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PREFACE

i This technical report comprises publications made between September

1974 and the present. During this period the program was expanded to

include the study of the nonlinear acoustics of solids. Because of the

i broadening of the range of topics, in February 1978 we decided to separate
out a single topic—Ultrasonic Wave Reflection at Liquid-Solid Interfaces—
and present it as Technical Report No. 15. The current technical report
overlaps Technical Report No. 15 in time, but not in subject matter. The

{ current technical report gives our contributions to subjects other than
reflection of ultrasonic waves at interfaces. For convenience, the

report is divided into three parts. 3
&
4

Part I is made up of two papers dealing with critical mixing of
binary liquid mixtures. These two papers essentially complete our )
contribution to this subject for the present. P

Part II covers two different measurement techniques. The first

o

: paper is a presentation of a comparison of ultrasonic pressure amplitudes
measured by three different optical techniques and by a thermocouple :
probe with calculated amplitudes. The measurements were made

‘ simultaneously in the same ultrasonic field in 1958, but previously

were unpublished. A revival of interest in calibration at the Miami

meeting of the Acoustical Society of America persuaded the author and

Floyd Dunn that our results would be of interest to our colleagues and

thus prompted the publication. The second paper describes the improve-

i

<
8

¥

ment in measurement of ultrasonic wave velocities in solids which results

79 01 2% 030
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from the use of capacitive transducer. This technique eliminates the
perennial bond problem.

Part III comprises six contributions to the nonlinear acoustics
of solids. The first is a short summary paper describing the temperature
dependence of the nonlinearity parameters of germanium and of fused
silica down to 77°K. The second is an invited paper, given at the 6th
International Symposium on Nonlinear Acoustics in Moscow, which describes
the measurement technique and present results on germanium down to 3°K.

The third is a more extensive description of both the nonlinearity

parameter and the third-order elastic constants of germanium between

room temperature and 3°K. The fourth is a short paper given at the ICA

in Madrid on the nonlinearity parameter of four different types of fused
silica. The fifth is a more extensive account of the results of our
experiments on the nonlinearity of fused silica. The sixth and final

paper is a summary paper, given at the International Symposium on Nonlinear
Acoustics in Paris, which gives the temperature dependence of the
nonlinearity parameters and third-order elastic constants of germanium

and copper and makes an attempt to relate them to other quantities of

significance in solid state physics.
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Ultrasonic study of critical mixing of hexane and

B, B'-dichloroethyl ether*
Elizabeth M. Bains and M. A. Breazeale

Department of Physics, The University of Tennessee, Knoxville, Tennessee 37916

(Received 8 February 1974)

The velocity and attenuation of ultrasonic waves in the critical temperature region of a binary
mixture of hexane and B, B'-dichloroethyl ether have be.n measured at 1, 3, 5, 7, and 9 MHz. By
assuming that the attenuation per wavelength is made up of two terms, ah =Af "'"*+ Bf, we obtain
good agreement with the Fixman theory for both aA and a/f%. The magnitude of B, however, is
only partially accounted for by our measured values of shear viscosity.

INTRODUCTION

Examination of the attenuation maximum for ultrasonic
waves in the critical mixing region of binary liquids was
begun by Lucas and Biquard, ' who attempted to explain
the observed maximum by analogy with the scattering of
visible light from density fluctuations. This explanation
had been successful for critical opalescence. Scattering
of ultrasonic waves in the critical mixing region was in-
vestigated by Brown and Richardson.? Later Brown?® re-
ported that scattering accounts for the major part of the
excess attenuation away from the critical point but a
much smaller part as the critical point is approached.

A relaxation due to rearrangement of molecular
clusters was proposed by Chynoweth and Schneider, * but
Anantaraman, Walters, Edmonds, and Pings® and
D’ Arrigo, Mistura, and Tartaglia® reported that a single
relaxation does not account for the frequency dependence
of the data.

The attenuation of sound in fluids is classically as-
sumed to depend upon two transport properties, shear
viscosity and thermal conductivity:

_mw (4 (v~ 1K
ax_c-,—po(sm___C' ; (1)

where w is the angular frequency, ¢ is the sound veloc-
ity, po is the undisturbed density, 7n is the viscosity co-
efficient, ¥ is the ratio of specific heats, K is the ther-
mal conductivity coefficient, and C, is the specific heat
at constant pressure. If the thermal conductivity term
is negligible, then the attenuation per wavelength is di-
rectly proportional to the viscosity coefficient, and is
also a linear function of frequency. Although an in-
crease in viscosity at the critical mixing temperature
was measured early in the study of binary liquids, " and
a theoretical explanation of it has been offered, ® the ef-
fect of this increase heretofore has been assumed to be
negligible in explanations of the increase in attenuation
in the critical region. The magnitude of this increase
in viscosity is typically 5%-40%, whereas the magnitude
of the increase in a\ is typically factors of 2-10. In the
data to be presented, however, the effect of shear vis-
cosity is noticeable.

In addition to this shear viscosity, there is evidently
an increase in bulk viscosity in the critical region. The
effect of the bulk viscosity on the attenuation of sound

1238 The Journal of Chemical Physics, Vol. 81, No. 3, 1 August 1974

has been considered by Kawasaki and Tanaka, °® who

show that bulk viscosity gives an attenuation per wave-

length which has the same form as that derived by Fix-
10

man.

The theory derived by Fixman'® using an excess heat
capacity rather than bulk viscosity as the mechanism
will be used in the interpretation of our results. This
theory gives an /4 frequency dependence for a), the
temperature dependence of a), and the temperature and
frequency dependence of the velocity in the critical re-
gion.

Fixman derives the excess attenuation and dispersion
of sound from the interaction between concentration fluc-
tuations near the critical point and a sound wave passing
through the region. The temperature variations asso-
ciated with the adiabatic sound wave alter the concentra-
tion fluctuations, and these fluctuations decay toward the
equilibrium distribution according to the diffusion equa-
tion. This decay distorts the temperature variation of
the sound wave, and causes absorption of energy from
the wave.

In recent years there have been a number of experi-
mental tests of the Fixman theory. In a number of
cases™® ™1 it wag observed that the frequency depen-
dence of a/f? of the data followed that predicted by Fix-
man. ° Anantaraman et al. ® reported that although a/f?
showed the frequency dependence predicted by Fixman,
a) did not.

The purpose of the present work is to show how the
frequency dependence of both a\ and a/f? of critical
mixture of hexane and g, B’-dichloroethyl ether (com-
monly called chlorex) can be brought into agreement
with the Fixman theory. This is done by assuming an
excess attenuation, whose frequency dependence is the
same as that caused by viscosity, in addition to the ex-
cess attenuation resulting from the Fixman mechanism.

THEORY

Fixman calculates an excess heat capacity per unit
volume due to variations in entropy, expressed in terms of
Fourier components of the radial distribution function. The
perturbation of the equilibrium components caused by tem-
perature variations in the sound wave is evaluated by in-
troducing into the diffusion equation a heat capacity that
is dependent both on local temperature and on Fourier
components of the radial distribution function that are

Copyright © 1974 American Institute of Physics
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exponential functions of time. The excess heat capacity
is obtained in terms of a complex integral and is

where
Fd)=d ”21; ww? + 1) [ = id 2+ w0@?+ 1)] tdw, (3)
d=Kk3h/w)'"? (4)
and
& ":LLT ¢1Vz|(n|+nz) . (5)

e
m, 2mafc,

The integration variable in Eq. (2) is w=k/k, and the
parameters are Boltzmann’s constant kg, temperature
T, critical temperature T., parameters of the radial
distribution function ¥ and @, angular frequency w, dif-
fusion constant 2, and molecular mags, molecular vol-
ume, volume fraction, number density, and mass frac-
tion, m,, V,, ¢,, n,, npandc,, c,, respectively, for
liquids 1 and 2.

The imaginary part of the integral in Eq. (3) deter-
mines the sound absorption and the real part of that in-
tegral determines the dispersion of the speed of sound.

The calculation of the attenuation and dispersion of
sound is made by assuming that Cp and C, are increased
by the same amount by the composition fluctuations

Cp=Cg+—N—Qé—, Cy=C3¢—N9—L}—, 6)
ny +ny ny+ng

where N, is Avogadro’s number and C$ and CY are heat
capacities in the absence of critical composition fluctu-
ations.

The sound wave propagating along the x axis is given
by

) = expilwx/c, - wt) , (7)

where ¢, is the complex speed of sound. It is related to
co, the speed of sound in the absence of critical com-
position fluctuations, by

Nea _ (C}
covedfi- g s (ek <) "

The real part of ¢, is the speed of sound ¢. The imag-
inary part of w/c, is the attenuation a. The attenuation
per wavelength is 2mcqa/w. Using Eq. (2), the speed of
sound and the attenuation per wavelength can be written
in terms of the complex integral F(d) as

c=co{l- 5 HRe[F(d)]} (9)
and
A p i yman = THIM[F(d)], (10)
where ‘
0 2 ‘
(& VG ) ol W

and R is the gas constant,

The most direct comparison of the Fixman theory with
experiment comes from a determination of the frequency

dependence of the experimental ai, According to equa-
tions (10) and (11), the excess attenuation per wavelength
ax should depend on f~¥*, As will be shown, the experi-
mental data do show such a dependence; however, it is
necessary first to remove the linear frequency depen-
dence to be expected from shear viscosity. In order to
do this, it is necessary to introduce a plot of ar/fz as a
function of frequency. This allows one to separate out
the shear viscosity contribution as a constant term.

EXPERIMENTAL TECHNIQUES

A critical mixture of chlorex and hexane was sealed
in a cylindrical glass tank, A drawing of the apparatus
is shown in Fig. 1. Measurements of the ultrasonic at-
tenuation and velocity were made by single crystal pulse
techniques, with the pulses propagating between a piezo-
electric quartz crystal in the transducer and the air-
backed mica sheet in the reflector. The transducer
could be translated through the liquids relative to the re-
flector, and the distance through which it moved could
be measured with a 3-in. dial gauge to an accuracy of
+ 0, 001 in.

The electronic circuits used to generate and analyze
the ultrasonic pulse are shown in Fig. 2. An rf pulse
generated by an Arenberg Model PG650-G pulsed os-
cillator was fed into both an echo detecting circuit and a
frequency measuring circuit. In the echo detecting cir-
cuit a diode switching circuit isolated the pulsed oscilla-
tor from the crystal and also protected the detector by
clipping the initial pulse while minimizing attenuation of
the low amplitude echoes. The 1 MHz signals were fed
directly to an oscilloscope (Tektronix Type 555), but the
higher frequency signals were detected by a Hewlett-
Packard 855 Spectrum Analyzer before going to the os-
cilloscope. For the attenuation measurements the height
of the first echo was measured with a voltage comparator
unit (Type W) for different transducer positions.

Dial Gauge

Glass Tank

=7/

—~ rrangducer

Reflector

FIG. 1, Merasurement chamber,

J. Chem. Phys., Vol. 81, No. 3, 1 August R}
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FIG. 2. Electronic system,

For the velocity measurements, echoes from double
pulses generated by the Arenberg oscillator were over-
lapped to measure wavelength by a modified interferom-
eter technique. The frequency counting circuit used a
mixer (HP10504A/B) to mix the short (i.e., 20 psec) rf
pulses with a cw signal generated by an HP8601A Signal
Generator. The difference frequency output signal from
the mixer was displayed with the oscilloscope and the

frequency of the generator was adjusted for zero beat.
The frequency of the generator was then counted by a
General Radio 1191-B Counter.

Temperature regulation was provided for the liquids
under investigation through heat exchange liquids sur-
rounding the tank, The temperature of the heat exchange
liquids was regulated by a Haake Circulator. This regula-
tionwas + 0. 02 °C inside the circulator. The temperature
stability of the binary liquids was much better than this
because they were inside a carefully insulated container.
The temperature of the binary liquids was measured by
the glass-encapsulated iron-constantan thermocouple
shown in Fig. 1 and displayed on a strip chart recorder.

After assembly, the apparatus was tested by making
a measurement of a/f? for distilled water between 0 and
23.5°C. The measured values of a/f? fell within the
experimental scatter of the data of Smith and Beyer. !4
They stated an average probable error of 5% for their
measurements.

In the calibration data, as well as in the critical mix-
ing data, a diffraction correction was made.® This cor-
rection was as large as 50% at 1 MHz, and was only 1%
at 9 MHz. The intermediate frequencies had a correc-
tion between these extremes.

Velocity of ultrasonic waves in distilled water mea-
sured between 0 and 20 °C exhibited 2 mean deviation of
0.17% from the curve given by Wilson, ¢

Viscosity measurements were made using an Qstwald
capillary viscometer in a bath whose temperature was
controlled by an Artronix Model 5301 Temperature Con-
troller. The viscometer was calibrated by using dis-
tilled water as a reference liquid.

o
o
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FIG. 3. Ultrasonic wave velocity in the single-phase region above the critical temperature 12.7°C.
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RESULTS AND DISCUSSION
Velocity

Measured values of the ultrasonic wave velocity in the
critical temperature region are shown in Figs. 3(a)-3(e)
for the frequencies 1,3,5,7, and 9 MHz. It is seen that
the velocity in the single-phase temperature region in-
creases as the critical temperature is approached. This
behavior is the reverse of that predicted by the Fixman
theory, but is reconcilable with it.® Both chlorex and
hexane have a negative temperature coefficient larger
than that for the mixture at the critical temperature.
The temperature coefficient of hexane is'’ - 4,4 m/
sec °C. The velocity in chlorex as a function of temper-
ature is given in Fig. 4, where the temperature coeffi-
cient is found to be — 3. 57 m/sec °C. (The data points
for 5 MHz are shown in the figure; those for 1 and 9
MHz are not. The scatter at these frequencies was sim-
ilar to that at 5 MHz.) The temperature coefficient of

the velocities in Fig. 3 is ~ -4 m/sec °C away from the
critical point, It decreases to ~ -5 m/sec °C at the
critical point. Thus, it is seen that the temperature co-
efficient of the critical mixture becomes simaller than
that of the noncritical mixture (or of the separated lig-
uids) in agreement with the Fixman theory.

