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I

I. INTRODUCTION

Appa rently no method is readily available in the published literature
which will enable quick and easy evaluation of the total heat transfer to a

body in a hypersonic flow environment. Such information is very useful,

for example , in eva luating heat sink or internal coolant requirements for

various body shape s in a ground test hypersonic environment, or the trans-

piration-cooled nosetip coolant and reentry vehicle heat shie ld requirements

for balli stic hypersonic reentry vehicles.

The initial work in this area is that of A llen and Eggers (Ref. 1).

These authors give the form of an equation for total heat load to a reentry

body. However , direct calculation of results is not possible since the con-

vective heat transfer relationship is left unspecified in the final equation.

B runner (Refs . 2, 3) has extended the work of Allen and Eggers by incorpo-

rating flat-plate-reference-enthalpy convective heat transfer expressions for

both laminar and turbulent flow . For a complete reentry trajectory,

Brunner ’s work allows the evaluation of the total local heat load in Btu/ft 2

at a given station on a sphere-cone. However, to obtain the tota l heating to

the entire body from Brunner ’s results, an integration must be performed of
the given laminar or turbulent heat t ransfe r distribution functions ove r the

sphere , or sphere-cone body, of inte rest. Also, for sphere-cones, Brunner ’s

results are approximate because of the approximate pressure distribution
used.

‘Allen, H. Julian and A .J. Eggers , Jr., “A Study o f the Motion and Aero-
dynamic Heating of Ballistic Missile s Entering the Earth ’s Atmosphere at
High Supersonic Speeds ,” NACA Report 1381, 1958.

2Brunne r , M. J., “Analysis of the Aerodynamic Heating for a Re-entrant
Space Vehicle,” J. of Heat Transfer, August 1959, pp. 223-229.
3Brunner, M.J., “Heat Protection System Concept Evaluation,” Report
PIR U-9190-73-114, General Electric Company, Philadelphia, Pennsylvania,
9 January 1973.
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‘1

The primary purpose of this work has been to provide analytic equations

and calculated numerical results which, when taken together , allow the tota l

heat transfer for body shapes of interest to be quickly and accurately calcu-

lated .

Tota l he at transfer re lationships for both constant, ground test type ,

environments and realistic ballistic trajectory environments are derived in

Section II. In the later sections , numerically calculated result s for the
laminar and turbulent heat transfe r integrals are giveLl for familie s of

sphe re-cones and flat-face cone s. When the numerical result s are combined

with the analytic equations , total heat t ransfer in both types of environments

may be readily calculated for a wide range of sphere-cone and flat-face cone

geometries .

I
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II. INTEGRATED HEAT TRANS FER EXPRESSIONS

A. LOCAL HEAT TRANSFER RATES

An expression is needed for the total integrated heat transfer in hyper-

sonic flow environments as a function of appropriate flowfield , body scale ,

and body geometry parameters.  But f irst, an appropriate expression is

required for the local heat transfer coefficient . In Refs . 4 and 5, the boundary

laye r integral momentum equation is solve d, and Reynolds analogy and a

compressibility transformation are app lied to obtain the following expressions

for the local heat t ransfe r coefficient :

- L  0.470 rp
(Laminar)CH = p u  H = 

e 
1/2 ( la)

e e o  -f  2• 2J ~~~~~~~~ 
ds

0

• T 0. 0288r 1
~
’4I4

____ e(Turbulent)CH = 

~ 
u H = 1/5

C / 5  f peueper5”~d80 (lb)

These expressions have been found to agree very closely with experimental

data at high supersonic Mach numbers (Ref. 6); limited comparison with

experimental data for a hypersonic Mach nurnber* also shows good agreement .

4Vaglio-Laurin, R., “ Laminar Heat Transfer on Three-Dimensional Blunt
Nosed Bodies in Hypersonic Flow, ~I ARS Journa l, 29(2), February 1959,
pp. 123-129.
5Vaglio-Laurin, R., “Turbulent Heat Transfer on Blunt Nosed Bodie s in Two-
Dimensional and General Three-Dimensional Hypersonic Flow, ” J. of the
Aero/Space Sciences, 27(1), January 1960 , pp. 27-36.
6Widhopf, G. F. and R. Hall, “Transitional and Turbulent Heat Transfer
Measurements on a Yawed Blunt Conical Nose Tip,” A J.AA Journa l, 10(10),

• October 1972 , pp. 1318-1325.
*Crowell, P.G., private communication, January 1973.
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If we define the following nondimensiorial quantities denoted by the bars

— ~e — “te — 
U

e — r — s ZrB
= 

~~~~~~~
‘ ~e = 

~i ,  ue = 

~~~~~~~~~~~~~ 

, r - , S = -~~~~~~~ , ~ = L
0 (2)

then the local heat transfer coefficient expressions become

n/ (n + l )

C 1r’~/i 
_ _ _ _ _ _ _ _ _ _CH = [f~~e~~e~ e~ 

]n/
f + 1) p (2H 0) ”2r B 

(3)

where for laminar flow C 1 = 0.332 , n = 1 and for turbulent flow C 1 = 0. 0288,

n = 1/4 .

