE , ZERØ

Error Detection

Equal complex ei genvectors wi th corresponding equal ei genva l ues
are detected as singular. An attemp t to remedy this condi tion Is made
by scalar mul tiplying matri x ~~with 1.0001. Should the unstable con-
dition persist , the printing of an appropriate message is followed
by the call to subroutine HALT.

337

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _ _ _  - 5— . -— -.  ~ • •5- •~~~~~ •5 - — — . -- 5-• --- -—— —- 5-5 - —

I

I
SUBROUTINE HALT

This routine performs termination processing as necessary in the

event of a fatal error.

Al gorithm

In antici pati on of certain processing requirements before job

termination initiated by the detection of a fatal error, this routine

and appropriate calls were provi ded. Subsequently, however , it was
determined that no processing of this nature was necessary.

Input/Output

A job terminati on message is output to uni t 6.

Argument List

None

Labeled Common

None

Subroutines Calle d

None

Error Detection

None

• 

338

—5 ——— 5 —  ~~. .  -.- — •  — — — • __~~~~ __I •=____



—--5-——.-. --——-— -—--5 5 -.— —-- — — . —--—-------—,.—. - —--- —— 5—--— - ----—- — - .—... --- .s_

SUBROUTINE IMBAL

For each physi cal element within each type of element , this
routine computes the force , stres s and stra i n matrices , 

~K’ 
a and c ,

and wri tes them onto the output data set.

Al gori thm

The output matrices concern bar elements , membrane elements and
cell elements. Their respecti ve FØR.MAT matri x names are BARS , MEMBRN
and CELLS. Each physical element is represented by a column whose
contents are vectors ~~~~~~, a and c. These quanti ties are coir~puted as
follows :

1—
~ 

- OK A

0

where OK 
~UF F~ ~

a a sa aT~ K for cells

or a 
~~ ~K 

for bars and membranes

c c  aa

tnout/Outout~
Tape 2 is the output data set. For ear.h physical element , matri x

is read from data set N14; the matri x quanti ty 
~UF 

F~E is read from
data set 

~~
‘, dTKo is read from N15; and ca is read from N16.

• Argument List

None

Labele d Corir~on

L:~1rTs , NOtCES , TAPES

339 

— — - -—  - ‘- — — —- - -  —- — -~~~~



5 5  -. - —--~~ —--- ---.-

• I • .  - —
I —

Subrouti nes Called

ADD, ASYMB, MULT, OUTPUT , READA , READM, SBTRCT, TMLJLT , ZERØ

Error Detection

None

I

t

340

I ~~~~~~ 
— - -



SUBROUTINE JORDAN

This routi ne inverts in situ a complex matri x by pivoti ng on the
available row of largest magnitude wi thin the next available column .

Al gori thm

The method used is Gauss-Jordan. The array KOL is used to record

the order of rows which have been selected for pivoting .

Input/Output

None

Argument List

A A real matrix which is transformed to its Inverse prior
to exi t from this routine

KOL An integer work array of dimension 2*N. Prior to exi t
from this routine , the fi rst N locations contain the
order in which rows have been selected for pivoting.
The second N locati ons contain the values of the pivoting
elements.

N An integer sca lar defining the order and dimension of
• rnatri x

Labeled Common

None

Subroutines Cal led

None

Error 3etec tlon

lone

341

-- -.- — .—~~__ii. ~~~~~~~~~~~~ ~~~~~~~~~~~~~ ,- -_ - -  ~~
- —

~~
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~• • - • -- ——-—•



—— - - - —--- 5 .

SUBROUTINE LINEAR

This routine computes vectors P , 6X, ~ and .

Algori thm

Data set N8 is already positi oned at the origin of the matri x of
inverse eigenvectors . It is rewound as soon as this matrix has been
read. The next read then brings in the matri x of elgenvectors proper.

6 and ~ are computed in the complex mode and trans ferred to their
final blank common destinati ons in the real mode. Through abstraction
like CALL sta tements to utility routines , the matrix equati ons to
compute ~~~ , 6~, ~~~ , and ~ are solved in the following manner:

= ~ + 
~(M)u 

+

z = - R ~~
CaD = H~ 

~~~~~~~ 

diagonalized

F(t) e~’~

Q = C ad F(•T)

= H
~ ~

HQ

6 6A -Z

Input/Output

The matrix of eigenvectors and Its inverse are read from data set
N8. The incremental applied load matrix is from data set N18.

342

_____________ 5 - - --- -- 5- - -- -- -~~~~

~. - Argument Li St ~~~ c t j ~~
1ALIrfPtcrx~~~~

None

Labeled Common

LI1~1ITS , tIDICES , TAPES

Subroutines Called

ADO , CCMULT , CHGSGN, COPY , CRI1UL.T, EUTL9 , PRINTR , READA , SYMSOL,
VOMULT , XPONNT, ZERO

Error Detection

None

• 343

-
______ — — --— - - - - --—--- ———— --5---•-- --- - -5. — - ---5 -5- - -

- --

SUBROUTINE I4ATIN

This routine routes FORMAT Program input matrices and arrays from
tape 20 to the Intended, or Interim, data sets.

Al gori thm

Reading over the data set header positions it at the origin of
its first matrix.

The following takes place wi th each item sandwiched between a
matri x header and trailer. The data set designation , onto which the
next matrix in sequence is to be wri tten, is taken from the list NT
and rewound. The matri x header is read and ignored. Each record
thereafter is transcri bed. Additionally, the third matri x is also
wri tten on data set 14. This process continues as long as the fi rst
word of the records thus processed is a positi ve integer. Except In
the case of matri x

~UF’ the output data set is then rewound .

Input/Output

The list of throughput matrices and the data set onto which they
are output fallows:

Matrix Name Data Set Number Description

~UF 14 Modal element force transform
• MPT 3 Material property table

U0 8, 14 Ori gInal joint coordinates
ECT 15 Element constant table
MEL 13 Element mass matrix

E Ii Element sti ffness matrix

17 Element damping matrix

Fr 4 Element force transform

-
_

3~4

- --


~~~~!S PAC~E IS BEST QUALIT! F~~C~I~.CAP~~
o~ COPY 13J ~ISH~~ TO ~ ,Q .~~~~~~~~~

-

Matrix Name Data Set ~Iumber Description

15 Element stress transform

L
a 22 Element strain transform

10 Initial thermal element defor-
T • Inati ons

LVI 9 Element variable table

Argument List

A A real work array
NUM An integer scalar used as a dimensioning variable

Labeled Common

None

Subroutines Called

None

Error Detection

None

345



- -• - - - 5 5 - -

SUBROUTINE MBAR

This routi ne fe tches the upper half of the next uncoupled parti tion
from a tape resident symmetric quasi-diagonal matrix.

Algori thm

The end product of this routine consists of a triangular matrix of
order NF in expanded format wherein the rows begin from their diagonal
elements . As each column (KØLX + 1) through (KØLX + NF) is read in the
compressed format, its elements preceding the diagona l are discarded.
The row designati ons of the elements retained are reduced by the
quanti ty KOLX - HF*(I_ l), where I represents the sequence of these
columns from 1 through NF. One cal l to subrouti ne EUTL9 expands this
triangular matrix in its desired form.

Input/Output

None

Argument List

NF An integer scalar defin ing the number of rows and columns
•in desi red matri x partition

KOLX An integer scalar defining the desi gnation of the last
column read on previ ous entry into this routi ne

A A real storage array

NT An Integer scalar defining the desi gnati on of the data
set containing the matrix

Labeled Common

None

Subrouti nes Called

EUTL9 , READA , ZERO

346
- 

— --- -—-5-----. 5- -  
j  -

-~~~~~~~~ - - .~~~~-~~ -~~~-- - -~~~~~~~~~~~ --5 - - - . —



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _____ - __________

~~~~~ COPI ZUE~USli~ ) 10 ~~Q 
~~~~~~~~~~~~

Erro r ~etection

None

k ~ s _ .  . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - - —--5-_-5 - -5 - —-5- — - - ---5 — 5- - —

SUBROUTINE MULl

This routine performs a matrix product.

Al gori thm

The matrix product A*B is added to matri x .C. Matrix C Is
initialized to zero only when the logical vari able SUM is false.

Input/Output

None

Argument List

C A real array accommodating the product matrix

A A real array accommodati ng the pre-mu l tiplier matrix

B A real array accommodating the post-multiplier matrix

M An integer scalar defining the row dimension of matrices
C and A

N An integer scalar defining the row dimension of matrix B
and the column dimension of matrix A

P •An integer scalar defining the row dimension of matrices
C and B

SUM A logical scalar which if false , array C Is initialized
as zero

Labeled Common

None

Subroutines Called

None

Error Detecti on

None

348

— 
—

-5 . . .  ~~~~~~~~~~_-5~~~~~~~~~~~~~~~_~~~~~~~5_ - -—-5-- • , - • . .- - -._ _ _ _



-- • • - .  -5 ---‘-5 5— -- - - - - - • -~~~- -  -‘- -- ---- - ------ 1
-- - - -5 - -. 5

~~~~ ~~ ~~~~ QU~LtT! p L ~fl1~l~ L4
~~~ ~~~ 

TO 1~ Q _. —
~~~

FU~tCT t0 N NDXSE~
This routine defines the elements of a vector used to segment

the working core.

Algori thm

The vari able IORGN contains the relative l ocation from which the
work array is ava ilable for segmentati on. The follcwing takes place
for each of the N apportionments : 1) the value of JX , the indexing
pointer used wi th vector NOE~, is incremented ; 2) t~RGN is stored into
MOEX(JX); 3) I~RG~ is i ncreased by INC , the extent of core being
al located each origin.

Inou t/Outhut

None

Argument List

INC An integer scaler defining the extent of core to ~e
a llocated with each ori gin NDEX(!)

Number of ori gins to be defined

Label ed Ccmmon

LIMITS , NDICZS

Subrou tines Called

None

sr—or ~etec t~on

349

L - - — . - -. - — -- -
~~~~~~



SUBROUTINE NITIAL

This is the intializing routi ne .

Al gori thm

The variables Ni through N20 , which are contained wi thin l abeled
common TAPES, are sequencially set to represent tapes 1 through 4, and
8 through 23.

The inpu t matrices are read in thei r FORMAT generated mode and
written onto their interim, or intended , data sets via subroutine
MATIN. The following delimi ting parameters are read from the first
input card .

Item Type Descri ption

BETA INTEGER Starting time

NELEMS INTEGER Number of structural elements

NTRVLS INTEGER Number of time intervals

h G INTEGER Number of modes

HEAT LOGICAL “TRUE” indicates presence of
thermal condi tions

NJTS INTEGER Number of structural joints

UWORK INTEGER Number of words in blank common

Blank common array A Is apportioned to the various matri ces and
arrays through the designati on of their respecti ve origins by the
Index from l abeled common NDICES.

The NTRVLS values concerning the time array are read Into the
space beginning with A(ITIME) and checked for their being in ascending
orcer. Execution is halted wi th an appropriate statement when this
check fails.

350



— 5 ~~~~~~~~~~~~ ,- 

ThIS PAGE IS BEST QUALITY P kCT1C4~~~I

TEI()M COP’i FU~~ NISH~~
D VO DDC

The constar~t matri x for cell element s is ;enerated and stored
at A (tSI~S5) .

Over lay within array A is eff ected by assigning I~3L and ~U the
same value . The fi rst of these subscripts represent the origin of
space used by sub routine ~~~~~ onl y; :ne second is the leading sub-
script of non-conversant space used by other modu l es.

Sub routine ~EAOK is invoked to merge selected matrices resi ding
on iiiterlm data sets . The arrays wh i ch are to accommodate the fcilcw-
ing vectors are initi alized with zerces : v , 7, v3 1 ,  

~~Y

~~c) u’ ~~~~~~~~~~~~~ and 
~ CL

tflDUt/OUtut

A ll card input takes place ii thi s routine. In addi:icn , the
following input matri ces are written onto the •cs t-proc ess ing data
set, tape 2: the array of constants under its input F~R.MAT program
matri x name ; the array of time intervals under the matri x name TiME ;
the array of joint coordinates under the matri x name UZ~~O ; vectors

and ~ — under the i r inout names .(;)U LP~

i.r:ument L~s’

~one

‘..abeied Co~~on

LIMITS , NOICES , L~PES

Subroutines a l ied
ASr.’B , ~~G3~:;, ~~~~~ ~~~~~ ~:A , ~~~~ £~~F3P., SC~~, ~~~~ ~~~

~rr’~r 2e:e::~~r~

~cr.e

V 

—



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-5 ’  ——-- 5- - - 5’ -~~

I

SUBROUTINE OUTPUT

This routine stores output onto the output data set in the mode
of the FORMAT program.

Algori thm

Vectors ~~~ , ~~~~~, ~~~, ~~
, 6~~~~~, and are wri tten onto data set 2

as a single column FØRMAT matrix with the name RESPUS.

Input/Output

Matri x RESPNS is output to data set 2.

Argument List

None

Labeled Common

LIMITS, NOICES , TAPES

Subroutines Called

WRITE

Error Detection

None

352

-~~~~~~~~~ -—~~~~~~~~~~ -~~~~~~~~- - 55 5 , 5- ~~~-.-5-.~~~~~~~ —-- . .. -5 -~~~~ - . 5- - -5-- - 5’ ., -.



_ _ _ _ _ _ _  - ~~~~~~~~~~

ThIS PAGE IS BEST QUALITY P~ACT~~~~~&

7~~M C~)k~ 
p )~~ LSH.~D TO ~~Q

SUBROUTINE PSARUF

This routine reads a parti tion of matri x and the :orresoon~ ing
parti tion of matri x 

~ur
Algorithm

~a ca set ~l3 contain s matrix ~~ in the fc rm of one parti tion per
record. ~eading one such record provi des the informati on necessary
to determi ne the col u~~ bounding the des ired partition of

Inout/Outout

Matrix is rea d from date set Nfl. Matri x is read f rom
data set Ni l.

Aroument List

None

Labeled Common

LIMITS , NDICES , TA PES

Sub rou ti ne C-aii~d
REA~A , ZUTL

Z rrcr ~etecticrt

None

— 

_ _ _ _

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~ 5~~5•55-5’~5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

SUB ROUTIN E PREE I G

This routine generates matrices i~, i~, ~ and

Algor ithm

For each element , the matrix operati ons are performed through
abstraction like CALL statements to utility routi nes . Having initializ-
ed matrices R~, ~~, L P, and

~(M)u
as zero, the matrix operations per-

formed are as follows:

~ ~~~~~

= + D

OK =

= + OK DT

= C + D~ D
T

hi - ~4 + ~~

~UF

If point mass elements exist , their contribution to the modal mass
matri x , f~, is computed and added by a single call to subrouti ne PTMASS.

Input/Output

For each physi cal element, a parti tion of the matrices 1~, ~ and
a— is read in that sequence from data set Ni. Similar parti tions ofeT
matrices

~~~~~~ 
Fr, and m are read from data sets Nh , Nl3 and NlO ,

respectively. The contribution of each physical element to matrix
OK is written onto data set N7 and , similarly, the contribution to
6FKQ is written onto Ul5.

- 

354

_ _  _ _ _ _ _ _  
_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1._S 5 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ -- - - -~~~~~~
‘5’5’

Argument Lis t ThIS PAGE IS BEST QUALITY PB.LCTIC1B~~~~~ TO ~ C
None

Labele d Common

LIMITS , NOIC ES , tAPES -

Sub routine Called

A BSYM , ADO , ASYM S , CHGSGN , MSAR , MULT , ?9ARU F , PTMASS , ~EACA , SYMAST ,

~4RIT .M, ZER2

Error ~etection

‘lone

_ _ _
~~~~5’-- . - - - - - - .  ________________________ _ _ _



- - ~-ss.- -~ -~5 - 5’ ‘1

SUBROUTINE PRPI TR

This routine prints a core resident matrix.

Al gori thm

Groups of not more than 8 col umns across each page are written
for parti tions of not more than 55 rows. Each page is headed wi th
the title. The column designations appear under the title. The row
designations precede each row. Only the most signifi cant aspect of
double precision matri ces is wri tten. Two calls to this routine are
required to print a complex matrix.

Input/Output

No ne

Argument List

A A real array accommodati ng the matrix to be printed

K An in teger scalar used as a dimensionin g variable. K
for real and single precision arrays. K 2 for compressed
or double precision arrays . K = 4 for double precision
complex arrays .

M An integer scaler defining the row dimension

N An integer scalar defining the column dimension

TITLE An alphanumeric scalar for header data

Labeled Common
• 
j 

None

Subroutines Called

None

356

- -
1.5 - - S 55’ - —5’-~-- -5--- _______



_ _ _ _ _  - 

- S  5’

ThIS ?AG1 IS BEST QUALITY~’R~CTI~A~~4

Error etect~cn

None

357

I



F- ~~~~~~~~~~

- - - - 5- — - - -T h •
~~~~f l___

1~
SUBROUTINE PTMASS

This routi ne concl udes the computations of i~T wi th the contributions
of the point-mass elements .

Algori thm - S

The computations concern the triple product
~UF MEL ~UF involving

point mass elements . MEL consists of one element . The col umns of
these matrices are read and the computati ons are exercised upon
matching the column designations .

Input/Output

Matrix t1EL Is read from data set N1O. Matri x is read from
data set Nil.

Argument List

None

Labeled Common

LIMITS , NOICES, TAPES

Subroutines Cal led

READA, EUTL9 , ABSYM, SYMA BT

Error Detecti on

None

358

— SU8RCUTINE READK

This routi ne transcribes F~RJ~.AT program generated matrices from
Interim data sets to their intended data sets .

A lgori thm 5

The symmetric quas i-diagonal matrices ~~, e~ and E are read i n thei r

f u l l forn~ . They are retained only in their symmetri c halves prior
to bei ng wri tten as sing le comp ressed records .

Matrix ~e1 is simply cooled from its I nput to its output tape .
The quasi-diagonal matri x FT I s output in records of sub-matri x
parti tions.

Inout/Outout

Matrices ~~, e~, ~~
,

~~
and F~

. are respectively read from data
S sets MB , M1.9, M14 , MiD , and N4; matri ces e and Fr are wri tten onto

data sets N16 and N13. Matri ces ~~, ~~ and
~~~~

. are wri tten onto data
set Nl in the sequence ‘

~~~~~~

,

~~~~~~

, 

~~~~~~~ 

k2, C2,
~~i2 ’

•
~~~

• • , etc .