Z.ctenuation

InFigs. 5(a)-5(e) are presented measured values of
the attenuation per wavelength ax as a function of tem-
perature in the single-phase temperature region. The
solid curves are a best fit of the data points, assuming
the functional form of the Fixman theory given in Eq.
(10) with an additional term to account for the noncritical
attenuation:

ax=1HIm[F(d)]+ const, (12)

The tables of Kendig et al.'® were used to evaluate the
integral F(d). The values obtained by extrapolating these
curves to the critical temperature 12.7 °C are shown in
Table I a8 @), y1;. This procedure depends upon a
tacit assumption that all mechanisms contributing to the
critical attenuation (shear viscosity, etc.) have approxi-
mately the same temperature dependence. The fit of the
experimental data is taken as an indication of the validity
of this approximation; however, an improvement in the
approximation is possible.

Measurement of the shear viscosity as a function of
temperature allows one to introduce the temperature
dependence of the noncritical attenuation through use of
Eq. (1). (The temperature dependence of velocity is ob-
tained from Fig. 3.) Both viscosity and velocity data
were obtained from linear extrapolation of the asymp-

6tx10~7 6tx107 64x10”
(A) ® (©)
1 MHz 3 MHz 5 MHz
4 a 4
! | |
L ] = =
2 g . 2
®Anon-critical
@A non-critcal
0 8 16 24 32 0 8 16 24 0 8 6 24 32
TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C)
61x107 6hx10”? ¥
()
7 MHz [
4 4
l ¢ L4
- -
. 2 ] 2
T — F ®Anon-criical
0 X 24 32 0 32

8 16 24
TEMPERATURE (°C)

8 16 24
TEMPERATURE (°C)

FIG. 5. Attenuation per wavelength in the single-phase region above the critical temperature 12.7°C, Solid line is Fixman theory,
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TABLE I. Parameters used in fitting data to the Fixman theory.
e e e e S T N SRR R

Frequency (@/r?
(MHz) Aorttioss Nruwss  riues X 107 sec’/om)
1 0. 0034 0,00234 0,00199 200.0
3 0. 0031 0.00265 0.00160 75,9
5 0. 0040 0.00308 0.00134 63.0
7 0.0049 0.00387 0.00143 47.5
] ! 0. 0057 0,.00435 0.00121 41.6
e

totic values away from the critical point. For example,
the assumed noncritical contribution to viscosity is in-
dicated by a dotted line in Fig. 6, in which we have
plotted experimental data for the chlorex-hexane mix-
ml

It one considers only shear viscosity, the attenuation
per wavelength calculated from Eq. (1) is much smaller
than that observed. Since we are unable to calculate the
bulk viscosity contribution, we simply multiply by the
factor required to bring the viscous attenuation to 80%
of the attenuation calculated from Eq. (12) at 30°C,

(The trend of the data indicates thai the noncritical con-
tribution to ax has approximately this value at that tem-
perature. The use of 100% instead of 80% alters the
magnitudes of calculated coefficients by a small amount,
but does not alter the conclusion.) Using the extrapolated
noncritical temperature dependence of 7 and ¢, the non-
critical attenuation is extrapolated to 12.7°C, The cal-
culated curves are superimposed on Fig. 5. The critical
contribution from shear viscosity and velocity would
raise these curves by approximately 5% at the critical
temperature. On the scale of Fig. 5, this difference is
less than the width of the line labelled a\ noncritical.

The difference between the two curves in Fig, 5 at
12.7°C has been defined as the excess attenuation per
wavelength resulting from critical phenomena as follows:

@ gzonns™ Mgrition = FAroncrition * (13)

Tris excess attenuation, given in column 8 of Table I,
s observed to be made up of two parts which have dif-
ferent frequency dependence:

OAgnoens™ MApiemant FAygporime (14)

S VI D@D @l i, M. DIYAZEAIE. VILawIiie awginiuauuvil i viiuval IHiaw e

According to Eq. (10), @)y e, 18 proportional to f-V4,
The remaining attenuation per wavelength has been la-
beled “visclike” because it is proportional to f, as is the
viscosity contribution.

These values of aA can be expressed in terms of a/f®
by dividing by cf. Values of (a/f),,cess 2r€ given in
Table I. Since viscosity contributions to a/f? are con-
stant in frequency, one can plot a/f* as a function of
frequency and identify the viscositylike contribution from
an evaluation of the intercept. We chose to use the fre-
quency dependence of "% expected from the Fixman
contribution as abscissa in Fig. 7. The fact that the
data fall on a straight line with a nonzero intercept in-
dicates that a/r2,,,, s adequately expressed by the sum
of two terms:

(/) smese=A'f ¥4+ B, (15)

The coefficient A’ is identified with the Fixman contri-
bution; B’ is viscositylike. Since the magnitude of B’
is independent of frequency, this intercept value can be
subtracted at each frequency to isolate the contribution
of the Fixman mechanism,

The effect on aX,,q.e Of Subtracting the viscositylike
contribution is indicated in Fig, 8 in which we have
plotted ai,,..e POth before and after subtracting the vis-
cositylike contribution obtained from Fig. 7. As can be
seen, after correction the data follow a better straight-
line behavior as a function of /¥4, in agreement with
the Fixman theory. The uncorrected data show a cur-
vature not seen in aAy,,.... Use of any value of B’ other
than the intercept value of Fig. 7 introduces a similar
curvature in oA yjyma:

One can attempt to explain this viscositylike contri-
bution by assuming that all viscous mechanisms in-
crease in proportion to shear vigcosity in the critical
region. The viscosity increased by 6% in the critical
region, as shown in Fig. 6. This would lead to an ex-
cess attanuation indicated by the cross-hatched region in
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Fig. 7, which is less than 20% of the viscositylike con-
tribution, We see, therefore, that simple assumptions
about the viscous mechanisms do not allow us to account
for the excess attenuation, But whatever its origin, the
remaining excess attenuation appears to have a frequency
dependence which is the same as that of viscosity.

CONCLUSION

Measured values of velocity and attenuation of ultra-
sonic waves in the critical temperature region of a
chlorex-hexane mixture have been compared with the
theory of Fixman, The velocity data show a trend which
is consistent with the Fixman predictions. The attenua-
tion data are found to be described by a sum of two
terms. The frequency dependence of one term is in
agreement with that predicted by the Fixman theory.
The frequency dependence of the second term is that ex-
pected from shear viscosity; however, the magnitude of
the viscositylike term is greater than can reasonably be
expected from the critical increase in shear viscosity
for this mixture. Although there should be a similar
frequency dependence resulting from thermal conductiv-
ity, this contribution is expected to become vanishingly
small in the critical region.® It would be tempting at
this point to attribute the remaining attenuation per

wavelength to bulk viscosity effects; however, such an
assumption would be inconsistent with the results of
Kawasaki and Tanaka, ? who show that in the critical re-
gion the hulk viscosity produces an aA which has the
same form as the Fixman integral [Eq. (3)].

Note added in Proof: A recent publication by Peter
H. Rogers and A. L. VanBuren [J. Acoust. Soc. Am,
88, 724 (1974)] gives a simple closed-form expression
which makes the correction of attenuation data for the
effects of diffraction quite direct. In addition, this ex-
pression is valid over a wider range of distances than
the graphical correction of Seki, Granato, and Truell
(Ref. 15).
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Ultrasonic wave attenuation in the critical temperature region of

binary liquid mixtures*
Elizabeth M. Bains and M. A. Breazeale

Department of Physics, The University of Tennessee, Knoxville, Tennessee 37916

(Received 13 September 1974)

Recently we published measurements of the attenua-
tion and velocity of ultrasonic waves in the critical
temperature region of the binary system hexane and
B, #'-dichloroethyl ether.' By assuming a “viscosity-
like” contribution to the critical attenuation in addition
to the noncritical attenuation (which also has the fre-
quency dependence expected for attenuation due to vis-
cosity), we were able to obtain agreement with the the-
ory of Fixman for the critical aX as well as a/f%, Pre-
vious authors, in fitting data to the Fixman theory,
found agreement with a/f%, but not with ax,?=® In
this note we demonstrate that the assumption of a
critical region “viscosity-like” contribution in the data
for several other mixtures identiffes a term in the crit-
fcal a) which agrees with the f “!/* frequency dependence
of the Fixman' theory,

Figure 1 gives a/f? as a function of 7 */* for the
binary mixtures Ilisted, These data were taken from
Refs. 1-6. In every case the agreement between data
points and the straight line shown (the least squares fit
of the data) is satisfactory, confirming the agreement of
a/f* with the Fixman theory reported for these data.

The Journal of Chemical Physics, Vol. 82, No. 2, 16 January 1976

The nonzero intercept value isolates a part of a/f? that
is independent of frequency, as is the attenuation due to
viesasity, For all the data except that of Ref, 1, the
intercepts include the noncritical attenuation as well as
the critical region “viscosity-like” contributions, The
noncritical attenuation was subtracted from each data
point in Ref, 1 so that the intercept is only the “viscos-
ity-like” contribution,

In Fig. 2 are given the same data plotted in the form
a) as a function of f**/4, which is the frequency depen-
dence predicted by Fixman, The values of a) were
calculated by subtracting the intercept values shown in
Fig. 1 from the appropriate experimental values of
a/f® and multiplying by c¢f. As can be seen, the data
points in Fig. 2 agree quite well with the straight lines,
with the possible exception of the data of D’ Arrigo,
Mistura, and Tartaglia,® Several of their data points
are also seen not to lie exactly on the line of Fig, 1, A
smaller intercept on the a/f* curve would lead to a
more linear aA curve; however, for consistency we
chose to define the intercept by the least squares fit of
a/f* as a function of f°*/4, The curvature of the a)

Copyright © 1976 American Institute of Physics
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FIG. 1. Measured frequency dependence of a/f* for binary
liquid mixtures. (a) Reférence 1, (Chlorex is the common

name for g, p’-dichloroethyl ether.) (b) Reference 2. (c) Ref-
erence 3, (d) Reference 4, (e) Reference 5, (f) Reference 6.

curves was found to be very sensitive to the magnitude
of intercept used.

In Table I we compare the value of intercept found
from Fig. 1 (for each set of data other than that of
Ref. 1) with the value for noncritical attenuation ob-
tained for those data by the experimenter. For the
data of Ref, 1, as stated above, the figure shows val-
ues of excess a/f2 with the noncritical contribution
subtracted, so the existence of an intercept in that case
clearly indicates a critical region “viscosity-like” term.
Other experimenters expressed their total a/f? in the
form

a/f*=Af*/* 1m[F(d)] + B(T), )

where Im[F(d)] is the imaginary part of the integral
given by Fixman,’ d depends on the temperature, and
A and B(T) are constants obtained by fit of the data to
the temperature dependence predicted by Fixman, The
term B(T) is identified as the noncritical part of a/f2.
D’ Arrigo, Mistura, and Tartaglia gave the value of
B(T) listed in Table I from their fit; the other values
are average values for all frequencies calculated from
experimental values of a/f? and the empirical A, In

TABLE I. Comparison between intercept values of a/f? from
Fig. 1 and the total noncritical a/f? obtained by the experi-
menter.

Intercept B(T)(=a/f? noncritical)
Binary mixture (sec?/cm) (sec?/cm)
Nitrobenzene -n-hexane® 148x 197" 126x 107"
Nitrobenzene~iso-octane®  435x 1017 315% 107"
Triethylamine-water® 565% 10" 343%x107"
n-He ptane-o-toluidine? 348x 107" 186%x10°""
Aniline~cyclohexane® 148107 100x 1071
*Reference 2. dReference 5.

®Reference 3, *Reference 6.

®Reference 4.
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FIG. 2. Frequency dependence of aA for binary liquid mix-

tures. (a) Reference 1, (b) Reference 2, (c) Reference 3. (d)
Reference 4, (e) Reference 5. (Velocity was assumed to be
1250 m/sec. Another value would change the slope of the line
slightly, but would make no change in the scatter of the data, )
(f) Reference 6.

each case the intercept (which is the value required to
isolate the Fixman term in a) is larger than the pre-
viously calculated noncritical value of a/f%, This
would have remained true even if we had used a smaller
intercept to bring the data of D’ Arrigo, Mistura, and
Tartaglia into better alignment,

In summary, the procedure we have outlined isolates
that part of the critical attenuation that is accounted for
by the theory of Fixman, For the cases given above, it
also shows that a “viscosity-like” term exists in the
critical region, For the hexane and g, f'-dichloroethyl
ether system, it was found® that the critical region in-
crease in shear viscosity was not sufficiently large to
account for the magnitude of the “viscosity-like” term.
Whether or not this is true for the other cases cannot be
answered at present because of the lack of data on ex-
cess critical point viscosity for the other systems.
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Comparison of methods for absolute calibration of ultrasonic

fields*
M. A. Breazeale

Physics Department, University of Tennessee, Knoxville, Tennessee 37916

F. Dunn

Bioacoustics Research Laboratory, University of Illinois, Urbana, Illinois 61801

(Received 10 December 1973)

Methods of determining the absolute ultrasonic pressure amplitude under identical circumstances are
compared. Methods used are (1) radiation force on a small sphere, (2) thermoelectric probe, and (3)

three optical techniques.

Subject Classification: 35.80; 80.30.

