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I. INTRODUCTION

Apparently no method is readily available in the published literature
which will enable quick and easy evaluation of the total heat transfer to a
body in a hypersonic flow environment. Such information is very useful,
for example, in evaluating heat sink or internal coolant requirements for
various body shapes in a ground test hypersonic environment, or the trans-
piration-cooled nosetip coolant and reentry vehicle heat shield requirements

for ballistic hypersonic reentry vehicles.

The initial work in this area is that of Allen and Eggers (Ref. 1).
These authors give the form of an equation for total heat load to a reentry
body. However, direct calculation of results is not possible since the con-
vective heat transfer relationship is left unspecified in the final equation.
Brunner (Refs. 2, 3) has extended the work of Allen and Eggers by incorpo-
rating flat-plate-reference-enthalpy convective heat transfer expressions for
both laminar and turbulent flow., For a complete reentry trajectory,
Brunner's work allows the evaluation of the total local heat load in Bt:u/ft2
at a given station on a sphere-cone. However, to obtain the total heating to
the entire body from Brunner's results, an integration must be performed of
the given laminar or turbulent heat transfer distribution functions over the
sphere, or sphere-cone body, of interest. Also, for sphere-cones, Brunner's
results are approximate because of the approximate pressure distribution

used.

1Allen, H. Julian and A.J. Eggers, Jr., "A Study of the Motion and Aero-

dynamic Heating of Ballistic Missiles Entering the Earth's Atmosphere at
High Supersonic Speeds, " NACA Report 1381, 1958,

ZBrunner, M.J., "Analysis of the Aerodynamic Heating for a Re-entrant
Space Vehicle, " J. of Heat Transfer, August 1959, pp. 223-229,

3Brurmer, M.J., "Heat Protection System Concept Evaluation, " Report
PIR U-9190-73-114, General Electric Company, Philadelphia, Pennsylvania,
9 January 1973,

aa e T w0

ESEEEERA I Y

IR S




The primary purpose of this work has been to provide analytic equations
and calculated numerical results which, when taken together, allow the total
heat transfer for body shapes of interest to be quickly and accurately calcu-

lated.

Total heat transfer relationships for both constant, ground test type,
environments and realistic ballistic trajectory environments are derived in
Section II. In the later sections, numerically calculated results for the
laminar and turbulent heat transfer integrals are given for families of
sphere-cones and flat-face cones. When the numerical results are combined
with the analytic equations, total heat transfer in both types of environments
may be readily calculated for a wide range of sphere-cone and flat-face cone

geometries.

— N - S S —— » IR o T o RN
SO L~ = L s aal il M SRR T SRGRIRGRIIRE - L L ol casad. .

P W e S

N




e T S A VR

II. INTEGRATED HEAT TRANSFER EXPRESSIONS

A, LOCAL HEAT TRANSFER RATES

An expression is needed for the total integrated heat transfer in hyper-
sonic flow environments as a function of appropriate flowfield, body scale,
and body geometry parameters. But first, an appropriate expressio;x is
required for the local heat transfer coefficient. In Refs. 4 and 5, the boundary
layer integral momentum equation is solved, and Reynolds analogy and a
compressibility transformation are applied to obtain the following expressions

for the local heat transfer coefficient:

(-lL 0.470 TU,
(Lammar)CH = pu H = 3 172 (1a)
e e o : 2
Z/peueﬂer ds
0
4 0.0288r1/4ue
(Turbulent)CH = peueHo = = 175
3/5 5/4
"o / PeleHeT .
0 (1b)

These expressions have been found to agree very closely with experimental
data at high supersonic Mach numbers (Ref, 6); limited comparison with

experimental data for a hypersonic Mach number* also shows good agreement,

4Vag1io-Laurin, R., "Laminar Heat Transfer on Three-Dimensional Blunt
Nosed Bodies in Hypersonic Flow, " ARS Journal, 29(2), February 1959,
pp. 123-129,

5Vaglio-Laurin, R., "Turbulent Heat Transfer on Blunt Nosed Bodies in Two-
Dimensional and General Three-Dimensional Hypersonic Flow, " J. of the
Aero/Space Sciences, 27(1), January 1960, pp. 27-36.

6Widhopf. G.F. and R, Hall, "Transitional and Turbulent Heat Transfer
Measurements on a Yawed Blunt Conical Nose Tip, " AIAA Journal, 10(10),
October 1972, pp. 1318-1325,

s
Crowell, P,G,, private communication, January 1973,




If we define the following nondimensional quantities denoted by the bars

st p s M ok u it L 2r
pe=p—e'”e=;7e-’ue= = ’r=rL's=?s_’T= LB
o o \/ZHO B B
(2)
then the local heat transfer coefficient expressions become
n/(n+l)

_n—
Clr Ile (758

= - (3)
H AR n+l i n/(n+1) 1/2
fﬁe u Kt ds A R
0

C

where for laminar flow Cl = 0,332, n =1 and for turbulent flow C1 =0,0288,
n=1/4,

We now distinguish between a constant freestream environment problem
for which integration over the surface area gives the total heat transfer rate
in Btu/sec and a trajectory environment problem for which integration over
the surface area and for all altitudes gives the total heat transfer in Btu's.