We now distinguish between a constant freestream environment problem 
)

for which integration ove r the surface are..~ gives the total heat transfe r rate

in Btu/sec and a trajectory environment problem for which integration over

the surface area and for all altitudes give s the total heat transfe r in Btu ’s.

This is done below.

B. CONSTANT FREESTREAM ENVIRONMENT

To obtain the total heat transfer rate , we integrate the local heat trans-

fer rate q ove r the surface area of the body. Thus - •

~~~~~~
- 

=fj
idS = z ij~ irds (4)

The total heat transfer rate then becomes upon substituting from Eq. (1) and

nondimens ionalizing

= 2(1) f~~CiiC CH id
~ 

(5)

-8-
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The hypersonic approximations ~~~~~ ~~V and p IP = ( V +l ) / ( V - l )  have beeno co
made in obtaining Eq. (5). Whe n Eq. (3) is substituted into Eq. (5)

—

dQ/dt zc 1( ± ~.) ________________________

J 

p u p r  ds
_________ _ _ _ _ _ _ _  

e e c  (6)
Rdco co o\ 0• p V H /lrr B) 

= [ n/ (n+ 1)  

j
~~~~

_
~~7 _n+l ~~n / ( n + l )

[0 
e e e  ds

j

where

p (ZH )“2r
Re 

o o B (7)
0

A s noted in Ref. 7 (and footnote below*), the integral in Eq. (6) is of the form

where

I-

= u / J r dsi: J
_ __ f l + l — (8)

e e c
0

Thus, Eq. (6) may be integrated once to obta in

2 (ndQ/dt 
- 

+ 1) c 1 (~~ri ~ l/ (n+ 1)  (9)

(
~~

r
~~) 

- 

E R ~n/ ( n+ l)  Q
P V H  eco 0 0 

•

1

Substituting the appropriate values for C 1 and n, we obtain

dQ ’~/dt L)~~
’2 -1/2

= 1. 328 (~~
4L )  (IQ Re (lO a)(Laminar)

p V H ( i r r2
~ 

- °
c o c o~~~~ B, $

dQ T/dt 0. 0720 (
~

) (I~~)
4 15

Re~~~’~ ( lOb)(Turbule nt ) 
p V H (7rr 2 \c o c o o~ B/

7Aihara , Y., “Optimum Bod y Geometries of Minimum Heat Transfe r at
Hyperson ic S pe e d s, ” AMA Journa l, Technical Notes, 6(11), November
196 8, pp. 2187-2188.

*Crowell, P. G., private communication, November 1976 .
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C. TRAJECTORY ENVIRONMENT - - BASIC EQUATIO NS

In this case to obtain the total heat t ransfer , we must not only integrate

the local heat transfer rate over the surface area of the body, but must also

integrate in time (or altitude) through the t ra jectory.  If we let X= total heat

t rans fe r /un i t  area , then

~j;~!9 = ~ ( 11)

The development here closely follows that g iven by Allen and Eggers (Ref .  1)

except that a key simplif ying assumption has been eliminated; i. e., Allen

and Eggers assumed that Re 0 is not a function of altitude . If altitude is

denoted by y, to a good approximation

= Vco5m n O E 
(12)

also

~ =j/’~ç’~s (13)

After Eqs. (11) th r ough (13) are combined and integrated circumferentially

= ~ V
~~

S
~~

OE, 
(14)

Proceeding with nondimens i onalization , approximations and simplifications

exactly as in the constant environment case above, we obtain

-P ~~V r ~~(~~ -~)  

/~ e~ eCH~ 
d (15)

— 10— 
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Substituting for CH from Eq. (3), we find

i.

-C p v
2
~~~2 (V+l\ 

— — — — n + l  —
p u p r  dsdQ i c o c o  B~~~T)J

” 
e e c

0

- nf(vrf-1) 
8E 

~ 
[ 1  

nf(n+ 1) (1 6)
• [Re ] . sin

e e e

When we integrate in ~ as before

I /1 V2 iTr 2 (
~
’
~~ ’ ~I co co B\FT) J ,~ l/ (n+ 1) (17)= - (n+ 1)C~ 

L sin O E[Re l ] Q

Before we can integ rate in y, we must express p , V and Re as functionsco co o
- of y. Notice that because of the way in which it is nondimensionalized, I~ is

not a function of y.

To a very good approximation, the viscosity ove r the range of pressure$ and temperature of interest may be assumed to be independent of pressure

and represented by a power law temperature dependence. Thus

/1 C T ~~ (18)
° p °

When we use ideal gas expressions and employ the hypersonic approximation
viii = V~~, Eq. (18) becomes

= C (~
‘
~~ 

\~~v2w (19)
~o /L~ 2YR) Co

Substituting int o Eq. (7), we may write Re0 as 
-

I y +1’. (rr)r B ~coRe r (20a)
° C 

(
~~~1)wF 

____________________________

Co

— 1 1 —  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~-• — - .  - 
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I

Therefore
n/(n+l)