At the recent Society meeting in Miami (28 November-
1 December 1972), the Technical Committee on Physical
Acoustics sponsored three sessions on uitrasonic energy
and power measurements. These sessions included
state-of-the-art invited papers, tutorial papers, round
table discussions, and contributed papers on current in-
vestigations. The attendance and discussion participa-
tion clearly showed that such measurements, and their
interpretation, are of fundamental importance in a va-
riety of ultrasonic research programs. During the round
table discussions and discussions following formal pres-
entations, a question was raised about the degree to
which various absolute measurement procedures com-
pare. Though considerable interest was exhibited in
this point, no published works were recalled, extempo-
raneously, for citation. The present authors were re-
‘minded that they carried out such a comparison involv-
ing five different methods, at two laboratory sites, in
1958, but that the results had not been published. We
report herein our findings in the hope that we may an-
swer some of the questions raised in Miami,

Fer. 0 | S ) (T T
r- L
2.0 —~
3} A

PRESSURE AMPLITUDE

0.4

0.2 0.4 0. "

TRANSOUCER VOLTAGE (kv
FIG. 1. Calibration of a 990-kHz quartz transducer: (A) cal-
culated output with e;=4.77x10%; (B) thermocouple probe; (C)
optical image broadening (refraction); (D) light diffraction; (E)
decrease of light intensity (refraction),

n J. Acoust. Soc. Am., Vol. 66, No. 3, March 1974

The circumstances of this comparison involved the
research programs at Michigan State University under
the direction of the late E, A, Hiedemann and at the
University of Illinois under the direction of the late W.
J. Fry. The former group had been concerned with
three optical methods, viz., the refraction (imagebroad-
ening) method, ! the diffraction method, * and the refrac-
tion (decrease of light intensity) method,® while the lat-
ter group had been employing the method of radiation
force on a small solid sphere! and the transient thermo-
electric method.® While each group had found favorable
comparison among the methods they embraced, more
extensive treatment was considered desirable. The pro-
cedure involved the Illinois group calibrating one of its
thermocouple probes against the radiation force detector
(small solid sphere) and transporting it to the Michigan
State campus where the former’s experimental arrange-
ment was duplicated. Thus the thermocouple probe was
operated by the Michigan State group in the same way as
in Illinois and its output compared with that detected by
the three optical methods mentioned above. Figure 1
illustrates this comparison in water for the output from
a 6-cm-diam quartz transducer, fundamental thickness
resonant frequency 990 kHz, Curve A is the output cal-
culated under the assumption that the transducer is a
piston-like vibrator. The piezoelectric constant e,,
=4,77%10* was used in this calculation. Curve B is the
average of values from the thermocouple probe, after
correction for temperature variation of the output, Curve
C is from the optical image broadening method.! Curve
D is from the light diffraction method.? Curve E is from
the decrease of light intensity method.® It is seen that
the experimental results exhibit a total range of approx-
imately +10% about the mean, and that this mean is ap-
proximately 27% below that calculated from the voltage
applied to the transducer. Because of the assumptions
made in the calculation, one should consider this cal-
culated value to be the maximum value possible under
ideal conditions. The true value should be less than this,
as the experimental results show.

Although further refinements of the optical methods®
have reduced the scatter among the data, and the avail-
ability of lasers now makes the optical methods more
direct, we present these results as a guide in estimat-

Copyright © 1974 by the Acoustical Society of Americs N
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672 Letters to the Editor

ing the accuracy to be expected when the research pro-
gram requires such data, and the possibility of detailed
investigation of pressure amplitude measurement tech-
niques does not exist,

*Research supported by the U. S. Office of Naval Research,
Acoustics Programs.
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Elimination of transducer bond corrections in accurate
ultrasonic-wave velocity measurements by use of capacitive

transducers*

John H. Cantrell, Jr. and M. A. Breazeale

Department of Physics. The University of Tennessee, Knoxville, Tennessee 37916

(Receved 4 May 1976, revised 5 October 1976)

A capacitive-driver-capacitive-detector system for and of ul waves has been
developed. This eliminates the necessity of bonding piczoelectnic transducers to solid samples. With the
capacitive-driver capacitive-detector system, free~free boundary conditions exist at the sample surfaces
and | dinal ul c-wave vel in solids can be measured accurately without correcting for
ultrasonic-wave phase shifts due to sample-bonded transducer interfaces. The capacitive driver has a mica
diclectne which increases the break but the free~free boundary i at the
solid specimen surfaces. This allows for a larger-amplitude ultrasonic signal to be generated in the sample
than 1s possible with an air-gap capacitive dnver. This imp the p of the . The
accuracy of the method 1s comparable with that of bonded-transducer methods, after bond corrections are

made.

PACS numbers: 43.35.Yb, 43.35.Cg

INTRODUCTION

Ultrasonic pulse-echo techniques are widely used in
the measurement of elastic-wave velocities, Three
fundamental pulse-echo methods for measuring phase
velocities in solids have been reported. They are the
gated double-pulse superposition method of Williams
and Lamb,' the puise-superposition method of Mc-
Skimin,? and the echo-overlap technique of May® and
Papadakis, *

Until recently, it has been necessary to generate the
ultrasonic pulses and to detect the resulting echoes by
applying bursts of rf to a piezoelectric transducer
bonded to the specimen surface. Such an arrangement
necessitates making a correction in the velocity mea-
surement due to ultrasonic-wave phase shifts at the
specimen-transducer interface. In some situations,
the effect of this coupling between specimen and trans-
ducer leads to considerable error if neglected. ®

In order to eliminate the bond problem in compres-
sional-wave measurements, the air-gap capacitive de-
tector previously used to measure amplitudes of ultra-
sonic waves® " was madified to function as an air-gap
capacitive driver as well.® The air-gap capacitive-
driver-capacitive-detector combination allowed the
sample ends to vibrate with free-free boundary con-
ditions exactly. No bond corrections were necessary
because there were no bonds,

It Is the purpose of this paper to report on the develop-
ment of a dielectric capacitive driver to replace the
air-gap capacitive driver. This new driver is capable
of generating longitudinal ultr ic pul whose am-
plitudes are much larger than those in the previous
system. We show that free-free boundary conditions
still exist at the sample surface with this driver and
that the error in the velocity measurements, without
making any corrections, |s comparable to the error in
velocity measurements made with bonded transducers,
after corrections for bond phase shifts,

403 J. Acoust. Soc. Am., Vol. 61, No. 2, Februasry 1977

I. THE CAPACITIVE-DRIVER-CAPACITIVE-DETECTOR
SYSTEM

Figure 1 shows the mechanical parts of the dielec-
tric-capacitive-driver-air-gap-capacitive -detector
system with the sample.in place. The sample rests on
the grounded outer portion of the detector assembly.
The grounded outer portion of the dielectric capacitive
detector is recessed approximately 10 um so that the
electrode and sample face form a parallel-plate capaci-
tor. The detector electrode is kept at a dc bias of the
order of 150 V. The ultrasonic vibration of the sample

' face varies the gap spacing (and hence the capacitance),

thereby generating an alternating electrical signal be-
tween the electrode and ground. This signal is am-
plified and displayed on the uscilloscope. The capaci-
tive detector has been refined to the point that it is
capable of giving absolute displacement amplitudes for
30-MHz ultrasonic waves having amplitudes as small
as 1004 A.°

Z ELECI‘RODE
| — MICA

=

SAMPLE

[~1— CAPACITIVE
DETECTOR

A_ B o OPTICAL
A B Far

FIG. 1. Mechanical parts of the capacitive-driver-
capacitive-detector system,

Copyright © 1977 by the Acoustical Socity of America 403
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FIG. 2. Dielectric driver
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In the air-gap capacitive driver the inner electrode
1s also recessed approximately 10 um to form a paral-
lel plate capacitor with the sample surface, but in the
dielectric capacitive driver a 7. 5-um-thick piece of
mica (3) is sandwiched between the sampie surface
{outer electrode (1)) and the inner electrode (5) as
shown in Fig. 2. Between the electrodes and the cen-
tral mica dielectric (3) two air layers ((2) and (4)]
are present because of slight irregularities of the con-
tact surfaces.

The capacitive driver is not dc biased, but a pulsed
sinusoidally varying rf voltage, V= V,sinwt, applied
between the electrodes [(1) and (5)], produces sinu-
soidally varying electric fields £,, E,, and £,. It has
been demonstrated'? that the generation of ultrasonic
waves in this situation is due to the effect of electro-
static forces acting directly on the ultrasonic-wave
propagation medium, Hence, if E, is the electric field
near the surface of the sample, the electrical force per
unit area p at this surface is

Pk} (1)
where ¢, is the dielectric permittivity of air. Since

. Ey= Eqgsinwt , (2)
then

P= e Ehsintwt = o Ed, (1 = cos2wt), (3)

For present purposes, it is adequate to ignore the con-
stant term in Eq. (3) and consider only the cos2w! term.
One sces that the pressure on the sample surface is
applied at fwice the frequency of the rf voltage, Thus,
the ultrasonic wave generated in the sample has twice
the frequency of the applied rf voltage,

Il. THE EXPERIMENTAL SYSTEM

A, Method of measurement

The velocity measurements were made with the equip-
ment arrangement as shown in Fig. 3. The gated
double-pulse superposition method of Williams and
Lamb' was employed, A pulsed ultrasonic signal is
fed into the sample from the capacitive driver followed
by another pulsed ultrasonic signal phase locked but
delayed in time with respect to the first, The delay is
adjusted such that superposition of the desired echoes
from the two pulse trains is achieved, The resulting
signal is received at the other end of the sample by
the capacitive detector, passes through a wide-band
i.f. amplifier whose center frequency is 20 MHz, and
is displayed on an oscilloscope. Utilizing the fact that °
a continuous change in ultrasonic frequency results in

4 Acoust Soc. Am., Vol. 61, No 2, February 1977

a succession of superimposed echo maxima and minima,
the ultrasonic velocity is calculated from

v=2ml(ar/an), ko)

where Af is the change in ultrasonic frequency corre-
sponding to An minima, [ is the sample length, and

m is an integer (2 in our experiments) giving the rela=-
tive position of the initial pulse train and the delayed
pulse train. To enhance the sensitivity in detecting
the superimposed echo minima, a boxcar integrator
was incorporated into the system between the i1, f,
amplifier output and the oscilloscope.

B. A tuned transmission-line voltage transformer

The capacitive transducer 1s driven with a pulsed rf
signal, The frequency is varied around 15 MHz to pro-
duce successive resonances, To obtain the voltages
necessary for adequate ultrasonic amplitudes, a select
length of transmission line was used to act as a tuned
voltage transformer between the gated amplifier and
the capacitive driver.

If S is the length of the transmission line, f is the rf
drive frequency, V, is the voltage across a purely re-
active load of magnitude | Z,| (capacitive driver), V,
is the voltage out of the gated amplifier, and Z, is the
characteristic impedance of the transmission line,
then for a lossless transmission line

Vg = Vysing csc(o - wS/c), (5)
where

d==tan' (2,1/2, , (6)

w=2nf , ()

and c is the velocity of propagation of electromagnetic
waves in the transmission line, Thus, for the proper
length S, V¢/V,becomes very large. Butthe impedance
looking out of the gated amplifier into the transmission
line behaves as

Z\y==jZytan(d - wS/c). (8)
Thus, for the condition that V,/V, becomes large, Z,,,
and ¢ quently, V;, b small. For this reason,

the length of transmission line is chosen such that Z,,

BUFFER HJ RF FREQUENCY!
AMPLIFIER 'OSCIlLAVOﬁ COUNTER

=

N . T
GATED B AR SN TRE
AMPLIFIER

o} CAFACITIVE
ORIVER
o

0C BIAS | |CAPACI TIVE
SUPPLY

Q 1 DETECTOR

XCAR RF
A ‘J BOXCAR |
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FIG. 3. DBlock diagram of experimental apparatus.
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TABLE I. Sample lengths and comparative values of Af/An and velocity for air-gap driver measurements and

dielectric driver measurements,

Air gap driver

Dielectric driver

Sample length Af/an Velocity Af/an Velocity
Sample (em) (107 MHz) (x10° em/sec) (107 MHz) (x10° em/sec)
S-1 1.2393 £0.,0002 5.8926 £ 0.0017 5.9364 £ 0. 0020 5.5925 £ 0.0006 5.9363 £0.0012
S-1 1.2586 +0.0002 5.5957 + 0.0013 5.9362:0.0016 5,8958 = 0,0005 5.9363 £0.0011
SW-I 1.2590 +0.0003 5.9099 £0.,0017 5.9525+0.0023 5.9100 +0.0005 5.9526 +0.0016
SW-II 1.2587 £0.0002 5.9121 £ 0.0013 5.9532:0,0016 5.9122 :0.0004 5.9533 +0,0011
GE131 1.2721 +0.0001 5.5345£0.0016 5.9378 +0.0017 5.8345 £ 0.0006 5.9378 +0.0008 X

looks inductive for our operation frequency. A variable
capacitor is then placed in parallel with Z,, toform a
parallel resonant circuit. This arrangement increases
the intensity of the generated ultrasonic signal by ap-
proximately 30 dB over that of the untuned transmission
line.

The primary limitation on the generated ultrasonic-
wave amplitude is set by dielectric breakdown in the
capacitive transducer. However, this limitation is not
as serious as one might assume. As the spacing of
the electrodes in air is decreased, the breakdown po-
tential goes up almost exponentially.® In the air-gap
driver we were able to use fields as large as 200 kV/cm
without breakdown. With the mica dielectric driver,
we have been able to use fields larger than 1000 kV/cm.

1. EXPERIMENT AND RESULTS

In order to determine the effect of contact between
the mica dielectric and the sample surface, velocity
measurements were made on five fused silica samples
at room temperature. Each sample was measured ten
times with the dielectric capacitive driver and ten
times with the air-gap capacitive driver, The results
of the measurements are shown in Table I, The aver-
age values and standard deviations of Af/An and lon-
gitudinal velocities [Eq. (4)], as well as sample length
1 are given,

Previous work comparing velocity measurements with
bonded transducers and air-gap transducers has con-
firmed experimentally that theair-gap capacitive-driver -
capacitive-detector system eliminates the effects of
transducer bonding.® The present agreement between
the air-gap- and dielectric-driver measurements of
Af/ an for each sample confirms within experimental
error that the dielectric driver also eliminates the
effects of transducer bonding,

A. Analysis of error

The standard deviation in Af/An with the dielectric
driver (approximately 0,0087) is significantly lower
than with the air-gap driver (approximately 0,0257)
because of the much larger ultrasonic signal generated
by the dielectric driver. The null frequencies of the
superimposed pulse trains were reproducible to within
+30 Hz, which is approximately two parts in 10%, The
relatively large standard deviations in the velocity cal-
culations in Table [ are due to lack of parallelism of
the sample surfaces, which is reflected in the relatively

J. Acoust. Soc. Am., Vol. 61, No. 2, February 1977

large uncertainties in the sample lengths listed.

With electrically nonconducting samples, it is neces-
sary to coat the end surfaces with a thin film of con-
ducting material to function as the ground plates of the
capacitive transducers. We found that approximately
1000 A of copper is ideal for our purposes, According
to our calculations, this coating introduces an error of
no more than 0.003% in the velocity measurements.

Corrections in the velocity measurements due to dif-
fraction were calculated''~'* and serve to decrease the
values listed in Table I by approximately 0. 005%.

It is found that the total uncertainty in compressional-
wave-velocity measurements with the dielectric capaci-
tive-driver-capacitive-detector system is comparable
to the uncertainty in velocity measurements with sys-
tems using bonded transducers. >4 14

B. Advantages of the new system

The advantages of the previous capacitive-driver=-
capacitive-detector system have been enumerated, *
They are:

(1) The tedious calculation of the effect of ultrasonic-
wave phase shift at the bonded transducer-sample in-
terface has been eliminated, with no sacrifice in ex-
perimental accuracy.