This is done below.

B. CONSTANT FREESTREAM ENVIRONMENT

To obtain the total heat transfer rate, we integrate the local heat trans-

fer rate q over the surface area of the body. Thus

8
%tg = /Z&ds = z1f§rds (4)
0

The total heat transfer rate then becomes upon substituting from Eq. (1) and

nondimensionalizing

8
dQ/at <7+1>f— 5 s e
s 2| &% p u C._.rds (5)
p vV H (m-g) 7-1 o

0 0 o0 0
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The hypersonic approximations ,/ 2H zVoo and po/poo = (P+1)/(¥-1) have been
made in obtaining Eq. (5). When Eq. (3) is substituted into Eq. (5)

7+1 - — — —n+l —
dQ/dt i ch(_ﬁ) peueyer a8 , 6)
2T n/(n+l) = n/(n+l1)
poovooHo(mB) [Reo] PuE ;n+lds
0 e e e
0
where
1/2
p(2H ) r
Reo Rl o B (7)

*
As noted in Ref. 7 (and footnote below ), the integral in Eq. (6) is of the form
f[IQ]-n/(n+l)dIQ where

El
_f =~ = o4l
IQ -/ peueﬂer ds (8)
0

Thus, Eq. (6) may be integrated once to obtain

yY+1
dQ/dt _amsl] Gy ('}'Tl')

p meHo(ﬂr%) [Reo]n/ (n+1)

1/(n+l)

In

(9)

Substituting the appropriate values for Cl and n, we obtain

L 1/2
(Laminay) dQ /dt = 1,328 (-’7’%) (Ié‘) Re;llz (10a)

2
poovooHo (”rB)

dQT/dt 4/5
2
poovooHo ("rB)

(Turbulent)

7Aihara, Y., "Optimum Body Geometries of Minimum Heat Transfer at
Hypersonic Speeds, " AIAA Journal, Technical Notes, 6(11), November
1968, pp. 2187-2188,

*
Crowell, P,G,., private communication, November 1976,

= 0.0720 (%}f—i) (Ig) Re;ljs (10b)

e
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C. TRAJECTORY ENVIRONMENT--BASIC EQUATIONS

In this case to obtain the total heat transfer, we must not only integrate
the local heat transfer rate over the surface area of the body, but must also
integrate in time (or altitude) through the trajectory. If we let H = total heat

transfer/unit area, then

.4 (11)

The development here closely follows that given by Allen and Eggers (Ref. 1)
except that a key simplifying assumption has been eliminated; i.e., Allen
and Eggers assumed that Reo is not a function of altitude. If altitude is

denoted by y, to a good approximation

dy _ .
Etz = -VoosmeE (12)

also

S

After Eqs. (11) through (13) are combined and integrated circumferentially

dQ _ -qrds
&y 2”/ V_eindg ity

E

Proceeding with nondimensionalization, approximations and simplifications

exactly as in the constant environment case above, we obtain

2 2(?+1) 3

-p_V_mr B =t
%9 . ‘:;no 7-1 fpeueCHr ds (15)
% E .
-10-

= : T e
e Lk -Gy X A i il Ml e

e ——————

e R = o ——




Substituting for C., from Eq. (3), we find

H
7+1 s
daQ _ o L "B(‘)'—f) e (16)
& [Re ]n/( )s n0 It r 1 AR
—_— — — —n+ —
; / peueﬂer ds
0
When we integrate in s as before
7+1
aQ P Vo B()’ D | 1/(n+1)
9 . _m+l)C (17)
dy 1 sxnoE[Re ]n7(n+l) Q
o

Before we can integrate in y, we must express Py Voo and Reo as functions
of y. Notice that because of the way in which it is nondimensionalized, IQ is
not a function of y,

To a very good approximation, the viscosity over the range of pressure
and temperature of interest may be assumed to be independent of pressure

and represented by a power law temperature dependence. Thus

u =c T

o U~ o (18)

When we use ideal gas expressions and employ the hypersonic approximation
ZHO = voo’ Eq. (18) becomes

i Yol ¥ 2w
My = Cﬂ(Z)’R) Voo (19)

Substituting into Eq. (7), we may write Reso as

(#1)7s_ _Pw

Cu(%‘;’ﬁ) i

Re

o (20a)