Arcument List

~one

Labeled Common

LIMITS , NOICES , TA PES

SubroutInes Called

ZUTL , ~3AR , ~~~~~ ~R:7E

~——~r e:ett tn

—
1

- - - 

-



-- -5’ -

I

SUBROUTINE READM
This routine reads a matrix which was wri tten on a scratch data set

via subrouti ne WRITEM.

A1g~orithm S

The matri x is read via subroutine READA . Should it be compressed ,

subroutine EUTL9 expands it. 
-

Input/Output

The matri x is read from data set NT.

Argument LIst

M A dumy argument

N A dummy argument

A A real array into which the matrix Is read

NT An integer scalar defining the input data set

Labeled Common

None

Subroutine Called

None

S 

Error Detecti on

None

(

.

360

___—

S - - .  -
~~~~~~

- —5 -

SUBROUTINE SBTRCT

This routine computes the ari thmetic difference between two
vectors .

Algorith~n

The algebraic difference between vectors A and B is stored In
vector C.

Input/Output

None

Argument List

C A real array for the resulti ng vector

A A real array for the vector being subtracted

B A real array for the subtracting vector

N An Integer scalar defining the order of vectors

Labeled Common

None

Subroutines Called

None

Error Detection

None

- 1 ~

361

S - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~_5_~~~

SUBROUTINE SIGFBR

This routine parti tions a quasi-di agonal matrix and outputs its
parti tions in single compressed records .

—

Algori thm
S

The columns of each partition are read and stored consecuti vely In

their compressed format. In the process, the row designati ons are
replaced by the location of the elements relati ve to the current sub—
matrix. A singl e call to subrouti ne EUTL9 expands the parti tion which ~•

is then output by subroutine W RITEM.

Input/Output

The matri x is read from data set Nl4 and wri tten onto data set
Ni 2.

Argument List

Hone

Labeled Common

TAPES , LIMITS, NDICES

Subroutines Called

EUTL9, READA , WRITEM

Error Detection
— None

362
_ _ _ _ _

— -——S - 55’- - 5—— —
5—

__ - -- S . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _

SUBROUTINE SMULT

This routine scales a matrix.

Algori thm

Each element of array A is multiplied by the scalar 5 , and the
product Is stored in array C.

Input/Output

None

Argument List

C A real array accommodati ng the output matrix

5 A real scalar coefficient

A A real array accornodating the matri x to be sca led

M An integer scalar defining the row dimension

N An Integer scalar defining the column dimension

Labeled Common

None

Subroutines Called

Hone

Error Detection

None

363

_. —_S~~--- - — --~~~~—- -5-5~ _S~~~~~~ _~~__ 5’5’5-~~~~~ 5’_S_~~~ —-- - -5’ — —— 55 _55__555 - - - -

H

SUBROUTINE SYMABT

This routi ne computes the triangular half of a symmetric matrix
where the post-multiplier is transposed.

A1qorithm . -

The mode of storage of the product matrix is C11.’~ •C 1,1, C22...”21,~,
etc. When the logical variable SUM is false , the array accommodating
the resulting matri x Is Initialized as zero.

Input/Output

None

Ar~gument List

C A real array for the triangular product matrix

A A real array for the pre-multiplier matri x

B A real array for the transposed post-multiplier matrix

M An integer sca lar defining the row dimension of all matrices

N An integer scalar defining the column dimension of A
.and B matrices

SUM A logical scalar when false , causes the resulting matrix
to be initialized as zero

Labeled Common

None

Subroutines Called

None

Error Detection

Hone

• - S

_ _ S _ S - 5’

_ _ _ _ _ _ _ -S - —-- --- -~-~~- -

5 -

SUBROUTINE SYMFIL

This routine stores a symmetric half matrix into the partition of
an array while reversing the sign .

Algori thm S

The mode of storage of the synvnetri c half-matri x is a11, ...
a22

.... When K 1, the receiving matrix is real. Uhen K 2, it
is complex. Note that in this case , the imaginary components are left
untouched.

Input/Output

none

Argument List

A A real array for the symmetric half-matri x

B A real or complex array for the output matrix

K An Integer scaler where K = 1 for real B array , K 2 for
complex B array

Ii -An integer scalar defining the row dimension of B array

N An Integer scalar defining the order of symmetric matri x

Labeled Common

None

Subroutines Called

None

Error Detection
Uone

365

— — — ~~- — - _
~

- S

- -
— - - S

-_S~~~------- —5- _______________________

SUBROUTINE SYMS ØL

Gi ven matri ces L and B in the expression LLTX = B; this routine
F transforms B into X .

Algori thm S -

The mode of storage for matrix L is 1111 ~~
l,1~

, ~~~~~ X i~
computed by way of V where LY B. Then, L X V . The array stori ng
matri ces B and X may be real or complex . When the integer K Is 1, the
array is real ; when K is 2 , the array is complex .

Input/Output

uone

Argument List

A A real array accomodating matrix L in the mode of
storage 11l ” 1n1’ 122~~

B A real or complex array accomodating matri ces B , V and X

K An integer scalar where array B is real when K = 1 , and
complex when K = 2

M •An integer scalar defining the row dimension of array B

Fl An integer scalar defining th~ order of equation

P An integer scalar defining the nunter of columns in
matrices B, V and X

Labeled Common

None

Subrouti nes Called

None

366

5’ --- -

Error Detection

None

367

— — S —- - - - - — — - - - - —- - -—-
~~~~~~~~~~~~~~~ _________



SUBROUTINE TMULT

This routine performs a matrix cross product wherein the pre-
mult iplier matri x is transposed .

A]gprithm

The matrix product transpose ATB is added to matrix C. Matrix C
is initialized to zero only when the logical variable SUM is false.

Input/Output

None

Argument List

C A real array accomodating the product matrix

A A real array accomodating the pre—multiplier matrix

B A real array accommodating the post-multipl i er matrix

M An integer scalar defining the row dimension of matrix C
and column dimens ion of matrix A

An integer row dimension of matrices A and B

N An integer scalar defining the row dimension of matrix C
and column dimension of matrix A

An integer row dimension of matrices A and B

P An integer column dimension of matrices B and C

SUM A logical scalar whe n false causes array C to be
ini tial i zed as zero

Labeled Comon

None

~~~~~~~~~ -~~~~~~~~~ - --- a - -
~~~~~~~ ~~~~~~~~~ _ _ _ _ _ _ _ _ _



- —5’ -

Subroutines Called

None

Error Detection

None

L

-

I

369



_5-~ 5’5 - -~ • 5’

SUBROUTINE VDMIJLT

This routine performs the element by element product of two complex
vectors .

Al gori thm

The element by element product of complex vectors A and B is
stored in vector C.

Input/Output

None

Argument List

C A complex array for the output vector C

A A complex array for the input vector A

B A complex array for the input vector B

N An in teger scalar defining the order of the vectors

Labeled Common

None

Subrouti nes Calle d

None

Error Detection

None

370

- - - S • S - .•••• - S 
~~~ S5

- -•-- ---- .-—-S--—-,- S — ---5- 5 5 ’_ _ ____ _ _ S ___ 5_~ __~ _ _ —~~~-- —~~—- -_S-- -5’ — 5’

•
5,

SUBROUTINE WRITEM

This routine wri tes a one-record matri x , compressed (as required).

Al gorithm

Following an attempt to compress the matrix via subroutine SQUEEZ,
S

It Is wri tten onto the output data set NT.

Input/Output

The matrix is written onto the output data set.
S

Argument List -

M An integer scalar defini ng the matrix row dimension

N An Integer scaler defining the matrix column dimension

A A real array for the input matrix S

NT An integer scalar defining the output data set

Labeled Common

None

Subroutines Called

SQUEEZ , WRITE

Error Detecti on

Hone

371

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUBROUTINE XPØIINT

Gi ven complex vector D and vector T , this routine finds vector
A eDIPT.

Al gori thm

All computati ons take place In the real mode as vectors A and D
are doubly dimensioned arrays .

Input/Output

None

Argument List

A A real array accommodating the output vector

0 A real array for the complex input vector treated in the
real mode

I A rea l array for the input vector S

N An integer scalar defining the order of vectors

Labeled Common

None

Subroutines Called

None

Error Detection

None

~

_ - --- 

‘

- — - 5 - - -



--5 555 —- -- --S•-----—--- S 5
~~

S 
~~~~~~~~~~~~~~~~~ 

-
~~~

SUBROUTINE ZERØ -

This routine zeros an array .

Al gori thm

The specifi ed extent of array A is set to zero .

Input/Output

None

Argument List

A A real array to be set to zero

N An Integer scalar defining the extent of A to be set
to zero

Labeled Common

None

Subroutines Called

None

Error Detection

None

373



___________________________ 5’ —S- 5 •S -—-- ------ S-- --•-—-- ,-- 
_____  

-- --S-S-

i ~~~~~

I’-

APPENDIX E

NONLINEAR INCREMENTAL ROUTINES
AND LABELED COMMO N BLOCKS



S APPENDIX E
NONLINEAR INCREMENTAL ROUTINES

AND

LABELED COMMON BLOCKS

This appendix contains detailed descriptions of all routines and
labeled common blocks in this program. Table E gives either page nurber
references within this document or references to other documents for
documentation of each routine or labeled common block. Some page number
references may be to preceding appendices where the documentation for
a routine in this program Is identical to a previously documented routine.
This does not imply verbatum source code duplication for the routine, only
functional duplication is implied.

The detailed description of each routine is divided into the following
subheadings:

Al gorithm verbal flow chart of routine logic and data flow

Input/Output description of all external data set Input/output

Argument List name, type, and descri ption of each argument

Labeled Con~non l ist of all labeled comon blocks declared

Subroutines Called list of all routines called

Error Detection description of tests made for errors and action
taken

— 

The detailed description of each labeled common block Is divided into

the following subheadings :

Declaration verbatum declarat ion of the labeled comon block

Contents name and descri ption of each variable appearingj in the declara tion -

Usaae list of all routines whi ch conta in declara tionsS for the label-ed coriinon block

- -

376

- _____________ - — -



-

TABLE E. INDEX TO NONLINEAR INCREMENTAL ROUTINES AND
LABELED COMMON BLOCKS

Page
MAIN PROGRAM RESPNS 380

LABELED COMMON CRRAYS ..
LABELED COMMON FICNDX • .  383
LABELED COMMON GEØMS • . . . .  385
LABELED COMMON LIMITS • . .  33~LABELED COMMON LPEM  • . . .  388
LABELED COMMON NDICES  . . .  393
LABELED COMMO N T A P E S . . . . . . . . . .. . . . . . . . . . .  397

SUBROUTINE ABSYM 325
SUBROUTINE ADD 326
SUBROUTINE . ASYMB . . 327
SUBROUTINE A V R A G E . . . . . . . . . . . . . . . . . . . . .  399
SUBROUTINE B A L A N C . . . . . . . . . . . .  Ref. l6
SUBROUTINE BALBAK . Ref. 16

• SUBROUTINE . CCMULT . . 329
SUBROUTINE CHGSGN . . . . . . 331
SUBROUTINE CHKOUT . . . . .  400
SUBROUTINE CHKPNT . . . . . . . . .. . . . . . . 40 1
SUBROUTINE CHLSKY . . . . . . . . . . .  332
SUBROUTINE COPY .. 333
SUBROUTINE CRMULT . . . . . . .  . . . 3 3 4
SUBROUTINE E D G U N V . . . . . . . . . .  . 402

SUBROUTINE E I G S Ø L . . . . . . . . . . . . .  404

SUBROUTINE E L M H E S . . . . . . . . . . . . . .  Ref. 16
SUBROUTINE ELTRAN . . . . . .  . . . . • . Ref. 16
SUBROUTINE E U T L 9 . . . . . . . . . . . . . . . . . . . . . R e f . 6
SUBROUTINE F I F D E F . . . . . .. . . . . . . . .. . . . . .  406
SUBROUTINE FØ R M A T . . . . .  

377

~

- - - - -  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


___ -— 5 --

- TABLE E. INDEX TO NONLINEAR INCREMENTAL ROUTINES AND
LABELED COMMON BLOCKS (Continued)

Page

SUBROUTINE GEOM 410
SUBROUTINE HALT . • • • * • • • . 333

FSUBROUTINE HQR .. • Ref. 16
SUBROUTINE HQR2 Ref. 16
SUBROUTINE IMBAL 411
SUBROUTINE JORDAN • . . . • • 341
SUBROUTINE LPBFIC S • I • • • • •~~~~~~~~~ • • • • • • 414
SUBROUTINE LPBG 415 - -

SUBROUTINE LPCFFB 417
SUBROUTINE LPCFIC • 418
SUBROUTINE LPCG 419
SUBROUTINE LPCSFB • 420
SUBROUTINE LPMFFB 421
SUBROUTINE LPMF IC.. • 4~
SUBROUTINE LPMG 423
SUBROUTINE LPMSZD • 424
SUBROUTINE LPMS1 • ‘ 4~5SUBROUTINE LPMS2 426
SUBROUTINE LPMZ 242
SUBROUTINE MATIN 344
SUBROUTINE MATPRT • 427
SUBROUTINE MBAR 346
SUBROUTINE MLTMAT 428
SUBROUTINE MULT • 34~FUNCTION N D X S E T . . . , 349
SUBROUTINE NEWKC . . • 429
SUBROUT!ME N IT IAL . . • 431
SUBROUTINE NKRK 434
SUBROUTINE OUTPUT 435
SUBROUTINE PBARIJ F 353
SUBROUTINE P L Ø P . . . 437

~~~ 

________ 

378

‘I -5——--- - S _ _ _ _ _ _ _  — —

-~~~



- - S  ~S 5~ _ - 5 5 5’~~-S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- TABLE E. INDEX TO NONLINEAR INCRMENTA L ROUTINES AND
LABELED COMMON BLOCKS (Continued )

Page

FUNCTION PØLSOL . . . . . . . . . . . . . . . . . . . .  438
SUBROUTINE PREBAL .. . . . . . . . . . . . .  440
SUBROUTINE PREBGM 443
SUBROUTINE PREBGU 444
SUBROUTINE PR EBLL 446
SUBROUTINE PREBST . . . .   447
SUBROUTINE PREEIG 448
SUBROUTINE PTMASS  35~SUBROUTINE READA . . . . . . . . .  Ref. 5
SUBROUTINE READK . . . . . . . . . . .  359
SUBROUTINE R E A D M . .   360
SUBROUTINE RGEIG  Ref. l6
SUBROUTINE . SBTRCT  361
SUBROUTINE SMULT . . . 363
SUBROUTINE S QU EEZ. .   Ref. 5
SUBROUTINE SYMABT .  364
SUBROUTINE . SYMFIL . • 365
SUBROUTINE SYMSØL . • 366
SUBROUTINE IMULT . . . . . . . . . . • . •  368
SUBROUTINE TRNMLT . .. . .  451
SUBROUTINE V D M U L T . . . . . . . . . .   370
SUBROUTINE V E C T . . . . .  .. . .. ... . . . . . . . .   284
SUBROUTINE WR ITE Ref. 5
SUBROUTINE WRITEM .. . .  ..  .. .  . . . ..  . .  . . . .  • 371
SUBROUTINE XP~NNT . . . . . . . • 372
SUBROUTINE ZERO . . . . . *  373

379

- ---- — - - - ----—-• ----- —5’ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S~~— 5~~5’-5~~~~~~~~~~ 5S



_  5 5 5

MAIN PR OG RAM RESPNS

This is the executive routine for the Nonlinear Incremental Solution
program.

Al gorithm 
S

This routine controls the incremental solution process including the
iterations necessary to determine the modal response. Routine NITIAL is
called first to establish partitions of array A in blank common as requi red
by problem size. Routine ØUTPUT is then called to transcribe certain mast-
er in put data to the master output file.

A loop is then entered the index of which is the number of increments
defined in the card input data . Routi nes PREEIG, EIGSOL, FIFDEF , PREBAL ,
and IMBAL are the executive routines for the modules which make up the in-
cremental solution . These modules are called in sequence for each incre-
ment within which routines EIGSOL and FIFDEF are iterated through 5 times.
The variab le controlling the number of iterations is NFFMAX which is initial-
ized as 5.

The basic functions of each routine called during the incremental sol-
- S - ution are

1) PREEIG - compute M in the first increment and compute K , C, and P
in every increment

2) EIGSOL - assemble the A matrix , solve for all eigenvalues and 1eigen-vectors , and compute the modal response, dA , v, and V
3) FIFDEF - temporarily update geometry and compute the fictitious

force and deformation effects, s and t
4) PREBAL - permanently update geometry and regenerate F~ and
5) IMBAL - compute element forces, stresses, and strains from the

modal response and new geometry

Array DBLL is used to store the cumulative modal displacements , ~~, and
Is of length NC , the number of modes. This array is currently declared in
a DIMENSION staterent and is of length 75. A partition of length NG for

_ _ _  5-5 - - -~~~~---~~~~~ -~~~~~~--~~~—--~~~- ~~_ 5’ :—1 - --



S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

storing ~ should be allocated in the blank common array A by routine NITIAL
rather than using a dimensioned array.

Array A (IVBX) is used to store the modal loads, P, which are acting
at the beginning of the increment. Arrays A (ISK) and A(ITK) are used to
store the equivalent modal loads due to fictitfous force and deformation
effects , respectively, which at computed by FIFDEF for each iteration .

