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DISCU SSICt~ OF “A MODEL OF FATIGUE CRACK GR(MTH IN POLYMERS”

by

*Richard W. Hertzberg

**Michael D. Skibo

*John A. Manson

***J. K. Donald

Williams has proposed an interesting model to describe fatigue crack

propagation (FCP) in polymeric solids and to account for a number of

experimental observations) The purpose of this communication is to

(1) examine the basic assumptions underlying the model, (2) compare

recent data with values predicted from the model and (3) present alternate

explanations for polymer fatigue behavior.

The first assumption is that upon unloading and reloading a craze

at the crack tip , some of the craze ligaments become damaged , thereby

reducing the craze stress From this a two-stage craze zone is

envisioned in which the newly formed craze material at the crazc~ tip

experiences a stress while the remaining part of the craze sustains

a lower stress, ~ a . Use of this assumption leads to values of and

for several polymers in the ranges (325-72~~MPa and (29-2,016) MPa ,

respectively (see Table II in References I and 2). In contrast , use of

the Dugdale plastic strip formulation leads to values typically in the

range of 40-80 MPa .2 Since experimental values for crazing stresses are
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comparable for each of a number of polymers, it seems unlikely that the

two-stage model can be generally valid , at least as currently stated.

Instead we suggest that the bulk of the craze experiences a uniform stress,

similar to that postulated in the Dugdale plastic strip model.