~11-
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Therefore

n/(n+l)
n/(n+l) _ 0o
; Res ® C2 Jzw-TR/G@) (20b)
11 s ©O
‘ where
(ﬁl - n/(n+l)
G 51 (21)
2 c ()’-l w
U\2YR
From Allen and Eggers work
|
| p, = PN (22a)
! B -Ay .
-T e
Vo ® Vge (22b) )
}} ; where the ballistic factor B and the ballistic coefficient 8 are given by
o
! B = ;Bpsine (233)
; E
| B=% (23b)
A CDA

Substituting Eqs. (20b) and (22) into Eq. (17), we obtain finally

;n " (2w+1)n+2]|B e-ky
_ dQ C3e-AY/(n+1)e 2(n+]) (24)

a-;— =
where :
, . nrzn(%}}) poll(n+l)v [(2w+l)n+2]/(n+1)1 1/(n+1) : ’
n e C 8ing E Q 5
2 E
; (25)

-12- !
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D. TRAJECTORY ENVIRONMENT-- LAMINAR FLOW

When we substitute for n, Cl' and C2 in Eqs. (24) and (25)

Ay

4" _ L _-(\/2)y e-(2w+3)B/4 e (262)
dy 3
1/2
Y-1\@/y+1 2
SR Cu(Z‘)'R) (7_'1') [ o T IR e o P .
3 ® =0.959 r sin@ vE IQ ey
=8 [0,
When the limits of integration are reversed in altitude y
Qo 'AY
sb o c}f o~ M2)y -[(2w43)B/4] ™ o 27)
0
Define a laminar ballistic factor BL as
sl = (Zﬁ“fﬂ B (28)
Equation (27) can then be integrated directly to obtain
Qb = o3 y(1/2, BL (29)
As1/2

where Y(1/2, BL) is the incomplete gamma function,
Upon substitution for C;‘ and the definition of the incomplete gamma
function, Eq. (29) may be rewritten as

: 1/2
ol = 0. 939[3‘1(%’7%2 (%)" ™'B p°1/2v (zws)/z(lé)l/z"f(\/gt)

Bl AnanE E
B
(30)

«13.
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Finally, substituting for BL and B from Eqs. (28) and (23a), we then have

Ql = rlers (VBT) (31a)

1/21 o w1l/2

7+1 Polt oL
1 b (37-_1) C,,(m) Bl 3/2 .. (3+2w)/2
Fl=1,866x107° | =0 o iy (31b)
(BL)I/Z

2

erf (VBL) = ‘/—;—/ g‘t dt: (31c)
‘ 0

1. TRAJECTORY ENVIRONMENT--TURBULENT FLOW

When we substitute for n, Cl' and C2 in Eqs. (24) and (25)

5 -Ay
dg) i CT e-(4}s/5)y e-[(2(‘)+9)B/10]e (32a)
y 3
wql/5 4/5
; 4 <u(Fr) ne (77) p kI8 _EOTEE 85
C, = «0,0627 | —————— —_— P v I
3 rs smOE E Q
' (32b)
Again, if the limits of integration in altitude y are reversed
Qo 'AY
a¥ C;rf o-(4M/5)y -[2w+9)B/10]e iy (33)
A :
Define a turbulent ballistic factor BT
BT « 24195 (34)

-14-
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Integrating Eq. (33), we obtain

T
T Sy T
Q' = - —g7z Y4/5,B") (35)
o AlBT]
*
Substituting for CT, BT and B as in the laminar case, we obtain
QT = FT ya/s, BT) (36a)
T -6 (Z"ﬂ) ih Cu(z;;)w i t\*5 9/5_ (9+2w)/5
Fl=4.70x10"" | o0 Sin i W (36b)
where y(4/5, BT) is the incomplete gamma function given by
e 5/4
T 5 -t
(4/5,B7) = 7 e dt (37)

0

Integrations entirely analogous to those performed on Eqs. (27) and
(33), for laminar and turbulent flow, respectively, were carried out by
Brunner (Refs. 2,3). Brunner's starting point, however, was the "refer-
ence enthalpy" heat transfer expressions for laminar and turbulent flow
rather than the Vaglio-Laurin expressions used herein. Also, Brunner's
finail results for integrated heat transfer through a trajectory were given in
terms of ), i.e., the time integrated heat transfer in Btu/ft2 at a point on
the body.

*Proper units for Eqs, (31a) and (36a) are discussed on page 35,

-15-
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III, CALCULATED RESULTS--CONSTANT
FREESTREAM ENVIRONMENT

If the freestream environment is not changing with time, then the total
heat transfer rate can be expressed in terms of the freestream flowfield
variables and the body geometry as given by Eqs. (10a) and (10b)., These
expressions are shown graphically in Fig. 1. The behavior is seen to be
similar to classical Nussett number-Reynolds number behavior, with a
0.5 power Reynolds number dependence in the laminar case and a 0.2 power
Reynolds number deper;-dence in the turbulent case. Notice that the right-
hand sides of Eqs. (10a) and (10b) can be interpreted as representing the
fraction of the intercepted freestream total energy flux which is transferred
as heat to the body.