= 
~~2 V( 2 W_ l ) r l I (n + l )  (20b)

whe re - -

C2 = [ (Y~~~) 1~
B ]  

n/(n+l) 
(21)

p (2 YR)

From Allen and Eggers work

~ o~~AY (22a)

B -Ày
--~-e

V = V  e (22b)
E

whe re the ballistic factor B and the ballistic coe fficient fl are given by

p 0
B . (23a)

P
~~~ CDA (23b)

Substituting Eqs. (20b) and (22) into Eq. (17) , we obtain finally

[(2~~+ 1)n+2]B ~~Ay
dQ ~~~~_Ay/(n+ 1) 2(n+ 1) - (24)

where

— 

(n+1)C 1 ) [irr~~(~~±1) ] 1/(n+1) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~2 (25)

____________________  

-12-
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D. TRAJECTORY ENVIRONMENT-- LAMINA R FLOW

When we substitute for n, C 1, and C
2 
in Eqs. (24) and (25)

dQL 
= ~~L~~

_ (À/2)y~~_ (2W+3)B/4 e (26a)
dy

1/2

C~~ = -0. 939 [C
~~(z! W/7.f 1 1 1 lTr 2 1 

~~ (2(J+3)/Z 1 1/227R) ~ YT) I B P ° V
E L’~

] (26b)r
B J 1~’~°E J

When the limit s of integration are reversed  in altitude y

Q
L _C~~fe

2
e
_
~~~~

)+3 I’4
~~~~~~ dy (27)

0

Define a laminar ballistic factor BL as

(2w 4-3)
B (28)

Equation (27) can then be integ rated directly to obtain
L

QL 
= — irz y(1/z, BL) (29)

A [B 11

where V( 1 / 2 , BL) is the incomplete gamma function.

Upon substitution for C~ ’ and the de finition of the Incomp lete gamma
function, Eq. (29) may be rewritten as

‘ ‘ ‘ k  / ) ‘+l /2
~~~ r )w 1

l
~

2
[ 1Tr~~ 1 1/2 (2W+3)/2

( L )
1 

erf(/ ~~~)Q L 
~ O. 939[ 

BLr B I [~
sine~~J

(30)

I
-13-
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Finally, substituting for B L and B from Eqs. (28) and (23a), we then have

QL 
= F

Lerf (~/~r ) (3 1a)

r ~~ 
11/2 1 .

L w 1/2

FL = l .g66 x l0 6 1  (ST) I i C~~(fi ~~) P’Q I 3/2  (3+2c~~/2
(2w+3 ) I L ~ ~~~~~~ 

r B VE (3 1b)

2
e
_t dt (3 1c)erf (

~~
)

E. TRAJECTOR Y ENVIRONMENT- - TURBULENT FLOW

When we substitute for n, C1, and C
2 

in Eqs . (24) and (25)

dQ T 
C~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ (32a)

dy

Cl) 1/5 4 /5- Ic~(~~~) - rB~~~~I p0~~~~
5 (2w+9)/5 4/ 5I [~. 2 Iy +1\

C~ = .0. 0627 [ r B sin G E 
VE [Is]

(32b)

Again, if the limit s of integration in altitude y are reversed

Co

e dy (33)QT = 
_
~ •,( e~

(4X/5)y -[(2w+9)B/1O]e~~
’
~
’

Defi ne a turbulent ballistic factor BT

B T 
~
2
~~

4-9
~B (34)a

-14-
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Integrating Eq. (33), we obtain

CT

QT 
= - T 4 / 5 Y(4/ 5 , BT ) (35)

- 
A[B ]

T T *Substituting for C3 ,  B and B as in the laminar case , we obtain

- 

QT a FT 
Y(4/5, B

T) (36a)

4/ 5 ~ 1/5

FT
= 4 70 x io 6 [~ i~)] ~~ I 

(pi~~) r~~
’
~ VE (36b)

whe re y (4/ 5 , BT ) is the incomplete gamma function given by

• , T 4/ 5
~B )

~1(4/5~~~ T) e
_t 

dt (37)

Integrations entirely analogous to those performed on Eqs. (27) and

(33), for laminar and turbulent flow , respectively, we re carried out by

Brunne r (Refs . 2 , 3). Brunne r ’s starting point , however , was the “ refe r-

ence enthalpy ” heat transfer expressions for laminar and turbulent flow

r athe r than the Vag lio-Laurin expressions used herein. Also, Brunne r ’ s

final results for integrated heat transfer through a trajectory were given in - 
-

terms of..W’, 1. e., the time integrated heat transfer in Btu/ft 2 at a point on

the body.

1’ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

*Proper units for Eqs. (31a) and (36a) are discussed on page 35.

t -15-
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III. CALCULATED RESULTS--CONSTANT
FREESTREAM ENVIRONMENT

If the freestream environment is not changing with time, then the total

heat transfer rate can be expressed in terms of the free stream flowfield

variables and the body geometry as given by Eqs. (lOa) and (lob). These
expressions are shown graphically in Fig . 1. The behavior is seen to be

similar to classical Nussett number-Reynolds numbe r behavior , with a

0. 5 powe r Reynolds number dependence in the laminar case and a 0. 2 powe r

Reynolds number dependence in the turbulent case. Notice that the right-

hand sides of Eqs . (lOa) and (lOb) can be interpreted as representing the

fraction of the intercepted freestream total energy flux which is t ransfer red

as heat to the body.