Input/Output

None

Arguments

None

Labeled Common

NDICES , LIMITS, TAPES

Subroutines Called F
CØPY , EIGSOL , FIFDEF, IMBAL , NITIAL , ØUTPUT , PREBAL , PREEIG , ZERO

Error Detection

None

L 5

381

-- — ~~~~~~ S ::- - - S ~~5 5 
~~~~~~~~~~~~~~~~


A0 A063 fll DOUGLAS AIRCRAFT CO LONG BEACH CALIF F/B 1/3
AIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 3. PROGRAMMING——UCCU)
DEC 77 R C MORRIS F33615—75—C—3105

UNCLASSIFIED MDC J YIfl PT—3 A FFDL—TR—77 99 PT 3 Ni.

5~~6
_________ ____ _____________________________OGa 74

_ U

-
~ ~~

- -.--
~~~ =----- - - 

-~~~~~

LABELED COMMON CRRAYS

This common block is used to store intermediate data during the gener-
ation of fictitious forces and deformations.

Declaration

CØMMØN /CRRAYS/ C(225)
DIMENSIØN RNK(8,3), RRK(30,2)
EQUIVALENCE (C(136),RNK(l ,l)), (C(16o),RRK(l~l))

Contents

C An array used to store intermediate data including the element
coefficients and rk

Usage

AVRAGE , CHKØUT, FIFDEF, NKRK

I

332

-— -~~ - -- --~~ —*- -. s - -  -~~~~ - -. - !-— -- -- —



LABELED COMMON FICNDX

This conirion block is used to store the first locations of partitions in
blank con~non array A for use during the generation of fictitious forces and
deformations.

Declaration

COMMON /FICNDEX/ IRSR ,IGFB1,IGFB,IDOB1 ,IFBF,IREC ,IRK ,INK ,
IDEBBL ,ICØL ,IRCØL I IFBFS, ITHK,
JNTS ,LAST2 ~LAST3 , ICEDG, ICUNV

Contents

IRSR rn. reordering transform for membrane and cell elements

IGFB1 Gf element geometry at beginning of increment
8—1

IGFB Gf , element geometry at end of interation
B

IDOB1 D , warp offset at t8
IFBF Ff~ element forces

IREC ECT, element constant table

IRK rk. fictitious element deformations

INK 
~k’ 

fictitious element forces

IDEBBL 6~, fictitious element displacements

ICØL Number of columns in

IRCØL Number of columns in r,.~
IFBFS Not used

ITHK Cel l element differential thickness vectors

JNTS Number of joints for the element

LAST2 Last location of IGFB1

LAST3 Last location of 1D081

ICEDG Not used

383 L
—



.._ ~_ . _ -.~ .---.-._-—- • .- - - —-- -. -——-- -

— . — ._a__ ... . . — - —.

ICUNV Not used

Usage

CHK~tJT~ EDGUNV , FIFDEF , GEØM , NKRK



I

LABELED COMMON GEØMS

This common block is used to store element geometry during the gener-
ation of fictitious forces and deformations.

Declaration

C~MMØN /GEØMS / EDGV(4,8),LJNV(3,6),THICK(4,3),CØORD(8,3)

Contents

EDGV An array of edge vectors components and magnitudes

UNY An array of unit edge vectors

THICK An array of thickness vectors for cell elements

CØØRD An array for temporary storage of joint coordinates

Usage

EDGUNV , FIFOEF , GEØM, LPBFIC, LPCFIC, LPMFIC

L
(

385



LABELED COMMON LIMITS

This common block is used to store problem size information, problem
constants, option flags, and other program parameters used by all
principle routines .

Declaration

COMMØN /LIMITS/NG ,NK,NELEMS,NTRVLS,BETA ,BETBAR,HEAT,NM ,IgRGN ,Jx
KOLX ,NF,MØREK,MØREC ,NG2,NG2SQ,NJTS ,AHAT,DEBCL ,TBM1
TAU,NS,NOWRK ,NSUPD,NFAIL

X4(lO)
LOGICAL BETBAR
INTEGER BETA

Contents

NG Number of modes

NK Number of l umped forces for an element

NELEMS Total number of physical elements

NIRVIS Number of time increments

BETA Current increment number

BETBAR . Material nonlinearity iteration flag

HEAT Option flag for element dissipated damping energy con-
verted to heat

NM (NG*NG+NG)/2

IORGN Pointer to unused trailing partition of blank common

JX Pointer to a location tn labelled common NDICES

KØLX Matrix column counter

NF Number of forces for an element

MØREK Flag designat ing additional partitions of k

MOREC Flag designating addi tional partitions of ~
NG2 NG+NG

386

_ _ _ _ _ _ _ _ _

— —~~~~~~~~~~~~~~~ --. --.-------~~  —,~~---
.



( NG2SQ NG2*NG2

NJTS Number of joints

MAT Geometric nonlinearity correction factor
DEBCL Total damping energy

TBM1 Time increment of previous interval

TAU Time increment of current interval

NS Number of stresses for an element

NWØRK Extent of blank common region

NSUPD Element stiffness update flag

NFAIL Element failure flag
L

X4 Pad for expansion of LIMITS

Usage

RESPNS, AVRAGEI CHKØUT, CI{KPNTI, EIGSØL, FIFDEF , FØRMAT , IMBAL, NDXSET,
NITIAL, NKRK, ØUTPUT, PBARUF , PØLSØL , PREBAL , PREBGM , PREBGIJ , PREBLL ,
PREBST, PREEIG, PTMASS , READK

(



_ _ _  

—

~~

---

~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---..-

LABELED COMMON LPEM

This common block Is used to store element geometry and other data
for use by the ~~, ~~

, F~, and matrix regeneration routines in the PREBAL
module. The configuration of the trailing portion of this common block is
different for each of the element types; bars, membranes, and cells.

Declaration (Routine PREBA~.J

COMMON /LPEM/ NUMECT,IUPDAT,IFAILD,IPARLL,ITMP1 ,ITMP2,IHØLD
NFK,NSK,NKSYM,NSSYM,JM(30) ,XXX(600)

LOGICAL IUPDAT,IFAILD ,IPARLL

Declaration (Bar Elements)

CØMMØN /LPEM/ NUMECT,IUPDAT,IFAILD ,IPARLL ,ITMP1
NFK ,NSK,NKSYM ,NSSYM,JBN(30) ,PQ(4) ,AB(4)

EQUIVALENCE (JBN(l),JP),(JBN(2),JQ),(JBN(3),AREA)
LOGICAL IUPDAT,IFAILD ,IPARLL

Declaration IMembrane Elements)

CØMMØN /LPEM/ NUMECT,IUPDAT,IFAILO ,IPARLL ,ITMP1 ,ITMP2,IHOLD
NFK,NSK,NKSYM ,NSSYM,JMN(30),

AØTP , AØTQ , AOTR , AØTS , AB(4),
88(4) , CB(4) , 08(4)
DP(3,3), DQ(3,3), DR(3,3), DS(3,3), EB(4),
FK1 , FK2 , FK3 , FK4 , FK5
PQ(4) , RQ(4) , RS(4) , PS(4)
SP(3~) • SQ(3) , SR(3) , SS(3)
THETAP , THETAQ , THETAR , THETAS
ZP(3,3), ZQ(3,3), ZR(3,3), ZS(3,3)

EQUIVALENCE (JMN(l),JP),(UMN(2),1]Q),(JMN(3) ,JR),(]MN(4) ,JS),
(JMN(5) ,ZETAPQ) ,(JMN(6) ,T)

LOGICAL IUPDAT ,IFAILD ,IPARLL

388

—

—.—-—..---- ~~~-
., .

~~~~~~~~
----

~~~

Declaration (Cell Elements)

COMMON /LPEM/ NUMECT,IUPDAT,IFAILD ,IPARLL ,ITMP1 ,ITMP2,IHØLD
NFK,NSKINKSYM,NSSYM,JCN(30),

AB(4,8) , BB(4,8) , CB(4,8)
DB(4,8) , EB(4,8) , FB(4,8) , FK(5,8)
LA (8) , LB(8) , LT(8)
PQ(4,8) , RQ(4,8) • RS(4,8) ,PS(4,8)
THETA(8) , TPB(4) , TQB(4) , TRB(4)
TSB(4) , TPQ(4) , TRQ(4) , TRS(4)
TPS(4) , UN(4,6) , V(8) . , ZETA(8)

EQUIVALENCE (JCN(l),JPO),(JCN(2),JQO),(JCN(3),JRO),(JCN(4),J50),
(JCN(5),JP1),(JCN(6),JQ1),(JCN(7),JR1),(JCN(8),JS1),
JCN(9),ZETAPQ)

EQUIVALENCE JCN (ll),SIGll),(JCN(12),SIG21),(JCN(l3),SIG41),
JCN(14) ,SIG12) ,(JCN(l5) ,S1G22) ,(JCN(l6) ,SIG42),
(JCN (17),51G13),(JcN(18),S1G23),(JCN(lg),S1G43),
(JCN(20) ,S1G54) ,(JCN(21) ,S1G64) ,(JCN(22) ,SIG55),
(JCN(23) ,SIG65) ,(JCN(24) ,S1G36)

LOGICAL IUPDAT, IFAILD , IPARLL
REAL LA ,LB,LT

Contents (General)

NUMECT LengtP1 of ECT record
IUPDAT Stiffness update flag
IFAILD Element failure flag
IPARLL

.
Parallelogram membrane flag

ITMP1 Temporary storage array of length 30
ITMP2 Temporary storage array of length 30
IHOLD Temporary storage array of length 240
NFK NF*NK (see Labeled Common LIMITS)
NSK NS*NK (see Labeled Comon LIMITS)
NKSYM (NK*NK+NK)/2
NSSYM (NS*NS÷NS)/2

Contents (Bar Elements)

JBN(l) Number of joint p
JBN(2) Number of joint q
JBN(3) Bar area

389

_ _ _ _ _ _ _ _ _ _ _ _ _ _ -4

—. —w — .-~~~- .—.- -.-—~~ -~

I

Contents (Membrane Elements)

JMN(1) Number of joint p
JMN(2) Number of joint q
JMN(3) Number of joint r
JMN(4) Number of. joint s
JMN(5) Stress orientation angle
JMN(6) Membrane thickness
AOTP A*B*SIN(THETA)/T for corner p

AOTQ A*B*SIN(THETA)/T for corner q
AØTR A*B*SIN(THE.T~)/T for corner r
AOTS A*B*SIN(THETA)/T for corner s
AB Unit vector components, X/T, Y/T, ZIT , T
BB Unit vector components, X/T, Y/T, Z/T, I
CB Unit vector components, X/T, Y/T, Z/T, I
DB Unit vector components, X/T, Y/T , Z/T, T
DP matrix for corner p
DQ D matrix for corner q
DR D matrix for corner r
DS matrix for corner s
ER Unit vector components, X/T, V/I, Z/T, T
FK1 K factor 1
FK2 K factor 2”
FK3 K factor 3
FK4 K factor 4
FK5 K factor 5
PQ Edge vector components and magnitude , X, Y, Z, T
RQ Edge vector components and magnitude , X , Y, Z, T
RS Edge vector components and magnitude , X , Y, Z, I

Edge vector components and magnitude, X V , Z, I
SP Skew matrix for corner p
SQ Skew matrix for corner q
SR Skew matrix for corner r
SS Skew matrix for corner S

390
, ~~

THETAP Corner angle
THETAQ Corner angle
THETAR Corner angle
THETAS Corner angle
ZP Global translation matrix for corner p
ZQ Global translation matrix for corner q
ZR Global translation matrix for corner r
ZS Global translation matrix for corner s

Contents (Cell Elements)

JCN (l)
~

to Number of joints p0. q~, r0, s0,

JCN(8) J p1, q1, r1 , and

JCN(9) Stress orientation angle

JCN (ll)~ Non zero elements of where the numbering of SIG corr—
to esponds to location in a singularly dimensional array

JCN(24)J storing the matrix columnwise
AB Unit vector components , X/T, V/T, Z/T, I
BB Unit vector components. X/T, V/T, i/I, I
CB Unit vector components, X/T, V/I, Z/T, T
DB Un it vector components, X/T, V/I, Z/T, I
EB Unit vector components, X/T, V/I, Z/T, I
FB Unit vector components, X/T, V/I, Z/T, I
FK K factor
LA Length of cell sub-element

LB Width of cel l sub-element
LI Thickness of cell sub-element
PQ Edge vector components and magnitudes , X , V , Z, I
RQ Edge vector components and magnitudes , X , V , Z, I

RS Edge vector components and magnitudes, X , V , Z, I

PS Edge vector components and magn i tudes , X , V , 2, 1
IHETA Corner angles (THETAPO, THETAQO , THETARO , THETASO ,

IHETAP1 , THEIAQ1 , THETAR1 • THETAS1)

IL
~~~~



_ _ _ _ _ _ _ _

TPB Thickness vector components and magnitude
IQB Thickness vector components and magnitude
TRB Thickness vector components and magnitude
TSB Thickness vector components and magni tude
TPQ Thickness vector components and magnitude
TRQ Ihickness vector ccrn~onents and magnitude
IRS Thickness vector components and magnitude
TPS Thickness vector components and magnitude
UN Uni t vectors approximately normal to surfaces 0 through 5
V T*A*SIN(THETA) for cell sub-el emen ts
ZETA Orientation angle of cel l sub—elements

Usage

CHKPNT , LPBG , LPCFFBI LPCG , LPCSFB , LPMFFB , LPMG , LPMSZD , LPMS1 , LPMS2 ,
ØUTPUT , PREBAL, PREBGM , PREBGU , PREBLL , PREBSI

• 1
392

-r — l~~~ ~~~~~~~~ . . .~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - .~.



LABELED COMMON NDICES

This common block is used to store pointers to partitions within
blank common array A. All values in this common block are initialized
in routine NITIAL . Partitions for elements are sized for cells which
have the largest storage requirements .

Declaration

CØMMØN A( 8000)
CØMMØN /NDICES/IVBDB ,IVBB ,IVBX ,IDPBPU ,IPBMUB ,IDPPUB ,IDBL ,IVBL

IPBAR ,IPBPHU,IKB,ICB ,IMBAR ,IMBARL ,IDEBCL ,ICoNST
• ITIME ,ISIGSS
• IKBL, IZ ,ICA ,IQ ,IVAL ,IFTAU ,IVEC ,IEGSYS

IU ,LU,IECT,IEVT,IMPT,IDEBO ,IDFBKO ,IDSEB
IFK ,IFBK ,IDEL,IDEDL , IFSFB , IFSFBB ,IPBCU

• IPBKU ,ISIGFB ,ISIGBH ,IEPSIG ,IPSLØN ,ID , 10K
ISKB ,ISKBB ,ISCB ,ISCBB,IPBIJF,ISK ,ITK,ICIB ,IMEL

, Xl (3O)

Contents

IVSDS ~~~~~ modal accelerations

IVBB ~, modal velocity

IVBX 
~B—l ’ 

modal velocity of previous increment

IDPBPU s~~, incremental modal force imbalance

IPBMUB 
~(M)u ’ 

modal inertia force

IDPPIJB 
~(~)u’ i ncremental modal applied load

IDBL 6 ,  incremental linear modal displacement

IVBL 
~L’ 

linear modal displacement

IPBAR P, total modal forces

IPBPHU 
~(~)U’ 

modal applied load

1KB K, modal stiffness j
ICB C, modal dampi ng

IMBA R M, modal mass

393



~~~~~~~~~~~~~~~~~~~~~~~~ 

IMBARL Cholesky decomposition of M

IDEBCL 6ECL. incremental element dissipated damping energy

ICØNSI Problem constants

ITIME Incremental time history

ZSIGSS ~~~ stress transform for cell elements

IKBL Cholesky decomposition of K

12 The modal matrix 2 K 1
1P8

ICA The modal matrix Ca
= H 1 yo

IQ The modal matrix Q C F(~r) where C is C diagonalizedaD aD a
IVAL A , eigenvalues