(2) The effect of the transducer resonance has been
eliminated. Capacitive transducers have a flat fre-
quency response,

(3) The effect of a variation in electronic loading and/
or the ch in thick of the bonded tr d due
to temperature changes in cryogenic velocity measure-
ments have been eliminated. (These variations often
force a change in rf drive frequency of the bonded trans-
ducer to maintain a given pulse shape. )

(4) Accuracy of attenuation measurements is im=
proved. It is well known, especially in measurements
at crywenic temperatures, that the effect of transducer
bonds often sets a limit on the accuracy of attenuatiun
measurements by introducing temperature -dependent
phase shifts in the received signals. Such effects are
eliminated with the capacitive transducer.

In addition to these advantages, the introduction of a
dielectric into the capacitive driver alluws one to work
with large-amplitude signals. As we have shown, this
dielectric does not affect the free~{ree boundary con=
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ditions if one is careful to keep it dry. Therefore, the
accuracy of the previous capacitive driver is main-
tained, while the larger-amplitude signals allow one to
improve the precision of the measurement.

*Research supported by the Office of Naval Research.
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EIGHTH INTERNATIONAL CONGRESS
ON ACOUSTICS, LONDON 1974

ULTRASONIC NONLINEARITY PARAMETERS

Breazeale M A University of Tennessee, Knoxville, Tennessee,

USA

A consistent definition of the nonlinearity parameters of gases,
liquids, and solids can be made. By using an appropriate form of the
nonlinear wave equation

2 2 2
3u 3u du d u
%o sz i KZ 3:37+ (3K2 : KJ) = 3x2 ;
3K2+|(
the nonlinearity parameter x = -(~—~E—-—) can be recognized as the
2

negative of the ratio of the coefficient of the nonlinear term to that
of the linear term. The nonlinearity parameter has considerable sig-~
nificance for solidsl»2 as well as for liquids and gases. For iso-

tropic solids and the [100] direction in single crystals, Kz = C11 and

i
K3 = Clll' Thus, x = -(3 +-7§'0. For liquids x = 2 + B/A. For

gases x = 1 + CP/CV' 1
For example, we calculate room temperature values: for air, x =
2.4; for water x = 7.0; for copper %(100] = 5.25; for germanium

Xr100] = 2.78. But for fused silica x = -9.2. In our harmonic dis-

tgrgxgn experiments, the negative

nonlinearity parameter implies that +6fecececennarainan, Ge [110]
" LA

the waveform approaches a "backward

etesasesereniacne taaas 1
sawtcoth"” as the wave progresses. e e Dhkg

In addition, the magnitudes of x for 43| . ... .... = Ge [100)
fused silica’ seem to be sensitive 3 R :
to small amounts of impurities. An

OH content of 1200 ppm led to a 0

measured k = -9.64, The same fused FIBO 260 “_;:%

silica with only 5 ppm OH had a
measured x = -9,25,

Figure 1 shows recently measured
nonlinearity parameters of ger-
manium and fused silica plotted as
a function of temperature. Consis-
tent with other single crystals
measured to date”?, germanium x's are SERSL T R
almost independent of temperature, -9l ot
That for the fused silica sample is
not. [Research supported in part by
the U.S. Office of Naval Research,]

Terperature (°K)

1
W
T

1
Lo
3 ;

Nonlinearitv Parameter

Fip. 1 Temperature Dependence
of Nonlinearity Parameters
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Acoustical Nonlincaritics in Solids
As a Function of Tempcrature

by

M. A. Brecazcale
Department of Physics
The University of Tcnnessce
Knoxville, Tennesscc 37919

ABSTRACT

Mecasurement of the fundamental and of the sccond harmonic of
an initially sinusoidal ultrasonic wave in a solid allows one to compute
its nonlinearity parameter. From this nonlinearity parameter onc can
isolate simple combinations of third order eclastic constants.

We have developed apparatus for making measurement of the
fundamcntﬁl and of the second harmonic of an initially sinusoidal 30 Miiz
ultrasonic wave between 300°K and 3°K.

This apparatus and current results for copper, germanium and fused

silica arc discussed. It is shown that the finite amplitude distortion

~in fused silica is such that at the discontinuity distance one would

have rcpeated rarcfaction shocks. Both copper and germanium produce
distortion which would lcad to repeatcd compressional shocks.

In contrast to an assumptiion usually made in testing thcories of
the solid state, the third order elastic constants can change as a
function of tcmperaturc--as much as 150% between 300°K and 3°K in

onc instance.
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A detailed investigation of the subject of nonlinear acoustics is very
important to the study of all acoustical phenomena. This is because technological
progress has made possible the generation of large amplitude acoustical signals,
and these signals of necessity propagate through a nonlinear medium. There are
only a very few media which are truly linear, and even those which appear to be
linear exhibit this behavior only under very special circumstances. An exact
statement of what is meant by the words "linear medium" is surprisingly elusive,
but this problem need not concern us at the present time. Rather, I want to
discuss for a moment some very profound implications of the study of nonlinear
acoustics to the subject of solid state physics.

The derivation of the nonlinear wave equation to describe acoustical
nonlinearities in solids can be quite complicated.for the general case. However,
for special crystal symmetries the equations take a much simpler form. The
nonlinear equations for isotropic solids and cubic crystals are as simple as
that for fluids. As a matter of fact, these equations are identical to the
equation for fluids within the approximation involved in making a Taylor
expansion of the nonlinear equation for fluids and dropping higher-order terms.
This is the reason one can speak mearingfully about nonlinearity parameters of
solids as well as nonlinearity parameters of fluids.

It is through these nonlinearity parameters that one can make a fundamental

connection between nonlinear acoustics and solid state physics. As a matter of

s sl N
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fact, nonlinear acoustics offers the possibility to measure quantities in
sdlid state physics which cannot be measured by other techniques. Of course,
in order for the acoustical quantities to be useful to people in solid state
physics, a consistent definition of them must be made, and this has been done
by Thurston.1

In my laboratory we have devoted considerable effort to the development of
some new techniques for measuring the nonlinearity parameters of solids.
Although initially it was sufficient to be able to measure nonlinearity
parameters at room temperature, it soon became apparent that our results would
be much more useful to solid state physics if we could measure as a function of
temperature down to temperatures near the absolute zero. The most obvious
reason for this is that theories of the solid state usually do not take into
account the effect of thermal motion on elastic properties, and thus are made
under the tacit assumption of absolute zero of temperature.

When one measures as a function of temperature, the apparatus
of necessity becomes somewhat complicated. But the principles can remain simple.
I should like to describe the apparatus we have developed in the past several
years--emphasizing the principles involved--and to give some of our recent
results on germanium as an indication of the solid state physics data available
from studies of nonlinear acoustics.

An initially ainusoidal ultrasonic wave becomes distorted as it propagates
through a nonlinear medium, Fourier analysis of this distorted wave shows that
the second harmonic is the largest overtone. It grows linearly with propagation
distance, and is proportional to the square of the frequency.and the square of

the amplitude of the fundamental component. In order to write down the
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3
differential equation whose solution behaves in this fashion, one can
specialize the equations to crystals having cubic symmetry and
write

= 1
PoVpe = Kp(U,, +3UU_ ) + KU U (1)

where the subscripts denote partial differentiation with respect to the time

and the space variable. The solution
veu® 4@, (2)

under the assumption that a sinusoidal wave is generated at a = 0, has the

proper behavior. Measurement of the amplitude of the fundamental component

v'® .y sin(ka-wt) (3)

and of the second harmonic component

3K, + K
U(l) = -(-%——2) (AK)za cos 2(ka-wt) (4)

2

gives all the information necessary to calculate the nonlinearity parameter

3K2 + K

-

3

for a solid 1f one confines his attention to the three principal directions in
the cubic lattice, or any direction in an isotropic medium,

Before I go on to define what Kz and K3 até, let me digress for a moment and
point out that the amplitude of the second harmonic (Eq. 4) has a minus sign in

front of it. It turns out that for most media K3 is negative and has a magnitude

——
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4
greater than 3K2. This means that the second harmonic is positive. We reported
in London last yearzthat an exception to this general rule exists. In fused
silica at room temperature K3 was assumed to be positive, with the result that
in fused silica the minus sign is not concelled. This means that the second
harmonic is generated 180° out of phase with that generated in other solids.
Since that time we have developed a phase sensitive detector to measure the
relative phase of the second harmonic in copper and in fused silica. The result
is an unequivocal proof that the second harmonics are indeed 180° out of phase
in the two.3 This phase sensitive detector is now used routinely to monitor
the phase of the second harmonic as we measure as a function of temperature.
Trerefore, in our data there is no possible ambiguity in sign of the second

harmonic.

Let us now return to the definition of K2 and K3.

and K3 are given in Table I. As can be seen, for the

For cubic crystals
the expressions for K2
principal directions K2 and K3 are linear combinations of second-order and third-
order elastic constants, respectively. The second-order elastic constants can
be obtained from measurement of ultrasonic wave velocity. Thus, measurement

of the second harmonic of an initially sinusoidal ultrasonic wave gives values

of these combinations of third-order elastic constants. For purposes of dafa
analysis, I want to point out that the third-order elastic constant C111 appears
in all of the expressions for K3. Thus, these are not the simplest combinations
of third-order elastic constants available from our measurements, since C111 can
be subtracted from the expression for K3 in the [110) direction. A similar
simplification can be made in the expression for K3 in the [111] direction, as I

will show shortly.
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Measurement of the amplitude of the fundamental and of the second
harmonic component is made by use of a special form of capacitive microphone.
We have measured the fundamental, the second harmonic and the third harmonic
of a pulsed 30 MHz ultrasonic wave. A drawing of the capacitive microphone
designed for measurement as a function of temperature is shown in Figure 1.
An x-cut quartz transducer generates the ultrasonic wave which travels upward
in the sample. The ends of the sample are optically flat and parallel. The end
of the sample and the detector electrode form a parallel plate capacitor, whose
spacing can be adjusted pneumatically by changing the pressure differential
P2-P1. This adjustment is necessary because differential thermal expansion
changes the spacing as the temperature is changed. Typically, this spacing is
adjusted from 3 to 10 microns as the pressure differential is changed by one
atmosphere. With such small spacing of the electrodes, gnd an applied d.c.
bias of the order of 150 volts, the microphone is very sensitive. We can
measure microvolts of signal generated as the pulsed ultrasonic wave impinges
on the end of the sample, This means that ultrasonic wave amplitudes as small
as 10'“ Angstroms can be measured, as can be seen in Figure 2, which is a plot
of measured values of the third harmonic as a funﬁtion of the cube of the funda-

mental amplitude. The data points are found at 0.1 x 10-3

Angstroms = 10-6
Angstroms, The slope of this curve gave a value of third-order elastic constanté
which agreed with values measured by other techniques to within approximately
10Z. There were no adjustable parameters in the measurement.

A schematic diagram of the apparatu; for measuring as a function of
temperature is ghown in Figure 3. The position of the capacitive microphone

is labelled "detector." A pulsed 30 MHz signal is generated at the gated

amplifier. This signal drives an x-cut quartz transducer to generate an
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6
ultrasonic wave in the sample. The capacitive microphone on the opposite end
of the sample produces an electrical signal proportional to the ultrasonic
wave amplitude. This signal is amplified and 1s measured on an oscilloscope.

In order to measure the phase of the second harmonic we replaced the 60
MHz amplifier by a slightly more complicated frequency doubler phase sensitive
detector shown in Figure 4, In the upper area the 30 MHz signal is fed
through a phase shifter and a frequency doubler. The 60 MHz signal is then
caused to interact coherently in the phase sensitive detector with the

acoustically generated second harmonic. The output is then observed on an

oscilloscope. As I have indicated, the results were unequivocal for fused silica.

and we are monitoriAg the phase ‘as we measure as a function of temperature in
order to detect any changes in the sign of the nonlinearity parameter.

We have measured the values of K3 for copper and gerﬁanium single crystals
down to 77°K, as shown in Figure 5. These combinations of third-order elastic
constants are linear functions of temperature over this temperature range. As
can be seen, some of the lines have an appreciable slope, so that even on the
basis of these measurements we can state that it is ihadequate to assume that
the third-order elastic constants are independent of temperature. This
assumption is often made in theories of the solid state.

Recently we have been able to extend the measurements in germanium down
to much lower temperatures--down to 2.9°K. The results are shown in Figure 6.
On our first run we were uncertain about the phase of the second harmonic, and
hence fhe sign of K3 in the temperature interval between 15°K and approximately
50°K. We had observed the fact that the Grlneisen parameter, which is a

function of the third-order elastic constants, becomes negative in this region,

y S—

AAAAA SR —— e cesrsCRERRST . | L SRR R e S i ,m-a._.____.AJ

e




(29]

then is positive again at lower temperatures.3 A second run with the phase
sensitive detector produced the solid data points in the [110] direction. The
uncertainty has been removed. These data represent our measurement of these
combinations of third-order elastic constants.

These combinations of third-order elastic constants are not the simplest
combinations available from our data, however. As I have already indicated, C111
and certain other combinations of third-order elastic constants appear in more
than one of these curves, and can therefore be subtracted out. The result is
shown in Figure 7. These combinations of third-order elastic constants are the
simplest combinations available from our data without méking any assumptions
atout the behavior of certain of them. We see that C111 is a linear function
of temperature as far as we can measure, but the other combinations are strong
functions of temperature below approximately 25°K. Of necessity, the behavior
shown for the combination 0123 + 6C144'+ 80456 can be exhibited only if one or
more of these constants becomes positive at very low temperatures. The impli-
cations of this stafement'to solid state physics are not truly appreciated at
the present time. In addition, the behavior of the Gruneisen parameter of
germanium is not mirrored in these data. Measurements of other combinations of
third-order elastic constants will have to be made before one can be certain

about any single constant other than C The most direct method for making

111°
these measurements is not clear at the moment. Nevertheless, I think it is
correct to say that investigations in nonlinear acoustics are making possible

a much more detailed understanding of solid state physics.
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Third-order elastic constants of germanium between 300 and 3kt

James A. Bains, Jr. and M. A. Breazeale
Department of Physics, The University of Tennessee, Knoxville, Tennessee 37916
(Received 3 November 1975)

The ul har h has been

p! to the point that both amplitude and phase

of the second harmonic cf an ymnially sinusoidal ultrasonic wave in a solid can be measured between room
temperature and 3°K. By measuring along the principal crystallographic directions, we have been able to

determine P dep of linear of third-order clastic (TOE) constants of

ger B room and 77°K the of the TOE constants does not vary greatly
as a fi of 77 and 3°K, C,,, changes by + 3%, (C,,, + 4C,,,) changes by + 16%,
and (6C,,, + C,;, + 8C,y,) changes by — 150%. All of these of TOE are negatve at

77°K, but below 7°K the combination (6C,,, + C3; + 8C.y) is p\mnve Temperature dependence of

additional combinauons 1s inferred by
temperature.