We certainly agree with Williams that cyclic-stress-induced weakening

will take place in some of the fibrils that span the craze. However , we

postulate that the load across the craze will be redistributed among the

remaining unbroken craze fibrils .3 These fibrils are then envisioned to

s tretch further , thereby leading to enhanced orientation hardening . With

further cycling , additional fibrils are expected to break and the remain-

ing ligaments would correspondingly become more highly oriented . We suggest

further that a steady-state balance is struck between these two competitive

processes--weakening through fibril fracture, and strengthening due to

orientation hardening of the remaining fibrils--with consequent development

of a constant stress, 
~~~~
, across the craze. Quantitatively, this stress

level should correspond to the product of load-bearing fibril strength 
~~

and fibril volume fraction V
f 
so that 

~~ 
Cf V~~. By way of confirmation,

we find that computations involving fracture band widths, based on the

Dugdale model, permit one to infer uniform craze stresses in several

polymeric solids that, as mentioned above , are in good agreement with

va lues reported in the literature by others.2

Proceeding further , we believe that the weigh t of evidence does not

support Williams’ explanation f or the sensitivity of FCP rates to test

frequency . He argues that polymer crack growth rates may be given by

(1)

—2-
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dawhere — fatigue crack growth rate

A ,n = material property

AK stress intensity factor range

K fracture toughness
C

Indeed relationships of this form has been proposed by Wnuk and supported

by extensive experimental findings by several groups.5”7 Using Equation 1,

Williams then proposes that the sensitivity of FCP rate to frequency is

controlled by the strain-rate sensitivity of 
~~ 

the latter being given by

2
E ‘ COD (2)

where E = elastic modulus

— yield strength

COD crack opening displacement.

Earlier Williams8 assumed that the yield strain ~ could be estimated

from Hooke’s Law as

C ° — ~~ —~‘ (3)y E

so that K
~ 

FI[COD C) 
The use of Eq. 3 in this situation seems

questionable, especially since the modulus values used were defined at a

strain of 3¾ percent.

In any case, using yield strength and secant modulus data, along with

Hooke ’s Law, Williams concluded that the yield strain was insensitive to

strain rate and that the frequency sensitivity of K was due only to

strain-rate-induced changes in E.

We disagree with this analysis in principle and on the basis of lack

of correlation with both existing data and new test results reported below.

First, by defining a secant modulus at a strain of 3I~ percent and assuming
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a true elastic limit at a much lower strain level, one would expect the

secant modulus to be strongly sensitive to the yield strength (see Figure 1).

It would not be surprising then to find the strong frequency sensitivity

of E that was reported by Williams.8 ~~i the other hand , moduli of typical

glassy polymers are stated to be relatively insensitive to strain-rate ,9

and even semi-crystalline polymers show relatively small time-dependent

changes below T
g•’° If da/dN is to be changed by an order of magnitude

(as is the case with some polymers11”13) then E would have to change by a

factor of 1.33 even if we assume the high value of 8 for the exponent n

in Eq. 1 and assume that the frequency sensitivity of K
~ 

is due only to

strain-rate-induced changes in E.

Second, in order to examine directly the frequency dependence of E ,

we recently obtained compliance measurements from standard compact-tension

samples, using the same geometry used to generate our FCP test results.

These measurements were obtained under cyclic loading conditions at test

frequencies ranging from 0.1 to 100 Hz. With the aid of data processing

from an on-line PDP-8e computer, 20 to 100 ind ividual data points

(depending on test frequency) corresponding to specimen load P and associated

crack opening displacement v were identified for each loading cycle. These

values were used to establish a best-fit slope of the AP-Av line. Between

2 and 40 such slopes were then used to define a final average slope. For

a given crack length to specimen width ratio a/W and specimen thickness B,

the modulus of elasticity of each sample could then be computed from the

known compliance calibration relationship for the test specimen. It is of

particular note tha t for most of the materials tested , the computed value

of elastic modulus did not change to any significant degree (Table I).

Since the body of the compact tension sample is predominantly elastic and
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experiences very small strains , the results from these compliance measure-

ments should reveal the material’s elastic modulus rather than the ~ecant

modulus which Williams reported at a strain level of 3.5 percent. Because

the FCP process and the associated crack tip stress intensity conditions

are controlled by the elastic volume surrounding the small crack tip zone ,

the values of E reported here are considered to be more meaningful in

assessing the FCP frequency dependence on E(~). The reported E values are

in some cases higher than those normally reported , based on conventional

stress-strain data, but in general agreement with values reported based

on dynamic mechanical data.
14 

Higher values would not be surprising since

the specimen strains are very low.

The results confirm the relative insensitivity to frequency anticipated

for diverse po1ymers~ Note in poly(vinyl chloride) (PVC) , polystyrene (PS), and

poly(phenylene oxide) (PPO) , that the measured values of E changed by only

about one percent for each of several decade changes in cyclic test frequency.

Compare this lack of modulus-frequency sensitivity with the previously

documented strong FCP frequency sensitivity for these materials.
11 13

Clearly, frequency-induced changes in E cannot as a general rule account

for the large frequency sensitivity factors (FSF) reported . Instead , we

maintain our view that FCP frequency sensitivity is largely controlled by

a resonance condition between test machine frequency and the frequency of

molecular segmental motions associated with the B damping peak.
1113

For the case of commercially prepared PMMA , we report an 8-10 percent

change in E per decade change in test frequency which is considerably

smaller than that reported by Williams, based on the 3.5 percent secant

modulus.
6 This highlights the difference in E based upon different strain

level reference points. When the E(~) values are included in Eq. 1 along

—5-
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with the material parameter a , the computed change in FCP rate per decade

change in frequency is less than that actua lly measured . In fact , a

similar E(é)  sensitivity was found in laboratory-cast PMMA and , yet no

sensitivity of FCP to frequency was found in this material (Tab le I) .

Finally, tests were conducted on dry nylon 66 to establish both the FSF

and E(~). We found no change in E as a function of test frequency and no

sensitivity of FCP to frequency (see Figure 2), as was also the case for

nylon 66 containing an unknown amount of moisture.11 The reason for the

difference in frequency sensitivity of FCP rates between our results and

15
those of El-Hakeem (see reference 1, Figure 9) for dry nylon 66 is not

clear at this time.

We certainly agree that the value of E to be used is the value at

the test frequency selected. However while the secant modulus may show a

strong s train rate sensitivity (presumably rela ted to the strong strain-

rate sensitivity of a
r

) ,  we conc lude that the secant modulus is not the

appropriate parameter for evaluating modulus effects on fatigue crack

propagation behavior. Rather, we conclude that the modulus defined at

small elastic strains is a more meaningful parameter for this purpose.

However, the fact that E(é) does not explain the FCP dependence on test

frequency, supports our previously reported hypothesis that s-peak

related segmental motions hold the key to the FCP frequency sensitivity

in polymeric solids.
1113
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