IFTAU F(-), a modal column matrix of eAT

IVEC H, eigenvectors

IEGSYS Eigenvalue problem work array

IU U , joint coordinate table
LU Joint coordinate update flags

IECT ECT, element constant table

lEVI EVT, element variable table

IMPT MPT, material property tables

IDEBO d~~, incremental initial element deformations

IDFBKO aFK
, Incremental element forces due to initial deformations

IDSEB ~~, incremental element deformations

IFK The matrix FK + for an element
8-1 0

IFBK FK, element forces

IDEL eeL. incremental linear element displacement

IDEDL eeL. incremental linear element velocity

_ _ _ __ _ _ _

_ _ _ _ _ _ _ _ _ _ _____
~~~~~~

_. 

IFSFB F~, element force transform

IFSFBB F-p, average of F~ and F
8 8—1

IPBCU 
~(C )u’ modal damping forces

IPBKU 
~(K)U ’ modal stiffness forces

ISIGFB o~, element stress transform

ISIGBH a
~
, preliminary element stresses

IEPSIG ta’ element strain transform

IPSLON c, element strains

ID The matrix D = for an element

10K The matrix DK = 
~~ 

F~ ~ for an element

15KB k unassembled element stiffness

ISKBB K~, average of K81 and K8

ISCB E, unassembled element damping

ISCBB C~, average of C8 1 and C8

IPBUF 
~UF’ 

modal transform

ISK 5k’ modal ficti tious force equivalent loads

IlK tk modal fictitious deformation equivalent loads

ICIB The matrix c~ P~~ F~ ~ F?
T 
~uF 

for an element

IMEL m , element mass

Xl Pad for expansion of NDICES

395 

- - -- . _ _



Usage

RESPNS, AVRAGE , CHKOUT, CHKPNI, EIGSOL , FIFDEF , FORMAT, GEOM , IMBAL ,
NDXSET, NITIAL , ØUTPUT, POLSOL, PBARUF , PREBAL , PREBGM , PREDBGU, PREBLL ,
PREBST, PREEIG , PTMASS, READK

396

L~~. . ,~~~~. . . . .



—,-~~-. -- .—.- ---------.---.-.-.. — - .—-,,,- _ -----_--.

.

LABELED COMMON TAPES

This common block is used to store the FORTRAN logical unit numbers
of the external files used by the program.

Decl aration

COMMON /IAPES /TAPES(20), X2(lO)

Contents

The values in the common block are initial ized in routine NITIAL .
The FORTRAN logical unit designations and equivalences assigned are given

here.
TAPES( l )=Nl= 1
TAPES (2)=N2= 2

TAPES (3)=N3= 3
TAPES (4)=N4= 4

TAPES (5)=N5= 8

TAPES (6)=N6i 9

TAPES (7)=N7= 10
TAPES (8)=N8= 11

TAPES (9)=N9= 12
TAPES(lO)=NlO= 13
TAPES( l1 )= N l l =  14

TAPES(12)= N12= 15

TAPES(13)=N13= 16
TAPES(14)=N14= 17

IAPES(15)=Nl5= 18
TA PES(16)=Nl6= 19

r TAPES(l7)=Nl7= 20

TAPES(18)=N18= 21
IAPES(19)=N19= 22

TAPES(20)s N2Oz 23

397 tI 
~ .. ~~~~~~~~~~~~ .~ .~~~~ . . . _ . .~~~~



Array X2 Is a pad for expansion of labeled common block TAPES.

Usage

RESPNS, CHKPNT, EIGSOL, FIFDEF , IMBAL , NITIAL , ØUTPUT , PBARUF, PREBAL ,
PREBGM, PREBC-U, PREBLL, PREBST , PREE IG , PThASS, READK

398

. -. . .

-, .~~ ._ “—,- -~~~
-_ — —. —



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-. -.- .

~
—-.—-_,. - -—-., 

.

SUBROUTINE AVRAGE

This routine computes the fictitious force and deformation matrices

~k 
and r~.

Al gorithm

Matrices and rk are computed according to equations H.278 through
H.329 given In Appendix H of Part 1.

InputJOutput
None

Argument List

NUM An integer scalar defining the length of the ECT record
FFDB A real array for matrix
FF081 A real array for matrix F~8_1
GFB A real array for matrix Gf8
GFB1 A real array for matri x Gf8_1
RSR A real array for matri x
FBF A real array for matrix
DO A real array for matrix D0
RNK A real array for matrix nk
RRK A real array for matrix rk

Labeled Common

LIMITS , NDICES, CRRAYS

Subroutines Called

MLTMAT , NKRK , TRNMLT

Error Detection
None

(

399

_ _ _ _  -- _ ~~~~~~~~~~- - .



- -~
- • -  .,-~~-_— - ~

—.__- - _ .— . --_
~

--_ .-—
~~
- 

_ _ _

1 1

SUBROUTINE CHKOUT

This routiae prints Intermediate data during the execution of the
fictitious force and deformation module.

Algori thm

Depending on the value of the argument ICASE , control is transferred
to a section of code wh ich sets the fi rst location of the array partition
to be printed and the row/column dimensions of the partition . Appropriate
title information is also set.

Control is then transferred to one of three calls to routine MATPRT
to print the partition from one of three arrays .

Input/Output 
.

Data to be printed is written to file 6.

Argument List

ICAS E An integer scalar defining which data is to be printed
B A real array of intermediate data

Labeled Common

CRRAVS , FICNDX , NDICES , LIMITS

Subroutines Ca lled

MATPRT

Error Detection
None

400

— ~~~~~~~~~~~ . --_—— -.. -.



~ - -.-,— — —_ — -~~
-----

~~~~~~~~ - -._ , - _
~~

. _---~~--~~--~~~

SUBROUTINE CHKPNT

This routine prints Intermediate data at selected points during the
execution of routine PREBAL .

Al gorithm

Routine PREBAL calls this routine at selected check points during Its
execution. At each point, selected intermediate data is printed using
routine PLOP. Logic Is provided to control printing at each point using
array KPRNT which is initialized in a DATA statement. Printing takes place
at each point only If the corresponding value In array KPRNT is non-zero .
Also, all printing can be suppressed by making KPRNT (15) equal to zero .

Input/Output

All printed output is wri tten on file 6.

Argument List

I An integer scalar defining the element number for which data
Is being printed

J An integer scalar defining the checkpoint for which .data is
being printed

Labeled Common

NDICES, LIMITS, TAPES , LPEM

Subroutines Called

PLØP

Error Detection

None

L -

401

~~~~—-. — .-—- .._..-—--____



_ _ _ _ _ _ _ _  ~~—-~~~ 
_ _  __ .. - .-.-~~~- . .- —,- . -_ , ,

SUBROUTINE EDGUNV.

This routine calculates the edge vectors of an element from the joint
coordinate data.

Al qorIthm

Repeated constants are calculated and the number of edges for the
element type that is under consideration is set. The joint pai rs that
determine an edge vector are set and the corresponding edge vector is
ca lculated from the coordinates . This is done for one edge for a bar , the
4 edges of a membrane and the edges associated wi th joints 1, 2, 3 and 4
of a cell. If the element is a cel l, then the basic edge calculations
just obtained are copied into the next 12 memory locations , rather than
recalculated for the other surface . Using the cell thickness data developed
in subroutine GEOM , the complete edge vector calculations are performed
for all edges and stored in variabl e array EDGy .

For al l element types the edge unit vectors are calculated and stored
in variable array UNV.

Input/Output

Error messages , If any , are written to file 6.

Argument List

IECREC An integer array for the ECT table record for the element under
consideration

NUM An integer scalar defining the number of words in the ECT record

Labeled Common

FICNDX , GEØMS

Subroutines Cal led

None

t 402

L 
_ _  

- 

_ _p 
— — ~~~~~~~~~~~~~~~~~~~~  

~~~~ -_ - — _., — .  -~~~~~.


____ ~~~ . ~~
-

~~~~~~

_ _—
~~~
-—,

~~~
-—-

Error Detection

Testing is performed to detect zero edge lengths . If found , a
diagnostic is written to that effect, the variable IERRO R is set to 1
and control is returned to the calling routine GEOM .

_ _ _  

- 

403

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



SUBROUTINE EIGSOL

This routine assembles the A matrix, solves for all elgenvalues and
eigenvectors , and computes the modal response.

A lgorithm

Input to EIGSOL are the core resident transformed modal stiffness,.
damping , decomposed mass, and loads matrices K, C, W~, and P, respect-
ively. Also Input for all i terations other than the first are the equiv-
alent loads derived from fictitious force and deformation effects computed
by routine FIFOEF which are also core resident. Output from EIGSOL are
the modal displacements , velocities , and accelerations , 6~, ~, and ~,respectively. The equations for solution of the modal response are given
In Appendix H of Part 1 (H.l61 through H.l75).

First, the load variation constants, w~ , ~~ and cf are computed. The
modal loads P and the incremental equivalent loads ~SP(f) are scaled by c~
and Cf~ respectively. Routine NEWKC is Invoked to form matrix K

~ 
and its

inverse. The real and Imaginary parts of and are then computed
and stored in A(IKBL) and A(IKBLX), respectively.

The A matrix is then assembled and all elgenvalues , A , and elgenvect—
ors, H, are computed by routine RGEIG. The eigenvectors are written to
N8 before being Inverted by routIne JORDAN .

The modal response equations are then solved for 6~, ~, and ~~~. During
these computations, the elgenvectors are read from NB where they had been
temporarily stored.

Input/Output

The e1~envectors H are written to file NB and are subsequently read
back into core.

.1

404

____________________________ ‘ ~~._ 
~~~~~~~~~ 

. .-, . ..

_ _ _ _ _ _ _ _ _

_ -

~- ._~~_ . -— ,-——-_--. .,.~~~~~
; ..

. - - - . -_-- -_

~~

--_—--.
.---

Argument List

B A real array for the A matrix
X A real array for the elgenvectors
M An Integer scalar defining the order of the problem
N An integer scalar equal to M/2

Labeled Common

NDICES, LIMITS, TAP ES

Subroutines Cal led

CCMULT, CRMULT, JORDAN, NEWKC , PLØP, READA , RGEIG, SMULT , SYMFIL, SYMSØL ,
VDMULT, WRITE, XPONNT

Error Detection

None

405

S

SUBROUTINE FIFOEF

This routine is the dri ver routine for the module that generates
the elemental fictitious force and deformation matri ces based on linear
incremental displacements and average geometry (equations H.l81 through
11.331 in Appendi x H of Part 1).

Al gorithm

Pointers are Identifi ed for those matrices stored in blank common
array A and Initialization is performed.

For each element of the structure the following processing steps are
performed. The ECT table record Is read from file N12. If the element
has fa i led , then the next element is read . Matrices

~UF’
F? and OK are

read from fi les Nil , N13 , and N6 respectively. Matrix k Is also read
from N6. Processinc parameters are set for the element type; bar, membrane
or cell. 6eL and are then calculated. The element deformations flag
is set to zero , mean ing that deformations wi ll not be added to the core
res ident joint coordinates . The element geometry i s calcula ted by routine
GEOM relative to the joint coordinates at the beginning of the increment.

The variable BETBAR , which Indicates whether this is the second
iterative solution to account for material nonlinearity , is then tested.
This test and the processing initiated when BETBAR is true a.re part of the
original design and are no lonoer appl icable. This is also true regarding
the test and processino associated wi th the variable HEAT which is the
option of accounting for damping energy converted to heat durinQ impact.

Matrix FK8 1 Is read from file N6 and , if not the first iteration for
geometric nonlinearity, the element forces due to fictitious deformations
are read from file N30. The final element forces for this iteration
are then computed . If this Is the last iteration , processing should end
here. This would avoid the regeneration of fictitious forces and deformations
for the last iteration . Appropriate testing and trans~er ins tructions should
be inserted In the code.

406

r—~~

Matri ces Fr,. Gf, D~, and D
~

are then calculated base d on the final
elemen t forces and the geometry at the beginning of the increment. This
data is wri tten to file N3. Code should be inserted here to avoid
regeneration of thi s data for iterations other than the fi rst. The data
stored on file N3 should be read and re-used .

The geometry is then temporarily updated according to the element
displacements , and matrices F~, Gf~ and Ff generated for the new geometry .
The average of these matrices for new and old geometry is computed . From
the average matrices , the fictitious element deformati ons ~ are computed
as are the

~k
and rk coefficients . Finally, the equi valent app lied loads

for ficti tious force and deformation effects sk and tk, respect i vely , are
computed .

If this is not the last iteration for geometric nonlinearity , the
element forces due to fic titious deformations are computed and written to
fi le N3l . If ft is the last iteration , the final element forces and
deformations and velocities computed earlier are written to files N5 and
Ni , respectively.

This ends the processinq for an element. Control is transferred to
the beginning of this loop to process the next el ement.

Input/Output

The matrices are read or written as indicated bel ow

~UF
read from N i l
read from Nl3

Ed read from N12

-
written on N5

DK ,k ,FK read from N6
3FK~(0ld) read from N30
5?Kf(new) wri tten on N3l

wr itten on N7
Intermediate data is printed on file 6.

_ -

407

—-- _-.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~- - -.~~~~~~~~- ..4~ V ~~~~~~~~~~~~~~~~~~~~~~~



I

~~gument List

NFFINC An integer scalar defining the Iteration number

NFFMAX An Integer scalar defining the maximum number of iterations

N30 An integer scalar defining the input file for 6FKf
N31 An integer scalar defining the output file for ~FKf

Labeled Common

LIMITS , NDICES , TAPES , FICNDX , GE~MS , CRRAYS

Subroutines Called

ABSYM , ASYMB , AVRAGE , CHGSGN , C~PY , GEOM , LPBF IC , LPCFIC , LPMFIC , MLTMAT ,
MULl, PBARUF , READA , READM, TMULT , WRITE , WRITEM

Error Detection

None

408 

— .— . -—--~-— .~ ..— . ..— —.— , -..--- .~~~~___ ..a.___ .~_. . —— 
—



~ —-—.-~ - -~~~ --.-- — -.-- . — —-—.~
.--— - ~

..- ---——----— .——--—— ..--—-

~ I

SUBROUTINE FØRMAT

This routine outputs matrices K, ~, and M in a format consistent with
FORMAT master input/output tapes.

Al gorithm

The core resident matrIces K, C, and II, which are stored in upper tri-
angular row-wise form, are assembled in full form using routine SYMFIL. Each
is then output to file 19 as FØRMAT matrix data.

This routine was used in the early stages of program development and Is
no longer required nor called by the final version of the program.

Input/Output

A FORMAT matrix tape is generated on file 19 containing matrices K,
C, and M.

Argument List

None

Labeled Common

ND ICES , LIMITS

Subroutines Called

CHGSGN , SYMFIL, WRITE

Error Dectection

None

409

- --4 - - —  -~~~~~~~ . _.! _ _  ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



___________ 
- . --—- ~~~~~~~~~~~~~~ -- ------ - 

.

I

SUBROUTINE GEØM

This rout ine stores the joint coordinates for an element and,
conditional ly, adds element deformations. Thicknes s vectors are calculated
for cell elements and edge and unit vectors are calculated for all elements .

Al qori thm

The element joint coordinates are accessed in the coordinate table
and stored in array CØOgD . The deformation flag IDEFRM is checked and,
if equal to one , the element displacements are added to the joint coord-
m ates. If the elemen t is a cel l, then the cell thicknesses are calculated ,
and subsequently, the cell thickness differentials.

For any element type , routine EDGUNV is called to determine the edge
and unit vectors .

Input/Output

None

Argument List

NUM An integer sca lar defining the number of words in the ECT record,
used to determine element type

IDEFRM An inteqer scalar fla g for deformations

REC A real array for storage of the element ECT table

Labeled Common

GEØMS , FICNDX , NDICES

Subroutines Cal led

EDGUNV

Error Detection

None 
.

- 

410 

.. ,— — ~~~~~~~~ — -—



~
•7— — -,- .

~~~~

- - .“-

~

.___________________________ -
1 -,

SUBROUTINE IMBAL

This routine computes the stresses and strains of each element and
writes the element forces, stresses , and strains to the master output file.

Al gorithm

First, the logical variable BETABAR is tested to determine if this is
the second Iterative solution due to material nonlinearity. This test and
the processing it initiates, as well as other tests and processing related
to BETABAR equal true, are part of the original design and are no longer
required.

The cumula tive transformed applied loads
~(~)U are then augmented

with their incremental component. The equilibrium imbalance 6P
~

is then
computed . The subsequent test of the imbalance to check the solution Is part
of the original design and is no longer required .

The modal response consisting of ~, 6~, ~ ~ ~(s)u’
and 6PU is then

assembled and is output as a column matrix wi th the name RESPNS and a sub-
script equal to the increment number.

A loop Is then entered whose index is the number of element types.
Control flags are then set according to element type. The elements types
are processed in the order bars, membranes , and cells. If elements of a
given type exist in the model , a second inner loop Is entered whose index
is the number of elements of that type.

A matrix is written to the master output file for each element type
that exists in the model. The following operations are performed for each
element in the i nner loop.

Read c~, cc~
FK, Ca l and from scratch files

a °
~

for bars and membranes

I
411

________ _______ ~~~~~~~~~~ ~~~~~~~~~ . . ~~~ ~~~ .~~~~~~~
.

or
=

~
for cells

C C
8~~1

+ CQ a
~~

6FK

Write FK, a, and c to master output file

The element forces, stresses, and strains are arranged In that order
into a single column of the output matrix for each type of element. The
matrix names used for the three element types are BARS , MEMBRN , and CELLS.
Each is subscripted wi th the increment number.

After processing all elements, external files are positioned and app—
ropriate files are flip flopped according to the original design .

Input/Output

The following matrix data is read and written during IMBAL :

c~, 6~K
read from N6

FK read from N5

c read from N16
a

read from N9

£8 written to NlO

The moda l response and element forces, stresses, and strains are
written to the master output file N20.

Argument List

DBLL A real array for the cumulative modal displacements ~

-
_ _ _ _-- ._

~~1._ ~~ .

~

.--.-- - —- — ~~~~~~ .~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - ‘ .~r.. .

- - — - —.- —---- - -- - - - -- —..----- - - .— .-.-
~~~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - .—-.- . . .
~~~~ -, . .-— -- 1’~

Labeled Common

NDICES , LIMITS , TAPES

Subroutines Cal led

ABSYM , ADD, ASYMB , HALT , MULl, PLØP , READA , READM, SYMABT , WRITEM , ZERO

Error Detection

Error conditions are tested for when BETABAR equal true but these tests
are no longer applIcable.

I

I:

C- 
- 

.

413

L _______ _________________ __ --.  ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ --~~~~~~~~~
, - - --., ~~~~~~~- -_



SUBROUTINE LPBF IC

This routine cal culates the geometric and force matrices for
fictitious force and deformation effects from bar elements .

Algorithm

Matrices Gq, F.~ and are computed according to equations H.181
through H.192 given in Appendix H of Part 1. Input consists of geometric
data in labeled common block GEOMS and the elemen t forces

Input/Outout
None

Argument LISt

FFBB A rea l array for matrix
GF A real array for matrix Gf
FBF A real array for matrix Ff
FB A real array for matrix

Labeled Common

GEOMS

Subroutines Called
None

Error Detection
None

~~ 414

—---—.. - __________ - -~~~



- -~~~~~~~~~~~~~~~~~ -~~-—--— ~~~ .—~~ . --- --- ~~~~~~~~ 

SUBROUTINE LPBG

This routine regenerates matrices F? and for bar elements.

Al gorithm

Using the joint coordinate table stored in array U and the element
definition stored in labeled common LPEM, this routine forms matrices
F? and as follows (array dimensions appear on the left):

(3 x 1)

,

1

(7 x 2) F?= az

• a~

ic ~ -1.9

(l x 2)

Input/Output

None

Argument List

U A real array of joint coordinates

FFBAR A real array for matrix F?

SIGFB A real array for matrix

( .  