Figure 1 is applicable for all body shapes. Howe ve r , the ordinate

contains the heat transfer integral I~~, which depends upon the shape contour

of the body and is given by Eq. (8).

The evaluation of I~~ reduces to evaluating the local pressure p~ at

each position on the body and then integrating Eq. (8) because the normalized

product 
~~~~ 

can be written in terms of the normalized pre ssure = 
~~~ 

as

— — ~° / ‘~ —

1’e/’e = 

~:~o 
= 

~e (38)

Also , assuming an isentropic expansion, the local velocity 
~~ 

can be written

in terms of as

U 
= 

— ()‘- l ) /V (39)e 
~/~:i~ V

0

Thus, I~ is a function of the specifi c heat ratio V, the tempe rature exponent

4 in the viscosity law w, and body geometry.

~17- 
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The inviscid flow pressure distributions needed to determine the

boundary layer edge properties as given by Eqs. (38) and (39) were obtained

from the best numerical inviscid flowfield calculation procedures availab le
(Refs. 8-10). A schematic diagram of the inviscid flowfield calculation

procedure for flat-face cones is shown in Fig. 2. For sphere-cones, the
start line for the rotational characteristics compute r program (Ref. 9 ) was
obtained using the Ames blunt body computer program (Ref . 8) .

The basic body geometry conside red in this work is a cone . Calcula-

tions were carried out for cone half-ang les ( 6 )  of 30 ,- 20 , 10, 5 and 0 deg
for both hemispherical and flat-face noses . In each instance, calculations

wer e made by numerically integrating Eq. (8) starting at the stagnation point.

Results of the numerical inviscid flowfield calculations for these geometries

were used in conjunction with Eqs. (38) and (39) to evaluate the integrand

along the body. In this way, I~~ and I~ for each cone half-angle and a con-

tinuous range of thic kness ratio , T 2r B /L, were calculated . The b luntness

rati o, B. R. = rN
/rB, and the thickness ratio are related by Eqs. (40a) and

(40b) . For sphere-cones

rcos9 - 2 sinG
B.R. = — 

c C 
(4Oa)

r ( l — s r n O )

and for flat -face cone s

rcos6 - 2 sin9
B.R. = 

C C (40b)
Tcos9

_________________ 
C

- - 
8Masson, B.S., T.D. Taylor, and R.M. Foster, “Application of Gadunov ’s
Method to Blunt Body Calculations,” AIAA Journal, 7(4), 196 9, p. 694.
Baker, R. L., “Method of Characteristics Computer Program Including
Embedded Shocks and Total Enthalpy Gradients Normal to Streamlines,”
Report No. ATM-71(S6816.53)-2, The Aerospace Corporation, San Ber-
nard ino, California, 3 February 1971.

10 . . . .Inouye , M., J. V. R akich , and H. Lomax, “A Description of Nume rical
Method s and Compute r Prog rams for Two-Dimensional and Axisymmetric
Supersonic Flow ove r Blunt-Nosed and Flared Bodies , ” NASA-TN-D-2970 ,
August 1965.
*Aerospace internal correspondence. Not available for external distribution.
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The results given in the remainder of this report are presented as a

function of the thickness ratio. Through the use of Eqs. (40a) and (40b) they
can ea8ily be interpreted in terms of the bluntness rat io .

A. SPHERE-CONES

The body geometries for a family of lO-deg sphere-cone s with constant
base radius are shown in Fig. 3a. For 7? 2.1, the shapes are truncated

sphere s and for 7 <  2.1 the shape s are sphere-cones with bluntness ratio
dec reasing as 7 dec rease s. As the bluntness ratio B. R. approaches zero,
the thickness ratio approache s the Sharp cone limit

= Z tan9 = 0.332 (41)
sharp cone C

Equation (41) follows directly from Eq. (40a) for B.R. = 0.

The relationship between the integrated heat transfer rate dQ/dt, the
freestream parameters p , V and H , the base radius r , and the heat

L -o B
transfer integrals I

~ 
and I~ is shown in Fig. 1 and is given by Eqs. (l0a)

and (lob) . If the freestream parameters and the base radius are fixed ,
then the relative heat transfer rates for different bodie s can be eva luated by
knowing I

~ 
as a function of thickness ratio 7.

The I~ as a function of 7 for the family of lO-deg cones in Fig. 3a and
all other lO-deg cones is shown in Fig. 3b. For truncated spheres, 7? 2. 1,

is approximate ly constant. For sphere-cone s 7 < 2. 1, I~ decreases as 7
decreases due in large part to the decreasing area associated with the high

heat transfer spherical cap and the fact that the inviscid flow along the cone

is overexpanded. As T continues to decrease, however, a minimum va lue of
I~ is reached. Further decrea8e in 7 result s in an increase in heat t ransfer
because the conical region now includes flow recompression following the
local ove rexpans ion.