Figure 1 is applicéble for all body shapes. However, the ordinate
contains the heat transfer integral IQ, which depends upon the shape contour

of the body and is given by Eq. (8).

The evaluation of IQ reduces to evaluating the local pressure P at
each position on the body and then integrating Eq. (8) because the normalized

product ;eﬁe can be written in terms of the normalized pressure Ee = P, /pt2 as
Pty _ [(r-wtl]/y

- 7, (38)

peﬂe % PoHy

Also, assuming an isentropic expansion, the local velocity Ge can be written

- Ye ~ (r-1)/7
T . = \/1 -p (39)
e fz""Ho e

Thus, IQ is a function of the specific heat ratio 7, the temperature exponent

in terms of ;e as

in the viscosity law w, and body geometry.

-17-
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The inviscid flow pressure distributions needed to determine the
boundary layer edge properties as given by Eqs. (38) and (39) were obtained
from the best numerical inviscid flowfield calculation procedures available
(Refs. 8-10). A schematic diagram of the inviscid flowfield calculation
procedure for flat-face cones is shown in Fig. 2. For sphere-cones, the
start line for the rotational characteristics computer program (Ref. 9 ) was

obtained using the Ames blunt body computer program (Ref. 8).

The basic body geometry considered in this work is a cone. Calcula-
tions were carried out for cone half-angles (Oc) of 30, 20, 10, 5 and 0 deg
for both hemispherical and flat-face noses. In each instance, calculations
were made by numerically integrating Eq. (8) starting at the stagnation point.
Results of the numerical inviscid flowfield calculations for these geometries
were used in conjunction with Eqs. (38) and (39) to evaluate the integrand
along the body. In this way, I(IS and Ig for each cone half-angle and a con-

tinuous range of thickness ratio, 7 = ZrB/L, were calculated, The bluntness

ratio, B.R. = rN/r and the thickness ratio are related by Eqs. (40a) and

B!
(40b). For sphere-cones

Tcosf - 2 sinb
c c

.R. = 4
Bl 'r(l-sinBc‘:) S

and for flat-face cones

o Tcos OC -2 sanc

(40b)

Tcos@
c

8Masson, B.S.,, T.D. Taylor, and R. M. Foster, "Application of Gadunov's
Method to Blunt Body Calculations, " AIAA Journal, 7(4), 1969, p. 694.

Baker, R. L., "Method of Characteristics Computer Program Including
Embedded Shocks and Total Enthalpy Gradients Normal to Streamlines, "
Report No, ATM-71(S6816-53)-2, The Aerospace Corporation, San Ber-
nardino, California, 3 February 1971,

*9

l()Inouyo.e, M., J.V. Rakich, and H. Lomax, "A Description of Numerical
Methods and Computer Programs for Two-Dimensional and Axisymmetric
Supersonic Flow over Blunt-Nosed and Flared Bodies, " NASA-TN-D-2970,
August 1965,

*

Aerospace internal correspondence. Not available for external distribution,
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The results given in the remainder of this report are presented as a
function of the thickness ratio. Through the use of Eqs. (40a) and (40b) they

can easily be interpreted in terms of the bluntness ratio.

A, SPHERE-CONES

The body geometries for a family of 10-deg sphere-cones with constant
base radius are shown in Fig. 3a. For T2 2.1, the shapes are truncated
spheres and for T < 2.1 the shapes are sphere-cones with bluntness ratio
decreasing as T decreases. As the bluntness ratio B. R. approaches zero,

the thickness ratio approaches the sharp cone limit

Teharp cone ° 2 tanfc = 0.332 (41)

Equation (41) follows directly from Eq. (40a) for B, R. = 0,

The relationship between the integrated heat transfer rate dQ/dt, the
freestream parameters Py voo and Ho, the base radius Th and the heat
transfer integrals I(I)" and Ig is shown in Fig. 1 and is given by Eqs. (10a)
and (10b), If the freestream parameters and the base radius are fixed,
then the relative heat transfer rates for different bodies can be evaluated by

knowing IQ as a function of thickness ratio 7,

The I(I)" as a function of T for the family of 10-deg cones in Fig. 3a and
all other 10-deg cones is shown in Fig. 3b. For truncated spheres, T 2 2.1,
I(I)" is approximately constant. For sphere-cones T< 2,1, Ig decreases as T
decreases due in large part to the decreasing area associated with the high
heat transfer spherical cap and the fact that the inviscid flow along the cone
is overexpanded. As T continues to decrease, however, a minimum value of
I(L)' is reached. Further decrease in T results in an increase in heat transfer
because the conical region now includes flow recompression following the

local overexpansion,

A sharp cone represents the smallest thickness ratio attainable for a
given cone half-angle., The 10-deg sharp cone value of I‘IS for isentropic

expansion of the flow is shown by an x on Fig. 3b.
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The blunt cone calculated results are seen to be approaching the sharp
cone, isentropic expansion limit as T approaches its lower, sharp cone limit.
All results presented in the remainder of this report assume isentropic
expansion of the flow and are therefore applicable only when entropy swallow-
ing effects are negligible. This is generally an excellent assumption for

nosetip calculations.