~~~~
. _ _

I
S

I

Labeled Common

LPEM

Subroutines Called

VECT

Error Detection

None

416

• ---.--

rr~
-

~~~~~~~~~~~~~~~ I

S

SUBROUTINE LPCFFB

This routine regenerates matrix FF for a cell element.

Algorithm

This routine regenerates matrix FF In a manner Identica l to routine
LPCFFB in the Initial Generator (see Appendix B). The coding is Identical
except for common blocks and arguments.

Input/Output

None

Argument List

FFBAR A real array for matrix
HØLD A real array for Intermediate storage

Labeled Common
S 

LPEM

Subroutines Cal led

None

Error Detection

None

417

‘
9— - 

— 
______- 

-

--- — —-—-----~ -•- . ~ —.--•--—----- - -•• --~
. —- — — —



I
SUBROUTINE LPCFIC-

This routine calculates the geometric and force matrices for
fictitious force and deformation effects from cel l elements .

Algorithm

Matrices Dr,, Gf, Ff, r,! , and F~ are computed according to equations
11.225 through H.277 given in Appendix H of Part 1. Input consists of
geometric data in labeled common block GEØMS and the element forces FK.

Input/Output
None

Argument List

FFBB A real array for matri x F~
RR A real array for matrIx r,.~
GF A real array for matrix Gf
FBF A real array for matrix Ff
DO A real array for matrix
FB A real array for matr i x

Label ed Common

GEOMS

Subroutines Called

VECT

Error Detection
None

I

418

_ _ _  

- 
__  _ _ _



SUBROUTINE LPCG 
-

This routine computes geometric data and panel K factors for a
cell element.

Al gorithm

This routine computes all geometric data and panel K factors in a
manner Identical to routine LPCG In the Initia l Generator (see Appendix
B). It does not, however, compute element volume and mass. Otherwise,
the coding is identical except for common blocks and arguments .

Input/Output

None

Argument List

U A real array of joint coordinates

Labeled Common

LPEM

Subroutines Cal led

VECT

Error Detection

None

419

—~~~ .------ -~~~~.- —~~~~~~~~—- ~~~~~-~~~~ —~~—
-.-—



SUBROUTINE LPCSFB

This routine regenerates matrix for a cell element.

Al gori thm

This routine regenerates matrix in a maimer identical to routine
LPCKC in the Initial Generator (see Appendix B). It does not, however,
compute the stiffness matrix. Otherwise, the coding is identical except
for common blocks and arguments.

Input/Output

None

Argument List

SFBAR A real array for matrix
JHOLD An Integer array for IntermedIate storage

Label ed Common

LPEM

Subroutines Called

None

Error Detection

None

420

— - -- - - - ~ -~~-~
•-~-

•.- _ - ——••—-. - - ..-—— • .- - - 

- - - - --- - •-~~~• — --- • - • —~~~: ...~~



~

SUBROUTINE LPMFFB

This routine regenerates matrix F~ for a membrane element.

Algorithm

Thi s routine regenerates matrix FF In a manner Identical to routine
LPMFFB in the Init ial Generator (see Appendix B). The coding is identical

except for common blocks and arguments .

Input/Output

None

Argument List

FFBAR A real array for matrix

HOLD A real array used for temporary storage

Labeled Common

LPEM

Subroutines Called

None

Error Detection

None

I C  

S

421

L . — - — .~~~ ._~~~~~~~~~~~~~~~~~~~~~



~~~~~~~

SUBROUTINE LPMFIC.

This routine calculates the geometric and force matrices for
fictitious force and deformation effects from membrane elements.

Algorithm

Matri ces D~,, Gq, Ff, rr’, an d F~ are computed according to equations
11.19-3 through 11.224 given In Appendix H of Part 1. Input consists of
geometric data In labeled common block GEØMS and the element forces FK.

Input/Output
None

Argument List

FFBB A real array for matri x F~
RR A real array for matrix r1I
GF A real array for matri x Gf -

FBF A real array for matri x Ff •

.- .-

DO A real array for matrix
FB A real array for matrix

Labeled Common

GEØMS

Subroutines Called

VECT

Error Detection

None

422

_______________________________ —


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _

- SUBROUTINE LPMG

Thi s routine computes geometric da ta and panel K factors for a
membrane element.

Al gorithm

This routine computes all geometric data and panel K factors in a
manner identical to routine LPMG in the Initial Generator (see Appendix
B). It does not, however, compute element volume or mass. Otherwise,
the coding Is identical except for common blocks and arguments.

Input/Output

None

Argument List

U A real array of jo int coordinates

Labeled Common

LPEM

Subroutines Cal led

VECT

Error Detection

None

423



SUBROUTINE LPMS~~D 
-

This routine computes the area matrices and the global transform
matrices used to compute matrix for a membrane element.

Algorithm

This routine regenerates matrix a~ in a manner identical to routine
LPMS~D in the Initial Generator (see Appendix B). It does not, however,
compute the ~ matrices . Otherwise the coding is identical except for
common blocks and arguments .

1nput/ Output

None

Argument List

SFBAR A real array for matrix a~

Label ed Common

LPEM

Subroutines Called

LPMS1, LPMS2 , LPM~

Error Detection

None

L

424
- 

--- 5 -- _ -

— - —5——— — .— —~5~~~~— -_ ————— — ~~~~~~~~~~~~ ~~~~ _ _ . _ —
~ 

— — .



-~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~- _ ~~~~ •S5~~~~~~~~_5-•~~~~~ 5~-~~~~~~~~~ -5S .S55~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --5-5_~~ ••~ 5 _  5~__ —5-., ~~

SUBRØUTINE LPMS1

This routine forms matrix for a parallelogram membrane element.

Al gorithm

This routine regenerates matrix in a manner identical to routine
LPMS1 in the initial Generator (see Appendix B). The coding is identical
except for common bl ocks and arguments.

Input/Output

None

Argument List

SFBAR A real array for matrix

Labeled Common

LPEM

Subroutines Called

None

Error Detection

None

425

— — — . --~ -

— —

SUBRØUTINE LPMS2

This routine forms matrix for an approximate parallelogram
membrane element.

Al gorithm

This routine regenerates matrix in a manner Identical to routine
LPMS2 In the Initial Generator (see Appendix B). The coding Is Identical
except for common blocks and arguments.

Input/Output

None

Argument List

SFBAR A real array for matrix

Labeled Common

LPEM

Subrouti nes Cal led

None

Error Detection

None

426

—

_
-• -—_-—- -~~~~~ -—- --•-~~— - - 5 -— - -~~

-- —---5-
- —

~.

S

SUBROUTINE MATPRT

This routine is a matri x print utility routine used by the fictitious
force and deformation module .

S
-

Algorithm

The matrix to be printed Is assumed to be ful l and real mode. After I

printing a title line , the matrix Is printed row by row.

Input/Output

Matrix data is printed on file 6.

Argument List

TARG A real array for the matrix to be printed
IROW An integer scalar defining the row dimension
ICOL An integer scalar defining the column dimension I

CØMENT An al phanumeric array of descriptive information I

Labeled Common
None

Subroutines Called
None

Error Detection
None

I

-

427

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - .--~~~~~~~ - , - ~~~~ ~~~~~~~~~~~~~~~ ~~~

SUBROUTINE MLTMAT

This routine performs an Incore matri x multIplicati on.

Algorithm

If a cumulative summation of matrix products is not requested, the
product matrix is initialized to zero. The cumulative summation of matrix
products Is then performed according to

C~~~C + AB

Input /Output

None

Argument List

C A real array for the product matrix
A A real array for the premultiplier matri x
B A real array for the postmul tiplier matrix
I ~An Integer scalar defining the usable row dimension of A and C
M An integer scalar defining the usable column dimension of A and

tne usable row dimension of B -

N An integer scalar defining the usable column dimension of B and C
MRØW Air integer scal ar defining the row dimension of A and C
MC1 An integer scalar defining the row dimension of B and the column

dimension of A
MC2 An Integer scalar defining the column dimension of B and C
SUM A logical scalar flag for cumulative summation

Labeled Common

None

Subroutines Called
None

Error Detection
None •

428

H-

— — _ _Is. —- - s —_ - .- -
—

-5 — - 5 -- -5—

_ _ _ _
- -

SUBROUTINE NEWKC

This routine computes the inverse of the augmented modal stiffness
S

matrix

Al gorithm

The augmented modal stiffness matrix is formed according to

= R - +

and routine JORDAN is called to invert K
~
.

Input/Output

None

Argument List

x A real array for storing the real and imaginary parts of K
~

A A real array for matrix K

B A real array for matrix M

C A real array for matrix C

D A real array used by routine JORDAN to compute the inverse of

NG An integer scalar defining the order of the problem

ww A real scalar for the load variation constant

WWSQ A real scalar for the square of the load variation constant

Labeled Common

None

Subroutines Ca lled

JØRDAN

-~~~~ - - - - , E - - ---- - - - — - - -

— rn---- - - - - - S ---.

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~-.——-.—-  -

Error Detection

None

- - -S

I • 

S

- r 430

_ _ _ _ _ _ _ _  -  - 
j

- — .  - —.S- - - _- S- -— -5~_~~~ . _~ _~~ i_ _ _ _ __ S ____ __ _S._____ — 5  — --5 — 5•_



SUBROUTINE NITIAL

This routine performs the Initialization steps necessary before 
S

entering the incremental solution.

Algorithm

Routine NITIAL performs the first stage of initial ization process.
First, label ed common block TAPES is Initial ized with the FORTRAN logical
unit numbers to be used for the scratch files. Routine MATIN is then
called to read the first master inpu t tape and copy each Input matrix to
individual scratch files. The input file contains matrices 

~~~ 
MPT, U0,

ECT, m , k, E , F~, cii, c~, ~T’
LVI, and CONST assembled In a previously

executed FORMAT step. Only matrices CONST and U0 remain core resident.

All card input is then read by routine NITIAI. consisting of run
parameters and Incremental time history. The first data card Is read wi th
a format (416, iLl , 216) and contains the followi ng run parameters:

BETA beginn ing time interval
NELEMS total number of physical elements

(excludes point mass elements)
S NTRVLS number of time intervals

NG number of transformation modes
HEAT “F” , dummy logical control flag
NJTS number of joints
NWORK optional extent of blank comon

The array NTRVL S, ascending values of elapsed time, is then read with
format (6E12.O) and tested for ascending order.

Using the problem sizing Information obtained from the matrix and card
Inpu t, the process of allocating partitions of the blank common region for
each array required in subsequent processing steps is performed . The first
location of each of these partitions is stored in labeled common block
NDICES . •

431

~

1
- L5~~~~~~~~~~~~~

S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,_ -- - - - - -~~~--~~~~~~~~~~~~—  —~~~~

-——
~~~~~~~~~~~~~~~~~


Next, the cell stress transform,
~~~ 

is initialized since It is
constant for all cell elements. Routine READK is then called to rewrite
matrices k, E , F~, c ,  and In optimum format.

The original joint coordinate data is then read Into core from the
scratch file where It had been written by routine MATIN. Before exiting
NITIAL, various blank common partitions are initialized to zero inclu .iing
those for ~, ~~

, 6P~, ~(M)u’ 
6P(.)u~ 

and 6Ec1.

Interspersed In the above Initialization steps is the setting of
problem parameter variables In labeled common block LIMITS.

Some code exists in this routine which was Intended for restart
capability which is not operational and could be deleted . This code can
be identif led by a test for BETA not equal to one which impl ies a restart
run.

Input/Ouput

All card input Is read from file 5 and all printed output is written
to file 6. Card inpu t consists of a single card of run parameters and the
incremental time history. Printed output consists of Incremental time
history and error messages, if any.

Argument List

None

Labeled Common

NDICES, LIMIT S, TAPES

S 

Subroutines Called

ASYMB , CHGSGN , MATIN , NDXSET , PLOP , READA , REACK , ~ER0

432

.5 V 
—-5 -5 . - . - — - — —5—S 5-_~ - —

- S -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~



~~~~ S ~ - 5 r n - 5~~~~rn_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ErrOr Detect ion

The incremental times are tested for ascending order and , if an error
Is found , the run is terminated . The available workspace is also tested
against that required for the problem and , if Insufficient , the run is
terminated. Appropriate error messages are printed on file 6 in each case.

433

—- ~~5 . - s~~~5_ _ -5 S

pr- -
-

5~ -

SUBROUTINE NKRK

This routine comoutes the fictitious force and deformation matrices
nB and r8 for membrane and cel l elements .

Algorithm

Matrices nB and rB are computed for membrane and cell el ements
according to equations H.293 through H.324 given in Apoendix H of Part 1.

Input/Output

Error messages , If any, are wr itten to file 6.

Argument List

PA A real scalar equal to the length a
B A real scalar equal to the length b
SKE A real scalar equal to the skew angle ~ —

AEO A real scalar equal to the element deformation
~Q •A real scalar equal to the element force f

EB8L A real array for matrix ~e
RN A real array for matrix n8
RB A real array for matrix r8

Labeled Common

LIMITS, FICNDX , C~RAYS

Subroutines Called
None

Error Detect ion

The sine and cosine of the angle SKE are tested for zero. If true,
appropriate error messages are printed , the error flag is set to one, and
control returned to the calling routine.

~ 434
-
_ _- .-—w—— -~.‘-- .-. - . - 5----—- - - —

—

_ _ _ _ _ _ _ _ _ _ _ _ _ - -I’

SUBROUTINE ØUTPUT

This routine transcribes certain input data to the master output file.

Al gori thm

Input matrices U0~
6P(.)u) and

~UPTJ are written to the master output
file as are the input array of problem constants and the card Input av~ray
of incremental times. Before outputing the array of problem constants , it
is augmented with the number of time intervals and number of modes from the
card input data.

The FORMAT tape name and modifier used is TAPE , 1 and is imbedded in
the code. The FØRMAT matrix names and modifiers of the output ma~~lces
and their sequence of appearance on the master output file is as follows :

CONST, 1 Problem constants
TIME, 1 Incrementa l time history
UZERO, 1 OrigInal joint coordinates , U0
(DPBPH~, 1) Incremental appl ied loads,
(PBUPTJ , 1) Modal to joint T degree of freedom transform ,

~UPTJ

where the names in parenthesis are user defined in a previous FORMAT step
and all others are imbedded in the code.

I~p~t/Output

A FORMAT matrix data tape is constructed on file N20 and consists of
five matrices. File N18 is read to copy two of these matrices .

Argument List

None

Labeled Common

NDICES , LIMITS , TAPES , LPEM

_-

.

- - -

~~~~~~~

--- — -- -rn - -5

~~~~~~ 

--


~~~routines Called

READA, WRITE

Error Detection

None

I

- 

.

436

5- 
.5--

hi— - — - . - - —-5- . ~- — - - --- S - -_ _ _ _ _ _ _ _  -4



__________________  - . - — — -

I

SUBROUTINE PLOP

This routine prints any real or integer array with specified headings.

Algorithm

First, a title line Is printed using a single alphanumeri c word of des-
criptive information and row/column dimensions of the array to be printed .
The variable NT is then tested to determine if the array mode is real or
integer. Real arrays are then printed row—wise at 5 values per line while
integer arrays are printed row-wise at 10 values per line.

Input/Output

Printed output is written to file 6.

Argument List

NAME An alphanumeri c scalar for descriptive information

IR An integer scalar defining the row dimension of the array

IC An integer scalar defining the column dimension of the array

A A real or integer array of data to be printed

NR An Integer scalar defining the row dimension for printi ng

NC An integer scalar defining the column dimens ion for printing

NT An Integer scalar defining whether the array Is real or m t-
eger mode

Labeled Common

None

Subroutines Called

None

-
~~ Error Detection

None

-k

— —~~~~ --~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ rrL jV 1~~ .5-L. .—- —.- —~~~~~-5 ~~~~ -~- ___ - - ~~~~~~~~~~~~~~~~~~ 
-



_ _ _ _ _ _ _ _ _ _ _ _ _ _  
-5.:r.

~ 
S

FUNCTION PØLSOL

This routine solves a third order polynomial for the modal response 
S

correction factor L

Al gorithm

In the original theoretical approach , geometric nonlinearity was to
be accounted for by scaling the modal response by the correction factor L
This -is no longer applicable and , in the final version of the code,
routine POLSOL is never referenced.

The polynomial expression was formed in the following manner.

w= ~~~l 6~T k z l , 2,3

1 —TWf - 

~ 
6
~I~ 

tks k 1 , 2

T M 
~‘L8 

- ~~~~~~~~~~~~~~

— -~~~~~~~ —

S 
6cCLB Z ._

~~

. 

~
VB 1~B..l VB..l 

- vLB¼.B...l vLB

2 ~ LB K~_1 
~kB

g 6KM~a 
+ &E

CLB 
+ 6rKLB

* 

~ LS + ~~lB +

I 
02 W~28 

+ W
f 28

438 
- - -

-- ~~~~~~S__ . —_ S -

-4
—5---- -5- -5 — SS5.5~~~~~_ .~~~~555-S__L



______ 

~~~~~~.- 
- 5---- - 5~ I~~

- 03 *W ~38

~O ~~~~ ~~~~~~~~~~~~~~~
B B~~ 3

8

This expression was then solved for the positive value closest to
unity .

Input/Output

Intermediate data and are printed on file 6.

Argument List

EBCL A real scalar equal to 5ECL

Labeled Common

NOICES , LIMITS

Subroutines Called

ASYMB , MULl, RGEIG , SMULT , ZERØ

Error Detection

Mone


~~~~~~~~~~ T J ~~~~~~~~~~~~ S .