1. INTRODUCTION

The present work is an extension to very low
temperatures of previously established techniques
for measuring third-order elastic (TOE) constants,
The technique involves the measurement of the
distortion of an ultrasonic wave as it propagates
through the solid. This distortion was observed
in polycrystalline aluminum, ! and in several sin-
gle crystals? with quartz transducers, The mea-
surement technique was refined with the develop-
ment of a capacitive receiver.® This refinement,
and subsequent ones, * allowed absolute amplitude
measurements to be made at different tempera-
tures, Such measurements have been used by a
number of investigators® to calculate combinations
of truly adiabatic TOE constants, Yost and Brea-
zeale® combined results from using this tech-
nique with those of Dunham and Huntington’ to ob-
tain the first complete set of truly adiabatic TOE
constants (of fused silica) at room temperature,
TOE constants of copper® have been measured
between room temperature and 80° K. More re-
cently we reported® data on germanium between
room temperature and 80°K. (This publication®
Is hereinafter referred to as I.) The present
measurements were undertaken to extend the data
on TOL constants on germanium to lower tempera-
tures in an attempu to answer a fundamental ques-
tion about the relationship between the elastic
and the termal properties.

The thermal expansion of germanium is anom-
alous below 80 K.'® A similar anumaly has been
observed in all other diamond lattice materials
measured to date,'' At temperatures below ap-
proximately 0, 2 8, where 6, is the Debye tem-
perature at 0 'K, the thermal expansion changes
from positive to negative and then becomes posi-
tive again at even lower temperatures, Calcula-
tions of the thermal expansion from the d

that the “*And s of

order elastic (SOE) constants and TOE con-
stants'®''¥*** have not predicted the measured
anomalous behavior at low temperatures, i{{ow-

ever, these calculations were based on the assump-~

tion that the TOE constants are not dependent on
temperature (in lieu of actual data of TOE con-
stant behavior at low temperature), We chose
germanium for these low-temperature measure-
ments i examine the validity of this assumption,

1. EXPERIMENTAL TECHNIQUE

Pure mode propagation is possible for a longi-
tudinal ultrasonic wave in the three principal
directions of a cupic crystal. In these special
directions, the wave equation takes on the follow-
ing form's:

A 3 "

Py = I\, ] + (3K, + l\,) = (1

where K, and K, are combinations of SOE and TOE
constants, respectively, given in Table I.

If there is an initially sinusoidal disturbance
at a=0, this equation has the solution

w=A,sin(ka = wh) - [(3K, + K3) /8K, |
x A$k?a cos2(ka - wi), (2)

where k is the propagation constant 21/), « is the

TABLE [. K; and K, for principal dirvections of a
cubic crystal,

Direction K, Ay
(100} Cy Ci
f110] O e 2Cy) M€y + 3C g 1200
1) MO 201Gy B 60, - 12C

S 20C 5 0 2Cyy ¢ 16C 5

13

3623




DA

[41]
3624 JAMES A, BAINS, JR. AND M., A, BREAZEALE
30 MHz RF DeyecTor
FILTER VOLTMETER .B1as
o q SuPPLY
Uqur . o .
SCLLLATOI
CouLer B HHZT™
[: s

Frequency
COUNTER

BUFFER

DevecTor

AmPLIF1ERS
§
—EDQ' r [MPEDANCE 30 MHz
JATED MATCHING BanppAss
AMPLIFLERT™T Hetwork T FILTER

for room=temperature

TRIGGER

measurements.

DoxcaR
[NTEGRATOR

ISCILLOSCOPE]

propagation distance in the sample, and A, is the
amplitude of the fundamental,

Thus the initially sinusoidal wave becomes dis-
torted: a second harmonic is generated and grows
linearly with propagation distance in the sample,
The amplitude A, of this second harmonic is given

by
A, == [(3K, + Ky) /8K, ) A%k?a. (3)

This harmonic distortion is the basis of the non-
linearity measurements in the present work, The
parameter K, may be calculated by

Ky= =3K,(8+ 1), (4)
where
B=4(A4,/A% (1/k%a), (5)

and the parameter K, may be found from the rela-
tion

Ky = pyr?, (8)

where 1 is the velocity of sound in the appropriate
direction in the medium,

A R

A block diagram of the apparatus for making
room-temperature measurements i shown in
Fig. 1. A radio-frequency pulse of approximately
30 MHz is applied to an x-cut quartz transducer
which is bonded to one end of the sample, The
ultrasonic wave which propagates through the sam-
ple is detected at the other end by a capacitive
receiver, In addition, provision is made to place
a substitutional signal on the capacitive receiver
S0 that accurate amplitude measurements can be
made,

e i“ ~
___T

The air-gap capacitive receiver used is essen-
tially the same as that described in detail by
Gauster and Breazeale.® A 1.016-cm diam elec-
trode is placed approximately 5 um from the
sample (both surfaces being optically flat), and
a dc bias on the order of 150 V is applied across
the gap through a large resistor (approximately
1 MQ),

The method of introducing the substitutional
signal differs somewhat from that previously
used by Peters, Breazeale, and Pare® and in I,
Previously the capacitive receiver itself had been
removed from the circuit during the calibration
procedures, and the calibrating signal was intro-

duced through 2 substitutional capacitor, so that
the equivalent circuit of the capacitive receiver
(an ideal voltage generator in series with the ca-
pacitance of the receiver) was replaced by a real
generator (whose voltage can be measured with a
voltmeter) in series with the substitutional ca-
pacitor. (A second substitutional capacitor cor-
rected for stray capacitance from the receiver to
ground, )

In the present measurements, no circuit ele-
ments were substituted during the calibration, A
substitutional signat which gave the same output
as the ultrasonic signal was introduced across
the capacitive receiver in such a way that the
current of the substitutional signal could be mea-
sured, This current : can be related to the am-
plitude A of the ultrasonic wave by

i=2AV,we/s, n

where V, is the dc bias on the receiver, w is the
angular frequency, ¢ is the capacitance of the re-
ceiver, and s is the spacing of the capacitive re-

FIG. 1. Block diagran
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FIG. 2. Cutaway view of cryogenic apparatus.

ceiver plates,

The signal from the capacitive receiver is
taken to either a 30- or 60-MHz bandpass ampli-
fier. This ampf{ified signal is detected and taken
to a boxcar intergrator, The boxcar integrator
selects a portion of the firs: echo and gives a sig-
nal out which is proportional to the time average
of that portion of the echo, The germanium sam-
ples, being nonconductors, do not sufficiently
shield the rf pulse at the transducer from the re-
ceiver, so that a 30 MHz pulse is received at the
receiver (by radiation) before the ultrasonic wave
reaches the receiver. This “feedthrough” pulse
can be much larger than the echo of interest and,
although it can be separated in time from the mea-
sured echo, it can overioad the 30 MHz amplifier
and the boxcar integrator. This problem was
solved by gating the signal from the capacitive
receiver so that only the echo of interest was
passed,

After the fundamental and second-harmonic
signals have been measured by the boxcar inte-
grator, the continuous wave (cw) substitutional
signal 1s introduced at the capacitive recewver,
The G0 MHz substitutional signal is derived by
doubling the 30 MHz signal with a ring bridge
mixer, Both the 30 and 60 MHz substitutional
stgnals are filtered to ensure spectral purity,
These two signals are adjusted to give the same
output trom the boxcar integrator as the ultra-
some signals and are then measured with an rf
voltmeter, From these measurements and a
wnowledge of the circult impedances (which wore
obtatned at each frequency used by measurements

with a vector voltmeter), the current of the sub-
stitutional signal can be calculated,

B Second-urder elastic constants

The SOE constants were determined from room-
temperature velocity measurements and the re-
Sults were compared with the data of McSkimin
and Adreatch'® and McSkimin, '’ The agreement
was within experimental error. The extensive
tabulated data of McSkimin'” were used in the
calculations of the cryogenic data,

C. Cryogemc apparatus

The electonic apparatus for making measure-
ments at low temperature is essentially the same
as that for measuring at room temperature,
Since relative measurements can be made, it is
not necessary to calibrate at each temperature,
Thus, a reference voltage is not necessary.

As shown in Fig, 2, the sample holder is en-
closed in a stainless-steel can. This can shown
is surrounded by another can, The space between
the cans is evacuated to provide an insulating
jacket around the inner can, and the cans are pol-
ished to reduce radiation losses, The cans are
Supported by three thin-walled cupro-nickel tubes,
Two of the tubes have a smaller cupro-nickel
tube centered taside to provide a 50-02 coaxial
transmission line and are also used as vacuum
lines. The other tube houses the temperature
sensor and heater leads, and also is used to sup-
ply a pressure to the inner can,

The capacitive receiver is similar to that in
the room temperature apparatus, with the addi-
tional feature that the gap spacing can be con-
trolled pneumatically. * The lapped ring against
Which the sample rests is'undercut to make it a
flexible diaphram approximately 6. 038 c¢m thick.
The space above the sample is evacuated and the
Capacitor gap spacing is adjusted by regulating
the pressure in the inner can,

The entire apparatus is suspended inside a
standard helium research dewar, The dewar can
be sealed and temperatures below the room-
pressure boiling point of the coolant may be ob-
tained by pumping on the coolant (either liquid
helium or nitrogen),

The temperature in the inner can is controlled
by an electric resistance heater connected to a
commercial temperature controller, and can be
varied continuously from approximately 3 K to
room temperature, :

D Cryogeme nonlineanty measurements
Only relative measurements need to be taken

with the cryogenic apparatus, One (irsts adjusts
the driving signal to the quartz transducer so that

e = S S RS, Y
S AT ST
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FIG. 4. Block diagram of phase-sensitive detector
system.

the fundamental ultrasonic wave received at the
capacitive receiver is the same at each tempera-
ture, The second harmonic is then measured by
a slide-back technique: the de bias voltage on the
capacitive receiver 1s adjusted so that the elec-
trical signal coming from the capacitive receiver
is the same at all temperatures, The second-
harmonic amplitude A, of the ultrasonic wave at
two different temperatures (7, and T,) are then
related by

ATy = AT Vy(T) /V, (T, (8

The electrical [eedthrough is worse in the cryo-
genic apparatus than it is in the room tempera-
ture apparatus, Theretore, a 60-MHz bandpass
filter is used between the capacitive receiver and
the amplifier to attenuate the 30-MHz feedthrough
while passing the 60-MHz signal,

During the course of our measurements it be-
came necessary to determine not only the magni-
tude of the second-harmonic amplitude, but also
its sign. This resulted from the fact that K, were
observed to change enough that they conceivably
could have gone through zero, Such a condition
would have been indicated by a phase shift of 180°
in the second harmonic, For this reason we per-
fected a phase-sensitive detector to measure the
sign of the second harmonic, (Phase-sensitive
detectors which operate at 60 MHz are not com-
mercially avatlable to our knowledge, )

A block diagram of the phase sensitive detector
system 18 shown in Fig. 3. A signal from the
capacitive receiver is fed through a power splitter
to a 30-MHz amplifier and a 60-MHz amplifier,
The output of the 30-MHz amplifier is fed through
a continuously variable phase shifter to a fre-
quency doubler. This [requency doubled 30-MHz
pulse echo train and the second-harmonic pulse
ccho train are fed into the phase-sensitive detec-
tor whose output is proportional to the cosine of
the phase angle between the two 60-MHz signals,
The phase shilter allows the phase angle between
the two signals to be set to zero initially, If the
sign of the second-harmonic amplitude ch

[43]
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as the temperature is changed, the output of the
phase-sensitive detector is inverted,

Using this phase sensitive detector system, we
were able to make an unequivocal assignment of
the phase to the secorid-harmonic amplitude used
in the calculations of the linear combinations of
TOE constants we call K,,

E. Samples

The samples used in this work, were the same
ones used in I, These single crystals were 3, 7803,
4.8242, and 3. 4803 cm in the [100], {110], and
[111] orientations, respectively, (The lengths are
slightly cnanged since used in I because of lapping
and recoating of the sample ends,) The sample
ends were lapped and polished until optically flat
and parallel to within 12 sec of are, The cnds
were then made conductive by evaporating a cop-
per coating approximation 1000 A thick onto them,

1. RESULTS

A R | y nents for Ge

The absolute amplitude measurements at room
temperature are given in Fig, 4, The straight
Iines in the figures are least-squares fits to the
data points, It can be seen that the data will fit
very well with a straight line; however, this line
does not pass through the origin because of residu-
al noise, The slope of the line is (in the least-
squares sense) the best [it to the value of the quan-

+ + + +

1 2 3 a4 ?
Al (0% meter?)
FIG, 4. Room=temperature values of the second=har-
monic aniplitude plotted as a function of the square of the
)

[{ amplitude,
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TABLE Il. Measured room=temperature values of 4 and K.,
8
Sample 8 {Extrapolated
Sample Length from data of ‘] K K,
srientation (cm) (Present value) n* (uverage) (10'* dyn/cm?) (10 dyn/em?
ol 4.5242 2,08 +0.016 a 2,029 15,51925 -110
1.729
111 3. o7 . 016 i 1,722 1 -13.
(111} 4803 1.71 +0.016 (1.630) 72 16, 40807 13,40
(1001 3,7503 1.05 40,044 LA 1.018 12,85280 -7.782
(0.923) g

‘W. T. Yost and M. A, Breazeale, Phys. Rev. B 9, 510 (1974).

=

®From the data of H. J, McSkimin and P, Andreatch, Jr., J. Appl. Phvs. 34, 651 (1963).

tity
YBk% = k33K, + Ky) /8K,. (9)

If the effect of the power lost from the fundamen-

tal to the second harmonic and by at*enuation is
considered, as was done in I, one finds that the
present data satisfy the small amplitude assump-
tion better than those in I, This can be seen in
Fig. 5 in which we present values of the dimen-
sionless parameter ;3 calculated from both sets
of data,

The data from I were corrected for the effect
of residual naise in the equipment (which was not
done previously), It is seen that the present data
are best fit by a horizontal straight line and those
of I are reasonably extrapolated in the manner
described in that publication. The maximum dif-
ference between the sets of data is only 5, 5%, In
view of the fact that both measurements depend
upon absolute measurements of displacement am-
plitudes on the order of 10’ A, this agreement
is quite satisfying.