Calculated values of IQ as a function of T for laminar and turbulent
flow over sphere-cones are shown for various cone half-angles in Figs, 4a
and 4b, respectively., The results are generally similar to those described
in Fig. 3, For each cone half-angle greater than zero, the laminar and
turbulent curves of IQ versus T pass through a minimum. The minimum

L T
’] -
IQ or IQ decreases as - decreases

To illustrate the effect of cone half-angle, bluntness ratio, and thick-
ness ratio on the heat transfer rate, the IQ behavior illustrated in Figs, 4a
and 4b has been reproduced in Fig. 5a. The different symbols on the curves,
marked by numbers, represent families of cones to be considered in the

following discussion,

First consider the four e (filled circle) symbols numbered 1, 2, 3 and 4.
Each point represents the minimum in the curve of Ié‘ versus T for a particular
cone half-angle. Four cones, having a constant base radius and with cone
half-angles, thickness ratios and bluntness ratios corresponding to points
1 through 4, are shown in Fig. 5b. Since the base radius is constant, the
intercepted freestream total energy flux is constant, However, the fraction
of this flux transferred as heat to the body decreases monotonically as the
cone half-angle and thickness ratio decrease, since dQ/dt is proportional to
IQ; thus

d(.)4 dQ3 aQ

dQl
dt C & &

: 3t (42)
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The four o (open circle) symbols in Fig. 5a numbered 5, 6, 7 and 8 represent
four cones having a constant thickness ratio of 1,3, These cones are illus-
trated in Fig. 5c. The 20-deg cone, represented by point number 8, has the
lowest heat transfer rate. The 5- and 10-deg cones, points 6 and 7, have
higher heat transfer rates because of larger areas associated with the high
heat transfer nose cap. The 30-deg cone, point 5, also has a higher heat
transfer rate because of the high conical pressure on the cone surface. Thus,

for these cones

dQ
dt

dQ6 dQ., dQ8

5
& > d Cdt

>

(43)

The behavior of IQ versus T for a sphere-cylinder can now be under-
stood by considering Fig. 5d and the o (half-filled circle) symbols in

Fig. 5a, points 9, 10 and 11, We see in Fig. 5d that body 9 may be considered
a part of body 10, Likewise, bodies 9 and 10 may be considered parts of

body 11, Therefore, going from body 9 to body 10 and then to body 11, the

total heat transfer must increase or

dQ
dt

dQll dQ10

9
" E g e (44)

B. FLAT-FACE CONES--COMPARISON WITH SPHERE-CONES

Calculated values of IQ for laminar and turbulent flow over flat-face
cones are shown for various cone half-angles in Figs. 6a and 6b, respectively.
The behavior is comparable to that for sphere-cones as shown in Figs, 4a
and 4b with some notable differences. The surface pressure distributions
for a 10-deg sphere-cone and a 10-deg flat-face cone are compared in Fig. 7.
Since IQ depends upon the pressure distribution through Eqs. (38) and (39),
differences in the pressure distributions will be reflected in the IQ versus
T behavior. The major difference between the sphere-cone and the flat-face

cone pressure distributions is in the region of x/rn < 1.0, The rapid

«2T=
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expansion of the flow at the corner of the flat-face cone results in a severe
local overexpansion with immediate recompression to a pressure level
greater than that for the same station on a sphere-cone. For x/rn >1,
the sphere-cone and flat-face cone pressure distributions are similar, with

the flat-face pressure remaining above the sphere-cone value.

For the flat-face cones, the increasing pressure with increasing x/rn
for x/rn < 1,0, is responsible for the increasing IQ with decreasing T
behavior for 1 < 7< 10 as seen in Figs, 6a and 6b. For T <1, the sphere-

cone and flat-face cone results are qualitatively the same.

The numerical values of IQ for sphere-cones versus flat-face cones
are compared for laminar and turbulent flow in Figs. 8a and 8b, respectively.
In general, for T > 2, (I

TSa (IQ)sphere-cone b (IQ)flat-face cone’
For T > 2, the maximum increase in IQ for a sphere-cone compared to a

Qtlattace cone < (IQ)aphere-cone and for

The differences are not large.

flat-face cone is about 50 percent, For T <2, the flat-face cone IQ values
are 5 to 30 percent greater than the sphere-cone values., From the above
discussion, the reasons for this comparative behavior are apparent. The
relatively low heat transfer on a flat-face and the very low local pressures on
the forward part of a flat-face cone account for an IQ less than that for a
sphere-cone with the same thickness ratio. However, as x/x'n increases,
which means 7T decreases, the higher flat-face cone local pressure values

eventually result in (IQ)flat-face G becoming greater than ‘IQ)aphere-cone.