SUBROUTINE PREBAL

This routine permanently updates joint coordinates and regenerates 
S

matrices F~ and

Al gorithm 
-

Initialization steps include file positioning , calling routine PREBLL
to allocate space for Intermediate data, and setting control flags . The
modal response Is then scaled by the correction factor �. This step was
part of the original design and Is no longer required . The transformed
modal inertia forces 

~(M)u 
are then computed.

A loop is then entered whose index is the number of physical elements
in the model . The first processing step within the loop Is the reading
of the ECT record for the element from file 1112. The record l ength is
tested to determine element type and appropriate control flags are set
accordingly.

A test is then made to determine if the element has failed in a pre-
vious increment by examining the value of A(KDEBCL). This is part of the
original design for material nonl i nearity and is not required .

A test is then made on logical variable BETABAR to detect a second
iterati ve so lution due to material nonlineari ty. This test as well as
others appearing within this loop is no longer applicable. The same is
true of the processing initiated when BETABAR is true.

The incremental element displacements and velocities , de and 6~~~~, are
read from file N7. The scaling of the matrices by ~ is part of the ori g-
inal design and is no longer necessa ry.

Routine PBARIJ F is then called to read matrices P and F- for theUF F3_1
element from files Nil and N13, respectively. Routine PREBGM is called to

440

L - 

- 

-— — — -



- ——-—-—- -
~~~~~~~~

- ‘
~~~~~~~~~~ 

- - 5 5- --- -‘--- -~~~~~~~~

permanently update geometry using the ECT array and matrix ~e and to re-
generate matrices and a~. Matrix 0 is then computed for the new
geometry.

The element stiffness, damping , and thermal deformation matrices are
read from Ni and the element forces previously computed by routine FIFDEF ,
are read from file N5. The contribution of the element to 

~(C)U 
is then

computed. The incremental element forces are then computed from F and
F1, read from file N4. After this, the element contribution to mitrix
_ 1
~B_1

Is computed.

Finally, matrix F~ Is output to file Nl4, matrices and 6FK are
S

output to file N6, and matrix D is output to file Nl9.

This ends the element processing loop. The final processing step
cons ists of positioning files and equating fil es Ni and N2 and fi les Nl6
and N17. This is done because matrices R , 

~
, 6
~T, 

and tT are now assumed
constant. In the original design, these files were rewritten and “flip
flopped ” at each increment since these matrices may be regenerated due to
material nonlinearity .

Interspersed In the code of this routine are calls to routine CHKPNT.
This routine prints preselected intermediate data at the specified points
for program debugging .

Input/Output

The following data is read and written during the execution of PREBAL :

~UF read from Nil
ECT read from N12

~ E, 
~ T 

read from Ni
read from N13

B—i

441

— —  -5— - - - -  — - - —~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
__SS_~ -

~~-::: . - ~~~~~~~~~~~~~~~~~~ - - —~~-5-- l1 _~~~~,



-- 
____

read from N4
8—1

read from N5
B

óe, 5 e  read from N7
FF 

S written to Nl4
B

0 written to Nl9
c,~, 6FK written to N6

Argument List

None

Labeled Common

NOICES , LIMITS , TAPES , LPEM

Subroutines .Cal led

ADD, ASYMB, CHGSGN, CHKPNT, COPY , MULT, PBARUF , PREBGM, PREBLL, READA ,
READM, SMULT, TMLJLT, WRITE, WRITEM , ZERO

Error Detection

None

442

_ _ _ _ _ _- _ _ _ _ _ _  )

-- - S
-—----- —



.

SUBROUTINE PREBGt4

This routine controls the updating of joint coordinates and regenera— 
S

tion of matrices F? and for an element.

Al gorithm

Routine PREBGU is called first to permanently update joint coordinates.
The length of the ECT record is then tested to determine element type and
appropriate routines are called to regenerate FF and o~ based on the new
geometry.

Input/Output

None

Argument List

None S

Labeled Common S

NOICES , LIMITS , TAPES, LPEM

Subroutines Called

LPBG, LPCFFB, LPCG, LPCSFB, LPMFFB, LPMG , LPMSZD, PREBGU , ZERO

Error Detection

None

I° -

443

- - - -- - - 5-—--
~~~~~~~~~ -~~~~~ ~~~~

- - - -5 - - - - -

-~~~ 5 - - . -~~~~~~~~ -- --5-5—— —- — - -~~~~~
-5 -S —-55--—-- --—-5—-

-_ - - ---—----

SUBROUTINE PREBGU

This routine permanently updates joint coordinates and assembles ele—
rnent parameters from array A(IECT) .

Al gori thin

The length of the ECT record is tested to determine element type and
a-transfer made to the appropriate code. Specific data for each type ele-
ment -is extracted from array A (IECT) and stored In array JM In label ed
common block LPEM. The data extracted for a bar is the area ; for a membrane,
the thickness and stress orientation angle; and for a cell , the stress
orientation angle. The number of joints for the element type is also set in
this section of code.

A loop is then entered whose index is the number of joints defining
the element. Wi thin this loop, the joint numbers of the joints defining
the element are also stored in array JM and are used together with the ele-
ment displacements to upda te the joint coordinates. Array A(LU) is used
to flag each joint as it is updated since more than one element may be
connected to a joint and each joint need be updated only once.

Input/Output -

None

Argument List

None

Labeled Common

NOICES , LIMITS, TAPES, LPEM

Subrouti nes Called

None

444

_ _ _ _ ~~~~~~~~— -

-Y
- --5 -5- ~~~ --5 —-----—SS-- -5— S~-5._ S S -

Error Detection

— None

LI , 1

445

- -5
_ _

-~~~~~~ - — — - - -5 - 5 - .- - -

SUBROUTINE PREBLL

This routine allocates partitions in array A In blank common for
temporary use by routine PREBAL .

A1gori thm

Three indices for partitions of length 30, 30, and 240 are determined
and stored in labeled comon block LPEM. The partitions are contiguous
and begin at A(ISK).

All additional code in this routine is no longer applicab le since It
is based on the original theoretical approach using a.

jjwut/Output

In the obsolete code, matrices de and 6~ were computed and written to
file N7.

Argument Li~t

None

Labeled Common

NDICES , LIMITS, TAPES , LPEM

Subrout ines Cal led

CHGSGN, PBARLIF, IMULT, WRITEM

Error Detection
None

446 S - -
5~~~ ~

..- - -
A

L - - _ _ _ _ _ ~- - - - -

_
—-5 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUBROUTINE PREBST
‘.5 —

This routine controls the updating of element stiffness and damping.

Al gorithm

This routine was Intended to be the executi ve routine for the element
stiffness and damping updating module. The design would provide for calls
to other routines to test the change in temperature and stress/strain state
of the element since last update. If necessary, other routines would be
called to regenerate material properties, matrices k and c, and update
the EVT table.

This routine currently performs no operations other than setting two
logical flags false which were Intended to indicate element failure and
element updating. In the final version of the code, this routine is never
refere~iced .

Input/Output

None 
S

Argument List

None

Labeled Common

NDICES, LIMITS , TAPES, LPEM

Subroutines Called

‘4~ None

Error Detection

None

k

-— - -



- - — ---

SUBROUTINE PREEIG -

This routine generates the transformed modal matrices, K, C, M, and P.

Al gorithm

Incremental solution processing begins with the execution of routine
PREEIG. First, the transformed incremental applied loads for the incre-
ment, if any, are read from file Nl8. The matrix of transformed loads P
is then partially assembled according to

= 6P~ - 

~ (M)U + 

~~ (~~)U

where dP~ are the unbalanced forces from the previous increment,
are the inertia forces from the previous increment , and are the
applied loads.

A loop Is then entered whose index is the number of elements in the

Structural model . The following operations are performed for each element.

Read k, C, and 
~
eT from file Ni

6FKQ 
z 

~ k6e1
Read D from file N3 CD =

= P + D ~~ F~ 0

OK = O k

K = K + D K DT

C =

Read 
~K 

from file N4

FK = FK +
~~

FKo
Wr ite DK , k and FK to file N6

Wri te to fi le 1415

_ _  _ _ _ _ _ _ _ _  _ _ _  

A .

~

-.

~

- - - - - ~-55S --5 -5 S - 5  —

-4



.
—-- -~~~ - ---5-— - 

~~~~~~
_
~~~~~~~~~~~~~~~~~ -~~~~~~~~

- ______________

The last step in this sequence, writing dFKQ to file Nl5 is part of
the original design code and Is not presently required .

After all bars, membranes, and cell elements have been processed,
the assembly of the transformed loads is completed by subtracting the
modal damping forces of the previous increment from the partially
assembled loads P.

The sequence of operations above Is slightly different on the Initial
pass for the first increment. Matrix D is computed from matrices 

~UF and
read from files Nil and N13 , respectively, and then matrix 0 is written

to file N3. Matrix FK, the element forces from the previous increment,
Is ini tialized to zero rather than read from file N4. Matrix M is comp-
uted according to

II = M + P UF m P UF

where hi is implicitly initializ ed to zero as are K and C in the sequence
above. After all bar , membrane , and cell elements have been processed,
routine PTMASS is called by PREEIG to add contributions from point_mass
elements, if any, to matrix II. Finally, any null rows/columns of M are
augmented on the diagonal with a value equal to 1 x iO~ of the root mean
square of all non zero diagonal elements of the matrix. Routi ne CHLSKY
is then cal led to decompose M. The decomposition of this matrix then
remains core resident for the remainder of the run.

Input/Output

Intermediate printed output is written to file 6. Matrix data is read
and written as follows :

~ ~ T read from Ni

D read from N3

F read from N4 S

K8_1

449 

- - -  - — -5_ - 
I

— -~~~~~ - —- -—.--- - - - -5- — -——  _ - - -



- 
- - - 5 - - - -~~~~~~

,i 1

OK, k, FK written to N6

~ Ko writter’ to N15

Argument List

None

Labeled Common

NDICES , LIMITS, TAPES

Subroutines Cal led

ABSYM , ADD, ASYMB , CHGSGN, CHLSKY , COPY , EUTL9, MBAR , MULl, PBARUF, PLOP,
PTMASS , READA , READM, SYMABT , WRITE , WRITEM, ZERO

Error Detection 
5

None

450

S S - -5 - —

L - ~~~ s —- -- - ------- --—-----
__________ -5_S_S 55

~
-5 -5 -5 5_I-



—-5 —5—-— -— -~~~ — -5-5-5—--- ----—-- -,
- -- - - - - -5 -- -

SUBROUTINE TRNMLT
- This routine performs an incore transpose matri x multiplication .

Algorithm

If a cumulative summation of matrix products is not requested, the
product matri x is initial ized to zero. The cumulative summation of matrix
products is then oerformed according to

- C = C + A TB

Input/OutDut
None

Argument List

C A real array for the product matrix .
A A real array for the premultiplier matrix
B A real array for the postmultiplier matrix
L An in teger scalar defining the usable row dimensidn of A and B

S 
M ~An integer sca la r defining the usable co l umn di mens ion of B and C
N An integer scalar defining the usable row dimension of C and

the usable column dimension of A
MR~W An integer scalar defining the row di mension of A and B
MCi An integer scalar defining the row dimension of C and the

column dimension of A
MC2 An in teger scalar defining the ~o1umn dimension of B and C
SUM A log ical scalar flag for cumulative summation

Labeled Common
-, 

- None

Subroutines Called
None

Error Detection
None

- 
5 - -5- .- 

~~~~~~~~~ 

-

- - -S

•~_~5 5 5 —5 - —--—----- --— S--S- -5—5- - -S - - -~~~~~~~ - - -5

APPENDIX F S

POSTP ROCESSOR ROUTINES AND
LABELED COf~1MON BLOCKS

- r

(N ~~
L
~~~~ 

- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 453 1 ~~~~~ BLA1I~.NO? tzus~ -~~~

-

___________ - - _ _ _ _

r f’- --- —-- - - -
~~~~~~~~~~

—
~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 1

- 

APPENDIX F

POSTPROCESSOR ROUTINES S

AND
LABELED COMMON BLOCKS

This appendix contains detailed descriptions of all routines and labeled
common blocks in this program. Table F gives either page number references
within -this document or references to other documents for documentation
of each routine or l abeled common block. Some page number references may
be to preceding appendices where the documentation for a routine in
this program is identical to a previousl y documented routine . This does
not imply verbatum source code duplication for the routine , only functional
dup lication is implied .

The detailed description of each routine is divided into the following
subheadings:

Algorithm verbal flow chart of routine logic and data flow

Input/Output description of all external data set input/output

Argument List name, type, and description of each argument

Labeled Common l ist of all labeled common blocks declared

Subroutines Called l ist of all routines called S

Error Detection description of tests made for errors and action
taken

The detailed description of each labeled common block is divided into
the following subheadings :

Declara tion verbatum declaration of the labeled comon block

Contents name and description of each variable appearing
— in the declaration

Usage list of all routines which contain declarations
for the labeled c ommon block

~~~~~~~~~ I
~~~~~~~ ~~~~~~~ 

-,
~~~~~

- . • _ _

__ - -

TABLE F. INDEX TO POSTPROCESSOR ROUTINES AND
LABELED COMMON BLOCKS

Page

MA IN PROGRAM POST . 456

LABELED COMMON INDEX . . . • 1 • ~~~~~~~~~ • • • • . . • .. . 457
LABELED COMMON PARM , . . 459

SUBROUTINE BARS • . • . ~~
SUBROUTINE BLKIN • 464
SUBROUTINE CELLS • • . • 465
SUBROUTINE CHKIN • . . . 4~7SUBROUTINE CRDIN . . • • • 469
SUBROUTINE EBAR • 470
SUBROUTINE ECEL • . . . 471
SUBROUTINE • EMEM 473
SUBROUTINE EIJTL9 • . •

~~~~~~~
.... Ref. 6

SUBROUTINE INITI._ • • ~~~~~~~•~~~~~~~~ 475
SUBROUTINE JNTPR  . . . . 477
SUBROUTINE JOINTS .... 479
SUBROUTINE MEMS .    . . . . 481
SUBROUTINE MØDES . . .  483
SUBROUTINE PBUPT  . .. .  484
SUBROUTINE POUT .. .... .. 486
SUBROUTINE SELCT
SUBROUTINE SKPALL . . .. . .4 8 9
SUBROUTINE READC ..... 490
SUBROUTINE ZERO . . . . .   .    . . . . 491

I

_ 
_ _ _ _—

~~~~

_ i

~~~~~~~~~~~~~~~~~~~~~~

_

~~

_

~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ - -

MAIN PROGRAM POST

This routine calls the initialization routine and the increment

processing routine.

Al gorIthm
- -

The FORTRAN logical unit numbers of the three devices used and the

maximum number of lines and columns per page are initial i zed in DATA

statements .

The initialization routine INITL is called first followed by the

cal l to the increment processing routine POUT.

Input/Output

Error messages are output to unit 6.

Argument List

None

Labeled Common

PARM, INDEX
-

Subroutines Calle d

INITL , POUT

Error Detectioti

If an error occurs in either routine called , an error message is

printed with the error number; i.e.,

ERROR nnnnnn DETECTED *****

I

456

I.’
—

-- - - - --—5 - - - -~~,-- - — -5 5 - - - -- - _ _

-
~~~~~~~~~~ 

_ _ _ _

.

LABELED COMMON INDEX

Th is common block Is used to store pointers into blank comon array

A which are the beginning locations of partitions of array A and to store

other program parameters.

Declaration

CØMMØN / INDEX / ITTT ,ITIM ,ICOR ,IPRN ,IRED .IINC ,ISEL
,IELEM ,IBLHD ,IMLHD ,ICLHD ,IBLPR ,IMLPR ,ICLPR
,IPBUPT ,IEND ,ICLMAX ,ILNMA X ,ILINE ,IROW ,ICOL
,ITP1 ,ITP2 ,ITP3 ,ITVLS ,IERROR,IFLGPR,IINDEX

Contents

1111 Index of array A for title information

ITIM Index of array A for incremental times

ICOR Index of array A for joint coordinates

IPRN - Index of array A for print buffer

IRED Index of array A for input record buffer

IINC Index of array A for increment selection table

ISEL Index of array A for joint/element selection tables

IELEM Index of array A for element numbers for printing

IBLHD Index of array A for bar element line headers

IMLHD Index of array A for membrane element line headers

ICLHD Index of array A for cel l element line headers

IBLPR Index of array A for bar element print lin e flags
( )

457

~~~~ - —-_-- .- - -~~ — _ - _ _- -~~~~~~~~~~~ - -


‘--5- - - - -5------- -- - - - - 5 - -- — -~~~- ---~~~~~-~~ -
- - - ----5-----

1~

IMLPR Index of array A for membrane element print line flags

ICLPR Index of array A for cell element print line flags

IPBUPT Index 0f array A for matrix PBUPT partition

lEND Index of array A of last word used

IFLGPR Intermediate print flag for cheek out

ICLMAX Maximum number of printed columns per page

ILNMAX Maximum number printed lines per page

ILINE Number of last line printed on a page

IROW Number of lines printed for type of element currently
printing

ICOL Number of column s on page currently being printed

ITP1 Number of uni t which is used to store joint/element
selection tables

ITP2 Number of unit where incremental solution output resides

ITP3 Number of unit used to store selected partitions of
matrix PBUPT

ITVLS Number of current BETA being processed

IERROR Main error flag

IINDEX Number of words in common block INDEX

Usa ge

Labeled common bloc k INDEX together with labeled common block PARM

and blank common are used as a group by all principle routines .