• A sha rp cone represent s the smallest thickness ratio attainable for a
given cone half-angle . The lO-deg sharp cone value of I~ for isentropic

• expansion of the flow is shown by an x on Fig. 3b.

-21-
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The blunt cone calculated results are seen to be approaching the sharp

cone, isentropic expansion limit as ‘r approaches its lower , sharp cone limit.
All result s presented in the remainder of this report assume isentropic
expansion of the flow and are therefore app licable only when entropy swallow-
ing effects are neg ligible . This is generally an excellent assumption for
noseti p calculations.

Calculated value s of I~ as a function of 7 for laminar and turbulent
• flow over sphere-cones are shown for various cone half-angles in Figs. 4a

and 4b , respective ly . The results are generally similar to those described
in Fig. 3 . For each cone half-ang le greater than zero , the laminar and
turbulent curve s of I

~ 
versus r pass through a minimum. The minimum

I~~~or gdecreases as 6c decreases .

To illustrate the effect of cone half-angle , bluntness ratio, and thick-
ness ratio on the heat transfer rate , the I behavior illustrated in Figs . 4a
and 4b has been re produced in Fig. 5a . The different symbols on the curves ,
marked by numbers , represent families of cone s to be considered in the
following discussion.

First consider the four • (filled circ le) symbols numbered 1, 2 , 3 and 4.
Each point represent s the minimum in the curve of I~~ versus r for a particular
cone half- angle . Four cones , having a constant base radius and with cone
half-ang les , thickness ratios a’nd bluntness ratios corresponding to points
1 through 4, are shown in Fig. 5b. Since the base radius is constant , the
intercepted freestream total energy flux is constant. Howe ver , the fraction
of this flux t ransfer red  as heat to the body decreases monotonically as the
cone half-angle and thickness ratio decrease , since dQ/dt is proportional to

thus

dQ4 dQ3 dQ2 dQ
1—ai-- > ~ > -at- > ~~~~~~~~~
- (42) 

—
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The four o (open circle ) symbols in Fig. 5a numbered 5, 6 , 7 and 8 represent

fou r cone s having a constant thickness ratio of 1. 3. These cones are illus-

trated in Fig. 5c. The 2O-deg cone , represented by point numbe r 8, has the

lowest heat t ransfer rate. The 5- and lO-deg cones , points 6 and 7, have

higher heat t rans fe r rate s because of larger areas associated with the high

heat t ransfe r nose cap. The 30-deg cone , point 5, also has a highe r heat

transfe r rat e because of the high conical pre ssure on the cone surface.  Thus ,
- for these cone s

dQ5 dQ6 dQ 7 dQ8
~ dt (43)

The behavior of I~~ versus Tfo~ a sphere-cylinder can now be under-
stood by considering Fig. 5d and the o (half-filled circle ) symbols in

Fig. 5a, point s 9, 10 and 11. We see in Fig . 5d that body 9 may be considered

a part of body 10. Likewise, bodies 9 and 10 may be considered parts of

body 11. Therefore , going from body 9 to body 10 and then to body 11, the

total heat transfer must increase or -

dQ 1 dQ dQ

dt > dt ~~~

B. FLAT-FACE CONES- -COMPARISON WIT H SPHERE-CONES

Calculated va lues of I~~ for laminar and turbulent flow ove r flat-face
cones are shown for various cone half-angles in Figs . 6a and 6b, respectively.
The behavior is comparable to that for sphere-cones as shown in Figs. 4a

and 4b with some notable differences. The surface pressure distributions
for a l O-deg sphere-cone and a lO-deg flat-face cone are compared in Fig. 7.

Since I~ depends upon the pre ssure distribution through Eqs. (38) and (39) ,
differe nces In the pressure distributions will be reflected in the I~ ve r sus
7 behavior. The major difference between the sphere-cone and the flat-face
cone pressure distributions is in the region of x/r n < 1. 0. The rapid

-27-
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expansion of the flow at the corner of the flat-face cone results in a severe
local overexpansion with immediate recompression to a pressure le vel
greater than that for the same station on a sphere-cone. For x/r~ > 1,

the sphere-cone and flat-face cone pressure distributions are similar, with

the ~1at-face pressure remaining above the sphere-cone value.

For the flat-face cones, the increasing pressure with increasing x/rn
for x/ r  < 1.0, is re sponsible fo r the increasing IQ with decreasing r

- . behavior for 1< 7<  10 as seen in Figs . 6a and 6b. For 7<1 , the sphere-
cone and flat-face cone results are qualitatively the same.