C. EFFECT OF Y AND w

All results presented thus far have been for the nominal values of
specific heat ratio ¥ and viscosity exponentw; i.e., ¥=1,2 andw= 1,0,
While these values appear to be the most appropriate constant values for the
selected Moo = 20 flowfield, the question arises as to the sensitivity of the
results to changes in these nominal values. To illustrate the sensitivity,

calculated results are presented in Fig. 9 showing Ié‘ for 10-deg sphere-cones,

3.
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for all combinations of Y= 1,2 or 1.4 and W= 1,0 or 0,7. Both increasing ¥
from its nominal value and decreasing @ from its nominal value result in an
increase in I(I.)". The highest Ié"
and W= 0,7,

value for given T occurs for Y= 1,4

1/2
The heat transfer rate dQL/dt is proportional to IQ Re as given

by Egs. (10a). The Reo is given as a function of ¥ and w by Eq. (20a), Comw
bining Eqs. (10a), (20a) and the results of Fig. 9, we conclude that

L
(dQL/dt)r=1.,4,w=o.7 L i
(dQ /dt)y=1.2,w=1.0 S
Similarly
T
(dQT/dt)7=1.4,w=o,7 o LAkl (45b)
(dQ /dt)7=1.2’w=1 o
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IV. CALCULATED RESULTS--TRAJECTORY ENVIRONMENT

A, LAMINAR OR TURBULENT FLOWS

In this case, the total heat transfer is given by Egs. (31a) and (36a)
for laminar and turbulent flow, respectively. From these equations, we see
that for specified reentry conditions and vehicle ballistic coefficient the total
heat transfer Q depends on the body shape and the body scale through the

parameters IQ and r respectively. Since the IQ's in Eqs. (31la) and (36a)

are the same as thoslz in Eqs. (10a) and (10b), results discussed above in
conjunction with Figures 3 through 9 are also directly applicable to the
present case. Thus, Figs. 4 and 6 supply the values of Ié and I(TQ to be used
in Egqs. (3la) and (36a) to evaluate QL and QT for sphere-cones and flat-
face cones, respectively. Also needed are the values of the functions con-
taining the ballistic parameters BT and BT, i.e,, erf‘/B—E and Y(4/5, BT)-

These functions are shown in Fig., 10,

If the calculated results given in Figs. 4, 6, and 10 are used in com-
bination with Eqs. (31a) and (36a), the total heat Q[Btu] transferred to a nose
tip or a reentry vehicle for a complete reentry trajectory can be easily cal-
culated. The appropriate units for the parameters in Eqs. (3la) and (36a) are

- 2 -1
Cyl0.979 x 10 8 (Ib_/ft-sec-°R)], B1b  /£t°], A[ft77], rplft], Vo[ft/sec].

If the nose tip heat transfer is desired, then the Tp used in these
equations should be the "base" radius of the nose tip, and the thickness
ratio Tused to evaluate IQ from the figures should be that for the nose tip.
Likewise, for evaluating the total heat transferred to the entire reentry
vehicle, the rs and T should correspond to the entire vehicle values of these

parameters.

Caution must be applied in using the results calculated in the preceding

manner if the bluntness ratio B.R. = rN/rB of the nose tip or vehicle is less

than 0.1, since entropy swallowing effects are then likely to be important,
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B. LAMINAR-TURBULENT FLOW

The above procedures allow the calculation of the total heat transfer Q
only for those cases in which the flow in the boundary layer is all-laminar
or all-turbulent for the entire trajectory. If, when boundary layer transition
occurs, it is assumed that the flow changes instantaneously from laminar to
turbulent over the whole nose tip or vehicle, then the total laminar-turbulent

heat transfer QLT can be evaluated.

For the laminar-turbulent case with boundary layer transition occurring

0
s f———d +f 9-QTdy (46)

The details of performing these integrations are given in Appendix A. The

at altitude h we have

final result is

QLT = FLerf VB;" + FT

?(4/5,BT) 5 ?(4/5, BT)

p (47)

where FL and FT are defined by Eqs. (31b) and (36b), respectively, and the
partial trajectory ballistic factors BII," and Bg are given by
gL - pl.-Ab (48a)

B Te-Ah (48b)

T H TR

Thus, QLT is evaluated in the same manner as QL and QT except multiple

use of Fig. 10 is required to give the three components. From either QL,

QT, or QLT, the total mass of an ablating material lost during a reentry

trajectory is given by
Ma g
Q

where Q* is the cold wall effective heat of ablation,
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H =1,691x10

C. EVALUATING LOCAL HEAT LOADS

In many instances, it is desirable to know the total local heat load at a
particular body station in comparison to the total body heat load. The total
local heat load #is related to the total body heat load Q by

_ L 49
* = 7w ds "