Further comparisons between the present re-
sults and the data of 1 are given in Table II. In
the third column is the value of 3 obtained by a
least-squares fit to the present data and its stan-
dard deviation, In the fourth column is the value
of ;3 extrapolated from the data of I, aftter correc-
tion for residual noise, For reference, values
originally listed in I are given in parentheses in
this column, In the fifth column the average be-
tween the two values of § are given, and this is
talken as the most probable value, In the last
column is given the value of Ky calculated from
the most probable value of 3 and the value of K,
itsted in column 6,

The random error for the present measurement
{8 somewhat higher than that of I, This is in large
part because the present measurements were
made at much lower amplitudes, The systematic
errors are estimated to be within plus or minus
107, This estimate is consistent with the differ-
ences between the present work and data in I,

The values of  in the [110] and the [100] direc-
tions are approximately 57, and 5,5 higher than
those ot I, while the value of ;7 in the [111] direc-
tion 1s-approximately 0, 8% lower than that ot I,
The present measurements of the 11 1| sample
were made at 29, 3 MHz, dnd the measurements
of the [110] and the [100| sample were made at
30.0 MHz, The impedances in the room-tempera-
ture apparatus were measured at each frequency,
and it is presumably errors associated with these
impedance measurements which are mainly re-
sponsible for the differences between the present
vatues of ) and those of 1,

B. T d d¥nce of TOE c

Figure 6 shows the data we obtained for the
three different A,'s of germanium as a function

22

!
2.0

f‘e__. N

.
o) (100]

08
Jl 6
2 4 8
A, (10 meter)

FIG. 5. Dimensionless parameter o plotted as a func=
tion of the fundamental amplitude, 0 present data, &

s

data from | (W, T, Yost and M. A. Dreazeale, hys,
Rev. B9, 510 (1974,

o g g N

o




[45]

3628 JAMES A. BAINS, JR., AND M, A, BREAZEALE Q
A 12 Zz 24107 21 J
5kx10

€ fiool g 1;
~ 10 -4

v m o, e | |
D -shetestistiustsatte 8§ -s

8 1Slpe i) 5 ]

2 -20} gﬁ E ?

e ! 2 o f 1

00 200 8 Xz *Cazs i

TEMPERATURE €K) % |

F1G. 6. Temperawre dey e of the 1 ions 100 200 300

of TOE constants K, for the three principal directions in
Germanium,

of temperature, The first data runs, shown by
the open symbols were taken without use of the
phase-sensitive detector., The curves for the
hOOl and flllldirecuons are considered to be
too smooth to admit a negative phase of the sec-
ond harmonic from which the data were calcu-
lated. The data in the [110] direction were not

TEMPERATURE (°K)

FIG. 8. Temperature dependence of certain TOE
constants combinations calculated from our data under
the assumption that the “Anderson-Griineisen param-
eter" and C,,; are temperature independent,

as smooth, The initial data between approximately
15 and 50°K had shown a peak or dip depending

on the interpretation of the phase, We also noted
that a thermal gradient might have been respon-
sible for this behavior, The apparatus was modi-
fied to eliminate thermal gradients and the phase-

N

X107 9

|

Qo

A

TOE CONSTANT COMBINATION dyne /cm?)

Cr23+6Cuq+ BTs6
-8F R
Cim \
.12 L
16}
Cmn '4CI“
100 200 300

TEMPERATURE  (°K)
FIG. 7. Tempevature dependence of the simplest com=
binations of TOE constant~ which can be ealculated from
the A, ol Germamum,

itive detector was added. The data shown as
solid circles were taken with the modified appara-
tus, There is no ambiguity about the sign of the
second-harmonic amplitude from which these data
were calculated, The agreement between the
two sets of data in the low-temperature range
reassured us about the correctness of these data
and allowed us to eliminate erroneous data points
from this plot.

Down to liquid-nitrogen temperature, these
data reproduce the results of I to well within 3%,
The data for the [100] direction can be fit very
well with a straight line down to 3°K. The data
for the [111] direction is essentially a straight
line with a very slight upturn at very low tem-
peratures, The data for the {110] direction are
the only ones which show a marked deviation from
a straight line, At low temperatures there is a
definite downturn of the data.

These linear combinations of the TOE constants
are not the simplest possible combinations avail-
able from our data, For exawple, C,,, is can-
tained in each of these curves. and therefore can
be subtracted out, Proceeding in this fashion, we
have evaluated the simplest combinations ot TOE
constants shown tn Fig, 7.

As can be seen, there is not a great variation
of these combinations of third-order elastic con-
stants down to 77 K. But between 77 and 3 'K
there is a considerable variation in some of them,
In particular, the combination (Cy,5+ 6C, 4+ 8C s)
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FIG. 9. Temperature dependence of certain TOE con=
stant combinations calculated from our data assuming
that both the “Anderson-Griineisen parameter” and Cyn
are temperature independent,

crosses zero at 7K and becomes positive below
that temperature, Since these are the TOE con-
stants which would play a significant role in the
transverse modes, we feel that the lack of agree-
ment between theoretical calculation of thermal
expansion from elastic data'****" and the mea-
sured thermal expansion might be attributed to
the theoretical assumption that the TOE constants
are independent of temperature,

1L ISOLATION OF ADDITIONAL TOE CONSTANTS

Further reduction of the data can be made if one
makes the assumption that the “Anderson-Griin-

eisenparameter”'? isnot a function of temperature, '

This assumption may be more valid than the as-
sumption that the TOE constants are independent
of temperature. Therefore, using it to isolate
additional TOE constants from our data may prove
to be instructive,

Using the data from our experiment, the data
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of McSkimin and Andreatch'® (combination of TOE
constants at room temperature), and the data of
MeSkimin'’ for the second-order constants C,,

and Cy, we can calculate the “Anderson-Gruneisen”
parameter by Rao’s formulation®®;

8==1=(Cy +6Cy3+2C39) /3(Cyy - 2C). (100

If 5 is indeed constant as a function of tempera-
ture, then the temperature dependence of the
combination 3C,, + C,,; can be obtained from our
data, Under this assumption, this combination

of TOE constants shows virtually no temperature
dependence (see Fiz, 8), If it is further assumed
that C,,, is not a function of temperature (and
equal to the room temperature value obtained from
the data of our experiment and McSkimin and
Andreatch), additional TOE constants may be cal-
culated. These calculated constants are ziven

in Fig. © and are designated by enclosing the con-
stants in quotation marks to specify that these
calculations are based on the two assumptions
given above,

In conclusion, the measurements indicate that
there is a definite temperature dependence of some
of the TOE constants, Since we cannot isoiate
all of the TOE constants, it is not feasible at
present to determine the effect of this tempera-
ture dependence on the Griineisen parameter cal-
culation of Brugger and Fritz, ' However, our
assuinptton that the Anderson-Griineisen param-
eter is independent of temperature has allowed us
to plot most of the TOE constantsas a function of
temperature, The validity of this assumption,
and hence of the curves drawn to Figs, 8 and 9,
is open to question; however, one can observe
that, to the extent these curves are valid. the
greatest temperature dependence seems to be
found in Cg4 and 3C 4, + 4C .
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ULTRASONIC NONLINEARITY PARAMETERS OF FUSED SILICA BETWEEN
32K and 3002K 3

Breazeale, M. A, Department of Physics
Cantrell, J.H. " The University of Tennessee
Knoxville, Tennessee 37916 USA

The nonlinearity parameters of fused silica have been measured between room
temperature and 3° Kelvin by the harmonic generation technique (1).

A 30 MHz ultrasonic pulse is generated in samples of fused silica which differ
in hydroxyl ion content and in homogeneity. As the ultrasonic wave propagates
through the sample it generates harmonics of the 30 MHz fundamental. By use of a
capacitive receiving transducer, amplitudes of both the fundamental and the second
harmonic are measured. Typical values of the fundamental and second harmonic
amplitudes are, respectively, 2.2 Angstroms and 9.3 x 10-3 Angstroms. These ampli-
tudes are used to calculate the nonlinearity parameter (2)

3¢11*%in
B = -(-—33;-—).
and hence the third-order elastic constant C,... Room temperature values of these
quantities for four different samples are gi“l% in Table I.

As the temperature is lowered to 3 °K, Cyy; changes by 16% for Suprasil W1, and
less than this for the other samples. The variation of B is 7% for Suprasil 2, and
less than this for the other samples. Since B can be related to the longitudinal
mode strain Grilneisen parameter Y11» this means that temperature dependence of the
total Grilneisen parameter as great (3) as 800% must come from sources other than
variations of the third-order elastic constant C,,. [Research sponsored by the
Office of Naval Research.] o

; TABLE 1

11 2 12 2
Sample .8 Cu (10°" dynes/cm) Clll (10°° dynes/ca“)
Suprasil W1 -3.86 + 0,071 7.8059 £ 0.0029 6.70 £ 0.124
Suprasil W2 . =3,93 ¢ 0.034 7.8078 ¢+ 0.0020 6.85 ¢ 0.058
Suprasil 1 -4,14 + 0,041 7.7633 ¢ 0.0016 © 7.31 £ 0.073
Suprasil 2 -3.90 ¢ 0,039 7.7633 ¢ 0.0014 6.75 £ 0.067
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Ultrasonic investigation of the nonlinearity of fused silica for different hydroxyl-ion contents
and homogeneities between 300 and 3°K
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The harmonic-generation technique was used to measure the third-order elastic constants C,,, of four types
of fused silica. The samples differed in amount of OH content and directional homogeneity. The results
indicate that a relatively large OH content in fused silica may give rise to a relatively greater value of C;;,
and that C,,, is a weak function of temperature regardless of OH content. The relationship between the
experimentally defined ultrasonic nonlinearity parameter 8 = —(3C,, + C,,;)/3C,, and the Griineisen
parameter ¥ also has been determined. The measured temperature dependence of 8 indicates that in the
Debye model elastic constants other than C;, and C;,, must dominate the strong temperature dependence of
the Griineisen parameter for fused silica at low temperatures.

1. INTRODUCTION

A number of the physical properties of solids
result from the fact that solids are inherently non-
linear. Among these properties are thermal ex-
pansion, attenuation of high-frequency sound
waves, heat conduction, and wave-form distortion
of ultrasonic waves passing through a solid. These
nonlinear effects arise because of anharmonicity
of the interatomic potential.

The earliest investigations of anharmonicity in
solids were pursued from more purely thermody-
namic experimentation. For example, Fizeau!
was among the earliest investigators to measure
thermal expansion.

Griineisen® developed the relationship between
the thermal-expansion coefficient and a parameter
which was assumed to be temperature independent
(the Grineisen parameter y). Barron®* and
Sheard® were among the first to make calculations
relating the Griineisen parameter to elastic data.
They limited their calculations to the cases of high
and low temperatures. Collins,® Schuele and
Smith,” Brugger and Fritz,® and Gerlich® have
made more extensive calculations to determine the
temperature dependence of the Griineisen parame-
ter from elastic data using the quasiharmonic
Debye model of solids. Thus, the Griineisen con-
stant is a convenient link between thermal-upan-
sion data and elastic data.

The agreement of the calculated dependence of
the Griineisen parameter as a function of tempera-
ture with values measured from thermal expansion
has been limited because of the lack of availability
of elastic data [particularly third-order elastic
(TOE) constants] as functions of temperature. For
many materials such as Cu, Ag, Au, Al, and Na
qualitative agreement exists, but some materials
exhibit an anomalous behavior of the thermal-ex-
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pansion coefficient as a function of temperature.
One such material is fused silica. Fused silica
has a positive thermal-expansion coefficient down
to a temperature of approximately 0.3 of its Debye
temperature. There the thermal-expansion coef-
ficient becomes negative and continues to grow
more negative as the temperature is lowered.'°
This gives rise to the anomalous behavior of the
Griineisen parameter y shown in Fig. 1, where it
is seen that v also becomes negative around 0.3 of
the Debye temperature and continues to become
more negative as the temperature approaches zero.
This is in contrast with germanium, for which y
levels off as the temperature approaches zero and
with quartz which maintains a positive y for all
temperatures. Several investigations3-®11~15 jndi-
cate that at least part of the explanation for the be-
havior of fused silica may be due to the dominance
of transverse-acoustical modes at these tempera-
tures; however, this hypothesis can be tested only
as information on the behavior of TOE constants
as functions of temperature is collected. Since the
TOE constants determine how a large amplitude
ultrasonic wave distorts as it propagates through
the solid, TOE constants can be calculated from
ultrasonic wave distortion. We have chosen to
measure this wave-form distortion in order to
understand more fully the unusual behavior of
fused silica.

Ultrasonic wave distortion was initially observed
in polycrystalline aluminum®® and in several single
crystals!” with quartz transducers. Absolute am-
plitude measurements became possible with the
development of the capacitive receiver,'® and mea-
surements at different temperatures became possi-
ble with a later refinement.'® Several investiga-
tors?™?? have used this method to calculate com-
binations of truly adiabatic TOE constants. Yost
and Breazeale®® combined the results of this meth-
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FIG. 1. Temperature dependence of the Griineisen parameter for quartz, germanium, and spectrosil fused

silica (from G. K. White, Cryogenic 4, 2 (1964)].

od with those of Dunham and Huntington?* to obtain
the first complete set of purely adiabatic TOE con-
stants (of fused silica) at room temperature. Com-
binations of TOE constants of copper?® and german-
ium?® have been measured between room tempera-
ture and 77 °K. More recently, the measurements
on germanium were extended to lower tempera-
tures (3 °K).”"

The purpose of the present investigation is to ex-
plore the results of anharmonicity more fully. To
do this, we have measured the second harmonics
of an initially sinusoidal ultrasonic wave in four
different samples of fused silica between room
temperature and 3 ’K. From these data we have
calculated the adiabatic TOE constant C,,, as a
function of temperature. Also, we have plotted the
experimentally defined nonlinearity parameter
B=-(3C,, +C,,,/3C,), because, as we show, there
is a relationship between B and a Griineisen pa-
rameter. The implications of the present results
in light of the temperature dependence of the
Griineisen parameter are discussed.