The numerical values of 1~ for sphere-cones versus flat-face cones
are compared for laminar and turbulent flow in Figs. 8a and 8b, respecti vely.
In general, for 7 > 2, (I ) < (I ) and forQ flat-face cone Q sphere-cone
r <  2, (I ) <(I ) . The differences are not large.0 sphere-cone 0 flat-face cone
For 7>  2 , the maximum increase in I

~ 
for a sphere-cone compared to a

flat-face cone is about 50 percent. For 7 < 2, the flat—face cone I~ values
are 5 to 30 percent greater than the sphere-cone values. From the above
discussion, the reasons for this comparative behavior are apparent. The
relati vely low heat transfer on a flat-face and the very low local pressures on
the forward part of a flat-face cone account for an I~ less than that for a

sphere-cone with the same thickness ratio. However, as x/ r~ increases,
which means ‘7 decrea ses , the higher flat-face cone local pressure values
eventually result in (I ) becoming greater than (IQ flat-face cone 0 sphere-cone .

C. EFFECT OF V AND w

All result s presented thus far have been for the nominal va lue s of
specifi c heat ratio V and viscosity exponent w; i. e., V = 1. 2 and 0 a 1. 0.
Whi le these va lue s appear to be the most appropriate consta nt va lue s for the
selected MCo a 20 flowfield , the question arises as to the sensitivi ty of the
results to changes In these nominal values. To illustrate the sensitivi ty ,
calculated result s are presented in Fig. 9 showing I~ for lO-deg sphere-cones,

_ _ _ _ _ _ _ _ _ _ _ _ _ _- - 
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for all combinations of V 1. 2 or 1.4 and 0 1.0 or 0.7. Both increasing V

from its nominal value and decreasing w from its nominal value result in an

increase in I~~. The highest I~~ value for given r occurs for V ~ 1.4
and 0= 0. 7.

L 1 L ’ 11/2
The heat transfer rate dO /dt is proportional to [I0/Re0j 

as given
by Eqs. (lOa). The Re0 

is given as a function of V and w by Eq. (20a). Com-
bining Eqs. (lOa), (ZOa) and the results of Fig. 9, we conclude that

(dQ
L
/dt)~~= 14~~,=0 ~ = 1.576 (45a)

(do /dt)~~~1 2 ~~, 1 0  max

Similarly

(dQ
T
,dt)~ =1. 4,~~=O . ~ = 1. 161 (45b)

- 

(dQ /dt)7..1 2 ,ci~~ l max

I. 4 .  

. 

-

- - 
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IV. CA LCULATED RESULTS--TRAJECTORY ENVIRONMENT

A . LAMINAR OR TURBU LENT FLOWS

In this case , the total heat t ransfer is given by Eqs . (3 1a) and (36a)

for laminar and turbulent flow, respectively. From these equations , we see

that for specified reentry conditions and vehicle balli sti c coefficient the total

heat t rans fer Q depends on the body shape and the bod y scale through the

parameters I~ and rB, respectively. Since the l
a
’s in Eqs. (3la) and (36a)

are the same as those in Eqs. (lOa) and (lob), results discussed above in

conjunction with Figures 3 through 9 are also directly applicable to the
present case. Thus, Figs. 4 and 6 supply the values of and 1T to be used
in Eqs. (3la) and (36a) to c-valuate Q and 0 for sphere-cones and flat-

face cones, respective ly. Also needed are the values of the functions con-
tam ing the ballistic parameters B

L and BT, i.e., erf V~~~ atid 7(4/5, B
T
).

These £unction~ are shown in Fig.  10. 
.

If the calculated results given in Figs. 4, 6, and 10 are used in com-

bination with Eqs. (3la) and (36a), the total heat Q[Btu] transferred to a nose

tip or a reentry vehicle for a complete reentry trajectory can be easily cal-

culated . The appropriate unit s for the parameters in Eqs. (3la) and (36a) a-re
C~[0. 979 x 10—8 (lb

m
/ft_sec_°R)],p [lbm /ft21~ A[ft~~ ], r B[ftl, VE[ft/ sec].

If the nose tip heat transfer is desired, then the rB used in these
equations should be the “base ” radius of the nose tip, and the thickness
ratio ‘7used to evaluate I~ from the figures should be that for the nose tip.

Likewise, for evaluating the total heat transferred to the entire reentry

vehicle , the r B and T should correspond to the entire vehicle values of these
parameters.

Caution must be applied in using the re sults calculated in the preceding

* 

manner if the bluntness ratio B. R. = rN/r B of the nose tip or vehicle is less

than 0. 1, since entropy swallowing effects are then likely to be important.
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B. LAMINAR-TURBULENT FLOW

The above procedures allow the calculation of the tota l heat transfe r 0 
I

:

only for those cases in which the flow in the boundary laye r is all-laminar

or all-turbulent for the entire trajectory. If , when boundary layer transition

occurs, it is assumed that the flow changes instantaneously from laminar to

turbulent over the whole nose tip or vehicle, then the total laminar-turbulent

heat t ransfe r QLT can be evaluated .