Expressions for dQ/ds may easily be obtained from Eqs. (3la) and (36a) for
L

laminar and turbulent flow, respectively. In these equations, IQ
the only variables which are a function of s. Performing the indicated dif-

ferentiation and substituting into Eq. (49), we obtain for laminar flow
1/2

and Ig are

1/2 w

r+l 7-1 (3+2w)/2
7 | (1) Culfrz) B E P oy
# = 1.443x10 “('zL‘zT) TG, : \4 q erf( B ) (50a)

and for turbulent flow

(221 i [ 7-1)"’]1/;4/5
c A——
T _7|34) u(zm v (0425 Ty s, 8T)

(2wt9) i [)\sinOEr]”s E

(50b)

The nondimensional heat transfer parameters qL and qT are given by

pPullr
L e e e
S L 3 (51a)
15)
7o a4
qT = —e"‘;—iTg‘,"_ : (51b)
(o]
Q
)
5
! -38-
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Comparing Eqs. (51a) and (51b) with Eqs. (la) and (1b), we see that
qL and qT are simply nondimensional representations of the original Vaglio-

Laurin laminar and turbulent heat flux expressions.

In Egqs. (50a) and (50b), qL and qT have been normalized in such a way
that qL is unity at an axisymmetric stagnation point and qT is unity at the
maximum turbulent heating point on a sphere. The parameters qL and q
have been calculated and are shown in Figs, 11 and 12 for sphere-cones and
flat-face cones, respectively. Notice that the reference length in Eqs. (51a)

and (51b) is the nose radius or flat-face step height, designated N

We are now in a position in which it is possible to easily compare the
present results with those of Brunner, Recall that Brunner's starting point
was the flat-plate-reference-enthalpy heat transfer expressions, whereas the
present starting point has been the Vaglio-Laurin equations. The detailed
algebraic manipulations for this comparison are given in Appendix B, The
laminar total local heat transfer.x’L given by Eq. (50a) is for an axisymmetric
stagnation point 11,1 percent lower than that calculated from Brunner's
expression, The turbulent total local heat transfer .ﬂ;r, given by Eq. (50b)
for the maximum turbulent heating point on a sphere, is 14. 9 percent higher

than that calculated from Brunner's equation,

For an ablating material, the total recession depth d at a given nose
tip or budy location can be calculated from

X
d = 5 (52)

X!

sk
where Py is the bulk density of the ablating material and Q is the cold wall
effective heat of ablation., If Figs. 11 and 12 are used, the d for any location
on the families of sphere-cones and flat-faced cones considered in this work

can be easily calculated.

~39.

TR e

-k Tiaguer N N




sauo)-axaydg

‘suorjoung IdFsued ], jedly [ed07T ‘11 °*Sig

INTINGUNL (@ JVYNIWV1 (®)
..: p=2 1P =1
01 1 10 01 I 10
] A S L Ll L5 (T T | ﬁ°'° ~°u°
” oml. M u
E L . et S
- P \./ 310 10
3 ¢ Jn.n—

-40-

“

P




INTINGYNL (@)

sauo) adej-jerd
‘uorjouny I3Jsuex ] 3eSY [€O07]

1P =12
o1 I i
L L ) . B B [ )73 3 3 (R R S | 10°0
3 .
” 0 1
s 0=,
j :
A SR
4 1 L
- Ou =
3 ]
e o ]
AV  — | { O VT O T e 1 I.H
/locm, 8

21 "8ig
dYNIWV1 (@)

1P =12

ot I I'o
7 S5 B S | 1 L] B B R e 1

g 6
i B
I 5
I 50 -

LA Ll

Li bl .. !

T T T N S|

10°0

105~

-4]1-

o M VR AT S -

i sl WO 4




e SR I IR B TR AR

’

V. SUMMARY

Beginning with the hypersonic convective heat transfer expressions for
laminar and turbulent flow given by Vaglio-Laurin, equations for the total
heat transfer to a body in a hypersonic flow environment have been derived.
When these equations are used together with the graphical results presented,
total heat transfer to selected body geometries can be calculated directly.
Both the case of a constant, ground test type environment and a realistic

reentry vehicle trajectory environment have been considered.

The total heat transfer is given as a function of freestream or reentry
parameters, body scale and heat transfer integrals which are functions of the
body geometry. The best available inviscid flow field calculation methods for
surface pressure distributions were used to calculate the laminar and turbu-
lent heat transfer integrals Ié and Ig for 0-, 5-, 10-, 20-, and 30-deg sphere-
cones and flat-face cones, These results are presented graphically as a
function of the fineness ratio, i.e., the diameter to length ratio., From these
figures, the variation of total heat transfer with nose bluntness ratio, fine-

ness ratio, and cone half-angle has been examined.