II. THEORY

A. Ultrasonic nonlinearity in isotropic solids

For an isotropic solid pure mode propagation is
possible for a longitudinal ultrasonic wave in any

direction. In this special case the nonlinear wave
equation takes the form®
9 9

poil =cu$‘, +(8C,+Co) ge a:‘ : )
where p, is the mass density of the undisturbed
medium, u is the particle displacement, a is the
Lagrangian (laboratory) coordinate in any direc-
tion, and C,, and C,,, are secoud- and third-order
elastic constants, respectively.

Assuming an initially pure sinusoidal disturbance

at a =0, the solution to Eq. (1) may be written®

u=A, sinfka - wt) -[(3C,, +C,,,)/8C,, ] A%?
Xa cos2(ka - wt) , (2)

where k is the propagation constant 27/, and w

is the angular frequency. Hence, an initial sinus-
oidal disturbance of amplitude A, distorts linearly
with propagation distance a and generates a second
harmonic of amplitude

A,=-[(3C,,+C,,,)/8C, A% . (3)
Solving Eq. (3) for C,,, yields
clll‘-wlllim|/A=)(l/k ’G)#l] . (4)

All quantities on the right-hand side of this equa-
tion can be measured and C,,, can be determined.
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The quantity
L(A/AD Wk a) =B (5)

in Eq. (4) is a significant quantity in this study. If
B is zero, then A, is zero and no second har-
monic is generated. Since the generation of a
second harmonic is a direct measure of the non-
linearity of a solid then B may be referred to as
the ultrasonic nonlinearity parameter. For iso-
tropic solids B is expressed in terms of the elastic
constants as

a~{9C,, #C, }/C,, . (6)

B. Griineisen parameters and their relationship to
1. Griineisen parameters

The anharmonicity of solids also can be investi-
gated from thermodynamic measurements (e.g.,
volume expansivity, variations in isothermal com-
pressibility as a function of temperature, etc.).
Among those investigating anharmonicity from these
techniques it has become common to express the
results in terms of the Griineisen parameter v,
defined by? ;

y=a/K.C,=a/K,Cp, (7

where a@ is the thermal volume expansivity, K,
and K are the isothermal and isentropic compres-
sibilities, respectively, and C, and C, are the
isochoric and isobaric heat capacities, respective-
ly.

A relationship between ¥ and the elastic constants
can be found from calculations based on the as-
sumption that®"=® (i) the material behaves like
continuous anisotropic medium, (ii) the nondisper-
sive Debye model of specific heats is valid, and
(iii) the generalized Griineisen parameters depend
on temperature only through the lattice dimensions.

If one defines the volume generalized Griineisen
parameter for the mode (p,q) by

3 v aw(p,a)>
Y(P-Q)=-m (—SV_ ¥ ] (8)

where p is the polarization index (p=1, 2, 3) cor-
responding to the three acoustical modes, q is the
wave vector, V is the volume, T is the tempera-
ture, and w(p,q) is the angular frequency of the
mode. The Griineisen parameter ¥ may then be
expressed as®

ys z’:fam(p.ﬁ)c(p,ﬁ)/;fdncw.ﬁ).
9)

where the integration is performed over the spatial
direction N=§/|q| in the irreducible part of the
Brillouin zone [in our case a sphere of radius

qp=(612/V)"3 where V, is the volume per atom].
The specific heat of mode (p, M) in Eq. (9) is given
by
g*lo(p, M)/ 1)
N) =
ctr. M= (32 ) f E{explO(P,ﬁ)/?] i

(10)

where 9(/),10) is the characteristic Debye tempera-
ture of mode (p, N) given by

0(p,N) = (hg,/K)S(p,N), (11)
where K is the Boltzmann constant and
o (2w(p,d)
S(p, M) = (——Bq ) 3 (12)

is the elastic wave speed of that mode.
It is convenient to introduce the strain general-
ized Griineisen parameters y,,(p,d) defined by

Yalp, == Wl—qﬁ (3‘1’3‘7”,;91)?]_ (13)

where 7 is the Lagrangian strain tensor and the
indices j,k=1,2,3. The volume generalized
Griineisen parameters can be expressed in terms
of the strain generalized Griineisen parameters by

7‘Pa6)=K'l_T’v; Z:s;.luyn(pva)! (14)

where K, is the 'isothermal compressibility and
S7,,, are the isothermal elastic compliance coeffi-
cients.

It has been shown® that v, (p,q) can be expressed
in terms of the elastlc constants by (Einstein nota-
tion)

Y, N) =[1/20(p, M) 200(p, N)U U,
= (C]kml +Cummw u v)Nllan]
(15)
where

w(p,N) =C NN, U,U, - (16)

R gives the direction of wave propagation, 0 is a
unit vector along the direction of polarization ap-
propriate to p, and the subscripted C’s are the
second- and third-order elastic constants in the
equations.

2. Relationship to the ultrasonic nonlinearity parameter

For pure longitudinal acoustic modes in an iso-
tropic solid, Eq. (15) reduces to the set of rela-
tions (using Voigt®® notation)

u=-03C,+C,)/2C,,, (17)
a2 = Y3 = =(C13+C,,,)/2C,,, (18)
and

e CMBRAN Bir h

r_.-.m». SRR —

—_— - TG W - ST

— P

mibs LS L AR A T el e d ORISR



|

Yy=0, i#j, (19)

where the prescript ! indicates longitudinal-acous-
tical modes. From Eq. (6) and (17) it is seen that

Y11 18 related directly to the ultrasonic nonlinear-
ity parameter 8 by

Yu=iB. (20)

Hence, one of the strain generalized Griineisen
parameters is measured directly by the present
harmonic-generation technique.

For an isotropic solid Eq. (9) reduces to the
form

v=C,+2y,C)/(C,+2C,), (21)
where
vi=+28-(C,+C,,,)/3C,, (22)

is the longitudinal -mode volume generalized
Griineisen parameter obtained from Eq. (8), and
C, and C, are the modal specific heats of Eq. (10).
Y, in Eq. (21) is the transverse-mode volume gen-
eralized Griineisen parameter and is not easily
expressed in terms of the ultrasonic nonlinearity
parameter. )

The significance of the relationship of the non-
linearity parameter B to the Griineisen parameter
Y is now established for the case of isotropic solids.
It allows one to ascertain directly the contribution
of the “longitudinal-mode” elastic constants C,,
andC,,, to the temperature dependence of the
Griineisen parameter when 8 is measured as a
function of temperature.

III. EXPERIMENTAL TECHNIQUE
A. Apparatus and measurement techniques

The apparatus and measurement techniques for
determining the amplitudes of fundamental and
second-harmonic waves are described in detail
elsewhere.?” The amplitudes of the fundamental
and the second-harmonic waves were measured
absolutely in each sample at room temperature.
These data were used in Eqs. (4) and (5) to deter-
mine room-temperature values of C,,, and B. At
all other temperatures the amplitudes were mea-
sured relative to the room-temperature values,
and relative values of C,,, and B were determined.

ULTRASONIC INVESTIGATION OF THE NONLINEARITY OF... 4867

B. Second-order elastic constants

The second-order elastic (SOE) constant C,, ap-
pearing in Eq. (4) was determined from room-tem-
perature longitudinal wave-velocity measurements,
since

C”=p°V2, (23)

where p, is the mass density of the unstrained
solid. The measurements were made with capaci-
tive transducers® which eliminated the problem
of bond corrections. The temperature dependence
of C,, was calculated from the data of A. Zarem-
bowitch®® who measured the SOE constants of Pur-
posil fused silica as a function of temperature.
The SOE constants of the Suprasil fused-silica
samples used in these experiments are assumed
to have the same relative temperature dependence
as that of Purposil.

C. Samples

The fused-silica samples used in this work were
manufactured under the commercial designation
Suprasil. All samples were cylindrical, approxi-
mately 2.54 cm in diameter, and were coated on
each end with copper to a thickness of approxi-
mately 1000 A. The length of each sample, impur-
ity content, and the measured ultrasonic wave vel-
ocities at room temperature (27 °C) are given in
Table I. The symbol W indicates that the sample
has only 5 ppm of OH, while the unlettered sam-
ples have OH contents of 1200 ppm. The numerical
designation 1 or 2 indicates the degree of homo-
geneity of the sample. The designation 1 indicates
a guaranteed strong homogeneity in all directions,
whereas the designation 2 implies a guaranteed
strong homogeneity only in the direction perpen-
dicular to the sample surfaces.

IV. RESULTS

A. Room-temperature measurements

Accurate room-temperature values of the non-
linearity parameter B and of C,,, were determined
by an extrapolation technique which minimized the
effect of attenuation on the results.? The nonlin-
earity parameter B was measured for different

TABLE 1. Samples used in this study and pertinent properties.

Impurity content (ppm) Sample length Longitudinal ultrasonic

Sample OH  Fluorine Chlorine (cm) velocity (10° cm/sec)
Suprasil w1 5 260 260 1.2590 + 0.0003 5.9526 + 0.0016
Suprasil w2 5 260 260 1.2587 + 0.0002 5.9533 + 0.0011
Suprasil 1 1200 130 130 1.2593 + 0.0002 5.9363 + 0.0012
Suprasil 2 1200 130 130 1.2586 + 0.,0002 5.9363 + 0.0011

Py 1 4 o B S
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FIG. 2. Room-temperature plots of g as a function of
the fundamental amplitude.

fundamental wave amplitudes A, for each sample.
The resulting values of B were plotted as a function
of A, as shown in Fig. 2. The solid curves are
drawn through the data points in such a way that
they approach A, =0 with a horizontal tangent.
Previous analysis® shows that this extrapolation
corrects for the effect of attenuation. As can be
seen the maximum magnitude of this correction is
of the order of 5%.

The results of the extrapolated room-tempera-
ture measurements of 8, C,,, and C,,, are given in
Table II. An examination of the table reveals that
the SOE constants of the fused-silica samples with
high OH content (Suprasil 1 and Suprasil 2) are
lower than the samples with low OH content
(Suprasil W1 and Suprasil W2). These results are
consistent with those of Hetherington and Jack®
who noted also that an increase in OH content

caused an increase in mass density fluctuation as
much as 3 parts in 10? in their experiments.
Primak® suggested that in similar experiments
by Fraser® in the ultrasonic range of frequencies
the results reflect the effect of network cleavages
induced by OH impurities.

Table II shows that 8 is negative for all fused-
silica samples. This means that A, is also nega-
tive and that C,,, is positive. Bainsand Breazeale®
have shown, using a phase-sensitive detector, that
the harmonics of fused silica are generated out of
phase with those generated by the same ultrasonic
wave in copper. They conclude that the positive
C,,, of fused silica means that the solid becomes
softer upon compression in contrast to copper
which becomes stiffer upon compression.

According to Table II, Suprasil 1 has a substan-
tially higher value of C,,, than any of the other
samples used in these experiments. It is tempting
to infer that this is because of the high OH ccntent
of the sample (1200 ppm compared to 5 ppm for
Suprasil W1 and Suprasil W2), but Suprasil 2 also
has a high OH content (1200 ppm) and gives a value
of C,,, which lies between those of Suprasil W1 and
Suprasil W2. The reason for this is not completely
understood at this time. A check of all the samples
with crossed polaroid sheets revealed that residual
siresses were undetectable by this technique.
Hence, residual stresses in a particular sample
probably are not the cause of the difference.

A possible explanation may lie in the fact that
even though Suprasil 2 is strongly homogeneous
in the direction perpendicular to the sample faces,
it may have inhomogeneities in other directions.

If mass density variations existed parallel to the
sample faces, then there would be an associated
phase variation across the ultrasonic wave front.
Such a situation leads to phase heterodyning which
can cause significant changes in the amplitude of
the electrical signal response.’” Since this hetero-
dyning is frequency dependent, fundamental and
second-harmonic waves would be affected differ-
ently. The result could be a decrease in the mea-
sured value of C,,, for Suprasil 2. If this were
true, then one could consistently associate high
C,;, values with high OH content. Thus, the net-
work cleavages introduced by the OH impurities

TABLE II. Measured room-temperature values of 8, Cy, and Cy;.*

Sample B Cy; (10" dyn/cm?) Cyyy (10'? dyn/cm?)
Suprasil w1 -3.86 40,071 7.8059 + 0.0029 6.70 + 0,124
Suprasil W, -3.93 40,034 7.8078 4+ 0.0020 6.85 4+ 0,058
Suprasil 1 ~4,14 £ 0,041 7.7633 1 0.0016 7.31 40,073
Suprasil 2 ~3.90 4 0,039 7.7633 1+ 0.0014 6.75 + 0.067

“The errors listed are the calculated standard deviations (random errors).
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FIG. 3. Temperature dependence of B for the fused-
silica samples.

which may be the cause of lower C,, values could
also be the cause of higher C,,, values.

B. Cryogenic measurements of § and its implications
to the calculation of Griineisen’s y

In making relative measurements with the cryo-
genic system, the quantity 8 is determined direct-
1y*" [see Eq. (5)]. The resulting plots of B versus
temperature in Fig. 3 indicate that B is virtually
temperature independent. This means that the ,v,,
component of the strain generalized Griineisen pa-
rameter also is virtually temperature independent
since ,7,, = 3.

Therefore, the temperature variation of the ex-
perimentally determined Griineisen parameter y
for fused silica shown in Fig. 1 must come from
variations in the volume generalized Griineisen
parameter [ see Eqs. (21) and (22)].

It is apparent from Eq. (21) that in order to ob-
tain a negative value of the Griineisen parameter
at some temperature for fused silica, at least one
of the volume -generalized Griineisen parameters
must be negative at that temperature since the
model heat capacities C, and C, are always posi-
tive. Barron™* and Blackman'! have suggested
theoretical models which for some volume gener-
alized Griineisen parameters, associated with cer-
tain transverse-vibrational modes, do become
negative. These transverse modes necessarily in-
volve elastic constants other than C,, and C,,.

C. Cryogenic measurements of C,,,

The behavior of C,,, as a function of temperature
can be determined directly from that of 8. Figure
4 is the resulting plot of C,,, versus temperature
for the four samples. These curves show greater
scatter in the data points than was experienced in
previous experiments with copper®® and german-
ium.*?" Further, the estimate of random error
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due to temperature changes in the transducer
bonds is +3% and the standard error is no more
than +1%. Hence, the considerable amount of scat-
ter would seem to indicate structural changes in
the samples as a function of temperature. In large
part, this may be due to the asymmetrical nature
of the void surrounding the oxygen atom, which is
a reflection of the random nature of the tetrahedral
network. As the temperature is lowered, evidence
exists® that the Si—O-Si bond angle changes due to
the asymmetrical vibrations of the oxygen atoms.
Thus, the tetrahedral network of fused silica be-
low the quenching temperature is in a state of
stress. The resulting states of strain are more
accentuated for the weak impurity bonds and this
makes them more efficient electron traps than the
strong Si-O bonds. This means that the effect of
temperature changes is to cause variations, espe-
cially in anharmonic-dependent effects since it is
these effects that are most sensitive to variation
in structural symmetry and strain perturbations
introduced by impurity sites.