For the laminar-turbulent case with boundary laye r transition occur ring

at altitude h we have

0
LT 

= 
~~ L 

dy +f d~
T 

dy (46)

The details of pe r forming these integrations are g iven in Appendix A . The
- fina l result is

QLT 
= F

L
~erf  I~~~~~~~~~ + F~ 1~

(
~’~’ BT) - v (4/ 5 , B

~
’)1 (47)

whe re FL and FT are defined by Eqs. (31b) and (36b), respectively, and the
L T

partial trajectory ballistic factors B~ and B~ are given by

- 

B
L 

= B Le~~~ (4 8a)
p 4

B
T 

= B
Te~~~ (48b)

p

Thus , 0LT is evaluated in the same manner as and 0
T except multiple

use of Fig. 10 is required to give the three components. From eithe r

QT, or Q LT
, the total mass of an ablating mate rial lost during a reentry

trajectory is given by

M a -4-
0

where Is the cold wall effective heat of ablation .
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C. EVALUATING LOCAL HEAT LOADS

In many instances , it is desirable to know the total local heat load at a

particular body station in comparison to the total body heat load . The total

local heat load J~°is related to the total body heat load Q by

1 dO
.712= •~jj :j : ~~~ (49)

• Expressions for dQ/ds may easily be obtained from Eqs . (3la)  and (36a) for

laminar and turbulent flow, respective ly. In these equations, I~
’ and I~ are

the only variables which are a function of s. Performing the indicated dif-

fe rent iat ion and substituting into Eq. (49), we obtain for laminar flow

r v+i iuzl 1 -l 

11/2
W I

L 0-7 I (~~r) I 
~! 

~~~~~~~~~~~~~ 
P I( ~ E

(3+2
~~

’Z 
L 

f(&E) (50a)q erl.443x 1 [(20 .t-3)j [XitnOE r j
and for turbu lent flow

r ~~~ i 415 V-l ~w1 p 415
_____ E C~( 

1/5

= l . 6 9 l x l 0 7l~~~~~ J ~~
) J ~ 

(9+2(i
~~~qT v(4/ S BT )

~(2~~ 9)j  

{ 
[Asin8E r I ’  

V
E 

(SOb) •1
L TThe nondimensional heat transfer parameters q and q are given by

L 
p u /L re e c• = 

(~~~) 1I2 (5la)

— — — — 1 /4
T p u / l re e c  (51b)q a 

[
~~~I] l f S  

-

Q

II
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Comparing Eqs . (5 1a) and (5lb) with Eqs. ( la)  and ( lb) ,  we see that
L T - . .q and q are simply nondimensional representations of the original Vagho-

Laurin laminar and turbulent heat flux expressions.

In Eqs . (50a) and (50b), qL and qT have been normalized in such a way
that q L is unity at an axisymmetric stagnation point and qT is unity at the

maximum turbulent heating point on a sphe re. The parameters q L and qT

have been calculated and are shown in Figs. 11 and 12 for sphere-cones and
f lat—f ace cones , respective ly. Notice that the reference length in Eqs . (5 1a)
and (Sib) is the nose radius or flat-face step height , designated r N.

We are now in a position in which it is possible to easily compare the
present results with those of Brunner . Recall that Brunner t s starting point

was the flat-plate-reference-enthalpy heat transfer expressions, whereas the

present starting point has been the Vag lio-Laurin equations . The detailed
• algebraic manipulations for thi s comparison are g ive n in Appendix B. The

laminar total local heat tr ansfer.WPL given by Eq. (50a) is for an axisymmetric
stagnation point 11. 1 percent lower than that calculated from Brunne r ’ s

express ion. The turbulent total local heat transfer Jé’, given by Eq. (50b)

for the maximum turbulent heating point on a sphere , is 14. 9 percent higher

than that calculated from Brunner ’s equation.

For an ablating material, the total recession depth d at a give n nose

tip or bui y location can be calculated from

d = 
NX’ (52)

whe re is the bulk density of the ablating material and 0* is the cold wall

effective heat of ablation. If Fig s. 11 and 12 are used , the d for any location

on the families of sphere-cones and flat-faced cone s conside red in this work

can be easily calculated.
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V. SUMMARY

Beginnin g with the hypersonic convective heat t ransfe r expressions for

laminar and turbulent flow given by Vag lio-Laurin , equa tions for the total
heat t ransfer to a bod y in a hypersonic flow environment have been derived.

When these equations are used together with the graphical result s presented ,
total heat t ransfer  to selected body geometries can be calculated directly.
Both the case of a constant, g round test type environment and a realistic

reentry vehicle trajectory environment ha ve been considered.

The total heat t ransfe r is given as a function of freestream or reentry

parameters, body scale and heat t ransfer integrals which are functions of the
$ bod y geometry. The best a vailable inviscid flow field calculation methods for

surface pressure distributions were used to calculate the laminar and turbu-

lent heat transfer integrals I~ and I~ for 0-, 5- , 10-, 20-, and 30-deg sphere-

cones and flat-face cones. These results are presented graphically as a
function of the fineness ratio, i. e., the diameter to length ratio. From these
figures , the variation of total heat transfer with nose bluntness ratio, fine-
ness ratio, and cone half-angle has been examined.

For the trajectory environment, in addition to total laminar or turbulent

heat transfer prediction methods, a method for evaluating the total heat

transfer for laminar flow to boundary layer transition altitude and all turbu-

lent flow to impact •is also given . Whe n the total heat load to the body or nose
tip is known, the heat shie ld weight or transpiration nose tip coolant require-
ments can be directly calculated.

Finally, graphica l results giving the dist ribution functions fo r local
laminar and turbulent heat trans fe r ove r the sphere-cone and flat-face cone
geometries considered in this work are given . These result s allow the total
local heat load at selected axia l stations , and there fore the loca l depth of
heat shie ld ablation, to be calculated.
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APPE NDIX A

DERIVATION OF QLT RELATIONSHIP

For a laminar-turbulent trajectory case , 0
LT is evaluated by pe r-

forming the integrations indicated by Eq. (46). The integrand dQ L/d y is
given by Eq. (2 6a) and dOT /d y is g iven by Eq. (32a) . These integrands
have alread y been integrated between the limits of zero and infinity with the
final results given by Eqs . (31a) and (36a) . We now conside r the partial
integrations.

First , for the lamina r portion of the t ra jectory

Q~~ =j C ~~ e~ AY 12 e~ B e dy (A-i)

• When the substitution t J e ~~~~4~’ 2 is made , Eq. (A-i )  may be rewritten as

- 

= 
[ j