_

~

_
~~~~~~~~~~~

:E 8::



LABELED COMMON PARM

This common block Is used to store model definition data and program
generated print control parameters.

Declaration

COMMON / PARM / NJTS ,NCNTS , NMATS ,NBARS ,NMEMS ,NCELS ,NPTMS
NFDØF ,NMØDS , NLDJTS,NØBRC ,ABTMP ,AMCHT ,NMCØF
NMWRD ,NMLNG , NMLNGM,ASTCØF,ACMC~F,NTVLS ,ADSPCF
NSELI ,NSELJ , NSELB ,NSELM ,NSELC ,NPRJC ,NPRJD
NPRJV ,NPRJA , NPRMD ,N?RMV ,NPRMA ,NPRBF ,NPRBS
NPRBSS ,NPRBE , NPRMF ,NPRMS ,NPRMSS ,NPRME ,NPRCF
NPRCS ,NPRCSS, NPRCE ,NPARM

Contents

NJTS Number of joints

NCNTS Number of const raints

NMATS Number of materials - S

NBARS Number of bars

NMEMS Number of membranes

NCELS Number of cells

NPTMS Number of poin t mass elements

NEDOF Number of edge degrees of freedom

NMODS Number of modes

NLDJTS Number of loaded joints

NOBRC Number of oblique constraints

ABTMP Base temperature

ANCHT Mechanical equivalent of heat

NI.ICOF Number of coefficients in the material property table

NMWRD Number of descriptive words in material property tables
5- 

NMLNG Number of words in material property record

459

-5- — -----~~~~-------~~~~ -------~~-- - _I.Z2L. _ .-
~~——~~~~~~~~~~ _________________



-5 --- - 5- -  - - — --- -~~~~~~ -5—-5—~~- - 5  -- -5 - —---— 
—- —-.5

NMLNGM Number of words in all material property records

ASTCOF Cel l stiffness cutoff coefficient

ACMCOF Bar compliance suppression coefficient

NTVLS Number of time intervals -

ADSPCF Joint displacement scalar

NSELI Selectivity flag for increments

NSELJ Selectivity flag for joints

NSELB Selectivity flag for bars —

NSELM Selectivi ty flag for membranes

NSELC Selectivity f lag for cells

NPRJC Print option f lag for joint coordinates

NPRJD Print option flag for joint displacements

NPRJV Print option flag for joint velocities

NPRJA Print option flag for joint accelerations

NPRMD Print option flag for modal displacements

NPRMV Print option flag for modal velocities

NPRMA Print option flag for modal accelerations

NPRBF Print option flag for bar forces

NPRBS Print- option fl ag for bar stresses

NPRBSS Print option flag for bar strains

NPRBE Print Option f lag for bar equivalent stresses

460

________ _________a — - ----5 ... ~s—s - - —  - -____-__- __ -— -- —

— - - 5  - — -5— —5-——- —



5- ---5—~~~~~—-— - ----S_—S -- — -  ——--5—. -~~~
___________________

.

NPRMF Print option flag for membrane forces

NPRMS Print option flag for membrane stresses

NPRMSS Print option flag for membrane strains

NPRME Print option flag for membrane equivalent stresses

NPRCF Print option flag for cell forces

NPRCS Print option flag for cell stresses

NPRCSS Print option flag for cell strains

NPRCE Print option flag for cell equivalent stresses

NPARM Number of words in common blcck PARM

Usage 
S

Labeled common bl ock PARM together with l abeled common block INDEX

and blank common are used as a group by all principle routines.

‘--5-

n

461

_ _  

I

-5— —- ~— —5 — - - -5- --5-- - -----—- 5----— -~



—S——S_- -—-S--S—S-S _
~

_ -

- 
S - - - - - 

-~~

SUBROUTINE BARS

This routine prints selected bar element data.

Al gorithm

If no bar data exists., control is returned to the calling routine.
If bar data exists but none has been requested for printing , the bar
data on input tape ITP2 is read over and control returned to the call-
ing routine.

If bar data exists and Is to be printed , the bar selection table
is read from scratch tape ITP1 into array A at location ISEL . The bar
data is then read from input tape ITP2 one element at a time and stored
in array KPRN. The element selection table is checked for the bar
being processed and , if not selected , data for the next bar is read
from the input tape.

The element number is stored for use as a heading on the column
of KPRN when it is printed. The counter for number of columns of KPRN
used is Incremented and tested against the maximum number of columns
specified for array KPRN which is the maximum number of columns to be
printed per page. When array KPRN is full or element data is exhausted
on the Input tape, the data In array KPRN is printed .

If equivalent stresses are to be pri nted , routine EBAR is called
which augments array KPRN with equivalent stresses. Line counters are
checked and appropriate headers are printed using title information
from array A at location lilT, the time increment stored in array A,
and the element numbers stored in array A . Using the line selection
array and line header array assembled by routine BLKIN , appropriate
rows of array KPRN which correspond to print lines are identi fied and
printed with appropriate headers .

462

4
-—5- S - - _ - -~~S

- -5-- - - - -~~~~~~~--  —~~~~~ - - 5 - - -  --5 
~~~~~~~-----. 

5-

___ - -5-,—.. — .. 555-5-S

- -

—
Input/Output

The bar element selection table is read from scratch tape ITP1
S

If appropriate . The bar element data is read from input tape ITP2.
Selected bar element data is output to unit 6.

Argument List

KPRN An integer array used to store bar element data where
each column conta ins the forces , stresses , stra ins , and
equivalent stresses for an element

JROW An integer scalar specifying the row dimension for array
KPRN

Labeled Comon

PARM, INDEX

Subroutines Called

EBAR , READC

Error Detection

None

463

-

-

- - —~~~~ - - - - 5 5 - - — - - --5- - --~~~~~~ - —-- - - - - - - - 5 - - - --5 - —~~~~~~~~~ - --—~~~~~~~~~~ - - -

~~ .5 _~~_S-S-5S_S_-5-5S-S -s—- ~ --~~~~~~~~~~ -~~~~~~~~ -~—-s - - 2 —
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - 

s_ :_

SUBROUTINE BLKDI

This routine in itializes the element line header and print flag
arrays.

Al gorithm 
-

The arrays of names , numbers , and lengths associated with bar, n~em—
brane, and cel l element printed data are initiali zed in DATA statements.
Using these arrays and the four subset print option flags for each of
the three elements , arrays of line headers, KHD, and arrays of line
print flags , KPR, are assembled .

Input/Output

None

Argument List

KØPT . An integer array of four print flags for each of three
element types

KHD An alphameri c array of headers for each line of output for
each of three element types

KPR An integer array of print flags for each line of output
for each of three element types

Labeled Common

None

S Subroutines Called

None

Error Detection

None

.555-

I 
.

H- 

S 

~~~~~~~~~~~~~~~~~~~

-
~~~.~~~s 5 5 . _ _ _ _~~~~~_ .- 



- -

SUBROUTINE CELLS -

This routine prints selected cell element data .

Algorithm

If no cel l data exists , control is returned to the calling routine .
If cell data exists but none has been requested for prin ting , the cel l
data on input tape ITP2 is read over and control returned to the calling
routine.

If cell data exists and is to be printed , the cel l selec tion table
is read from scratch tape ITP1 into array A at location ISEL . The cel l
data is then read from input tape ITP2 one element at a time and stored
in array KPRN . The element selection table is checked for the cell
being processed and , if not selected , data for the next cel l is read
from the inpu t tape.

The element number is stored for use as a heading on the column of
KPRN when it is printed. The counter for number of col umns of KPRN used
is incremented and tested against the maximum number of columns specifi ed
for array KPRN which is the maximum number of columns to be printed per
page. When a-rray KPRN is full or element data is exhausted on the in-
put tape, the data in array KPRN is printed .

If equivalent stresses are to be printed , rout ine ECEL Is called
which augments array KPRN with equivalent stresses. Line counters are
checked and appropr iate headers are printed using title information
from array A at location ITIT, the time increment stored in array A , and
tn element numbers stored in array A. Using the line selection array
a~d 1-I nc header array assembled by routine BLKIN , appropria te rows of
a~ r s j  (PRN wt~lch correspond to print lines are identified and printed

.~ Dr~~ r1~~tI headers .

465

- 
~~~~~~~~~~~~ 

-
~~~~ ~~~~~~~~~~~~~~



~ 
~~~~~~~~~~~~~~~~~~~~~~~~. 5-——

Input/Output

The cell element selection table is read from scratch tape ITP1 if
appropriate. The cell element data is read from input tape ITP2. Select-
ed cell element data is output to unit 6.

Argument List

KPRN An integer array used to store cell element data where each
co lumn contains the forces , stresses , strains , and equiv-
alent stresses for an element

JROW An integer scalar specifying the row dimension for array KPRN

Labeled Common

PARM, INDEX

Subrouti nes Called

ECEL, READC

Error Detection

None

- t

I
466

-— — ---~~~-_ - _~~~~~~~_ _ -=_~~~~~~~~~~ --_ — —5- - --5-- -- -
_ _ _

—-5— ---5-— —--5 55— -5 — —5-

.

SUBROUTINE CHKIN

This routine checks the logical consistency of user specified
S

options .

Algorithm
-

First, a test is made to determine if items of this type exist and ,
if not, has a selection table been specified .

If no items of this type exist and no selection table is specified ,
appropriate print flags In labeled common PARM are set to zero, KSEL i s
set to -10 and IB(K3) is set to -1 .

If items of this type exist, a test is made to determine if any
subsets of this type were requested for printing . If so, IB(K3) is
set to KNUM.

-
If not, KSEL is set to —l and IB(K3) is set to zero. Then

a test is made to determine if a selecti on table was specified .

~ put/Output

None

~~~ument List

KNUM An integer scalar specifying tne number of i tems of this
type

KSEL An integer scalar input as the user option flag indicating
— 

sets of data of this type

Kl An integer scalar indicating the first location in array
lB of print flags for this type

K2 An integer scalar indicating the last l ocation in array
lB of prin t flags for this type

K3 An integer scalar indicating the location in array lB
of the flag indicating selectivity for this type

467

— - 5  5 —  5——— — -5-—S- -—— ---—- 5—-— --S- - - — - -—— S- - - - - - —~~ - , - ~~~
— z--

~~~~~’ 
.., -5n~- — - ,

-5 ~~~
_ _ _ _ _ _ _ _-

——- —-5--- —- . 5-— ~~~

IERRØR An in teger scalar main error flag

KODE An integer scalar specifying the type to be processed

Labeled Common

None

Subroutines Called

None

Error Detection

Any Inconsistency between the existance or non-existance of items
of the type being processed, the subset print flags specified , and the
selectivity flag specified results In the main error being set to KODE.

.,

~

S

- i- 468

•- ~~ - — - - .-- - — - -.- - - - - -——-- -----~~~ ----— - --—---~~~~~~

S ~~~
- - - --w ---

~
--——— ---

~~~~~~~~~
—,- ._

~~~~~~~~ 
_ _ _-

-
SUBROUTINE CRDIN

This routine reads and processes all card input.

Algorithm

The first six input cards are read and the data stored in labeled
common PARM . User over-rides of default parameters are implemented as
required.

The next four cards of titl e information are read and stored in
blank common at location lilT.

Routine SELCT Is then called once for each of the following possibl e
input selection tables ; Increments , joints , bars , membranes , and cells.

Input/Output

All input cards are read from unit 5 and output to unit 6.

Argument List

None

Labeled Common

PARM, INDEX

Subroutines Called

SELCT , ZERO

Error Detection

Checks are made on the sequence of all Input cards and on the size

~ I of available storage verses required storage. If any error is detected ,
the main error flag Is set and control is returned to the calling

-- - routine.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- - - ‘~~~~~~ —- - — - ~~~~~~~~~~~ -~~~~~~~~~~ - - -. -~~~~~~~ 
5 5 5 5  _ _  _ _ _

SUBROUTINE EBAR

This routine computes equivalent stresses for a bar element. 
S

Al gori thm

In the case of a bar element, the equivalent stress is equal to

the absolute value of the computed stress.

Input/Output

None

Argument List

S A real array of bar element forces, stresses, strains , and
equivalent stresses

I An integer scalar specifying the row dimension of array S

J An integer scalar specifying the column dimension of array
S or number of elements

Labeled Common

None -

Subroutines Called

None

Error Detection

None

F

1~~~ 
- 

H

T~_~ :i.~~iii: 5



-- - 5 5 5 - 5-- ‘_ _-5-S5• -5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

SUBROUTINE ECEL

This routine computes equivalent stresses for a cell element.

Algorithm

Two equivalent stresses are computed for each cell element corres-
ponding to the upper and lower surfaces of the element. For each surface,
the equivalent stress, °e’ is computed from the average stresses,
0~~’ ~~ ~~~~~~ 

and tzx~ as follows :

~l 
•~~(2~x

_ c
y

_ a
z)

= 

~
.(—

~~
+2oy

_ a
~)

s3 
= •

~~
. (_ ~x ay +2az)

2 2 2S — r +~~ + t4 xy yz zx[
~ 

(s~ + s~ + s~ + 2S
4)j ~

Input/Output

None -

Argument List

S A real array of cell element forces, stresses, strains , and
equivalent stresses

I An integer scalar specifying the row dimension of array S

j  An integer scalar specifying the column dimension of array S
or number of elements

Labeled Common

None

0
471 

- - —-- _-—-—----—-- ------~~~ - - - S - - -5--- —-5- —— - --_----------------_—---------- - - - --—--- 5---- -~



_ _ _ _ _ _  

-

Subroutine Called

None

Error Detection

None -

a.

I.

- ~~ - - 

5 

472 

- ---—.---~~ -.--—5—- 

4 

— —  - --—- — - - -- - ----- .5  S_- - 
- 
—-

~~
-----—-- — --

~~~~
— - —

~~~~~~~~~~~~~~~~~~~~~~ _____________



- 55 - 5 - 5 5 -5~~~~~~~ -5~~ S-5-~~55 -5-55~~~~-S S~~~~ 

~~~

-5—5--

~~~ I

SUBROUTINE EMEM

This routine computes equivalen t stresses for a membrane element.

Al gori thm

The equivalent stress, 
~e’ 

for a membrane element is computed from

the average stresses, and txy~ 
as follows :

s1 =~~(2a~~~ay )

= 
~~~~~~~~~ 

+ 2ay)

S3
=

~(-~ -

~~~~~ ~~~~~~~~~~~~~~~~~~~ S

Input/Output

None

Argument List

S A real array of membrane element forces, stresses , strains ,
and equivalent stresses

I An integer scalar spec ifying the row dimension of array S

J An integer scalar specifying the column dimension of array S
or number of elements

Labeled Common
None

Subroutines Called

- - I None

1 0 .

_  ----5-- - - 

473 

-5- -— 

-— - - 5 - - - - - - ‘



--—-5—

I
Erro r Detection

None 
-

474

~~ r~~
t_ L~~~~-- ~5~5~~5~~ 

- - - 5 - 5 - - - — 5-- 5

— -  -- - --- -~~~~~~~~~~~~~- - - -5 —,- - -~~~~~~~~ -5-- - 5 -  5-~~~~~~~~~~~~~~~~~~ - - - .- 5- - - - -—— - - S



________  
r

SUBROUTINE INITL

This routine is the driver routine for the initializati on module.

Al gorithm

After rewinding all tapes, the CØNST array is read from input tape
ITP2 and stored in the beginning of labeled common block PARM. Using
the problems constants so obtained , core is allocated for each of the
required arrays and the first location of each is stored in l abeled
common block INDEX.

Routine CRDIN is then called to read all card input containing
option and selectivity data. The arrays of time increments and original
joint coordinates are then read from input tape ITP2 and stored in core.

Tests are then made to determine whether or not data from matrix
PBUPT is required . If not, both matrix DBPØ ahd PBUPT are skipped over
on input tape ITP2. If so, only matrix DBPØ is skipped over and then
routine PBUPT is called to assemble the required data .

Finally, routine BLKIN is called to initialize element line headers
and print flags.

Input/Output

Matrices CONST, TIME , COORDS, DBPO , and, i f appropriate, PBUPT
are read from input tape ITP2.

Argument List

None

Label ed Common

PARM, INDEX

(Ti

t 

S

- - - -5--- - - -_ -— - ---~~~~~- - -— - -5—— 5- - - --5 - 5- - - - - - - - - - -- -- - -------- -



_ _ _ _ _ _ _ _ _  -~~~~~~~~~~~~~~~~~~~~~~~
5- - - 

~~~~~~~~~~~~~~~~~~~~~~ 
5-

~~~~~ 
- - 5-- - -- - - 

1•

Subroutines Called

BIKINI CRDIN, EUTL9, PBUPT , READC

Error Detection

If the main error flag is returned with a non-zero value from
routine CRDIN, control is returned to the main program.

5 

476

E 
— —- 5~~~~~~~- -- - - - - -—-- 5 —  -)

5-— - - - -—--5— -- - -5---- -5-- -—5- —-_~~~r~ 
- - -  

~~~~~ 
-—- 5-- - 5 - - - — - ~~ 5---

—-5

- 5- --. -— ——p— -
-5- --—— -

SUBROUTINE JNTPR

This routine prints selected subsets of joint data.
S

Algori thm

Processing Is controlled by a loop indexed from one to the number
of selected joints. First, the partition of matrix PBUPT for the joint
being processed is read from scratch tape ITP3 and stored in array PB.
An inner loop indexed from one to the number of subsets to be processed
Is then entered. A maximum of two subsets can be accommodated by
routine JNTPR.

Argument KTYPE(J) is tested to determine which of the four possible
subsets of data Is to be assembled for printing .

Coordinate data is assembled i nto array PRN by mul tiplying the
transpose of matrix PBUPT times the modal displacements in array A to
obtain jo1n~t displacements . These displacements are then scaled by the
user input displacement coefficient ADSPCF before being added to the
original coordinates to form the final joint coordinates for the incre—
men t.

Displacement data is assembled in array PRN in a similar manner as
coordinate data except the addition of original coordinates is omitted .

Velocity data is assembled in array PRN by multiplyi ng the trans-
pose of matrix PBUPT times the modal velocities in array A to obtain
joint velocities .

Acceleration data is assembled in a similar manner as velocity data
using the moda l accelerations in array A.