Although scatter in the cryogenic measurements
is too large to attach a great amount of signifi-
cance to individual data points, trends in the C,,,-
versus-temperature data are apparent. The C,,,
values of Suprasil W1, Suprasil W2, and Suprasil 2
all show a slight general decrease of C,,, with de-
creasing temperature. The C,,, values of Suprasil
1 on the other hand do not decrease with decreas-
ing temperature. As with the room-temperature
measurements, Suprasil 1 (with high OH content)
seems to be an anomaly. Again however, Suprasil
2 (also with high OH content) seems to show the
general C,,, -versus-temperature behavior as Su-
prasil W1 and Suprasil W2 (both with low OH con-
tent). Following the explanation given for the
room-temperature measurements, it is conceiv-
able that the lack of strong homogeneity in the
Suprasil 2 sample gives rise to large density fluc-
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tuations across the face of the ultrasonic beam.
The change of temperature possibly may exagger-
ate these density fluctuations, thereby giving rise
to the temperature dependence of C,, observed for
Suprasil 2. The pronounced decrease of the C,,,
value of Suprasil 2 (Fig. 4) with decreasing tem-
perature in the range 147-88 K indicates that a
strong structural change (and consequently density
changes) may have taken place.

D. Conclusion

In conclusion, the present experimental deter-
minations of B and C,,, as functions of temperature
allow an important inference to be made regarding
the temperature dependence of the Griineisen pa-
rameter for fused silica. If the quasiharmonic
Debye model of a solid is assumed to hold for
fused silica, then the relatively weak temperature

dependence of B and C,,, indicates that elastic con-
stants, other than C,, and C,,,, must dominate the
strong temperature dependence of the experimen-
tally determined Griineisen parameter for fused
silica at low temperatures. This is consistent with
the suggestion of White and Birch® that transverse
vibrations of fused silica are associated with the
oxygen atoms of the tetrahedral network. The
elastic constants associated with these transverse
modes would be of the type C,,, C,,,, and C .,
which do not enter into the measurements de-
scribed here.
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SOMMAIRE
ACOUSTIQUE NONLINEAIRE ET PHYSIQUE DU SOLIDE

L'étude de 1'acoustique non Tinéaire en plus de développements
mathématiques et d'applications pratiques pleins de promesses nous
conduit @ des progrés essentiels dans 1'étude de la physique du solide.
La déformation non linéaire d'une onde ultra-sonore dans un solide est
contrgiée par un paramétre nonlinaire qui est & la fois fonction des
constantes d'élasticité du troisiéme ordre [TOE] et fonction des constantes
d'élasticité—plus connues—du deuxitme ordre [SOE]. La mesure de la
déformation des ondes ultrasonores rend alors possible 1'évaluation des
constantes TOE, Tes constantes SOE pouvant, elles, étre évaludes d'apres
les vitesses des ondes ultrasonores.

Le nombre des constantes élastiques est déterminé par la symétfie
du cristal. la grandeur et le signe des constantes TOE sont determinés
par les forces intermoléculaires. Si 1'on considére un crista]vcubfque
dans lequel existent les forces centrales et les interactions les plus
proches, a des températures voisines de 0 °K on trouve que'C]1] = 2(2”2 =
156 ** “123 " Yage * “ya =

Au cours des derniéres années nous avons mesuré les constantés TOE
en fonction de température, descendant jusqu'da 3 °K dans des cristaux
tels que le germanium et le cuivre et dans de la silice amorphe fusihle.
Nous présentons un résumé des résultats accesibles @ 1'heure actuelle
et nous faisons une comparaison du comportement des forces inter-
moléculaires pour des cristaux de types différents.

Récemment nous avons découvert que dans le cuivre les forces
centrales et les interactions les plus proches semblent prévaloir pour
déterminer les constantes TOE pour les températures de 40 °K et de 190 °K.
Toutefois i1 n'en est rien @ 0 °K contrairement ce a quoi 1'on pourrait

s'attendre.
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ABSTRACT
NONLINEAR ACOUSTICS AND SOLID STATE PHYSICS

In addition to mathematical advances and very promising practical
applications, the study of Nonlinear Acoustics now is leading to funda- 1
mental advances in Solid State Physics. Nonlinear distortion of an
ultrasonic wave in a solid is controlled by a nonlinearity parameter
which is a function of the third-order elastic (TOE) constants as well 1
as the second-order elastic (SOE) (the usual) elastic constants.

Measurement of the waveform distortion, then, makes possible the

b

evaluation of the TOE constants, because the SOE constants can be
evaluated from ultrasonic wave velocities.

The number of elastic constants is determined by the crystal symmetry.
The magnitude and sign of the TOE constants are determined by inter- )
molecular forces. In a cubic crystal in which central forces and nearest-
neighbor interactions exist one would find C11] ='2C”2 = 2c166 and
=C = 0 in the limit of 0 °K.

C =C

123 456 144

Over the past several years we have measured TOE constants as a '{
function of temperature down to 3 °K in such crystals as germanium and
copper and in amorphous fused silica. A summary of presently available
data is presented, and a comparison of the behavior of the intermolecular
forces for different types of crystals is made. Recently we have found

that in copper central forces and nearest-neighbor interactions seem to

predominate in determining TOE constants, but this does not happen near

0 °K as expected, It seems to happen near 40 °K and again at 190 °K. J
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When a sinusoidal ultrasonic wave of finite amplitude propagates
through a nonlinear medium it undergoes waveform distortion, as we all
know. The amount of this distortion and its dependence upon frequency
and propagation distance are determined by the nonlinearity parameter
of the propagating medium. For gases this nonlinearity parameter is
simply y + 1 where y is the ratio of specific heats. For liquids it is
B/A + 2, where B/A is the ratio of two terms in the equation of state.
For solids the situation is somewhat more complicated. Not only are
there both longitudinal and transverse waves to consider, but also the
fact that solids can be anisotropic means that the longitudinal and
transverse waves in general are coupled, so that one cannot define a
nonlinearity parameter for every possible direction in a crystalline
solid. Our solution to this problem has been to consider the propagation
of finite amplitude ultrasonic waves only along the principal
crystallographic directions, and to restrict our attention for the
present to crystals of cubic symmetry. In the principal directions pure
mode propagation exists for the longitudinal wave, even though the
transverse wave is always coupled to a longitudinal wave. The pure-mode
longitudinal wave is coupled to its own second harmonic in exactly the
same way a longitudinal wave in a fluid is. For these waves a nonlinearity
parameter can be defined, and it is found that the nonlinearity parameter
is a function of the second-order elastic (SOE) constants and third-order
elastic (TOE) constants. The study of nonlinear distortion of ultrasonic
waves in solids, then, has produced a means of measuring the TOE constants
(the SOE constants can be determined from the velocity of ultrasonic
waves in the sample). Furthermore, the technique can be adapted to

measurements as a function of temperature, which produces results which

1
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are of fundamental importance to solid state physics. At present this
is the only technique which is consistently producing such results. Some
of our recent results are duite exciting; however, first let me remind
you of the technique.
In the principal directions in a cubic crystal longitudinal waves

of finite amplitude are described by.l

2 2

- 3 u U 9 U
poaU = K, == + (3K, + K,) — (1)

0 2 aaz 2 3/ 2a aaz

where K2 and K3 are linear combinations, respectively, of the SOE and
TOE constants, as shown in Table I. The nonlinearity parameter2 is the

negative of the ratio of the nonlinear term to the linear term in Eq. 1,

namely,
3K, + K
A WO (2)
2
For an initially sinusoidal disturbance at a = 0, the solution takes
the form
A2 K2 as
u = Ay sin(ka-wt) + —5—— cos 2(ka-ut) + ... (3)
in which the second harmonic amplitude
A2 i2 ag

contains the nonlinearity parameter 8. Our measurements, then, consist
of absolute measurement of the second harmonic amplitude, the funda-
mental amplitude, the frequency, and the sample length. The only real
problem in these measurements is the fact that the second harmonic
amplitude is so low (of the order of 1072 R at 60 MHz) that care must
be exercised in getting an accurate value. A capacitive detector has
worked well for us, so that we have been able to determine g for
several samples—not only at room temperature,3but also at low tem-

4

peratures—down to 3 °K.” The behavior of g8 as a function of temperature

and the behavior of the TOE constants as a function of temperature are
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of most interest at present. Let us contrast their behavior in
germanium, in which covalent bonding among the atoms exists, with that
in copper, in which exchange energy resulting from overlapping of closed
electronic shells seems to predominate jn determining the elastic
constants.

Nonlinearity parameters measured as a function of temperature for
germanium are shown in Fig. 1; those for copper are shown in Fig. 2. In
each case a smooth curve is drawn connecting the data points. As can be
seen, the nonlinearity parameter is different in the three principal
directions in both cases, but the difference in the magnitudes between
germanium and copper is not great. Furthermore, the magnitude increases
in tae order [100], [111], and [110] in both cases. The variation with
temperature is not great, the greatest variation being only 20% for the
[110] direction in germanium. One can conclude, therefore, that the
nonlinearity parameter of solids, like the Griineisen parameter, should
be nominally independent of temperature.

There is much more information to be obtained from these data,
however. Even though we cannot isolate all six of the TOE constants,
we can isolate certain combinations of them. These are the quantities
listed in Table I as K;. Using Eq. (2), and known values of Ky = pvz,
we can determine the combinations K3 plotted in Figs. 3 and 4. The value
of K3 for the [100] direction is the single TOE constant C]]]. The
values of K3 in the other directions are the more complicated linear
combinations in Table I. Upon examination it is clear that the curves
in Figs. 3 and 4 still are not the simplest comhinations of TOE constants
available from the data. C]]] appears in each expression for K3, so it
can be subtracted out. In this manner one can obtain the curves shown
in Figs. 5 and 6, which are the simplest combinations of TOE constants

available from our data on the nonlinearity parameters.
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Further interpretation of these curves is facilitated by comparison 39
with a model. We will use the simplest model available: a model in
which we assume that the atoms interact by central forces, and in which
there are only nearest-neighbor interactions. Such a model has proved
to be inadequate to explain the magnitude of SOE constants; as we know.
It predicts that C]1 = 2012 = 2644, which is not satisfied By any of
the cubic crystals. On the other hand, we are concerned w{th the TOE
constants which are determined by the nonlinear interactions. For the
TOE constants the central forces, nearest-neighbor interaction model : }
predicts that C1]] = 2c112 = 2c166 and C]23 = C456 = C]44 = 0. We can
use these expressions to see how well those quantities we can measure {
actually follow the predictions of the model. In Figs. 5 and 6 the
combination C“_,3 + 60144 + 8C456 should vanish. Fig. 5 shows that this
actually happens at approximately 15 °K for germanium. The fact that
‘ | E this combination becomes positive helow this temperature cannot be

! explained at the moment. Another test of the agreement between the |
data and the central forces, nearest-neighbor model comes from the fact
E that, according to the model the combination CJ12 + 4C]56 = 5/2 C]]]. ?
On Figs. 5 and 6 the value 5/2 C]]] is indicated by a dotted line. For
germanium the combination C”2 + 4C.|66 indeed is approaching 5/2 Cn.|
| near 0 °K. This means that near 0 °K the central forces, nearest-neighbor
g model can be used to predict quite well the re1ationship among the TOE
constants of germanium. This is consistent, because the model is expe;ted' ; ;

’ to be most accurate at 0 °K, and less accurate as the temperature is }

increased.
Let us now turn to the data for copper. The same combinations of

TOE constants are shown in Fig. 6. Cin has more or less the same

behavior for copper as for germanium, with only a slightly larger
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variation with temperature. Likewise, there is reasonable agreement
betheen C.”2 + 4C]66 and 5/2 C]]], except that for copper the agreement
remains essentially the same, a difference of approximately 6%, for all
temperatures. For copper the combination C]23 + GC]44 + 8C456 is more
nearly zero for the entire temperature range. In fact, it vanishes
completely at two temperatures: 40 °K and again at 200 °K.

Let us assume for the moment that the TOE constants of copper actually
do follow the predictions of the central forces, nearest-neighbor mode].
In that case we would be left with the necessity of explaining the dips
in the data in Fig. 6 which occur between 40 and 200 °K. If we examine
known physical mechanisms we find that dislocation interaction, first
reported by Bordom’,5 can produce in copper a peak in attenuation which
has a similar temperature behavior. Seeger and Mann6 have pointed
out that nonlinearity is very large near a dislocation. Therefore, we
are led to speculate that we are viewing fqr the first time the effect
of Bordoni relaxation on the measured value of the TOE constants of
copper. The samples we used for these measurements were neutron
jrradiated to reduce dislocation interactions. Thus, if this is the
correct interpretation of the data, we can say immediately that our
measurements are especially sensitive to the‘presence of dislocations.
Additional measurements after further neutron irradiation or after
annealing will be required to confirm whether this is the correct inter-

pretation of the temperature dependence of the TOE constants of copper.
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Table 1. K2 and K3 for principal directions of a cubic crystal

Direction K2 K3
[100] Ch G
1 1
(110] 7(Cqp *+ Cyp *+ 2C4,) 7(Cqqq + 3Cqpp + 120;4¢)
1 1 .
(1] FHCyy + 26,5 + 4Cy,) g(Cqqq + 6Cq3p + 1204,
+ 28C 6 + 20153 *+ 16C;56)

[
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FIGURE CAPTIONS

Temperature dependence of the nonlinearity parameters of germanium,
Temperature dependence of the nonlinearity parameters of copper.

TOE constant combination K3 for germanium calculated from nonlinearity
parameters.

TOE constant combination K3 for copper calculated from nonlinearity
parameters.

Comparison of simplest TOE constant combination available from
germanium data with predictions of central forces, nearest-neighbor
model: C;,, *+ 4C (0 = 5/2 C111 and Cy,q + 6Cy,, + 8Cpcc = 0.
Comparison of simplest copper TOE constant combination and predictions
of model.
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