For the trajectory environment, in addition to total laminar or turbulent
heat transfer prediction methods, a method for evaluating the total heat
transfer for laminar flow to boundary layer transition altitude and all turbu-
lent flow to impact is also given. When the total heat load to the body or nose
tip is known, the heat shield weight or transpiration nose tip coolant require-

ments can be directly calculated.

Finally, graphical results giving the distribution functions for local
laminar and turbulent heat transfer over the sphere-cone and flat-face cone
geometries considered in this work are given., These results allow the total
local heat load at selected axial stations, and therefore the local depth of
heat shield ablation, to be calculated.
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APPENDIX A

DERIVATION OF QLT RE LATIONSHIP

For a laminar-turbulent trajectory case, QLT is evaluated by per-
forming the integrations indicated by Eq. (46). The integrand dQL/dy is
given by Eq. (26a) and dQT/dy is given by Eq. (32a). These integrands
have already been integrated between the limits of zero and infinity with the
final results given by Eqs. (31a) and (36a). We now consider the partial

integrations,

First, for the laminar portion of the trajectory

A :
L -Ay
Q;‘=Z C3Le-}‘y/2 e dy (A-1)

When the substitutiont = V Bl e')‘y/2 is made, Eq. (A-1) may be rewritten as

JaL -(An)/2
L 'csLV” 2 3 ¢2
Q \/_f e’ at (A-2)
mw
0

Equation (A-2) is the same form as Eq. (3lc) except that the upper limit of
integration is different, Thus, we define B;" by

B = Be (A-3)
The integral in Eq. (A-2) is thus represented by the error function of argu-

ment B;‘ and the first term in Eq. (47) is obtained after appropriate sub-

stitutions,
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For the turbulent portion of the trajectory

0
T -Ay
Qg =.[c'3r o EAERr S8 T (A-4)
When the substitution t = [B ]4/5 el made, Eq. (A-4) becomes
T.4/5
T [B ] t5/4
Ql = / T (A-5a)
P 4)\[B ] 14/5, -(4A/5)h
or
T.4/5 T.4/5 -(4A/5)h
" -5C; B'] 5l4 Bl v (514
Qp = W e dt - e dt (A=5b)

0 0

The first term of Eq. (A-5b) is the same as Eq. (37). The second term dif-

fers only in the upper limit of integration. Thus, we define Bg by
(A-6)

Then with the definition

a/s
[x] 54

7(4/5, x) = e dt (A=T)

NE]

the last two terms in Eq. (47) follow directly from Eq. (A-5b) after appro=-

priate substitution.
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APPENDIX B

COMPARISON WITH BRUNNER'S WORK

The major thrust of the present work has been to obtain Eqs. (31a)
and (36a), which give the total heat transfer values QL and QT. These equa-
tions were obtained by performing successive body surface and time (altitude)
integrations of the appropriate local heat transfer rate and altitude-dependent
expressions for heat transfer. Brunner's work involved only the time (alti-
tude) integrations of the local heat transfer rate to obtain o the total trajec-

tory integrated heat transfer at a point on the body.

As indicated by Eq. (49), # and Q are related by

5 = dQ/ds

T T2m (B=1)

Since the starting point of the present work is the Vaglio- Laurin con-
vective heat transfer relationships, and Brunner's starting point was the flat-
plate reference enthalpy heat transfer expressions, it is of interest to com-

pare the values of H# obtained from the two methods.
For convenience, we define the following:

-%’1 - K evaluated using Brunner's equations
xz - & evaluated using the present equations

The-XL and.xT are given by Eqs. (50a) and (50b), respectively. If the

2 2
present notation is used, Brunner's expressions are given by
} 1/2
L -10 B 2.2
xl = 4,155 x 10 I lhsinOErN VE erf (/1. 1B) (B-2a)
4/5
2T = 2.392x 1071 vZ:48 y4/5,1.24B) (B-2b)
A'cinOErN]
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A direct numerical comparison of the two methods is now possible. .
Equations (B-2a) and (B-2b) are for an axisymmetric stagnation point and the
maximum turbulent heating point on a sphere, respectively, Thus, we set .
qL and qT in Eqs. (50a) and (50b) to unity. Note also that the exponents on
B» A, sinf; and TN
and in Eqs, (B-2b) and (50b) for turbulent flow. Forming the ratio J(:‘Z/Jfl

and substituting from these equations, we obtain for a laminar stagnation

are the same in Eqs. (B-2a) and (50a) for laminar flow

point on a sphere

Jf—-éd = 1.6l _ 4 ggg (B-3a)
S, Tati A
1

and for the turbulent maximum heating point on a sphere

T
X. ‘
i N R (B-3b) '
agpl JE R
H
1
, .
' For these numerical evaluations, the following input quaﬁtities were assumed:
? y =12
i
L w =10
F
Vi = 20,000 ft/sec (B-4)
B =10
-
: 8 n:’m
C” = 0,979 x 10~ -
ft-sec- "R
|
|
‘ |
|
14 -48-