~~~~e~~~~~
/2

2 ]  (A -2)

Equation (A-2) is the same form as Eq. (31c) except that the upper limit of
integration is different . Thus , we define B~~ by

B L = B Le~~~ (A -3)p

The integral in Eq. (A-2)  is thus represented by the error function of argu-
ment ~‘~~~~and the first te rm in Eq. (47) is obtained afte r appropriate sub-
stitutions.

- . 1 
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For the turbulent portion of the trajectory

c~~ =fC~~ 
~(4A/ 5)y e?B T

~~~~
Y

dy (A-4)

When the substitution t = [B T}4/5e
_4

~~~
/ S is made , Eq. (A-4) becomes

T 4/5

or 

= 
4X[B 14’5

~~~~T~4/5e~
(4 A/5 )h 

(A-5a)

= 

4X[ BT]415{t J } (A-5b)

The f i rs t  term of Eq. (A-Sb) is the same as Eq. (37) . The second term dif-
T

fers only in the uppe r limit of integration. Thus , we defi ne B~ by

BT 
= BTe~~~

l
~ (A-6)

p -

Then with the definition

4/5 -

v (4/ 5 , x)  = 5f 
e

_t dt (A-7)

the last two terms in Eq. (47) follow directly from Eq. (A-5b) afte r appro.
priate substitution.

L~ - — - - - - - - - 
- 
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- APPENDIX B

COMPARISON WITH BRUNNER’S WORK

The major thrust of the pr esent wor k has been to obtain Eq s. (3la)
L T

and (3 6a), which give the total heat transfe r values Q and 0 . These equa-

tions wer e obtained by performing successive body surface and time (altitude)

integrations of the appropriate local heat t ransfer rate and altitude-dependent

expressions for heat transfer.  Brunne r ’s work involve d only the time (alt i-

tude) integrations of the local heat transfe r rate to obtain .*~ the total trajec-

tory integ rated heat transfe r at a point on the body.

As indicated by Eq. (49), J~ and 0 are re lated by

~,, _ dQ/ds - 

-

2irr 
(B-i )

-- ‘
4

Since the starting point of the present work is the Vag lio- Laurin con-
vective heat transfer relationships, and Brunne r ’s starting point was the flat-

plate reference enthalpy heat transfe r expressions , it is of interest to com-

pare the valueS of JVobtained from the two methods. 
-

For convenience, we define the following:

- JV eva luated using Brunner ’s equations

- .Weva luated using the present equations 4

The ~~~ and .*~ are given by Eqs . (50a) and (50b), respe cti ve ly. If the
present notation is used , Brunne r 1s expressions are given by

a 4. 155 x io~
l
~~
j 

lAsLn$ErN j v ~~
2 erf Wi. IB) (B-2a)

= 2. 392 X 10 r 1115 V~~ Y(4/5 , l. 24B) (B 2b)

[
AsinOEr

Nj
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A direct numerical comparison of the two methods is now possible.
Equations (B -Za) and (B -2b) are for an axisymmetric stagnation point and the
maximum turbulent heating point on a sphere , respectively. Thus , we set
q L and qT in Eqs . (50a) and (50b) to unity. Note also that the exponents on

~8, A ,  sin9~ and r N are the same in Eqs. (B-2a) and (50a) for laminar flow
and in Eqs . (B-2b) and (50b) for turbulent flow. Forming the ratio
and substituting from these equations, we obtain for a laminar stagnation
point on a sphere

= 
1. 61 = 0.889 (B-3a)1.811

1

and for the turbulent maximum heating point on a sphere

1 7 54- ~i 
= 1. 149 (B— 3b)

.
~

o
1

I

For these numerical evaluations, the following input quantities were assumed:

2 :~:
VE = 20,000 ft/sec 

- 

- 

( B—4)

B = 1 .0

lb
C O.979 x 10

8 m
ft-sec-°R
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