Array PRN is then printed with appropriate headings as a single
line of output.

477

_ _ _ _ 5 - - - - - - - 5 - -- _ _

-— -

—
.

Input/Output

Matrix PBUPT Is read from scratch tape 1TP3. Joint coordinate ,
dis placement, velocity, and acceleration data are output to unit 6.

Argument List

KTYPE An integer array of subset identification numbers from
-

1 to 4 corresponding to joint coordinates, displacements,
velocities, and accelerations , respectively

KNUM An integer scalar specifying the number of subsets to
- be processed

NAME An alphameric array of subset headings

PB A real array used to store partitions of matrix PBUPT

KMODE An integer scalar specifying the number of modes

COØRD A real array of original joint coordinates

KJTS An integer scalar specifying the number of joints in
• the model

Labeled Common

PARM, INDEX

-
- Subroutines Called -

None

Error Detection

None

478

- 5— —-5---— — ~~~~~~~~~~~~~~~~~~~~~~ — - ~--~~~~~~ #~~~~~~~
tT

~~~~~~ 7~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r - -

¶1 A D A 063 7141 DOUGLAS AIRCRAFT CO LONG BEACH CALIF FIG 1/3
AIRCRAFT WINDSHIELD BIRD IMPACT MATH MODEL. PART 5. PROGRAMMING——ETC (LJ)
DEC 77 R C MORRIS F33615—75—C—3105

UNCLASSIFIED MDC—J— 717’4—PT—3 A FFDL—T R—77 99 PT 3 NL

6
06374 !



SUBROUTINE JØINTS

This routine processes all joint data for an Increment.

Alcorl thm

Column headers of two words each for each of the four subsets of
data are Initialized in array KEAD In DATA statements. The header for
the first matrix is read from input tape ITP2 and the increment is
checked for sequence. The modal response data is then read Into core
beginning at A(IRED).

The main joint option flag is checked to determine if any joint
data is to be printed. If not, control is returned to the calling
program. If so, the joint selection table Is read from scratch tape
ITP1 and stored in core at A(ISEL).

Each of the subset print flags is then checked. The header array
NAM E and otñer parameters are set according to the subset print flags.
Routine JNTPR is then called to print the first two subsets requested.
If more than two subsets were requested, routine JNTPR Is called again
to print the third and/or fourth subsets.

~iiput/Output

The modal response data is read from input tape 11P2. The joint
selection table Is read from scratch tape ITP1 .

Argument List

None

Labeled Coninon

PARN, INDEX

479

- -



Subroutines Called

JNTPR, READC

Error Detection

The increment number from input tape ITP2 Is checked for correct
sequence.

I

430

F

_ _ _ _ _ _ _ _ _  _ _ _  
—I-- --



I

SUBROUTINE MEMS

This routine prints selected membrane element data.

Ajioritiwn

If no membrane data exists, control is returned to the call ing
routine. If membrane data exists but none has been requested for print—
Ing, the membrane data on input tape ITP2 Is read over and control
returned to the calling routine.

If membrane data exists and Is to be printed , the membrane select-
ion table is read from scratch tape ITP1 into array A at location ISEL .
The membrane data Is then read from input tape ITP2 one element at a
time and stored In array KPRN . The element selection table is checked
for the meff.brane being processed and , if not selected, data for the
next membrane is read from the Input tape.

- - The element number is stored for use as a heading on the column of
KPRN when it is printed. The counter for number of columns of KPRN
used Is incremented and tested against the maximum number of columns
specified for array KPRN which is the maximum number of columns to be
printed per page. When array KPRN is ful l or element data is exhausted
on the Input tape, the data in array KPRN is printed .

If equivalent stresses are to be printed , routine EMEM is called
which augments array KPRN wi th equivalent stresses. Line counters are
checked and appropriate headers are printed using title information from
array A at location ITIT, the time increment stored in array A , and the
element numbers stored in array A. Using the line selection array and
line header array assembled by routine BLIUN , appropriate rows of array
KPRN which correspond to print lines are Identified and printed with
appropriate headers.

0 .

-

— ~— .- -~ - —



• 
- —--——-.

~~~~~~~
_

~
—--— --- -—

~
-- - - - - .~: ~~~~~ T~~~~~ .~~~~~~~~~~~~~~~—-----—— ------------------ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Input/Out;ut

The membrane element selection table is read from scratch tape
ITP1 if appropriate. The membrane element data is read from input tape
11P2. Selected membrane element data Is output to unit 6.

Argument List

KPRN An integer array used to store membrane element data where
each column contains the forces, stresses, strains, and
equivalent stresses for an element

JRØW An integer scalar specifying the row dimension for arrayKPRN

Labeled Coninon

PARM, INDEX

Subroutines Called

EMEN, READC

Error Detection

None

_ _ _ _ _ _ _

(J

482

U SUBROUTINE MØOES

This routine prints selected modal data.

Algorithm

Subset print flags are tested to determine If any modal data Is
to be printed. If not, control Is returned to the calling routine.

Each subset print flag is tested individually and the header and
print arrays are initialized accordingly. Headers are stored In array

• NAME and modal data is stored in array KPRN .

The modal displ acements, velocities, and/or accelerations are
then printed from arrays NAME and KPRN wi th appropriate headings accord-
Ing to the subsets specified.

Input/Output

None

Argument List

KPRN An Integer array used to store modal displacements,
velocities , and accelerations

JRØW An Integer scalar specifying the number of modes or rows
of array KPRN

Labeled Coninon

PARM, INDEX

Subroutines Called

None

Error Detection

1) None

L 483

L- -~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ - -~~~ -~~~~~~~~~~~~~~ -- ~~~~~~~~ --~~~~~ - ~
- -

SUBROUTINE PBLJPT -‘

This routine assembles selected partitions of matrix PBUPT and
writes the resulting data to scratch tape ITP3.

Algorithm

The previously assembled joint selection table Is read from sctiltch
tape ITP1 and stored in core. Input tape ITP2 is then positioned
inunedlately following the header for matrix PBUPT.

For each of the selected joints, input tape ITP2 Is read and approp-
riate columns of matrix PBLWT are extracted. When all three columns for
a joint have been determined , the partition of PBUPT is written to
scratch tape 11P3 as one record .

Since those columns of matrix PBUPT corresponding to
t
constrained

degrees of freedom are nul l , the reading of the input tape incl udes
testing of ~olumn number read verses the column numbers associated with
the joint being processed. It should be noted also that assembled
partitions of matrix PBUPT which are written to scratch tape may contain
null columns.

Input/Output

The joint selection table Is read from scratch tape ITP1 . Matrix
PBUPT is read from Input tape ITP2. Assembled partitions o.f matrix
PBUPT are written onto scratch tape ITP3. -•

Argument List

JSEL An integer array used to store the joint selection table

TEMP A real array used to temporarily store input col umns of
matrix PBUPT

PB A real array used to assemble the three columns of matrix
PBLJPT corresponding to a selected joint

484

_____ _ --• - • • - • •~1
•~~~1

- _____

•

-

KG An integer scalar specifying the number of modes or rows ofmatrix PBUPT

Label ed Coninon

• PARM, INDEX

Subroutines Called

EUTL9

Error Detection

None

(

~~~~~~ :.. .



~~~~~~~~~~~~~~~~—~~~~--- ---------- -
~
- ‘~~~~~~~ ~~~~~~~~~~~ ~

- -‘-
~~ —

SUBROUTINE POUT

This routine is the driver routine for the print module.

ft~ig~rithm
For each time increment, the following takes place. The Increment-

al selectivity flag for the current increment Is tested. If equal to
zero, this increment Is to be bypassed and no data printed. Routine
SKPALL is called to read over all data for this increment on input tape
ITPZ.

If not equal to zero, each of the following routines is called to
process the corresponding type data from input tape ITP2; JOINTS,
MODES, BARS, MEMS, and CELLS.

Iflput/Output

None

Argument List

None

Labeled Coninon

PARM, INDEX

Subroutines Called

BARS, MEMS, CELLS, JØINTS, MØDES, SKPALL

Error Detection

If the main error flag is returned wi th a non-zero val ue from any
routine, control is returned to the main program.

I

48€

‘ L
L

_ _ _ _ _

___ __________----- -

~~~~~~

-- —--—-—



SUBROUTINE SELCT

This routine reads selection table input cards, forms the selection
table, and writes the table onto scratch tape ITP1 .

Al gorithm

The Input argument KODE is tested to determine which selection
table Is to be processed. Processing parameters are then Initialized
according to which table is to be processed.

Routine CHKIN Is then called to check the logical consIstency of
Input options and to return a flag indicating which one of three possible
paths to follow.

If the user has requested all items of this type, then no Input
selection tabl e is expected. The code then generates a sel ection tabl e
requesting all items and writes this table to scratch tape ITP1.

If the user has specified the selectivity option for this type,
the program reads the selection table cards and assembles the selection
table as so indicated . The table is then written to scratch tape ITP1.

If either no items of this type exist or no items of this are re-
quested for printing , then no input selection table Is expected and
nothing is written on the scratch tape.

An exception to the above is that in the case of processing the
incremental selection table, the resulting selection table is left In
core and not written to the scratch tape.

Input/Output

The selection table cards present are read from unit 5. The
assembled selection tables for those types so indicated by user specified• -.---i 4~ 

.

481



options are written to scratch tape ITP1 .

Argument List

JSEL An integer array In which the selection table is formed
KODE An Integer scalar Identifying which selection table is tobe processed -

Labeled Common
PARM, INDEX

Subroutines Called

CHKIN

Error Detection

Checks are made for correct table number on the input cards and
that the values specified are within range for this type. A test is
also made to insure that a nul l selection table has not been specified .
If any of these errors are detected, the main error flag is set to the
appropriate value and control Is returned to the calling routine.

I 

438 

_.

~

—• . • - . • - • - ,•~~ 
_  

- --~~~~~~~- • • -~~~~~ -~~~~~~~~~~~~~~~~ —~~~— ~~~~~~~~~~~~~ -~~~~~~~~~~ - - - - •rn~~~~~~~~~~ - -~~~~~~~~~



- -
~~~~~~~~~~~~

-
~~~~~~~~~

•- .- - - .-
~~~~~~~~~~~~~

- - - . —
,~~~

SUBROUTINE SKPALL

This routine reads over all data for an Increment on Input tape
ITP2.

Algorithm

The header of the first matrix for the Increment is read from in-
put tape 11P2. The seventh word of the header record Is the Increment
number which Is tested against the anticipated increment number to
insure proper seou€ncing .

The input tape contains matrices only for each element type that
exists in the model. Therefore, appropriate problem parameters are
tested to determine which element types exist. Input tape KTP2 is then
read past the number of matrix trailers corresponding to the number of
matrices present.

Input/Output

Input tape ITP2 is read past all data for the increment.

• Argument List

None

Labeled Conuno

PARM, INDEX

Subroutines Called

READC

Error Detection

• The Increment number of the data on Input tape ITP2 Is tested
against the anticipated Increment number . If not equal , the main error

-

~
flag Is set to 200 and control Is returned to the calling routi ne.

489
(I.

-

_ _ _ _ _ _ _ - -

_______________ -- ~~~~~ —~~-

SUBROUTINE READC

This routine reads a FØ Rt~tAT tape record.

Algorithm

The speci fied tape is read according to F~RMAT convention and
the data stored in array A .

Input/Output

One record is read from tape ITAPE.

Argument List —

ICØL An Integer scalar defining the column number

KØDE An integer scalar i ndicating expanded or compressed •

format

NUM An integer scalar defining the number of words
remaining In the record

A A real array used to store the data read

ITAPE An Integer scalar defining the file to be read

• Labeled Common

None

• Subroutines Called

Uone

Error Detection

None

SUBROUTINE ZERO

This routine changes negative zero values to positive values for
printing .

Al gorithm

Each value In the input array is tested for a numerical zero and ,
If so, is set equal to a positive zero integer value.

Input/Output

None

Argument List
I

K An Integer array of values to be processed

N An integer scalar equal to the length of array K

Labeled Comñ~on

None

Subroutines Called

• None

Error Detection

• None

491
I

_____ - _____J

S

•~~~~~~~
- - - —~~ -~~- . — - ~~~~ -~~~-- -- ~~~

REFERENCES

1. J. P. Cogan, Jr., FORMAT II - Second Version of Fortran Matrix
Abstraction Technique; Volume II, Description of Digital Computer
Program, AFFDL-TR-66—207, Volume II, Air Force Flight Dynamics
Laborator~ Wright-Patterson Air Force Base, Ohio, March 1967.

2. W. J. Lackey, R. E. Wild, FORMAT II — Second Version of Fortran
Matrix Abstraction Technigjjj; Volume II~ Supplement I. Description
of Digital Computer Program, AFFDL-TR-66-207, Volume II, Suoplement
L Afr Force Fl ight D~ynamics Laboratory, Wright-Patterson AFB,OhIo, November 1968.

3. C. G. Hooks, FORMAT II - Second Version of Fortran Matrix Abstraction
Technique; Volume II, Supplement II. Description of Digital
C~riputer Program System/360, AFFDL-TR-66-207, Volume II, SupplementII, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB ,
Ohio, February 1969.

4. W. 3. Lackey, S. H. Miyawaki , FORMAT - Fortran Matrix Abstraction
Technigue~ Volume Ii, Supplement III. Description of Digital
Comouter Program — Extended, AFFDL-TR—66-207, Volume II, Si~ó~1ementfli, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB ,
Ohio, June 1970.

5. 1. Chahinian , S. H. Miyawakl , FORMAT - Fortran Matrix Abstraction
Technique; Volume U, Supplement IV. Description of Digital Computer
Pi~ogram - Extended, AFFDL-TR-66—207, Volume II, Supplement IV ,
Mr Force Flight Dynamics Laboratory, Wright-Patterson AFB , Ohio ,
April 1973.

6. L. Chahinian ,FORMAT - Fortran Matrix Abstracti on Techniques; Volume II,
Supplement V. Description of Digital Computer Program - Extended,
AIFFDL-TR-66-207 , Vol ume II, Supplement V , Air Force Flight Dynamics
Laboratory , Wright-Patterson AFB, OhIo , December 1977 .

7. J. Pickard , FORMAT - Fortran Matrix Abstraction Technique; Volume V,
Engineerinq User and Technical Report, AFFDL-TR—66—207, Volume V ,
Air Force Flight Dynamics Laboratory, Wright—Patterson AFB, Ohio
October 1968.

8. J. Pickard, FORMAT - Fortran Matrix Abstraction Technique; Volume V,
Supplement I. Engineering User and Technical Report - Extended,
AFFDL-TR-66—207, Volume V , Supplement I, Air Force Flight Dynamics

• Laboratory, Wright-Patterson AFB , Ohio , June 1970.

9. J. Pickard ,FORMAT - Fortran Matrix Abstraction Techn~oue; Volume V,Suoplement II. Engineeri ng User and Technical Report - Extended,
AFFDL-TR-66—207, Volume V , Supolement II , Air Force Flight Dyn~mlcs

(~ Laboratory , Wright-Patterson AFB , .Ohlo, April 1973.

‘.-~~~~ ----—- —~~
- — -

~~
- - -

~--~~~~~~~

~~~ ~~~~~~~~~~~~~~~~~~~~~ 
• • —

REFERENCES (Continued )

10. 3. PIc kard, FORMAT - Fortran Matrix Abstraction Technique; Volume V,
Supplement III. Engineering User and Technical Report - Extended,
AFFDL-TR—66—207, Vol ume V , Supplement III , Air Force Fl i ght Dynamics
Laboratory, Wright-Patterson AFB , Ohio , December 1977.

11. 3. P. Cogan, Jr., R. C. Morris, and J. R. Wells, FORMAT - Fortran
Matrix Abstraction Technique; Volume VI. Description of Digital
Computer Program - Phase I, AFFDL-TR—66—207, Volume VI, Air Force
Flight Dynamics Laboratory , Wright-Patterson AFB , Ohio , September 1968.

12. R. C. Morris, FORMAT - Fortran Matrix Abstraction Technique; Volume VI,
Supplement I. Description of Digital Computer Program - Phase I -Extended, AFFDL-TR-66—207,Volume VI, Supplement I, Air Force Flight
Dynamlcsi Laboratory, Wright-Patterson AFB , Ohio, June 1970.

13. R. C. Morris, FORMAT - Fortran Matrix Abstraction Technique; Volume VI,
Suppl ement VI , Supplment II. Description of Digital Computer Program -
Phase I Extended, AFFDL-TR—66-207, Volume VI, Supplement II , Air
Force Flight Dynamics Laboratory, Wright-Patterson AFB , Ohio ,
April 1973.

14. R. C. Morris, 3. R. Wells , and P. S. Yoon , FORMAT - Fortran Matrix
Abstraction Technique; Volume VU. Description of Digital Computer
Program — Phase Itt, AFFDL-TR-66—207, Volume VII , Air Force Fl ight
Dynamics Laboratory, Wright-Patterson AFB , Ohio , September 1968.

15. 3. A. Frank, FORMAT - Fortran Matrix Abstraction Technioue; Volume VII,
Supplement I. Description of Digital Computer Program - Phase III —Extended, AFFDL-TR-66—207, Volume VII , Supplement I , Air Force Flight
Dynamics Laboratory, Wr ight-Patterson AFB , Ohio, June 1970.

• 
. 16. B. 1. Smith, et al., Matrix Eloensystem Routines : EISPACK Guide ,

Springer-Verl ag, New Y~ork, New York , 1974.

17. D. E. Knuth, The Art of Computer Progranuning; Volume III, Sorting
and Searching, Addison and Wesley, Reading , Massachusetts, 1973.

0
4~4 . -

_ _   

_ _ _  _ _
/

_ _ _ _ _  

.. ——— ..-— _ _ _ _

_____ ,—.- .- -.— - -,,--- —~~~~~~~~ ----- ---— • . ---- ..


